1 // SPDX-License-Identifier: GPL-2.0
5 * Copyright (C) 1991, 1992 Linus Torvalds
8 #include <linux/export.h>
10 #include <linux/utsname.h>
11 #include <linux/mman.h>
12 #include <linux/reboot.h>
13 #include <linux/prctl.h>
14 #include <linux/highuid.h>
16 #include <linux/kmod.h>
17 #include <linux/perf_event.h>
18 #include <linux/resource.h>
19 #include <linux/kernel.h>
20 #include <linux/workqueue.h>
21 #include <linux/capability.h>
22 #include <linux/device.h>
23 #include <linux/key.h>
24 #include <linux/times.h>
25 #include <linux/posix-timers.h>
26 #include <linux/security.h>
27 #include <linux/dcookies.h>
28 #include <linux/suspend.h>
29 #include <linux/tty.h>
30 #include <linux/signal.h>
31 #include <linux/cn_proc.h>
32 #include <linux/getcpu.h>
33 #include <linux/task_io_accounting_ops.h>
34 #include <linux/seccomp.h>
35 #include <linux/cpu.h>
36 #include <linux/personality.h>
37 #include <linux/ptrace.h>
38 #include <linux/fs_struct.h>
39 #include <linux/file.h>
40 #include <linux/mount.h>
41 #include <linux/gfp.h>
42 #include <linux/syscore_ops.h>
43 #include <linux/version.h>
44 #include <linux/ctype.h>
46 #include <linux/compat.h>
47 #include <linux/syscalls.h>
48 #include <linux/kprobes.h>
49 #include <linux/user_namespace.h>
50 #include <linux/binfmts.h>
52 #include <linux/sched.h>
53 #include <linux/sched/autogroup.h>
54 #include <linux/sched/loadavg.h>
55 #include <linux/sched/stat.h>
56 #include <linux/sched/mm.h>
57 #include <linux/sched/coredump.h>
58 #include <linux/sched/task.h>
59 #include <linux/sched/cputime.h>
60 #include <linux/rcupdate.h>
61 #include <linux/uidgid.h>
62 #include <linux/cred.h>
64 #include <linux/nospec.h>
66 #include <linux/kmsg_dump.h>
67 /* Move somewhere else to avoid recompiling? */
68 #include <generated/utsrelease.h>
70 #include <linux/uaccess.h>
72 #include <asm/unistd.h>
76 #ifndef SET_UNALIGN_CTL
77 # define SET_UNALIGN_CTL(a, b) (-EINVAL)
79 #ifndef GET_UNALIGN_CTL
80 # define GET_UNALIGN_CTL(a, b) (-EINVAL)
83 # define SET_FPEMU_CTL(a, b) (-EINVAL)
86 # define GET_FPEMU_CTL(a, b) (-EINVAL)
89 # define SET_FPEXC_CTL(a, b) (-EINVAL)
92 # define GET_FPEXC_CTL(a, b) (-EINVAL)
95 # define GET_ENDIAN(a, b) (-EINVAL)
98 # define SET_ENDIAN(a, b) (-EINVAL)
101 # define GET_TSC_CTL(a) (-EINVAL)
104 # define SET_TSC_CTL(a) (-EINVAL)
107 # define GET_FP_MODE(a) (-EINVAL)
110 # define SET_FP_MODE(a,b) (-EINVAL)
113 # define SVE_SET_VL(a) (-EINVAL)
116 # define SVE_GET_VL() (-EINVAL)
118 #ifndef PAC_RESET_KEYS
119 # define PAC_RESET_KEYS(a, b) (-EINVAL)
121 #ifndef SET_TAGGED_ADDR_CTRL
122 # define SET_TAGGED_ADDR_CTRL(a) (-EINVAL)
124 #ifndef GET_TAGGED_ADDR_CTRL
125 # define GET_TAGGED_ADDR_CTRL() (-EINVAL)
129 * this is where the system-wide overflow UID and GID are defined, for
130 * architectures that now have 32-bit UID/GID but didn't in the past
133 int overflowuid
= DEFAULT_OVERFLOWUID
;
134 int overflowgid
= DEFAULT_OVERFLOWGID
;
136 EXPORT_SYMBOL(overflowuid
);
137 EXPORT_SYMBOL(overflowgid
);
140 * the same as above, but for filesystems which can only store a 16-bit
141 * UID and GID. as such, this is needed on all architectures
144 int fs_overflowuid
= DEFAULT_FS_OVERFLOWUID
;
145 int fs_overflowgid
= DEFAULT_FS_OVERFLOWGID
;
147 EXPORT_SYMBOL(fs_overflowuid
);
148 EXPORT_SYMBOL(fs_overflowgid
);
151 * Returns true if current's euid is same as p's uid or euid,
152 * or has CAP_SYS_NICE to p's user_ns.
154 * Called with rcu_read_lock, creds are safe
156 static bool set_one_prio_perm(struct task_struct
*p
)
158 const struct cred
*cred
= current_cred(), *pcred
= __task_cred(p
);
160 if (uid_eq(pcred
->uid
, cred
->euid
) ||
161 uid_eq(pcred
->euid
, cred
->euid
))
163 if (ns_capable(pcred
->user_ns
, CAP_SYS_NICE
))
169 * set the priority of a task
170 * - the caller must hold the RCU read lock
172 static int set_one_prio(struct task_struct
*p
, int niceval
, int error
)
176 if (!set_one_prio_perm(p
)) {
180 if (niceval
< task_nice(p
) && !can_nice(p
, niceval
)) {
184 no_nice
= security_task_setnice(p
, niceval
);
191 set_user_nice(p
, niceval
);
196 SYSCALL_DEFINE3(setpriority
, int, which
, int, who
, int, niceval
)
198 struct task_struct
*g
, *p
;
199 struct user_struct
*user
;
200 const struct cred
*cred
= current_cred();
205 if (which
> PRIO_USER
|| which
< PRIO_PROCESS
)
208 /* normalize: avoid signed division (rounding problems) */
210 if (niceval
< MIN_NICE
)
212 if (niceval
> MAX_NICE
)
216 read_lock(&tasklist_lock
);
220 p
= find_task_by_vpid(who
);
224 error
= set_one_prio(p
, niceval
, error
);
228 pgrp
= find_vpid(who
);
230 pgrp
= task_pgrp(current
);
231 do_each_pid_thread(pgrp
, PIDTYPE_PGID
, p
) {
232 error
= set_one_prio(p
, niceval
, error
);
233 } while_each_pid_thread(pgrp
, PIDTYPE_PGID
, p
);
236 uid
= make_kuid(cred
->user_ns
, who
);
240 else if (!uid_eq(uid
, cred
->uid
)) {
241 user
= find_user(uid
);
243 goto out_unlock
; /* No processes for this user */
245 do_each_thread(g
, p
) {
246 if (uid_eq(task_uid(p
), uid
) && task_pid_vnr(p
))
247 error
= set_one_prio(p
, niceval
, error
);
248 } while_each_thread(g
, p
);
249 if (!uid_eq(uid
, cred
->uid
))
250 free_uid(user
); /* For find_user() */
254 read_unlock(&tasklist_lock
);
261 * Ugh. To avoid negative return values, "getpriority()" will
262 * not return the normal nice-value, but a negated value that
263 * has been offset by 20 (ie it returns 40..1 instead of -20..19)
264 * to stay compatible.
266 SYSCALL_DEFINE2(getpriority
, int, which
, int, who
)
268 struct task_struct
*g
, *p
;
269 struct user_struct
*user
;
270 const struct cred
*cred
= current_cred();
271 long niceval
, retval
= -ESRCH
;
275 if (which
> PRIO_USER
|| which
< PRIO_PROCESS
)
279 read_lock(&tasklist_lock
);
283 p
= find_task_by_vpid(who
);
287 niceval
= nice_to_rlimit(task_nice(p
));
288 if (niceval
> retval
)
294 pgrp
= find_vpid(who
);
296 pgrp
= task_pgrp(current
);
297 do_each_pid_thread(pgrp
, PIDTYPE_PGID
, p
) {
298 niceval
= nice_to_rlimit(task_nice(p
));
299 if (niceval
> retval
)
301 } while_each_pid_thread(pgrp
, PIDTYPE_PGID
, p
);
304 uid
= make_kuid(cred
->user_ns
, who
);
308 else if (!uid_eq(uid
, cred
->uid
)) {
309 user
= find_user(uid
);
311 goto out_unlock
; /* No processes for this user */
313 do_each_thread(g
, p
) {
314 if (uid_eq(task_uid(p
), uid
) && task_pid_vnr(p
)) {
315 niceval
= nice_to_rlimit(task_nice(p
));
316 if (niceval
> retval
)
319 } while_each_thread(g
, p
);
320 if (!uid_eq(uid
, cred
->uid
))
321 free_uid(user
); /* for find_user() */
325 read_unlock(&tasklist_lock
);
332 * Unprivileged users may change the real gid to the effective gid
333 * or vice versa. (BSD-style)
335 * If you set the real gid at all, or set the effective gid to a value not
336 * equal to the real gid, then the saved gid is set to the new effective gid.
338 * This makes it possible for a setgid program to completely drop its
339 * privileges, which is often a useful assertion to make when you are doing
340 * a security audit over a program.
342 * The general idea is that a program which uses just setregid() will be
343 * 100% compatible with BSD. A program which uses just setgid() will be
344 * 100% compatible with POSIX with saved IDs.
346 * SMP: There are not races, the GIDs are checked only by filesystem
347 * operations (as far as semantic preservation is concerned).
349 #ifdef CONFIG_MULTIUSER
350 long __sys_setregid(gid_t rgid
, gid_t egid
)
352 struct user_namespace
*ns
= current_user_ns();
353 const struct cred
*old
;
358 krgid
= make_kgid(ns
, rgid
);
359 kegid
= make_kgid(ns
, egid
);
361 if ((rgid
!= (gid_t
) -1) && !gid_valid(krgid
))
363 if ((egid
!= (gid_t
) -1) && !gid_valid(kegid
))
366 new = prepare_creds();
369 old
= current_cred();
372 if (rgid
!= (gid_t
) -1) {
373 if (gid_eq(old
->gid
, krgid
) ||
374 gid_eq(old
->egid
, krgid
) ||
375 ns_capable(old
->user_ns
, CAP_SETGID
))
380 if (egid
!= (gid_t
) -1) {
381 if (gid_eq(old
->gid
, kegid
) ||
382 gid_eq(old
->egid
, kegid
) ||
383 gid_eq(old
->sgid
, kegid
) ||
384 ns_capable(old
->user_ns
, CAP_SETGID
))
390 if (rgid
!= (gid_t
) -1 ||
391 (egid
!= (gid_t
) -1 && !gid_eq(kegid
, old
->gid
)))
392 new->sgid
= new->egid
;
393 new->fsgid
= new->egid
;
395 return commit_creds(new);
402 SYSCALL_DEFINE2(setregid
, gid_t
, rgid
, gid_t
, egid
)
404 return __sys_setregid(rgid
, egid
);
408 * setgid() is implemented like SysV w/ SAVED_IDS
410 * SMP: Same implicit races as above.
412 long __sys_setgid(gid_t gid
)
414 struct user_namespace
*ns
= current_user_ns();
415 const struct cred
*old
;
420 kgid
= make_kgid(ns
, gid
);
421 if (!gid_valid(kgid
))
424 new = prepare_creds();
427 old
= current_cred();
430 if (ns_capable(old
->user_ns
, CAP_SETGID
))
431 new->gid
= new->egid
= new->sgid
= new->fsgid
= kgid
;
432 else if (gid_eq(kgid
, old
->gid
) || gid_eq(kgid
, old
->sgid
))
433 new->egid
= new->fsgid
= kgid
;
437 return commit_creds(new);
444 SYSCALL_DEFINE1(setgid
, gid_t
, gid
)
446 return __sys_setgid(gid
);
450 * change the user struct in a credentials set to match the new UID
452 static int set_user(struct cred
*new)
454 struct user_struct
*new_user
;
456 new_user
= alloc_uid(new->uid
);
461 * We don't fail in case of NPROC limit excess here because too many
462 * poorly written programs don't check set*uid() return code, assuming
463 * it never fails if called by root. We may still enforce NPROC limit
464 * for programs doing set*uid()+execve() by harmlessly deferring the
465 * failure to the execve() stage.
467 if (atomic_read(&new_user
->processes
) >= rlimit(RLIMIT_NPROC
) &&
468 new_user
!= INIT_USER
)
469 current
->flags
|= PF_NPROC_EXCEEDED
;
471 current
->flags
&= ~PF_NPROC_EXCEEDED
;
474 new->user
= new_user
;
479 * Unprivileged users may change the real uid to the effective uid
480 * or vice versa. (BSD-style)
482 * If you set the real uid at all, or set the effective uid to a value not
483 * equal to the real uid, then the saved uid is set to the new effective uid.
485 * This makes it possible for a setuid program to completely drop its
486 * privileges, which is often a useful assertion to make when you are doing
487 * a security audit over a program.
489 * The general idea is that a program which uses just setreuid() will be
490 * 100% compatible with BSD. A program which uses just setuid() will be
491 * 100% compatible with POSIX with saved IDs.
493 long __sys_setreuid(uid_t ruid
, uid_t euid
)
495 struct user_namespace
*ns
= current_user_ns();
496 const struct cred
*old
;
501 kruid
= make_kuid(ns
, ruid
);
502 keuid
= make_kuid(ns
, euid
);
504 if ((ruid
!= (uid_t
) -1) && !uid_valid(kruid
))
506 if ((euid
!= (uid_t
) -1) && !uid_valid(keuid
))
509 new = prepare_creds();
512 old
= current_cred();
515 if (ruid
!= (uid_t
) -1) {
517 if (!uid_eq(old
->uid
, kruid
) &&
518 !uid_eq(old
->euid
, kruid
) &&
519 !ns_capable_setid(old
->user_ns
, CAP_SETUID
))
523 if (euid
!= (uid_t
) -1) {
525 if (!uid_eq(old
->uid
, keuid
) &&
526 !uid_eq(old
->euid
, keuid
) &&
527 !uid_eq(old
->suid
, keuid
) &&
528 !ns_capable_setid(old
->user_ns
, CAP_SETUID
))
532 if (!uid_eq(new->uid
, old
->uid
)) {
533 retval
= set_user(new);
537 if (ruid
!= (uid_t
) -1 ||
538 (euid
!= (uid_t
) -1 && !uid_eq(keuid
, old
->uid
)))
539 new->suid
= new->euid
;
540 new->fsuid
= new->euid
;
542 retval
= security_task_fix_setuid(new, old
, LSM_SETID_RE
);
546 return commit_creds(new);
553 SYSCALL_DEFINE2(setreuid
, uid_t
, ruid
, uid_t
, euid
)
555 return __sys_setreuid(ruid
, euid
);
559 * setuid() is implemented like SysV with SAVED_IDS
561 * Note that SAVED_ID's is deficient in that a setuid root program
562 * like sendmail, for example, cannot set its uid to be a normal
563 * user and then switch back, because if you're root, setuid() sets
564 * the saved uid too. If you don't like this, blame the bright people
565 * in the POSIX committee and/or USG. Note that the BSD-style setreuid()
566 * will allow a root program to temporarily drop privileges and be able to
567 * regain them by swapping the real and effective uid.
569 long __sys_setuid(uid_t uid
)
571 struct user_namespace
*ns
= current_user_ns();
572 const struct cred
*old
;
577 kuid
= make_kuid(ns
, uid
);
578 if (!uid_valid(kuid
))
581 new = prepare_creds();
584 old
= current_cred();
587 if (ns_capable_setid(old
->user_ns
, CAP_SETUID
)) {
588 new->suid
= new->uid
= kuid
;
589 if (!uid_eq(kuid
, old
->uid
)) {
590 retval
= set_user(new);
594 } else if (!uid_eq(kuid
, old
->uid
) && !uid_eq(kuid
, new->suid
)) {
598 new->fsuid
= new->euid
= kuid
;
600 retval
= security_task_fix_setuid(new, old
, LSM_SETID_ID
);
604 return commit_creds(new);
611 SYSCALL_DEFINE1(setuid
, uid_t
, uid
)
613 return __sys_setuid(uid
);
618 * This function implements a generic ability to update ruid, euid,
619 * and suid. This allows you to implement the 4.4 compatible seteuid().
621 long __sys_setresuid(uid_t ruid
, uid_t euid
, uid_t suid
)
623 struct user_namespace
*ns
= current_user_ns();
624 const struct cred
*old
;
627 kuid_t kruid
, keuid
, ksuid
;
629 kruid
= make_kuid(ns
, ruid
);
630 keuid
= make_kuid(ns
, euid
);
631 ksuid
= make_kuid(ns
, suid
);
633 if ((ruid
!= (uid_t
) -1) && !uid_valid(kruid
))
636 if ((euid
!= (uid_t
) -1) && !uid_valid(keuid
))
639 if ((suid
!= (uid_t
) -1) && !uid_valid(ksuid
))
642 new = prepare_creds();
646 old
= current_cred();
649 if (!ns_capable_setid(old
->user_ns
, CAP_SETUID
)) {
650 if (ruid
!= (uid_t
) -1 && !uid_eq(kruid
, old
->uid
) &&
651 !uid_eq(kruid
, old
->euid
) && !uid_eq(kruid
, old
->suid
))
653 if (euid
!= (uid_t
) -1 && !uid_eq(keuid
, old
->uid
) &&
654 !uid_eq(keuid
, old
->euid
) && !uid_eq(keuid
, old
->suid
))
656 if (suid
!= (uid_t
) -1 && !uid_eq(ksuid
, old
->uid
) &&
657 !uid_eq(ksuid
, old
->euid
) && !uid_eq(ksuid
, old
->suid
))
661 if (ruid
!= (uid_t
) -1) {
663 if (!uid_eq(kruid
, old
->uid
)) {
664 retval
= set_user(new);
669 if (euid
!= (uid_t
) -1)
671 if (suid
!= (uid_t
) -1)
673 new->fsuid
= new->euid
;
675 retval
= security_task_fix_setuid(new, old
, LSM_SETID_RES
);
679 return commit_creds(new);
686 SYSCALL_DEFINE3(setresuid
, uid_t
, ruid
, uid_t
, euid
, uid_t
, suid
)
688 return __sys_setresuid(ruid
, euid
, suid
);
691 SYSCALL_DEFINE3(getresuid
, uid_t __user
*, ruidp
, uid_t __user
*, euidp
, uid_t __user
*, suidp
)
693 const struct cred
*cred
= current_cred();
695 uid_t ruid
, euid
, suid
;
697 ruid
= from_kuid_munged(cred
->user_ns
, cred
->uid
);
698 euid
= from_kuid_munged(cred
->user_ns
, cred
->euid
);
699 suid
= from_kuid_munged(cred
->user_ns
, cred
->suid
);
701 retval
= put_user(ruid
, ruidp
);
703 retval
= put_user(euid
, euidp
);
705 return put_user(suid
, suidp
);
711 * Same as above, but for rgid, egid, sgid.
713 long __sys_setresgid(gid_t rgid
, gid_t egid
, gid_t sgid
)
715 struct user_namespace
*ns
= current_user_ns();
716 const struct cred
*old
;
719 kgid_t krgid
, kegid
, ksgid
;
721 krgid
= make_kgid(ns
, rgid
);
722 kegid
= make_kgid(ns
, egid
);
723 ksgid
= make_kgid(ns
, sgid
);
725 if ((rgid
!= (gid_t
) -1) && !gid_valid(krgid
))
727 if ((egid
!= (gid_t
) -1) && !gid_valid(kegid
))
729 if ((sgid
!= (gid_t
) -1) && !gid_valid(ksgid
))
732 new = prepare_creds();
735 old
= current_cred();
738 if (!ns_capable(old
->user_ns
, CAP_SETGID
)) {
739 if (rgid
!= (gid_t
) -1 && !gid_eq(krgid
, old
->gid
) &&
740 !gid_eq(krgid
, old
->egid
) && !gid_eq(krgid
, old
->sgid
))
742 if (egid
!= (gid_t
) -1 && !gid_eq(kegid
, old
->gid
) &&
743 !gid_eq(kegid
, old
->egid
) && !gid_eq(kegid
, old
->sgid
))
745 if (sgid
!= (gid_t
) -1 && !gid_eq(ksgid
, old
->gid
) &&
746 !gid_eq(ksgid
, old
->egid
) && !gid_eq(ksgid
, old
->sgid
))
750 if (rgid
!= (gid_t
) -1)
752 if (egid
!= (gid_t
) -1)
754 if (sgid
!= (gid_t
) -1)
756 new->fsgid
= new->egid
;
758 return commit_creds(new);
765 SYSCALL_DEFINE3(setresgid
, gid_t
, rgid
, gid_t
, egid
, gid_t
, sgid
)
767 return __sys_setresgid(rgid
, egid
, sgid
);
770 SYSCALL_DEFINE3(getresgid
, gid_t __user
*, rgidp
, gid_t __user
*, egidp
, gid_t __user
*, sgidp
)
772 const struct cred
*cred
= current_cred();
774 gid_t rgid
, egid
, sgid
;
776 rgid
= from_kgid_munged(cred
->user_ns
, cred
->gid
);
777 egid
= from_kgid_munged(cred
->user_ns
, cred
->egid
);
778 sgid
= from_kgid_munged(cred
->user_ns
, cred
->sgid
);
780 retval
= put_user(rgid
, rgidp
);
782 retval
= put_user(egid
, egidp
);
784 retval
= put_user(sgid
, sgidp
);
792 * "setfsuid()" sets the fsuid - the uid used for filesystem checks. This
793 * is used for "access()" and for the NFS daemon (letting nfsd stay at
794 * whatever uid it wants to). It normally shadows "euid", except when
795 * explicitly set by setfsuid() or for access..
797 long __sys_setfsuid(uid_t uid
)
799 const struct cred
*old
;
804 old
= current_cred();
805 old_fsuid
= from_kuid_munged(old
->user_ns
, old
->fsuid
);
807 kuid
= make_kuid(old
->user_ns
, uid
);
808 if (!uid_valid(kuid
))
811 new = prepare_creds();
815 if (uid_eq(kuid
, old
->uid
) || uid_eq(kuid
, old
->euid
) ||
816 uid_eq(kuid
, old
->suid
) || uid_eq(kuid
, old
->fsuid
) ||
817 ns_capable_setid(old
->user_ns
, CAP_SETUID
)) {
818 if (!uid_eq(kuid
, old
->fsuid
)) {
820 if (security_task_fix_setuid(new, old
, LSM_SETID_FS
) == 0)
833 SYSCALL_DEFINE1(setfsuid
, uid_t
, uid
)
835 return __sys_setfsuid(uid
);
839 * Samma på svenska..
841 long __sys_setfsgid(gid_t gid
)
843 const struct cred
*old
;
848 old
= current_cred();
849 old_fsgid
= from_kgid_munged(old
->user_ns
, old
->fsgid
);
851 kgid
= make_kgid(old
->user_ns
, gid
);
852 if (!gid_valid(kgid
))
855 new = prepare_creds();
859 if (gid_eq(kgid
, old
->gid
) || gid_eq(kgid
, old
->egid
) ||
860 gid_eq(kgid
, old
->sgid
) || gid_eq(kgid
, old
->fsgid
) ||
861 ns_capable(old
->user_ns
, CAP_SETGID
)) {
862 if (!gid_eq(kgid
, old
->fsgid
)) {
876 SYSCALL_DEFINE1(setfsgid
, gid_t
, gid
)
878 return __sys_setfsgid(gid
);
880 #endif /* CONFIG_MULTIUSER */
883 * sys_getpid - return the thread group id of the current process
885 * Note, despite the name, this returns the tgid not the pid. The tgid and
886 * the pid are identical unless CLONE_THREAD was specified on clone() in
887 * which case the tgid is the same in all threads of the same group.
889 * This is SMP safe as current->tgid does not change.
891 SYSCALL_DEFINE0(getpid
)
893 return task_tgid_vnr(current
);
896 /* Thread ID - the internal kernel "pid" */
897 SYSCALL_DEFINE0(gettid
)
899 return task_pid_vnr(current
);
903 * Accessing ->real_parent is not SMP-safe, it could
904 * change from under us. However, we can use a stale
905 * value of ->real_parent under rcu_read_lock(), see
906 * release_task()->call_rcu(delayed_put_task_struct).
908 SYSCALL_DEFINE0(getppid
)
913 pid
= task_tgid_vnr(rcu_dereference(current
->real_parent
));
919 SYSCALL_DEFINE0(getuid
)
921 /* Only we change this so SMP safe */
922 return from_kuid_munged(current_user_ns(), current_uid());
925 SYSCALL_DEFINE0(geteuid
)
927 /* Only we change this so SMP safe */
928 return from_kuid_munged(current_user_ns(), current_euid());
931 SYSCALL_DEFINE0(getgid
)
933 /* Only we change this so SMP safe */
934 return from_kgid_munged(current_user_ns(), current_gid());
937 SYSCALL_DEFINE0(getegid
)
939 /* Only we change this so SMP safe */
940 return from_kgid_munged(current_user_ns(), current_egid());
943 static void do_sys_times(struct tms
*tms
)
945 u64 tgutime
, tgstime
, cutime
, cstime
;
947 thread_group_cputime_adjusted(current
, &tgutime
, &tgstime
);
948 cutime
= current
->signal
->cutime
;
949 cstime
= current
->signal
->cstime
;
950 tms
->tms_utime
= nsec_to_clock_t(tgutime
);
951 tms
->tms_stime
= nsec_to_clock_t(tgstime
);
952 tms
->tms_cutime
= nsec_to_clock_t(cutime
);
953 tms
->tms_cstime
= nsec_to_clock_t(cstime
);
956 SYSCALL_DEFINE1(times
, struct tms __user
*, tbuf
)
962 if (copy_to_user(tbuf
, &tmp
, sizeof(struct tms
)))
965 force_successful_syscall_return();
966 return (long) jiffies_64_to_clock_t(get_jiffies_64());
970 static compat_clock_t
clock_t_to_compat_clock_t(clock_t x
)
972 return compat_jiffies_to_clock_t(clock_t_to_jiffies(x
));
975 COMPAT_SYSCALL_DEFINE1(times
, struct compat_tms __user
*, tbuf
)
979 struct compat_tms tmp
;
982 /* Convert our struct tms to the compat version. */
983 tmp
.tms_utime
= clock_t_to_compat_clock_t(tms
.tms_utime
);
984 tmp
.tms_stime
= clock_t_to_compat_clock_t(tms
.tms_stime
);
985 tmp
.tms_cutime
= clock_t_to_compat_clock_t(tms
.tms_cutime
);
986 tmp
.tms_cstime
= clock_t_to_compat_clock_t(tms
.tms_cstime
);
987 if (copy_to_user(tbuf
, &tmp
, sizeof(tmp
)))
990 force_successful_syscall_return();
991 return compat_jiffies_to_clock_t(jiffies
);
996 * This needs some heavy checking ...
997 * I just haven't the stomach for it. I also don't fully
998 * understand sessions/pgrp etc. Let somebody who does explain it.
1000 * OK, I think I have the protection semantics right.... this is really
1001 * only important on a multi-user system anyway, to make sure one user
1002 * can't send a signal to a process owned by another. -TYT, 12/12/91
1004 * !PF_FORKNOEXEC check to conform completely to POSIX.
1006 SYSCALL_DEFINE2(setpgid
, pid_t
, pid
, pid_t
, pgid
)
1008 struct task_struct
*p
;
1009 struct task_struct
*group_leader
= current
->group_leader
;
1014 pid
= task_pid_vnr(group_leader
);
1021 /* From this point forward we keep holding onto the tasklist lock
1022 * so that our parent does not change from under us. -DaveM
1024 write_lock_irq(&tasklist_lock
);
1027 p
= find_task_by_vpid(pid
);
1032 if (!thread_group_leader(p
))
1035 if (same_thread_group(p
->real_parent
, group_leader
)) {
1037 if (task_session(p
) != task_session(group_leader
))
1040 if (!(p
->flags
& PF_FORKNOEXEC
))
1044 if (p
!= group_leader
)
1049 if (p
->signal
->leader
)
1054 struct task_struct
*g
;
1056 pgrp
= find_vpid(pgid
);
1057 g
= pid_task(pgrp
, PIDTYPE_PGID
);
1058 if (!g
|| task_session(g
) != task_session(group_leader
))
1062 err
= security_task_setpgid(p
, pgid
);
1066 if (task_pgrp(p
) != pgrp
)
1067 change_pid(p
, PIDTYPE_PGID
, pgrp
);
1071 /* All paths lead to here, thus we are safe. -DaveM */
1072 write_unlock_irq(&tasklist_lock
);
1077 static int do_getpgid(pid_t pid
)
1079 struct task_struct
*p
;
1085 grp
= task_pgrp(current
);
1088 p
= find_task_by_vpid(pid
);
1095 retval
= security_task_getpgid(p
);
1099 retval
= pid_vnr(grp
);
1105 SYSCALL_DEFINE1(getpgid
, pid_t
, pid
)
1107 return do_getpgid(pid
);
1110 #ifdef __ARCH_WANT_SYS_GETPGRP
1112 SYSCALL_DEFINE0(getpgrp
)
1114 return do_getpgid(0);
1119 SYSCALL_DEFINE1(getsid
, pid_t
, pid
)
1121 struct task_struct
*p
;
1127 sid
= task_session(current
);
1130 p
= find_task_by_vpid(pid
);
1133 sid
= task_session(p
);
1137 retval
= security_task_getsid(p
);
1141 retval
= pid_vnr(sid
);
1147 static void set_special_pids(struct pid
*pid
)
1149 struct task_struct
*curr
= current
->group_leader
;
1151 if (task_session(curr
) != pid
)
1152 change_pid(curr
, PIDTYPE_SID
, pid
);
1154 if (task_pgrp(curr
) != pid
)
1155 change_pid(curr
, PIDTYPE_PGID
, pid
);
1158 int ksys_setsid(void)
1160 struct task_struct
*group_leader
= current
->group_leader
;
1161 struct pid
*sid
= task_pid(group_leader
);
1162 pid_t session
= pid_vnr(sid
);
1165 write_lock_irq(&tasklist_lock
);
1166 /* Fail if I am already a session leader */
1167 if (group_leader
->signal
->leader
)
1170 /* Fail if a process group id already exists that equals the
1171 * proposed session id.
1173 if (pid_task(sid
, PIDTYPE_PGID
))
1176 group_leader
->signal
->leader
= 1;
1177 set_special_pids(sid
);
1179 proc_clear_tty(group_leader
);
1183 write_unlock_irq(&tasklist_lock
);
1185 proc_sid_connector(group_leader
);
1186 sched_autogroup_create_attach(group_leader
);
1191 SYSCALL_DEFINE0(setsid
)
1193 return ksys_setsid();
1196 DECLARE_RWSEM(uts_sem
);
1198 #ifdef COMPAT_UTS_MACHINE
1199 #define override_architecture(name) \
1200 (personality(current->personality) == PER_LINUX32 && \
1201 copy_to_user(name->machine, COMPAT_UTS_MACHINE, \
1202 sizeof(COMPAT_UTS_MACHINE)))
1204 #define override_architecture(name) 0
1208 * Work around broken programs that cannot handle "Linux 3.0".
1209 * Instead we map 3.x to 2.6.40+x, so e.g. 3.0 would be 2.6.40
1210 * And we map 4.x and later versions to 2.6.60+x, so 4.0/5.0/6.0/... would be
1213 static int override_release(char __user
*release
, size_t len
)
1217 if (current
->personality
& UNAME26
) {
1218 const char *rest
= UTS_RELEASE
;
1219 char buf
[65] = { 0 };
1225 if (*rest
== '.' && ++ndots
>= 3)
1227 if (!isdigit(*rest
) && *rest
!= '.')
1231 v
= ((LINUX_VERSION_CODE
>> 8) & 0xff) + 60;
1232 copy
= clamp_t(size_t, len
, 1, sizeof(buf
));
1233 copy
= scnprintf(buf
, copy
, "2.6.%u%s", v
, rest
);
1234 ret
= copy_to_user(release
, buf
, copy
+ 1);
1239 SYSCALL_DEFINE1(newuname
, struct new_utsname __user
*, name
)
1241 struct new_utsname tmp
;
1243 down_read(&uts_sem
);
1244 memcpy(&tmp
, utsname(), sizeof(tmp
));
1246 if (copy_to_user(name
, &tmp
, sizeof(tmp
)))
1249 if (override_release(name
->release
, sizeof(name
->release
)))
1251 if (override_architecture(name
))
1256 #ifdef __ARCH_WANT_SYS_OLD_UNAME
1260 SYSCALL_DEFINE1(uname
, struct old_utsname __user
*, name
)
1262 struct old_utsname tmp
;
1267 down_read(&uts_sem
);
1268 memcpy(&tmp
, utsname(), sizeof(tmp
));
1270 if (copy_to_user(name
, &tmp
, sizeof(tmp
)))
1273 if (override_release(name
->release
, sizeof(name
->release
)))
1275 if (override_architecture(name
))
1280 SYSCALL_DEFINE1(olduname
, struct oldold_utsname __user
*, name
)
1282 struct oldold_utsname tmp
= {};
1287 down_read(&uts_sem
);
1288 memcpy(&tmp
.sysname
, &utsname()->sysname
, __OLD_UTS_LEN
);
1289 memcpy(&tmp
.nodename
, &utsname()->nodename
, __OLD_UTS_LEN
);
1290 memcpy(&tmp
.release
, &utsname()->release
, __OLD_UTS_LEN
);
1291 memcpy(&tmp
.version
, &utsname()->version
, __OLD_UTS_LEN
);
1292 memcpy(&tmp
.machine
, &utsname()->machine
, __OLD_UTS_LEN
);
1294 if (copy_to_user(name
, &tmp
, sizeof(tmp
)))
1297 if (override_architecture(name
))
1299 if (override_release(name
->release
, sizeof(name
->release
)))
1305 SYSCALL_DEFINE2(sethostname
, char __user
*, name
, int, len
)
1308 char tmp
[__NEW_UTS_LEN
];
1310 if (!ns_capable(current
->nsproxy
->uts_ns
->user_ns
, CAP_SYS_ADMIN
))
1313 if (len
< 0 || len
> __NEW_UTS_LEN
)
1316 if (!copy_from_user(tmp
, name
, len
)) {
1317 struct new_utsname
*u
;
1319 down_write(&uts_sem
);
1321 memcpy(u
->nodename
, tmp
, len
);
1322 memset(u
->nodename
+ len
, 0, sizeof(u
->nodename
) - len
);
1324 uts_proc_notify(UTS_PROC_HOSTNAME
);
1330 #ifdef __ARCH_WANT_SYS_GETHOSTNAME
1332 SYSCALL_DEFINE2(gethostname
, char __user
*, name
, int, len
)
1335 struct new_utsname
*u
;
1336 char tmp
[__NEW_UTS_LEN
+ 1];
1340 down_read(&uts_sem
);
1342 i
= 1 + strlen(u
->nodename
);
1345 memcpy(tmp
, u
->nodename
, i
);
1347 if (copy_to_user(name
, tmp
, i
))
1355 * Only setdomainname; getdomainname can be implemented by calling
1358 SYSCALL_DEFINE2(setdomainname
, char __user
*, name
, int, len
)
1361 char tmp
[__NEW_UTS_LEN
];
1363 if (!ns_capable(current
->nsproxy
->uts_ns
->user_ns
, CAP_SYS_ADMIN
))
1365 if (len
< 0 || len
> __NEW_UTS_LEN
)
1369 if (!copy_from_user(tmp
, name
, len
)) {
1370 struct new_utsname
*u
;
1372 down_write(&uts_sem
);
1374 memcpy(u
->domainname
, tmp
, len
);
1375 memset(u
->domainname
+ len
, 0, sizeof(u
->domainname
) - len
);
1377 uts_proc_notify(UTS_PROC_DOMAINNAME
);
1383 SYSCALL_DEFINE2(getrlimit
, unsigned int, resource
, struct rlimit __user
*, rlim
)
1385 struct rlimit value
;
1388 ret
= do_prlimit(current
, resource
, NULL
, &value
);
1390 ret
= copy_to_user(rlim
, &value
, sizeof(*rlim
)) ? -EFAULT
: 0;
1395 #ifdef CONFIG_COMPAT
1397 COMPAT_SYSCALL_DEFINE2(setrlimit
, unsigned int, resource
,
1398 struct compat_rlimit __user
*, rlim
)
1401 struct compat_rlimit r32
;
1403 if (copy_from_user(&r32
, rlim
, sizeof(struct compat_rlimit
)))
1406 if (r32
.rlim_cur
== COMPAT_RLIM_INFINITY
)
1407 r
.rlim_cur
= RLIM_INFINITY
;
1409 r
.rlim_cur
= r32
.rlim_cur
;
1410 if (r32
.rlim_max
== COMPAT_RLIM_INFINITY
)
1411 r
.rlim_max
= RLIM_INFINITY
;
1413 r
.rlim_max
= r32
.rlim_max
;
1414 return do_prlimit(current
, resource
, &r
, NULL
);
1417 COMPAT_SYSCALL_DEFINE2(getrlimit
, unsigned int, resource
,
1418 struct compat_rlimit __user
*, rlim
)
1423 ret
= do_prlimit(current
, resource
, NULL
, &r
);
1425 struct compat_rlimit r32
;
1426 if (r
.rlim_cur
> COMPAT_RLIM_INFINITY
)
1427 r32
.rlim_cur
= COMPAT_RLIM_INFINITY
;
1429 r32
.rlim_cur
= r
.rlim_cur
;
1430 if (r
.rlim_max
> COMPAT_RLIM_INFINITY
)
1431 r32
.rlim_max
= COMPAT_RLIM_INFINITY
;
1433 r32
.rlim_max
= r
.rlim_max
;
1435 if (copy_to_user(rlim
, &r32
, sizeof(struct compat_rlimit
)))
1443 #ifdef __ARCH_WANT_SYS_OLD_GETRLIMIT
1446 * Back compatibility for getrlimit. Needed for some apps.
1448 SYSCALL_DEFINE2(old_getrlimit
, unsigned int, resource
,
1449 struct rlimit __user
*, rlim
)
1452 if (resource
>= RLIM_NLIMITS
)
1455 resource
= array_index_nospec(resource
, RLIM_NLIMITS
);
1456 task_lock(current
->group_leader
);
1457 x
= current
->signal
->rlim
[resource
];
1458 task_unlock(current
->group_leader
);
1459 if (x
.rlim_cur
> 0x7FFFFFFF)
1460 x
.rlim_cur
= 0x7FFFFFFF;
1461 if (x
.rlim_max
> 0x7FFFFFFF)
1462 x
.rlim_max
= 0x7FFFFFFF;
1463 return copy_to_user(rlim
, &x
, sizeof(x
)) ? -EFAULT
: 0;
1466 #ifdef CONFIG_COMPAT
1467 COMPAT_SYSCALL_DEFINE2(old_getrlimit
, unsigned int, resource
,
1468 struct compat_rlimit __user
*, rlim
)
1472 if (resource
>= RLIM_NLIMITS
)
1475 resource
= array_index_nospec(resource
, RLIM_NLIMITS
);
1476 task_lock(current
->group_leader
);
1477 r
= current
->signal
->rlim
[resource
];
1478 task_unlock(current
->group_leader
);
1479 if (r
.rlim_cur
> 0x7FFFFFFF)
1480 r
.rlim_cur
= 0x7FFFFFFF;
1481 if (r
.rlim_max
> 0x7FFFFFFF)
1482 r
.rlim_max
= 0x7FFFFFFF;
1484 if (put_user(r
.rlim_cur
, &rlim
->rlim_cur
) ||
1485 put_user(r
.rlim_max
, &rlim
->rlim_max
))
1493 static inline bool rlim64_is_infinity(__u64 rlim64
)
1495 #if BITS_PER_LONG < 64
1496 return rlim64
>= ULONG_MAX
;
1498 return rlim64
== RLIM64_INFINITY
;
1502 static void rlim_to_rlim64(const struct rlimit
*rlim
, struct rlimit64
*rlim64
)
1504 if (rlim
->rlim_cur
== RLIM_INFINITY
)
1505 rlim64
->rlim_cur
= RLIM64_INFINITY
;
1507 rlim64
->rlim_cur
= rlim
->rlim_cur
;
1508 if (rlim
->rlim_max
== RLIM_INFINITY
)
1509 rlim64
->rlim_max
= RLIM64_INFINITY
;
1511 rlim64
->rlim_max
= rlim
->rlim_max
;
1514 static void rlim64_to_rlim(const struct rlimit64
*rlim64
, struct rlimit
*rlim
)
1516 if (rlim64_is_infinity(rlim64
->rlim_cur
))
1517 rlim
->rlim_cur
= RLIM_INFINITY
;
1519 rlim
->rlim_cur
= (unsigned long)rlim64
->rlim_cur
;
1520 if (rlim64_is_infinity(rlim64
->rlim_max
))
1521 rlim
->rlim_max
= RLIM_INFINITY
;
1523 rlim
->rlim_max
= (unsigned long)rlim64
->rlim_max
;
1526 /* make sure you are allowed to change @tsk limits before calling this */
1527 int do_prlimit(struct task_struct
*tsk
, unsigned int resource
,
1528 struct rlimit
*new_rlim
, struct rlimit
*old_rlim
)
1530 struct rlimit
*rlim
;
1533 if (resource
>= RLIM_NLIMITS
)
1536 if (new_rlim
->rlim_cur
> new_rlim
->rlim_max
)
1538 if (resource
== RLIMIT_NOFILE
&&
1539 new_rlim
->rlim_max
> sysctl_nr_open
)
1543 /* protect tsk->signal and tsk->sighand from disappearing */
1544 read_lock(&tasklist_lock
);
1545 if (!tsk
->sighand
) {
1550 rlim
= tsk
->signal
->rlim
+ resource
;
1551 task_lock(tsk
->group_leader
);
1553 /* Keep the capable check against init_user_ns until
1554 cgroups can contain all limits */
1555 if (new_rlim
->rlim_max
> rlim
->rlim_max
&&
1556 !capable(CAP_SYS_RESOURCE
))
1559 retval
= security_task_setrlimit(tsk
, resource
, new_rlim
);
1567 task_unlock(tsk
->group_leader
);
1570 * RLIMIT_CPU handling. Arm the posix CPU timer if the limit is not
1571 * infite. In case of RLIM_INFINITY the posix CPU timer code
1572 * ignores the rlimit.
1574 if (!retval
&& new_rlim
&& resource
== RLIMIT_CPU
&&
1575 new_rlim
->rlim_cur
!= RLIM_INFINITY
&&
1576 IS_ENABLED(CONFIG_POSIX_TIMERS
))
1577 update_rlimit_cpu(tsk
, new_rlim
->rlim_cur
);
1579 read_unlock(&tasklist_lock
);
1583 /* rcu lock must be held */
1584 static int check_prlimit_permission(struct task_struct
*task
,
1587 const struct cred
*cred
= current_cred(), *tcred
;
1590 if (current
== task
)
1593 tcred
= __task_cred(task
);
1594 id_match
= (uid_eq(cred
->uid
, tcred
->euid
) &&
1595 uid_eq(cred
->uid
, tcred
->suid
) &&
1596 uid_eq(cred
->uid
, tcred
->uid
) &&
1597 gid_eq(cred
->gid
, tcred
->egid
) &&
1598 gid_eq(cred
->gid
, tcred
->sgid
) &&
1599 gid_eq(cred
->gid
, tcred
->gid
));
1600 if (!id_match
&& !ns_capable(tcred
->user_ns
, CAP_SYS_RESOURCE
))
1603 return security_task_prlimit(cred
, tcred
, flags
);
1606 SYSCALL_DEFINE4(prlimit64
, pid_t
, pid
, unsigned int, resource
,
1607 const struct rlimit64 __user
*, new_rlim
,
1608 struct rlimit64 __user
*, old_rlim
)
1610 struct rlimit64 old64
, new64
;
1611 struct rlimit old
, new;
1612 struct task_struct
*tsk
;
1613 unsigned int checkflags
= 0;
1617 checkflags
|= LSM_PRLIMIT_READ
;
1620 if (copy_from_user(&new64
, new_rlim
, sizeof(new64
)))
1622 rlim64_to_rlim(&new64
, &new);
1623 checkflags
|= LSM_PRLIMIT_WRITE
;
1627 tsk
= pid
? find_task_by_vpid(pid
) : current
;
1632 ret
= check_prlimit_permission(tsk
, checkflags
);
1637 get_task_struct(tsk
);
1640 ret
= do_prlimit(tsk
, resource
, new_rlim
? &new : NULL
,
1641 old_rlim
? &old
: NULL
);
1643 if (!ret
&& old_rlim
) {
1644 rlim_to_rlim64(&old
, &old64
);
1645 if (copy_to_user(old_rlim
, &old64
, sizeof(old64
)))
1649 put_task_struct(tsk
);
1653 SYSCALL_DEFINE2(setrlimit
, unsigned int, resource
, struct rlimit __user
*, rlim
)
1655 struct rlimit new_rlim
;
1657 if (copy_from_user(&new_rlim
, rlim
, sizeof(*rlim
)))
1659 return do_prlimit(current
, resource
, &new_rlim
, NULL
);
1663 * It would make sense to put struct rusage in the task_struct,
1664 * except that would make the task_struct be *really big*. After
1665 * task_struct gets moved into malloc'ed memory, it would
1666 * make sense to do this. It will make moving the rest of the information
1667 * a lot simpler! (Which we're not doing right now because we're not
1668 * measuring them yet).
1670 * When sampling multiple threads for RUSAGE_SELF, under SMP we might have
1671 * races with threads incrementing their own counters. But since word
1672 * reads are atomic, we either get new values or old values and we don't
1673 * care which for the sums. We always take the siglock to protect reading
1674 * the c* fields from p->signal from races with exit.c updating those
1675 * fields when reaping, so a sample either gets all the additions of a
1676 * given child after it's reaped, or none so this sample is before reaping.
1679 * We need to take the siglock for CHILDEREN, SELF and BOTH
1680 * for the cases current multithreaded, non-current single threaded
1681 * non-current multithreaded. Thread traversal is now safe with
1683 * Strictly speaking, we donot need to take the siglock if we are current and
1684 * single threaded, as no one else can take our signal_struct away, no one
1685 * else can reap the children to update signal->c* counters, and no one else
1686 * can race with the signal-> fields. If we do not take any lock, the
1687 * signal-> fields could be read out of order while another thread was just
1688 * exiting. So we should place a read memory barrier when we avoid the lock.
1689 * On the writer side, write memory barrier is implied in __exit_signal
1690 * as __exit_signal releases the siglock spinlock after updating the signal->
1691 * fields. But we don't do this yet to keep things simple.
1695 static void accumulate_thread_rusage(struct task_struct
*t
, struct rusage
*r
)
1697 r
->ru_nvcsw
+= t
->nvcsw
;
1698 r
->ru_nivcsw
+= t
->nivcsw
;
1699 r
->ru_minflt
+= t
->min_flt
;
1700 r
->ru_majflt
+= t
->maj_flt
;
1701 r
->ru_inblock
+= task_io_get_inblock(t
);
1702 r
->ru_oublock
+= task_io_get_oublock(t
);
1705 void getrusage(struct task_struct
*p
, int who
, struct rusage
*r
)
1707 struct task_struct
*t
;
1708 unsigned long flags
;
1709 u64 tgutime
, tgstime
, utime
, stime
;
1710 unsigned long maxrss
= 0;
1712 memset((char *)r
, 0, sizeof (*r
));
1715 if (who
== RUSAGE_THREAD
) {
1716 task_cputime_adjusted(current
, &utime
, &stime
);
1717 accumulate_thread_rusage(p
, r
);
1718 maxrss
= p
->signal
->maxrss
;
1722 if (!lock_task_sighand(p
, &flags
))
1727 case RUSAGE_CHILDREN
:
1728 utime
= p
->signal
->cutime
;
1729 stime
= p
->signal
->cstime
;
1730 r
->ru_nvcsw
= p
->signal
->cnvcsw
;
1731 r
->ru_nivcsw
= p
->signal
->cnivcsw
;
1732 r
->ru_minflt
= p
->signal
->cmin_flt
;
1733 r
->ru_majflt
= p
->signal
->cmaj_flt
;
1734 r
->ru_inblock
= p
->signal
->cinblock
;
1735 r
->ru_oublock
= p
->signal
->coublock
;
1736 maxrss
= p
->signal
->cmaxrss
;
1738 if (who
== RUSAGE_CHILDREN
)
1743 thread_group_cputime_adjusted(p
, &tgutime
, &tgstime
);
1746 r
->ru_nvcsw
+= p
->signal
->nvcsw
;
1747 r
->ru_nivcsw
+= p
->signal
->nivcsw
;
1748 r
->ru_minflt
+= p
->signal
->min_flt
;
1749 r
->ru_majflt
+= p
->signal
->maj_flt
;
1750 r
->ru_inblock
+= p
->signal
->inblock
;
1751 r
->ru_oublock
+= p
->signal
->oublock
;
1752 if (maxrss
< p
->signal
->maxrss
)
1753 maxrss
= p
->signal
->maxrss
;
1756 accumulate_thread_rusage(t
, r
);
1757 } while_each_thread(p
, t
);
1763 unlock_task_sighand(p
, &flags
);
1766 r
->ru_utime
= ns_to_timeval(utime
);
1767 r
->ru_stime
= ns_to_timeval(stime
);
1769 if (who
!= RUSAGE_CHILDREN
) {
1770 struct mm_struct
*mm
= get_task_mm(p
);
1773 setmax_mm_hiwater_rss(&maxrss
, mm
);
1777 r
->ru_maxrss
= maxrss
* (PAGE_SIZE
/ 1024); /* convert pages to KBs */
1780 SYSCALL_DEFINE2(getrusage
, int, who
, struct rusage __user
*, ru
)
1784 if (who
!= RUSAGE_SELF
&& who
!= RUSAGE_CHILDREN
&&
1785 who
!= RUSAGE_THREAD
)
1788 getrusage(current
, who
, &r
);
1789 return copy_to_user(ru
, &r
, sizeof(r
)) ? -EFAULT
: 0;
1792 #ifdef CONFIG_COMPAT
1793 COMPAT_SYSCALL_DEFINE2(getrusage
, int, who
, struct compat_rusage __user
*, ru
)
1797 if (who
!= RUSAGE_SELF
&& who
!= RUSAGE_CHILDREN
&&
1798 who
!= RUSAGE_THREAD
)
1801 getrusage(current
, who
, &r
);
1802 return put_compat_rusage(&r
, ru
);
1806 SYSCALL_DEFINE1(umask
, int, mask
)
1808 mask
= xchg(¤t
->fs
->umask
, mask
& S_IRWXUGO
);
1812 static int prctl_set_mm_exe_file(struct mm_struct
*mm
, unsigned int fd
)
1815 struct file
*old_exe
, *exe_file
;
1816 struct inode
*inode
;
1823 inode
= file_inode(exe
.file
);
1826 * Because the original mm->exe_file points to executable file, make
1827 * sure that this one is executable as well, to avoid breaking an
1831 if (!S_ISREG(inode
->i_mode
) || path_noexec(&exe
.file
->f_path
))
1834 err
= inode_permission(inode
, MAY_EXEC
);
1839 * Forbid mm->exe_file change if old file still mapped.
1841 exe_file
= get_mm_exe_file(mm
);
1844 struct vm_area_struct
*vma
;
1846 down_read(&mm
->mmap_sem
);
1847 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
) {
1850 if (path_equal(&vma
->vm_file
->f_path
,
1855 up_read(&mm
->mmap_sem
);
1860 /* set the new file, lockless */
1862 old_exe
= xchg(&mm
->exe_file
, exe
.file
);
1869 up_read(&mm
->mmap_sem
);
1875 * Check arithmetic relations of passed addresses.
1877 * WARNING: we don't require any capability here so be very careful
1878 * in what is allowed for modification from userspace.
1880 static int validate_prctl_map_addr(struct prctl_mm_map
*prctl_map
)
1882 unsigned long mmap_max_addr
= TASK_SIZE
;
1883 int error
= -EINVAL
, i
;
1885 static const unsigned char offsets
[] = {
1886 offsetof(struct prctl_mm_map
, start_code
),
1887 offsetof(struct prctl_mm_map
, end_code
),
1888 offsetof(struct prctl_mm_map
, start_data
),
1889 offsetof(struct prctl_mm_map
, end_data
),
1890 offsetof(struct prctl_mm_map
, start_brk
),
1891 offsetof(struct prctl_mm_map
, brk
),
1892 offsetof(struct prctl_mm_map
, start_stack
),
1893 offsetof(struct prctl_mm_map
, arg_start
),
1894 offsetof(struct prctl_mm_map
, arg_end
),
1895 offsetof(struct prctl_mm_map
, env_start
),
1896 offsetof(struct prctl_mm_map
, env_end
),
1900 * Make sure the members are not somewhere outside
1901 * of allowed address space.
1903 for (i
= 0; i
< ARRAY_SIZE(offsets
); i
++) {
1904 u64 val
= *(u64
*)((char *)prctl_map
+ offsets
[i
]);
1906 if ((unsigned long)val
>= mmap_max_addr
||
1907 (unsigned long)val
< mmap_min_addr
)
1912 * Make sure the pairs are ordered.
1914 #define __prctl_check_order(__m1, __op, __m2) \
1915 ((unsigned long)prctl_map->__m1 __op \
1916 (unsigned long)prctl_map->__m2) ? 0 : -EINVAL
1917 error
= __prctl_check_order(start_code
, <, end_code
);
1918 error
|= __prctl_check_order(start_data
,<=, end_data
);
1919 error
|= __prctl_check_order(start_brk
, <=, brk
);
1920 error
|= __prctl_check_order(arg_start
, <=, arg_end
);
1921 error
|= __prctl_check_order(env_start
, <=, env_end
);
1924 #undef __prctl_check_order
1929 * @brk should be after @end_data in traditional maps.
1931 if (prctl_map
->start_brk
<= prctl_map
->end_data
||
1932 prctl_map
->brk
<= prctl_map
->end_data
)
1936 * Neither we should allow to override limits if they set.
1938 if (check_data_rlimit(rlimit(RLIMIT_DATA
), prctl_map
->brk
,
1939 prctl_map
->start_brk
, prctl_map
->end_data
,
1940 prctl_map
->start_data
))
1948 #ifdef CONFIG_CHECKPOINT_RESTORE
1949 static int prctl_set_mm_map(int opt
, const void __user
*addr
, unsigned long data_size
)
1951 struct prctl_mm_map prctl_map
= { .exe_fd
= (u32
)-1, };
1952 unsigned long user_auxv
[AT_VECTOR_SIZE
];
1953 struct mm_struct
*mm
= current
->mm
;
1956 BUILD_BUG_ON(sizeof(user_auxv
) != sizeof(mm
->saved_auxv
));
1957 BUILD_BUG_ON(sizeof(struct prctl_mm_map
) > 256);
1959 if (opt
== PR_SET_MM_MAP_SIZE
)
1960 return put_user((unsigned int)sizeof(prctl_map
),
1961 (unsigned int __user
*)addr
);
1963 if (data_size
!= sizeof(prctl_map
))
1966 if (copy_from_user(&prctl_map
, addr
, sizeof(prctl_map
)))
1969 error
= validate_prctl_map_addr(&prctl_map
);
1973 if (prctl_map
.auxv_size
) {
1975 * Someone is trying to cheat the auxv vector.
1977 if (!prctl_map
.auxv
||
1978 prctl_map
.auxv_size
> sizeof(mm
->saved_auxv
))
1981 memset(user_auxv
, 0, sizeof(user_auxv
));
1982 if (copy_from_user(user_auxv
,
1983 (const void __user
*)prctl_map
.auxv
,
1984 prctl_map
.auxv_size
))
1987 /* Last entry must be AT_NULL as specification requires */
1988 user_auxv
[AT_VECTOR_SIZE
- 2] = AT_NULL
;
1989 user_auxv
[AT_VECTOR_SIZE
- 1] = AT_NULL
;
1992 if (prctl_map
.exe_fd
!= (u32
)-1) {
1994 * Make sure the caller has the rights to
1995 * change /proc/pid/exe link: only local sys admin should
1998 if (!ns_capable(current_user_ns(), CAP_SYS_ADMIN
))
2001 error
= prctl_set_mm_exe_file(mm
, prctl_map
.exe_fd
);
2007 * arg_lock protects concurent updates but we still need mmap_sem for
2008 * read to exclude races with sys_brk.
2010 down_read(&mm
->mmap_sem
);
2013 * We don't validate if these members are pointing to
2014 * real present VMAs because application may have correspond
2015 * VMAs already unmapped and kernel uses these members for statistics
2016 * output in procfs mostly, except
2018 * - @start_brk/@brk which are used in do_brk but kernel lookups
2019 * for VMAs when updating these memvers so anything wrong written
2020 * here cause kernel to swear at userspace program but won't lead
2021 * to any problem in kernel itself
2024 spin_lock(&mm
->arg_lock
);
2025 mm
->start_code
= prctl_map
.start_code
;
2026 mm
->end_code
= prctl_map
.end_code
;
2027 mm
->start_data
= prctl_map
.start_data
;
2028 mm
->end_data
= prctl_map
.end_data
;
2029 mm
->start_brk
= prctl_map
.start_brk
;
2030 mm
->brk
= prctl_map
.brk
;
2031 mm
->start_stack
= prctl_map
.start_stack
;
2032 mm
->arg_start
= prctl_map
.arg_start
;
2033 mm
->arg_end
= prctl_map
.arg_end
;
2034 mm
->env_start
= prctl_map
.env_start
;
2035 mm
->env_end
= prctl_map
.env_end
;
2036 spin_unlock(&mm
->arg_lock
);
2039 * Note this update of @saved_auxv is lockless thus
2040 * if someone reads this member in procfs while we're
2041 * updating -- it may get partly updated results. It's
2042 * known and acceptable trade off: we leave it as is to
2043 * not introduce additional locks here making the kernel
2046 if (prctl_map
.auxv_size
)
2047 memcpy(mm
->saved_auxv
, user_auxv
, sizeof(user_auxv
));
2049 up_read(&mm
->mmap_sem
);
2052 #endif /* CONFIG_CHECKPOINT_RESTORE */
2054 static int prctl_set_auxv(struct mm_struct
*mm
, unsigned long addr
,
2058 * This doesn't move the auxiliary vector itself since it's pinned to
2059 * mm_struct, but it permits filling the vector with new values. It's
2060 * up to the caller to provide sane values here, otherwise userspace
2061 * tools which use this vector might be unhappy.
2063 unsigned long user_auxv
[AT_VECTOR_SIZE
];
2065 if (len
> sizeof(user_auxv
))
2068 if (copy_from_user(user_auxv
, (const void __user
*)addr
, len
))
2071 /* Make sure the last entry is always AT_NULL */
2072 user_auxv
[AT_VECTOR_SIZE
- 2] = 0;
2073 user_auxv
[AT_VECTOR_SIZE
- 1] = 0;
2075 BUILD_BUG_ON(sizeof(user_auxv
) != sizeof(mm
->saved_auxv
));
2078 memcpy(mm
->saved_auxv
, user_auxv
, len
);
2079 task_unlock(current
);
2084 static int prctl_set_mm(int opt
, unsigned long addr
,
2085 unsigned long arg4
, unsigned long arg5
)
2087 struct mm_struct
*mm
= current
->mm
;
2088 struct prctl_mm_map prctl_map
= {
2093 struct vm_area_struct
*vma
;
2096 if (arg5
|| (arg4
&& (opt
!= PR_SET_MM_AUXV
&&
2097 opt
!= PR_SET_MM_MAP
&&
2098 opt
!= PR_SET_MM_MAP_SIZE
)))
2101 #ifdef CONFIG_CHECKPOINT_RESTORE
2102 if (opt
== PR_SET_MM_MAP
|| opt
== PR_SET_MM_MAP_SIZE
)
2103 return prctl_set_mm_map(opt
, (const void __user
*)addr
, arg4
);
2106 if (!capable(CAP_SYS_RESOURCE
))
2109 if (opt
== PR_SET_MM_EXE_FILE
)
2110 return prctl_set_mm_exe_file(mm
, (unsigned int)addr
);
2112 if (opt
== PR_SET_MM_AUXV
)
2113 return prctl_set_auxv(mm
, addr
, arg4
);
2115 if (addr
>= TASK_SIZE
|| addr
< mmap_min_addr
)
2121 * arg_lock protects concurent updates of arg boundaries, we need
2122 * mmap_sem for a) concurrent sys_brk, b) finding VMA for addr
2125 down_read(&mm
->mmap_sem
);
2126 vma
= find_vma(mm
, addr
);
2128 spin_lock(&mm
->arg_lock
);
2129 prctl_map
.start_code
= mm
->start_code
;
2130 prctl_map
.end_code
= mm
->end_code
;
2131 prctl_map
.start_data
= mm
->start_data
;
2132 prctl_map
.end_data
= mm
->end_data
;
2133 prctl_map
.start_brk
= mm
->start_brk
;
2134 prctl_map
.brk
= mm
->brk
;
2135 prctl_map
.start_stack
= mm
->start_stack
;
2136 prctl_map
.arg_start
= mm
->arg_start
;
2137 prctl_map
.arg_end
= mm
->arg_end
;
2138 prctl_map
.env_start
= mm
->env_start
;
2139 prctl_map
.env_end
= mm
->env_end
;
2142 case PR_SET_MM_START_CODE
:
2143 prctl_map
.start_code
= addr
;
2145 case PR_SET_MM_END_CODE
:
2146 prctl_map
.end_code
= addr
;
2148 case PR_SET_MM_START_DATA
:
2149 prctl_map
.start_data
= addr
;
2151 case PR_SET_MM_END_DATA
:
2152 prctl_map
.end_data
= addr
;
2154 case PR_SET_MM_START_STACK
:
2155 prctl_map
.start_stack
= addr
;
2157 case PR_SET_MM_START_BRK
:
2158 prctl_map
.start_brk
= addr
;
2161 prctl_map
.brk
= addr
;
2163 case PR_SET_MM_ARG_START
:
2164 prctl_map
.arg_start
= addr
;
2166 case PR_SET_MM_ARG_END
:
2167 prctl_map
.arg_end
= addr
;
2169 case PR_SET_MM_ENV_START
:
2170 prctl_map
.env_start
= addr
;
2172 case PR_SET_MM_ENV_END
:
2173 prctl_map
.env_end
= addr
;
2179 error
= validate_prctl_map_addr(&prctl_map
);
2185 * If command line arguments and environment
2186 * are placed somewhere else on stack, we can
2187 * set them up here, ARG_START/END to setup
2188 * command line argumets and ENV_START/END
2191 case PR_SET_MM_START_STACK
:
2192 case PR_SET_MM_ARG_START
:
2193 case PR_SET_MM_ARG_END
:
2194 case PR_SET_MM_ENV_START
:
2195 case PR_SET_MM_ENV_END
:
2202 mm
->start_code
= prctl_map
.start_code
;
2203 mm
->end_code
= prctl_map
.end_code
;
2204 mm
->start_data
= prctl_map
.start_data
;
2205 mm
->end_data
= prctl_map
.end_data
;
2206 mm
->start_brk
= prctl_map
.start_brk
;
2207 mm
->brk
= prctl_map
.brk
;
2208 mm
->start_stack
= prctl_map
.start_stack
;
2209 mm
->arg_start
= prctl_map
.arg_start
;
2210 mm
->arg_end
= prctl_map
.arg_end
;
2211 mm
->env_start
= prctl_map
.env_start
;
2212 mm
->env_end
= prctl_map
.env_end
;
2216 spin_unlock(&mm
->arg_lock
);
2217 up_read(&mm
->mmap_sem
);
2221 #ifdef CONFIG_CHECKPOINT_RESTORE
2222 static int prctl_get_tid_address(struct task_struct
*me
, int __user
**tid_addr
)
2224 return put_user(me
->clear_child_tid
, tid_addr
);
2227 static int prctl_get_tid_address(struct task_struct
*me
, int __user
**tid_addr
)
2233 static int propagate_has_child_subreaper(struct task_struct
*p
, void *data
)
2236 * If task has has_child_subreaper - all its decendants
2237 * already have these flag too and new decendants will
2238 * inherit it on fork, skip them.
2240 * If we've found child_reaper - skip descendants in
2241 * it's subtree as they will never get out pidns.
2243 if (p
->signal
->has_child_subreaper
||
2244 is_child_reaper(task_pid(p
)))
2247 p
->signal
->has_child_subreaper
= 1;
2251 int __weak
arch_prctl_spec_ctrl_get(struct task_struct
*t
, unsigned long which
)
2256 int __weak
arch_prctl_spec_ctrl_set(struct task_struct
*t
, unsigned long which
,
2262 SYSCALL_DEFINE5(prctl
, int, option
, unsigned long, arg2
, unsigned long, arg3
,
2263 unsigned long, arg4
, unsigned long, arg5
)
2265 struct task_struct
*me
= current
;
2266 unsigned char comm
[sizeof(me
->comm
)];
2269 error
= security_task_prctl(option
, arg2
, arg3
, arg4
, arg5
);
2270 if (error
!= -ENOSYS
)
2275 case PR_SET_PDEATHSIG
:
2276 if (!valid_signal(arg2
)) {
2280 me
->pdeath_signal
= arg2
;
2282 case PR_GET_PDEATHSIG
:
2283 error
= put_user(me
->pdeath_signal
, (int __user
*)arg2
);
2285 case PR_GET_DUMPABLE
:
2286 error
= get_dumpable(me
->mm
);
2288 case PR_SET_DUMPABLE
:
2289 if (arg2
!= SUID_DUMP_DISABLE
&& arg2
!= SUID_DUMP_USER
) {
2293 set_dumpable(me
->mm
, arg2
);
2296 case PR_SET_UNALIGN
:
2297 error
= SET_UNALIGN_CTL(me
, arg2
);
2299 case PR_GET_UNALIGN
:
2300 error
= GET_UNALIGN_CTL(me
, arg2
);
2303 error
= SET_FPEMU_CTL(me
, arg2
);
2306 error
= GET_FPEMU_CTL(me
, arg2
);
2309 error
= SET_FPEXC_CTL(me
, arg2
);
2312 error
= GET_FPEXC_CTL(me
, arg2
);
2315 error
= PR_TIMING_STATISTICAL
;
2318 if (arg2
!= PR_TIMING_STATISTICAL
)
2322 comm
[sizeof(me
->comm
) - 1] = 0;
2323 if (strncpy_from_user(comm
, (char __user
*)arg2
,
2324 sizeof(me
->comm
) - 1) < 0)
2326 set_task_comm(me
, comm
);
2327 proc_comm_connector(me
);
2330 get_task_comm(comm
, me
);
2331 if (copy_to_user((char __user
*)arg2
, comm
, sizeof(comm
)))
2335 error
= GET_ENDIAN(me
, arg2
);
2338 error
= SET_ENDIAN(me
, arg2
);
2340 case PR_GET_SECCOMP
:
2341 error
= prctl_get_seccomp();
2343 case PR_SET_SECCOMP
:
2344 error
= prctl_set_seccomp(arg2
, (char __user
*)arg3
);
2347 error
= GET_TSC_CTL(arg2
);
2350 error
= SET_TSC_CTL(arg2
);
2352 case PR_TASK_PERF_EVENTS_DISABLE
:
2353 error
= perf_event_task_disable();
2355 case PR_TASK_PERF_EVENTS_ENABLE
:
2356 error
= perf_event_task_enable();
2358 case PR_GET_TIMERSLACK
:
2359 if (current
->timer_slack_ns
> ULONG_MAX
)
2362 error
= current
->timer_slack_ns
;
2364 case PR_SET_TIMERSLACK
:
2366 current
->timer_slack_ns
=
2367 current
->default_timer_slack_ns
;
2369 current
->timer_slack_ns
= arg2
;
2375 case PR_MCE_KILL_CLEAR
:
2378 current
->flags
&= ~PF_MCE_PROCESS
;
2380 case PR_MCE_KILL_SET
:
2381 current
->flags
|= PF_MCE_PROCESS
;
2382 if (arg3
== PR_MCE_KILL_EARLY
)
2383 current
->flags
|= PF_MCE_EARLY
;
2384 else if (arg3
== PR_MCE_KILL_LATE
)
2385 current
->flags
&= ~PF_MCE_EARLY
;
2386 else if (arg3
== PR_MCE_KILL_DEFAULT
)
2388 ~(PF_MCE_EARLY
|PF_MCE_PROCESS
);
2396 case PR_MCE_KILL_GET
:
2397 if (arg2
| arg3
| arg4
| arg5
)
2399 if (current
->flags
& PF_MCE_PROCESS
)
2400 error
= (current
->flags
& PF_MCE_EARLY
) ?
2401 PR_MCE_KILL_EARLY
: PR_MCE_KILL_LATE
;
2403 error
= PR_MCE_KILL_DEFAULT
;
2406 error
= prctl_set_mm(arg2
, arg3
, arg4
, arg5
);
2408 case PR_GET_TID_ADDRESS
:
2409 error
= prctl_get_tid_address(me
, (int __user
**)arg2
);
2411 case PR_SET_CHILD_SUBREAPER
:
2412 me
->signal
->is_child_subreaper
= !!arg2
;
2416 walk_process_tree(me
, propagate_has_child_subreaper
, NULL
);
2418 case PR_GET_CHILD_SUBREAPER
:
2419 error
= put_user(me
->signal
->is_child_subreaper
,
2420 (int __user
*)arg2
);
2422 case PR_SET_NO_NEW_PRIVS
:
2423 if (arg2
!= 1 || arg3
|| arg4
|| arg5
)
2426 task_set_no_new_privs(current
);
2428 case PR_GET_NO_NEW_PRIVS
:
2429 if (arg2
|| arg3
|| arg4
|| arg5
)
2431 return task_no_new_privs(current
) ? 1 : 0;
2432 case PR_GET_THP_DISABLE
:
2433 if (arg2
|| arg3
|| arg4
|| arg5
)
2435 error
= !!test_bit(MMF_DISABLE_THP
, &me
->mm
->flags
);
2437 case PR_SET_THP_DISABLE
:
2438 if (arg3
|| arg4
|| arg5
)
2440 if (down_write_killable(&me
->mm
->mmap_sem
))
2443 set_bit(MMF_DISABLE_THP
, &me
->mm
->flags
);
2445 clear_bit(MMF_DISABLE_THP
, &me
->mm
->flags
);
2446 up_write(&me
->mm
->mmap_sem
);
2448 case PR_MPX_ENABLE_MANAGEMENT
:
2449 case PR_MPX_DISABLE_MANAGEMENT
:
2450 /* No longer implemented: */
2452 case PR_SET_FP_MODE
:
2453 error
= SET_FP_MODE(me
, arg2
);
2455 case PR_GET_FP_MODE
:
2456 error
= GET_FP_MODE(me
);
2459 error
= SVE_SET_VL(arg2
);
2462 error
= SVE_GET_VL();
2464 case PR_GET_SPECULATION_CTRL
:
2465 if (arg3
|| arg4
|| arg5
)
2467 error
= arch_prctl_spec_ctrl_get(me
, arg2
);
2469 case PR_SET_SPECULATION_CTRL
:
2472 error
= arch_prctl_spec_ctrl_set(me
, arg2
, arg3
);
2474 case PR_PAC_RESET_KEYS
:
2475 if (arg3
|| arg4
|| arg5
)
2477 error
= PAC_RESET_KEYS(me
, arg2
);
2479 case PR_SET_TAGGED_ADDR_CTRL
:
2480 if (arg3
|| arg4
|| arg5
)
2482 error
= SET_TAGGED_ADDR_CTRL(arg2
);
2484 case PR_GET_TAGGED_ADDR_CTRL
:
2485 if (arg2
|| arg3
|| arg4
|| arg5
)
2487 error
= GET_TAGGED_ADDR_CTRL();
2496 SYSCALL_DEFINE3(getcpu
, unsigned __user
*, cpup
, unsigned __user
*, nodep
,
2497 struct getcpu_cache __user
*, unused
)
2500 int cpu
= raw_smp_processor_id();
2503 err
|= put_user(cpu
, cpup
);
2505 err
|= put_user(cpu_to_node(cpu
), nodep
);
2506 return err
? -EFAULT
: 0;
2510 * do_sysinfo - fill in sysinfo struct
2511 * @info: pointer to buffer to fill
2513 static int do_sysinfo(struct sysinfo
*info
)
2515 unsigned long mem_total
, sav_total
;
2516 unsigned int mem_unit
, bitcount
;
2517 struct timespec64 tp
;
2519 memset(info
, 0, sizeof(struct sysinfo
));
2521 ktime_get_boottime_ts64(&tp
);
2522 info
->uptime
= tp
.tv_sec
+ (tp
.tv_nsec
? 1 : 0);
2524 get_avenrun(info
->loads
, 0, SI_LOAD_SHIFT
- FSHIFT
);
2526 info
->procs
= nr_threads
;
2532 * If the sum of all the available memory (i.e. ram + swap)
2533 * is less than can be stored in a 32 bit unsigned long then
2534 * we can be binary compatible with 2.2.x kernels. If not,
2535 * well, in that case 2.2.x was broken anyways...
2537 * -Erik Andersen <andersee@debian.org>
2540 mem_total
= info
->totalram
+ info
->totalswap
;
2541 if (mem_total
< info
->totalram
|| mem_total
< info
->totalswap
)
2544 mem_unit
= info
->mem_unit
;
2545 while (mem_unit
> 1) {
2548 sav_total
= mem_total
;
2550 if (mem_total
< sav_total
)
2555 * If mem_total did not overflow, multiply all memory values by
2556 * info->mem_unit and set it to 1. This leaves things compatible
2557 * with 2.2.x, and also retains compatibility with earlier 2.4.x
2562 info
->totalram
<<= bitcount
;
2563 info
->freeram
<<= bitcount
;
2564 info
->sharedram
<<= bitcount
;
2565 info
->bufferram
<<= bitcount
;
2566 info
->totalswap
<<= bitcount
;
2567 info
->freeswap
<<= bitcount
;
2568 info
->totalhigh
<<= bitcount
;
2569 info
->freehigh
<<= bitcount
;
2575 SYSCALL_DEFINE1(sysinfo
, struct sysinfo __user
*, info
)
2581 if (copy_to_user(info
, &val
, sizeof(struct sysinfo
)))
2587 #ifdef CONFIG_COMPAT
2588 struct compat_sysinfo
{
2602 char _f
[20-2*sizeof(u32
)-sizeof(int)];
2605 COMPAT_SYSCALL_DEFINE1(sysinfo
, struct compat_sysinfo __user
*, info
)
2611 /* Check to see if any memory value is too large for 32-bit and scale
2614 if (upper_32_bits(s
.totalram
) || upper_32_bits(s
.totalswap
)) {
2617 while (s
.mem_unit
< PAGE_SIZE
) {
2622 s
.totalram
>>= bitcount
;
2623 s
.freeram
>>= bitcount
;
2624 s
.sharedram
>>= bitcount
;
2625 s
.bufferram
>>= bitcount
;
2626 s
.totalswap
>>= bitcount
;
2627 s
.freeswap
>>= bitcount
;
2628 s
.totalhigh
>>= bitcount
;
2629 s
.freehigh
>>= bitcount
;
2632 if (!access_ok(info
, sizeof(struct compat_sysinfo
)) ||
2633 __put_user(s
.uptime
, &info
->uptime
) ||
2634 __put_user(s
.loads
[0], &info
->loads
[0]) ||
2635 __put_user(s
.loads
[1], &info
->loads
[1]) ||
2636 __put_user(s
.loads
[2], &info
->loads
[2]) ||
2637 __put_user(s
.totalram
, &info
->totalram
) ||
2638 __put_user(s
.freeram
, &info
->freeram
) ||
2639 __put_user(s
.sharedram
, &info
->sharedram
) ||
2640 __put_user(s
.bufferram
, &info
->bufferram
) ||
2641 __put_user(s
.totalswap
, &info
->totalswap
) ||
2642 __put_user(s
.freeswap
, &info
->freeswap
) ||
2643 __put_user(s
.procs
, &info
->procs
) ||
2644 __put_user(s
.totalhigh
, &info
->totalhigh
) ||
2645 __put_user(s
.freehigh
, &info
->freehigh
) ||
2646 __put_user(s
.mem_unit
, &info
->mem_unit
))
2651 #endif /* CONFIG_COMPAT */