2 * Functions related to setting various queue properties from drivers
4 #include <linux/kernel.h>
5 #include <linux/module.h>
6 #include <linux/init.h>
8 #include <linux/blkdev.h>
9 #include <linux/bootmem.h> /* for max_pfn/max_low_pfn */
10 #include <linux/gcd.h>
11 #include <linux/lcm.h>
12 #include <linux/jiffies.h>
13 #include <linux/gfp.h>
18 unsigned long blk_max_low_pfn
;
19 EXPORT_SYMBOL(blk_max_low_pfn
);
21 unsigned long blk_max_pfn
;
24 * blk_queue_prep_rq - set a prepare_request function for queue
26 * @pfn: prepare_request function
28 * It's possible for a queue to register a prepare_request callback which
29 * is invoked before the request is handed to the request_fn. The goal of
30 * the function is to prepare a request for I/O, it can be used to build a
31 * cdb from the request data for instance.
34 void blk_queue_prep_rq(struct request_queue
*q
, prep_rq_fn
*pfn
)
38 EXPORT_SYMBOL(blk_queue_prep_rq
);
41 * blk_queue_unprep_rq - set an unprepare_request function for queue
43 * @ufn: unprepare_request function
45 * It's possible for a queue to register an unprepare_request callback
46 * which is invoked before the request is finally completed. The goal
47 * of the function is to deallocate any data that was allocated in the
48 * prepare_request callback.
51 void blk_queue_unprep_rq(struct request_queue
*q
, unprep_rq_fn
*ufn
)
53 q
->unprep_rq_fn
= ufn
;
55 EXPORT_SYMBOL(blk_queue_unprep_rq
);
57 void blk_queue_softirq_done(struct request_queue
*q
, softirq_done_fn
*fn
)
59 q
->softirq_done_fn
= fn
;
61 EXPORT_SYMBOL(blk_queue_softirq_done
);
63 void blk_queue_rq_timeout(struct request_queue
*q
, unsigned int timeout
)
65 q
->rq_timeout
= timeout
;
67 EXPORT_SYMBOL_GPL(blk_queue_rq_timeout
);
69 void blk_queue_rq_timed_out(struct request_queue
*q
, rq_timed_out_fn
*fn
)
71 q
->rq_timed_out_fn
= fn
;
73 EXPORT_SYMBOL_GPL(blk_queue_rq_timed_out
);
75 void blk_queue_lld_busy(struct request_queue
*q
, lld_busy_fn
*fn
)
79 EXPORT_SYMBOL_GPL(blk_queue_lld_busy
);
82 * blk_set_default_limits - reset limits to default values
83 * @lim: the queue_limits structure to reset
86 * Returns a queue_limit struct to its default state.
88 void blk_set_default_limits(struct queue_limits
*lim
)
90 lim
->max_segments
= BLK_MAX_SEGMENTS
;
91 lim
->max_discard_segments
= 1;
92 lim
->max_integrity_segments
= 0;
93 lim
->seg_boundary_mask
= BLK_SEG_BOUNDARY_MASK
;
94 lim
->virt_boundary_mask
= 0;
95 lim
->max_segment_size
= BLK_MAX_SEGMENT_SIZE
;
96 lim
->max_sectors
= lim
->max_hw_sectors
= BLK_SAFE_MAX_SECTORS
;
97 lim
->max_dev_sectors
= 0;
98 lim
->chunk_sectors
= 0;
99 lim
->max_write_same_sectors
= 0;
100 lim
->max_write_zeroes_sectors
= 0;
101 lim
->max_discard_sectors
= 0;
102 lim
->max_hw_discard_sectors
= 0;
103 lim
->discard_granularity
= 0;
104 lim
->discard_alignment
= 0;
105 lim
->discard_misaligned
= 0;
106 lim
->logical_block_size
= lim
->physical_block_size
= lim
->io_min
= 512;
107 lim
->bounce_pfn
= (unsigned long)(BLK_BOUNCE_ANY
>> PAGE_SHIFT
);
108 lim
->alignment_offset
= 0;
112 lim
->zoned
= BLK_ZONED_NONE
;
114 EXPORT_SYMBOL(blk_set_default_limits
);
117 * blk_set_stacking_limits - set default limits for stacking devices
118 * @lim: the queue_limits structure to reset
121 * Returns a queue_limit struct to its default state. Should be used
122 * by stacking drivers like DM that have no internal limits.
124 void blk_set_stacking_limits(struct queue_limits
*lim
)
126 blk_set_default_limits(lim
);
128 /* Inherit limits from component devices */
129 lim
->max_segments
= USHRT_MAX
;
130 lim
->max_discard_segments
= 1;
131 lim
->max_hw_sectors
= UINT_MAX
;
132 lim
->max_segment_size
= UINT_MAX
;
133 lim
->max_sectors
= UINT_MAX
;
134 lim
->max_dev_sectors
= UINT_MAX
;
135 lim
->max_write_same_sectors
= UINT_MAX
;
136 lim
->max_write_zeroes_sectors
= UINT_MAX
;
138 EXPORT_SYMBOL(blk_set_stacking_limits
);
141 * blk_queue_make_request - define an alternate make_request function for a device
142 * @q: the request queue for the device to be affected
143 * @mfn: the alternate make_request function
146 * The normal way for &struct bios to be passed to a device
147 * driver is for them to be collected into requests on a request
148 * queue, and then to allow the device driver to select requests
149 * off that queue when it is ready. This works well for many block
150 * devices. However some block devices (typically virtual devices
151 * such as md or lvm) do not benefit from the processing on the
152 * request queue, and are served best by having the requests passed
153 * directly to them. This can be achieved by providing a function
154 * to blk_queue_make_request().
157 * The driver that does this *must* be able to deal appropriately
158 * with buffers in "highmemory". This can be accomplished by either calling
159 * __bio_kmap_atomic() to get a temporary kernel mapping, or by calling
160 * blk_queue_bounce() to create a buffer in normal memory.
162 void blk_queue_make_request(struct request_queue
*q
, make_request_fn
*mfn
)
167 q
->nr_requests
= BLKDEV_MAX_RQ
;
169 q
->make_request_fn
= mfn
;
170 blk_queue_dma_alignment(q
, 511);
171 blk_queue_congestion_threshold(q
);
172 q
->nr_batching
= BLK_BATCH_REQ
;
174 blk_set_default_limits(&q
->limits
);
177 * by default assume old behaviour and bounce for any highmem page
179 blk_queue_bounce_limit(q
, BLK_BOUNCE_HIGH
);
181 EXPORT_SYMBOL(blk_queue_make_request
);
184 * blk_queue_bounce_limit - set bounce buffer limit for queue
185 * @q: the request queue for the device
186 * @max_addr: the maximum address the device can handle
189 * Different hardware can have different requirements as to what pages
190 * it can do I/O directly to. A low level driver can call
191 * blk_queue_bounce_limit to have lower memory pages allocated as bounce
192 * buffers for doing I/O to pages residing above @max_addr.
194 void blk_queue_bounce_limit(struct request_queue
*q
, u64 max_addr
)
196 unsigned long b_pfn
= max_addr
>> PAGE_SHIFT
;
199 q
->bounce_gfp
= GFP_NOIO
;
200 #if BITS_PER_LONG == 64
202 * Assume anything <= 4GB can be handled by IOMMU. Actually
203 * some IOMMUs can handle everything, but I don't know of a
204 * way to test this here.
206 if (b_pfn
< (min_t(u64
, 0xffffffffUL
, BLK_BOUNCE_HIGH
) >> PAGE_SHIFT
))
208 q
->limits
.bounce_pfn
= max(max_low_pfn
, b_pfn
);
210 if (b_pfn
< blk_max_low_pfn
)
212 q
->limits
.bounce_pfn
= b_pfn
;
215 init_emergency_isa_pool();
216 q
->bounce_gfp
= GFP_NOIO
| GFP_DMA
;
217 q
->limits
.bounce_pfn
= b_pfn
;
220 EXPORT_SYMBOL(blk_queue_bounce_limit
);
223 * blk_queue_max_hw_sectors - set max sectors for a request for this queue
224 * @q: the request queue for the device
225 * @max_hw_sectors: max hardware sectors in the usual 512b unit
228 * Enables a low level driver to set a hard upper limit,
229 * max_hw_sectors, on the size of requests. max_hw_sectors is set by
230 * the device driver based upon the capabilities of the I/O
233 * max_dev_sectors is a hard limit imposed by the storage device for
234 * READ/WRITE requests. It is set by the disk driver.
236 * max_sectors is a soft limit imposed by the block layer for
237 * filesystem type requests. This value can be overridden on a
238 * per-device basis in /sys/block/<device>/queue/max_sectors_kb.
239 * The soft limit can not exceed max_hw_sectors.
241 void blk_queue_max_hw_sectors(struct request_queue
*q
, unsigned int max_hw_sectors
)
243 struct queue_limits
*limits
= &q
->limits
;
244 unsigned int max_sectors
;
246 if ((max_hw_sectors
<< 9) < PAGE_SIZE
) {
247 max_hw_sectors
= 1 << (PAGE_SHIFT
- 9);
248 printk(KERN_INFO
"%s: set to minimum %d\n",
249 __func__
, max_hw_sectors
);
252 limits
->max_hw_sectors
= max_hw_sectors
;
253 max_sectors
= min_not_zero(max_hw_sectors
, limits
->max_dev_sectors
);
254 max_sectors
= min_t(unsigned int, max_sectors
, BLK_DEF_MAX_SECTORS
);
255 limits
->max_sectors
= max_sectors
;
256 q
->backing_dev_info
->io_pages
= max_sectors
>> (PAGE_SHIFT
- 9);
258 EXPORT_SYMBOL(blk_queue_max_hw_sectors
);
261 * blk_queue_chunk_sectors - set size of the chunk for this queue
262 * @q: the request queue for the device
263 * @chunk_sectors: chunk sectors in the usual 512b unit
266 * If a driver doesn't want IOs to cross a given chunk size, it can set
267 * this limit and prevent merging across chunks. Note that the chunk size
268 * must currently be a power-of-2 in sectors. Also note that the block
269 * layer must accept a page worth of data at any offset. So if the
270 * crossing of chunks is a hard limitation in the driver, it must still be
271 * prepared to split single page bios.
273 void blk_queue_chunk_sectors(struct request_queue
*q
, unsigned int chunk_sectors
)
275 BUG_ON(!is_power_of_2(chunk_sectors
));
276 q
->limits
.chunk_sectors
= chunk_sectors
;
278 EXPORT_SYMBOL(blk_queue_chunk_sectors
);
281 * blk_queue_max_discard_sectors - set max sectors for a single discard
282 * @q: the request queue for the device
283 * @max_discard_sectors: maximum number of sectors to discard
285 void blk_queue_max_discard_sectors(struct request_queue
*q
,
286 unsigned int max_discard_sectors
)
288 q
->limits
.max_hw_discard_sectors
= max_discard_sectors
;
289 q
->limits
.max_discard_sectors
= max_discard_sectors
;
291 EXPORT_SYMBOL(blk_queue_max_discard_sectors
);
294 * blk_queue_max_write_same_sectors - set max sectors for a single write same
295 * @q: the request queue for the device
296 * @max_write_same_sectors: maximum number of sectors to write per command
298 void blk_queue_max_write_same_sectors(struct request_queue
*q
,
299 unsigned int max_write_same_sectors
)
301 q
->limits
.max_write_same_sectors
= max_write_same_sectors
;
303 EXPORT_SYMBOL(blk_queue_max_write_same_sectors
);
306 * blk_queue_max_write_zeroes_sectors - set max sectors for a single
308 * @q: the request queue for the device
309 * @max_write_zeroes_sectors: maximum number of sectors to write per command
311 void blk_queue_max_write_zeroes_sectors(struct request_queue
*q
,
312 unsigned int max_write_zeroes_sectors
)
314 q
->limits
.max_write_zeroes_sectors
= max_write_zeroes_sectors
;
316 EXPORT_SYMBOL(blk_queue_max_write_zeroes_sectors
);
319 * blk_queue_max_segments - set max hw segments for a request for this queue
320 * @q: the request queue for the device
321 * @max_segments: max number of segments
324 * Enables a low level driver to set an upper limit on the number of
325 * hw data segments in a request.
327 void blk_queue_max_segments(struct request_queue
*q
, unsigned short max_segments
)
331 printk(KERN_INFO
"%s: set to minimum %d\n",
332 __func__
, max_segments
);
335 q
->limits
.max_segments
= max_segments
;
337 EXPORT_SYMBOL(blk_queue_max_segments
);
340 * blk_queue_max_discard_segments - set max segments for discard requests
341 * @q: the request queue for the device
342 * @max_segments: max number of segments
345 * Enables a low level driver to set an upper limit on the number of
346 * segments in a discard request.
348 void blk_queue_max_discard_segments(struct request_queue
*q
,
349 unsigned short max_segments
)
351 q
->limits
.max_discard_segments
= max_segments
;
353 EXPORT_SYMBOL_GPL(blk_queue_max_discard_segments
);
356 * blk_queue_max_segment_size - set max segment size for blk_rq_map_sg
357 * @q: the request queue for the device
358 * @max_size: max size of segment in bytes
361 * Enables a low level driver to set an upper limit on the size of a
364 void blk_queue_max_segment_size(struct request_queue
*q
, unsigned int max_size
)
366 if (max_size
< PAGE_SIZE
) {
367 max_size
= PAGE_SIZE
;
368 printk(KERN_INFO
"%s: set to minimum %d\n",
372 q
->limits
.max_segment_size
= max_size
;
374 EXPORT_SYMBOL(blk_queue_max_segment_size
);
377 * blk_queue_logical_block_size - set logical block size for the queue
378 * @q: the request queue for the device
379 * @size: the logical block size, in bytes
382 * This should be set to the lowest possible block size that the
383 * storage device can address. The default of 512 covers most
386 void blk_queue_logical_block_size(struct request_queue
*q
, unsigned short size
)
388 q
->limits
.logical_block_size
= size
;
390 if (q
->limits
.physical_block_size
< size
)
391 q
->limits
.physical_block_size
= size
;
393 if (q
->limits
.io_min
< q
->limits
.physical_block_size
)
394 q
->limits
.io_min
= q
->limits
.physical_block_size
;
396 EXPORT_SYMBOL(blk_queue_logical_block_size
);
399 * blk_queue_physical_block_size - set physical block size for the queue
400 * @q: the request queue for the device
401 * @size: the physical block size, in bytes
404 * This should be set to the lowest possible sector size that the
405 * hardware can operate on without reverting to read-modify-write
408 void blk_queue_physical_block_size(struct request_queue
*q
, unsigned int size
)
410 q
->limits
.physical_block_size
= size
;
412 if (q
->limits
.physical_block_size
< q
->limits
.logical_block_size
)
413 q
->limits
.physical_block_size
= q
->limits
.logical_block_size
;
415 if (q
->limits
.io_min
< q
->limits
.physical_block_size
)
416 q
->limits
.io_min
= q
->limits
.physical_block_size
;
418 EXPORT_SYMBOL(blk_queue_physical_block_size
);
421 * blk_queue_alignment_offset - set physical block alignment offset
422 * @q: the request queue for the device
423 * @offset: alignment offset in bytes
426 * Some devices are naturally misaligned to compensate for things like
427 * the legacy DOS partition table 63-sector offset. Low-level drivers
428 * should call this function for devices whose first sector is not
431 void blk_queue_alignment_offset(struct request_queue
*q
, unsigned int offset
)
433 q
->limits
.alignment_offset
=
434 offset
& (q
->limits
.physical_block_size
- 1);
435 q
->limits
.misaligned
= 0;
437 EXPORT_SYMBOL(blk_queue_alignment_offset
);
440 * blk_limits_io_min - set minimum request size for a device
441 * @limits: the queue limits
442 * @min: smallest I/O size in bytes
445 * Some devices have an internal block size bigger than the reported
446 * hardware sector size. This function can be used to signal the
447 * smallest I/O the device can perform without incurring a performance
450 void blk_limits_io_min(struct queue_limits
*limits
, unsigned int min
)
452 limits
->io_min
= min
;
454 if (limits
->io_min
< limits
->logical_block_size
)
455 limits
->io_min
= limits
->logical_block_size
;
457 if (limits
->io_min
< limits
->physical_block_size
)
458 limits
->io_min
= limits
->physical_block_size
;
460 EXPORT_SYMBOL(blk_limits_io_min
);
463 * blk_queue_io_min - set minimum request size for the queue
464 * @q: the request queue for the device
465 * @min: smallest I/O size in bytes
468 * Storage devices may report a granularity or preferred minimum I/O
469 * size which is the smallest request the device can perform without
470 * incurring a performance penalty. For disk drives this is often the
471 * physical block size. For RAID arrays it is often the stripe chunk
472 * size. A properly aligned multiple of minimum_io_size is the
473 * preferred request size for workloads where a high number of I/O
474 * operations is desired.
476 void blk_queue_io_min(struct request_queue
*q
, unsigned int min
)
478 blk_limits_io_min(&q
->limits
, min
);
480 EXPORT_SYMBOL(blk_queue_io_min
);
483 * blk_limits_io_opt - set optimal request size for a device
484 * @limits: the queue limits
485 * @opt: smallest I/O size in bytes
488 * Storage devices may report an optimal I/O size, which is the
489 * device's preferred unit for sustained I/O. This is rarely reported
490 * for disk drives. For RAID arrays it is usually the stripe width or
491 * the internal track size. A properly aligned multiple of
492 * optimal_io_size is the preferred request size for workloads where
493 * sustained throughput is desired.
495 void blk_limits_io_opt(struct queue_limits
*limits
, unsigned int opt
)
497 limits
->io_opt
= opt
;
499 EXPORT_SYMBOL(blk_limits_io_opt
);
502 * blk_queue_io_opt - set optimal request size for the queue
503 * @q: the request queue for the device
504 * @opt: optimal request size in bytes
507 * Storage devices may report an optimal I/O size, which is the
508 * device's preferred unit for sustained I/O. This is rarely reported
509 * for disk drives. For RAID arrays it is usually the stripe width or
510 * the internal track size. A properly aligned multiple of
511 * optimal_io_size is the preferred request size for workloads where
512 * sustained throughput is desired.
514 void blk_queue_io_opt(struct request_queue
*q
, unsigned int opt
)
516 blk_limits_io_opt(&q
->limits
, opt
);
518 EXPORT_SYMBOL(blk_queue_io_opt
);
521 * blk_queue_stack_limits - inherit underlying queue limits for stacked drivers
522 * @t: the stacking driver (top)
523 * @b: the underlying device (bottom)
525 void blk_queue_stack_limits(struct request_queue
*t
, struct request_queue
*b
)
527 blk_stack_limits(&t
->limits
, &b
->limits
, 0);
529 EXPORT_SYMBOL(blk_queue_stack_limits
);
532 * blk_stack_limits - adjust queue_limits for stacked devices
533 * @t: the stacking driver limits (top device)
534 * @b: the underlying queue limits (bottom, component device)
535 * @start: first data sector within component device
538 * This function is used by stacking drivers like MD and DM to ensure
539 * that all component devices have compatible block sizes and
540 * alignments. The stacking driver must provide a queue_limits
541 * struct (top) and then iteratively call the stacking function for
542 * all component (bottom) devices. The stacking function will
543 * attempt to combine the values and ensure proper alignment.
545 * Returns 0 if the top and bottom queue_limits are compatible. The
546 * top device's block sizes and alignment offsets may be adjusted to
547 * ensure alignment with the bottom device. If no compatible sizes
548 * and alignments exist, -1 is returned and the resulting top
549 * queue_limits will have the misaligned flag set to indicate that
550 * the alignment_offset is undefined.
552 int blk_stack_limits(struct queue_limits
*t
, struct queue_limits
*b
,
555 unsigned int top
, bottom
, alignment
, ret
= 0;
557 t
->max_sectors
= min_not_zero(t
->max_sectors
, b
->max_sectors
);
558 t
->max_hw_sectors
= min_not_zero(t
->max_hw_sectors
, b
->max_hw_sectors
);
559 t
->max_dev_sectors
= min_not_zero(t
->max_dev_sectors
, b
->max_dev_sectors
);
560 t
->max_write_same_sectors
= min(t
->max_write_same_sectors
,
561 b
->max_write_same_sectors
);
562 t
->max_write_zeroes_sectors
= min(t
->max_write_zeroes_sectors
,
563 b
->max_write_zeroes_sectors
);
564 t
->bounce_pfn
= min_not_zero(t
->bounce_pfn
, b
->bounce_pfn
);
566 t
->seg_boundary_mask
= min_not_zero(t
->seg_boundary_mask
,
567 b
->seg_boundary_mask
);
568 t
->virt_boundary_mask
= min_not_zero(t
->virt_boundary_mask
,
569 b
->virt_boundary_mask
);
571 t
->max_segments
= min_not_zero(t
->max_segments
, b
->max_segments
);
572 t
->max_discard_segments
= min_not_zero(t
->max_discard_segments
,
573 b
->max_discard_segments
);
574 t
->max_integrity_segments
= min_not_zero(t
->max_integrity_segments
,
575 b
->max_integrity_segments
);
577 t
->max_segment_size
= min_not_zero(t
->max_segment_size
,
578 b
->max_segment_size
);
580 t
->misaligned
|= b
->misaligned
;
582 alignment
= queue_limit_alignment_offset(b
, start
);
584 /* Bottom device has different alignment. Check that it is
585 * compatible with the current top alignment.
587 if (t
->alignment_offset
!= alignment
) {
589 top
= max(t
->physical_block_size
, t
->io_min
)
590 + t
->alignment_offset
;
591 bottom
= max(b
->physical_block_size
, b
->io_min
) + alignment
;
593 /* Verify that top and bottom intervals line up */
594 if (max(top
, bottom
) % min(top
, bottom
)) {
600 t
->logical_block_size
= max(t
->logical_block_size
,
601 b
->logical_block_size
);
603 t
->physical_block_size
= max(t
->physical_block_size
,
604 b
->physical_block_size
);
606 t
->io_min
= max(t
->io_min
, b
->io_min
);
607 t
->io_opt
= lcm_not_zero(t
->io_opt
, b
->io_opt
);
609 t
->cluster
&= b
->cluster
;
611 /* Physical block size a multiple of the logical block size? */
612 if (t
->physical_block_size
& (t
->logical_block_size
- 1)) {
613 t
->physical_block_size
= t
->logical_block_size
;
618 /* Minimum I/O a multiple of the physical block size? */
619 if (t
->io_min
& (t
->physical_block_size
- 1)) {
620 t
->io_min
= t
->physical_block_size
;
625 /* Optimal I/O a multiple of the physical block size? */
626 if (t
->io_opt
& (t
->physical_block_size
- 1)) {
632 t
->raid_partial_stripes_expensive
=
633 max(t
->raid_partial_stripes_expensive
,
634 b
->raid_partial_stripes_expensive
);
636 /* Find lowest common alignment_offset */
637 t
->alignment_offset
= lcm_not_zero(t
->alignment_offset
, alignment
)
638 % max(t
->physical_block_size
, t
->io_min
);
640 /* Verify that new alignment_offset is on a logical block boundary */
641 if (t
->alignment_offset
& (t
->logical_block_size
- 1)) {
646 /* Discard alignment and granularity */
647 if (b
->discard_granularity
) {
648 alignment
= queue_limit_discard_alignment(b
, start
);
650 if (t
->discard_granularity
!= 0 &&
651 t
->discard_alignment
!= alignment
) {
652 top
= t
->discard_granularity
+ t
->discard_alignment
;
653 bottom
= b
->discard_granularity
+ alignment
;
655 /* Verify that top and bottom intervals line up */
656 if ((max(top
, bottom
) % min(top
, bottom
)) != 0)
657 t
->discard_misaligned
= 1;
660 t
->max_discard_sectors
= min_not_zero(t
->max_discard_sectors
,
661 b
->max_discard_sectors
);
662 t
->max_hw_discard_sectors
= min_not_zero(t
->max_hw_discard_sectors
,
663 b
->max_hw_discard_sectors
);
664 t
->discard_granularity
= max(t
->discard_granularity
,
665 b
->discard_granularity
);
666 t
->discard_alignment
= lcm_not_zero(t
->discard_alignment
, alignment
) %
667 t
->discard_granularity
;
670 if (b
->chunk_sectors
)
671 t
->chunk_sectors
= min_not_zero(t
->chunk_sectors
,
676 EXPORT_SYMBOL(blk_stack_limits
);
679 * bdev_stack_limits - adjust queue limits for stacked drivers
680 * @t: the stacking driver limits (top device)
681 * @bdev: the component block_device (bottom)
682 * @start: first data sector within component device
685 * Merges queue limits for a top device and a block_device. Returns
686 * 0 if alignment didn't change. Returns -1 if adding the bottom
687 * device caused misalignment.
689 int bdev_stack_limits(struct queue_limits
*t
, struct block_device
*bdev
,
692 struct request_queue
*bq
= bdev_get_queue(bdev
);
694 start
+= get_start_sect(bdev
);
696 return blk_stack_limits(t
, &bq
->limits
, start
);
698 EXPORT_SYMBOL(bdev_stack_limits
);
701 * disk_stack_limits - adjust queue limits for stacked drivers
702 * @disk: MD/DM gendisk (top)
703 * @bdev: the underlying block device (bottom)
704 * @offset: offset to beginning of data within component device
707 * Merges the limits for a top level gendisk and a bottom level
710 void disk_stack_limits(struct gendisk
*disk
, struct block_device
*bdev
,
713 struct request_queue
*t
= disk
->queue
;
715 if (bdev_stack_limits(&t
->limits
, bdev
, offset
>> 9) < 0) {
716 char top
[BDEVNAME_SIZE
], bottom
[BDEVNAME_SIZE
];
718 disk_name(disk
, 0, top
);
719 bdevname(bdev
, bottom
);
721 printk(KERN_NOTICE
"%s: Warning: Device %s is misaligned\n",
725 EXPORT_SYMBOL(disk_stack_limits
);
728 * blk_queue_dma_pad - set pad mask
729 * @q: the request queue for the device
734 * Appending pad buffer to a request modifies the last entry of a
735 * scatter list such that it includes the pad buffer.
737 void blk_queue_dma_pad(struct request_queue
*q
, unsigned int mask
)
739 q
->dma_pad_mask
= mask
;
741 EXPORT_SYMBOL(blk_queue_dma_pad
);
744 * blk_queue_update_dma_pad - update pad mask
745 * @q: the request queue for the device
748 * Update dma pad mask.
750 * Appending pad buffer to a request modifies the last entry of a
751 * scatter list such that it includes the pad buffer.
753 void blk_queue_update_dma_pad(struct request_queue
*q
, unsigned int mask
)
755 if (mask
> q
->dma_pad_mask
)
756 q
->dma_pad_mask
= mask
;
758 EXPORT_SYMBOL(blk_queue_update_dma_pad
);
761 * blk_queue_dma_drain - Set up a drain buffer for excess dma.
762 * @q: the request queue for the device
763 * @dma_drain_needed: fn which returns non-zero if drain is necessary
764 * @buf: physically contiguous buffer
765 * @size: size of the buffer in bytes
767 * Some devices have excess DMA problems and can't simply discard (or
768 * zero fill) the unwanted piece of the transfer. They have to have a
769 * real area of memory to transfer it into. The use case for this is
770 * ATAPI devices in DMA mode. If the packet command causes a transfer
771 * bigger than the transfer size some HBAs will lock up if there
772 * aren't DMA elements to contain the excess transfer. What this API
773 * does is adjust the queue so that the buf is always appended
774 * silently to the scatterlist.
776 * Note: This routine adjusts max_hw_segments to make room for appending
777 * the drain buffer. If you call blk_queue_max_segments() after calling
778 * this routine, you must set the limit to one fewer than your device
779 * can support otherwise there won't be room for the drain buffer.
781 int blk_queue_dma_drain(struct request_queue
*q
,
782 dma_drain_needed_fn
*dma_drain_needed
,
783 void *buf
, unsigned int size
)
785 if (queue_max_segments(q
) < 2)
787 /* make room for appending the drain */
788 blk_queue_max_segments(q
, queue_max_segments(q
) - 1);
789 q
->dma_drain_needed
= dma_drain_needed
;
790 q
->dma_drain_buffer
= buf
;
791 q
->dma_drain_size
= size
;
795 EXPORT_SYMBOL_GPL(blk_queue_dma_drain
);
798 * blk_queue_segment_boundary - set boundary rules for segment merging
799 * @q: the request queue for the device
800 * @mask: the memory boundary mask
802 void blk_queue_segment_boundary(struct request_queue
*q
, unsigned long mask
)
804 if (mask
< PAGE_SIZE
- 1) {
805 mask
= PAGE_SIZE
- 1;
806 printk(KERN_INFO
"%s: set to minimum %lx\n",
810 q
->limits
.seg_boundary_mask
= mask
;
812 EXPORT_SYMBOL(blk_queue_segment_boundary
);
815 * blk_queue_virt_boundary - set boundary rules for bio merging
816 * @q: the request queue for the device
817 * @mask: the memory boundary mask
819 void blk_queue_virt_boundary(struct request_queue
*q
, unsigned long mask
)
821 q
->limits
.virt_boundary_mask
= mask
;
823 EXPORT_SYMBOL(blk_queue_virt_boundary
);
826 * blk_queue_dma_alignment - set dma length and memory alignment
827 * @q: the request queue for the device
828 * @mask: alignment mask
831 * set required memory and length alignment for direct dma transactions.
832 * this is used when building direct io requests for the queue.
835 void blk_queue_dma_alignment(struct request_queue
*q
, int mask
)
837 q
->dma_alignment
= mask
;
839 EXPORT_SYMBOL(blk_queue_dma_alignment
);
842 * blk_queue_update_dma_alignment - update dma length and memory alignment
843 * @q: the request queue for the device
844 * @mask: alignment mask
847 * update required memory and length alignment for direct dma transactions.
848 * If the requested alignment is larger than the current alignment, then
849 * the current queue alignment is updated to the new value, otherwise it
850 * is left alone. The design of this is to allow multiple objects
851 * (driver, device, transport etc) to set their respective
852 * alignments without having them interfere.
855 void blk_queue_update_dma_alignment(struct request_queue
*q
, int mask
)
857 BUG_ON(mask
> PAGE_SIZE
);
859 if (mask
> q
->dma_alignment
)
860 q
->dma_alignment
= mask
;
862 EXPORT_SYMBOL(blk_queue_update_dma_alignment
);
864 void blk_queue_flush_queueable(struct request_queue
*q
, bool queueable
)
866 spin_lock_irq(q
->queue_lock
);
868 clear_bit(QUEUE_FLAG_FLUSH_NQ
, &q
->queue_flags
);
870 set_bit(QUEUE_FLAG_FLUSH_NQ
, &q
->queue_flags
);
871 spin_unlock_irq(q
->queue_lock
);
873 EXPORT_SYMBOL_GPL(blk_queue_flush_queueable
);
876 * blk_set_queue_depth - tell the block layer about the device queue depth
877 * @q: the request queue for the device
878 * @depth: queue depth
881 void blk_set_queue_depth(struct request_queue
*q
, unsigned int depth
)
883 q
->queue_depth
= depth
;
884 wbt_set_queue_depth(q
->rq_wb
, depth
);
886 EXPORT_SYMBOL(blk_set_queue_depth
);
889 * blk_queue_write_cache - configure queue's write cache
890 * @q: the request queue for the device
891 * @wc: write back cache on or off
892 * @fua: device supports FUA writes, if true
894 * Tell the block layer about the write cache of @q.
896 void blk_queue_write_cache(struct request_queue
*q
, bool wc
, bool fua
)
898 spin_lock_irq(q
->queue_lock
);
900 queue_flag_set(QUEUE_FLAG_WC
, q
);
902 queue_flag_clear(QUEUE_FLAG_WC
, q
);
904 queue_flag_set(QUEUE_FLAG_FUA
, q
);
906 queue_flag_clear(QUEUE_FLAG_FUA
, q
);
907 spin_unlock_irq(q
->queue_lock
);
909 wbt_set_write_cache(q
->rq_wb
, test_bit(QUEUE_FLAG_WC
, &q
->queue_flags
));
911 EXPORT_SYMBOL_GPL(blk_queue_write_cache
);
913 static int __init
blk_settings_init(void)
915 blk_max_low_pfn
= max_low_pfn
- 1;
916 blk_max_pfn
= max_pfn
- 1;
919 subsys_initcall(blk_settings_init
);