2 * linux/drivers/video/pxafb.c
4 * Copyright (C) 1999 Eric A. Thomas.
5 * Copyright (C) 2004 Jean-Frederic Clere.
6 * Copyright (C) 2004 Ian Campbell.
7 * Copyright (C) 2004 Jeff Lackey.
8 * Based on sa1100fb.c Copyright (C) 1999 Eric A. Thomas
10 * Based on acornfb.c Copyright (C) Russell King.
12 * This file is subject to the terms and conditions of the GNU General Public
13 * License. See the file COPYING in the main directory of this archive for
16 * Intel PXA250/210 LCD Controller Frame Buffer Driver
18 * Please direct your questions and comments on this driver to the following
21 * linux-arm-kernel@lists.arm.linux.org.uk
23 * Add support for overlay1 and overlay2 based on pxafb_overlay.c:
25 * Copyright (C) 2004, Intel Corporation
27 * 2003/08/27: <yu.tang@intel.com>
28 * 2004/03/10: <stanley.cai@intel.com>
29 * 2004/10/28: <yan.yin@intel.com>
31 * Copyright (C) 2006-2008 Marvell International Ltd.
35 #include <linux/module.h>
36 #include <linux/moduleparam.h>
37 #include <linux/kernel.h>
38 #include <linux/sched.h>
39 #include <linux/errno.h>
40 #include <linux/string.h>
41 #include <linux/interrupt.h>
42 #include <linux/slab.h>
45 #include <linux/delay.h>
46 #include <linux/init.h>
47 #include <linux/ioport.h>
48 #include <linux/cpufreq.h>
49 #include <linux/platform_device.h>
50 #include <linux/dma-mapping.h>
51 #include <linux/clk.h>
52 #include <linux/err.h>
53 #include <linux/completion.h>
54 #include <linux/mutex.h>
55 #include <linux/kthread.h>
56 #include <linux/freezer.h>
57 #include <linux/console.h>
59 #include <mach/hardware.h>
62 #include <asm/div64.h>
63 #include <mach/bitfield.h>
64 #include <linux/platform_data/video-pxafb.h>
67 * Complain if VAR is out of range.
73 /* Bits which should not be set in machine configuration structures */
74 #define LCCR0_INVALID_CONFIG_MASK (LCCR0_OUM | LCCR0_BM | LCCR0_QDM |\
75 LCCR0_DIS | LCCR0_EFM | LCCR0_IUM |\
76 LCCR0_SFM | LCCR0_LDM | LCCR0_ENB)
78 #define LCCR3_INVALID_CONFIG_MASK (LCCR3_HSP | LCCR3_VSP |\
79 LCCR3_PCD | LCCR3_BPP(0xf))
81 static int pxafb_activate_var(struct fb_var_screeninfo
*var
,
83 static void set_ctrlr_state(struct pxafb_info
*fbi
, u_int state
);
84 static void setup_base_frame(struct pxafb_info
*fbi
,
85 struct fb_var_screeninfo
*var
, int branch
);
86 static int setup_frame_dma(struct pxafb_info
*fbi
, int dma
, int pal
,
87 unsigned long offset
, size_t size
);
89 static unsigned long video_mem_size
= 0;
91 static inline unsigned long
92 lcd_readl(struct pxafb_info
*fbi
, unsigned int off
)
94 return __raw_readl(fbi
->mmio_base
+ off
);
98 lcd_writel(struct pxafb_info
*fbi
, unsigned int off
, unsigned long val
)
100 __raw_writel(val
, fbi
->mmio_base
+ off
);
103 static inline void pxafb_schedule_work(struct pxafb_info
*fbi
, u_int state
)
107 local_irq_save(flags
);
109 * We need to handle two requests being made at the same time.
110 * There are two important cases:
111 * 1. When we are changing VT (C_REENABLE) while unblanking
112 * (C_ENABLE) We must perform the unblanking, which will
113 * do our REENABLE for us.
114 * 2. When we are blanking, but immediately unblank before
115 * we have blanked. We do the "REENABLE" thing here as
116 * well, just to be sure.
118 if (fbi
->task_state
== C_ENABLE
&& state
== C_REENABLE
)
120 if (fbi
->task_state
== C_DISABLE
&& state
== C_ENABLE
)
123 if (state
!= (u_int
)-1) {
124 fbi
->task_state
= state
;
125 schedule_work(&fbi
->task
);
127 local_irq_restore(flags
);
130 static inline u_int
chan_to_field(u_int chan
, struct fb_bitfield
*bf
)
133 chan
>>= 16 - bf
->length
;
134 return chan
<< bf
->offset
;
138 pxafb_setpalettereg(u_int regno
, u_int red
, u_int green
, u_int blue
,
139 u_int trans
, struct fb_info
*info
)
141 struct pxafb_info
*fbi
= (struct pxafb_info
*)info
;
144 if (regno
>= fbi
->palette_size
)
147 if (fbi
->fb
.var
.grayscale
) {
148 fbi
->palette_cpu
[regno
] = ((blue
>> 8) & 0x00ff);
152 switch (fbi
->lccr4
& LCCR4_PAL_FOR_MASK
) {
153 case LCCR4_PAL_FOR_0
:
154 val
= ((red
>> 0) & 0xf800);
155 val
|= ((green
>> 5) & 0x07e0);
156 val
|= ((blue
>> 11) & 0x001f);
157 fbi
->palette_cpu
[regno
] = val
;
159 case LCCR4_PAL_FOR_1
:
160 val
= ((red
<< 8) & 0x00f80000);
161 val
|= ((green
>> 0) & 0x0000fc00);
162 val
|= ((blue
>> 8) & 0x000000f8);
163 ((u32
*)(fbi
->palette_cpu
))[regno
] = val
;
165 case LCCR4_PAL_FOR_2
:
166 val
= ((red
<< 8) & 0x00fc0000);
167 val
|= ((green
>> 0) & 0x0000fc00);
168 val
|= ((blue
>> 8) & 0x000000fc);
169 ((u32
*)(fbi
->palette_cpu
))[regno
] = val
;
171 case LCCR4_PAL_FOR_3
:
172 val
= ((red
<< 8) & 0x00ff0000);
173 val
|= ((green
>> 0) & 0x0000ff00);
174 val
|= ((blue
>> 8) & 0x000000ff);
175 ((u32
*)(fbi
->palette_cpu
))[regno
] = val
;
183 pxafb_setcolreg(u_int regno
, u_int red
, u_int green
, u_int blue
,
184 u_int trans
, struct fb_info
*info
)
186 struct pxafb_info
*fbi
= (struct pxafb_info
*)info
;
191 * If inverse mode was selected, invert all the colours
192 * rather than the register number. The register number
193 * is what you poke into the framebuffer to produce the
194 * colour you requested.
196 if (fbi
->cmap_inverse
) {
198 green
= 0xffff - green
;
199 blue
= 0xffff - blue
;
203 * If greyscale is true, then we convert the RGB value
204 * to greyscale no matter what visual we are using.
206 if (fbi
->fb
.var
.grayscale
)
207 red
= green
= blue
= (19595 * red
+ 38470 * green
+
210 switch (fbi
->fb
.fix
.visual
) {
211 case FB_VISUAL_TRUECOLOR
:
213 * 16-bit True Colour. We encode the RGB value
214 * according to the RGB bitfield information.
217 u32
*pal
= fbi
->fb
.pseudo_palette
;
219 val
= chan_to_field(red
, &fbi
->fb
.var
.red
);
220 val
|= chan_to_field(green
, &fbi
->fb
.var
.green
);
221 val
|= chan_to_field(blue
, &fbi
->fb
.var
.blue
);
228 case FB_VISUAL_STATIC_PSEUDOCOLOR
:
229 case FB_VISUAL_PSEUDOCOLOR
:
230 ret
= pxafb_setpalettereg(regno
, red
, green
, blue
, trans
, info
);
237 /* calculate pixel depth, transparency bit included, >=16bpp formats _only_ */
238 static inline int var_to_depth(struct fb_var_screeninfo
*var
)
240 return var
->red
.length
+ var
->green
.length
+
241 var
->blue
.length
+ var
->transp
.length
;
244 /* calculate 4-bit BPP value for LCCR3 and OVLxC1 */
245 static int pxafb_var_to_bpp(struct fb_var_screeninfo
*var
)
249 switch (var
->bits_per_pixel
) {
250 case 1: bpp
= 0; break;
251 case 2: bpp
= 1; break;
252 case 4: bpp
= 2; break;
253 case 8: bpp
= 3; break;
254 case 16: bpp
= 4; break;
256 switch (var_to_depth(var
)) {
257 case 18: bpp
= 6; break; /* 18-bits/pixel packed */
258 case 19: bpp
= 8; break; /* 19-bits/pixel packed */
259 case 24: bpp
= 9; break;
263 switch (var_to_depth(var
)) {
264 case 18: bpp
= 5; break; /* 18-bits/pixel unpacked */
265 case 19: bpp
= 7; break; /* 19-bits/pixel unpacked */
266 case 25: bpp
= 10; break;
274 * pxafb_var_to_lccr3():
275 * Convert a bits per pixel value to the correct bit pattern for LCCR3
277 * NOTE: for PXA27x with overlays support, the LCCR3_PDFOR_x bits have an
278 * implication of the acutal use of transparency bit, which we handle it
279 * here separatedly. See PXA27x Developer's Manual, Section <<7.4.6 Pixel
280 * Formats>> for the valid combination of PDFOR, PAL_FOR for various BPP.
282 * Transparency for palette pixel formats is not supported at the moment.
284 static uint32_t pxafb_var_to_lccr3(struct fb_var_screeninfo
*var
)
286 int bpp
= pxafb_var_to_bpp(var
);
292 lccr3
= LCCR3_BPP(bpp
);
294 switch (var_to_depth(var
)) {
295 case 16: lccr3
|= var
->transp
.length
? LCCR3_PDFOR_3
: 0; break;
296 case 18: lccr3
|= LCCR3_PDFOR_3
; break;
297 case 24: lccr3
|= var
->transp
.length
? LCCR3_PDFOR_2
: LCCR3_PDFOR_3
;
300 case 25: lccr3
|= LCCR3_PDFOR_0
; break;
305 #define SET_PIXFMT(v, r, g, b, t) \
307 (v)->transp.offset = (t) ? (r) + (g) + (b) : 0; \
308 (v)->transp.length = (t) ? (t) : 0; \
309 (v)->blue.length = (b); (v)->blue.offset = 0; \
310 (v)->green.length = (g); (v)->green.offset = (b); \
311 (v)->red.length = (r); (v)->red.offset = (b) + (g); \
314 /* set the RGBT bitfields of fb_var_screeninf according to
315 * var->bits_per_pixel and given depth
317 static void pxafb_set_pixfmt(struct fb_var_screeninfo
*var
, int depth
)
320 depth
= var
->bits_per_pixel
;
322 if (var
->bits_per_pixel
< 16) {
323 /* indexed pixel formats */
324 var
->red
.offset
= 0; var
->red
.length
= 8;
325 var
->green
.offset
= 0; var
->green
.length
= 8;
326 var
->blue
.offset
= 0; var
->blue
.length
= 8;
327 var
->transp
.offset
= 0; var
->transp
.length
= 8;
331 case 16: var
->transp
.length
?
332 SET_PIXFMT(var
, 5, 5, 5, 1) : /* RGBT555 */
333 SET_PIXFMT(var
, 5, 6, 5, 0); break; /* RGB565 */
334 case 18: SET_PIXFMT(var
, 6, 6, 6, 0); break; /* RGB666 */
335 case 19: SET_PIXFMT(var
, 6, 6, 6, 1); break; /* RGBT666 */
336 case 24: var
->transp
.length
?
337 SET_PIXFMT(var
, 8, 8, 7, 1) : /* RGBT887 */
338 SET_PIXFMT(var
, 8, 8, 8, 0); break; /* RGB888 */
339 case 25: SET_PIXFMT(var
, 8, 8, 8, 1); break; /* RGBT888 */
343 #ifdef CONFIG_CPU_FREQ
345 * pxafb_display_dma_period()
346 * Calculate the minimum period (in picoseconds) between two DMA
347 * requests for the LCD controller. If we hit this, it means we're
348 * doing nothing but LCD DMA.
350 static unsigned int pxafb_display_dma_period(struct fb_var_screeninfo
*var
)
353 * Period = pixclock * bits_per_byte * bytes_per_transfer
354 * / memory_bits_per_pixel;
356 return var
->pixclock
* 8 * 16 / var
->bits_per_pixel
;
361 * Select the smallest mode that allows the desired resolution to be
362 * displayed. If desired parameters can be rounded up.
364 static struct pxafb_mode_info
*pxafb_getmode(struct pxafb_mach_info
*mach
,
365 struct fb_var_screeninfo
*var
)
367 struct pxafb_mode_info
*mode
= NULL
;
368 struct pxafb_mode_info
*modelist
= mach
->modes
;
369 unsigned int best_x
= 0xffffffff, best_y
= 0xffffffff;
372 for (i
= 0; i
< mach
->num_modes
; i
++) {
373 if (modelist
[i
].xres
>= var
->xres
&&
374 modelist
[i
].yres
>= var
->yres
&&
375 modelist
[i
].xres
< best_x
&&
376 modelist
[i
].yres
< best_y
&&
377 modelist
[i
].bpp
>= var
->bits_per_pixel
) {
378 best_x
= modelist
[i
].xres
;
379 best_y
= modelist
[i
].yres
;
387 static void pxafb_setmode(struct fb_var_screeninfo
*var
,
388 struct pxafb_mode_info
*mode
)
390 var
->xres
= mode
->xres
;
391 var
->yres
= mode
->yres
;
392 var
->bits_per_pixel
= mode
->bpp
;
393 var
->pixclock
= mode
->pixclock
;
394 var
->hsync_len
= mode
->hsync_len
;
395 var
->left_margin
= mode
->left_margin
;
396 var
->right_margin
= mode
->right_margin
;
397 var
->vsync_len
= mode
->vsync_len
;
398 var
->upper_margin
= mode
->upper_margin
;
399 var
->lower_margin
= mode
->lower_margin
;
400 var
->sync
= mode
->sync
;
401 var
->grayscale
= mode
->cmap_greyscale
;
402 var
->transp
.length
= mode
->transparency
;
404 /* set the initial RGBA bitfields */
405 pxafb_set_pixfmt(var
, mode
->depth
);
408 static int pxafb_adjust_timing(struct pxafb_info
*fbi
,
409 struct fb_var_screeninfo
*var
)
413 var
->xres
= max_t(int, var
->xres
, MIN_XRES
);
414 var
->yres
= max_t(int, var
->yres
, MIN_YRES
);
416 if (!(fbi
->lccr0
& LCCR0_LCDT
)) {
417 clamp_val(var
->hsync_len
, 1, 64);
418 clamp_val(var
->vsync_len
, 1, 64);
419 clamp_val(var
->left_margin
, 1, 255);
420 clamp_val(var
->right_margin
, 1, 255);
421 clamp_val(var
->upper_margin
, 1, 255);
422 clamp_val(var
->lower_margin
, 1, 255);
425 /* make sure each line is aligned on word boundary */
426 line_length
= var
->xres
* var
->bits_per_pixel
/ 8;
427 line_length
= ALIGN(line_length
, 4);
428 var
->xres
= line_length
* 8 / var
->bits_per_pixel
;
430 /* we don't support xpan, force xres_virtual to be equal to xres */
431 var
->xres_virtual
= var
->xres
;
433 if (var
->accel_flags
& FB_ACCELF_TEXT
)
434 var
->yres_virtual
= fbi
->fb
.fix
.smem_len
/ line_length
;
436 var
->yres_virtual
= max(var
->yres_virtual
, var
->yres
);
438 /* check for limits */
439 if (var
->xres
> MAX_XRES
|| var
->yres
> MAX_YRES
)
442 if (var
->yres
> var
->yres_virtual
)
450 * Get the video params out of 'var'. If a value doesn't fit, round it up,
451 * if it's too big, return -EINVAL.
453 * Round up in the following order: bits_per_pixel, xres,
454 * yres, xres_virtual, yres_virtual, xoffset, yoffset, grayscale,
455 * bitfields, horizontal timing, vertical timing.
457 static int pxafb_check_var(struct fb_var_screeninfo
*var
, struct fb_info
*info
)
459 struct pxafb_info
*fbi
= (struct pxafb_info
*)info
;
460 struct pxafb_mach_info
*inf
= fbi
->dev
->platform_data
;
463 if (inf
->fixed_modes
) {
464 struct pxafb_mode_info
*mode
;
466 mode
= pxafb_getmode(inf
, var
);
469 pxafb_setmode(var
, mode
);
472 /* do a test conversion to BPP fields to check the color formats */
473 err
= pxafb_var_to_bpp(var
);
477 pxafb_set_pixfmt(var
, var_to_depth(var
));
479 err
= pxafb_adjust_timing(fbi
, var
);
483 #ifdef CONFIG_CPU_FREQ
484 pr_debug("pxafb: dma period = %d ps\n",
485 pxafb_display_dma_period(var
));
493 * Set the user defined part of the display for the specified console
495 static int pxafb_set_par(struct fb_info
*info
)
497 struct pxafb_info
*fbi
= (struct pxafb_info
*)info
;
498 struct fb_var_screeninfo
*var
= &info
->var
;
500 if (var
->bits_per_pixel
>= 16)
501 fbi
->fb
.fix
.visual
= FB_VISUAL_TRUECOLOR
;
502 else if (!fbi
->cmap_static
)
503 fbi
->fb
.fix
.visual
= FB_VISUAL_PSEUDOCOLOR
;
506 * Some people have weird ideas about wanting static
507 * pseudocolor maps. I suspect their user space
508 * applications are broken.
510 fbi
->fb
.fix
.visual
= FB_VISUAL_STATIC_PSEUDOCOLOR
;
513 fbi
->fb
.fix
.line_length
= var
->xres_virtual
*
514 var
->bits_per_pixel
/ 8;
515 if (var
->bits_per_pixel
>= 16)
516 fbi
->palette_size
= 0;
518 fbi
->palette_size
= var
->bits_per_pixel
== 1 ?
519 4 : 1 << var
->bits_per_pixel
;
521 fbi
->palette_cpu
= (u16
*)&fbi
->dma_buff
->palette
[0];
523 if (fbi
->fb
.var
.bits_per_pixel
>= 16)
524 fb_dealloc_cmap(&fbi
->fb
.cmap
);
526 fb_alloc_cmap(&fbi
->fb
.cmap
, 1<<fbi
->fb
.var
.bits_per_pixel
, 0);
528 pxafb_activate_var(var
, fbi
);
533 static int pxafb_pan_display(struct fb_var_screeninfo
*var
,
534 struct fb_info
*info
)
536 struct pxafb_info
*fbi
= (struct pxafb_info
*)info
;
537 struct fb_var_screeninfo newvar
;
538 int dma
= DMA_MAX
+ DMA_BASE
;
540 if (fbi
->state
!= C_ENABLE
)
543 /* Only take .xoffset, .yoffset and .vmode & FB_VMODE_YWRAP from what
544 * was passed in and copy the rest from the old screeninfo.
546 memcpy(&newvar
, &fbi
->fb
.var
, sizeof(newvar
));
547 newvar
.xoffset
= var
->xoffset
;
548 newvar
.yoffset
= var
->yoffset
;
549 newvar
.vmode
&= ~FB_VMODE_YWRAP
;
550 newvar
.vmode
|= var
->vmode
& FB_VMODE_YWRAP
;
552 setup_base_frame(fbi
, &newvar
, 1);
554 if (fbi
->lccr0
& LCCR0_SDS
)
555 lcd_writel(fbi
, FBR1
, fbi
->fdadr
[dma
+ 1] | 0x1);
557 lcd_writel(fbi
, FBR0
, fbi
->fdadr
[dma
] | 0x1);
563 * Blank the display by setting all palette values to zero. Note, the
564 * 16 bpp mode does not really use the palette, so this will not
565 * blank the display in all modes.
567 static int pxafb_blank(int blank
, struct fb_info
*info
)
569 struct pxafb_info
*fbi
= (struct pxafb_info
*)info
;
573 case FB_BLANK_POWERDOWN
:
574 case FB_BLANK_VSYNC_SUSPEND
:
575 case FB_BLANK_HSYNC_SUSPEND
:
576 case FB_BLANK_NORMAL
:
577 if (fbi
->fb
.fix
.visual
== FB_VISUAL_PSEUDOCOLOR
||
578 fbi
->fb
.fix
.visual
== FB_VISUAL_STATIC_PSEUDOCOLOR
)
579 for (i
= 0; i
< fbi
->palette_size
; i
++)
580 pxafb_setpalettereg(i
, 0, 0, 0, 0, info
);
582 pxafb_schedule_work(fbi
, C_DISABLE
);
583 /* TODO if (pxafb_blank_helper) pxafb_blank_helper(blank); */
586 case FB_BLANK_UNBLANK
:
587 /* TODO if (pxafb_blank_helper) pxafb_blank_helper(blank); */
588 if (fbi
->fb
.fix
.visual
== FB_VISUAL_PSEUDOCOLOR
||
589 fbi
->fb
.fix
.visual
== FB_VISUAL_STATIC_PSEUDOCOLOR
)
590 fb_set_cmap(&fbi
->fb
.cmap
, info
);
591 pxafb_schedule_work(fbi
, C_ENABLE
);
596 static struct fb_ops pxafb_ops
= {
597 .owner
= THIS_MODULE
,
598 .fb_check_var
= pxafb_check_var
,
599 .fb_set_par
= pxafb_set_par
,
600 .fb_pan_display
= pxafb_pan_display
,
601 .fb_setcolreg
= pxafb_setcolreg
,
602 .fb_fillrect
= cfb_fillrect
,
603 .fb_copyarea
= cfb_copyarea
,
604 .fb_imageblit
= cfb_imageblit
,
605 .fb_blank
= pxafb_blank
,
608 #ifdef CONFIG_FB_PXA_OVERLAY
609 static void overlay1fb_setup(struct pxafb_layer
*ofb
)
611 int size
= ofb
->fb
.fix
.line_length
* ofb
->fb
.var
.yres_virtual
;
612 unsigned long start
= ofb
->video_mem_phys
;
613 setup_frame_dma(ofb
->fbi
, DMA_OV1
, PAL_NONE
, start
, size
);
616 /* Depending on the enable status of overlay1/2, the DMA should be
617 * updated from FDADRx (when disabled) or FBRx (when enabled).
619 static void overlay1fb_enable(struct pxafb_layer
*ofb
)
621 int enabled
= lcd_readl(ofb
->fbi
, OVL1C1
) & OVLxC1_OEN
;
622 uint32_t fdadr1
= ofb
->fbi
->fdadr
[DMA_OV1
] | (enabled
? 0x1 : 0);
624 lcd_writel(ofb
->fbi
, enabled
? FBR1
: FDADR1
, fdadr1
);
625 lcd_writel(ofb
->fbi
, OVL1C2
, ofb
->control
[1]);
626 lcd_writel(ofb
->fbi
, OVL1C1
, ofb
->control
[0] | OVLxC1_OEN
);
629 static void overlay1fb_disable(struct pxafb_layer
*ofb
)
633 if (!(lcd_readl(ofb
->fbi
, OVL1C1
) & OVLxC1_OEN
))
636 lccr5
= lcd_readl(ofb
->fbi
, LCCR5
);
638 lcd_writel(ofb
->fbi
, OVL1C1
, ofb
->control
[0] & ~OVLxC1_OEN
);
640 lcd_writel(ofb
->fbi
, LCSR1
, LCSR1_BS(1));
641 lcd_writel(ofb
->fbi
, LCCR5
, lccr5
& ~LCSR1_BS(1));
642 lcd_writel(ofb
->fbi
, FBR1
, ofb
->fbi
->fdadr
[DMA_OV1
] | 0x3);
644 if (wait_for_completion_timeout(&ofb
->branch_done
, 1 * HZ
) == 0)
645 pr_warning("%s: timeout disabling overlay1\n", __func__
);
647 lcd_writel(ofb
->fbi
, LCCR5
, lccr5
);
650 static void overlay2fb_setup(struct pxafb_layer
*ofb
)
652 int size
, div
= 1, pfor
= NONSTD_TO_PFOR(ofb
->fb
.var
.nonstd
);
653 unsigned long start
[3] = { ofb
->video_mem_phys
, 0, 0 };
655 if (pfor
== OVERLAY_FORMAT_RGB
|| pfor
== OVERLAY_FORMAT_YUV444_PACKED
) {
656 size
= ofb
->fb
.fix
.line_length
* ofb
->fb
.var
.yres_virtual
;
657 setup_frame_dma(ofb
->fbi
, DMA_OV2_Y
, -1, start
[0], size
);
659 size
= ofb
->fb
.var
.xres_virtual
* ofb
->fb
.var
.yres_virtual
;
661 case OVERLAY_FORMAT_YUV444_PLANAR
: div
= 1; break;
662 case OVERLAY_FORMAT_YUV422_PLANAR
: div
= 2; break;
663 case OVERLAY_FORMAT_YUV420_PLANAR
: div
= 4; break;
665 start
[1] = start
[0] + size
;
666 start
[2] = start
[1] + size
/ div
;
667 setup_frame_dma(ofb
->fbi
, DMA_OV2_Y
, -1, start
[0], size
);
668 setup_frame_dma(ofb
->fbi
, DMA_OV2_Cb
, -1, start
[1], size
/ div
);
669 setup_frame_dma(ofb
->fbi
, DMA_OV2_Cr
, -1, start
[2], size
/ div
);
673 static void overlay2fb_enable(struct pxafb_layer
*ofb
)
675 int pfor
= NONSTD_TO_PFOR(ofb
->fb
.var
.nonstd
);
676 int enabled
= lcd_readl(ofb
->fbi
, OVL2C1
) & OVLxC1_OEN
;
677 uint32_t fdadr2
= ofb
->fbi
->fdadr
[DMA_OV2_Y
] | (enabled
? 0x1 : 0);
678 uint32_t fdadr3
= ofb
->fbi
->fdadr
[DMA_OV2_Cb
] | (enabled
? 0x1 : 0);
679 uint32_t fdadr4
= ofb
->fbi
->fdadr
[DMA_OV2_Cr
] | (enabled
? 0x1 : 0);
681 if (pfor
== OVERLAY_FORMAT_RGB
|| pfor
== OVERLAY_FORMAT_YUV444_PACKED
)
682 lcd_writel(ofb
->fbi
, enabled
? FBR2
: FDADR2
, fdadr2
);
684 lcd_writel(ofb
->fbi
, enabled
? FBR2
: FDADR2
, fdadr2
);
685 lcd_writel(ofb
->fbi
, enabled
? FBR3
: FDADR3
, fdadr3
);
686 lcd_writel(ofb
->fbi
, enabled
? FBR4
: FDADR4
, fdadr4
);
688 lcd_writel(ofb
->fbi
, OVL2C2
, ofb
->control
[1]);
689 lcd_writel(ofb
->fbi
, OVL2C1
, ofb
->control
[0] | OVLxC1_OEN
);
692 static void overlay2fb_disable(struct pxafb_layer
*ofb
)
696 if (!(lcd_readl(ofb
->fbi
, OVL2C1
) & OVLxC1_OEN
))
699 lccr5
= lcd_readl(ofb
->fbi
, LCCR5
);
701 lcd_writel(ofb
->fbi
, OVL2C1
, ofb
->control
[0] & ~OVLxC1_OEN
);
703 lcd_writel(ofb
->fbi
, LCSR1
, LCSR1_BS(2));
704 lcd_writel(ofb
->fbi
, LCCR5
, lccr5
& ~LCSR1_BS(2));
705 lcd_writel(ofb
->fbi
, FBR2
, ofb
->fbi
->fdadr
[DMA_OV2_Y
] | 0x3);
706 lcd_writel(ofb
->fbi
, FBR3
, ofb
->fbi
->fdadr
[DMA_OV2_Cb
] | 0x3);
707 lcd_writel(ofb
->fbi
, FBR4
, ofb
->fbi
->fdadr
[DMA_OV2_Cr
] | 0x3);
709 if (wait_for_completion_timeout(&ofb
->branch_done
, 1 * HZ
) == 0)
710 pr_warning("%s: timeout disabling overlay2\n", __func__
);
713 static struct pxafb_layer_ops ofb_ops
[] = {
715 .enable
= overlay1fb_enable
,
716 .disable
= overlay1fb_disable
,
717 .setup
= overlay1fb_setup
,
720 .enable
= overlay2fb_enable
,
721 .disable
= overlay2fb_disable
,
722 .setup
= overlay2fb_setup
,
726 static int overlayfb_open(struct fb_info
*info
, int user
)
728 struct pxafb_layer
*ofb
= (struct pxafb_layer
*)info
;
730 /* no support for framebuffer console on overlay */
734 if (ofb
->usage
++ == 0) {
735 /* unblank the base framebuffer */
737 fb_blank(&ofb
->fbi
->fb
, FB_BLANK_UNBLANK
);
744 static int overlayfb_release(struct fb_info
*info
, int user
)
746 struct pxafb_layer
*ofb
= (struct pxafb_layer
*) info
;
748 if (ofb
->usage
== 1) {
749 ofb
->ops
->disable(ofb
);
750 ofb
->fb
.var
.height
= -1;
751 ofb
->fb
.var
.width
= -1;
752 ofb
->fb
.var
.xres
= ofb
->fb
.var
.xres_virtual
= 0;
753 ofb
->fb
.var
.yres
= ofb
->fb
.var
.yres_virtual
= 0;
760 static int overlayfb_check_var(struct fb_var_screeninfo
*var
,
761 struct fb_info
*info
)
763 struct pxafb_layer
*ofb
= (struct pxafb_layer
*)info
;
764 struct fb_var_screeninfo
*base_var
= &ofb
->fbi
->fb
.var
;
765 int xpos
, ypos
, pfor
, bpp
;
767 xpos
= NONSTD_TO_XPOS(var
->nonstd
);
768 ypos
= NONSTD_TO_YPOS(var
->nonstd
);
769 pfor
= NONSTD_TO_PFOR(var
->nonstd
);
771 bpp
= pxafb_var_to_bpp(var
);
775 /* no support for YUV format on overlay1 */
776 if (ofb
->id
== OVERLAY1
&& pfor
!= 0)
779 /* for YUV packed formats, bpp = 'minimum bpp of YUV components' */
781 case OVERLAY_FORMAT_RGB
:
782 bpp
= pxafb_var_to_bpp(var
);
786 pxafb_set_pixfmt(var
, var_to_depth(var
));
788 case OVERLAY_FORMAT_YUV444_PACKED
: bpp
= 24; break;
789 case OVERLAY_FORMAT_YUV444_PLANAR
: bpp
= 8; break;
790 case OVERLAY_FORMAT_YUV422_PLANAR
: bpp
= 4; break;
791 case OVERLAY_FORMAT_YUV420_PLANAR
: bpp
= 2; break;
796 /* each line must start at a 32-bit word boundary */
797 if ((xpos
* bpp
) % 32)
800 /* xres must align on 32-bit word boundary */
801 var
->xres
= roundup(var
->xres
* bpp
, 32) / bpp
;
803 if ((xpos
+ var
->xres
> base_var
->xres
) ||
804 (ypos
+ var
->yres
> base_var
->yres
))
807 var
->xres_virtual
= var
->xres
;
808 var
->yres_virtual
= max(var
->yres
, var
->yres_virtual
);
812 static int overlayfb_check_video_memory(struct pxafb_layer
*ofb
)
814 struct fb_var_screeninfo
*var
= &ofb
->fb
.var
;
815 int pfor
= NONSTD_TO_PFOR(var
->nonstd
);
819 case OVERLAY_FORMAT_RGB
: bpp
= var
->bits_per_pixel
; break;
820 case OVERLAY_FORMAT_YUV444_PACKED
: bpp
= 24; break;
821 case OVERLAY_FORMAT_YUV444_PLANAR
: bpp
= 24; break;
822 case OVERLAY_FORMAT_YUV422_PLANAR
: bpp
= 16; break;
823 case OVERLAY_FORMAT_YUV420_PLANAR
: bpp
= 12; break;
826 ofb
->fb
.fix
.line_length
= var
->xres_virtual
* bpp
/ 8;
828 size
= PAGE_ALIGN(ofb
->fb
.fix
.line_length
* var
->yres_virtual
);
830 if (ofb
->video_mem
) {
831 if (ofb
->video_mem_size
>= size
)
837 static int overlayfb_set_par(struct fb_info
*info
)
839 struct pxafb_layer
*ofb
= (struct pxafb_layer
*)info
;
840 struct fb_var_screeninfo
*var
= &info
->var
;
841 int xpos
, ypos
, pfor
, bpp
, ret
;
843 ret
= overlayfb_check_video_memory(ofb
);
847 bpp
= pxafb_var_to_bpp(var
);
848 xpos
= NONSTD_TO_XPOS(var
->nonstd
);
849 ypos
= NONSTD_TO_YPOS(var
->nonstd
);
850 pfor
= NONSTD_TO_PFOR(var
->nonstd
);
852 ofb
->control
[0] = OVLxC1_PPL(var
->xres
) | OVLxC1_LPO(var
->yres
) |
854 ofb
->control
[1] = OVLxC2_XPOS(xpos
) | OVLxC2_YPOS(ypos
);
856 if (ofb
->id
== OVERLAY2
)
857 ofb
->control
[1] |= OVL2C2_PFOR(pfor
);
859 ofb
->ops
->setup(ofb
);
860 ofb
->ops
->enable(ofb
);
864 static struct fb_ops overlay_fb_ops
= {
865 .owner
= THIS_MODULE
,
866 .fb_open
= overlayfb_open
,
867 .fb_release
= overlayfb_release
,
868 .fb_check_var
= overlayfb_check_var
,
869 .fb_set_par
= overlayfb_set_par
,
872 static void init_pxafb_overlay(struct pxafb_info
*fbi
, struct pxafb_layer
*ofb
,
875 sprintf(ofb
->fb
.fix
.id
, "overlay%d", id
+ 1);
877 ofb
->fb
.fix
.type
= FB_TYPE_PACKED_PIXELS
;
878 ofb
->fb
.fix
.xpanstep
= 0;
879 ofb
->fb
.fix
.ypanstep
= 1;
881 ofb
->fb
.var
.activate
= FB_ACTIVATE_NOW
;
882 ofb
->fb
.var
.height
= -1;
883 ofb
->fb
.var
.width
= -1;
884 ofb
->fb
.var
.vmode
= FB_VMODE_NONINTERLACED
;
886 ofb
->fb
.fbops
= &overlay_fb_ops
;
887 ofb
->fb
.flags
= FBINFO_FLAG_DEFAULT
;
889 ofb
->fb
.pseudo_palette
= NULL
;
892 ofb
->ops
= &ofb_ops
[id
];
895 init_completion(&ofb
->branch_done
);
898 static inline int pxafb_overlay_supported(void)
900 if (cpu_is_pxa27x() || cpu_is_pxa3xx())
906 static int pxafb_overlay_map_video_memory(struct pxafb_info
*pxafb
,
907 struct pxafb_layer
*ofb
)
909 /* We assume that user will use at most video_mem_size for overlay fb,
910 * anyway, it's useless to use 16bpp main plane and 24bpp overlay
912 ofb
->video_mem
= alloc_pages_exact(PAGE_ALIGN(pxafb
->video_mem_size
),
913 GFP_KERNEL
| __GFP_ZERO
);
914 if (ofb
->video_mem
== NULL
)
917 ofb
->video_mem_phys
= virt_to_phys(ofb
->video_mem
);
918 ofb
->video_mem_size
= PAGE_ALIGN(pxafb
->video_mem_size
);
920 mutex_lock(&ofb
->fb
.mm_lock
);
921 ofb
->fb
.fix
.smem_start
= ofb
->video_mem_phys
;
922 ofb
->fb
.fix
.smem_len
= pxafb
->video_mem_size
;
923 mutex_unlock(&ofb
->fb
.mm_lock
);
925 ofb
->fb
.screen_base
= ofb
->video_mem
;
930 static void pxafb_overlay_init(struct pxafb_info
*fbi
)
934 if (!pxafb_overlay_supported())
937 for (i
= 0; i
< 2; i
++) {
938 struct pxafb_layer
*ofb
= &fbi
->overlay
[i
];
939 init_pxafb_overlay(fbi
, ofb
, i
);
940 ret
= register_framebuffer(&ofb
->fb
);
942 dev_err(fbi
->dev
, "failed to register overlay %d\n", i
);
945 ret
= pxafb_overlay_map_video_memory(fbi
, ofb
);
948 "failed to map video memory for overlay %d\n",
950 unregister_framebuffer(&ofb
->fb
);
956 /* mask all IU/BS/EOF/SOF interrupts */
957 lcd_writel(fbi
, LCCR5
, ~0);
959 pr_info("PXA Overlay driver loaded successfully!\n");
962 static void pxafb_overlay_exit(struct pxafb_info
*fbi
)
966 if (!pxafb_overlay_supported())
969 for (i
= 0; i
< 2; i
++) {
970 struct pxafb_layer
*ofb
= &fbi
->overlay
[i
];
971 if (ofb
->registered
) {
973 free_pages_exact(ofb
->video_mem
,
974 ofb
->video_mem_size
);
975 unregister_framebuffer(&ofb
->fb
);
980 static inline void pxafb_overlay_init(struct pxafb_info
*fbi
) {}
981 static inline void pxafb_overlay_exit(struct pxafb_info
*fbi
) {}
982 #endif /* CONFIG_FB_PXA_OVERLAY */
985 * Calculate the PCD value from the clock rate (in picoseconds).
986 * We take account of the PPCR clock setting.
987 * From PXA Developer's Manual:
998 * LCLK = LCD/Memory Clock
1001 * PixelClock here is in Hz while the pixclock argument given is the
1002 * period in picoseconds. Hence PixelClock = 1 / ( pixclock * 10^-12 )
1004 * The function get_lclk_frequency_10khz returns LCLK in units of
1005 * 10khz. Calling the result of this function lclk gives us the
1008 * PCD = (lclk * 10^4 ) * ( pixclock * 10^-12 )
1009 * -------------------------------------- - 1
1012 * Factoring the 10^4 and 10^-12 out gives 10^-8 == 1 / 100000000 as used below.
1014 static inline unsigned int get_pcd(struct pxafb_info
*fbi
,
1015 unsigned int pixclock
)
1017 unsigned long long pcd
;
1019 /* FIXME: Need to take into account Double Pixel Clock mode
1020 * (DPC) bit? or perhaps set it based on the various clock
1022 pcd
= (unsigned long long)(clk_get_rate(fbi
->clk
) / 10000);
1024 do_div(pcd
, 100000000 * 2);
1025 /* no need for this, since we should subtract 1 anyway. they cancel */
1026 /* pcd += 1; */ /* make up for integer math truncations */
1027 return (unsigned int)pcd
;
1031 * Some touchscreens need hsync information from the video driver to
1032 * function correctly. We export it here. Note that 'hsync_time' and
1033 * the value returned from pxafb_get_hsync_time() is the *reciprocal*
1034 * of the hsync period in seconds.
1036 static inline void set_hsync_time(struct pxafb_info
*fbi
, unsigned int pcd
)
1038 unsigned long htime
;
1040 if ((pcd
== 0) || (fbi
->fb
.var
.hsync_len
== 0)) {
1041 fbi
->hsync_time
= 0;
1045 htime
= clk_get_rate(fbi
->clk
) / (pcd
* fbi
->fb
.var
.hsync_len
);
1047 fbi
->hsync_time
= htime
;
1050 unsigned long pxafb_get_hsync_time(struct device
*dev
)
1052 struct pxafb_info
*fbi
= dev_get_drvdata(dev
);
1054 /* If display is blanked/suspended, hsync isn't active */
1055 if (!fbi
|| (fbi
->state
!= C_ENABLE
))
1058 return fbi
->hsync_time
;
1060 EXPORT_SYMBOL(pxafb_get_hsync_time
);
1062 static int setup_frame_dma(struct pxafb_info
*fbi
, int dma
, int pal
,
1063 unsigned long start
, size_t size
)
1065 struct pxafb_dma_descriptor
*dma_desc
, *pal_desc
;
1066 unsigned int dma_desc_off
, pal_desc_off
;
1068 if (dma
< 0 || dma
>= DMA_MAX
* 2)
1071 dma_desc
= &fbi
->dma_buff
->dma_desc
[dma
];
1072 dma_desc_off
= offsetof(struct pxafb_dma_buff
, dma_desc
[dma
]);
1074 dma_desc
->fsadr
= start
;
1076 dma_desc
->ldcmd
= size
;
1078 if (pal
< 0 || pal
>= PAL_MAX
* 2) {
1079 dma_desc
->fdadr
= fbi
->dma_buff_phys
+ dma_desc_off
;
1080 fbi
->fdadr
[dma
] = fbi
->dma_buff_phys
+ dma_desc_off
;
1082 pal_desc
= &fbi
->dma_buff
->pal_desc
[pal
];
1083 pal_desc_off
= offsetof(struct pxafb_dma_buff
, pal_desc
[pal
]);
1085 pal_desc
->fsadr
= fbi
->dma_buff_phys
+ pal
* PALETTE_SIZE
;
1088 if ((fbi
->lccr4
& LCCR4_PAL_FOR_MASK
) == LCCR4_PAL_FOR_0
)
1089 pal_desc
->ldcmd
= fbi
->palette_size
* sizeof(u16
);
1091 pal_desc
->ldcmd
= fbi
->palette_size
* sizeof(u32
);
1093 pal_desc
->ldcmd
|= LDCMD_PAL
;
1095 /* flip back and forth between palette and frame buffer */
1096 pal_desc
->fdadr
= fbi
->dma_buff_phys
+ dma_desc_off
;
1097 dma_desc
->fdadr
= fbi
->dma_buff_phys
+ pal_desc_off
;
1098 fbi
->fdadr
[dma
] = fbi
->dma_buff_phys
+ dma_desc_off
;
1104 static void setup_base_frame(struct pxafb_info
*fbi
,
1105 struct fb_var_screeninfo
*var
,
1108 struct fb_fix_screeninfo
*fix
= &fbi
->fb
.fix
;
1109 int nbytes
, dma
, pal
, bpp
= var
->bits_per_pixel
;
1110 unsigned long offset
;
1112 dma
= DMA_BASE
+ (branch
? DMA_MAX
: 0);
1113 pal
= (bpp
>= 16) ? PAL_NONE
: PAL_BASE
+ (branch
? PAL_MAX
: 0);
1115 nbytes
= fix
->line_length
* var
->yres
;
1116 offset
= fix
->line_length
* var
->yoffset
+ fbi
->video_mem_phys
;
1118 if (fbi
->lccr0
& LCCR0_SDS
) {
1119 nbytes
= nbytes
/ 2;
1120 setup_frame_dma(fbi
, dma
+ 1, PAL_NONE
, offset
+ nbytes
, nbytes
);
1123 setup_frame_dma(fbi
, dma
, pal
, offset
, nbytes
);
1126 #ifdef CONFIG_FB_PXA_SMARTPANEL
1127 static int setup_smart_dma(struct pxafb_info
*fbi
)
1129 struct pxafb_dma_descriptor
*dma_desc
;
1130 unsigned long dma_desc_off
, cmd_buff_off
;
1132 dma_desc
= &fbi
->dma_buff
->dma_desc
[DMA_CMD
];
1133 dma_desc_off
= offsetof(struct pxafb_dma_buff
, dma_desc
[DMA_CMD
]);
1134 cmd_buff_off
= offsetof(struct pxafb_dma_buff
, cmd_buff
);
1136 dma_desc
->fdadr
= fbi
->dma_buff_phys
+ dma_desc_off
;
1137 dma_desc
->fsadr
= fbi
->dma_buff_phys
+ cmd_buff_off
;
1139 dma_desc
->ldcmd
= fbi
->n_smart_cmds
* sizeof(uint16_t);
1141 fbi
->fdadr
[DMA_CMD
] = dma_desc
->fdadr
;
1145 int pxafb_smart_flush(struct fb_info
*info
)
1147 struct pxafb_info
*fbi
= container_of(info
, struct pxafb_info
, fb
);
1151 /* disable controller until all registers are set up */
1152 lcd_writel(fbi
, LCCR0
, fbi
->reg_lccr0
& ~LCCR0_ENB
);
1154 /* 1. make it an even number of commands to align on 32-bit boundary
1155 * 2. add the interrupt command to the end of the chain so we can
1156 * keep track of the end of the transfer
1159 while (fbi
->n_smart_cmds
& 1)
1160 fbi
->smart_cmds
[fbi
->n_smart_cmds
++] = SMART_CMD_NOOP
;
1162 fbi
->smart_cmds
[fbi
->n_smart_cmds
++] = SMART_CMD_INTERRUPT
;
1163 fbi
->smart_cmds
[fbi
->n_smart_cmds
++] = SMART_CMD_WAIT_FOR_VSYNC
;
1164 setup_smart_dma(fbi
);
1166 /* continue to execute next command */
1167 prsr
= lcd_readl(fbi
, PRSR
) | PRSR_ST_OK
| PRSR_CON_NT
;
1168 lcd_writel(fbi
, PRSR
, prsr
);
1170 /* stop the processor in case it executed "wait for sync" cmd */
1171 lcd_writel(fbi
, CMDCR
, 0x0001);
1173 /* don't send interrupts for fifo underruns on channel 6 */
1174 lcd_writel(fbi
, LCCR5
, LCCR5_IUM(6));
1176 lcd_writel(fbi
, LCCR1
, fbi
->reg_lccr1
);
1177 lcd_writel(fbi
, LCCR2
, fbi
->reg_lccr2
);
1178 lcd_writel(fbi
, LCCR3
, fbi
->reg_lccr3
);
1179 lcd_writel(fbi
, LCCR4
, fbi
->reg_lccr4
);
1180 lcd_writel(fbi
, FDADR0
, fbi
->fdadr
[0]);
1181 lcd_writel(fbi
, FDADR6
, fbi
->fdadr
[6]);
1184 lcd_writel(fbi
, LCCR0
, fbi
->reg_lccr0
| LCCR0_ENB
);
1186 if (wait_for_completion_timeout(&fbi
->command_done
, HZ
/2) == 0) {
1187 pr_warning("%s: timeout waiting for command done\n",
1193 prsr
= lcd_readl(fbi
, PRSR
) & ~(PRSR_ST_OK
| PRSR_CON_NT
);
1194 lcd_writel(fbi
, PRSR
, prsr
);
1195 lcd_writel(fbi
, LCCR0
, fbi
->reg_lccr0
& ~LCCR0_ENB
);
1196 lcd_writel(fbi
, FDADR6
, 0);
1197 fbi
->n_smart_cmds
= 0;
1201 int pxafb_smart_queue(struct fb_info
*info
, uint16_t *cmds
, int n_cmds
)
1204 struct pxafb_info
*fbi
= container_of(info
, struct pxafb_info
, fb
);
1206 for (i
= 0; i
< n_cmds
; i
++, cmds
++) {
1207 /* if it is a software delay, flush and delay */
1208 if ((*cmds
& 0xff00) == SMART_CMD_DELAY
) {
1209 pxafb_smart_flush(info
);
1210 mdelay(*cmds
& 0xff);
1214 /* leave 2 commands for INTERRUPT and WAIT_FOR_SYNC */
1215 if (fbi
->n_smart_cmds
== CMD_BUFF_SIZE
- 8)
1216 pxafb_smart_flush(info
);
1218 fbi
->smart_cmds
[fbi
->n_smart_cmds
++] = *cmds
;
1224 static unsigned int __smart_timing(unsigned time_ns
, unsigned long lcd_clk
)
1226 unsigned int t
= (time_ns
* (lcd_clk
/ 1000000) / 1000);
1227 return (t
== 0) ? 1 : t
;
1230 static void setup_smart_timing(struct pxafb_info
*fbi
,
1231 struct fb_var_screeninfo
*var
)
1233 struct pxafb_mach_info
*inf
= fbi
->dev
->platform_data
;
1234 struct pxafb_mode_info
*mode
= &inf
->modes
[0];
1235 unsigned long lclk
= clk_get_rate(fbi
->clk
);
1236 unsigned t1
, t2
, t3
, t4
;
1238 t1
= max(mode
->a0csrd_set_hld
, mode
->a0cswr_set_hld
);
1239 t2
= max(mode
->rd_pulse_width
, mode
->wr_pulse_width
);
1240 t3
= mode
->op_hold_time
;
1241 t4
= mode
->cmd_inh_time
;
1244 LCCR1_DisWdth(var
->xres
) |
1245 LCCR1_BegLnDel(__smart_timing(t1
, lclk
)) |
1246 LCCR1_EndLnDel(__smart_timing(t2
, lclk
)) |
1247 LCCR1_HorSnchWdth(__smart_timing(t3
, lclk
));
1249 fbi
->reg_lccr2
= LCCR2_DisHght(var
->yres
);
1250 fbi
->reg_lccr3
= fbi
->lccr3
| LCCR3_PixClkDiv(__smart_timing(t4
, lclk
));
1251 fbi
->reg_lccr3
|= (var
->sync
& FB_SYNC_HOR_HIGH_ACT
) ? LCCR3_HSP
: 0;
1252 fbi
->reg_lccr3
|= (var
->sync
& FB_SYNC_VERT_HIGH_ACT
) ? LCCR3_VSP
: 0;
1254 /* FIXME: make this configurable */
1258 static int pxafb_smart_thread(void *arg
)
1260 struct pxafb_info
*fbi
= arg
;
1261 struct pxafb_mach_info
*inf
= fbi
->dev
->platform_data
;
1263 if (!inf
->smart_update
) {
1264 pr_err("%s: not properly initialized, thread terminated\n",
1268 inf
= fbi
->dev
->platform_data
;
1270 pr_debug("%s(): task starting\n", __func__
);
1273 while (!kthread_should_stop()) {
1275 if (try_to_freeze())
1278 mutex_lock(&fbi
->ctrlr_lock
);
1280 if (fbi
->state
== C_ENABLE
) {
1281 inf
->smart_update(&fbi
->fb
);
1282 complete(&fbi
->refresh_done
);
1285 mutex_unlock(&fbi
->ctrlr_lock
);
1287 set_current_state(TASK_INTERRUPTIBLE
);
1288 schedule_timeout(30 * HZ
/ 1000);
1291 pr_debug("%s(): task ending\n", __func__
);
1295 static int pxafb_smart_init(struct pxafb_info
*fbi
)
1297 if (!(fbi
->lccr0
& LCCR0_LCDT
))
1300 fbi
->smart_cmds
= (uint16_t *) fbi
->dma_buff
->cmd_buff
;
1301 fbi
->n_smart_cmds
= 0;
1303 init_completion(&fbi
->command_done
);
1304 init_completion(&fbi
->refresh_done
);
1306 fbi
->smart_thread
= kthread_run(pxafb_smart_thread
, fbi
,
1308 if (IS_ERR(fbi
->smart_thread
)) {
1309 pr_err("%s: unable to create kernel thread\n", __func__
);
1310 return PTR_ERR(fbi
->smart_thread
);
1316 static inline int pxafb_smart_init(struct pxafb_info
*fbi
) { return 0; }
1317 #endif /* CONFIG_FB_PXA_SMARTPANEL */
1319 static void setup_parallel_timing(struct pxafb_info
*fbi
,
1320 struct fb_var_screeninfo
*var
)
1322 unsigned int lines_per_panel
, pcd
= get_pcd(fbi
, var
->pixclock
);
1325 LCCR1_DisWdth(var
->xres
) +
1326 LCCR1_HorSnchWdth(var
->hsync_len
) +
1327 LCCR1_BegLnDel(var
->left_margin
) +
1328 LCCR1_EndLnDel(var
->right_margin
);
1331 * If we have a dual scan LCD, we need to halve
1332 * the YRES parameter.
1334 lines_per_panel
= var
->yres
;
1335 if ((fbi
->lccr0
& LCCR0_SDS
) == LCCR0_Dual
)
1336 lines_per_panel
/= 2;
1339 LCCR2_DisHght(lines_per_panel
) +
1340 LCCR2_VrtSnchWdth(var
->vsync_len
) +
1341 LCCR2_BegFrmDel(var
->upper_margin
) +
1342 LCCR2_EndFrmDel(var
->lower_margin
);
1344 fbi
->reg_lccr3
= fbi
->lccr3
|
1345 (var
->sync
& FB_SYNC_HOR_HIGH_ACT
?
1346 LCCR3_HorSnchH
: LCCR3_HorSnchL
) |
1347 (var
->sync
& FB_SYNC_VERT_HIGH_ACT
?
1348 LCCR3_VrtSnchH
: LCCR3_VrtSnchL
);
1351 fbi
->reg_lccr3
|= LCCR3_PixClkDiv(pcd
);
1352 set_hsync_time(fbi
, pcd
);
1357 * pxafb_activate_var():
1358 * Configures LCD Controller based on entries in var parameter.
1359 * Settings are only written to the controller if changes were made.
1361 static int pxafb_activate_var(struct fb_var_screeninfo
*var
,
1362 struct pxafb_info
*fbi
)
1366 /* Update shadow copy atomically */
1367 local_irq_save(flags
);
1369 #ifdef CONFIG_FB_PXA_SMARTPANEL
1370 if (fbi
->lccr0
& LCCR0_LCDT
)
1371 setup_smart_timing(fbi
, var
);
1374 setup_parallel_timing(fbi
, var
);
1376 setup_base_frame(fbi
, var
, 0);
1378 fbi
->reg_lccr0
= fbi
->lccr0
|
1379 (LCCR0_LDM
| LCCR0_SFM
| LCCR0_IUM
| LCCR0_EFM
|
1380 LCCR0_QDM
| LCCR0_BM
| LCCR0_OUM
);
1382 fbi
->reg_lccr3
|= pxafb_var_to_lccr3(var
);
1384 fbi
->reg_lccr4
= lcd_readl(fbi
, LCCR4
) & ~LCCR4_PAL_FOR_MASK
;
1385 fbi
->reg_lccr4
|= (fbi
->lccr4
& LCCR4_PAL_FOR_MASK
);
1386 local_irq_restore(flags
);
1389 * Only update the registers if the controller is enabled
1390 * and something has changed.
1392 if ((lcd_readl(fbi
, LCCR0
) != fbi
->reg_lccr0
) ||
1393 (lcd_readl(fbi
, LCCR1
) != fbi
->reg_lccr1
) ||
1394 (lcd_readl(fbi
, LCCR2
) != fbi
->reg_lccr2
) ||
1395 (lcd_readl(fbi
, LCCR3
) != fbi
->reg_lccr3
) ||
1396 (lcd_readl(fbi
, LCCR4
) != fbi
->reg_lccr4
) ||
1397 (lcd_readl(fbi
, FDADR0
) != fbi
->fdadr
[0]) ||
1398 ((fbi
->lccr0
& LCCR0_SDS
) &&
1399 (lcd_readl(fbi
, FDADR1
) != fbi
->fdadr
[1])))
1400 pxafb_schedule_work(fbi
, C_REENABLE
);
1406 * NOTE! The following functions are purely helpers for set_ctrlr_state.
1407 * Do not call them directly; set_ctrlr_state does the correct serialisation
1408 * to ensure that things happen in the right way 100% of time time.
1411 static inline void __pxafb_backlight_power(struct pxafb_info
*fbi
, int on
)
1413 pr_debug("pxafb: backlight o%s\n", on
? "n" : "ff");
1415 if (fbi
->backlight_power
)
1416 fbi
->backlight_power(on
);
1419 static inline void __pxafb_lcd_power(struct pxafb_info
*fbi
, int on
)
1421 pr_debug("pxafb: LCD power o%s\n", on
? "n" : "ff");
1424 fbi
->lcd_power(on
, &fbi
->fb
.var
);
1427 static void pxafb_enable_controller(struct pxafb_info
*fbi
)
1429 pr_debug("pxafb: Enabling LCD controller\n");
1430 pr_debug("fdadr0 0x%08x\n", (unsigned int) fbi
->fdadr
[0]);
1431 pr_debug("fdadr1 0x%08x\n", (unsigned int) fbi
->fdadr
[1]);
1432 pr_debug("reg_lccr0 0x%08x\n", (unsigned int) fbi
->reg_lccr0
);
1433 pr_debug("reg_lccr1 0x%08x\n", (unsigned int) fbi
->reg_lccr1
);
1434 pr_debug("reg_lccr2 0x%08x\n", (unsigned int) fbi
->reg_lccr2
);
1435 pr_debug("reg_lccr3 0x%08x\n", (unsigned int) fbi
->reg_lccr3
);
1437 /* enable LCD controller clock */
1438 clk_prepare_enable(fbi
->clk
);
1440 if (fbi
->lccr0
& LCCR0_LCDT
)
1443 /* Sequence from 11.7.10 */
1444 lcd_writel(fbi
, LCCR4
, fbi
->reg_lccr4
);
1445 lcd_writel(fbi
, LCCR3
, fbi
->reg_lccr3
);
1446 lcd_writel(fbi
, LCCR2
, fbi
->reg_lccr2
);
1447 lcd_writel(fbi
, LCCR1
, fbi
->reg_lccr1
);
1448 lcd_writel(fbi
, LCCR0
, fbi
->reg_lccr0
& ~LCCR0_ENB
);
1450 lcd_writel(fbi
, FDADR0
, fbi
->fdadr
[0]);
1451 if (fbi
->lccr0
& LCCR0_SDS
)
1452 lcd_writel(fbi
, FDADR1
, fbi
->fdadr
[1]);
1453 lcd_writel(fbi
, LCCR0
, fbi
->reg_lccr0
| LCCR0_ENB
);
1456 static void pxafb_disable_controller(struct pxafb_info
*fbi
)
1460 #ifdef CONFIG_FB_PXA_SMARTPANEL
1461 if (fbi
->lccr0
& LCCR0_LCDT
) {
1462 wait_for_completion_timeout(&fbi
->refresh_done
,
1468 /* Clear LCD Status Register */
1469 lcd_writel(fbi
, LCSR
, 0xffffffff);
1471 lccr0
= lcd_readl(fbi
, LCCR0
) & ~LCCR0_LDM
;
1472 lcd_writel(fbi
, LCCR0
, lccr0
);
1473 lcd_writel(fbi
, LCCR0
, lccr0
| LCCR0_DIS
);
1475 wait_for_completion_timeout(&fbi
->disable_done
, 200 * HZ
/ 1000);
1477 /* disable LCD controller clock */
1478 clk_disable_unprepare(fbi
->clk
);
1482 * pxafb_handle_irq: Handle 'LCD DONE' interrupts.
1484 static irqreturn_t
pxafb_handle_irq(int irq
, void *dev_id
)
1486 struct pxafb_info
*fbi
= dev_id
;
1487 unsigned int lccr0
, lcsr
;
1489 lcsr
= lcd_readl(fbi
, LCSR
);
1490 if (lcsr
& LCSR_LDD
) {
1491 lccr0
= lcd_readl(fbi
, LCCR0
);
1492 lcd_writel(fbi
, LCCR0
, lccr0
| LCCR0_LDM
);
1493 complete(&fbi
->disable_done
);
1496 #ifdef CONFIG_FB_PXA_SMARTPANEL
1497 if (lcsr
& LCSR_CMD_INT
)
1498 complete(&fbi
->command_done
);
1500 lcd_writel(fbi
, LCSR
, lcsr
);
1502 #ifdef CONFIG_FB_PXA_OVERLAY
1504 unsigned int lcsr1
= lcd_readl(fbi
, LCSR1
);
1505 if (lcsr1
& LCSR1_BS(1))
1506 complete(&fbi
->overlay
[0].branch_done
);
1508 if (lcsr1
& LCSR1_BS(2))
1509 complete(&fbi
->overlay
[1].branch_done
);
1511 lcd_writel(fbi
, LCSR1
, lcsr1
);
1518 * This function must be called from task context only, since it will
1519 * sleep when disabling the LCD controller, or if we get two contending
1520 * processes trying to alter state.
1522 static void set_ctrlr_state(struct pxafb_info
*fbi
, u_int state
)
1526 mutex_lock(&fbi
->ctrlr_lock
);
1528 old_state
= fbi
->state
;
1531 * Hack around fbcon initialisation.
1533 if (old_state
== C_STARTUP
&& state
== C_REENABLE
)
1537 case C_DISABLE_CLKCHANGE
:
1539 * Disable controller for clock change. If the
1540 * controller is already disabled, then do nothing.
1542 if (old_state
!= C_DISABLE
&& old_state
!= C_DISABLE_PM
) {
1544 /* TODO __pxafb_lcd_power(fbi, 0); */
1545 pxafb_disable_controller(fbi
);
1552 * Disable controller
1554 if (old_state
!= C_DISABLE
) {
1556 __pxafb_backlight_power(fbi
, 0);
1557 __pxafb_lcd_power(fbi
, 0);
1558 if (old_state
!= C_DISABLE_CLKCHANGE
)
1559 pxafb_disable_controller(fbi
);
1563 case C_ENABLE_CLKCHANGE
:
1565 * Enable the controller after clock change. Only
1566 * do this if we were disabled for the clock change.
1568 if (old_state
== C_DISABLE_CLKCHANGE
) {
1569 fbi
->state
= C_ENABLE
;
1570 pxafb_enable_controller(fbi
);
1571 /* TODO __pxafb_lcd_power(fbi, 1); */
1577 * Re-enable the controller only if it was already
1578 * enabled. This is so we reprogram the control
1581 if (old_state
== C_ENABLE
) {
1582 __pxafb_lcd_power(fbi
, 0);
1583 pxafb_disable_controller(fbi
);
1584 pxafb_enable_controller(fbi
);
1585 __pxafb_lcd_power(fbi
, 1);
1591 * Re-enable the controller after PM. This is not
1592 * perfect - think about the case where we were doing
1593 * a clock change, and we suspended half-way through.
1595 if (old_state
!= C_DISABLE_PM
)
1601 * Power up the LCD screen, enable controller, and
1602 * turn on the backlight.
1604 if (old_state
!= C_ENABLE
) {
1605 fbi
->state
= C_ENABLE
;
1606 pxafb_enable_controller(fbi
);
1607 __pxafb_lcd_power(fbi
, 1);
1608 __pxafb_backlight_power(fbi
, 1);
1612 mutex_unlock(&fbi
->ctrlr_lock
);
1616 * Our LCD controller task (which is called when we blank or unblank)
1619 static void pxafb_task(struct work_struct
*work
)
1621 struct pxafb_info
*fbi
=
1622 container_of(work
, struct pxafb_info
, task
);
1623 u_int state
= xchg(&fbi
->task_state
, -1);
1625 set_ctrlr_state(fbi
, state
);
1628 #ifdef CONFIG_CPU_FREQ
1630 * CPU clock speed change handler. We need to adjust the LCD timing
1631 * parameters when the CPU clock is adjusted by the power management
1634 * TODO: Determine why f->new != 10*get_lclk_frequency_10khz()
1637 pxafb_freq_transition(struct notifier_block
*nb
, unsigned long val
, void *data
)
1639 struct pxafb_info
*fbi
= TO_INF(nb
, freq_transition
);
1640 /* TODO struct cpufreq_freqs *f = data; */
1644 case CPUFREQ_PRECHANGE
:
1645 #ifdef CONFIG_FB_PXA_OVERLAY
1646 if (!(fbi
->overlay
[0].usage
|| fbi
->overlay
[1].usage
))
1648 set_ctrlr_state(fbi
, C_DISABLE_CLKCHANGE
);
1651 case CPUFREQ_POSTCHANGE
:
1652 pcd
= get_pcd(fbi
, fbi
->fb
.var
.pixclock
);
1653 set_hsync_time(fbi
, pcd
);
1654 fbi
->reg_lccr3
= (fbi
->reg_lccr3
& ~0xff) |
1655 LCCR3_PixClkDiv(pcd
);
1656 set_ctrlr_state(fbi
, C_ENABLE_CLKCHANGE
);
1663 pxafb_freq_policy(struct notifier_block
*nb
, unsigned long val
, void *data
)
1665 struct pxafb_info
*fbi
= TO_INF(nb
, freq_policy
);
1666 struct fb_var_screeninfo
*var
= &fbi
->fb
.var
;
1667 struct cpufreq_policy
*policy
= data
;
1670 case CPUFREQ_ADJUST
:
1671 case CPUFREQ_INCOMPATIBLE
:
1672 pr_debug("min dma period: %d ps, "
1673 "new clock %d kHz\n", pxafb_display_dma_period(var
),
1675 /* TODO: fill in min/max values */
1684 * Power management hooks. Note that we won't be called from IRQ context,
1685 * unlike the blank functions above, so we may sleep.
1687 static int pxafb_suspend(struct device
*dev
)
1689 struct pxafb_info
*fbi
= dev_get_drvdata(dev
);
1691 set_ctrlr_state(fbi
, C_DISABLE_PM
);
1695 static int pxafb_resume(struct device
*dev
)
1697 struct pxafb_info
*fbi
= dev_get_drvdata(dev
);
1699 set_ctrlr_state(fbi
, C_ENABLE_PM
);
1703 static const struct dev_pm_ops pxafb_pm_ops
= {
1704 .suspend
= pxafb_suspend
,
1705 .resume
= pxafb_resume
,
1709 static int pxafb_init_video_memory(struct pxafb_info
*fbi
)
1711 int size
= PAGE_ALIGN(fbi
->video_mem_size
);
1713 fbi
->video_mem
= alloc_pages_exact(size
, GFP_KERNEL
| __GFP_ZERO
);
1714 if (fbi
->video_mem
== NULL
)
1717 fbi
->video_mem_phys
= virt_to_phys(fbi
->video_mem
);
1718 fbi
->video_mem_size
= size
;
1720 fbi
->fb
.fix
.smem_start
= fbi
->video_mem_phys
;
1721 fbi
->fb
.fix
.smem_len
= fbi
->video_mem_size
;
1722 fbi
->fb
.screen_base
= fbi
->video_mem
;
1724 return fbi
->video_mem
? 0 : -ENOMEM
;
1727 static void pxafb_decode_mach_info(struct pxafb_info
*fbi
,
1728 struct pxafb_mach_info
*inf
)
1730 unsigned int lcd_conn
= inf
->lcd_conn
;
1731 struct pxafb_mode_info
*m
;
1734 fbi
->cmap_inverse
= inf
->cmap_inverse
;
1735 fbi
->cmap_static
= inf
->cmap_static
;
1736 fbi
->lccr4
= inf
->lccr4
;
1738 switch (lcd_conn
& LCD_TYPE_MASK
) {
1739 case LCD_TYPE_MONO_STN
:
1740 fbi
->lccr0
= LCCR0_CMS
;
1742 case LCD_TYPE_MONO_DSTN
:
1743 fbi
->lccr0
= LCCR0_CMS
| LCCR0_SDS
;
1745 case LCD_TYPE_COLOR_STN
:
1748 case LCD_TYPE_COLOR_DSTN
:
1749 fbi
->lccr0
= LCCR0_SDS
;
1751 case LCD_TYPE_COLOR_TFT
:
1752 fbi
->lccr0
= LCCR0_PAS
;
1754 case LCD_TYPE_SMART_PANEL
:
1755 fbi
->lccr0
= LCCR0_LCDT
| LCCR0_PAS
;
1758 /* fall back to backward compatibility way */
1759 fbi
->lccr0
= inf
->lccr0
;
1760 fbi
->lccr3
= inf
->lccr3
;
1764 if (lcd_conn
== LCD_MONO_STN_8BPP
)
1765 fbi
->lccr0
|= LCCR0_DPD
;
1767 fbi
->lccr0
|= (lcd_conn
& LCD_ALTERNATE_MAPPING
) ? LCCR0_LDDALT
: 0;
1769 fbi
->lccr3
= LCCR3_Acb((inf
->lcd_conn
>> 10) & 0xff);
1770 fbi
->lccr3
|= (lcd_conn
& LCD_BIAS_ACTIVE_LOW
) ? LCCR3_OEP
: 0;
1771 fbi
->lccr3
|= (lcd_conn
& LCD_PCLK_EDGE_FALL
) ? LCCR3_PCP
: 0;
1774 pxafb_setmode(&fbi
->fb
.var
, &inf
->modes
[0]);
1776 /* decide video memory size as follows:
1777 * 1. default to mode of maximum resolution
1778 * 2. allow platform to override
1779 * 3. allow module parameter to override
1781 for (i
= 0, m
= &inf
->modes
[0]; i
< inf
->num_modes
; i
++, m
++)
1782 fbi
->video_mem_size
= max_t(size_t, fbi
->video_mem_size
,
1783 m
->xres
* m
->yres
* m
->bpp
/ 8);
1785 if (inf
->video_mem_size
> fbi
->video_mem_size
)
1786 fbi
->video_mem_size
= inf
->video_mem_size
;
1788 if (video_mem_size
> fbi
->video_mem_size
)
1789 fbi
->video_mem_size
= video_mem_size
;
1792 static struct pxafb_info
*pxafb_init_fbinfo(struct device
*dev
)
1794 struct pxafb_info
*fbi
;
1796 struct pxafb_mach_info
*inf
= dev
->platform_data
;
1798 /* Alloc the pxafb_info and pseudo_palette in one step */
1799 fbi
= kmalloc(sizeof(struct pxafb_info
) + sizeof(u32
) * 16, GFP_KERNEL
);
1803 memset(fbi
, 0, sizeof(struct pxafb_info
));
1806 fbi
->clk
= clk_get(dev
, NULL
);
1807 if (IS_ERR(fbi
->clk
)) {
1812 strcpy(fbi
->fb
.fix
.id
, PXA_NAME
);
1814 fbi
->fb
.fix
.type
= FB_TYPE_PACKED_PIXELS
;
1815 fbi
->fb
.fix
.type_aux
= 0;
1816 fbi
->fb
.fix
.xpanstep
= 0;
1817 fbi
->fb
.fix
.ypanstep
= 1;
1818 fbi
->fb
.fix
.ywrapstep
= 0;
1819 fbi
->fb
.fix
.accel
= FB_ACCEL_NONE
;
1821 fbi
->fb
.var
.nonstd
= 0;
1822 fbi
->fb
.var
.activate
= FB_ACTIVATE_NOW
;
1823 fbi
->fb
.var
.height
= -1;
1824 fbi
->fb
.var
.width
= -1;
1825 fbi
->fb
.var
.accel_flags
= FB_ACCELF_TEXT
;
1826 fbi
->fb
.var
.vmode
= FB_VMODE_NONINTERLACED
;
1828 fbi
->fb
.fbops
= &pxafb_ops
;
1829 fbi
->fb
.flags
= FBINFO_DEFAULT
;
1833 addr
= addr
+ sizeof(struct pxafb_info
);
1834 fbi
->fb
.pseudo_palette
= addr
;
1836 fbi
->state
= C_STARTUP
;
1837 fbi
->task_state
= (u_char
)-1;
1839 pxafb_decode_mach_info(fbi
, inf
);
1841 #ifdef CONFIG_FB_PXA_OVERLAY
1842 /* place overlay(s) on top of base */
1843 if (pxafb_overlay_supported())
1844 fbi
->lccr0
|= LCCR0_OUC
;
1847 init_waitqueue_head(&fbi
->ctrlr_wait
);
1848 INIT_WORK(&fbi
->task
, pxafb_task
);
1849 mutex_init(&fbi
->ctrlr_lock
);
1850 init_completion(&fbi
->disable_done
);
1855 #ifdef CONFIG_FB_PXA_PARAMETERS
1856 static int parse_opt_mode(struct device
*dev
, const char *this_opt
)
1858 struct pxafb_mach_info
*inf
= dev
->platform_data
;
1860 const char *name
= this_opt
+5;
1861 unsigned int namelen
= strlen(name
);
1862 int res_specified
= 0, bpp_specified
= 0;
1863 unsigned int xres
= 0, yres
= 0, bpp
= 0;
1864 int yres_specified
= 0;
1866 for (i
= namelen
-1; i
>= 0; i
--) {
1870 if (!bpp_specified
&& !yres_specified
) {
1871 bpp
= simple_strtoul(&name
[i
+1], NULL
, 0);
1877 if (!yres_specified
) {
1878 yres
= simple_strtoul(&name
[i
+1], NULL
, 0);
1889 if (i
< 0 && yres_specified
) {
1890 xres
= simple_strtoul(name
, NULL
, 0);
1894 if (res_specified
) {
1895 dev_info(dev
, "overriding resolution: %dx%d\n", xres
, yres
);
1896 inf
->modes
[0].xres
= xres
; inf
->modes
[0].yres
= yres
;
1905 inf
->modes
[0].bpp
= bpp
;
1906 dev_info(dev
, "overriding bit depth: %d\n", bpp
);
1909 dev_err(dev
, "Depth %d is not valid\n", bpp
);
1915 static int parse_opt(struct device
*dev
, char *this_opt
)
1917 struct pxafb_mach_info
*inf
= dev
->platform_data
;
1918 struct pxafb_mode_info
*mode
= &inf
->modes
[0];
1923 if (!strncmp(this_opt
, "vmem:", 5)) {
1924 video_mem_size
= memparse(this_opt
+ 5, NULL
);
1925 } else if (!strncmp(this_opt
, "mode:", 5)) {
1926 return parse_opt_mode(dev
, this_opt
);
1927 } else if (!strncmp(this_opt
, "pixclock:", 9)) {
1928 mode
->pixclock
= simple_strtoul(this_opt
+9, NULL
, 0);
1929 sprintf(s
, "pixclock: %ld\n", mode
->pixclock
);
1930 } else if (!strncmp(this_opt
, "left:", 5)) {
1931 mode
->left_margin
= simple_strtoul(this_opt
+5, NULL
, 0);
1932 sprintf(s
, "left: %u\n", mode
->left_margin
);
1933 } else if (!strncmp(this_opt
, "right:", 6)) {
1934 mode
->right_margin
= simple_strtoul(this_opt
+6, NULL
, 0);
1935 sprintf(s
, "right: %u\n", mode
->right_margin
);
1936 } else if (!strncmp(this_opt
, "upper:", 6)) {
1937 mode
->upper_margin
= simple_strtoul(this_opt
+6, NULL
, 0);
1938 sprintf(s
, "upper: %u\n", mode
->upper_margin
);
1939 } else if (!strncmp(this_opt
, "lower:", 6)) {
1940 mode
->lower_margin
= simple_strtoul(this_opt
+6, NULL
, 0);
1941 sprintf(s
, "lower: %u\n", mode
->lower_margin
);
1942 } else if (!strncmp(this_opt
, "hsynclen:", 9)) {
1943 mode
->hsync_len
= simple_strtoul(this_opt
+9, NULL
, 0);
1944 sprintf(s
, "hsynclen: %u\n", mode
->hsync_len
);
1945 } else if (!strncmp(this_opt
, "vsynclen:", 9)) {
1946 mode
->vsync_len
= simple_strtoul(this_opt
+9, NULL
, 0);
1947 sprintf(s
, "vsynclen: %u\n", mode
->vsync_len
);
1948 } else if (!strncmp(this_opt
, "hsync:", 6)) {
1949 if (simple_strtoul(this_opt
+6, NULL
, 0) == 0) {
1950 sprintf(s
, "hsync: Active Low\n");
1951 mode
->sync
&= ~FB_SYNC_HOR_HIGH_ACT
;
1953 sprintf(s
, "hsync: Active High\n");
1954 mode
->sync
|= FB_SYNC_HOR_HIGH_ACT
;
1956 } else if (!strncmp(this_opt
, "vsync:", 6)) {
1957 if (simple_strtoul(this_opt
+6, NULL
, 0) == 0) {
1958 sprintf(s
, "vsync: Active Low\n");
1959 mode
->sync
&= ~FB_SYNC_VERT_HIGH_ACT
;
1961 sprintf(s
, "vsync: Active High\n");
1962 mode
->sync
|= FB_SYNC_VERT_HIGH_ACT
;
1964 } else if (!strncmp(this_opt
, "dpc:", 4)) {
1965 if (simple_strtoul(this_opt
+4, NULL
, 0) == 0) {
1966 sprintf(s
, "double pixel clock: false\n");
1967 inf
->lccr3
&= ~LCCR3_DPC
;
1969 sprintf(s
, "double pixel clock: true\n");
1970 inf
->lccr3
|= LCCR3_DPC
;
1972 } else if (!strncmp(this_opt
, "outputen:", 9)) {
1973 if (simple_strtoul(this_opt
+9, NULL
, 0) == 0) {
1974 sprintf(s
, "output enable: active low\n");
1975 inf
->lccr3
= (inf
->lccr3
& ~LCCR3_OEP
) | LCCR3_OutEnL
;
1977 sprintf(s
, "output enable: active high\n");
1978 inf
->lccr3
= (inf
->lccr3
& ~LCCR3_OEP
) | LCCR3_OutEnH
;
1980 } else if (!strncmp(this_opt
, "pixclockpol:", 12)) {
1981 if (simple_strtoul(this_opt
+12, NULL
, 0) == 0) {
1982 sprintf(s
, "pixel clock polarity: falling edge\n");
1983 inf
->lccr3
= (inf
->lccr3
& ~LCCR3_PCP
) | LCCR3_PixFlEdg
;
1985 sprintf(s
, "pixel clock polarity: rising edge\n");
1986 inf
->lccr3
= (inf
->lccr3
& ~LCCR3_PCP
) | LCCR3_PixRsEdg
;
1988 } else if (!strncmp(this_opt
, "color", 5)) {
1989 inf
->lccr0
= (inf
->lccr0
& ~LCCR0_CMS
) | LCCR0_Color
;
1990 } else if (!strncmp(this_opt
, "mono", 4)) {
1991 inf
->lccr0
= (inf
->lccr0
& ~LCCR0_CMS
) | LCCR0_Mono
;
1992 } else if (!strncmp(this_opt
, "active", 6)) {
1993 inf
->lccr0
= (inf
->lccr0
& ~LCCR0_PAS
) | LCCR0_Act
;
1994 } else if (!strncmp(this_opt
, "passive", 7)) {
1995 inf
->lccr0
= (inf
->lccr0
& ~LCCR0_PAS
) | LCCR0_Pas
;
1996 } else if (!strncmp(this_opt
, "single", 6)) {
1997 inf
->lccr0
= (inf
->lccr0
& ~LCCR0_SDS
) | LCCR0_Sngl
;
1998 } else if (!strncmp(this_opt
, "dual", 4)) {
1999 inf
->lccr0
= (inf
->lccr0
& ~LCCR0_SDS
) | LCCR0_Dual
;
2000 } else if (!strncmp(this_opt
, "4pix", 4)) {
2001 inf
->lccr0
= (inf
->lccr0
& ~LCCR0_DPD
) | LCCR0_4PixMono
;
2002 } else if (!strncmp(this_opt
, "8pix", 4)) {
2003 inf
->lccr0
= (inf
->lccr0
& ~LCCR0_DPD
) | LCCR0_8PixMono
;
2005 dev_err(dev
, "unknown option: %s\n", this_opt
);
2010 dev_info(dev
, "override %s", s
);
2015 static int pxafb_parse_options(struct device
*dev
, char *options
)
2020 if (!options
|| !*options
)
2023 dev_dbg(dev
, "options are \"%s\"\n", options
? options
: "null");
2025 /* could be made table driven or similar?... */
2026 while ((this_opt
= strsep(&options
, ",")) != NULL
) {
2027 ret
= parse_opt(dev
, this_opt
);
2034 static char g_options
[256] = "";
2037 static int __init
pxafb_setup_options(void)
2039 char *options
= NULL
;
2041 if (fb_get_options("pxafb", &options
))
2045 strlcpy(g_options
, options
, sizeof(g_options
));
2050 #define pxafb_setup_options() (0)
2052 module_param_string(options
, g_options
, sizeof(g_options
), 0);
2053 MODULE_PARM_DESC(options
, "LCD parameters (see Documentation/fb/pxafb.txt)");
2057 #define pxafb_parse_options(...) (0)
2058 #define pxafb_setup_options() (0)
2062 /* Check for various illegal bit-combinations. Currently only
2063 * a warning is given. */
2064 static void pxafb_check_options(struct device
*dev
, struct pxafb_mach_info
*inf
)
2069 if (inf
->lccr0
& LCCR0_INVALID_CONFIG_MASK
)
2070 dev_warn(dev
, "machine LCCR0 setting contains "
2071 "illegal bits: %08x\n",
2072 inf
->lccr0
& LCCR0_INVALID_CONFIG_MASK
);
2073 if (inf
->lccr3
& LCCR3_INVALID_CONFIG_MASK
)
2074 dev_warn(dev
, "machine LCCR3 setting contains "
2075 "illegal bits: %08x\n",
2076 inf
->lccr3
& LCCR3_INVALID_CONFIG_MASK
);
2077 if (inf
->lccr0
& LCCR0_DPD
&&
2078 ((inf
->lccr0
& LCCR0_PAS
) != LCCR0_Pas
||
2079 (inf
->lccr0
& LCCR0_SDS
) != LCCR0_Sngl
||
2080 (inf
->lccr0
& LCCR0_CMS
) != LCCR0_Mono
))
2081 dev_warn(dev
, "Double Pixel Data (DPD) mode is "
2082 "only valid in passive mono"
2083 " single panel mode\n");
2084 if ((inf
->lccr0
& LCCR0_PAS
) == LCCR0_Act
&&
2085 (inf
->lccr0
& LCCR0_SDS
) == LCCR0_Dual
)
2086 dev_warn(dev
, "Dual panel only valid in passive mode\n");
2087 if ((inf
->lccr0
& LCCR0_PAS
) == LCCR0_Pas
&&
2088 (inf
->modes
->upper_margin
|| inf
->modes
->lower_margin
))
2089 dev_warn(dev
, "Upper and lower margins must be 0 in "
2093 #define pxafb_check_options(...) do {} while (0)
2096 static int pxafb_probe(struct platform_device
*dev
)
2098 struct pxafb_info
*fbi
;
2099 struct pxafb_mach_info
*inf
;
2103 dev_dbg(&dev
->dev
, "pxafb_probe\n");
2105 inf
= dev
->dev
.platform_data
;
2111 ret
= pxafb_parse_options(&dev
->dev
, g_options
);
2115 pxafb_check_options(&dev
->dev
, inf
);
2117 dev_dbg(&dev
->dev
, "got a %dx%dx%d LCD\n",
2121 if (inf
->modes
->xres
== 0 ||
2122 inf
->modes
->yres
== 0 ||
2123 inf
->modes
->bpp
== 0) {
2124 dev_err(&dev
->dev
, "Invalid resolution or bit depth\n");
2129 fbi
= pxafb_init_fbinfo(&dev
->dev
);
2131 /* only reason for pxafb_init_fbinfo to fail is kmalloc */
2132 dev_err(&dev
->dev
, "Failed to initialize framebuffer device\n");
2137 if (cpu_is_pxa3xx() && inf
->acceleration_enabled
)
2138 fbi
->fb
.fix
.accel
= FB_ACCEL_PXA3XX
;
2140 fbi
->backlight_power
= inf
->pxafb_backlight_power
;
2141 fbi
->lcd_power
= inf
->pxafb_lcd_power
;
2143 r
= platform_get_resource(dev
, IORESOURCE_MEM
, 0);
2145 dev_err(&dev
->dev
, "no I/O memory resource defined\n");
2150 r
= request_mem_region(r
->start
, resource_size(r
), dev
->name
);
2152 dev_err(&dev
->dev
, "failed to request I/O memory\n");
2157 fbi
->mmio_base
= ioremap(r
->start
, resource_size(r
));
2158 if (fbi
->mmio_base
== NULL
) {
2159 dev_err(&dev
->dev
, "failed to map I/O memory\n");
2161 goto failed_free_res
;
2164 fbi
->dma_buff_size
= PAGE_ALIGN(sizeof(struct pxafb_dma_buff
));
2165 fbi
->dma_buff
= dma_alloc_coherent(fbi
->dev
, fbi
->dma_buff_size
,
2166 &fbi
->dma_buff_phys
, GFP_KERNEL
);
2167 if (fbi
->dma_buff
== NULL
) {
2168 dev_err(&dev
->dev
, "failed to allocate memory for DMA\n");
2170 goto failed_free_io
;
2173 ret
= pxafb_init_video_memory(fbi
);
2175 dev_err(&dev
->dev
, "Failed to allocate video RAM: %d\n", ret
);
2177 goto failed_free_dma
;
2180 irq
= platform_get_irq(dev
, 0);
2182 dev_err(&dev
->dev
, "no IRQ defined\n");
2184 goto failed_free_mem
;
2187 ret
= request_irq(irq
, pxafb_handle_irq
, 0, "LCD", fbi
);
2189 dev_err(&dev
->dev
, "request_irq failed: %d\n", ret
);
2191 goto failed_free_mem
;
2194 ret
= pxafb_smart_init(fbi
);
2196 dev_err(&dev
->dev
, "failed to initialize smartpanel\n");
2197 goto failed_free_irq
;
2201 * This makes sure that our colour bitfield
2202 * descriptors are correctly initialised.
2204 ret
= pxafb_check_var(&fbi
->fb
.var
, &fbi
->fb
);
2206 dev_err(&dev
->dev
, "failed to get suitable mode\n");
2207 goto failed_free_irq
;
2210 ret
= pxafb_set_par(&fbi
->fb
);
2212 dev_err(&dev
->dev
, "Failed to set parameters\n");
2213 goto failed_free_irq
;
2216 platform_set_drvdata(dev
, fbi
);
2218 ret
= register_framebuffer(&fbi
->fb
);
2221 "Failed to register framebuffer device: %d\n", ret
);
2222 goto failed_free_cmap
;
2225 pxafb_overlay_init(fbi
);
2227 #ifdef CONFIG_CPU_FREQ
2228 fbi
->freq_transition
.notifier_call
= pxafb_freq_transition
;
2229 fbi
->freq_policy
.notifier_call
= pxafb_freq_policy
;
2230 cpufreq_register_notifier(&fbi
->freq_transition
,
2231 CPUFREQ_TRANSITION_NOTIFIER
);
2232 cpufreq_register_notifier(&fbi
->freq_policy
,
2233 CPUFREQ_POLICY_NOTIFIER
);
2237 * Ok, now enable the LCD controller
2239 set_ctrlr_state(fbi
, C_ENABLE
);
2244 if (fbi
->fb
.cmap
.len
)
2245 fb_dealloc_cmap(&fbi
->fb
.cmap
);
2249 free_pages_exact(fbi
->video_mem
, fbi
->video_mem_size
);
2251 dma_free_coherent(&dev
->dev
, fbi
->dma_buff_size
,
2252 fbi
->dma_buff
, fbi
->dma_buff_phys
);
2254 iounmap(fbi
->mmio_base
);
2256 release_mem_region(r
->start
, resource_size(r
));
2259 platform_set_drvdata(dev
, NULL
);
2265 static int pxafb_remove(struct platform_device
*dev
)
2267 struct pxafb_info
*fbi
= platform_get_drvdata(dev
);
2270 struct fb_info
*info
;
2277 pxafb_overlay_exit(fbi
);
2278 unregister_framebuffer(info
);
2280 pxafb_disable_controller(fbi
);
2282 if (fbi
->fb
.cmap
.len
)
2283 fb_dealloc_cmap(&fbi
->fb
.cmap
);
2285 irq
= platform_get_irq(dev
, 0);
2288 free_pages_exact(fbi
->video_mem
, fbi
->video_mem_size
);
2290 dma_free_writecombine(&dev
->dev
, fbi
->dma_buff_size
,
2291 fbi
->dma_buff
, fbi
->dma_buff_phys
);
2293 iounmap(fbi
->mmio_base
);
2295 r
= platform_get_resource(dev
, IORESOURCE_MEM
, 0);
2296 release_mem_region(r
->start
, resource_size(r
));
2304 static struct platform_driver pxafb_driver
= {
2305 .probe
= pxafb_probe
,
2306 .remove
= pxafb_remove
,
2308 .owner
= THIS_MODULE
,
2309 .name
= "pxa2xx-fb",
2311 .pm
= &pxafb_pm_ops
,
2316 static int __init
pxafb_init(void)
2318 if (pxafb_setup_options())
2321 return platform_driver_register(&pxafb_driver
);
2324 static void __exit
pxafb_exit(void)
2326 platform_driver_unregister(&pxafb_driver
);
2329 module_init(pxafb_init
);
2330 module_exit(pxafb_exit
);
2332 MODULE_DESCRIPTION("loadable framebuffer driver for PXA");
2333 MODULE_LICENSE("GPL");