ext2: fix missing percpu_counter_inc
[linux/fpc-iii.git] / kernel / kprobes.c
blob0a967db226d8aedfb60e3f756b88b5a729bcc5da
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Kernel Probes (KProbes)
4 * kernel/kprobes.c
6 * Copyright (C) IBM Corporation, 2002, 2004
8 * 2002-Oct Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
9 * Probes initial implementation (includes suggestions from
10 * Rusty Russell).
11 * 2004-Aug Updated by Prasanna S Panchamukhi <prasanna@in.ibm.com> with
12 * hlists and exceptions notifier as suggested by Andi Kleen.
13 * 2004-July Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
14 * interface to access function arguments.
15 * 2004-Sep Prasanna S Panchamukhi <prasanna@in.ibm.com> Changed Kprobes
16 * exceptions notifier to be first on the priority list.
17 * 2005-May Hien Nguyen <hien@us.ibm.com>, Jim Keniston
18 * <jkenisto@us.ibm.com> and Prasanna S Panchamukhi
19 * <prasanna@in.ibm.com> added function-return probes.
21 #include <linux/kprobes.h>
22 #include <linux/hash.h>
23 #include <linux/init.h>
24 #include <linux/slab.h>
25 #include <linux/stddef.h>
26 #include <linux/export.h>
27 #include <linux/moduleloader.h>
28 #include <linux/kallsyms.h>
29 #include <linux/freezer.h>
30 #include <linux/seq_file.h>
31 #include <linux/debugfs.h>
32 #include <linux/sysctl.h>
33 #include <linux/kdebug.h>
34 #include <linux/memory.h>
35 #include <linux/ftrace.h>
36 #include <linux/cpu.h>
37 #include <linux/jump_label.h>
39 #include <asm/sections.h>
40 #include <asm/cacheflush.h>
41 #include <asm/errno.h>
42 #include <linux/uaccess.h>
44 #define KPROBE_HASH_BITS 6
45 #define KPROBE_TABLE_SIZE (1 << KPROBE_HASH_BITS)
48 static int kprobes_initialized;
49 static struct hlist_head kprobe_table[KPROBE_TABLE_SIZE];
50 static struct hlist_head kretprobe_inst_table[KPROBE_TABLE_SIZE];
52 /* NOTE: change this value only with kprobe_mutex held */
53 static bool kprobes_all_disarmed;
55 /* This protects kprobe_table and optimizing_list */
56 static DEFINE_MUTEX(kprobe_mutex);
57 static DEFINE_PER_CPU(struct kprobe *, kprobe_instance) = NULL;
58 static struct {
59 raw_spinlock_t lock ____cacheline_aligned_in_smp;
60 } kretprobe_table_locks[KPROBE_TABLE_SIZE];
62 kprobe_opcode_t * __weak kprobe_lookup_name(const char *name,
63 unsigned int __unused)
65 return ((kprobe_opcode_t *)(kallsyms_lookup_name(name)));
68 static raw_spinlock_t *kretprobe_table_lock_ptr(unsigned long hash)
70 return &(kretprobe_table_locks[hash].lock);
73 /* Blacklist -- list of struct kprobe_blacklist_entry */
74 static LIST_HEAD(kprobe_blacklist);
76 #ifdef __ARCH_WANT_KPROBES_INSN_SLOT
78 * kprobe->ainsn.insn points to the copy of the instruction to be
79 * single-stepped. x86_64, POWER4 and above have no-exec support and
80 * stepping on the instruction on a vmalloced/kmalloced/data page
81 * is a recipe for disaster
83 struct kprobe_insn_page {
84 struct list_head list;
85 kprobe_opcode_t *insns; /* Page of instruction slots */
86 struct kprobe_insn_cache *cache;
87 int nused;
88 int ngarbage;
89 char slot_used[];
92 #define KPROBE_INSN_PAGE_SIZE(slots) \
93 (offsetof(struct kprobe_insn_page, slot_used) + \
94 (sizeof(char) * (slots)))
96 static int slots_per_page(struct kprobe_insn_cache *c)
98 return PAGE_SIZE/(c->insn_size * sizeof(kprobe_opcode_t));
101 enum kprobe_slot_state {
102 SLOT_CLEAN = 0,
103 SLOT_DIRTY = 1,
104 SLOT_USED = 2,
107 void __weak *alloc_insn_page(void)
109 return module_alloc(PAGE_SIZE);
112 void __weak free_insn_page(void *page)
114 module_memfree(page);
117 struct kprobe_insn_cache kprobe_insn_slots = {
118 .mutex = __MUTEX_INITIALIZER(kprobe_insn_slots.mutex),
119 .alloc = alloc_insn_page,
120 .free = free_insn_page,
121 .pages = LIST_HEAD_INIT(kprobe_insn_slots.pages),
122 .insn_size = MAX_INSN_SIZE,
123 .nr_garbage = 0,
125 static int collect_garbage_slots(struct kprobe_insn_cache *c);
128 * __get_insn_slot() - Find a slot on an executable page for an instruction.
129 * We allocate an executable page if there's no room on existing ones.
131 kprobe_opcode_t *__get_insn_slot(struct kprobe_insn_cache *c)
133 struct kprobe_insn_page *kip;
134 kprobe_opcode_t *slot = NULL;
136 /* Since the slot array is not protected by rcu, we need a mutex */
137 mutex_lock(&c->mutex);
138 retry:
139 rcu_read_lock();
140 list_for_each_entry_rcu(kip, &c->pages, list) {
141 if (kip->nused < slots_per_page(c)) {
142 int i;
143 for (i = 0; i < slots_per_page(c); i++) {
144 if (kip->slot_used[i] == SLOT_CLEAN) {
145 kip->slot_used[i] = SLOT_USED;
146 kip->nused++;
147 slot = kip->insns + (i * c->insn_size);
148 rcu_read_unlock();
149 goto out;
152 /* kip->nused is broken. Fix it. */
153 kip->nused = slots_per_page(c);
154 WARN_ON(1);
157 rcu_read_unlock();
159 /* If there are any garbage slots, collect it and try again. */
160 if (c->nr_garbage && collect_garbage_slots(c) == 0)
161 goto retry;
163 /* All out of space. Need to allocate a new page. */
164 kip = kmalloc(KPROBE_INSN_PAGE_SIZE(slots_per_page(c)), GFP_KERNEL);
165 if (!kip)
166 goto out;
169 * Use module_alloc so this page is within +/- 2GB of where the
170 * kernel image and loaded module images reside. This is required
171 * so x86_64 can correctly handle the %rip-relative fixups.
173 kip->insns = c->alloc();
174 if (!kip->insns) {
175 kfree(kip);
176 goto out;
178 INIT_LIST_HEAD(&kip->list);
179 memset(kip->slot_used, SLOT_CLEAN, slots_per_page(c));
180 kip->slot_used[0] = SLOT_USED;
181 kip->nused = 1;
182 kip->ngarbage = 0;
183 kip->cache = c;
184 list_add_rcu(&kip->list, &c->pages);
185 slot = kip->insns;
186 out:
187 mutex_unlock(&c->mutex);
188 return slot;
191 /* Return 1 if all garbages are collected, otherwise 0. */
192 static int collect_one_slot(struct kprobe_insn_page *kip, int idx)
194 kip->slot_used[idx] = SLOT_CLEAN;
195 kip->nused--;
196 if (kip->nused == 0) {
198 * Page is no longer in use. Free it unless
199 * it's the last one. We keep the last one
200 * so as not to have to set it up again the
201 * next time somebody inserts a probe.
203 if (!list_is_singular(&kip->list)) {
204 list_del_rcu(&kip->list);
205 synchronize_rcu();
206 kip->cache->free(kip->insns);
207 kfree(kip);
209 return 1;
211 return 0;
214 static int collect_garbage_slots(struct kprobe_insn_cache *c)
216 struct kprobe_insn_page *kip, *next;
218 /* Ensure no-one is interrupted on the garbages */
219 synchronize_rcu();
221 list_for_each_entry_safe(kip, next, &c->pages, list) {
222 int i;
223 if (kip->ngarbage == 0)
224 continue;
225 kip->ngarbage = 0; /* we will collect all garbages */
226 for (i = 0; i < slots_per_page(c); i++) {
227 if (kip->slot_used[i] == SLOT_DIRTY && collect_one_slot(kip, i))
228 break;
231 c->nr_garbage = 0;
232 return 0;
235 void __free_insn_slot(struct kprobe_insn_cache *c,
236 kprobe_opcode_t *slot, int dirty)
238 struct kprobe_insn_page *kip;
239 long idx;
241 mutex_lock(&c->mutex);
242 rcu_read_lock();
243 list_for_each_entry_rcu(kip, &c->pages, list) {
244 idx = ((long)slot - (long)kip->insns) /
245 (c->insn_size * sizeof(kprobe_opcode_t));
246 if (idx >= 0 && idx < slots_per_page(c))
247 goto out;
249 /* Could not find this slot. */
250 WARN_ON(1);
251 kip = NULL;
252 out:
253 rcu_read_unlock();
254 /* Mark and sweep: this may sleep */
255 if (kip) {
256 /* Check double free */
257 WARN_ON(kip->slot_used[idx] != SLOT_USED);
258 if (dirty) {
259 kip->slot_used[idx] = SLOT_DIRTY;
260 kip->ngarbage++;
261 if (++c->nr_garbage > slots_per_page(c))
262 collect_garbage_slots(c);
263 } else {
264 collect_one_slot(kip, idx);
267 mutex_unlock(&c->mutex);
271 * Check given address is on the page of kprobe instruction slots.
272 * This will be used for checking whether the address on a stack
273 * is on a text area or not.
275 bool __is_insn_slot_addr(struct kprobe_insn_cache *c, unsigned long addr)
277 struct kprobe_insn_page *kip;
278 bool ret = false;
280 rcu_read_lock();
281 list_for_each_entry_rcu(kip, &c->pages, list) {
282 if (addr >= (unsigned long)kip->insns &&
283 addr < (unsigned long)kip->insns + PAGE_SIZE) {
284 ret = true;
285 break;
288 rcu_read_unlock();
290 return ret;
293 #ifdef CONFIG_OPTPROBES
294 /* For optimized_kprobe buffer */
295 struct kprobe_insn_cache kprobe_optinsn_slots = {
296 .mutex = __MUTEX_INITIALIZER(kprobe_optinsn_slots.mutex),
297 .alloc = alloc_insn_page,
298 .free = free_insn_page,
299 .pages = LIST_HEAD_INIT(kprobe_optinsn_slots.pages),
300 /* .insn_size is initialized later */
301 .nr_garbage = 0,
303 #endif
304 #endif
306 /* We have preemption disabled.. so it is safe to use __ versions */
307 static inline void set_kprobe_instance(struct kprobe *kp)
309 __this_cpu_write(kprobe_instance, kp);
312 static inline void reset_kprobe_instance(void)
314 __this_cpu_write(kprobe_instance, NULL);
318 * This routine is called either:
319 * - under the kprobe_mutex - during kprobe_[un]register()
320 * OR
321 * - with preemption disabled - from arch/xxx/kernel/kprobes.c
323 struct kprobe *get_kprobe(void *addr)
325 struct hlist_head *head;
326 struct kprobe *p;
328 head = &kprobe_table[hash_ptr(addr, KPROBE_HASH_BITS)];
329 hlist_for_each_entry_rcu(p, head, hlist,
330 lockdep_is_held(&kprobe_mutex)) {
331 if (p->addr == addr)
332 return p;
335 return NULL;
337 NOKPROBE_SYMBOL(get_kprobe);
339 static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs);
341 /* Return true if the kprobe is an aggregator */
342 static inline int kprobe_aggrprobe(struct kprobe *p)
344 return p->pre_handler == aggr_pre_handler;
347 /* Return true(!0) if the kprobe is unused */
348 static inline int kprobe_unused(struct kprobe *p)
350 return kprobe_aggrprobe(p) && kprobe_disabled(p) &&
351 list_empty(&p->list);
355 * Keep all fields in the kprobe consistent
357 static inline void copy_kprobe(struct kprobe *ap, struct kprobe *p)
359 memcpy(&p->opcode, &ap->opcode, sizeof(kprobe_opcode_t));
360 memcpy(&p->ainsn, &ap->ainsn, sizeof(struct arch_specific_insn));
363 #ifdef CONFIG_OPTPROBES
364 /* NOTE: change this value only with kprobe_mutex held */
365 static bool kprobes_allow_optimization;
368 * Call all pre_handler on the list, but ignores its return value.
369 * This must be called from arch-dep optimized caller.
371 void opt_pre_handler(struct kprobe *p, struct pt_regs *regs)
373 struct kprobe *kp;
375 list_for_each_entry_rcu(kp, &p->list, list) {
376 if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
377 set_kprobe_instance(kp);
378 kp->pre_handler(kp, regs);
380 reset_kprobe_instance();
383 NOKPROBE_SYMBOL(opt_pre_handler);
385 /* Free optimized instructions and optimized_kprobe */
386 static void free_aggr_kprobe(struct kprobe *p)
388 struct optimized_kprobe *op;
390 op = container_of(p, struct optimized_kprobe, kp);
391 arch_remove_optimized_kprobe(op);
392 arch_remove_kprobe(p);
393 kfree(op);
396 /* Return true(!0) if the kprobe is ready for optimization. */
397 static inline int kprobe_optready(struct kprobe *p)
399 struct optimized_kprobe *op;
401 if (kprobe_aggrprobe(p)) {
402 op = container_of(p, struct optimized_kprobe, kp);
403 return arch_prepared_optinsn(&op->optinsn);
406 return 0;
409 /* Return true(!0) if the kprobe is disarmed. Note: p must be on hash list */
410 static inline int kprobe_disarmed(struct kprobe *p)
412 struct optimized_kprobe *op;
414 /* If kprobe is not aggr/opt probe, just return kprobe is disabled */
415 if (!kprobe_aggrprobe(p))
416 return kprobe_disabled(p);
418 op = container_of(p, struct optimized_kprobe, kp);
420 return kprobe_disabled(p) && list_empty(&op->list);
423 /* Return true(!0) if the probe is queued on (un)optimizing lists */
424 static int kprobe_queued(struct kprobe *p)
426 struct optimized_kprobe *op;
428 if (kprobe_aggrprobe(p)) {
429 op = container_of(p, struct optimized_kprobe, kp);
430 if (!list_empty(&op->list))
431 return 1;
433 return 0;
437 * Return an optimized kprobe whose optimizing code replaces
438 * instructions including addr (exclude breakpoint).
440 static struct kprobe *get_optimized_kprobe(unsigned long addr)
442 int i;
443 struct kprobe *p = NULL;
444 struct optimized_kprobe *op;
446 /* Don't check i == 0, since that is a breakpoint case. */
447 for (i = 1; !p && i < MAX_OPTIMIZED_LENGTH; i++)
448 p = get_kprobe((void *)(addr - i));
450 if (p && kprobe_optready(p)) {
451 op = container_of(p, struct optimized_kprobe, kp);
452 if (arch_within_optimized_kprobe(op, addr))
453 return p;
456 return NULL;
459 /* Optimization staging list, protected by kprobe_mutex */
460 static LIST_HEAD(optimizing_list);
461 static LIST_HEAD(unoptimizing_list);
462 static LIST_HEAD(freeing_list);
464 static void kprobe_optimizer(struct work_struct *work);
465 static DECLARE_DELAYED_WORK(optimizing_work, kprobe_optimizer);
466 #define OPTIMIZE_DELAY 5
469 * Optimize (replace a breakpoint with a jump) kprobes listed on
470 * optimizing_list.
472 static void do_optimize_kprobes(void)
474 lockdep_assert_held(&text_mutex);
476 * The optimization/unoptimization refers online_cpus via
477 * stop_machine() and cpu-hotplug modifies online_cpus.
478 * And same time, text_mutex will be held in cpu-hotplug and here.
479 * This combination can cause a deadlock (cpu-hotplug try to lock
480 * text_mutex but stop_machine can not be done because online_cpus
481 * has been changed)
482 * To avoid this deadlock, caller must have locked cpu hotplug
483 * for preventing cpu-hotplug outside of text_mutex locking.
485 lockdep_assert_cpus_held();
487 /* Optimization never be done when disarmed */
488 if (kprobes_all_disarmed || !kprobes_allow_optimization ||
489 list_empty(&optimizing_list))
490 return;
492 arch_optimize_kprobes(&optimizing_list);
496 * Unoptimize (replace a jump with a breakpoint and remove the breakpoint
497 * if need) kprobes listed on unoptimizing_list.
499 static void do_unoptimize_kprobes(void)
501 struct optimized_kprobe *op, *tmp;
503 lockdep_assert_held(&text_mutex);
504 /* See comment in do_optimize_kprobes() */
505 lockdep_assert_cpus_held();
507 /* Unoptimization must be done anytime */
508 if (list_empty(&unoptimizing_list))
509 return;
511 arch_unoptimize_kprobes(&unoptimizing_list, &freeing_list);
512 /* Loop free_list for disarming */
513 list_for_each_entry_safe(op, tmp, &freeing_list, list) {
514 /* Switching from detour code to origin */
515 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
516 /* Disarm probes if marked disabled */
517 if (kprobe_disabled(&op->kp))
518 arch_disarm_kprobe(&op->kp);
519 if (kprobe_unused(&op->kp)) {
521 * Remove unused probes from hash list. After waiting
522 * for synchronization, these probes are reclaimed.
523 * (reclaiming is done by do_free_cleaned_kprobes.)
525 hlist_del_rcu(&op->kp.hlist);
526 } else
527 list_del_init(&op->list);
531 /* Reclaim all kprobes on the free_list */
532 static void do_free_cleaned_kprobes(void)
534 struct optimized_kprobe *op, *tmp;
536 list_for_each_entry_safe(op, tmp, &freeing_list, list) {
537 list_del_init(&op->list);
538 if (WARN_ON_ONCE(!kprobe_unused(&op->kp))) {
540 * This must not happen, but if there is a kprobe
541 * still in use, keep it on kprobes hash list.
543 continue;
545 free_aggr_kprobe(&op->kp);
549 /* Start optimizer after OPTIMIZE_DELAY passed */
550 static void kick_kprobe_optimizer(void)
552 schedule_delayed_work(&optimizing_work, OPTIMIZE_DELAY);
555 /* Kprobe jump optimizer */
556 static void kprobe_optimizer(struct work_struct *work)
558 mutex_lock(&kprobe_mutex);
559 cpus_read_lock();
560 mutex_lock(&text_mutex);
561 /* Lock modules while optimizing kprobes */
562 mutex_lock(&module_mutex);
565 * Step 1: Unoptimize kprobes and collect cleaned (unused and disarmed)
566 * kprobes before waiting for quiesence period.
568 do_unoptimize_kprobes();
571 * Step 2: Wait for quiesence period to ensure all potentially
572 * preempted tasks to have normally scheduled. Because optprobe
573 * may modify multiple instructions, there is a chance that Nth
574 * instruction is preempted. In that case, such tasks can return
575 * to 2nd-Nth byte of jump instruction. This wait is for avoiding it.
576 * Note that on non-preemptive kernel, this is transparently converted
577 * to synchronoze_sched() to wait for all interrupts to have completed.
579 synchronize_rcu_tasks();
581 /* Step 3: Optimize kprobes after quiesence period */
582 do_optimize_kprobes();
584 /* Step 4: Free cleaned kprobes after quiesence period */
585 do_free_cleaned_kprobes();
587 mutex_unlock(&module_mutex);
588 mutex_unlock(&text_mutex);
589 cpus_read_unlock();
591 /* Step 5: Kick optimizer again if needed */
592 if (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list))
593 kick_kprobe_optimizer();
595 mutex_unlock(&kprobe_mutex);
598 /* Wait for completing optimization and unoptimization */
599 void wait_for_kprobe_optimizer(void)
601 mutex_lock(&kprobe_mutex);
603 while (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list)) {
604 mutex_unlock(&kprobe_mutex);
606 /* this will also make optimizing_work execute immmediately */
607 flush_delayed_work(&optimizing_work);
608 /* @optimizing_work might not have been queued yet, relax */
609 cpu_relax();
611 mutex_lock(&kprobe_mutex);
614 mutex_unlock(&kprobe_mutex);
617 static bool optprobe_queued_unopt(struct optimized_kprobe *op)
619 struct optimized_kprobe *_op;
621 list_for_each_entry(_op, &unoptimizing_list, list) {
622 if (op == _op)
623 return true;
626 return false;
629 /* Optimize kprobe if p is ready to be optimized */
630 static void optimize_kprobe(struct kprobe *p)
632 struct optimized_kprobe *op;
634 /* Check if the kprobe is disabled or not ready for optimization. */
635 if (!kprobe_optready(p) || !kprobes_allow_optimization ||
636 (kprobe_disabled(p) || kprobes_all_disarmed))
637 return;
639 /* kprobes with post_handler can not be optimized */
640 if (p->post_handler)
641 return;
643 op = container_of(p, struct optimized_kprobe, kp);
645 /* Check there is no other kprobes at the optimized instructions */
646 if (arch_check_optimized_kprobe(op) < 0)
647 return;
649 /* Check if it is already optimized. */
650 if (op->kp.flags & KPROBE_FLAG_OPTIMIZED) {
651 if (optprobe_queued_unopt(op)) {
652 /* This is under unoptimizing. Just dequeue the probe */
653 list_del_init(&op->list);
655 return;
657 op->kp.flags |= KPROBE_FLAG_OPTIMIZED;
659 /* On unoptimizing/optimizing_list, op must have OPTIMIZED flag */
660 if (WARN_ON_ONCE(!list_empty(&op->list)))
661 return;
663 list_add(&op->list, &optimizing_list);
664 kick_kprobe_optimizer();
667 /* Short cut to direct unoptimizing */
668 static void force_unoptimize_kprobe(struct optimized_kprobe *op)
670 lockdep_assert_cpus_held();
671 arch_unoptimize_kprobe(op);
672 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
673 if (kprobe_disabled(&op->kp))
674 arch_disarm_kprobe(&op->kp);
677 /* Unoptimize a kprobe if p is optimized */
678 static void unoptimize_kprobe(struct kprobe *p, bool force)
680 struct optimized_kprobe *op;
682 if (!kprobe_aggrprobe(p) || kprobe_disarmed(p))
683 return; /* This is not an optprobe nor optimized */
685 op = container_of(p, struct optimized_kprobe, kp);
686 if (!kprobe_optimized(p))
687 return;
689 if (!list_empty(&op->list)) {
690 if (optprobe_queued_unopt(op)) {
691 /* Queued in unoptimizing queue */
692 if (force) {
694 * Forcibly unoptimize the kprobe here, and queue it
695 * in the freeing list for release afterwards.
697 force_unoptimize_kprobe(op);
698 list_move(&op->list, &freeing_list);
700 } else {
701 /* Dequeue from the optimizing queue */
702 list_del_init(&op->list);
703 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
705 return;
708 /* Optimized kprobe case */
709 if (force) {
710 /* Forcibly update the code: this is a special case */
711 force_unoptimize_kprobe(op);
712 } else {
713 list_add(&op->list, &unoptimizing_list);
714 kick_kprobe_optimizer();
718 /* Cancel unoptimizing for reusing */
719 static int reuse_unused_kprobe(struct kprobe *ap)
721 struct optimized_kprobe *op;
724 * Unused kprobe MUST be on the way of delayed unoptimizing (means
725 * there is still a relative jump) and disabled.
727 op = container_of(ap, struct optimized_kprobe, kp);
728 WARN_ON_ONCE(list_empty(&op->list));
729 /* Enable the probe again */
730 ap->flags &= ~KPROBE_FLAG_DISABLED;
731 /* Optimize it again (remove from op->list) */
732 if (!kprobe_optready(ap))
733 return -EINVAL;
735 optimize_kprobe(ap);
736 return 0;
739 /* Remove optimized instructions */
740 static void kill_optimized_kprobe(struct kprobe *p)
742 struct optimized_kprobe *op;
744 op = container_of(p, struct optimized_kprobe, kp);
745 if (!list_empty(&op->list))
746 /* Dequeue from the (un)optimization queue */
747 list_del_init(&op->list);
748 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
750 if (kprobe_unused(p)) {
751 /* Enqueue if it is unused */
752 list_add(&op->list, &freeing_list);
754 * Remove unused probes from the hash list. After waiting
755 * for synchronization, this probe is reclaimed.
756 * (reclaiming is done by do_free_cleaned_kprobes().)
758 hlist_del_rcu(&op->kp.hlist);
761 /* Don't touch the code, because it is already freed. */
762 arch_remove_optimized_kprobe(op);
765 static inline
766 void __prepare_optimized_kprobe(struct optimized_kprobe *op, struct kprobe *p)
768 if (!kprobe_ftrace(p))
769 arch_prepare_optimized_kprobe(op, p);
772 /* Try to prepare optimized instructions */
773 static void prepare_optimized_kprobe(struct kprobe *p)
775 struct optimized_kprobe *op;
777 op = container_of(p, struct optimized_kprobe, kp);
778 __prepare_optimized_kprobe(op, p);
781 /* Allocate new optimized_kprobe and try to prepare optimized instructions */
782 static struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
784 struct optimized_kprobe *op;
786 op = kzalloc(sizeof(struct optimized_kprobe), GFP_KERNEL);
787 if (!op)
788 return NULL;
790 INIT_LIST_HEAD(&op->list);
791 op->kp.addr = p->addr;
792 __prepare_optimized_kprobe(op, p);
794 return &op->kp;
797 static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p);
800 * Prepare an optimized_kprobe and optimize it
801 * NOTE: p must be a normal registered kprobe
803 static void try_to_optimize_kprobe(struct kprobe *p)
805 struct kprobe *ap;
806 struct optimized_kprobe *op;
808 /* Impossible to optimize ftrace-based kprobe */
809 if (kprobe_ftrace(p))
810 return;
812 /* For preparing optimization, jump_label_text_reserved() is called */
813 cpus_read_lock();
814 jump_label_lock();
815 mutex_lock(&text_mutex);
817 ap = alloc_aggr_kprobe(p);
818 if (!ap)
819 goto out;
821 op = container_of(ap, struct optimized_kprobe, kp);
822 if (!arch_prepared_optinsn(&op->optinsn)) {
823 /* If failed to setup optimizing, fallback to kprobe */
824 arch_remove_optimized_kprobe(op);
825 kfree(op);
826 goto out;
829 init_aggr_kprobe(ap, p);
830 optimize_kprobe(ap); /* This just kicks optimizer thread */
832 out:
833 mutex_unlock(&text_mutex);
834 jump_label_unlock();
835 cpus_read_unlock();
838 #ifdef CONFIG_SYSCTL
839 static void optimize_all_kprobes(void)
841 struct hlist_head *head;
842 struct kprobe *p;
843 unsigned int i;
845 mutex_lock(&kprobe_mutex);
846 /* If optimization is already allowed, just return */
847 if (kprobes_allow_optimization)
848 goto out;
850 cpus_read_lock();
851 kprobes_allow_optimization = true;
852 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
853 head = &kprobe_table[i];
854 hlist_for_each_entry_rcu(p, head, hlist)
855 if (!kprobe_disabled(p))
856 optimize_kprobe(p);
858 cpus_read_unlock();
859 printk(KERN_INFO "Kprobes globally optimized\n");
860 out:
861 mutex_unlock(&kprobe_mutex);
864 static void unoptimize_all_kprobes(void)
866 struct hlist_head *head;
867 struct kprobe *p;
868 unsigned int i;
870 mutex_lock(&kprobe_mutex);
871 /* If optimization is already prohibited, just return */
872 if (!kprobes_allow_optimization) {
873 mutex_unlock(&kprobe_mutex);
874 return;
877 cpus_read_lock();
878 kprobes_allow_optimization = false;
879 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
880 head = &kprobe_table[i];
881 hlist_for_each_entry_rcu(p, head, hlist) {
882 if (!kprobe_disabled(p))
883 unoptimize_kprobe(p, false);
886 cpus_read_unlock();
887 mutex_unlock(&kprobe_mutex);
889 /* Wait for unoptimizing completion */
890 wait_for_kprobe_optimizer();
891 printk(KERN_INFO "Kprobes globally unoptimized\n");
894 static DEFINE_MUTEX(kprobe_sysctl_mutex);
895 int sysctl_kprobes_optimization;
896 int proc_kprobes_optimization_handler(struct ctl_table *table, int write,
897 void __user *buffer, size_t *length,
898 loff_t *ppos)
900 int ret;
902 mutex_lock(&kprobe_sysctl_mutex);
903 sysctl_kprobes_optimization = kprobes_allow_optimization ? 1 : 0;
904 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
906 if (sysctl_kprobes_optimization)
907 optimize_all_kprobes();
908 else
909 unoptimize_all_kprobes();
910 mutex_unlock(&kprobe_sysctl_mutex);
912 return ret;
914 #endif /* CONFIG_SYSCTL */
916 /* Put a breakpoint for a probe. Must be called with text_mutex locked */
917 static void __arm_kprobe(struct kprobe *p)
919 struct kprobe *_p;
921 /* Check collision with other optimized kprobes */
922 _p = get_optimized_kprobe((unsigned long)p->addr);
923 if (unlikely(_p))
924 /* Fallback to unoptimized kprobe */
925 unoptimize_kprobe(_p, true);
927 arch_arm_kprobe(p);
928 optimize_kprobe(p); /* Try to optimize (add kprobe to a list) */
931 /* Remove the breakpoint of a probe. Must be called with text_mutex locked */
932 static void __disarm_kprobe(struct kprobe *p, bool reopt)
934 struct kprobe *_p;
936 /* Try to unoptimize */
937 unoptimize_kprobe(p, kprobes_all_disarmed);
939 if (!kprobe_queued(p)) {
940 arch_disarm_kprobe(p);
941 /* If another kprobe was blocked, optimize it. */
942 _p = get_optimized_kprobe((unsigned long)p->addr);
943 if (unlikely(_p) && reopt)
944 optimize_kprobe(_p);
946 /* TODO: reoptimize others after unoptimized this probe */
949 #else /* !CONFIG_OPTPROBES */
951 #define optimize_kprobe(p) do {} while (0)
952 #define unoptimize_kprobe(p, f) do {} while (0)
953 #define kill_optimized_kprobe(p) do {} while (0)
954 #define prepare_optimized_kprobe(p) do {} while (0)
955 #define try_to_optimize_kprobe(p) do {} while (0)
956 #define __arm_kprobe(p) arch_arm_kprobe(p)
957 #define __disarm_kprobe(p, o) arch_disarm_kprobe(p)
958 #define kprobe_disarmed(p) kprobe_disabled(p)
959 #define wait_for_kprobe_optimizer() do {} while (0)
961 static int reuse_unused_kprobe(struct kprobe *ap)
964 * If the optimized kprobe is NOT supported, the aggr kprobe is
965 * released at the same time that the last aggregated kprobe is
966 * unregistered.
967 * Thus there should be no chance to reuse unused kprobe.
969 printk(KERN_ERR "Error: There should be no unused kprobe here.\n");
970 return -EINVAL;
973 static void free_aggr_kprobe(struct kprobe *p)
975 arch_remove_kprobe(p);
976 kfree(p);
979 static struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
981 return kzalloc(sizeof(struct kprobe), GFP_KERNEL);
983 #endif /* CONFIG_OPTPROBES */
985 #ifdef CONFIG_KPROBES_ON_FTRACE
986 static struct ftrace_ops kprobe_ftrace_ops __read_mostly = {
987 .func = kprobe_ftrace_handler,
988 .flags = FTRACE_OPS_FL_SAVE_REGS,
991 static struct ftrace_ops kprobe_ipmodify_ops __read_mostly = {
992 .func = kprobe_ftrace_handler,
993 .flags = FTRACE_OPS_FL_SAVE_REGS | FTRACE_OPS_FL_IPMODIFY,
996 static int kprobe_ipmodify_enabled;
997 static int kprobe_ftrace_enabled;
999 /* Must ensure p->addr is really on ftrace */
1000 static int prepare_kprobe(struct kprobe *p)
1002 if (!kprobe_ftrace(p))
1003 return arch_prepare_kprobe(p);
1005 return arch_prepare_kprobe_ftrace(p);
1008 /* Caller must lock kprobe_mutex */
1009 static int __arm_kprobe_ftrace(struct kprobe *p, struct ftrace_ops *ops,
1010 int *cnt)
1012 int ret = 0;
1014 ret = ftrace_set_filter_ip(ops, (unsigned long)p->addr, 0, 0);
1015 if (ret) {
1016 pr_debug("Failed to arm kprobe-ftrace at %pS (%d)\n",
1017 p->addr, ret);
1018 return ret;
1021 if (*cnt == 0) {
1022 ret = register_ftrace_function(ops);
1023 if (ret) {
1024 pr_debug("Failed to init kprobe-ftrace (%d)\n", ret);
1025 goto err_ftrace;
1029 (*cnt)++;
1030 return ret;
1032 err_ftrace:
1034 * At this point, sinec ops is not registered, we should be sefe from
1035 * registering empty filter.
1037 ftrace_set_filter_ip(ops, (unsigned long)p->addr, 1, 0);
1038 return ret;
1041 static int arm_kprobe_ftrace(struct kprobe *p)
1043 bool ipmodify = (p->post_handler != NULL);
1045 return __arm_kprobe_ftrace(p,
1046 ipmodify ? &kprobe_ipmodify_ops : &kprobe_ftrace_ops,
1047 ipmodify ? &kprobe_ipmodify_enabled : &kprobe_ftrace_enabled);
1050 /* Caller must lock kprobe_mutex */
1051 static int __disarm_kprobe_ftrace(struct kprobe *p, struct ftrace_ops *ops,
1052 int *cnt)
1054 int ret = 0;
1056 if (*cnt == 1) {
1057 ret = unregister_ftrace_function(ops);
1058 if (WARN(ret < 0, "Failed to unregister kprobe-ftrace (%d)\n", ret))
1059 return ret;
1062 (*cnt)--;
1064 ret = ftrace_set_filter_ip(ops, (unsigned long)p->addr, 1, 0);
1065 WARN_ONCE(ret < 0, "Failed to disarm kprobe-ftrace at %pS (%d)\n",
1066 p->addr, ret);
1067 return ret;
1070 static int disarm_kprobe_ftrace(struct kprobe *p)
1072 bool ipmodify = (p->post_handler != NULL);
1074 return __disarm_kprobe_ftrace(p,
1075 ipmodify ? &kprobe_ipmodify_ops : &kprobe_ftrace_ops,
1076 ipmodify ? &kprobe_ipmodify_enabled : &kprobe_ftrace_enabled);
1078 #else /* !CONFIG_KPROBES_ON_FTRACE */
1079 #define prepare_kprobe(p) arch_prepare_kprobe(p)
1080 #define arm_kprobe_ftrace(p) (-ENODEV)
1081 #define disarm_kprobe_ftrace(p) (-ENODEV)
1082 #endif
1084 /* Arm a kprobe with text_mutex */
1085 static int arm_kprobe(struct kprobe *kp)
1087 if (unlikely(kprobe_ftrace(kp)))
1088 return arm_kprobe_ftrace(kp);
1090 cpus_read_lock();
1091 mutex_lock(&text_mutex);
1092 __arm_kprobe(kp);
1093 mutex_unlock(&text_mutex);
1094 cpus_read_unlock();
1096 return 0;
1099 /* Disarm a kprobe with text_mutex */
1100 static int disarm_kprobe(struct kprobe *kp, bool reopt)
1102 if (unlikely(kprobe_ftrace(kp)))
1103 return disarm_kprobe_ftrace(kp);
1105 cpus_read_lock();
1106 mutex_lock(&text_mutex);
1107 __disarm_kprobe(kp, reopt);
1108 mutex_unlock(&text_mutex);
1109 cpus_read_unlock();
1111 return 0;
1115 * Aggregate handlers for multiple kprobes support - these handlers
1116 * take care of invoking the individual kprobe handlers on p->list
1118 static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs)
1120 struct kprobe *kp;
1122 list_for_each_entry_rcu(kp, &p->list, list) {
1123 if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
1124 set_kprobe_instance(kp);
1125 if (kp->pre_handler(kp, regs))
1126 return 1;
1128 reset_kprobe_instance();
1130 return 0;
1132 NOKPROBE_SYMBOL(aggr_pre_handler);
1134 static void aggr_post_handler(struct kprobe *p, struct pt_regs *regs,
1135 unsigned long flags)
1137 struct kprobe *kp;
1139 list_for_each_entry_rcu(kp, &p->list, list) {
1140 if (kp->post_handler && likely(!kprobe_disabled(kp))) {
1141 set_kprobe_instance(kp);
1142 kp->post_handler(kp, regs, flags);
1143 reset_kprobe_instance();
1147 NOKPROBE_SYMBOL(aggr_post_handler);
1149 static int aggr_fault_handler(struct kprobe *p, struct pt_regs *regs,
1150 int trapnr)
1152 struct kprobe *cur = __this_cpu_read(kprobe_instance);
1155 * if we faulted "during" the execution of a user specified
1156 * probe handler, invoke just that probe's fault handler
1158 if (cur && cur->fault_handler) {
1159 if (cur->fault_handler(cur, regs, trapnr))
1160 return 1;
1162 return 0;
1164 NOKPROBE_SYMBOL(aggr_fault_handler);
1166 /* Walks the list and increments nmissed count for multiprobe case */
1167 void kprobes_inc_nmissed_count(struct kprobe *p)
1169 struct kprobe *kp;
1170 if (!kprobe_aggrprobe(p)) {
1171 p->nmissed++;
1172 } else {
1173 list_for_each_entry_rcu(kp, &p->list, list)
1174 kp->nmissed++;
1176 return;
1178 NOKPROBE_SYMBOL(kprobes_inc_nmissed_count);
1180 void recycle_rp_inst(struct kretprobe_instance *ri,
1181 struct hlist_head *head)
1183 struct kretprobe *rp = ri->rp;
1185 /* remove rp inst off the rprobe_inst_table */
1186 hlist_del(&ri->hlist);
1187 INIT_HLIST_NODE(&ri->hlist);
1188 if (likely(rp)) {
1189 raw_spin_lock(&rp->lock);
1190 hlist_add_head(&ri->hlist, &rp->free_instances);
1191 raw_spin_unlock(&rp->lock);
1192 } else
1193 /* Unregistering */
1194 hlist_add_head(&ri->hlist, head);
1196 NOKPROBE_SYMBOL(recycle_rp_inst);
1198 void kretprobe_hash_lock(struct task_struct *tsk,
1199 struct hlist_head **head, unsigned long *flags)
1200 __acquires(hlist_lock)
1202 unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
1203 raw_spinlock_t *hlist_lock;
1205 *head = &kretprobe_inst_table[hash];
1206 hlist_lock = kretprobe_table_lock_ptr(hash);
1207 raw_spin_lock_irqsave(hlist_lock, *flags);
1209 NOKPROBE_SYMBOL(kretprobe_hash_lock);
1211 static void kretprobe_table_lock(unsigned long hash,
1212 unsigned long *flags)
1213 __acquires(hlist_lock)
1215 raw_spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
1216 raw_spin_lock_irqsave(hlist_lock, *flags);
1218 NOKPROBE_SYMBOL(kretprobe_table_lock);
1220 void kretprobe_hash_unlock(struct task_struct *tsk,
1221 unsigned long *flags)
1222 __releases(hlist_lock)
1224 unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
1225 raw_spinlock_t *hlist_lock;
1227 hlist_lock = kretprobe_table_lock_ptr(hash);
1228 raw_spin_unlock_irqrestore(hlist_lock, *flags);
1230 NOKPROBE_SYMBOL(kretprobe_hash_unlock);
1232 static void kretprobe_table_unlock(unsigned long hash,
1233 unsigned long *flags)
1234 __releases(hlist_lock)
1236 raw_spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
1237 raw_spin_unlock_irqrestore(hlist_lock, *flags);
1239 NOKPROBE_SYMBOL(kretprobe_table_unlock);
1241 struct kprobe kprobe_busy = {
1242 .addr = (void *) get_kprobe,
1245 void kprobe_busy_begin(void)
1247 struct kprobe_ctlblk *kcb;
1249 preempt_disable();
1250 __this_cpu_write(current_kprobe, &kprobe_busy);
1251 kcb = get_kprobe_ctlblk();
1252 kcb->kprobe_status = KPROBE_HIT_ACTIVE;
1255 void kprobe_busy_end(void)
1257 __this_cpu_write(current_kprobe, NULL);
1258 preempt_enable();
1262 * This function is called from finish_task_switch when task tk becomes dead,
1263 * so that we can recycle any function-return probe instances associated
1264 * with this task. These left over instances represent probed functions
1265 * that have been called but will never return.
1267 void kprobe_flush_task(struct task_struct *tk)
1269 struct kretprobe_instance *ri;
1270 struct hlist_head *head, empty_rp;
1271 struct hlist_node *tmp;
1272 unsigned long hash, flags = 0;
1274 if (unlikely(!kprobes_initialized))
1275 /* Early boot. kretprobe_table_locks not yet initialized. */
1276 return;
1278 kprobe_busy_begin();
1280 INIT_HLIST_HEAD(&empty_rp);
1281 hash = hash_ptr(tk, KPROBE_HASH_BITS);
1282 head = &kretprobe_inst_table[hash];
1283 kretprobe_table_lock(hash, &flags);
1284 hlist_for_each_entry_safe(ri, tmp, head, hlist) {
1285 if (ri->task == tk)
1286 recycle_rp_inst(ri, &empty_rp);
1288 kretprobe_table_unlock(hash, &flags);
1289 hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
1290 hlist_del(&ri->hlist);
1291 kfree(ri);
1294 kprobe_busy_end();
1296 NOKPROBE_SYMBOL(kprobe_flush_task);
1298 static inline void free_rp_inst(struct kretprobe *rp)
1300 struct kretprobe_instance *ri;
1301 struct hlist_node *next;
1303 hlist_for_each_entry_safe(ri, next, &rp->free_instances, hlist) {
1304 hlist_del(&ri->hlist);
1305 kfree(ri);
1309 static void cleanup_rp_inst(struct kretprobe *rp)
1311 unsigned long flags, hash;
1312 struct kretprobe_instance *ri;
1313 struct hlist_node *next;
1314 struct hlist_head *head;
1316 /* No race here */
1317 for (hash = 0; hash < KPROBE_TABLE_SIZE; hash++) {
1318 kretprobe_table_lock(hash, &flags);
1319 head = &kretprobe_inst_table[hash];
1320 hlist_for_each_entry_safe(ri, next, head, hlist) {
1321 if (ri->rp == rp)
1322 ri->rp = NULL;
1324 kretprobe_table_unlock(hash, &flags);
1326 free_rp_inst(rp);
1328 NOKPROBE_SYMBOL(cleanup_rp_inst);
1330 /* Add the new probe to ap->list */
1331 static int add_new_kprobe(struct kprobe *ap, struct kprobe *p)
1333 if (p->post_handler)
1334 unoptimize_kprobe(ap, true); /* Fall back to normal kprobe */
1336 list_add_rcu(&p->list, &ap->list);
1337 if (p->post_handler && !ap->post_handler)
1338 ap->post_handler = aggr_post_handler;
1340 return 0;
1344 * Fill in the required fields of the "manager kprobe". Replace the
1345 * earlier kprobe in the hlist with the manager kprobe
1347 static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p)
1349 /* Copy p's insn slot to ap */
1350 copy_kprobe(p, ap);
1351 flush_insn_slot(ap);
1352 ap->addr = p->addr;
1353 ap->flags = p->flags & ~KPROBE_FLAG_OPTIMIZED;
1354 ap->pre_handler = aggr_pre_handler;
1355 ap->fault_handler = aggr_fault_handler;
1356 /* We don't care the kprobe which has gone. */
1357 if (p->post_handler && !kprobe_gone(p))
1358 ap->post_handler = aggr_post_handler;
1360 INIT_LIST_HEAD(&ap->list);
1361 INIT_HLIST_NODE(&ap->hlist);
1363 list_add_rcu(&p->list, &ap->list);
1364 hlist_replace_rcu(&p->hlist, &ap->hlist);
1368 * This is the second or subsequent kprobe at the address - handle
1369 * the intricacies
1371 static int register_aggr_kprobe(struct kprobe *orig_p, struct kprobe *p)
1373 int ret = 0;
1374 struct kprobe *ap = orig_p;
1376 cpus_read_lock();
1378 /* For preparing optimization, jump_label_text_reserved() is called */
1379 jump_label_lock();
1380 mutex_lock(&text_mutex);
1382 if (!kprobe_aggrprobe(orig_p)) {
1383 /* If orig_p is not an aggr_kprobe, create new aggr_kprobe. */
1384 ap = alloc_aggr_kprobe(orig_p);
1385 if (!ap) {
1386 ret = -ENOMEM;
1387 goto out;
1389 init_aggr_kprobe(ap, orig_p);
1390 } else if (kprobe_unused(ap)) {
1391 /* This probe is going to die. Rescue it */
1392 ret = reuse_unused_kprobe(ap);
1393 if (ret)
1394 goto out;
1397 if (kprobe_gone(ap)) {
1399 * Attempting to insert new probe at the same location that
1400 * had a probe in the module vaddr area which already
1401 * freed. So, the instruction slot has already been
1402 * released. We need a new slot for the new probe.
1404 ret = arch_prepare_kprobe(ap);
1405 if (ret)
1407 * Even if fail to allocate new slot, don't need to
1408 * free aggr_probe. It will be used next time, or
1409 * freed by unregister_kprobe.
1411 goto out;
1413 /* Prepare optimized instructions if possible. */
1414 prepare_optimized_kprobe(ap);
1417 * Clear gone flag to prevent allocating new slot again, and
1418 * set disabled flag because it is not armed yet.
1420 ap->flags = (ap->flags & ~KPROBE_FLAG_GONE)
1421 | KPROBE_FLAG_DISABLED;
1424 /* Copy ap's insn slot to p */
1425 copy_kprobe(ap, p);
1426 ret = add_new_kprobe(ap, p);
1428 out:
1429 mutex_unlock(&text_mutex);
1430 jump_label_unlock();
1431 cpus_read_unlock();
1433 if (ret == 0 && kprobe_disabled(ap) && !kprobe_disabled(p)) {
1434 ap->flags &= ~KPROBE_FLAG_DISABLED;
1435 if (!kprobes_all_disarmed) {
1436 /* Arm the breakpoint again. */
1437 ret = arm_kprobe(ap);
1438 if (ret) {
1439 ap->flags |= KPROBE_FLAG_DISABLED;
1440 list_del_rcu(&p->list);
1441 synchronize_rcu();
1445 return ret;
1448 bool __weak arch_within_kprobe_blacklist(unsigned long addr)
1450 /* The __kprobes marked functions and entry code must not be probed */
1451 return addr >= (unsigned long)__kprobes_text_start &&
1452 addr < (unsigned long)__kprobes_text_end;
1455 static bool __within_kprobe_blacklist(unsigned long addr)
1457 struct kprobe_blacklist_entry *ent;
1459 if (arch_within_kprobe_blacklist(addr))
1460 return true;
1462 * If there exists a kprobe_blacklist, verify and
1463 * fail any probe registration in the prohibited area
1465 list_for_each_entry(ent, &kprobe_blacklist, list) {
1466 if (addr >= ent->start_addr && addr < ent->end_addr)
1467 return true;
1469 return false;
1472 bool within_kprobe_blacklist(unsigned long addr)
1474 char symname[KSYM_NAME_LEN], *p;
1476 if (__within_kprobe_blacklist(addr))
1477 return true;
1479 /* Check if the address is on a suffixed-symbol */
1480 if (!lookup_symbol_name(addr, symname)) {
1481 p = strchr(symname, '.');
1482 if (!p)
1483 return false;
1484 *p = '\0';
1485 addr = (unsigned long)kprobe_lookup_name(symname, 0);
1486 if (addr)
1487 return __within_kprobe_blacklist(addr);
1489 return false;
1493 * If we have a symbol_name argument, look it up and add the offset field
1494 * to it. This way, we can specify a relative address to a symbol.
1495 * This returns encoded errors if it fails to look up symbol or invalid
1496 * combination of parameters.
1498 static kprobe_opcode_t *_kprobe_addr(kprobe_opcode_t *addr,
1499 const char *symbol_name, unsigned int offset)
1501 if ((symbol_name && addr) || (!symbol_name && !addr))
1502 goto invalid;
1504 if (symbol_name) {
1505 addr = kprobe_lookup_name(symbol_name, offset);
1506 if (!addr)
1507 return ERR_PTR(-ENOENT);
1510 addr = (kprobe_opcode_t *)(((char *)addr) + offset);
1511 if (addr)
1512 return addr;
1514 invalid:
1515 return ERR_PTR(-EINVAL);
1518 static kprobe_opcode_t *kprobe_addr(struct kprobe *p)
1520 return _kprobe_addr(p->addr, p->symbol_name, p->offset);
1523 /* Check passed kprobe is valid and return kprobe in kprobe_table. */
1524 static struct kprobe *__get_valid_kprobe(struct kprobe *p)
1526 struct kprobe *ap, *list_p;
1528 ap = get_kprobe(p->addr);
1529 if (unlikely(!ap))
1530 return NULL;
1532 if (p != ap) {
1533 list_for_each_entry_rcu(list_p, &ap->list, list)
1534 if (list_p == p)
1535 /* kprobe p is a valid probe */
1536 goto valid;
1537 return NULL;
1539 valid:
1540 return ap;
1543 /* Return error if the kprobe is being re-registered */
1544 static inline int check_kprobe_rereg(struct kprobe *p)
1546 int ret = 0;
1548 mutex_lock(&kprobe_mutex);
1549 if (__get_valid_kprobe(p))
1550 ret = -EINVAL;
1551 mutex_unlock(&kprobe_mutex);
1553 return ret;
1556 int __weak arch_check_ftrace_location(struct kprobe *p)
1558 unsigned long ftrace_addr;
1560 ftrace_addr = ftrace_location((unsigned long)p->addr);
1561 if (ftrace_addr) {
1562 #ifdef CONFIG_KPROBES_ON_FTRACE
1563 /* Given address is not on the instruction boundary */
1564 if ((unsigned long)p->addr != ftrace_addr)
1565 return -EILSEQ;
1566 p->flags |= KPROBE_FLAG_FTRACE;
1567 #else /* !CONFIG_KPROBES_ON_FTRACE */
1568 return -EINVAL;
1569 #endif
1571 return 0;
1574 static int check_kprobe_address_safe(struct kprobe *p,
1575 struct module **probed_mod)
1577 int ret;
1579 ret = arch_check_ftrace_location(p);
1580 if (ret)
1581 return ret;
1582 jump_label_lock();
1583 preempt_disable();
1585 /* Ensure it is not in reserved area nor out of text */
1586 if (!kernel_text_address((unsigned long) p->addr) ||
1587 within_kprobe_blacklist((unsigned long) p->addr) ||
1588 jump_label_text_reserved(p->addr, p->addr) ||
1589 find_bug((unsigned long)p->addr)) {
1590 ret = -EINVAL;
1591 goto out;
1594 /* Check if are we probing a module */
1595 *probed_mod = __module_text_address((unsigned long) p->addr);
1596 if (*probed_mod) {
1598 * We must hold a refcount of the probed module while updating
1599 * its code to prohibit unexpected unloading.
1601 if (unlikely(!try_module_get(*probed_mod))) {
1602 ret = -ENOENT;
1603 goto out;
1607 * If the module freed .init.text, we couldn't insert
1608 * kprobes in there.
1610 if (within_module_init((unsigned long)p->addr, *probed_mod) &&
1611 (*probed_mod)->state != MODULE_STATE_COMING) {
1612 module_put(*probed_mod);
1613 *probed_mod = NULL;
1614 ret = -ENOENT;
1617 out:
1618 preempt_enable();
1619 jump_label_unlock();
1621 return ret;
1624 int register_kprobe(struct kprobe *p)
1626 int ret;
1627 struct kprobe *old_p;
1628 struct module *probed_mod;
1629 kprobe_opcode_t *addr;
1631 /* Adjust probe address from symbol */
1632 addr = kprobe_addr(p);
1633 if (IS_ERR(addr))
1634 return PTR_ERR(addr);
1635 p->addr = addr;
1637 ret = check_kprobe_rereg(p);
1638 if (ret)
1639 return ret;
1641 /* User can pass only KPROBE_FLAG_DISABLED to register_kprobe */
1642 p->flags &= KPROBE_FLAG_DISABLED;
1643 p->nmissed = 0;
1644 INIT_LIST_HEAD(&p->list);
1646 ret = check_kprobe_address_safe(p, &probed_mod);
1647 if (ret)
1648 return ret;
1650 mutex_lock(&kprobe_mutex);
1652 old_p = get_kprobe(p->addr);
1653 if (old_p) {
1654 /* Since this may unoptimize old_p, locking text_mutex. */
1655 ret = register_aggr_kprobe(old_p, p);
1656 goto out;
1659 cpus_read_lock();
1660 /* Prevent text modification */
1661 mutex_lock(&text_mutex);
1662 ret = prepare_kprobe(p);
1663 mutex_unlock(&text_mutex);
1664 cpus_read_unlock();
1665 if (ret)
1666 goto out;
1668 INIT_HLIST_NODE(&p->hlist);
1669 hlist_add_head_rcu(&p->hlist,
1670 &kprobe_table[hash_ptr(p->addr, KPROBE_HASH_BITS)]);
1672 if (!kprobes_all_disarmed && !kprobe_disabled(p)) {
1673 ret = arm_kprobe(p);
1674 if (ret) {
1675 hlist_del_rcu(&p->hlist);
1676 synchronize_rcu();
1677 goto out;
1681 /* Try to optimize kprobe */
1682 try_to_optimize_kprobe(p);
1683 out:
1684 mutex_unlock(&kprobe_mutex);
1686 if (probed_mod)
1687 module_put(probed_mod);
1689 return ret;
1691 EXPORT_SYMBOL_GPL(register_kprobe);
1693 /* Check if all probes on the aggrprobe are disabled */
1694 static int aggr_kprobe_disabled(struct kprobe *ap)
1696 struct kprobe *kp;
1698 list_for_each_entry_rcu(kp, &ap->list, list)
1699 if (!kprobe_disabled(kp))
1701 * There is an active probe on the list.
1702 * We can't disable this ap.
1704 return 0;
1706 return 1;
1709 /* Disable one kprobe: Make sure called under kprobe_mutex is locked */
1710 static struct kprobe *__disable_kprobe(struct kprobe *p)
1712 struct kprobe *orig_p;
1713 int ret;
1715 /* Get an original kprobe for return */
1716 orig_p = __get_valid_kprobe(p);
1717 if (unlikely(orig_p == NULL))
1718 return ERR_PTR(-EINVAL);
1720 if (!kprobe_disabled(p)) {
1721 /* Disable probe if it is a child probe */
1722 if (p != orig_p)
1723 p->flags |= KPROBE_FLAG_DISABLED;
1725 /* Try to disarm and disable this/parent probe */
1726 if (p == orig_p || aggr_kprobe_disabled(orig_p)) {
1728 * If kprobes_all_disarmed is set, orig_p
1729 * should have already been disarmed, so
1730 * skip unneed disarming process.
1732 if (!kprobes_all_disarmed) {
1733 ret = disarm_kprobe(orig_p, true);
1734 if (ret) {
1735 p->flags &= ~KPROBE_FLAG_DISABLED;
1736 return ERR_PTR(ret);
1739 orig_p->flags |= KPROBE_FLAG_DISABLED;
1743 return orig_p;
1747 * Unregister a kprobe without a scheduler synchronization.
1749 static int __unregister_kprobe_top(struct kprobe *p)
1751 struct kprobe *ap, *list_p;
1753 /* Disable kprobe. This will disarm it if needed. */
1754 ap = __disable_kprobe(p);
1755 if (IS_ERR(ap))
1756 return PTR_ERR(ap);
1758 if (ap == p)
1760 * This probe is an independent(and non-optimized) kprobe
1761 * (not an aggrprobe). Remove from the hash list.
1763 goto disarmed;
1765 /* Following process expects this probe is an aggrprobe */
1766 WARN_ON(!kprobe_aggrprobe(ap));
1768 if (list_is_singular(&ap->list) && kprobe_disarmed(ap))
1770 * !disarmed could be happen if the probe is under delayed
1771 * unoptimizing.
1773 goto disarmed;
1774 else {
1775 /* If disabling probe has special handlers, update aggrprobe */
1776 if (p->post_handler && !kprobe_gone(p)) {
1777 list_for_each_entry_rcu(list_p, &ap->list, list) {
1778 if ((list_p != p) && (list_p->post_handler))
1779 goto noclean;
1781 ap->post_handler = NULL;
1783 noclean:
1785 * Remove from the aggrprobe: this path will do nothing in
1786 * __unregister_kprobe_bottom().
1788 list_del_rcu(&p->list);
1789 if (!kprobe_disabled(ap) && !kprobes_all_disarmed)
1791 * Try to optimize this probe again, because post
1792 * handler may have been changed.
1794 optimize_kprobe(ap);
1796 return 0;
1798 disarmed:
1799 hlist_del_rcu(&ap->hlist);
1800 return 0;
1803 static void __unregister_kprobe_bottom(struct kprobe *p)
1805 struct kprobe *ap;
1807 if (list_empty(&p->list))
1808 /* This is an independent kprobe */
1809 arch_remove_kprobe(p);
1810 else if (list_is_singular(&p->list)) {
1811 /* This is the last child of an aggrprobe */
1812 ap = list_entry(p->list.next, struct kprobe, list);
1813 list_del(&p->list);
1814 free_aggr_kprobe(ap);
1816 /* Otherwise, do nothing. */
1819 int register_kprobes(struct kprobe **kps, int num)
1821 int i, ret = 0;
1823 if (num <= 0)
1824 return -EINVAL;
1825 for (i = 0; i < num; i++) {
1826 ret = register_kprobe(kps[i]);
1827 if (ret < 0) {
1828 if (i > 0)
1829 unregister_kprobes(kps, i);
1830 break;
1833 return ret;
1835 EXPORT_SYMBOL_GPL(register_kprobes);
1837 void unregister_kprobe(struct kprobe *p)
1839 unregister_kprobes(&p, 1);
1841 EXPORT_SYMBOL_GPL(unregister_kprobe);
1843 void unregister_kprobes(struct kprobe **kps, int num)
1845 int i;
1847 if (num <= 0)
1848 return;
1849 mutex_lock(&kprobe_mutex);
1850 for (i = 0; i < num; i++)
1851 if (__unregister_kprobe_top(kps[i]) < 0)
1852 kps[i]->addr = NULL;
1853 mutex_unlock(&kprobe_mutex);
1855 synchronize_rcu();
1856 for (i = 0; i < num; i++)
1857 if (kps[i]->addr)
1858 __unregister_kprobe_bottom(kps[i]);
1860 EXPORT_SYMBOL_GPL(unregister_kprobes);
1862 int __weak kprobe_exceptions_notify(struct notifier_block *self,
1863 unsigned long val, void *data)
1865 return NOTIFY_DONE;
1867 NOKPROBE_SYMBOL(kprobe_exceptions_notify);
1869 static struct notifier_block kprobe_exceptions_nb = {
1870 .notifier_call = kprobe_exceptions_notify,
1871 .priority = 0x7fffffff /* we need to be notified first */
1874 unsigned long __weak arch_deref_entry_point(void *entry)
1876 return (unsigned long)entry;
1879 #ifdef CONFIG_KRETPROBES
1881 * This kprobe pre_handler is registered with every kretprobe. When probe
1882 * hits it will set up the return probe.
1884 static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs)
1886 struct kretprobe *rp = container_of(p, struct kretprobe, kp);
1887 unsigned long hash, flags = 0;
1888 struct kretprobe_instance *ri;
1891 * To avoid deadlocks, prohibit return probing in NMI contexts,
1892 * just skip the probe and increase the (inexact) 'nmissed'
1893 * statistical counter, so that the user is informed that
1894 * something happened:
1896 if (unlikely(in_nmi())) {
1897 rp->nmissed++;
1898 return 0;
1901 /* TODO: consider to only swap the RA after the last pre_handler fired */
1902 hash = hash_ptr(current, KPROBE_HASH_BITS);
1903 raw_spin_lock_irqsave(&rp->lock, flags);
1904 if (!hlist_empty(&rp->free_instances)) {
1905 ri = hlist_entry(rp->free_instances.first,
1906 struct kretprobe_instance, hlist);
1907 hlist_del(&ri->hlist);
1908 raw_spin_unlock_irqrestore(&rp->lock, flags);
1910 ri->rp = rp;
1911 ri->task = current;
1913 if (rp->entry_handler && rp->entry_handler(ri, regs)) {
1914 raw_spin_lock_irqsave(&rp->lock, flags);
1915 hlist_add_head(&ri->hlist, &rp->free_instances);
1916 raw_spin_unlock_irqrestore(&rp->lock, flags);
1917 return 0;
1920 arch_prepare_kretprobe(ri, regs);
1922 /* XXX(hch): why is there no hlist_move_head? */
1923 INIT_HLIST_NODE(&ri->hlist);
1924 kretprobe_table_lock(hash, &flags);
1925 hlist_add_head(&ri->hlist, &kretprobe_inst_table[hash]);
1926 kretprobe_table_unlock(hash, &flags);
1927 } else {
1928 rp->nmissed++;
1929 raw_spin_unlock_irqrestore(&rp->lock, flags);
1931 return 0;
1933 NOKPROBE_SYMBOL(pre_handler_kretprobe);
1935 bool __weak arch_kprobe_on_func_entry(unsigned long offset)
1937 return !offset;
1940 bool kprobe_on_func_entry(kprobe_opcode_t *addr, const char *sym, unsigned long offset)
1942 kprobe_opcode_t *kp_addr = _kprobe_addr(addr, sym, offset);
1944 if (IS_ERR(kp_addr))
1945 return false;
1947 if (!kallsyms_lookup_size_offset((unsigned long)kp_addr, NULL, &offset) ||
1948 !arch_kprobe_on_func_entry(offset))
1949 return false;
1951 return true;
1954 int register_kretprobe(struct kretprobe *rp)
1956 int ret = 0;
1957 struct kretprobe_instance *inst;
1958 int i;
1959 void *addr;
1961 if (!kprobe_on_func_entry(rp->kp.addr, rp->kp.symbol_name, rp->kp.offset))
1962 return -EINVAL;
1964 if (kretprobe_blacklist_size) {
1965 addr = kprobe_addr(&rp->kp);
1966 if (IS_ERR(addr))
1967 return PTR_ERR(addr);
1969 for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
1970 if (kretprobe_blacklist[i].addr == addr)
1971 return -EINVAL;
1975 rp->kp.pre_handler = pre_handler_kretprobe;
1976 rp->kp.post_handler = NULL;
1977 rp->kp.fault_handler = NULL;
1979 /* Pre-allocate memory for max kretprobe instances */
1980 if (rp->maxactive <= 0) {
1981 #ifdef CONFIG_PREEMPTION
1982 rp->maxactive = max_t(unsigned int, 10, 2*num_possible_cpus());
1983 #else
1984 rp->maxactive = num_possible_cpus();
1985 #endif
1987 raw_spin_lock_init(&rp->lock);
1988 INIT_HLIST_HEAD(&rp->free_instances);
1989 for (i = 0; i < rp->maxactive; i++) {
1990 inst = kmalloc(sizeof(struct kretprobe_instance) +
1991 rp->data_size, GFP_KERNEL);
1992 if (inst == NULL) {
1993 free_rp_inst(rp);
1994 return -ENOMEM;
1996 INIT_HLIST_NODE(&inst->hlist);
1997 hlist_add_head(&inst->hlist, &rp->free_instances);
2000 rp->nmissed = 0;
2001 /* Establish function entry probe point */
2002 ret = register_kprobe(&rp->kp);
2003 if (ret != 0)
2004 free_rp_inst(rp);
2005 return ret;
2007 EXPORT_SYMBOL_GPL(register_kretprobe);
2009 int register_kretprobes(struct kretprobe **rps, int num)
2011 int ret = 0, i;
2013 if (num <= 0)
2014 return -EINVAL;
2015 for (i = 0; i < num; i++) {
2016 ret = register_kretprobe(rps[i]);
2017 if (ret < 0) {
2018 if (i > 0)
2019 unregister_kretprobes(rps, i);
2020 break;
2023 return ret;
2025 EXPORT_SYMBOL_GPL(register_kretprobes);
2027 void unregister_kretprobe(struct kretprobe *rp)
2029 unregister_kretprobes(&rp, 1);
2031 EXPORT_SYMBOL_GPL(unregister_kretprobe);
2033 void unregister_kretprobes(struct kretprobe **rps, int num)
2035 int i;
2037 if (num <= 0)
2038 return;
2039 mutex_lock(&kprobe_mutex);
2040 for (i = 0; i < num; i++)
2041 if (__unregister_kprobe_top(&rps[i]->kp) < 0)
2042 rps[i]->kp.addr = NULL;
2043 mutex_unlock(&kprobe_mutex);
2045 synchronize_rcu();
2046 for (i = 0; i < num; i++) {
2047 if (rps[i]->kp.addr) {
2048 __unregister_kprobe_bottom(&rps[i]->kp);
2049 cleanup_rp_inst(rps[i]);
2053 EXPORT_SYMBOL_GPL(unregister_kretprobes);
2055 #else /* CONFIG_KRETPROBES */
2056 int register_kretprobe(struct kretprobe *rp)
2058 return -ENOSYS;
2060 EXPORT_SYMBOL_GPL(register_kretprobe);
2062 int register_kretprobes(struct kretprobe **rps, int num)
2064 return -ENOSYS;
2066 EXPORT_SYMBOL_GPL(register_kretprobes);
2068 void unregister_kretprobe(struct kretprobe *rp)
2071 EXPORT_SYMBOL_GPL(unregister_kretprobe);
2073 void unregister_kretprobes(struct kretprobe **rps, int num)
2076 EXPORT_SYMBOL_GPL(unregister_kretprobes);
2078 static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs)
2080 return 0;
2082 NOKPROBE_SYMBOL(pre_handler_kretprobe);
2084 #endif /* CONFIG_KRETPROBES */
2086 /* Set the kprobe gone and remove its instruction buffer. */
2087 static void kill_kprobe(struct kprobe *p)
2089 struct kprobe *kp;
2091 p->flags |= KPROBE_FLAG_GONE;
2092 if (kprobe_aggrprobe(p)) {
2094 * If this is an aggr_kprobe, we have to list all the
2095 * chained probes and mark them GONE.
2097 list_for_each_entry_rcu(kp, &p->list, list)
2098 kp->flags |= KPROBE_FLAG_GONE;
2099 p->post_handler = NULL;
2100 kill_optimized_kprobe(p);
2103 * Here, we can remove insn_slot safely, because no thread calls
2104 * the original probed function (which will be freed soon) any more.
2106 arch_remove_kprobe(p);
2109 /* Disable one kprobe */
2110 int disable_kprobe(struct kprobe *kp)
2112 int ret = 0;
2113 struct kprobe *p;
2115 mutex_lock(&kprobe_mutex);
2117 /* Disable this kprobe */
2118 p = __disable_kprobe(kp);
2119 if (IS_ERR(p))
2120 ret = PTR_ERR(p);
2122 mutex_unlock(&kprobe_mutex);
2123 return ret;
2125 EXPORT_SYMBOL_GPL(disable_kprobe);
2127 /* Enable one kprobe */
2128 int enable_kprobe(struct kprobe *kp)
2130 int ret = 0;
2131 struct kprobe *p;
2133 mutex_lock(&kprobe_mutex);
2135 /* Check whether specified probe is valid. */
2136 p = __get_valid_kprobe(kp);
2137 if (unlikely(p == NULL)) {
2138 ret = -EINVAL;
2139 goto out;
2142 if (kprobe_gone(kp)) {
2143 /* This kprobe has gone, we couldn't enable it. */
2144 ret = -EINVAL;
2145 goto out;
2148 if (p != kp)
2149 kp->flags &= ~KPROBE_FLAG_DISABLED;
2151 if (!kprobes_all_disarmed && kprobe_disabled(p)) {
2152 p->flags &= ~KPROBE_FLAG_DISABLED;
2153 ret = arm_kprobe(p);
2154 if (ret)
2155 p->flags |= KPROBE_FLAG_DISABLED;
2157 out:
2158 mutex_unlock(&kprobe_mutex);
2159 return ret;
2161 EXPORT_SYMBOL_GPL(enable_kprobe);
2163 /* Caller must NOT call this in usual path. This is only for critical case */
2164 void dump_kprobe(struct kprobe *kp)
2166 pr_err("Dumping kprobe:\n");
2167 pr_err("Name: %s\nOffset: %x\nAddress: %pS\n",
2168 kp->symbol_name, kp->offset, kp->addr);
2170 NOKPROBE_SYMBOL(dump_kprobe);
2172 int kprobe_add_ksym_blacklist(unsigned long entry)
2174 struct kprobe_blacklist_entry *ent;
2175 unsigned long offset = 0, size = 0;
2177 if (!kernel_text_address(entry) ||
2178 !kallsyms_lookup_size_offset(entry, &size, &offset))
2179 return -EINVAL;
2181 ent = kmalloc(sizeof(*ent), GFP_KERNEL);
2182 if (!ent)
2183 return -ENOMEM;
2184 ent->start_addr = entry;
2185 ent->end_addr = entry + size;
2186 INIT_LIST_HEAD(&ent->list);
2187 list_add_tail(&ent->list, &kprobe_blacklist);
2189 return (int)size;
2192 /* Add all symbols in given area into kprobe blacklist */
2193 int kprobe_add_area_blacklist(unsigned long start, unsigned long end)
2195 unsigned long entry;
2196 int ret = 0;
2198 for (entry = start; entry < end; entry += ret) {
2199 ret = kprobe_add_ksym_blacklist(entry);
2200 if (ret < 0)
2201 return ret;
2202 if (ret == 0) /* In case of alias symbol */
2203 ret = 1;
2205 return 0;
2208 int __init __weak arch_populate_kprobe_blacklist(void)
2210 return 0;
2214 * Lookup and populate the kprobe_blacklist.
2216 * Unlike the kretprobe blacklist, we'll need to determine
2217 * the range of addresses that belong to the said functions,
2218 * since a kprobe need not necessarily be at the beginning
2219 * of a function.
2221 static int __init populate_kprobe_blacklist(unsigned long *start,
2222 unsigned long *end)
2224 unsigned long entry;
2225 unsigned long *iter;
2226 int ret;
2228 for (iter = start; iter < end; iter++) {
2229 entry = arch_deref_entry_point((void *)*iter);
2230 ret = kprobe_add_ksym_blacklist(entry);
2231 if (ret == -EINVAL)
2232 continue;
2233 if (ret < 0)
2234 return ret;
2237 /* Symbols in __kprobes_text are blacklisted */
2238 ret = kprobe_add_area_blacklist((unsigned long)__kprobes_text_start,
2239 (unsigned long)__kprobes_text_end);
2241 return ret ? : arch_populate_kprobe_blacklist();
2244 /* Module notifier call back, checking kprobes on the module */
2245 static int kprobes_module_callback(struct notifier_block *nb,
2246 unsigned long val, void *data)
2248 struct module *mod = data;
2249 struct hlist_head *head;
2250 struct kprobe *p;
2251 unsigned int i;
2252 int checkcore = (val == MODULE_STATE_GOING);
2254 if (val != MODULE_STATE_GOING && val != MODULE_STATE_LIVE)
2255 return NOTIFY_DONE;
2258 * When MODULE_STATE_GOING was notified, both of module .text and
2259 * .init.text sections would be freed. When MODULE_STATE_LIVE was
2260 * notified, only .init.text section would be freed. We need to
2261 * disable kprobes which have been inserted in the sections.
2263 mutex_lock(&kprobe_mutex);
2264 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2265 head = &kprobe_table[i];
2266 hlist_for_each_entry_rcu(p, head, hlist)
2267 if (within_module_init((unsigned long)p->addr, mod) ||
2268 (checkcore &&
2269 within_module_core((unsigned long)p->addr, mod))) {
2271 * The vaddr this probe is installed will soon
2272 * be vfreed buy not synced to disk. Hence,
2273 * disarming the breakpoint isn't needed.
2275 * Note, this will also move any optimized probes
2276 * that are pending to be removed from their
2277 * corresponding lists to the freeing_list and
2278 * will not be touched by the delayed
2279 * kprobe_optimizer work handler.
2281 kill_kprobe(p);
2284 mutex_unlock(&kprobe_mutex);
2285 return NOTIFY_DONE;
2288 static struct notifier_block kprobe_module_nb = {
2289 .notifier_call = kprobes_module_callback,
2290 .priority = 0
2293 /* Markers of _kprobe_blacklist section */
2294 extern unsigned long __start_kprobe_blacklist[];
2295 extern unsigned long __stop_kprobe_blacklist[];
2297 static int __init init_kprobes(void)
2299 int i, err = 0;
2301 /* FIXME allocate the probe table, currently defined statically */
2302 /* initialize all list heads */
2303 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2304 INIT_HLIST_HEAD(&kprobe_table[i]);
2305 INIT_HLIST_HEAD(&kretprobe_inst_table[i]);
2306 raw_spin_lock_init(&(kretprobe_table_locks[i].lock));
2309 err = populate_kprobe_blacklist(__start_kprobe_blacklist,
2310 __stop_kprobe_blacklist);
2311 if (err) {
2312 pr_err("kprobes: failed to populate blacklist: %d\n", err);
2313 pr_err("Please take care of using kprobes.\n");
2316 if (kretprobe_blacklist_size) {
2317 /* lookup the function address from its name */
2318 for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
2319 kretprobe_blacklist[i].addr =
2320 kprobe_lookup_name(kretprobe_blacklist[i].name, 0);
2321 if (!kretprobe_blacklist[i].addr)
2322 printk("kretprobe: lookup failed: %s\n",
2323 kretprobe_blacklist[i].name);
2327 #if defined(CONFIG_OPTPROBES)
2328 #if defined(__ARCH_WANT_KPROBES_INSN_SLOT)
2329 /* Init kprobe_optinsn_slots */
2330 kprobe_optinsn_slots.insn_size = MAX_OPTINSN_SIZE;
2331 #endif
2332 /* By default, kprobes can be optimized */
2333 kprobes_allow_optimization = true;
2334 #endif
2336 /* By default, kprobes are armed */
2337 kprobes_all_disarmed = false;
2339 err = arch_init_kprobes();
2340 if (!err)
2341 err = register_die_notifier(&kprobe_exceptions_nb);
2342 if (!err)
2343 err = register_module_notifier(&kprobe_module_nb);
2345 kprobes_initialized = (err == 0);
2347 if (!err)
2348 init_test_probes();
2349 return err;
2351 subsys_initcall(init_kprobes);
2353 #ifdef CONFIG_DEBUG_FS
2354 static void report_probe(struct seq_file *pi, struct kprobe *p,
2355 const char *sym, int offset, char *modname, struct kprobe *pp)
2357 char *kprobe_type;
2358 void *addr = p->addr;
2360 if (p->pre_handler == pre_handler_kretprobe)
2361 kprobe_type = "r";
2362 else
2363 kprobe_type = "k";
2365 if (!kallsyms_show_value(pi->file->f_cred))
2366 addr = NULL;
2368 if (sym)
2369 seq_printf(pi, "%px %s %s+0x%x %s ",
2370 addr, kprobe_type, sym, offset,
2371 (modname ? modname : " "));
2372 else /* try to use %pS */
2373 seq_printf(pi, "%px %s %pS ",
2374 addr, kprobe_type, p->addr);
2376 if (!pp)
2377 pp = p;
2378 seq_printf(pi, "%s%s%s%s\n",
2379 (kprobe_gone(p) ? "[GONE]" : ""),
2380 ((kprobe_disabled(p) && !kprobe_gone(p)) ? "[DISABLED]" : ""),
2381 (kprobe_optimized(pp) ? "[OPTIMIZED]" : ""),
2382 (kprobe_ftrace(pp) ? "[FTRACE]" : ""));
2385 static void *kprobe_seq_start(struct seq_file *f, loff_t *pos)
2387 return (*pos < KPROBE_TABLE_SIZE) ? pos : NULL;
2390 static void *kprobe_seq_next(struct seq_file *f, void *v, loff_t *pos)
2392 (*pos)++;
2393 if (*pos >= KPROBE_TABLE_SIZE)
2394 return NULL;
2395 return pos;
2398 static void kprobe_seq_stop(struct seq_file *f, void *v)
2400 /* Nothing to do */
2403 static int show_kprobe_addr(struct seq_file *pi, void *v)
2405 struct hlist_head *head;
2406 struct kprobe *p, *kp;
2407 const char *sym = NULL;
2408 unsigned int i = *(loff_t *) v;
2409 unsigned long offset = 0;
2410 char *modname, namebuf[KSYM_NAME_LEN];
2412 head = &kprobe_table[i];
2413 preempt_disable();
2414 hlist_for_each_entry_rcu(p, head, hlist) {
2415 sym = kallsyms_lookup((unsigned long)p->addr, NULL,
2416 &offset, &modname, namebuf);
2417 if (kprobe_aggrprobe(p)) {
2418 list_for_each_entry_rcu(kp, &p->list, list)
2419 report_probe(pi, kp, sym, offset, modname, p);
2420 } else
2421 report_probe(pi, p, sym, offset, modname, NULL);
2423 preempt_enable();
2424 return 0;
2427 static const struct seq_operations kprobes_seq_ops = {
2428 .start = kprobe_seq_start,
2429 .next = kprobe_seq_next,
2430 .stop = kprobe_seq_stop,
2431 .show = show_kprobe_addr
2434 static int kprobes_open(struct inode *inode, struct file *filp)
2436 return seq_open(filp, &kprobes_seq_ops);
2439 static const struct file_operations debugfs_kprobes_operations = {
2440 .open = kprobes_open,
2441 .read = seq_read,
2442 .llseek = seq_lseek,
2443 .release = seq_release,
2446 /* kprobes/blacklist -- shows which functions can not be probed */
2447 static void *kprobe_blacklist_seq_start(struct seq_file *m, loff_t *pos)
2449 return seq_list_start(&kprobe_blacklist, *pos);
2452 static void *kprobe_blacklist_seq_next(struct seq_file *m, void *v, loff_t *pos)
2454 return seq_list_next(v, &kprobe_blacklist, pos);
2457 static int kprobe_blacklist_seq_show(struct seq_file *m, void *v)
2459 struct kprobe_blacklist_entry *ent =
2460 list_entry(v, struct kprobe_blacklist_entry, list);
2463 * If /proc/kallsyms is not showing kernel address, we won't
2464 * show them here either.
2466 if (!kallsyms_show_value(m->file->f_cred))
2467 seq_printf(m, "0x%px-0x%px\t%ps\n", NULL, NULL,
2468 (void *)ent->start_addr);
2469 else
2470 seq_printf(m, "0x%px-0x%px\t%ps\n", (void *)ent->start_addr,
2471 (void *)ent->end_addr, (void *)ent->start_addr);
2472 return 0;
2475 static const struct seq_operations kprobe_blacklist_seq_ops = {
2476 .start = kprobe_blacklist_seq_start,
2477 .next = kprobe_blacklist_seq_next,
2478 .stop = kprobe_seq_stop, /* Reuse void function */
2479 .show = kprobe_blacklist_seq_show,
2482 static int kprobe_blacklist_open(struct inode *inode, struct file *filp)
2484 return seq_open(filp, &kprobe_blacklist_seq_ops);
2487 static const struct file_operations debugfs_kprobe_blacklist_ops = {
2488 .open = kprobe_blacklist_open,
2489 .read = seq_read,
2490 .llseek = seq_lseek,
2491 .release = seq_release,
2494 static int arm_all_kprobes(void)
2496 struct hlist_head *head;
2497 struct kprobe *p;
2498 unsigned int i, total = 0, errors = 0;
2499 int err, ret = 0;
2501 mutex_lock(&kprobe_mutex);
2503 /* If kprobes are armed, just return */
2504 if (!kprobes_all_disarmed)
2505 goto already_enabled;
2508 * optimize_kprobe() called by arm_kprobe() checks
2509 * kprobes_all_disarmed, so set kprobes_all_disarmed before
2510 * arm_kprobe.
2512 kprobes_all_disarmed = false;
2513 /* Arming kprobes doesn't optimize kprobe itself */
2514 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2515 head = &kprobe_table[i];
2516 /* Arm all kprobes on a best-effort basis */
2517 hlist_for_each_entry_rcu(p, head, hlist) {
2518 if (!kprobe_disabled(p)) {
2519 err = arm_kprobe(p);
2520 if (err) {
2521 errors++;
2522 ret = err;
2524 total++;
2529 if (errors)
2530 pr_warn("Kprobes globally enabled, but failed to arm %d out of %d probes\n",
2531 errors, total);
2532 else
2533 pr_info("Kprobes globally enabled\n");
2535 already_enabled:
2536 mutex_unlock(&kprobe_mutex);
2537 return ret;
2540 static int disarm_all_kprobes(void)
2542 struct hlist_head *head;
2543 struct kprobe *p;
2544 unsigned int i, total = 0, errors = 0;
2545 int err, ret = 0;
2547 mutex_lock(&kprobe_mutex);
2549 /* If kprobes are already disarmed, just return */
2550 if (kprobes_all_disarmed) {
2551 mutex_unlock(&kprobe_mutex);
2552 return 0;
2555 kprobes_all_disarmed = true;
2557 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2558 head = &kprobe_table[i];
2559 /* Disarm all kprobes on a best-effort basis */
2560 hlist_for_each_entry_rcu(p, head, hlist) {
2561 if (!arch_trampoline_kprobe(p) && !kprobe_disabled(p)) {
2562 err = disarm_kprobe(p, false);
2563 if (err) {
2564 errors++;
2565 ret = err;
2567 total++;
2572 if (errors)
2573 pr_warn("Kprobes globally disabled, but failed to disarm %d out of %d probes\n",
2574 errors, total);
2575 else
2576 pr_info("Kprobes globally disabled\n");
2578 mutex_unlock(&kprobe_mutex);
2580 /* Wait for disarming all kprobes by optimizer */
2581 wait_for_kprobe_optimizer();
2583 return ret;
2587 * XXX: The debugfs bool file interface doesn't allow for callbacks
2588 * when the bool state is switched. We can reuse that facility when
2589 * available
2591 static ssize_t read_enabled_file_bool(struct file *file,
2592 char __user *user_buf, size_t count, loff_t *ppos)
2594 char buf[3];
2596 if (!kprobes_all_disarmed)
2597 buf[0] = '1';
2598 else
2599 buf[0] = '0';
2600 buf[1] = '\n';
2601 buf[2] = 0x00;
2602 return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
2605 static ssize_t write_enabled_file_bool(struct file *file,
2606 const char __user *user_buf, size_t count, loff_t *ppos)
2608 char buf[32];
2609 size_t buf_size;
2610 int ret = 0;
2612 buf_size = min(count, (sizeof(buf)-1));
2613 if (copy_from_user(buf, user_buf, buf_size))
2614 return -EFAULT;
2616 buf[buf_size] = '\0';
2617 switch (buf[0]) {
2618 case 'y':
2619 case 'Y':
2620 case '1':
2621 ret = arm_all_kprobes();
2622 break;
2623 case 'n':
2624 case 'N':
2625 case '0':
2626 ret = disarm_all_kprobes();
2627 break;
2628 default:
2629 return -EINVAL;
2632 if (ret)
2633 return ret;
2635 return count;
2638 static const struct file_operations fops_kp = {
2639 .read = read_enabled_file_bool,
2640 .write = write_enabled_file_bool,
2641 .llseek = default_llseek,
2644 static int __init debugfs_kprobe_init(void)
2646 struct dentry *dir;
2647 unsigned int value = 1;
2649 dir = debugfs_create_dir("kprobes", NULL);
2651 debugfs_create_file("list", 0400, dir, NULL,
2652 &debugfs_kprobes_operations);
2654 debugfs_create_file("enabled", 0600, dir, &value, &fops_kp);
2656 debugfs_create_file("blacklist", 0400, dir, NULL,
2657 &debugfs_kprobe_blacklist_ops);
2659 return 0;
2662 late_initcall(debugfs_kprobe_init);
2663 #endif /* CONFIG_DEBUG_FS */