xenbus_client.c: correct exit path for xenbus_map_ring_valloc_hvm
[linux/fpc-iii.git] / drivers / video / cyber2000fb.c
blob57886787ead020687d1f05d40230d62c1db096fa
1 /*
2 * linux/drivers/video/cyber2000fb.c
4 * Copyright (C) 1998-2002 Russell King
6 * MIPS and 50xx clock support
7 * Copyright (C) 2001 Bradley D. LaRonde <brad@ltc.com>
9 * 32 bit support, text color and panning fixes for modes != 8 bit
10 * Copyright (C) 2002 Denis Oliver Kropp <dok@directfb.org>
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License version 2 as
14 * published by the Free Software Foundation.
16 * Integraphics CyberPro 2000, 2010 and 5000 frame buffer device
18 * Based on cyberfb.c.
20 * Note that we now use the new fbcon fix, var and cmap scheme. We do
21 * still have to check which console is the currently displayed one
22 * however, especially for the colourmap stuff.
24 * We also use the new hotplug PCI subsystem. I'm not sure if there
25 * are any such cards, but I'm erring on the side of caution. We don't
26 * want to go pop just because someone does have one.
28 * Note that this doesn't work fully in the case of multiple CyberPro
29 * cards with grabbers. We currently can only attach to the first
30 * CyberPro card found.
32 * When we're in truecolour mode, we power down the LUT RAM as a power
33 * saving feature. Also, when we enter any of the powersaving modes
34 * (except soft blanking) we power down the RAMDACs. This saves about
35 * 1W, which is roughly 8% of the power consumption of a NetWinder
36 * (which, incidentally, is about the same saving as a 2.5in hard disk
37 * entering standby mode.)
39 #include <linux/module.h>
40 #include <linux/kernel.h>
41 #include <linux/errno.h>
42 #include <linux/string.h>
43 #include <linux/mm.h>
44 #include <linux/slab.h>
45 #include <linux/delay.h>
46 #include <linux/fb.h>
47 #include <linux/pci.h>
48 #include <linux/init.h>
49 #include <linux/io.h>
50 #include <linux/i2c.h>
51 #include <linux/i2c-algo-bit.h>
53 #include <asm/pgtable.h>
55 #ifdef __arm__
56 #include <asm/mach-types.h>
57 #endif
59 #include "cyber2000fb.h"
61 struct cfb_info {
62 struct fb_info fb;
63 struct display_switch *dispsw;
64 struct display *display;
65 unsigned char __iomem *region;
66 unsigned char __iomem *regs;
67 u_int id;
68 u_int irq;
69 int func_use_count;
70 u_long ref_ps;
73 * Clock divisors
75 u_int divisors[4];
77 struct {
78 u8 red, green, blue;
79 } palette[NR_PALETTE];
81 u_char mem_ctl1;
82 u_char mem_ctl2;
83 u_char mclk_mult;
84 u_char mclk_div;
86 * RAMDAC control register is both of these or'ed together
88 u_char ramdac_ctrl;
89 u_char ramdac_powerdown;
91 u32 pseudo_palette[16];
93 spinlock_t reg_b0_lock;
95 #ifdef CONFIG_FB_CYBER2000_DDC
96 bool ddc_registered;
97 struct i2c_adapter ddc_adapter;
98 struct i2c_algo_bit_data ddc_algo;
99 #endif
101 #ifdef CONFIG_FB_CYBER2000_I2C
102 struct i2c_adapter i2c_adapter;
103 struct i2c_algo_bit_data i2c_algo;
104 #endif
107 static char *default_font = "Acorn8x8";
108 module_param(default_font, charp, 0);
109 MODULE_PARM_DESC(default_font, "Default font name");
112 * Our access methods.
114 #define cyber2000fb_writel(val, reg, cfb) writel(val, (cfb)->regs + (reg))
115 #define cyber2000fb_writew(val, reg, cfb) writew(val, (cfb)->regs + (reg))
116 #define cyber2000fb_writeb(val, reg, cfb) writeb(val, (cfb)->regs + (reg))
118 #define cyber2000fb_readb(reg, cfb) readb((cfb)->regs + (reg))
120 static inline void
121 cyber2000_crtcw(unsigned int reg, unsigned int val, struct cfb_info *cfb)
123 cyber2000fb_writew((reg & 255) | val << 8, 0x3d4, cfb);
126 static inline void
127 cyber2000_grphw(unsigned int reg, unsigned int val, struct cfb_info *cfb)
129 cyber2000fb_writew((reg & 255) | val << 8, 0x3ce, cfb);
132 static inline unsigned int
133 cyber2000_grphr(unsigned int reg, struct cfb_info *cfb)
135 cyber2000fb_writeb(reg, 0x3ce, cfb);
136 return cyber2000fb_readb(0x3cf, cfb);
139 static inline void
140 cyber2000_attrw(unsigned int reg, unsigned int val, struct cfb_info *cfb)
142 cyber2000fb_readb(0x3da, cfb);
143 cyber2000fb_writeb(reg, 0x3c0, cfb);
144 cyber2000fb_readb(0x3c1, cfb);
145 cyber2000fb_writeb(val, 0x3c0, cfb);
148 static inline void
149 cyber2000_seqw(unsigned int reg, unsigned int val, struct cfb_info *cfb)
151 cyber2000fb_writew((reg & 255) | val << 8, 0x3c4, cfb);
154 /* -------------------- Hardware specific routines ------------------------- */
157 * Hardware Cyber2000 Acceleration
159 static void
160 cyber2000fb_fillrect(struct fb_info *info, const struct fb_fillrect *rect)
162 struct cfb_info *cfb = (struct cfb_info *)info;
163 unsigned long dst, col;
165 if (!(cfb->fb.var.accel_flags & FB_ACCELF_TEXT)) {
166 cfb_fillrect(info, rect);
167 return;
170 cyber2000fb_writeb(0, CO_REG_CONTROL, cfb);
171 cyber2000fb_writew(rect->width - 1, CO_REG_PIXWIDTH, cfb);
172 cyber2000fb_writew(rect->height - 1, CO_REG_PIXHEIGHT, cfb);
174 col = rect->color;
175 if (cfb->fb.var.bits_per_pixel > 8)
176 col = ((u32 *)cfb->fb.pseudo_palette)[col];
177 cyber2000fb_writel(col, CO_REG_FGCOLOUR, cfb);
179 dst = rect->dx + rect->dy * cfb->fb.var.xres_virtual;
180 if (cfb->fb.var.bits_per_pixel == 24) {
181 cyber2000fb_writeb(dst, CO_REG_X_PHASE, cfb);
182 dst *= 3;
185 cyber2000fb_writel(dst, CO_REG_DEST_PTR, cfb);
186 cyber2000fb_writeb(CO_FG_MIX_SRC, CO_REG_FGMIX, cfb);
187 cyber2000fb_writew(CO_CMD_L_PATTERN_FGCOL, CO_REG_CMD_L, cfb);
188 cyber2000fb_writew(CO_CMD_H_BLITTER, CO_REG_CMD_H, cfb);
191 static void
192 cyber2000fb_copyarea(struct fb_info *info, const struct fb_copyarea *region)
194 struct cfb_info *cfb = (struct cfb_info *)info;
195 unsigned int cmd = CO_CMD_L_PATTERN_FGCOL;
196 unsigned long src, dst;
198 if (!(cfb->fb.var.accel_flags & FB_ACCELF_TEXT)) {
199 cfb_copyarea(info, region);
200 return;
203 cyber2000fb_writeb(0, CO_REG_CONTROL, cfb);
204 cyber2000fb_writew(region->width - 1, CO_REG_PIXWIDTH, cfb);
205 cyber2000fb_writew(region->height - 1, CO_REG_PIXHEIGHT, cfb);
207 src = region->sx + region->sy * cfb->fb.var.xres_virtual;
208 dst = region->dx + region->dy * cfb->fb.var.xres_virtual;
210 if (region->sx < region->dx) {
211 src += region->width - 1;
212 dst += region->width - 1;
213 cmd |= CO_CMD_L_INC_LEFT;
216 if (region->sy < region->dy) {
217 src += (region->height - 1) * cfb->fb.var.xres_virtual;
218 dst += (region->height - 1) * cfb->fb.var.xres_virtual;
219 cmd |= CO_CMD_L_INC_UP;
222 if (cfb->fb.var.bits_per_pixel == 24) {
223 cyber2000fb_writeb(dst, CO_REG_X_PHASE, cfb);
224 src *= 3;
225 dst *= 3;
227 cyber2000fb_writel(src, CO_REG_SRC1_PTR, cfb);
228 cyber2000fb_writel(dst, CO_REG_DEST_PTR, cfb);
229 cyber2000fb_writew(CO_FG_MIX_SRC, CO_REG_FGMIX, cfb);
230 cyber2000fb_writew(cmd, CO_REG_CMD_L, cfb);
231 cyber2000fb_writew(CO_CMD_H_FGSRCMAP | CO_CMD_H_BLITTER,
232 CO_REG_CMD_H, cfb);
235 static void
236 cyber2000fb_imageblit(struct fb_info *info, const struct fb_image *image)
238 cfb_imageblit(info, image);
239 return;
242 static int cyber2000fb_sync(struct fb_info *info)
244 struct cfb_info *cfb = (struct cfb_info *)info;
245 int count = 100000;
247 if (!(cfb->fb.var.accel_flags & FB_ACCELF_TEXT))
248 return 0;
250 while (cyber2000fb_readb(CO_REG_CONTROL, cfb) & CO_CTRL_BUSY) {
251 if (!count--) {
252 debug_printf("accel_wait timed out\n");
253 cyber2000fb_writeb(0, CO_REG_CONTROL, cfb);
254 break;
256 udelay(1);
258 return 0;
262 * ===========================================================================
265 static inline u32 convert_bitfield(u_int val, struct fb_bitfield *bf)
267 u_int mask = (1 << bf->length) - 1;
269 return (val >> (16 - bf->length) & mask) << bf->offset;
273 * Set a single color register. Return != 0 for invalid regno.
275 static int
276 cyber2000fb_setcolreg(u_int regno, u_int red, u_int green, u_int blue,
277 u_int transp, struct fb_info *info)
279 struct cfb_info *cfb = (struct cfb_info *)info;
280 struct fb_var_screeninfo *var = &cfb->fb.var;
281 u32 pseudo_val;
282 int ret = 1;
284 switch (cfb->fb.fix.visual) {
285 default:
286 return 1;
289 * Pseudocolour:
290 * 8 8
291 * pixel --/--+--/--> red lut --> red dac
292 * | 8
293 * +--/--> green lut --> green dac
294 * | 8
295 * +--/--> blue lut --> blue dac
297 case FB_VISUAL_PSEUDOCOLOR:
298 if (regno >= NR_PALETTE)
299 return 1;
301 red >>= 8;
302 green >>= 8;
303 blue >>= 8;
305 cfb->palette[regno].red = red;
306 cfb->palette[regno].green = green;
307 cfb->palette[regno].blue = blue;
309 cyber2000fb_writeb(regno, 0x3c8, cfb);
310 cyber2000fb_writeb(red, 0x3c9, cfb);
311 cyber2000fb_writeb(green, 0x3c9, cfb);
312 cyber2000fb_writeb(blue, 0x3c9, cfb);
313 return 0;
316 * Direct colour:
317 * n rl
318 * pixel --/--+--/--> red lut --> red dac
319 * | gl
320 * +--/--> green lut --> green dac
321 * | bl
322 * +--/--> blue lut --> blue dac
323 * n = bpp, rl = red length, gl = green length, bl = blue length
325 case FB_VISUAL_DIRECTCOLOR:
326 red >>= 8;
327 green >>= 8;
328 blue >>= 8;
330 if (var->green.length == 6 && regno < 64) {
331 cfb->palette[regno << 2].green = green;
334 * The 6 bits of the green component are applied
335 * to the high 6 bits of the LUT.
337 cyber2000fb_writeb(regno << 2, 0x3c8, cfb);
338 cyber2000fb_writeb(cfb->palette[regno >> 1].red,
339 0x3c9, cfb);
340 cyber2000fb_writeb(green, 0x3c9, cfb);
341 cyber2000fb_writeb(cfb->palette[regno >> 1].blue,
342 0x3c9, cfb);
344 green = cfb->palette[regno << 3].green;
346 ret = 0;
349 if (var->green.length >= 5 && regno < 32) {
350 cfb->palette[regno << 3].red = red;
351 cfb->palette[regno << 3].green = green;
352 cfb->palette[regno << 3].blue = blue;
355 * The 5 bits of each colour component are
356 * applied to the high 5 bits of the LUT.
358 cyber2000fb_writeb(regno << 3, 0x3c8, cfb);
359 cyber2000fb_writeb(red, 0x3c9, cfb);
360 cyber2000fb_writeb(green, 0x3c9, cfb);
361 cyber2000fb_writeb(blue, 0x3c9, cfb);
362 ret = 0;
365 if (var->green.length == 4 && regno < 16) {
366 cfb->palette[regno << 4].red = red;
367 cfb->palette[regno << 4].green = green;
368 cfb->palette[regno << 4].blue = blue;
371 * The 5 bits of each colour component are
372 * applied to the high 5 bits of the LUT.
374 cyber2000fb_writeb(regno << 4, 0x3c8, cfb);
375 cyber2000fb_writeb(red, 0x3c9, cfb);
376 cyber2000fb_writeb(green, 0x3c9, cfb);
377 cyber2000fb_writeb(blue, 0x3c9, cfb);
378 ret = 0;
382 * Since this is only used for the first 16 colours, we
383 * don't have to care about overflowing for regno >= 32
385 pseudo_val = regno << var->red.offset |
386 regno << var->green.offset |
387 regno << var->blue.offset;
388 break;
391 * True colour:
392 * n rl
393 * pixel --/--+--/--> red dac
394 * | gl
395 * +--/--> green dac
396 * | bl
397 * +--/--> blue dac
398 * n = bpp, rl = red length, gl = green length, bl = blue length
400 case FB_VISUAL_TRUECOLOR:
401 pseudo_val = convert_bitfield(transp ^ 0xffff, &var->transp);
402 pseudo_val |= convert_bitfield(red, &var->red);
403 pseudo_val |= convert_bitfield(green, &var->green);
404 pseudo_val |= convert_bitfield(blue, &var->blue);
405 ret = 0;
406 break;
410 * Now set our pseudo palette for the CFB16/24/32 drivers.
412 if (regno < 16)
413 ((u32 *)cfb->fb.pseudo_palette)[regno] = pseudo_val;
415 return ret;
418 struct par_info {
420 * Hardware
422 u_char clock_mult;
423 u_char clock_div;
424 u_char extseqmisc;
425 u_char co_pixfmt;
426 u_char crtc_ofl;
427 u_char crtc[19];
428 u_int width;
429 u_int pitch;
430 u_int fetch;
433 * Other
435 u_char ramdac;
438 static const u_char crtc_idx[] = {
439 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
440 0x08, 0x09,
441 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, 0x18
444 static void cyber2000fb_write_ramdac_ctrl(struct cfb_info *cfb)
446 unsigned int i;
447 unsigned int val = cfb->ramdac_ctrl | cfb->ramdac_powerdown;
449 cyber2000fb_writeb(0x56, 0x3ce, cfb);
450 i = cyber2000fb_readb(0x3cf, cfb);
451 cyber2000fb_writeb(i | 4, 0x3cf, cfb);
452 cyber2000fb_writeb(val, 0x3c6, cfb);
453 cyber2000fb_writeb(i, 0x3cf, cfb);
454 /* prevent card lock-up observed on x86 with CyberPro 2000 */
455 cyber2000fb_readb(0x3cf, cfb);
458 static void cyber2000fb_set_timing(struct cfb_info *cfb, struct par_info *hw)
460 u_int i;
463 * Blank palette
465 for (i = 0; i < NR_PALETTE; i++) {
466 cyber2000fb_writeb(i, 0x3c8, cfb);
467 cyber2000fb_writeb(0, 0x3c9, cfb);
468 cyber2000fb_writeb(0, 0x3c9, cfb);
469 cyber2000fb_writeb(0, 0x3c9, cfb);
472 cyber2000fb_writeb(0xef, 0x3c2, cfb);
473 cyber2000_crtcw(0x11, 0x0b, cfb);
474 cyber2000_attrw(0x11, 0x00, cfb);
476 cyber2000_seqw(0x00, 0x01, cfb);
477 cyber2000_seqw(0x01, 0x01, cfb);
478 cyber2000_seqw(0x02, 0x0f, cfb);
479 cyber2000_seqw(0x03, 0x00, cfb);
480 cyber2000_seqw(0x04, 0x0e, cfb);
481 cyber2000_seqw(0x00, 0x03, cfb);
483 for (i = 0; i < sizeof(crtc_idx); i++)
484 cyber2000_crtcw(crtc_idx[i], hw->crtc[i], cfb);
486 for (i = 0x0a; i < 0x10; i++)
487 cyber2000_crtcw(i, 0, cfb);
489 cyber2000_grphw(EXT_CRT_VRTOFL, hw->crtc_ofl, cfb);
490 cyber2000_grphw(0x00, 0x00, cfb);
491 cyber2000_grphw(0x01, 0x00, cfb);
492 cyber2000_grphw(0x02, 0x00, cfb);
493 cyber2000_grphw(0x03, 0x00, cfb);
494 cyber2000_grphw(0x04, 0x00, cfb);
495 cyber2000_grphw(0x05, 0x60, cfb);
496 cyber2000_grphw(0x06, 0x05, cfb);
497 cyber2000_grphw(0x07, 0x0f, cfb);
498 cyber2000_grphw(0x08, 0xff, cfb);
500 /* Attribute controller registers */
501 for (i = 0; i < 16; i++)
502 cyber2000_attrw(i, i, cfb);
504 cyber2000_attrw(0x10, 0x01, cfb);
505 cyber2000_attrw(0x11, 0x00, cfb);
506 cyber2000_attrw(0x12, 0x0f, cfb);
507 cyber2000_attrw(0x13, 0x00, cfb);
508 cyber2000_attrw(0x14, 0x00, cfb);
510 /* PLL registers */
511 spin_lock(&cfb->reg_b0_lock);
512 cyber2000_grphw(EXT_DCLK_MULT, hw->clock_mult, cfb);
513 cyber2000_grphw(EXT_DCLK_DIV, hw->clock_div, cfb);
514 cyber2000_grphw(EXT_MCLK_MULT, cfb->mclk_mult, cfb);
515 cyber2000_grphw(EXT_MCLK_DIV, cfb->mclk_div, cfb);
516 cyber2000_grphw(0x90, 0x01, cfb);
517 cyber2000_grphw(0xb9, 0x80, cfb);
518 cyber2000_grphw(0xb9, 0x00, cfb);
519 spin_unlock(&cfb->reg_b0_lock);
521 cfb->ramdac_ctrl = hw->ramdac;
522 cyber2000fb_write_ramdac_ctrl(cfb);
524 cyber2000fb_writeb(0x20, 0x3c0, cfb);
525 cyber2000fb_writeb(0xff, 0x3c6, cfb);
527 cyber2000_grphw(0x14, hw->fetch, cfb);
528 cyber2000_grphw(0x15, ((hw->fetch >> 8) & 0x03) |
529 ((hw->pitch >> 4) & 0x30), cfb);
530 cyber2000_grphw(EXT_SEQ_MISC, hw->extseqmisc, cfb);
533 * Set up accelerator registers
535 cyber2000fb_writew(hw->width, CO_REG_SRC_WIDTH, cfb);
536 cyber2000fb_writew(hw->width, CO_REG_DEST_WIDTH, cfb);
537 cyber2000fb_writeb(hw->co_pixfmt, CO_REG_PIXFMT, cfb);
540 static inline int
541 cyber2000fb_update_start(struct cfb_info *cfb, struct fb_var_screeninfo *var)
543 u_int base = var->yoffset * var->xres_virtual + var->xoffset;
545 base *= var->bits_per_pixel;
548 * Convert to bytes and shift two extra bits because DAC
549 * can only start on 4 byte aligned data.
551 base >>= 5;
553 if (base >= 1 << 20)
554 return -EINVAL;
556 cyber2000_grphw(0x10, base >> 16 | 0x10, cfb);
557 cyber2000_crtcw(0x0c, base >> 8, cfb);
558 cyber2000_crtcw(0x0d, base, cfb);
560 return 0;
563 static int
564 cyber2000fb_decode_crtc(struct par_info *hw, struct cfb_info *cfb,
565 struct fb_var_screeninfo *var)
567 u_int Htotal, Hblankend, Hsyncend;
568 u_int Vtotal, Vdispend, Vblankstart, Vblankend, Vsyncstart, Vsyncend;
569 #define ENCODE_BIT(v, b1, m, b2) ((((v) >> (b1)) & (m)) << (b2))
571 hw->crtc[13] = hw->pitch;
572 hw->crtc[17] = 0xe3;
573 hw->crtc[14] = 0;
574 hw->crtc[8] = 0;
576 Htotal = var->xres + var->right_margin +
577 var->hsync_len + var->left_margin;
579 if (Htotal > 2080)
580 return -EINVAL;
582 hw->crtc[0] = (Htotal >> 3) - 5;
583 hw->crtc[1] = (var->xres >> 3) - 1;
584 hw->crtc[2] = var->xres >> 3;
585 hw->crtc[4] = (var->xres + var->right_margin) >> 3;
587 Hblankend = (Htotal - 4 * 8) >> 3;
589 hw->crtc[3] = ENCODE_BIT(Hblankend, 0, 0x1f, 0) |
590 ENCODE_BIT(1, 0, 0x01, 7);
592 Hsyncend = (var->xres + var->right_margin + var->hsync_len) >> 3;
594 hw->crtc[5] = ENCODE_BIT(Hsyncend, 0, 0x1f, 0) |
595 ENCODE_BIT(Hblankend, 5, 0x01, 7);
597 Vdispend = var->yres - 1;
598 Vsyncstart = var->yres + var->lower_margin;
599 Vsyncend = var->yres + var->lower_margin + var->vsync_len;
600 Vtotal = var->yres + var->lower_margin + var->vsync_len +
601 var->upper_margin - 2;
603 if (Vtotal > 2047)
604 return -EINVAL;
606 Vblankstart = var->yres + 6;
607 Vblankend = Vtotal - 10;
609 hw->crtc[6] = Vtotal;
610 hw->crtc[7] = ENCODE_BIT(Vtotal, 8, 0x01, 0) |
611 ENCODE_BIT(Vdispend, 8, 0x01, 1) |
612 ENCODE_BIT(Vsyncstart, 8, 0x01, 2) |
613 ENCODE_BIT(Vblankstart, 8, 0x01, 3) |
614 ENCODE_BIT(1, 0, 0x01, 4) |
615 ENCODE_BIT(Vtotal, 9, 0x01, 5) |
616 ENCODE_BIT(Vdispend, 9, 0x01, 6) |
617 ENCODE_BIT(Vsyncstart, 9, 0x01, 7);
618 hw->crtc[9] = ENCODE_BIT(0, 0, 0x1f, 0) |
619 ENCODE_BIT(Vblankstart, 9, 0x01, 5) |
620 ENCODE_BIT(1, 0, 0x01, 6);
621 hw->crtc[10] = Vsyncstart;
622 hw->crtc[11] = ENCODE_BIT(Vsyncend, 0, 0x0f, 0) |
623 ENCODE_BIT(1, 0, 0x01, 7);
624 hw->crtc[12] = Vdispend;
625 hw->crtc[15] = Vblankstart;
626 hw->crtc[16] = Vblankend;
627 hw->crtc[18] = 0xff;
630 * overflow - graphics reg 0x11
631 * 0=VTOTAL:10 1=VDEND:10 2=VRSTART:10 3=VBSTART:10
632 * 4=LINECOMP:10 5-IVIDEO 6=FIXCNT
634 hw->crtc_ofl =
635 ENCODE_BIT(Vtotal, 10, 0x01, 0) |
636 ENCODE_BIT(Vdispend, 10, 0x01, 1) |
637 ENCODE_BIT(Vsyncstart, 10, 0x01, 2) |
638 ENCODE_BIT(Vblankstart, 10, 0x01, 3) |
639 EXT_CRT_VRTOFL_LINECOMP10;
641 /* woody: set the interlaced bit... */
642 /* FIXME: what about doublescan? */
643 if ((var->vmode & FB_VMODE_MASK) == FB_VMODE_INTERLACED)
644 hw->crtc_ofl |= EXT_CRT_VRTOFL_INTERLACE;
646 return 0;
650 * The following was discovered by a good monitor, bit twiddling, theorising
651 * and but mostly luck. Strangely, it looks like everyone elses' PLL!
653 * Clock registers:
654 * fclock = fpll / div2
655 * fpll = fref * mult / div1
656 * where:
657 * fref = 14.318MHz (69842ps)
658 * mult = reg0xb0.7:0
659 * div1 = (reg0xb1.5:0 + 1)
660 * div2 = 2^(reg0xb1.7:6)
661 * fpll should be between 115 and 260 MHz
662 * (8696ps and 3846ps)
664 static int
665 cyber2000fb_decode_clock(struct par_info *hw, struct cfb_info *cfb,
666 struct fb_var_screeninfo *var)
668 u_long pll_ps = var->pixclock;
669 const u_long ref_ps = cfb->ref_ps;
670 u_int div2, t_div1, best_div1, best_mult;
671 int best_diff;
672 int vco;
675 * Step 1:
676 * find div2 such that 115MHz < fpll < 260MHz
677 * and 0 <= div2 < 4
679 for (div2 = 0; div2 < 4; div2++) {
680 u_long new_pll;
682 new_pll = pll_ps / cfb->divisors[div2];
683 if (8696 > new_pll && new_pll > 3846) {
684 pll_ps = new_pll;
685 break;
689 if (div2 == 4)
690 return -EINVAL;
693 * Step 2:
694 * Given pll_ps and ref_ps, find:
695 * pll_ps * 0.995 < pll_ps_calc < pll_ps * 1.005
696 * where { 1 < best_div1 < 32, 1 < best_mult < 256 }
697 * pll_ps_calc = best_div1 / (ref_ps * best_mult)
699 best_diff = 0x7fffffff;
700 best_mult = 2;
701 best_div1 = 32;
702 for (t_div1 = 2; t_div1 < 32; t_div1 += 1) {
703 u_int rr, t_mult, t_pll_ps;
704 int diff;
707 * Find the multiplier for this divisor
709 rr = ref_ps * t_div1;
710 t_mult = (rr + pll_ps / 2) / pll_ps;
713 * Is the multiplier within the correct range?
715 if (t_mult > 256 || t_mult < 2)
716 continue;
719 * Calculate the actual clock period from this multiplier
720 * and divisor, and estimate the error.
722 t_pll_ps = (rr + t_mult / 2) / t_mult;
723 diff = pll_ps - t_pll_ps;
724 if (diff < 0)
725 diff = -diff;
727 if (diff < best_diff) {
728 best_diff = diff;
729 best_mult = t_mult;
730 best_div1 = t_div1;
734 * If we hit an exact value, there is no point in continuing.
736 if (diff == 0)
737 break;
741 * Step 3:
742 * combine values
744 hw->clock_mult = best_mult - 1;
745 hw->clock_div = div2 << 6 | (best_div1 - 1);
747 vco = ref_ps * best_div1 / best_mult;
748 if ((ref_ps == 40690) && (vco < 5556))
749 /* Set VFSEL when VCO > 180MHz (5.556 ps). */
750 hw->clock_div |= EXT_DCLK_DIV_VFSEL;
752 return 0;
756 * Set the User Defined Part of the Display
758 static int
759 cyber2000fb_check_var(struct fb_var_screeninfo *var, struct fb_info *info)
761 struct cfb_info *cfb = (struct cfb_info *)info;
762 struct par_info hw;
763 unsigned int mem;
764 int err;
766 var->transp.msb_right = 0;
767 var->red.msb_right = 0;
768 var->green.msb_right = 0;
769 var->blue.msb_right = 0;
770 var->transp.offset = 0;
771 var->transp.length = 0;
773 switch (var->bits_per_pixel) {
774 case 8: /* PSEUDOCOLOUR, 256 */
775 var->red.offset = 0;
776 var->red.length = 8;
777 var->green.offset = 0;
778 var->green.length = 8;
779 var->blue.offset = 0;
780 var->blue.length = 8;
781 break;
783 case 16:/* DIRECTCOLOUR, 64k or 32k */
784 switch (var->green.length) {
785 case 6: /* RGB565, 64k */
786 var->red.offset = 11;
787 var->red.length = 5;
788 var->green.offset = 5;
789 var->green.length = 6;
790 var->blue.offset = 0;
791 var->blue.length = 5;
792 break;
794 default:
795 case 5: /* RGB555, 32k */
796 var->red.offset = 10;
797 var->red.length = 5;
798 var->green.offset = 5;
799 var->green.length = 5;
800 var->blue.offset = 0;
801 var->blue.length = 5;
802 break;
804 case 4: /* RGB444, 4k + transparency? */
805 var->transp.offset = 12;
806 var->transp.length = 4;
807 var->red.offset = 8;
808 var->red.length = 4;
809 var->green.offset = 4;
810 var->green.length = 4;
811 var->blue.offset = 0;
812 var->blue.length = 4;
813 break;
815 break;
817 case 24:/* TRUECOLOUR, 16m */
818 var->red.offset = 16;
819 var->red.length = 8;
820 var->green.offset = 8;
821 var->green.length = 8;
822 var->blue.offset = 0;
823 var->blue.length = 8;
824 break;
826 case 32:/* TRUECOLOUR, 16m */
827 var->transp.offset = 24;
828 var->transp.length = 8;
829 var->red.offset = 16;
830 var->red.length = 8;
831 var->green.offset = 8;
832 var->green.length = 8;
833 var->blue.offset = 0;
834 var->blue.length = 8;
835 break;
837 default:
838 return -EINVAL;
841 mem = var->xres_virtual * var->yres_virtual * (var->bits_per_pixel / 8);
842 if (mem > cfb->fb.fix.smem_len)
843 var->yres_virtual = cfb->fb.fix.smem_len * 8 /
844 (var->bits_per_pixel * var->xres_virtual);
846 if (var->yres > var->yres_virtual)
847 var->yres = var->yres_virtual;
848 if (var->xres > var->xres_virtual)
849 var->xres = var->xres_virtual;
851 err = cyber2000fb_decode_clock(&hw, cfb, var);
852 if (err)
853 return err;
855 err = cyber2000fb_decode_crtc(&hw, cfb, var);
856 if (err)
857 return err;
859 return 0;
862 static int cyber2000fb_set_par(struct fb_info *info)
864 struct cfb_info *cfb = (struct cfb_info *)info;
865 struct fb_var_screeninfo *var = &cfb->fb.var;
866 struct par_info hw;
867 unsigned int mem;
869 hw.width = var->xres_virtual;
870 hw.ramdac = RAMDAC_VREFEN | RAMDAC_DAC8BIT;
872 switch (var->bits_per_pixel) {
873 case 8:
874 hw.co_pixfmt = CO_PIXFMT_8BPP;
875 hw.pitch = hw.width >> 3;
876 hw.extseqmisc = EXT_SEQ_MISC_8;
877 break;
879 case 16:
880 hw.co_pixfmt = CO_PIXFMT_16BPP;
881 hw.pitch = hw.width >> 2;
883 switch (var->green.length) {
884 case 6: /* RGB565, 64k */
885 hw.extseqmisc = EXT_SEQ_MISC_16_RGB565;
886 break;
887 case 5: /* RGB555, 32k */
888 hw.extseqmisc = EXT_SEQ_MISC_16_RGB555;
889 break;
890 case 4: /* RGB444, 4k + transparency? */
891 hw.extseqmisc = EXT_SEQ_MISC_16_RGB444;
892 break;
893 default:
894 BUG();
896 break;
898 case 24:/* TRUECOLOUR, 16m */
899 hw.co_pixfmt = CO_PIXFMT_24BPP;
900 hw.width *= 3;
901 hw.pitch = hw.width >> 3;
902 hw.ramdac |= (RAMDAC_BYPASS | RAMDAC_RAMPWRDN);
903 hw.extseqmisc = EXT_SEQ_MISC_24_RGB888;
904 break;
906 case 32:/* TRUECOLOUR, 16m */
907 hw.co_pixfmt = CO_PIXFMT_32BPP;
908 hw.pitch = hw.width >> 1;
909 hw.ramdac |= (RAMDAC_BYPASS | RAMDAC_RAMPWRDN);
910 hw.extseqmisc = EXT_SEQ_MISC_32;
911 break;
913 default:
914 BUG();
918 * Sigh, this is absolutely disgusting, but caused by
919 * the way the fbcon developers want to separate out
920 * the "checking" and the "setting" of the video mode.
922 * If the mode is not suitable for the hardware here,
923 * we can't prevent it being set by returning an error.
925 * In theory, since NetWinders contain just one VGA card,
926 * we should never end up hitting this problem.
928 BUG_ON(cyber2000fb_decode_clock(&hw, cfb, var) != 0);
929 BUG_ON(cyber2000fb_decode_crtc(&hw, cfb, var) != 0);
931 hw.width -= 1;
932 hw.fetch = hw.pitch;
933 if (!(cfb->mem_ctl2 & MEM_CTL2_64BIT))
934 hw.fetch <<= 1;
935 hw.fetch += 1;
937 cfb->fb.fix.line_length = var->xres_virtual * var->bits_per_pixel / 8;
940 * Same here - if the size of the video mode exceeds the
941 * available RAM, we can't prevent this mode being set.
943 * In theory, since NetWinders contain just one VGA card,
944 * we should never end up hitting this problem.
946 mem = cfb->fb.fix.line_length * var->yres_virtual;
947 BUG_ON(mem > cfb->fb.fix.smem_len);
950 * 8bpp displays are always pseudo colour. 16bpp and above
951 * are direct colour or true colour, depending on whether
952 * the RAMDAC palettes are bypassed. (Direct colour has
953 * palettes, true colour does not.)
955 if (var->bits_per_pixel == 8)
956 cfb->fb.fix.visual = FB_VISUAL_PSEUDOCOLOR;
957 else if (hw.ramdac & RAMDAC_BYPASS)
958 cfb->fb.fix.visual = FB_VISUAL_TRUECOLOR;
959 else
960 cfb->fb.fix.visual = FB_VISUAL_DIRECTCOLOR;
962 cyber2000fb_set_timing(cfb, &hw);
963 cyber2000fb_update_start(cfb, var);
965 return 0;
969 * Pan or Wrap the Display
971 static int
972 cyber2000fb_pan_display(struct fb_var_screeninfo *var, struct fb_info *info)
974 struct cfb_info *cfb = (struct cfb_info *)info;
976 if (cyber2000fb_update_start(cfb, var))
977 return -EINVAL;
979 cfb->fb.var.xoffset = var->xoffset;
980 cfb->fb.var.yoffset = var->yoffset;
982 if (var->vmode & FB_VMODE_YWRAP) {
983 cfb->fb.var.vmode |= FB_VMODE_YWRAP;
984 } else {
985 cfb->fb.var.vmode &= ~FB_VMODE_YWRAP;
988 return 0;
992 * (Un)Blank the display.
994 * Blank the screen if blank_mode != 0, else unblank. If
995 * blank == NULL then the caller blanks by setting the CLUT
996 * (Color Look Up Table) to all black. Return 0 if blanking
997 * succeeded, != 0 if un-/blanking failed due to e.g. a
998 * video mode which doesn't support it. Implements VESA
999 * suspend and powerdown modes on hardware that supports
1000 * disabling hsync/vsync:
1001 * blank_mode == 2: suspend vsync
1002 * blank_mode == 3: suspend hsync
1003 * blank_mode == 4: powerdown
1005 * wms...Enable VESA DMPS compatible powerdown mode
1006 * run "setterm -powersave powerdown" to take advantage
1008 static int cyber2000fb_blank(int blank, struct fb_info *info)
1010 struct cfb_info *cfb = (struct cfb_info *)info;
1011 unsigned int sync = 0;
1012 int i;
1014 switch (blank) {
1015 case FB_BLANK_POWERDOWN: /* powerdown - both sync lines down */
1016 sync = EXT_SYNC_CTL_VS_0 | EXT_SYNC_CTL_HS_0;
1017 break;
1018 case FB_BLANK_HSYNC_SUSPEND: /* hsync off */
1019 sync = EXT_SYNC_CTL_VS_NORMAL | EXT_SYNC_CTL_HS_0;
1020 break;
1021 case FB_BLANK_VSYNC_SUSPEND: /* vsync off */
1022 sync = EXT_SYNC_CTL_VS_0 | EXT_SYNC_CTL_HS_NORMAL;
1023 break;
1024 case FB_BLANK_NORMAL: /* soft blank */
1025 default: /* unblank */
1026 break;
1029 cyber2000_grphw(EXT_SYNC_CTL, sync, cfb);
1031 if (blank <= 1) {
1032 /* turn on ramdacs */
1033 cfb->ramdac_powerdown &= ~(RAMDAC_DACPWRDN | RAMDAC_BYPASS |
1034 RAMDAC_RAMPWRDN);
1035 cyber2000fb_write_ramdac_ctrl(cfb);
1039 * Soft blank/unblank the display.
1041 if (blank) { /* soft blank */
1042 for (i = 0; i < NR_PALETTE; i++) {
1043 cyber2000fb_writeb(i, 0x3c8, cfb);
1044 cyber2000fb_writeb(0, 0x3c9, cfb);
1045 cyber2000fb_writeb(0, 0x3c9, cfb);
1046 cyber2000fb_writeb(0, 0x3c9, cfb);
1048 } else { /* unblank */
1049 for (i = 0; i < NR_PALETTE; i++) {
1050 cyber2000fb_writeb(i, 0x3c8, cfb);
1051 cyber2000fb_writeb(cfb->palette[i].red, 0x3c9, cfb);
1052 cyber2000fb_writeb(cfb->palette[i].green, 0x3c9, cfb);
1053 cyber2000fb_writeb(cfb->palette[i].blue, 0x3c9, cfb);
1057 if (blank >= 2) {
1058 /* turn off ramdacs */
1059 cfb->ramdac_powerdown |= RAMDAC_DACPWRDN | RAMDAC_BYPASS |
1060 RAMDAC_RAMPWRDN;
1061 cyber2000fb_write_ramdac_ctrl(cfb);
1064 return 0;
1067 static struct fb_ops cyber2000fb_ops = {
1068 .owner = THIS_MODULE,
1069 .fb_check_var = cyber2000fb_check_var,
1070 .fb_set_par = cyber2000fb_set_par,
1071 .fb_setcolreg = cyber2000fb_setcolreg,
1072 .fb_blank = cyber2000fb_blank,
1073 .fb_pan_display = cyber2000fb_pan_display,
1074 .fb_fillrect = cyber2000fb_fillrect,
1075 .fb_copyarea = cyber2000fb_copyarea,
1076 .fb_imageblit = cyber2000fb_imageblit,
1077 .fb_sync = cyber2000fb_sync,
1081 * This is the only "static" reference to the internal data structures
1082 * of this driver. It is here solely at the moment to support the other
1083 * CyberPro modules external to this driver.
1085 static struct cfb_info *int_cfb_info;
1088 * Enable access to the extended registers
1090 void cyber2000fb_enable_extregs(struct cfb_info *cfb)
1092 cfb->func_use_count += 1;
1094 if (cfb->func_use_count == 1) {
1095 int old;
1097 old = cyber2000_grphr(EXT_FUNC_CTL, cfb);
1098 old |= EXT_FUNC_CTL_EXTREGENBL;
1099 cyber2000_grphw(EXT_FUNC_CTL, old, cfb);
1102 EXPORT_SYMBOL(cyber2000fb_enable_extregs);
1105 * Disable access to the extended registers
1107 void cyber2000fb_disable_extregs(struct cfb_info *cfb)
1109 if (cfb->func_use_count == 1) {
1110 int old;
1112 old = cyber2000_grphr(EXT_FUNC_CTL, cfb);
1113 old &= ~EXT_FUNC_CTL_EXTREGENBL;
1114 cyber2000_grphw(EXT_FUNC_CTL, old, cfb);
1117 if (cfb->func_use_count == 0)
1118 printk(KERN_ERR "disable_extregs: count = 0\n");
1119 else
1120 cfb->func_use_count -= 1;
1122 EXPORT_SYMBOL(cyber2000fb_disable_extregs);
1125 * Attach a capture/tv driver to the core CyberX0X0 driver.
1127 int cyber2000fb_attach(struct cyberpro_info *info, int idx)
1129 if (int_cfb_info != NULL) {
1130 info->dev = int_cfb_info->fb.device;
1131 #ifdef CONFIG_FB_CYBER2000_I2C
1132 info->i2c = &int_cfb_info->i2c_adapter;
1133 #else
1134 info->i2c = NULL;
1135 #endif
1136 info->regs = int_cfb_info->regs;
1137 info->irq = int_cfb_info->irq;
1138 info->fb = int_cfb_info->fb.screen_base;
1139 info->fb_size = int_cfb_info->fb.fix.smem_len;
1140 info->info = int_cfb_info;
1142 strlcpy(info->dev_name, int_cfb_info->fb.fix.id,
1143 sizeof(info->dev_name));
1146 return int_cfb_info != NULL;
1148 EXPORT_SYMBOL(cyber2000fb_attach);
1151 * Detach a capture/tv driver from the core CyberX0X0 driver.
1153 void cyber2000fb_detach(int idx)
1156 EXPORT_SYMBOL(cyber2000fb_detach);
1158 #ifdef CONFIG_FB_CYBER2000_DDC
1160 #define DDC_REG 0xb0
1161 #define DDC_SCL_OUT (1 << 0)
1162 #define DDC_SDA_OUT (1 << 4)
1163 #define DDC_SCL_IN (1 << 2)
1164 #define DDC_SDA_IN (1 << 6)
1166 static void cyber2000fb_enable_ddc(struct cfb_info *cfb)
1168 spin_lock(&cfb->reg_b0_lock);
1169 cyber2000fb_writew(0x1bf, 0x3ce, cfb);
1172 static void cyber2000fb_disable_ddc(struct cfb_info *cfb)
1174 cyber2000fb_writew(0x0bf, 0x3ce, cfb);
1175 spin_unlock(&cfb->reg_b0_lock);
1179 static void cyber2000fb_ddc_setscl(void *data, int val)
1181 struct cfb_info *cfb = data;
1182 unsigned char reg;
1184 cyber2000fb_enable_ddc(cfb);
1185 reg = cyber2000_grphr(DDC_REG, cfb);
1186 if (!val) /* bit is inverted */
1187 reg |= DDC_SCL_OUT;
1188 else
1189 reg &= ~DDC_SCL_OUT;
1190 cyber2000_grphw(DDC_REG, reg, cfb);
1191 cyber2000fb_disable_ddc(cfb);
1194 static void cyber2000fb_ddc_setsda(void *data, int val)
1196 struct cfb_info *cfb = data;
1197 unsigned char reg;
1199 cyber2000fb_enable_ddc(cfb);
1200 reg = cyber2000_grphr(DDC_REG, cfb);
1201 if (!val) /* bit is inverted */
1202 reg |= DDC_SDA_OUT;
1203 else
1204 reg &= ~DDC_SDA_OUT;
1205 cyber2000_grphw(DDC_REG, reg, cfb);
1206 cyber2000fb_disable_ddc(cfb);
1209 static int cyber2000fb_ddc_getscl(void *data)
1211 struct cfb_info *cfb = data;
1212 int retval;
1214 cyber2000fb_enable_ddc(cfb);
1215 retval = !!(cyber2000_grphr(DDC_REG, cfb) & DDC_SCL_IN);
1216 cyber2000fb_disable_ddc(cfb);
1218 return retval;
1221 static int cyber2000fb_ddc_getsda(void *data)
1223 struct cfb_info *cfb = data;
1224 int retval;
1226 cyber2000fb_enable_ddc(cfb);
1227 retval = !!(cyber2000_grphr(DDC_REG, cfb) & DDC_SDA_IN);
1228 cyber2000fb_disable_ddc(cfb);
1230 return retval;
1233 static int cyber2000fb_setup_ddc_bus(struct cfb_info *cfb)
1235 strlcpy(cfb->ddc_adapter.name, cfb->fb.fix.id,
1236 sizeof(cfb->ddc_adapter.name));
1237 cfb->ddc_adapter.owner = THIS_MODULE;
1238 cfb->ddc_adapter.class = I2C_CLASS_DDC;
1239 cfb->ddc_adapter.algo_data = &cfb->ddc_algo;
1240 cfb->ddc_adapter.dev.parent = cfb->fb.device;
1241 cfb->ddc_algo.setsda = cyber2000fb_ddc_setsda;
1242 cfb->ddc_algo.setscl = cyber2000fb_ddc_setscl;
1243 cfb->ddc_algo.getsda = cyber2000fb_ddc_getsda;
1244 cfb->ddc_algo.getscl = cyber2000fb_ddc_getscl;
1245 cfb->ddc_algo.udelay = 10;
1246 cfb->ddc_algo.timeout = 20;
1247 cfb->ddc_algo.data = cfb;
1249 i2c_set_adapdata(&cfb->ddc_adapter, cfb);
1251 return i2c_bit_add_bus(&cfb->ddc_adapter);
1253 #endif /* CONFIG_FB_CYBER2000_DDC */
1255 #ifdef CONFIG_FB_CYBER2000_I2C
1256 static void cyber2000fb_i2c_setsda(void *data, int state)
1258 struct cfb_info *cfb = data;
1259 unsigned int latch2;
1261 spin_lock(&cfb->reg_b0_lock);
1262 latch2 = cyber2000_grphr(EXT_LATCH2, cfb);
1263 latch2 &= EXT_LATCH2_I2C_CLKEN;
1264 if (state)
1265 latch2 |= EXT_LATCH2_I2C_DATEN;
1266 cyber2000_grphw(EXT_LATCH2, latch2, cfb);
1267 spin_unlock(&cfb->reg_b0_lock);
1270 static void cyber2000fb_i2c_setscl(void *data, int state)
1272 struct cfb_info *cfb = data;
1273 unsigned int latch2;
1275 spin_lock(&cfb->reg_b0_lock);
1276 latch2 = cyber2000_grphr(EXT_LATCH2, cfb);
1277 latch2 &= EXT_LATCH2_I2C_DATEN;
1278 if (state)
1279 latch2 |= EXT_LATCH2_I2C_CLKEN;
1280 cyber2000_grphw(EXT_LATCH2, latch2, cfb);
1281 spin_unlock(&cfb->reg_b0_lock);
1284 static int cyber2000fb_i2c_getsda(void *data)
1286 struct cfb_info *cfb = data;
1287 int ret;
1289 spin_lock(&cfb->reg_b0_lock);
1290 ret = !!(cyber2000_grphr(EXT_LATCH2, cfb) & EXT_LATCH2_I2C_DAT);
1291 spin_unlock(&cfb->reg_b0_lock);
1293 return ret;
1296 static int cyber2000fb_i2c_getscl(void *data)
1298 struct cfb_info *cfb = data;
1299 int ret;
1301 spin_lock(&cfb->reg_b0_lock);
1302 ret = !!(cyber2000_grphr(EXT_LATCH2, cfb) & EXT_LATCH2_I2C_CLK);
1303 spin_unlock(&cfb->reg_b0_lock);
1305 return ret;
1308 static int cyber2000fb_i2c_register(struct cfb_info *cfb)
1310 strlcpy(cfb->i2c_adapter.name, cfb->fb.fix.id,
1311 sizeof(cfb->i2c_adapter.name));
1312 cfb->i2c_adapter.owner = THIS_MODULE;
1313 cfb->i2c_adapter.algo_data = &cfb->i2c_algo;
1314 cfb->i2c_adapter.dev.parent = cfb->fb.device;
1315 cfb->i2c_algo.setsda = cyber2000fb_i2c_setsda;
1316 cfb->i2c_algo.setscl = cyber2000fb_i2c_setscl;
1317 cfb->i2c_algo.getsda = cyber2000fb_i2c_getsda;
1318 cfb->i2c_algo.getscl = cyber2000fb_i2c_getscl;
1319 cfb->i2c_algo.udelay = 5;
1320 cfb->i2c_algo.timeout = msecs_to_jiffies(100);
1321 cfb->i2c_algo.data = cfb;
1323 return i2c_bit_add_bus(&cfb->i2c_adapter);
1326 static void cyber2000fb_i2c_unregister(struct cfb_info *cfb)
1328 i2c_del_adapter(&cfb->i2c_adapter);
1330 #else
1331 #define cyber2000fb_i2c_register(cfb) (0)
1332 #define cyber2000fb_i2c_unregister(cfb) do { } while (0)
1333 #endif
1336 * These parameters give
1337 * 640x480, hsync 31.5kHz, vsync 60Hz
1339 static struct fb_videomode cyber2000fb_default_mode = {
1340 .refresh = 60,
1341 .xres = 640,
1342 .yres = 480,
1343 .pixclock = 39722,
1344 .left_margin = 56,
1345 .right_margin = 16,
1346 .upper_margin = 34,
1347 .lower_margin = 9,
1348 .hsync_len = 88,
1349 .vsync_len = 2,
1350 .sync = FB_SYNC_COMP_HIGH_ACT | FB_SYNC_VERT_HIGH_ACT,
1351 .vmode = FB_VMODE_NONINTERLACED
1354 static char igs_regs[] = {
1355 EXT_CRT_IRQ, 0,
1356 EXT_CRT_TEST, 0,
1357 EXT_SYNC_CTL, 0,
1358 EXT_SEG_WRITE_PTR, 0,
1359 EXT_SEG_READ_PTR, 0,
1360 EXT_BIU_MISC, EXT_BIU_MISC_LIN_ENABLE |
1361 EXT_BIU_MISC_COP_ENABLE |
1362 EXT_BIU_MISC_COP_BFC,
1363 EXT_FUNC_CTL, 0,
1364 CURS_H_START, 0,
1365 CURS_H_START + 1, 0,
1366 CURS_H_PRESET, 0,
1367 CURS_V_START, 0,
1368 CURS_V_START + 1, 0,
1369 CURS_V_PRESET, 0,
1370 CURS_CTL, 0,
1371 EXT_ATTRIB_CTL, EXT_ATTRIB_CTL_EXT,
1372 EXT_OVERSCAN_RED, 0,
1373 EXT_OVERSCAN_GREEN, 0,
1374 EXT_OVERSCAN_BLUE, 0,
1376 /* some of these are questionable when we have a BIOS */
1377 EXT_MEM_CTL0, EXT_MEM_CTL0_7CLK |
1378 EXT_MEM_CTL0_RAS_1 |
1379 EXT_MEM_CTL0_MULTCAS,
1380 EXT_HIDDEN_CTL1, 0x30,
1381 EXT_FIFO_CTL, 0x0b,
1382 EXT_FIFO_CTL + 1, 0x17,
1383 0x76, 0x00,
1384 EXT_HIDDEN_CTL4, 0xc8
1388 * Initialise the CyberPro hardware. On the CyberPro5XXXX,
1389 * ensure that we're using the correct PLL (5XXX's may be
1390 * programmed to use an additional set of PLLs.)
1392 static void cyberpro_init_hw(struct cfb_info *cfb)
1394 int i;
1396 for (i = 0; i < sizeof(igs_regs); i += 2)
1397 cyber2000_grphw(igs_regs[i], igs_regs[i + 1], cfb);
1399 if (cfb->id == ID_CYBERPRO_5000) {
1400 unsigned char val;
1401 cyber2000fb_writeb(0xba, 0x3ce, cfb);
1402 val = cyber2000fb_readb(0x3cf, cfb) & 0x80;
1403 cyber2000fb_writeb(val, 0x3cf, cfb);
1407 static struct cfb_info *cyberpro_alloc_fb_info(unsigned int id, char *name)
1409 struct cfb_info *cfb;
1411 cfb = kzalloc(sizeof(struct cfb_info), GFP_KERNEL);
1412 if (!cfb)
1413 return NULL;
1416 cfb->id = id;
1418 if (id == ID_CYBERPRO_5000)
1419 cfb->ref_ps = 40690; /* 24.576 MHz */
1420 else
1421 cfb->ref_ps = 69842; /* 14.31818 MHz (69841?) */
1423 cfb->divisors[0] = 1;
1424 cfb->divisors[1] = 2;
1425 cfb->divisors[2] = 4;
1427 if (id == ID_CYBERPRO_2000)
1428 cfb->divisors[3] = 8;
1429 else
1430 cfb->divisors[3] = 6;
1432 strcpy(cfb->fb.fix.id, name);
1434 cfb->fb.fix.type = FB_TYPE_PACKED_PIXELS;
1435 cfb->fb.fix.type_aux = 0;
1436 cfb->fb.fix.xpanstep = 0;
1437 cfb->fb.fix.ypanstep = 1;
1438 cfb->fb.fix.ywrapstep = 0;
1440 switch (id) {
1441 case ID_IGA_1682:
1442 cfb->fb.fix.accel = 0;
1443 break;
1445 case ID_CYBERPRO_2000:
1446 cfb->fb.fix.accel = FB_ACCEL_IGS_CYBER2000;
1447 break;
1449 case ID_CYBERPRO_2010:
1450 cfb->fb.fix.accel = FB_ACCEL_IGS_CYBER2010;
1451 break;
1453 case ID_CYBERPRO_5000:
1454 cfb->fb.fix.accel = FB_ACCEL_IGS_CYBER5000;
1455 break;
1458 cfb->fb.var.nonstd = 0;
1459 cfb->fb.var.activate = FB_ACTIVATE_NOW;
1460 cfb->fb.var.height = -1;
1461 cfb->fb.var.width = -1;
1462 cfb->fb.var.accel_flags = FB_ACCELF_TEXT;
1464 cfb->fb.fbops = &cyber2000fb_ops;
1465 cfb->fb.flags = FBINFO_DEFAULT | FBINFO_HWACCEL_YPAN;
1466 cfb->fb.pseudo_palette = cfb->pseudo_palette;
1468 spin_lock_init(&cfb->reg_b0_lock);
1470 fb_alloc_cmap(&cfb->fb.cmap, NR_PALETTE, 0);
1472 return cfb;
1475 static void cyberpro_free_fb_info(struct cfb_info *cfb)
1477 if (cfb) {
1479 * Free the colourmap
1481 fb_alloc_cmap(&cfb->fb.cmap, 0, 0);
1483 kfree(cfb);
1488 * Parse Cyber2000fb options. Usage:
1489 * video=cyber2000:font:fontname
1491 #ifndef MODULE
1492 static int cyber2000fb_setup(char *options)
1494 char *opt;
1496 if (!options || !*options)
1497 return 0;
1499 while ((opt = strsep(&options, ",")) != NULL) {
1500 if (!*opt)
1501 continue;
1503 if (strncmp(opt, "font:", 5) == 0) {
1504 static char default_font_storage[40];
1506 strlcpy(default_font_storage, opt + 5,
1507 sizeof(default_font_storage));
1508 default_font = default_font_storage;
1509 continue;
1512 printk(KERN_ERR "CyberPro20x0: unknown parameter: %s\n", opt);
1514 return 0;
1516 #endif /* MODULE */
1519 * The CyberPro chips can be placed on many different bus types.
1520 * This probe function is common to all bus types. The bus-specific
1521 * probe function is expected to have:
1522 * - enabled access to the linear memory region
1523 * - memory mapped access to the registers
1524 * - initialised mem_ctl1 and mem_ctl2 appropriately.
1526 static int cyberpro_common_probe(struct cfb_info *cfb)
1528 u_long smem_size;
1529 u_int h_sync, v_sync;
1530 int err;
1532 cyberpro_init_hw(cfb);
1535 * Get the video RAM size and width from the VGA register.
1536 * This should have been already initialised by the BIOS,
1537 * but if it's garbage, claim default 1MB VRAM (woody)
1539 cfb->mem_ctl1 = cyber2000_grphr(EXT_MEM_CTL1, cfb);
1540 cfb->mem_ctl2 = cyber2000_grphr(EXT_MEM_CTL2, cfb);
1543 * Determine the size of the memory.
1545 switch (cfb->mem_ctl2 & MEM_CTL2_SIZE_MASK) {
1546 case MEM_CTL2_SIZE_4MB:
1547 smem_size = 0x00400000;
1548 break;
1549 case MEM_CTL2_SIZE_2MB:
1550 smem_size = 0x00200000;
1551 break;
1552 case MEM_CTL2_SIZE_1MB:
1553 smem_size = 0x00100000;
1554 break;
1555 default:
1556 smem_size = 0x00100000;
1557 break;
1560 cfb->fb.fix.smem_len = smem_size;
1561 cfb->fb.fix.mmio_len = MMIO_SIZE;
1562 cfb->fb.screen_base = cfb->region;
1564 #ifdef CONFIG_FB_CYBER2000_DDC
1565 if (cyber2000fb_setup_ddc_bus(cfb) == 0)
1566 cfb->ddc_registered = true;
1567 #endif
1569 err = -EINVAL;
1570 if (!fb_find_mode(&cfb->fb.var, &cfb->fb, NULL, NULL, 0,
1571 &cyber2000fb_default_mode, 8)) {
1572 printk(KERN_ERR "%s: no valid mode found\n", cfb->fb.fix.id);
1573 goto failed;
1576 cfb->fb.var.yres_virtual = cfb->fb.fix.smem_len * 8 /
1577 (cfb->fb.var.bits_per_pixel * cfb->fb.var.xres_virtual);
1579 if (cfb->fb.var.yres_virtual < cfb->fb.var.yres)
1580 cfb->fb.var.yres_virtual = cfb->fb.var.yres;
1582 /* fb_set_var(&cfb->fb.var, -1, &cfb->fb); */
1585 * Calculate the hsync and vsync frequencies. Note that
1586 * we split the 1e12 constant up so that we can preserve
1587 * the precision and fit the results into 32-bit registers.
1588 * (1953125000 * 512 = 1e12)
1590 h_sync = 1953125000 / cfb->fb.var.pixclock;
1591 h_sync = h_sync * 512 / (cfb->fb.var.xres + cfb->fb.var.left_margin +
1592 cfb->fb.var.right_margin + cfb->fb.var.hsync_len);
1593 v_sync = h_sync / (cfb->fb.var.yres + cfb->fb.var.upper_margin +
1594 cfb->fb.var.lower_margin + cfb->fb.var.vsync_len);
1596 printk(KERN_INFO "%s: %dKiB VRAM, using %dx%d, %d.%03dkHz, %dHz\n",
1597 cfb->fb.fix.id, cfb->fb.fix.smem_len >> 10,
1598 cfb->fb.var.xres, cfb->fb.var.yres,
1599 h_sync / 1000, h_sync % 1000, v_sync);
1601 err = cyber2000fb_i2c_register(cfb);
1602 if (err)
1603 goto failed;
1605 err = register_framebuffer(&cfb->fb);
1606 if (err)
1607 cyber2000fb_i2c_unregister(cfb);
1609 failed:
1610 #ifdef CONFIG_FB_CYBER2000_DDC
1611 if (err && cfb->ddc_registered)
1612 i2c_del_adapter(&cfb->ddc_adapter);
1613 #endif
1614 return err;
1617 static void cyberpro_common_remove(struct cfb_info *cfb)
1619 unregister_framebuffer(&cfb->fb);
1620 #ifdef CONFIG_FB_CYBER2000_DDC
1621 if (cfb->ddc_registered)
1622 i2c_del_adapter(&cfb->ddc_adapter);
1623 #endif
1624 cyber2000fb_i2c_unregister(cfb);
1627 static void cyberpro_common_resume(struct cfb_info *cfb)
1629 cyberpro_init_hw(cfb);
1632 * Reprogram the MEM_CTL1 and MEM_CTL2 registers
1634 cyber2000_grphw(EXT_MEM_CTL1, cfb->mem_ctl1, cfb);
1635 cyber2000_grphw(EXT_MEM_CTL2, cfb->mem_ctl2, cfb);
1638 * Restore the old video mode and the palette.
1639 * We also need to tell fbcon to redraw the console.
1641 cyber2000fb_set_par(&cfb->fb);
1644 #ifdef CONFIG_ARCH_SHARK
1646 #include <mach/framebuffer.h>
1648 static int cyberpro_vl_probe(void)
1650 struct cfb_info *cfb;
1651 int err = -ENOMEM;
1653 if (!request_mem_region(FB_START, FB_SIZE, "CyberPro2010"))
1654 return err;
1656 cfb = cyberpro_alloc_fb_info(ID_CYBERPRO_2010, "CyberPro2010");
1657 if (!cfb)
1658 goto failed_release;
1660 cfb->irq = -1;
1661 cfb->region = ioremap(FB_START, FB_SIZE);
1662 if (!cfb->region)
1663 goto failed_ioremap;
1665 cfb->regs = cfb->region + MMIO_OFFSET;
1666 cfb->fb.device = NULL;
1667 cfb->fb.fix.mmio_start = FB_START + MMIO_OFFSET;
1668 cfb->fb.fix.smem_start = FB_START;
1671 * Bring up the hardware. This is expected to enable access
1672 * to the linear memory region, and allow access to the memory
1673 * mapped registers. Also, mem_ctl1 and mem_ctl2 must be
1674 * initialised.
1676 cyber2000fb_writeb(0x18, 0x46e8, cfb);
1677 cyber2000fb_writeb(0x01, 0x102, cfb);
1678 cyber2000fb_writeb(0x08, 0x46e8, cfb);
1679 cyber2000fb_writeb(EXT_BIU_MISC, 0x3ce, cfb);
1680 cyber2000fb_writeb(EXT_BIU_MISC_LIN_ENABLE, 0x3cf, cfb);
1682 cfb->mclk_mult = 0xdb;
1683 cfb->mclk_div = 0x54;
1685 err = cyberpro_common_probe(cfb);
1686 if (err)
1687 goto failed;
1689 if (int_cfb_info == NULL)
1690 int_cfb_info = cfb;
1692 return 0;
1694 failed:
1695 iounmap(cfb->region);
1696 failed_ioremap:
1697 cyberpro_free_fb_info(cfb);
1698 failed_release:
1699 release_mem_region(FB_START, FB_SIZE);
1701 return err;
1703 #endif /* CONFIG_ARCH_SHARK */
1706 * PCI specific support.
1708 #ifdef CONFIG_PCI
1710 * We need to wake up the CyberPro, and make sure its in linear memory
1711 * mode. Unfortunately, this is specific to the platform and card that
1712 * we are running on.
1714 * On x86 and ARM, should we be initialising the CyberPro first via the
1715 * IO registers, and then the MMIO registers to catch all cases? Can we
1716 * end up in the situation where the chip is in MMIO mode, but not awake
1717 * on an x86 system?
1719 static int cyberpro_pci_enable_mmio(struct cfb_info *cfb)
1721 unsigned char val;
1723 #if defined(__sparc_v9__)
1724 #error "You lose, consult DaveM."
1725 #elif defined(__sparc__)
1727 * SPARC does not have an "outb" instruction, so we generate
1728 * I/O cycles storing into a reserved memory space at
1729 * physical address 0x3000000
1731 unsigned char __iomem *iop;
1733 iop = ioremap(0x3000000, 0x5000);
1734 if (iop == NULL) {
1735 printk(KERN_ERR "iga5000: cannot map I/O\n");
1736 return -ENOMEM;
1739 writeb(0x18, iop + 0x46e8);
1740 writeb(0x01, iop + 0x102);
1741 writeb(0x08, iop + 0x46e8);
1742 writeb(EXT_BIU_MISC, iop + 0x3ce);
1743 writeb(EXT_BIU_MISC_LIN_ENABLE, iop + 0x3cf);
1745 iounmap(iop);
1746 #else
1748 * Most other machine types are "normal", so
1749 * we use the standard IO-based wakeup.
1751 outb(0x18, 0x46e8);
1752 outb(0x01, 0x102);
1753 outb(0x08, 0x46e8);
1754 outb(EXT_BIU_MISC, 0x3ce);
1755 outb(EXT_BIU_MISC_LIN_ENABLE, 0x3cf);
1756 #endif
1759 * Allow the CyberPro to accept PCI burst accesses
1761 if (cfb->id == ID_CYBERPRO_2010) {
1762 printk(KERN_INFO "%s: NOT enabling PCI bursts\n",
1763 cfb->fb.fix.id);
1764 } else {
1765 val = cyber2000_grphr(EXT_BUS_CTL, cfb);
1766 if (!(val & EXT_BUS_CTL_PCIBURST_WRITE)) {
1767 printk(KERN_INFO "%s: enabling PCI bursts\n",
1768 cfb->fb.fix.id);
1770 val |= EXT_BUS_CTL_PCIBURST_WRITE;
1772 if (cfb->id == ID_CYBERPRO_5000)
1773 val |= EXT_BUS_CTL_PCIBURST_READ;
1775 cyber2000_grphw(EXT_BUS_CTL, val, cfb);
1779 return 0;
1782 static int cyberpro_pci_probe(struct pci_dev *dev,
1783 const struct pci_device_id *id)
1785 struct cfb_info *cfb;
1786 char name[16];
1787 int err;
1789 sprintf(name, "CyberPro%4X", id->device);
1791 err = pci_enable_device(dev);
1792 if (err)
1793 return err;
1795 err = -ENOMEM;
1796 cfb = cyberpro_alloc_fb_info(id->driver_data, name);
1797 if (!cfb)
1798 goto failed_release;
1800 err = pci_request_regions(dev, cfb->fb.fix.id);
1801 if (err)
1802 goto failed_regions;
1804 cfb->irq = dev->irq;
1805 cfb->region = pci_ioremap_bar(dev, 0);
1806 if (!cfb->region) {
1807 err = -ENOMEM;
1808 goto failed_ioremap;
1811 cfb->regs = cfb->region + MMIO_OFFSET;
1812 cfb->fb.device = &dev->dev;
1813 cfb->fb.fix.mmio_start = pci_resource_start(dev, 0) + MMIO_OFFSET;
1814 cfb->fb.fix.smem_start = pci_resource_start(dev, 0);
1817 * Bring up the hardware. This is expected to enable access
1818 * to the linear memory region, and allow access to the memory
1819 * mapped registers. Also, mem_ctl1 and mem_ctl2 must be
1820 * initialised.
1822 err = cyberpro_pci_enable_mmio(cfb);
1823 if (err)
1824 goto failed;
1827 * Use MCLK from BIOS. FIXME: what about hotplug?
1829 cfb->mclk_mult = cyber2000_grphr(EXT_MCLK_MULT, cfb);
1830 cfb->mclk_div = cyber2000_grphr(EXT_MCLK_DIV, cfb);
1832 #ifdef __arm__
1834 * MCLK on the NetWinder and the Shark is fixed at 75MHz
1836 if (machine_is_netwinder()) {
1837 cfb->mclk_mult = 0xdb;
1838 cfb->mclk_div = 0x54;
1840 #endif
1842 err = cyberpro_common_probe(cfb);
1843 if (err)
1844 goto failed;
1847 * Our driver data
1849 pci_set_drvdata(dev, cfb);
1850 if (int_cfb_info == NULL)
1851 int_cfb_info = cfb;
1853 return 0;
1855 failed:
1856 iounmap(cfb->region);
1857 failed_ioremap:
1858 pci_release_regions(dev);
1859 failed_regions:
1860 cyberpro_free_fb_info(cfb);
1861 failed_release:
1862 return err;
1865 static void cyberpro_pci_remove(struct pci_dev *dev)
1867 struct cfb_info *cfb = pci_get_drvdata(dev);
1869 if (cfb) {
1870 cyberpro_common_remove(cfb);
1871 iounmap(cfb->region);
1872 cyberpro_free_fb_info(cfb);
1875 * Ensure that the driver data is no longer
1876 * valid.
1878 pci_set_drvdata(dev, NULL);
1879 if (cfb == int_cfb_info)
1880 int_cfb_info = NULL;
1882 pci_release_regions(dev);
1886 static int cyberpro_pci_suspend(struct pci_dev *dev, pm_message_t state)
1888 return 0;
1892 * Re-initialise the CyberPro hardware
1894 static int cyberpro_pci_resume(struct pci_dev *dev)
1896 struct cfb_info *cfb = pci_get_drvdata(dev);
1898 if (cfb) {
1899 cyberpro_pci_enable_mmio(cfb);
1900 cyberpro_common_resume(cfb);
1903 return 0;
1906 static struct pci_device_id cyberpro_pci_table[] = {
1907 /* Not yet
1908 * { PCI_VENDOR_ID_INTERG, PCI_DEVICE_ID_INTERG_1682,
1909 * PCI_ANY_ID, PCI_ANY_ID, 0, 0, ID_IGA_1682 },
1911 { PCI_VENDOR_ID_INTERG, PCI_DEVICE_ID_INTERG_2000,
1912 PCI_ANY_ID, PCI_ANY_ID, 0, 0, ID_CYBERPRO_2000 },
1913 { PCI_VENDOR_ID_INTERG, PCI_DEVICE_ID_INTERG_2010,
1914 PCI_ANY_ID, PCI_ANY_ID, 0, 0, ID_CYBERPRO_2010 },
1915 { PCI_VENDOR_ID_INTERG, PCI_DEVICE_ID_INTERG_5000,
1916 PCI_ANY_ID, PCI_ANY_ID, 0, 0, ID_CYBERPRO_5000 },
1917 { 0, }
1920 MODULE_DEVICE_TABLE(pci, cyberpro_pci_table);
1922 static struct pci_driver cyberpro_driver = {
1923 .name = "CyberPro",
1924 .probe = cyberpro_pci_probe,
1925 .remove = cyberpro_pci_remove,
1926 .suspend = cyberpro_pci_suspend,
1927 .resume = cyberpro_pci_resume,
1928 .id_table = cyberpro_pci_table
1930 #endif
1933 * I don't think we can use the "module_init" stuff here because
1934 * the fbcon stuff may not be initialised yet. Hence the #ifdef
1935 * around module_init.
1937 * Tony: "module_init" is now required
1939 static int __init cyber2000fb_init(void)
1941 int ret = -1, err;
1943 #ifndef MODULE
1944 char *option = NULL;
1946 if (fb_get_options("cyber2000fb", &option))
1947 return -ENODEV;
1948 cyber2000fb_setup(option);
1949 #endif
1951 #ifdef CONFIG_ARCH_SHARK
1952 err = cyberpro_vl_probe();
1953 if (!err)
1954 ret = 0;
1955 #endif
1956 #ifdef CONFIG_PCI
1957 err = pci_register_driver(&cyberpro_driver);
1958 if (!err)
1959 ret = 0;
1960 #endif
1962 return ret ? err : 0;
1964 module_init(cyber2000fb_init);
1966 #ifndef CONFIG_ARCH_SHARK
1967 static void __exit cyberpro_exit(void)
1969 pci_unregister_driver(&cyberpro_driver);
1971 module_exit(cyberpro_exit);
1972 #endif
1974 MODULE_AUTHOR("Russell King");
1975 MODULE_DESCRIPTION("CyberPro 2000, 2010 and 5000 framebuffer driver");
1976 MODULE_LICENSE("GPL");