KVM: SVM: Notify nested hypervisor of lost event injections
[linux/fpc-iii.git] / arch / x86 / kvm / svm.c
blobe37285446cb75232ec47eac7287149c1c2841060
1 /*
2 * Kernel-based Virtual Machine driver for Linux
4 * AMD SVM support
6 * Copyright (C) 2006 Qumranet, Inc.
8 * Authors:
9 * Yaniv Kamay <yaniv@qumranet.com>
10 * Avi Kivity <avi@qumranet.com>
12 * This work is licensed under the terms of the GNU GPL, version 2. See
13 * the COPYING file in the top-level directory.
16 #include <linux/kvm_host.h>
18 #include "irq.h"
19 #include "mmu.h"
20 #include "kvm_cache_regs.h"
21 #include "x86.h"
23 #include <linux/module.h>
24 #include <linux/kernel.h>
25 #include <linux/vmalloc.h>
26 #include <linux/highmem.h>
27 #include <linux/sched.h>
28 #include <linux/ftrace_event.h>
30 #include <asm/desc.h>
32 #include <asm/virtext.h>
33 #include "trace.h"
35 #define __ex(x) __kvm_handle_fault_on_reboot(x)
37 MODULE_AUTHOR("Qumranet");
38 MODULE_LICENSE("GPL");
40 #define IOPM_ALLOC_ORDER 2
41 #define MSRPM_ALLOC_ORDER 1
43 #define SEG_TYPE_LDT 2
44 #define SEG_TYPE_BUSY_TSS16 3
46 #define SVM_FEATURE_NPT (1 << 0)
47 #define SVM_FEATURE_LBRV (1 << 1)
48 #define SVM_FEATURE_SVML (1 << 2)
50 #define NESTED_EXIT_HOST 0 /* Exit handled on host level */
51 #define NESTED_EXIT_DONE 1 /* Exit caused nested vmexit */
52 #define NESTED_EXIT_CONTINUE 2 /* Further checks needed */
54 #define DEBUGCTL_RESERVED_BITS (~(0x3fULL))
56 /* Turn on to get debugging output*/
57 /* #define NESTED_DEBUG */
59 #ifdef NESTED_DEBUG
60 #define nsvm_printk(fmt, args...) printk(KERN_INFO fmt, ## args)
61 #else
62 #define nsvm_printk(fmt, args...) do {} while(0)
63 #endif
65 static const u32 host_save_user_msrs[] = {
66 #ifdef CONFIG_X86_64
67 MSR_STAR, MSR_LSTAR, MSR_CSTAR, MSR_SYSCALL_MASK, MSR_KERNEL_GS_BASE,
68 MSR_FS_BASE,
69 #endif
70 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
73 #define NR_HOST_SAVE_USER_MSRS ARRAY_SIZE(host_save_user_msrs)
75 struct kvm_vcpu;
77 struct nested_state {
78 struct vmcb *hsave;
79 u64 hsave_msr;
80 u64 vmcb;
82 /* These are the merged vectors */
83 u32 *msrpm;
85 /* gpa pointers to the real vectors */
86 u64 vmcb_msrpm;
88 /* cache for intercepts of the guest */
89 u16 intercept_cr_read;
90 u16 intercept_cr_write;
91 u16 intercept_dr_read;
92 u16 intercept_dr_write;
93 u32 intercept_exceptions;
94 u64 intercept;
98 struct vcpu_svm {
99 struct kvm_vcpu vcpu;
100 struct vmcb *vmcb;
101 unsigned long vmcb_pa;
102 struct svm_cpu_data *svm_data;
103 uint64_t asid_generation;
104 uint64_t sysenter_esp;
105 uint64_t sysenter_eip;
107 u64 next_rip;
109 u64 host_user_msrs[NR_HOST_SAVE_USER_MSRS];
110 u64 host_gs_base;
112 u32 *msrpm;
114 struct nested_state nested;
117 /* enable NPT for AMD64 and X86 with PAE */
118 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
119 static bool npt_enabled = true;
120 #else
121 static bool npt_enabled = false;
122 #endif
123 static int npt = 1;
125 module_param(npt, int, S_IRUGO);
127 static int nested = 1;
128 module_param(nested, int, S_IRUGO);
130 static void svm_flush_tlb(struct kvm_vcpu *vcpu);
131 static void svm_complete_interrupts(struct vcpu_svm *svm);
133 static int nested_svm_exit_handled(struct vcpu_svm *svm);
134 static int nested_svm_vmexit(struct vcpu_svm *svm);
135 static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
136 bool has_error_code, u32 error_code);
138 static inline struct vcpu_svm *to_svm(struct kvm_vcpu *vcpu)
140 return container_of(vcpu, struct vcpu_svm, vcpu);
143 static inline bool is_nested(struct vcpu_svm *svm)
145 return svm->nested.vmcb;
148 static inline void enable_gif(struct vcpu_svm *svm)
150 svm->vcpu.arch.hflags |= HF_GIF_MASK;
153 static inline void disable_gif(struct vcpu_svm *svm)
155 svm->vcpu.arch.hflags &= ~HF_GIF_MASK;
158 static inline bool gif_set(struct vcpu_svm *svm)
160 return !!(svm->vcpu.arch.hflags & HF_GIF_MASK);
163 static unsigned long iopm_base;
165 struct kvm_ldttss_desc {
166 u16 limit0;
167 u16 base0;
168 unsigned base1 : 8, type : 5, dpl : 2, p : 1;
169 unsigned limit1 : 4, zero0 : 3, g : 1, base2 : 8;
170 u32 base3;
171 u32 zero1;
172 } __attribute__((packed));
174 struct svm_cpu_data {
175 int cpu;
177 u64 asid_generation;
178 u32 max_asid;
179 u32 next_asid;
180 struct kvm_ldttss_desc *tss_desc;
182 struct page *save_area;
185 static DEFINE_PER_CPU(struct svm_cpu_data *, svm_data);
186 static uint32_t svm_features;
188 struct svm_init_data {
189 int cpu;
190 int r;
193 static u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000};
195 #define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges)
196 #define MSRS_RANGE_SIZE 2048
197 #define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2)
199 #define MAX_INST_SIZE 15
201 static inline u32 svm_has(u32 feat)
203 return svm_features & feat;
206 static inline void clgi(void)
208 asm volatile (__ex(SVM_CLGI));
211 static inline void stgi(void)
213 asm volatile (__ex(SVM_STGI));
216 static inline void invlpga(unsigned long addr, u32 asid)
218 asm volatile (__ex(SVM_INVLPGA) :: "a"(addr), "c"(asid));
221 static inline void force_new_asid(struct kvm_vcpu *vcpu)
223 to_svm(vcpu)->asid_generation--;
226 static inline void flush_guest_tlb(struct kvm_vcpu *vcpu)
228 force_new_asid(vcpu);
231 static void svm_set_efer(struct kvm_vcpu *vcpu, u64 efer)
233 if (!npt_enabled && !(efer & EFER_LMA))
234 efer &= ~EFER_LME;
236 to_svm(vcpu)->vmcb->save.efer = efer | EFER_SVME;
237 vcpu->arch.shadow_efer = efer;
240 static void svm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
241 bool has_error_code, u32 error_code)
243 struct vcpu_svm *svm = to_svm(vcpu);
245 /* If we are within a nested VM we'd better #VMEXIT and let the
246 guest handle the exception */
247 if (nested_svm_check_exception(svm, nr, has_error_code, error_code))
248 return;
250 svm->vmcb->control.event_inj = nr
251 | SVM_EVTINJ_VALID
252 | (has_error_code ? SVM_EVTINJ_VALID_ERR : 0)
253 | SVM_EVTINJ_TYPE_EXEPT;
254 svm->vmcb->control.event_inj_err = error_code;
257 static int is_external_interrupt(u32 info)
259 info &= SVM_EVTINJ_TYPE_MASK | SVM_EVTINJ_VALID;
260 return info == (SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR);
263 static u32 svm_get_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
265 struct vcpu_svm *svm = to_svm(vcpu);
266 u32 ret = 0;
268 if (svm->vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK)
269 ret |= X86_SHADOW_INT_STI | X86_SHADOW_INT_MOV_SS;
270 return ret & mask;
273 static void svm_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
275 struct vcpu_svm *svm = to_svm(vcpu);
277 if (mask == 0)
278 svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK;
279 else
280 svm->vmcb->control.int_state |= SVM_INTERRUPT_SHADOW_MASK;
284 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
286 struct vcpu_svm *svm = to_svm(vcpu);
288 if (!svm->next_rip) {
289 if (emulate_instruction(vcpu, 0, 0, EMULTYPE_SKIP) !=
290 EMULATE_DONE)
291 printk(KERN_DEBUG "%s: NOP\n", __func__);
292 return;
294 if (svm->next_rip - kvm_rip_read(vcpu) > MAX_INST_SIZE)
295 printk(KERN_ERR "%s: ip 0x%lx next 0x%llx\n",
296 __func__, kvm_rip_read(vcpu), svm->next_rip);
298 kvm_rip_write(vcpu, svm->next_rip);
299 svm_set_interrupt_shadow(vcpu, 0);
302 static int has_svm(void)
304 const char *msg;
306 if (!cpu_has_svm(&msg)) {
307 printk(KERN_INFO "has_svm: %s\n", msg);
308 return 0;
311 return 1;
314 static void svm_hardware_disable(void *garbage)
316 cpu_svm_disable();
319 static int svm_hardware_enable(void *garbage)
322 struct svm_cpu_data *svm_data;
323 uint64_t efer;
324 struct descriptor_table gdt_descr;
325 struct desc_struct *gdt;
326 int me = raw_smp_processor_id();
328 rdmsrl(MSR_EFER, efer);
329 if (efer & EFER_SVME)
330 return -EBUSY;
332 if (!has_svm()) {
333 printk(KERN_ERR "svm_hardware_enable: err EOPNOTSUPP on %d\n",
334 me);
335 return -EINVAL;
337 svm_data = per_cpu(svm_data, me);
339 if (!svm_data) {
340 printk(KERN_ERR "svm_hardware_enable: svm_data is NULL on %d\n",
341 me);
342 return -EINVAL;
345 svm_data->asid_generation = 1;
346 svm_data->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1;
347 svm_data->next_asid = svm_data->max_asid + 1;
349 kvm_get_gdt(&gdt_descr);
350 gdt = (struct desc_struct *)gdt_descr.base;
351 svm_data->tss_desc = (struct kvm_ldttss_desc *)(gdt + GDT_ENTRY_TSS);
353 wrmsrl(MSR_EFER, efer | EFER_SVME);
355 wrmsrl(MSR_VM_HSAVE_PA,
356 page_to_pfn(svm_data->save_area) << PAGE_SHIFT);
358 return 0;
361 static void svm_cpu_uninit(int cpu)
363 struct svm_cpu_data *svm_data
364 = per_cpu(svm_data, raw_smp_processor_id());
366 if (!svm_data)
367 return;
369 per_cpu(svm_data, raw_smp_processor_id()) = NULL;
370 __free_page(svm_data->save_area);
371 kfree(svm_data);
374 static int svm_cpu_init(int cpu)
376 struct svm_cpu_data *svm_data;
377 int r;
379 svm_data = kzalloc(sizeof(struct svm_cpu_data), GFP_KERNEL);
380 if (!svm_data)
381 return -ENOMEM;
382 svm_data->cpu = cpu;
383 svm_data->save_area = alloc_page(GFP_KERNEL);
384 r = -ENOMEM;
385 if (!svm_data->save_area)
386 goto err_1;
388 per_cpu(svm_data, cpu) = svm_data;
390 return 0;
392 err_1:
393 kfree(svm_data);
394 return r;
398 static void set_msr_interception(u32 *msrpm, unsigned msr,
399 int read, int write)
401 int i;
403 for (i = 0; i < NUM_MSR_MAPS; i++) {
404 if (msr >= msrpm_ranges[i] &&
405 msr < msrpm_ranges[i] + MSRS_IN_RANGE) {
406 u32 msr_offset = (i * MSRS_IN_RANGE + msr -
407 msrpm_ranges[i]) * 2;
409 u32 *base = msrpm + (msr_offset / 32);
410 u32 msr_shift = msr_offset % 32;
411 u32 mask = ((write) ? 0 : 2) | ((read) ? 0 : 1);
412 *base = (*base & ~(0x3 << msr_shift)) |
413 (mask << msr_shift);
414 return;
417 BUG();
420 static void svm_vcpu_init_msrpm(u32 *msrpm)
422 memset(msrpm, 0xff, PAGE_SIZE * (1 << MSRPM_ALLOC_ORDER));
424 #ifdef CONFIG_X86_64
425 set_msr_interception(msrpm, MSR_GS_BASE, 1, 1);
426 set_msr_interception(msrpm, MSR_FS_BASE, 1, 1);
427 set_msr_interception(msrpm, MSR_KERNEL_GS_BASE, 1, 1);
428 set_msr_interception(msrpm, MSR_LSTAR, 1, 1);
429 set_msr_interception(msrpm, MSR_CSTAR, 1, 1);
430 set_msr_interception(msrpm, MSR_SYSCALL_MASK, 1, 1);
431 #endif
432 set_msr_interception(msrpm, MSR_K6_STAR, 1, 1);
433 set_msr_interception(msrpm, MSR_IA32_SYSENTER_CS, 1, 1);
436 static void svm_enable_lbrv(struct vcpu_svm *svm)
438 u32 *msrpm = svm->msrpm;
440 svm->vmcb->control.lbr_ctl = 1;
441 set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1);
442 set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1);
443 set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 1, 1);
444 set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 1, 1);
447 static void svm_disable_lbrv(struct vcpu_svm *svm)
449 u32 *msrpm = svm->msrpm;
451 svm->vmcb->control.lbr_ctl = 0;
452 set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 0, 0);
453 set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 0, 0);
454 set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 0, 0);
455 set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 0, 0);
458 static __init int svm_hardware_setup(void)
460 int cpu;
461 struct page *iopm_pages;
462 void *iopm_va;
463 int r;
465 iopm_pages = alloc_pages(GFP_KERNEL, IOPM_ALLOC_ORDER);
467 if (!iopm_pages)
468 return -ENOMEM;
470 iopm_va = page_address(iopm_pages);
471 memset(iopm_va, 0xff, PAGE_SIZE * (1 << IOPM_ALLOC_ORDER));
472 iopm_base = page_to_pfn(iopm_pages) << PAGE_SHIFT;
474 if (boot_cpu_has(X86_FEATURE_NX))
475 kvm_enable_efer_bits(EFER_NX);
477 if (boot_cpu_has(X86_FEATURE_FXSR_OPT))
478 kvm_enable_efer_bits(EFER_FFXSR);
480 if (nested) {
481 printk(KERN_INFO "kvm: Nested Virtualization enabled\n");
482 kvm_enable_efer_bits(EFER_SVME);
485 for_each_possible_cpu(cpu) {
486 r = svm_cpu_init(cpu);
487 if (r)
488 goto err;
491 svm_features = cpuid_edx(SVM_CPUID_FUNC);
493 if (!svm_has(SVM_FEATURE_NPT))
494 npt_enabled = false;
496 if (npt_enabled && !npt) {
497 printk(KERN_INFO "kvm: Nested Paging disabled\n");
498 npt_enabled = false;
501 if (npt_enabled) {
502 printk(KERN_INFO "kvm: Nested Paging enabled\n");
503 kvm_enable_tdp();
504 } else
505 kvm_disable_tdp();
507 return 0;
509 err:
510 __free_pages(iopm_pages, IOPM_ALLOC_ORDER);
511 iopm_base = 0;
512 return r;
515 static __exit void svm_hardware_unsetup(void)
517 int cpu;
519 for_each_possible_cpu(cpu)
520 svm_cpu_uninit(cpu);
522 __free_pages(pfn_to_page(iopm_base >> PAGE_SHIFT), IOPM_ALLOC_ORDER);
523 iopm_base = 0;
526 static void init_seg(struct vmcb_seg *seg)
528 seg->selector = 0;
529 seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK |
530 SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */
531 seg->limit = 0xffff;
532 seg->base = 0;
535 static void init_sys_seg(struct vmcb_seg *seg, uint32_t type)
537 seg->selector = 0;
538 seg->attrib = SVM_SELECTOR_P_MASK | type;
539 seg->limit = 0xffff;
540 seg->base = 0;
543 static void init_vmcb(struct vcpu_svm *svm)
545 struct vmcb_control_area *control = &svm->vmcb->control;
546 struct vmcb_save_area *save = &svm->vmcb->save;
548 control->intercept_cr_read = INTERCEPT_CR0_MASK |
549 INTERCEPT_CR3_MASK |
550 INTERCEPT_CR4_MASK;
552 control->intercept_cr_write = INTERCEPT_CR0_MASK |
553 INTERCEPT_CR3_MASK |
554 INTERCEPT_CR4_MASK |
555 INTERCEPT_CR8_MASK;
557 control->intercept_dr_read = INTERCEPT_DR0_MASK |
558 INTERCEPT_DR1_MASK |
559 INTERCEPT_DR2_MASK |
560 INTERCEPT_DR3_MASK;
562 control->intercept_dr_write = INTERCEPT_DR0_MASK |
563 INTERCEPT_DR1_MASK |
564 INTERCEPT_DR2_MASK |
565 INTERCEPT_DR3_MASK |
566 INTERCEPT_DR5_MASK |
567 INTERCEPT_DR7_MASK;
569 control->intercept_exceptions = (1 << PF_VECTOR) |
570 (1 << UD_VECTOR) |
571 (1 << MC_VECTOR);
574 control->intercept = (1ULL << INTERCEPT_INTR) |
575 (1ULL << INTERCEPT_NMI) |
576 (1ULL << INTERCEPT_SMI) |
577 (1ULL << INTERCEPT_CPUID) |
578 (1ULL << INTERCEPT_INVD) |
579 (1ULL << INTERCEPT_HLT) |
580 (1ULL << INTERCEPT_INVLPG) |
581 (1ULL << INTERCEPT_INVLPGA) |
582 (1ULL << INTERCEPT_IOIO_PROT) |
583 (1ULL << INTERCEPT_MSR_PROT) |
584 (1ULL << INTERCEPT_TASK_SWITCH) |
585 (1ULL << INTERCEPT_SHUTDOWN) |
586 (1ULL << INTERCEPT_VMRUN) |
587 (1ULL << INTERCEPT_VMMCALL) |
588 (1ULL << INTERCEPT_VMLOAD) |
589 (1ULL << INTERCEPT_VMSAVE) |
590 (1ULL << INTERCEPT_STGI) |
591 (1ULL << INTERCEPT_CLGI) |
592 (1ULL << INTERCEPT_SKINIT) |
593 (1ULL << INTERCEPT_WBINVD) |
594 (1ULL << INTERCEPT_MONITOR) |
595 (1ULL << INTERCEPT_MWAIT);
597 control->iopm_base_pa = iopm_base;
598 control->msrpm_base_pa = __pa(svm->msrpm);
599 control->tsc_offset = 0;
600 control->int_ctl = V_INTR_MASKING_MASK;
602 init_seg(&save->es);
603 init_seg(&save->ss);
604 init_seg(&save->ds);
605 init_seg(&save->fs);
606 init_seg(&save->gs);
608 save->cs.selector = 0xf000;
609 /* Executable/Readable Code Segment */
610 save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK |
611 SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK;
612 save->cs.limit = 0xffff;
614 * cs.base should really be 0xffff0000, but vmx can't handle that, so
615 * be consistent with it.
617 * Replace when we have real mode working for vmx.
619 save->cs.base = 0xf0000;
621 save->gdtr.limit = 0xffff;
622 save->idtr.limit = 0xffff;
624 init_sys_seg(&save->ldtr, SEG_TYPE_LDT);
625 init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16);
627 save->efer = EFER_SVME;
628 save->dr6 = 0xffff0ff0;
629 save->dr7 = 0x400;
630 save->rflags = 2;
631 save->rip = 0x0000fff0;
632 svm->vcpu.arch.regs[VCPU_REGS_RIP] = save->rip;
635 * cr0 val on cpu init should be 0x60000010, we enable cpu
636 * cache by default. the orderly way is to enable cache in bios.
638 save->cr0 = 0x00000010 | X86_CR0_PG | X86_CR0_WP;
639 save->cr4 = X86_CR4_PAE;
640 /* rdx = ?? */
642 if (npt_enabled) {
643 /* Setup VMCB for Nested Paging */
644 control->nested_ctl = 1;
645 control->intercept &= ~((1ULL << INTERCEPT_TASK_SWITCH) |
646 (1ULL << INTERCEPT_INVLPG));
647 control->intercept_exceptions &= ~(1 << PF_VECTOR);
648 control->intercept_cr_read &= ~(INTERCEPT_CR0_MASK|
649 INTERCEPT_CR3_MASK);
650 control->intercept_cr_write &= ~(INTERCEPT_CR0_MASK|
651 INTERCEPT_CR3_MASK);
652 save->g_pat = 0x0007040600070406ULL;
653 /* enable caching because the QEMU Bios doesn't enable it */
654 save->cr0 = X86_CR0_ET;
655 save->cr3 = 0;
656 save->cr4 = 0;
658 force_new_asid(&svm->vcpu);
660 svm->nested.vmcb = 0;
661 svm->vcpu.arch.hflags = 0;
663 enable_gif(svm);
666 static int svm_vcpu_reset(struct kvm_vcpu *vcpu)
668 struct vcpu_svm *svm = to_svm(vcpu);
670 init_vmcb(svm);
672 if (!kvm_vcpu_is_bsp(vcpu)) {
673 kvm_rip_write(vcpu, 0);
674 svm->vmcb->save.cs.base = svm->vcpu.arch.sipi_vector << 12;
675 svm->vmcb->save.cs.selector = svm->vcpu.arch.sipi_vector << 8;
677 vcpu->arch.regs_avail = ~0;
678 vcpu->arch.regs_dirty = ~0;
680 return 0;
683 static struct kvm_vcpu *svm_create_vcpu(struct kvm *kvm, unsigned int id)
685 struct vcpu_svm *svm;
686 struct page *page;
687 struct page *msrpm_pages;
688 struct page *hsave_page;
689 struct page *nested_msrpm_pages;
690 int err;
692 svm = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
693 if (!svm) {
694 err = -ENOMEM;
695 goto out;
698 err = kvm_vcpu_init(&svm->vcpu, kvm, id);
699 if (err)
700 goto free_svm;
702 page = alloc_page(GFP_KERNEL);
703 if (!page) {
704 err = -ENOMEM;
705 goto uninit;
708 err = -ENOMEM;
709 msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
710 if (!msrpm_pages)
711 goto uninit;
713 nested_msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
714 if (!nested_msrpm_pages)
715 goto uninit;
717 svm->msrpm = page_address(msrpm_pages);
718 svm_vcpu_init_msrpm(svm->msrpm);
720 hsave_page = alloc_page(GFP_KERNEL);
721 if (!hsave_page)
722 goto uninit;
723 svm->nested.hsave = page_address(hsave_page);
725 svm->nested.msrpm = page_address(nested_msrpm_pages);
727 svm->vmcb = page_address(page);
728 clear_page(svm->vmcb);
729 svm->vmcb_pa = page_to_pfn(page) << PAGE_SHIFT;
730 svm->asid_generation = 0;
731 init_vmcb(svm);
733 fx_init(&svm->vcpu);
734 svm->vcpu.fpu_active = 1;
735 svm->vcpu.arch.apic_base = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
736 if (kvm_vcpu_is_bsp(&svm->vcpu))
737 svm->vcpu.arch.apic_base |= MSR_IA32_APICBASE_BSP;
739 return &svm->vcpu;
741 uninit:
742 kvm_vcpu_uninit(&svm->vcpu);
743 free_svm:
744 kmem_cache_free(kvm_vcpu_cache, svm);
745 out:
746 return ERR_PTR(err);
749 static void svm_free_vcpu(struct kvm_vcpu *vcpu)
751 struct vcpu_svm *svm = to_svm(vcpu);
753 __free_page(pfn_to_page(svm->vmcb_pa >> PAGE_SHIFT));
754 __free_pages(virt_to_page(svm->msrpm), MSRPM_ALLOC_ORDER);
755 __free_page(virt_to_page(svm->nested.hsave));
756 __free_pages(virt_to_page(svm->nested.msrpm), MSRPM_ALLOC_ORDER);
757 kvm_vcpu_uninit(vcpu);
758 kmem_cache_free(kvm_vcpu_cache, svm);
761 static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
763 struct vcpu_svm *svm = to_svm(vcpu);
764 int i;
766 if (unlikely(cpu != vcpu->cpu)) {
767 u64 delta;
770 * Make sure that the guest sees a monotonically
771 * increasing TSC.
773 delta = vcpu->arch.host_tsc - native_read_tsc();
774 svm->vmcb->control.tsc_offset += delta;
775 if (is_nested(svm))
776 svm->nested.hsave->control.tsc_offset += delta;
777 vcpu->cpu = cpu;
778 kvm_migrate_timers(vcpu);
779 svm->asid_generation = 0;
782 for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
783 rdmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
786 static void svm_vcpu_put(struct kvm_vcpu *vcpu)
788 struct vcpu_svm *svm = to_svm(vcpu);
789 int i;
791 ++vcpu->stat.host_state_reload;
792 for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
793 wrmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
795 vcpu->arch.host_tsc = native_read_tsc();
798 static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu)
800 return to_svm(vcpu)->vmcb->save.rflags;
803 static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
805 to_svm(vcpu)->vmcb->save.rflags = rflags;
808 static void svm_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
810 switch (reg) {
811 case VCPU_EXREG_PDPTR:
812 BUG_ON(!npt_enabled);
813 load_pdptrs(vcpu, vcpu->arch.cr3);
814 break;
815 default:
816 BUG();
820 static void svm_set_vintr(struct vcpu_svm *svm)
822 svm->vmcb->control.intercept |= 1ULL << INTERCEPT_VINTR;
825 static void svm_clear_vintr(struct vcpu_svm *svm)
827 svm->vmcb->control.intercept &= ~(1ULL << INTERCEPT_VINTR);
830 static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg)
832 struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
834 switch (seg) {
835 case VCPU_SREG_CS: return &save->cs;
836 case VCPU_SREG_DS: return &save->ds;
837 case VCPU_SREG_ES: return &save->es;
838 case VCPU_SREG_FS: return &save->fs;
839 case VCPU_SREG_GS: return &save->gs;
840 case VCPU_SREG_SS: return &save->ss;
841 case VCPU_SREG_TR: return &save->tr;
842 case VCPU_SREG_LDTR: return &save->ldtr;
844 BUG();
845 return NULL;
848 static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg)
850 struct vmcb_seg *s = svm_seg(vcpu, seg);
852 return s->base;
855 static void svm_get_segment(struct kvm_vcpu *vcpu,
856 struct kvm_segment *var, int seg)
858 struct vmcb_seg *s = svm_seg(vcpu, seg);
860 var->base = s->base;
861 var->limit = s->limit;
862 var->selector = s->selector;
863 var->type = s->attrib & SVM_SELECTOR_TYPE_MASK;
864 var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1;
865 var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
866 var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1;
867 var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1;
868 var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1;
869 var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1;
870 var->g = (s->attrib >> SVM_SELECTOR_G_SHIFT) & 1;
872 /* AMD's VMCB does not have an explicit unusable field, so emulate it
873 * for cross vendor migration purposes by "not present"
875 var->unusable = !var->present || (var->type == 0);
877 switch (seg) {
878 case VCPU_SREG_CS:
880 * SVM always stores 0 for the 'G' bit in the CS selector in
881 * the VMCB on a VMEXIT. This hurts cross-vendor migration:
882 * Intel's VMENTRY has a check on the 'G' bit.
884 var->g = s->limit > 0xfffff;
885 break;
886 case VCPU_SREG_TR:
888 * Work around a bug where the busy flag in the tr selector
889 * isn't exposed
891 var->type |= 0x2;
892 break;
893 case VCPU_SREG_DS:
894 case VCPU_SREG_ES:
895 case VCPU_SREG_FS:
896 case VCPU_SREG_GS:
898 * The accessed bit must always be set in the segment
899 * descriptor cache, although it can be cleared in the
900 * descriptor, the cached bit always remains at 1. Since
901 * Intel has a check on this, set it here to support
902 * cross-vendor migration.
904 if (!var->unusable)
905 var->type |= 0x1;
906 break;
907 case VCPU_SREG_SS:
908 /* On AMD CPUs sometimes the DB bit in the segment
909 * descriptor is left as 1, although the whole segment has
910 * been made unusable. Clear it here to pass an Intel VMX
911 * entry check when cross vendor migrating.
913 if (var->unusable)
914 var->db = 0;
915 break;
919 static int svm_get_cpl(struct kvm_vcpu *vcpu)
921 struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
923 return save->cpl;
926 static void svm_get_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
928 struct vcpu_svm *svm = to_svm(vcpu);
930 dt->limit = svm->vmcb->save.idtr.limit;
931 dt->base = svm->vmcb->save.idtr.base;
934 static void svm_set_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
936 struct vcpu_svm *svm = to_svm(vcpu);
938 svm->vmcb->save.idtr.limit = dt->limit;
939 svm->vmcb->save.idtr.base = dt->base ;
942 static void svm_get_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
944 struct vcpu_svm *svm = to_svm(vcpu);
946 dt->limit = svm->vmcb->save.gdtr.limit;
947 dt->base = svm->vmcb->save.gdtr.base;
950 static void svm_set_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
952 struct vcpu_svm *svm = to_svm(vcpu);
954 svm->vmcb->save.gdtr.limit = dt->limit;
955 svm->vmcb->save.gdtr.base = dt->base ;
958 static void svm_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
962 static void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
964 struct vcpu_svm *svm = to_svm(vcpu);
966 #ifdef CONFIG_X86_64
967 if (vcpu->arch.shadow_efer & EFER_LME) {
968 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
969 vcpu->arch.shadow_efer |= EFER_LMA;
970 svm->vmcb->save.efer |= EFER_LMA | EFER_LME;
973 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) {
974 vcpu->arch.shadow_efer &= ~EFER_LMA;
975 svm->vmcb->save.efer &= ~(EFER_LMA | EFER_LME);
978 #endif
979 if (npt_enabled)
980 goto set;
982 if ((vcpu->arch.cr0 & X86_CR0_TS) && !(cr0 & X86_CR0_TS)) {
983 svm->vmcb->control.intercept_exceptions &= ~(1 << NM_VECTOR);
984 vcpu->fpu_active = 1;
987 vcpu->arch.cr0 = cr0;
988 cr0 |= X86_CR0_PG | X86_CR0_WP;
989 if (!vcpu->fpu_active) {
990 svm->vmcb->control.intercept_exceptions |= (1 << NM_VECTOR);
991 cr0 |= X86_CR0_TS;
993 set:
995 * re-enable caching here because the QEMU bios
996 * does not do it - this results in some delay at
997 * reboot
999 cr0 &= ~(X86_CR0_CD | X86_CR0_NW);
1000 svm->vmcb->save.cr0 = cr0;
1003 static void svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1005 unsigned long host_cr4_mce = read_cr4() & X86_CR4_MCE;
1006 unsigned long old_cr4 = to_svm(vcpu)->vmcb->save.cr4;
1008 if (npt_enabled && ((old_cr4 ^ cr4) & X86_CR4_PGE))
1009 force_new_asid(vcpu);
1011 vcpu->arch.cr4 = cr4;
1012 if (!npt_enabled)
1013 cr4 |= X86_CR4_PAE;
1014 cr4 |= host_cr4_mce;
1015 to_svm(vcpu)->vmcb->save.cr4 = cr4;
1018 static void svm_set_segment(struct kvm_vcpu *vcpu,
1019 struct kvm_segment *var, int seg)
1021 struct vcpu_svm *svm = to_svm(vcpu);
1022 struct vmcb_seg *s = svm_seg(vcpu, seg);
1024 s->base = var->base;
1025 s->limit = var->limit;
1026 s->selector = var->selector;
1027 if (var->unusable)
1028 s->attrib = 0;
1029 else {
1030 s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK);
1031 s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT;
1032 s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT;
1033 s->attrib |= (var->present & 1) << SVM_SELECTOR_P_SHIFT;
1034 s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT;
1035 s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT;
1036 s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT;
1037 s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT;
1039 if (seg == VCPU_SREG_CS)
1040 svm->vmcb->save.cpl
1041 = (svm->vmcb->save.cs.attrib
1042 >> SVM_SELECTOR_DPL_SHIFT) & 3;
1046 static void update_db_intercept(struct kvm_vcpu *vcpu)
1048 struct vcpu_svm *svm = to_svm(vcpu);
1050 svm->vmcb->control.intercept_exceptions &=
1051 ~((1 << DB_VECTOR) | (1 << BP_VECTOR));
1053 if (vcpu->arch.singlestep)
1054 svm->vmcb->control.intercept_exceptions |= (1 << DB_VECTOR);
1056 if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) {
1057 if (vcpu->guest_debug &
1058 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
1059 svm->vmcb->control.intercept_exceptions |=
1060 1 << DB_VECTOR;
1061 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
1062 svm->vmcb->control.intercept_exceptions |=
1063 1 << BP_VECTOR;
1064 } else
1065 vcpu->guest_debug = 0;
1068 static void svm_guest_debug(struct kvm_vcpu *vcpu, struct kvm_guest_debug *dbg)
1070 struct vcpu_svm *svm = to_svm(vcpu);
1072 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1073 svm->vmcb->save.dr7 = dbg->arch.debugreg[7];
1074 else
1075 svm->vmcb->save.dr7 = vcpu->arch.dr7;
1077 update_db_intercept(vcpu);
1080 static void load_host_msrs(struct kvm_vcpu *vcpu)
1082 #ifdef CONFIG_X86_64
1083 wrmsrl(MSR_GS_BASE, to_svm(vcpu)->host_gs_base);
1084 #endif
1087 static void save_host_msrs(struct kvm_vcpu *vcpu)
1089 #ifdef CONFIG_X86_64
1090 rdmsrl(MSR_GS_BASE, to_svm(vcpu)->host_gs_base);
1091 #endif
1094 static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *svm_data)
1096 if (svm_data->next_asid > svm_data->max_asid) {
1097 ++svm_data->asid_generation;
1098 svm_data->next_asid = 1;
1099 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID;
1102 svm->asid_generation = svm_data->asid_generation;
1103 svm->vmcb->control.asid = svm_data->next_asid++;
1106 static unsigned long svm_get_dr(struct kvm_vcpu *vcpu, int dr)
1108 struct vcpu_svm *svm = to_svm(vcpu);
1109 unsigned long val;
1111 switch (dr) {
1112 case 0 ... 3:
1113 val = vcpu->arch.db[dr];
1114 break;
1115 case 6:
1116 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1117 val = vcpu->arch.dr6;
1118 else
1119 val = svm->vmcb->save.dr6;
1120 break;
1121 case 7:
1122 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1123 val = vcpu->arch.dr7;
1124 else
1125 val = svm->vmcb->save.dr7;
1126 break;
1127 default:
1128 val = 0;
1131 return val;
1134 static void svm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long value,
1135 int *exception)
1137 struct vcpu_svm *svm = to_svm(vcpu);
1139 *exception = 0;
1141 switch (dr) {
1142 case 0 ... 3:
1143 vcpu->arch.db[dr] = value;
1144 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
1145 vcpu->arch.eff_db[dr] = value;
1146 return;
1147 case 4 ... 5:
1148 if (vcpu->arch.cr4 & X86_CR4_DE)
1149 *exception = UD_VECTOR;
1150 return;
1151 case 6:
1152 if (value & 0xffffffff00000000ULL) {
1153 *exception = GP_VECTOR;
1154 return;
1156 vcpu->arch.dr6 = (value & DR6_VOLATILE) | DR6_FIXED_1;
1157 return;
1158 case 7:
1159 if (value & 0xffffffff00000000ULL) {
1160 *exception = GP_VECTOR;
1161 return;
1163 vcpu->arch.dr7 = (value & DR7_VOLATILE) | DR7_FIXED_1;
1164 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
1165 svm->vmcb->save.dr7 = vcpu->arch.dr7;
1166 vcpu->arch.switch_db_regs = (value & DR7_BP_EN_MASK);
1168 return;
1169 default:
1170 /* FIXME: Possible case? */
1171 printk(KERN_DEBUG "%s: unexpected dr %u\n",
1172 __func__, dr);
1173 *exception = UD_VECTOR;
1174 return;
1178 static int pf_interception(struct vcpu_svm *svm)
1180 u64 fault_address;
1181 u32 error_code;
1183 fault_address = svm->vmcb->control.exit_info_2;
1184 error_code = svm->vmcb->control.exit_info_1;
1186 trace_kvm_page_fault(fault_address, error_code);
1187 if (!npt_enabled && kvm_event_needs_reinjection(&svm->vcpu))
1188 kvm_mmu_unprotect_page_virt(&svm->vcpu, fault_address);
1189 return kvm_mmu_page_fault(&svm->vcpu, fault_address, error_code);
1192 static int db_interception(struct vcpu_svm *svm)
1194 struct kvm_run *kvm_run = svm->vcpu.run;
1196 if (!(svm->vcpu.guest_debug &
1197 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) &&
1198 !svm->vcpu.arch.singlestep) {
1199 kvm_queue_exception(&svm->vcpu, DB_VECTOR);
1200 return 1;
1203 if (svm->vcpu.arch.singlestep) {
1204 svm->vcpu.arch.singlestep = false;
1205 if (!(svm->vcpu.guest_debug & KVM_GUESTDBG_SINGLESTEP))
1206 svm->vmcb->save.rflags &=
1207 ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
1208 update_db_intercept(&svm->vcpu);
1211 if (svm->vcpu.guest_debug &
1212 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)){
1213 kvm_run->exit_reason = KVM_EXIT_DEBUG;
1214 kvm_run->debug.arch.pc =
1215 svm->vmcb->save.cs.base + svm->vmcb->save.rip;
1216 kvm_run->debug.arch.exception = DB_VECTOR;
1217 return 0;
1220 return 1;
1223 static int bp_interception(struct vcpu_svm *svm)
1225 struct kvm_run *kvm_run = svm->vcpu.run;
1227 kvm_run->exit_reason = KVM_EXIT_DEBUG;
1228 kvm_run->debug.arch.pc = svm->vmcb->save.cs.base + svm->vmcb->save.rip;
1229 kvm_run->debug.arch.exception = BP_VECTOR;
1230 return 0;
1233 static int ud_interception(struct vcpu_svm *svm)
1235 int er;
1237 er = emulate_instruction(&svm->vcpu, 0, 0, EMULTYPE_TRAP_UD);
1238 if (er != EMULATE_DONE)
1239 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
1240 return 1;
1243 static int nm_interception(struct vcpu_svm *svm)
1245 svm->vmcb->control.intercept_exceptions &= ~(1 << NM_VECTOR);
1246 if (!(svm->vcpu.arch.cr0 & X86_CR0_TS))
1247 svm->vmcb->save.cr0 &= ~X86_CR0_TS;
1248 svm->vcpu.fpu_active = 1;
1250 return 1;
1253 static int mc_interception(struct vcpu_svm *svm)
1256 * On an #MC intercept the MCE handler is not called automatically in
1257 * the host. So do it by hand here.
1259 asm volatile (
1260 "int $0x12\n");
1261 /* not sure if we ever come back to this point */
1263 return 1;
1266 static int shutdown_interception(struct vcpu_svm *svm)
1268 struct kvm_run *kvm_run = svm->vcpu.run;
1271 * VMCB is undefined after a SHUTDOWN intercept
1272 * so reinitialize it.
1274 clear_page(svm->vmcb);
1275 init_vmcb(svm);
1277 kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
1278 return 0;
1281 static int io_interception(struct vcpu_svm *svm)
1283 u32 io_info = svm->vmcb->control.exit_info_1; /* address size bug? */
1284 int size, in, string;
1285 unsigned port;
1287 ++svm->vcpu.stat.io_exits;
1289 svm->next_rip = svm->vmcb->control.exit_info_2;
1291 string = (io_info & SVM_IOIO_STR_MASK) != 0;
1293 if (string) {
1294 if (emulate_instruction(&svm->vcpu,
1295 0, 0, 0) == EMULATE_DO_MMIO)
1296 return 0;
1297 return 1;
1300 in = (io_info & SVM_IOIO_TYPE_MASK) != 0;
1301 port = io_info >> 16;
1302 size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT;
1304 skip_emulated_instruction(&svm->vcpu);
1305 return kvm_emulate_pio(&svm->vcpu, in, size, port);
1308 static int nmi_interception(struct vcpu_svm *svm)
1310 return 1;
1313 static int intr_interception(struct vcpu_svm *svm)
1315 ++svm->vcpu.stat.irq_exits;
1316 return 1;
1319 static int nop_on_interception(struct vcpu_svm *svm)
1321 return 1;
1324 static int halt_interception(struct vcpu_svm *svm)
1326 svm->next_rip = kvm_rip_read(&svm->vcpu) + 1;
1327 skip_emulated_instruction(&svm->vcpu);
1328 return kvm_emulate_halt(&svm->vcpu);
1331 static int vmmcall_interception(struct vcpu_svm *svm)
1333 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
1334 skip_emulated_instruction(&svm->vcpu);
1335 kvm_emulate_hypercall(&svm->vcpu);
1336 return 1;
1339 static int nested_svm_check_permissions(struct vcpu_svm *svm)
1341 if (!(svm->vcpu.arch.shadow_efer & EFER_SVME)
1342 || !is_paging(&svm->vcpu)) {
1343 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
1344 return 1;
1347 if (svm->vmcb->save.cpl) {
1348 kvm_inject_gp(&svm->vcpu, 0);
1349 return 1;
1352 return 0;
1355 static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
1356 bool has_error_code, u32 error_code)
1358 if (!is_nested(svm))
1359 return 0;
1361 svm->vmcb->control.exit_code = SVM_EXIT_EXCP_BASE + nr;
1362 svm->vmcb->control.exit_code_hi = 0;
1363 svm->vmcb->control.exit_info_1 = error_code;
1364 svm->vmcb->control.exit_info_2 = svm->vcpu.arch.cr2;
1366 return nested_svm_exit_handled(svm);
1369 static inline int nested_svm_intr(struct vcpu_svm *svm)
1371 if (!is_nested(svm))
1372 return 0;
1374 if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK))
1375 return 0;
1377 if (!(svm->vcpu.arch.hflags & HF_HIF_MASK))
1378 return 0;
1380 svm->vmcb->control.exit_code = SVM_EXIT_INTR;
1382 if (nested_svm_exit_handled(svm)) {
1383 nsvm_printk("VMexit -> INTR\n");
1384 return 1;
1387 return 0;
1390 static void *nested_svm_map(struct vcpu_svm *svm, u64 gpa, enum km_type idx)
1392 struct page *page;
1394 page = gfn_to_page(svm->vcpu.kvm, gpa >> PAGE_SHIFT);
1395 if (is_error_page(page))
1396 goto error;
1398 return kmap_atomic(page, idx);
1400 error:
1401 kvm_release_page_clean(page);
1402 kvm_inject_gp(&svm->vcpu, 0);
1404 return NULL;
1407 static void nested_svm_unmap(void *addr, enum km_type idx)
1409 struct page *page;
1411 if (!addr)
1412 return;
1414 page = kmap_atomic_to_page(addr);
1416 kunmap_atomic(addr, idx);
1417 kvm_release_page_dirty(page);
1420 static bool nested_svm_exit_handled_msr(struct vcpu_svm *svm)
1422 u32 param = svm->vmcb->control.exit_info_1 & 1;
1423 u32 msr = svm->vcpu.arch.regs[VCPU_REGS_RCX];
1424 bool ret = false;
1425 u32 t0, t1;
1426 u8 *msrpm;
1428 if (!(svm->nested.intercept & (1ULL << INTERCEPT_MSR_PROT)))
1429 return false;
1431 msrpm = nested_svm_map(svm, svm->nested.vmcb_msrpm, KM_USER0);
1433 if (!msrpm)
1434 goto out;
1436 switch (msr) {
1437 case 0 ... 0x1fff:
1438 t0 = (msr * 2) % 8;
1439 t1 = msr / 8;
1440 break;
1441 case 0xc0000000 ... 0xc0001fff:
1442 t0 = (8192 + msr - 0xc0000000) * 2;
1443 t1 = (t0 / 8);
1444 t0 %= 8;
1445 break;
1446 case 0xc0010000 ... 0xc0011fff:
1447 t0 = (16384 + msr - 0xc0010000) * 2;
1448 t1 = (t0 / 8);
1449 t0 %= 8;
1450 break;
1451 default:
1452 ret = true;
1453 goto out;
1456 ret = msrpm[t1] & ((1 << param) << t0);
1458 out:
1459 nested_svm_unmap(msrpm, KM_USER0);
1461 return ret;
1464 static int nested_svm_exit_special(struct vcpu_svm *svm)
1466 u32 exit_code = svm->vmcb->control.exit_code;
1468 switch (exit_code) {
1469 case SVM_EXIT_INTR:
1470 case SVM_EXIT_NMI:
1471 return NESTED_EXIT_HOST;
1472 /* For now we are always handling NPFs when using them */
1473 case SVM_EXIT_NPF:
1474 if (npt_enabled)
1475 return NESTED_EXIT_HOST;
1476 break;
1477 /* When we're shadowing, trap PFs */
1478 case SVM_EXIT_EXCP_BASE + PF_VECTOR:
1479 if (!npt_enabled)
1480 return NESTED_EXIT_HOST;
1481 break;
1482 default:
1483 break;
1486 return NESTED_EXIT_CONTINUE;
1490 * If this function returns true, this #vmexit was already handled
1492 static int nested_svm_exit_handled(struct vcpu_svm *svm)
1494 u32 exit_code = svm->vmcb->control.exit_code;
1495 int vmexit = NESTED_EXIT_HOST;
1497 switch (exit_code) {
1498 case SVM_EXIT_MSR:
1499 vmexit = nested_svm_exit_handled_msr(svm);
1500 break;
1501 case SVM_EXIT_READ_CR0 ... SVM_EXIT_READ_CR8: {
1502 u32 cr_bits = 1 << (exit_code - SVM_EXIT_READ_CR0);
1503 if (svm->nested.intercept_cr_read & cr_bits)
1504 vmexit = NESTED_EXIT_DONE;
1505 break;
1507 case SVM_EXIT_WRITE_CR0 ... SVM_EXIT_WRITE_CR8: {
1508 u32 cr_bits = 1 << (exit_code - SVM_EXIT_WRITE_CR0);
1509 if (svm->nested.intercept_cr_write & cr_bits)
1510 vmexit = NESTED_EXIT_DONE;
1511 break;
1513 case SVM_EXIT_READ_DR0 ... SVM_EXIT_READ_DR7: {
1514 u32 dr_bits = 1 << (exit_code - SVM_EXIT_READ_DR0);
1515 if (svm->nested.intercept_dr_read & dr_bits)
1516 vmexit = NESTED_EXIT_DONE;
1517 break;
1519 case SVM_EXIT_WRITE_DR0 ... SVM_EXIT_WRITE_DR7: {
1520 u32 dr_bits = 1 << (exit_code - SVM_EXIT_WRITE_DR0);
1521 if (svm->nested.intercept_dr_write & dr_bits)
1522 vmexit = NESTED_EXIT_DONE;
1523 break;
1525 case SVM_EXIT_EXCP_BASE ... SVM_EXIT_EXCP_BASE + 0x1f: {
1526 u32 excp_bits = 1 << (exit_code - SVM_EXIT_EXCP_BASE);
1527 if (svm->nested.intercept_exceptions & excp_bits)
1528 vmexit = NESTED_EXIT_DONE;
1529 break;
1531 default: {
1532 u64 exit_bits = 1ULL << (exit_code - SVM_EXIT_INTR);
1533 nsvm_printk("exit code: 0x%x\n", exit_code);
1534 if (svm->nested.intercept & exit_bits)
1535 vmexit = NESTED_EXIT_DONE;
1539 if (vmexit == NESTED_EXIT_DONE) {
1540 nsvm_printk("#VMEXIT reason=%04x\n", exit_code);
1541 nested_svm_vmexit(svm);
1544 return vmexit;
1547 static inline void copy_vmcb_control_area(struct vmcb *dst_vmcb, struct vmcb *from_vmcb)
1549 struct vmcb_control_area *dst = &dst_vmcb->control;
1550 struct vmcb_control_area *from = &from_vmcb->control;
1552 dst->intercept_cr_read = from->intercept_cr_read;
1553 dst->intercept_cr_write = from->intercept_cr_write;
1554 dst->intercept_dr_read = from->intercept_dr_read;
1555 dst->intercept_dr_write = from->intercept_dr_write;
1556 dst->intercept_exceptions = from->intercept_exceptions;
1557 dst->intercept = from->intercept;
1558 dst->iopm_base_pa = from->iopm_base_pa;
1559 dst->msrpm_base_pa = from->msrpm_base_pa;
1560 dst->tsc_offset = from->tsc_offset;
1561 dst->asid = from->asid;
1562 dst->tlb_ctl = from->tlb_ctl;
1563 dst->int_ctl = from->int_ctl;
1564 dst->int_vector = from->int_vector;
1565 dst->int_state = from->int_state;
1566 dst->exit_code = from->exit_code;
1567 dst->exit_code_hi = from->exit_code_hi;
1568 dst->exit_info_1 = from->exit_info_1;
1569 dst->exit_info_2 = from->exit_info_2;
1570 dst->exit_int_info = from->exit_int_info;
1571 dst->exit_int_info_err = from->exit_int_info_err;
1572 dst->nested_ctl = from->nested_ctl;
1573 dst->event_inj = from->event_inj;
1574 dst->event_inj_err = from->event_inj_err;
1575 dst->nested_cr3 = from->nested_cr3;
1576 dst->lbr_ctl = from->lbr_ctl;
1579 static int nested_svm_vmexit(struct vcpu_svm *svm)
1581 struct vmcb *nested_vmcb;
1582 struct vmcb *hsave = svm->nested.hsave;
1583 struct vmcb *vmcb = svm->vmcb;
1585 nested_vmcb = nested_svm_map(svm, svm->nested.vmcb, KM_USER0);
1586 if (!nested_vmcb)
1587 return 1;
1589 /* Give the current vmcb to the guest */
1590 disable_gif(svm);
1592 nested_vmcb->save.es = vmcb->save.es;
1593 nested_vmcb->save.cs = vmcb->save.cs;
1594 nested_vmcb->save.ss = vmcb->save.ss;
1595 nested_vmcb->save.ds = vmcb->save.ds;
1596 nested_vmcb->save.gdtr = vmcb->save.gdtr;
1597 nested_vmcb->save.idtr = vmcb->save.idtr;
1598 if (npt_enabled)
1599 nested_vmcb->save.cr3 = vmcb->save.cr3;
1600 nested_vmcb->save.cr2 = vmcb->save.cr2;
1601 nested_vmcb->save.rflags = vmcb->save.rflags;
1602 nested_vmcb->save.rip = vmcb->save.rip;
1603 nested_vmcb->save.rsp = vmcb->save.rsp;
1604 nested_vmcb->save.rax = vmcb->save.rax;
1605 nested_vmcb->save.dr7 = vmcb->save.dr7;
1606 nested_vmcb->save.dr6 = vmcb->save.dr6;
1607 nested_vmcb->save.cpl = vmcb->save.cpl;
1609 nested_vmcb->control.int_ctl = vmcb->control.int_ctl;
1610 nested_vmcb->control.int_vector = vmcb->control.int_vector;
1611 nested_vmcb->control.int_state = vmcb->control.int_state;
1612 nested_vmcb->control.exit_code = vmcb->control.exit_code;
1613 nested_vmcb->control.exit_code_hi = vmcb->control.exit_code_hi;
1614 nested_vmcb->control.exit_info_1 = vmcb->control.exit_info_1;
1615 nested_vmcb->control.exit_info_2 = vmcb->control.exit_info_2;
1616 nested_vmcb->control.exit_int_info = vmcb->control.exit_int_info;
1617 nested_vmcb->control.exit_int_info_err = vmcb->control.exit_int_info_err;
1620 * If we emulate a VMRUN/#VMEXIT in the same host #vmexit cycle we have
1621 * to make sure that we do not lose injected events. So check event_inj
1622 * here and copy it to exit_int_info if it is valid.
1623 * Exit_int_info and event_inj can't be both valid because the case
1624 * below only happens on a VMRUN instruction intercept which has
1625 * no valid exit_int_info set.
1627 if (vmcb->control.event_inj & SVM_EVTINJ_VALID) {
1628 struct vmcb_control_area *nc = &nested_vmcb->control;
1630 nc->exit_int_info = vmcb->control.event_inj;
1631 nc->exit_int_info_err = vmcb->control.event_inj_err;
1634 nested_vmcb->control.tlb_ctl = 0;
1635 nested_vmcb->control.event_inj = 0;
1636 nested_vmcb->control.event_inj_err = 0;
1638 /* We always set V_INTR_MASKING and remember the old value in hflags */
1639 if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK))
1640 nested_vmcb->control.int_ctl &= ~V_INTR_MASKING_MASK;
1642 /* Restore the original control entries */
1643 copy_vmcb_control_area(vmcb, hsave);
1645 /* Kill any pending exceptions */
1646 if (svm->vcpu.arch.exception.pending == true)
1647 nsvm_printk("WARNING: Pending Exception\n");
1649 kvm_clear_exception_queue(&svm->vcpu);
1650 kvm_clear_interrupt_queue(&svm->vcpu);
1652 /* Restore selected save entries */
1653 svm->vmcb->save.es = hsave->save.es;
1654 svm->vmcb->save.cs = hsave->save.cs;
1655 svm->vmcb->save.ss = hsave->save.ss;
1656 svm->vmcb->save.ds = hsave->save.ds;
1657 svm->vmcb->save.gdtr = hsave->save.gdtr;
1658 svm->vmcb->save.idtr = hsave->save.idtr;
1659 svm->vmcb->save.rflags = hsave->save.rflags;
1660 svm_set_efer(&svm->vcpu, hsave->save.efer);
1661 svm_set_cr0(&svm->vcpu, hsave->save.cr0 | X86_CR0_PE);
1662 svm_set_cr4(&svm->vcpu, hsave->save.cr4);
1663 if (npt_enabled) {
1664 svm->vmcb->save.cr3 = hsave->save.cr3;
1665 svm->vcpu.arch.cr3 = hsave->save.cr3;
1666 } else {
1667 kvm_set_cr3(&svm->vcpu, hsave->save.cr3);
1669 kvm_register_write(&svm->vcpu, VCPU_REGS_RAX, hsave->save.rax);
1670 kvm_register_write(&svm->vcpu, VCPU_REGS_RSP, hsave->save.rsp);
1671 kvm_register_write(&svm->vcpu, VCPU_REGS_RIP, hsave->save.rip);
1672 svm->vmcb->save.dr7 = 0;
1673 svm->vmcb->save.cpl = 0;
1674 svm->vmcb->control.exit_int_info = 0;
1676 /* Exit nested SVM mode */
1677 svm->nested.vmcb = 0;
1679 nested_svm_unmap(nested_vmcb, KM_USER0);
1681 kvm_mmu_reset_context(&svm->vcpu);
1682 kvm_mmu_load(&svm->vcpu);
1684 return 0;
1687 static bool nested_svm_vmrun_msrpm(struct vcpu_svm *svm)
1689 u32 *nested_msrpm;
1690 int i;
1692 nested_msrpm = nested_svm_map(svm, svm->nested.vmcb_msrpm, KM_USER0);
1693 if (!nested_msrpm)
1694 return false;
1696 for (i=0; i< PAGE_SIZE * (1 << MSRPM_ALLOC_ORDER) / 4; i++)
1697 svm->nested.msrpm[i] = svm->msrpm[i] | nested_msrpm[i];
1699 svm->vmcb->control.msrpm_base_pa = __pa(svm->nested.msrpm);
1701 nested_svm_unmap(nested_msrpm, KM_USER0);
1703 return true;
1706 static bool nested_svm_vmrun(struct vcpu_svm *svm)
1708 struct vmcb *nested_vmcb;
1709 struct vmcb *hsave = svm->nested.hsave;
1710 struct vmcb *vmcb = svm->vmcb;
1712 nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, KM_USER0);
1713 if (!nested_vmcb)
1714 return false;
1716 /* nested_vmcb is our indicator if nested SVM is activated */
1717 svm->nested.vmcb = svm->vmcb->save.rax;
1719 /* Clear internal status */
1720 kvm_clear_exception_queue(&svm->vcpu);
1721 kvm_clear_interrupt_queue(&svm->vcpu);
1723 /* Save the old vmcb, so we don't need to pick what we save, but
1724 can restore everything when a VMEXIT occurs */
1725 hsave->save.es = vmcb->save.es;
1726 hsave->save.cs = vmcb->save.cs;
1727 hsave->save.ss = vmcb->save.ss;
1728 hsave->save.ds = vmcb->save.ds;
1729 hsave->save.gdtr = vmcb->save.gdtr;
1730 hsave->save.idtr = vmcb->save.idtr;
1731 hsave->save.efer = svm->vcpu.arch.shadow_efer;
1732 hsave->save.cr0 = svm->vcpu.arch.cr0;
1733 hsave->save.cr4 = svm->vcpu.arch.cr4;
1734 hsave->save.rflags = vmcb->save.rflags;
1735 hsave->save.rip = svm->next_rip;
1736 hsave->save.rsp = vmcb->save.rsp;
1737 hsave->save.rax = vmcb->save.rax;
1738 if (npt_enabled)
1739 hsave->save.cr3 = vmcb->save.cr3;
1740 else
1741 hsave->save.cr3 = svm->vcpu.arch.cr3;
1743 copy_vmcb_control_area(hsave, vmcb);
1745 if (svm->vmcb->save.rflags & X86_EFLAGS_IF)
1746 svm->vcpu.arch.hflags |= HF_HIF_MASK;
1747 else
1748 svm->vcpu.arch.hflags &= ~HF_HIF_MASK;
1750 /* Load the nested guest state */
1751 svm->vmcb->save.es = nested_vmcb->save.es;
1752 svm->vmcb->save.cs = nested_vmcb->save.cs;
1753 svm->vmcb->save.ss = nested_vmcb->save.ss;
1754 svm->vmcb->save.ds = nested_vmcb->save.ds;
1755 svm->vmcb->save.gdtr = nested_vmcb->save.gdtr;
1756 svm->vmcb->save.idtr = nested_vmcb->save.idtr;
1757 svm->vmcb->save.rflags = nested_vmcb->save.rflags;
1758 svm_set_efer(&svm->vcpu, nested_vmcb->save.efer);
1759 svm_set_cr0(&svm->vcpu, nested_vmcb->save.cr0);
1760 svm_set_cr4(&svm->vcpu, nested_vmcb->save.cr4);
1761 if (npt_enabled) {
1762 svm->vmcb->save.cr3 = nested_vmcb->save.cr3;
1763 svm->vcpu.arch.cr3 = nested_vmcb->save.cr3;
1764 } else {
1765 kvm_set_cr3(&svm->vcpu, nested_vmcb->save.cr3);
1766 kvm_mmu_reset_context(&svm->vcpu);
1768 svm->vmcb->save.cr2 = svm->vcpu.arch.cr2 = nested_vmcb->save.cr2;
1769 kvm_register_write(&svm->vcpu, VCPU_REGS_RAX, nested_vmcb->save.rax);
1770 kvm_register_write(&svm->vcpu, VCPU_REGS_RSP, nested_vmcb->save.rsp);
1771 kvm_register_write(&svm->vcpu, VCPU_REGS_RIP, nested_vmcb->save.rip);
1772 /* In case we don't even reach vcpu_run, the fields are not updated */
1773 svm->vmcb->save.rax = nested_vmcb->save.rax;
1774 svm->vmcb->save.rsp = nested_vmcb->save.rsp;
1775 svm->vmcb->save.rip = nested_vmcb->save.rip;
1776 svm->vmcb->save.dr7 = nested_vmcb->save.dr7;
1777 svm->vmcb->save.dr6 = nested_vmcb->save.dr6;
1778 svm->vmcb->save.cpl = nested_vmcb->save.cpl;
1780 /* We don't want a nested guest to be more powerful than the guest,
1781 so all intercepts are ORed */
1782 svm->vmcb->control.intercept_cr_read |=
1783 nested_vmcb->control.intercept_cr_read;
1784 svm->vmcb->control.intercept_cr_write |=
1785 nested_vmcb->control.intercept_cr_write;
1786 svm->vmcb->control.intercept_dr_read |=
1787 nested_vmcb->control.intercept_dr_read;
1788 svm->vmcb->control.intercept_dr_write |=
1789 nested_vmcb->control.intercept_dr_write;
1790 svm->vmcb->control.intercept_exceptions |=
1791 nested_vmcb->control.intercept_exceptions;
1793 svm->vmcb->control.intercept |= nested_vmcb->control.intercept;
1795 svm->nested.vmcb_msrpm = nested_vmcb->control.msrpm_base_pa;
1797 /* cache intercepts */
1798 svm->nested.intercept_cr_read = nested_vmcb->control.intercept_cr_read;
1799 svm->nested.intercept_cr_write = nested_vmcb->control.intercept_cr_write;
1800 svm->nested.intercept_dr_read = nested_vmcb->control.intercept_dr_read;
1801 svm->nested.intercept_dr_write = nested_vmcb->control.intercept_dr_write;
1802 svm->nested.intercept_exceptions = nested_vmcb->control.intercept_exceptions;
1803 svm->nested.intercept = nested_vmcb->control.intercept;
1805 force_new_asid(&svm->vcpu);
1806 svm->vmcb->control.int_ctl = nested_vmcb->control.int_ctl | V_INTR_MASKING_MASK;
1807 if (nested_vmcb->control.int_ctl & V_IRQ_MASK) {
1808 nsvm_printk("nSVM Injecting Interrupt: 0x%x\n",
1809 nested_vmcb->control.int_ctl);
1811 if (nested_vmcb->control.int_ctl & V_INTR_MASKING_MASK)
1812 svm->vcpu.arch.hflags |= HF_VINTR_MASK;
1813 else
1814 svm->vcpu.arch.hflags &= ~HF_VINTR_MASK;
1816 nsvm_printk("nSVM exit_int_info: 0x%x | int_state: 0x%x\n",
1817 nested_vmcb->control.exit_int_info,
1818 nested_vmcb->control.int_state);
1820 svm->vmcb->control.int_vector = nested_vmcb->control.int_vector;
1821 svm->vmcb->control.int_state = nested_vmcb->control.int_state;
1822 svm->vmcb->control.tsc_offset += nested_vmcb->control.tsc_offset;
1823 if (nested_vmcb->control.event_inj & SVM_EVTINJ_VALID)
1824 nsvm_printk("Injecting Event: 0x%x\n",
1825 nested_vmcb->control.event_inj);
1826 svm->vmcb->control.event_inj = nested_vmcb->control.event_inj;
1827 svm->vmcb->control.event_inj_err = nested_vmcb->control.event_inj_err;
1829 nested_svm_unmap(nested_vmcb, KM_USER0);
1831 enable_gif(svm);
1833 return true;
1836 static void nested_svm_vmloadsave(struct vmcb *from_vmcb, struct vmcb *to_vmcb)
1838 to_vmcb->save.fs = from_vmcb->save.fs;
1839 to_vmcb->save.gs = from_vmcb->save.gs;
1840 to_vmcb->save.tr = from_vmcb->save.tr;
1841 to_vmcb->save.ldtr = from_vmcb->save.ldtr;
1842 to_vmcb->save.kernel_gs_base = from_vmcb->save.kernel_gs_base;
1843 to_vmcb->save.star = from_vmcb->save.star;
1844 to_vmcb->save.lstar = from_vmcb->save.lstar;
1845 to_vmcb->save.cstar = from_vmcb->save.cstar;
1846 to_vmcb->save.sfmask = from_vmcb->save.sfmask;
1847 to_vmcb->save.sysenter_cs = from_vmcb->save.sysenter_cs;
1848 to_vmcb->save.sysenter_esp = from_vmcb->save.sysenter_esp;
1849 to_vmcb->save.sysenter_eip = from_vmcb->save.sysenter_eip;
1852 static int vmload_interception(struct vcpu_svm *svm)
1854 struct vmcb *nested_vmcb;
1856 if (nested_svm_check_permissions(svm))
1857 return 1;
1859 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
1860 skip_emulated_instruction(&svm->vcpu);
1862 nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, KM_USER0);
1863 if (!nested_vmcb)
1864 return 1;
1866 nested_svm_vmloadsave(nested_vmcb, svm->vmcb);
1867 nested_svm_unmap(nested_vmcb, KM_USER0);
1869 return 1;
1872 static int vmsave_interception(struct vcpu_svm *svm)
1874 struct vmcb *nested_vmcb;
1876 if (nested_svm_check_permissions(svm))
1877 return 1;
1879 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
1880 skip_emulated_instruction(&svm->vcpu);
1882 nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, KM_USER0);
1883 if (!nested_vmcb)
1884 return 1;
1886 nested_svm_vmloadsave(svm->vmcb, nested_vmcb);
1887 nested_svm_unmap(nested_vmcb, KM_USER0);
1889 return 1;
1892 static int vmrun_interception(struct vcpu_svm *svm)
1894 nsvm_printk("VMrun\n");
1896 if (nested_svm_check_permissions(svm))
1897 return 1;
1899 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
1900 skip_emulated_instruction(&svm->vcpu);
1902 if (!nested_svm_vmrun(svm))
1903 return 1;
1905 if (!nested_svm_vmrun_msrpm(svm))
1906 goto failed;
1908 return 1;
1910 failed:
1912 svm->vmcb->control.exit_code = SVM_EXIT_ERR;
1913 svm->vmcb->control.exit_code_hi = 0;
1914 svm->vmcb->control.exit_info_1 = 0;
1915 svm->vmcb->control.exit_info_2 = 0;
1917 nested_svm_vmexit(svm);
1919 return 1;
1922 static int stgi_interception(struct vcpu_svm *svm)
1924 if (nested_svm_check_permissions(svm))
1925 return 1;
1927 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
1928 skip_emulated_instruction(&svm->vcpu);
1930 enable_gif(svm);
1932 return 1;
1935 static int clgi_interception(struct vcpu_svm *svm)
1937 if (nested_svm_check_permissions(svm))
1938 return 1;
1940 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
1941 skip_emulated_instruction(&svm->vcpu);
1943 disable_gif(svm);
1945 /* After a CLGI no interrupts should come */
1946 svm_clear_vintr(svm);
1947 svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
1949 return 1;
1952 static int invlpga_interception(struct vcpu_svm *svm)
1954 struct kvm_vcpu *vcpu = &svm->vcpu;
1955 nsvm_printk("INVLPGA\n");
1957 /* Let's treat INVLPGA the same as INVLPG (can be optimized!) */
1958 kvm_mmu_invlpg(vcpu, vcpu->arch.regs[VCPU_REGS_RAX]);
1960 svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
1961 skip_emulated_instruction(&svm->vcpu);
1962 return 1;
1965 static int invalid_op_interception(struct vcpu_svm *svm)
1967 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
1968 return 1;
1971 static int task_switch_interception(struct vcpu_svm *svm)
1973 u16 tss_selector;
1974 int reason;
1975 int int_type = svm->vmcb->control.exit_int_info &
1976 SVM_EXITINTINFO_TYPE_MASK;
1977 int int_vec = svm->vmcb->control.exit_int_info & SVM_EVTINJ_VEC_MASK;
1978 uint32_t type =
1979 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_TYPE_MASK;
1980 uint32_t idt_v =
1981 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_VALID;
1983 tss_selector = (u16)svm->vmcb->control.exit_info_1;
1985 if (svm->vmcb->control.exit_info_2 &
1986 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_IRET))
1987 reason = TASK_SWITCH_IRET;
1988 else if (svm->vmcb->control.exit_info_2 &
1989 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_JMP))
1990 reason = TASK_SWITCH_JMP;
1991 else if (idt_v)
1992 reason = TASK_SWITCH_GATE;
1993 else
1994 reason = TASK_SWITCH_CALL;
1996 if (reason == TASK_SWITCH_GATE) {
1997 switch (type) {
1998 case SVM_EXITINTINFO_TYPE_NMI:
1999 svm->vcpu.arch.nmi_injected = false;
2000 break;
2001 case SVM_EXITINTINFO_TYPE_EXEPT:
2002 kvm_clear_exception_queue(&svm->vcpu);
2003 break;
2004 case SVM_EXITINTINFO_TYPE_INTR:
2005 kvm_clear_interrupt_queue(&svm->vcpu);
2006 break;
2007 default:
2008 break;
2012 if (reason != TASK_SWITCH_GATE ||
2013 int_type == SVM_EXITINTINFO_TYPE_SOFT ||
2014 (int_type == SVM_EXITINTINFO_TYPE_EXEPT &&
2015 (int_vec == OF_VECTOR || int_vec == BP_VECTOR)))
2016 skip_emulated_instruction(&svm->vcpu);
2018 return kvm_task_switch(&svm->vcpu, tss_selector, reason);
2021 static int cpuid_interception(struct vcpu_svm *svm)
2023 svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
2024 kvm_emulate_cpuid(&svm->vcpu);
2025 return 1;
2028 static int iret_interception(struct vcpu_svm *svm)
2030 ++svm->vcpu.stat.nmi_window_exits;
2031 svm->vmcb->control.intercept &= ~(1UL << INTERCEPT_IRET);
2032 svm->vcpu.arch.hflags |= HF_IRET_MASK;
2033 return 1;
2036 static int invlpg_interception(struct vcpu_svm *svm)
2038 if (emulate_instruction(&svm->vcpu, 0, 0, 0) != EMULATE_DONE)
2039 pr_unimpl(&svm->vcpu, "%s: failed\n", __func__);
2040 return 1;
2043 static int emulate_on_interception(struct vcpu_svm *svm)
2045 if (emulate_instruction(&svm->vcpu, 0, 0, 0) != EMULATE_DONE)
2046 pr_unimpl(&svm->vcpu, "%s: failed\n", __func__);
2047 return 1;
2050 static int cr8_write_interception(struct vcpu_svm *svm)
2052 struct kvm_run *kvm_run = svm->vcpu.run;
2054 u8 cr8_prev = kvm_get_cr8(&svm->vcpu);
2055 /* instruction emulation calls kvm_set_cr8() */
2056 emulate_instruction(&svm->vcpu, 0, 0, 0);
2057 if (irqchip_in_kernel(svm->vcpu.kvm)) {
2058 svm->vmcb->control.intercept_cr_write &= ~INTERCEPT_CR8_MASK;
2059 return 1;
2061 if (cr8_prev <= kvm_get_cr8(&svm->vcpu))
2062 return 1;
2063 kvm_run->exit_reason = KVM_EXIT_SET_TPR;
2064 return 0;
2067 static int svm_get_msr(struct kvm_vcpu *vcpu, unsigned ecx, u64 *data)
2069 struct vcpu_svm *svm = to_svm(vcpu);
2071 switch (ecx) {
2072 case MSR_IA32_TSC: {
2073 u64 tsc_offset;
2075 if (is_nested(svm))
2076 tsc_offset = svm->nested.hsave->control.tsc_offset;
2077 else
2078 tsc_offset = svm->vmcb->control.tsc_offset;
2080 *data = tsc_offset + native_read_tsc();
2081 break;
2083 case MSR_K6_STAR:
2084 *data = svm->vmcb->save.star;
2085 break;
2086 #ifdef CONFIG_X86_64
2087 case MSR_LSTAR:
2088 *data = svm->vmcb->save.lstar;
2089 break;
2090 case MSR_CSTAR:
2091 *data = svm->vmcb->save.cstar;
2092 break;
2093 case MSR_KERNEL_GS_BASE:
2094 *data = svm->vmcb->save.kernel_gs_base;
2095 break;
2096 case MSR_SYSCALL_MASK:
2097 *data = svm->vmcb->save.sfmask;
2098 break;
2099 #endif
2100 case MSR_IA32_SYSENTER_CS:
2101 *data = svm->vmcb->save.sysenter_cs;
2102 break;
2103 case MSR_IA32_SYSENTER_EIP:
2104 *data = svm->sysenter_eip;
2105 break;
2106 case MSR_IA32_SYSENTER_ESP:
2107 *data = svm->sysenter_esp;
2108 break;
2109 /* Nobody will change the following 5 values in the VMCB so
2110 we can safely return them on rdmsr. They will always be 0
2111 until LBRV is implemented. */
2112 case MSR_IA32_DEBUGCTLMSR:
2113 *data = svm->vmcb->save.dbgctl;
2114 break;
2115 case MSR_IA32_LASTBRANCHFROMIP:
2116 *data = svm->vmcb->save.br_from;
2117 break;
2118 case MSR_IA32_LASTBRANCHTOIP:
2119 *data = svm->vmcb->save.br_to;
2120 break;
2121 case MSR_IA32_LASTINTFROMIP:
2122 *data = svm->vmcb->save.last_excp_from;
2123 break;
2124 case MSR_IA32_LASTINTTOIP:
2125 *data = svm->vmcb->save.last_excp_to;
2126 break;
2127 case MSR_VM_HSAVE_PA:
2128 *data = svm->nested.hsave_msr;
2129 break;
2130 case MSR_VM_CR:
2131 *data = 0;
2132 break;
2133 case MSR_IA32_UCODE_REV:
2134 *data = 0x01000065;
2135 break;
2136 default:
2137 return kvm_get_msr_common(vcpu, ecx, data);
2139 return 0;
2142 static int rdmsr_interception(struct vcpu_svm *svm)
2144 u32 ecx = svm->vcpu.arch.regs[VCPU_REGS_RCX];
2145 u64 data;
2147 if (svm_get_msr(&svm->vcpu, ecx, &data))
2148 kvm_inject_gp(&svm->vcpu, 0);
2149 else {
2150 trace_kvm_msr_read(ecx, data);
2152 svm->vcpu.arch.regs[VCPU_REGS_RAX] = data & 0xffffffff;
2153 svm->vcpu.arch.regs[VCPU_REGS_RDX] = data >> 32;
2154 svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
2155 skip_emulated_instruction(&svm->vcpu);
2157 return 1;
2160 static int svm_set_msr(struct kvm_vcpu *vcpu, unsigned ecx, u64 data)
2162 struct vcpu_svm *svm = to_svm(vcpu);
2164 switch (ecx) {
2165 case MSR_IA32_TSC: {
2166 u64 tsc_offset = data - native_read_tsc();
2167 u64 g_tsc_offset = 0;
2169 if (is_nested(svm)) {
2170 g_tsc_offset = svm->vmcb->control.tsc_offset -
2171 svm->nested.hsave->control.tsc_offset;
2172 svm->nested.hsave->control.tsc_offset = tsc_offset;
2175 svm->vmcb->control.tsc_offset = tsc_offset + g_tsc_offset;
2177 break;
2179 case MSR_K6_STAR:
2180 svm->vmcb->save.star = data;
2181 break;
2182 #ifdef CONFIG_X86_64
2183 case MSR_LSTAR:
2184 svm->vmcb->save.lstar = data;
2185 break;
2186 case MSR_CSTAR:
2187 svm->vmcb->save.cstar = data;
2188 break;
2189 case MSR_KERNEL_GS_BASE:
2190 svm->vmcb->save.kernel_gs_base = data;
2191 break;
2192 case MSR_SYSCALL_MASK:
2193 svm->vmcb->save.sfmask = data;
2194 break;
2195 #endif
2196 case MSR_IA32_SYSENTER_CS:
2197 svm->vmcb->save.sysenter_cs = data;
2198 break;
2199 case MSR_IA32_SYSENTER_EIP:
2200 svm->sysenter_eip = data;
2201 svm->vmcb->save.sysenter_eip = data;
2202 break;
2203 case MSR_IA32_SYSENTER_ESP:
2204 svm->sysenter_esp = data;
2205 svm->vmcb->save.sysenter_esp = data;
2206 break;
2207 case MSR_IA32_DEBUGCTLMSR:
2208 if (!svm_has(SVM_FEATURE_LBRV)) {
2209 pr_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTL 0x%llx, nop\n",
2210 __func__, data);
2211 break;
2213 if (data & DEBUGCTL_RESERVED_BITS)
2214 return 1;
2216 svm->vmcb->save.dbgctl = data;
2217 if (data & (1ULL<<0))
2218 svm_enable_lbrv(svm);
2219 else
2220 svm_disable_lbrv(svm);
2221 break;
2222 case MSR_VM_HSAVE_PA:
2223 svm->nested.hsave_msr = data;
2224 break;
2225 case MSR_VM_CR:
2226 case MSR_VM_IGNNE:
2227 pr_unimpl(vcpu, "unimplemented wrmsr: 0x%x data 0x%llx\n", ecx, data);
2228 break;
2229 default:
2230 return kvm_set_msr_common(vcpu, ecx, data);
2232 return 0;
2235 static int wrmsr_interception(struct vcpu_svm *svm)
2237 u32 ecx = svm->vcpu.arch.regs[VCPU_REGS_RCX];
2238 u64 data = (svm->vcpu.arch.regs[VCPU_REGS_RAX] & -1u)
2239 | ((u64)(svm->vcpu.arch.regs[VCPU_REGS_RDX] & -1u) << 32);
2241 trace_kvm_msr_write(ecx, data);
2243 svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
2244 if (svm_set_msr(&svm->vcpu, ecx, data))
2245 kvm_inject_gp(&svm->vcpu, 0);
2246 else
2247 skip_emulated_instruction(&svm->vcpu);
2248 return 1;
2251 static int msr_interception(struct vcpu_svm *svm)
2253 if (svm->vmcb->control.exit_info_1)
2254 return wrmsr_interception(svm);
2255 else
2256 return rdmsr_interception(svm);
2259 static int interrupt_window_interception(struct vcpu_svm *svm)
2261 struct kvm_run *kvm_run = svm->vcpu.run;
2263 svm_clear_vintr(svm);
2264 svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
2266 * If the user space waits to inject interrupts, exit as soon as
2267 * possible
2269 if (!irqchip_in_kernel(svm->vcpu.kvm) &&
2270 kvm_run->request_interrupt_window &&
2271 !kvm_cpu_has_interrupt(&svm->vcpu)) {
2272 ++svm->vcpu.stat.irq_window_exits;
2273 kvm_run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
2274 return 0;
2277 return 1;
2280 static int (*svm_exit_handlers[])(struct vcpu_svm *svm) = {
2281 [SVM_EXIT_READ_CR0] = emulate_on_interception,
2282 [SVM_EXIT_READ_CR3] = emulate_on_interception,
2283 [SVM_EXIT_READ_CR4] = emulate_on_interception,
2284 [SVM_EXIT_READ_CR8] = emulate_on_interception,
2285 /* for now: */
2286 [SVM_EXIT_WRITE_CR0] = emulate_on_interception,
2287 [SVM_EXIT_WRITE_CR3] = emulate_on_interception,
2288 [SVM_EXIT_WRITE_CR4] = emulate_on_interception,
2289 [SVM_EXIT_WRITE_CR8] = cr8_write_interception,
2290 [SVM_EXIT_READ_DR0] = emulate_on_interception,
2291 [SVM_EXIT_READ_DR1] = emulate_on_interception,
2292 [SVM_EXIT_READ_DR2] = emulate_on_interception,
2293 [SVM_EXIT_READ_DR3] = emulate_on_interception,
2294 [SVM_EXIT_WRITE_DR0] = emulate_on_interception,
2295 [SVM_EXIT_WRITE_DR1] = emulate_on_interception,
2296 [SVM_EXIT_WRITE_DR2] = emulate_on_interception,
2297 [SVM_EXIT_WRITE_DR3] = emulate_on_interception,
2298 [SVM_EXIT_WRITE_DR5] = emulate_on_interception,
2299 [SVM_EXIT_WRITE_DR7] = emulate_on_interception,
2300 [SVM_EXIT_EXCP_BASE + DB_VECTOR] = db_interception,
2301 [SVM_EXIT_EXCP_BASE + BP_VECTOR] = bp_interception,
2302 [SVM_EXIT_EXCP_BASE + UD_VECTOR] = ud_interception,
2303 [SVM_EXIT_EXCP_BASE + PF_VECTOR] = pf_interception,
2304 [SVM_EXIT_EXCP_BASE + NM_VECTOR] = nm_interception,
2305 [SVM_EXIT_EXCP_BASE + MC_VECTOR] = mc_interception,
2306 [SVM_EXIT_INTR] = intr_interception,
2307 [SVM_EXIT_NMI] = nmi_interception,
2308 [SVM_EXIT_SMI] = nop_on_interception,
2309 [SVM_EXIT_INIT] = nop_on_interception,
2310 [SVM_EXIT_VINTR] = interrupt_window_interception,
2311 /* [SVM_EXIT_CR0_SEL_WRITE] = emulate_on_interception, */
2312 [SVM_EXIT_CPUID] = cpuid_interception,
2313 [SVM_EXIT_IRET] = iret_interception,
2314 [SVM_EXIT_INVD] = emulate_on_interception,
2315 [SVM_EXIT_HLT] = halt_interception,
2316 [SVM_EXIT_INVLPG] = invlpg_interception,
2317 [SVM_EXIT_INVLPGA] = invlpga_interception,
2318 [SVM_EXIT_IOIO] = io_interception,
2319 [SVM_EXIT_MSR] = msr_interception,
2320 [SVM_EXIT_TASK_SWITCH] = task_switch_interception,
2321 [SVM_EXIT_SHUTDOWN] = shutdown_interception,
2322 [SVM_EXIT_VMRUN] = vmrun_interception,
2323 [SVM_EXIT_VMMCALL] = vmmcall_interception,
2324 [SVM_EXIT_VMLOAD] = vmload_interception,
2325 [SVM_EXIT_VMSAVE] = vmsave_interception,
2326 [SVM_EXIT_STGI] = stgi_interception,
2327 [SVM_EXIT_CLGI] = clgi_interception,
2328 [SVM_EXIT_SKINIT] = invalid_op_interception,
2329 [SVM_EXIT_WBINVD] = emulate_on_interception,
2330 [SVM_EXIT_MONITOR] = invalid_op_interception,
2331 [SVM_EXIT_MWAIT] = invalid_op_interception,
2332 [SVM_EXIT_NPF] = pf_interception,
2335 static int handle_exit(struct kvm_vcpu *vcpu)
2337 struct vcpu_svm *svm = to_svm(vcpu);
2338 struct kvm_run *kvm_run = vcpu->run;
2339 u32 exit_code = svm->vmcb->control.exit_code;
2341 trace_kvm_exit(exit_code, svm->vmcb->save.rip);
2343 if (is_nested(svm)) {
2344 int vmexit;
2346 nsvm_printk("nested handle_exit: 0x%x | 0x%lx | 0x%lx | 0x%lx\n",
2347 exit_code, svm->vmcb->control.exit_info_1,
2348 svm->vmcb->control.exit_info_2, svm->vmcb->save.rip);
2350 vmexit = nested_svm_exit_special(svm);
2352 if (vmexit == NESTED_EXIT_CONTINUE)
2353 vmexit = nested_svm_exit_handled(svm);
2355 if (vmexit == NESTED_EXIT_DONE)
2356 return 1;
2359 svm_complete_interrupts(svm);
2361 if (npt_enabled) {
2362 int mmu_reload = 0;
2363 if ((vcpu->arch.cr0 ^ svm->vmcb->save.cr0) & X86_CR0_PG) {
2364 svm_set_cr0(vcpu, svm->vmcb->save.cr0);
2365 mmu_reload = 1;
2367 vcpu->arch.cr0 = svm->vmcb->save.cr0;
2368 vcpu->arch.cr3 = svm->vmcb->save.cr3;
2369 if (mmu_reload) {
2370 kvm_mmu_reset_context(vcpu);
2371 kvm_mmu_load(vcpu);
2376 if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) {
2377 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
2378 kvm_run->fail_entry.hardware_entry_failure_reason
2379 = svm->vmcb->control.exit_code;
2380 return 0;
2383 if (is_external_interrupt(svm->vmcb->control.exit_int_info) &&
2384 exit_code != SVM_EXIT_EXCP_BASE + PF_VECTOR &&
2385 exit_code != SVM_EXIT_NPF && exit_code != SVM_EXIT_TASK_SWITCH)
2386 printk(KERN_ERR "%s: unexpected exit_ini_info 0x%x "
2387 "exit_code 0x%x\n",
2388 __func__, svm->vmcb->control.exit_int_info,
2389 exit_code);
2391 if (exit_code >= ARRAY_SIZE(svm_exit_handlers)
2392 || !svm_exit_handlers[exit_code]) {
2393 kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
2394 kvm_run->hw.hardware_exit_reason = exit_code;
2395 return 0;
2398 return svm_exit_handlers[exit_code](svm);
2401 static void reload_tss(struct kvm_vcpu *vcpu)
2403 int cpu = raw_smp_processor_id();
2405 struct svm_cpu_data *svm_data = per_cpu(svm_data, cpu);
2406 svm_data->tss_desc->type = 9; /* available 32/64-bit TSS */
2407 load_TR_desc();
2410 static void pre_svm_run(struct vcpu_svm *svm)
2412 int cpu = raw_smp_processor_id();
2414 struct svm_cpu_data *svm_data = per_cpu(svm_data, cpu);
2416 svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING;
2417 /* FIXME: handle wraparound of asid_generation */
2418 if (svm->asid_generation != svm_data->asid_generation)
2419 new_asid(svm, svm_data);
2422 static void svm_inject_nmi(struct kvm_vcpu *vcpu)
2424 struct vcpu_svm *svm = to_svm(vcpu);
2426 svm->vmcb->control.event_inj = SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_NMI;
2427 vcpu->arch.hflags |= HF_NMI_MASK;
2428 svm->vmcb->control.intercept |= (1UL << INTERCEPT_IRET);
2429 ++vcpu->stat.nmi_injections;
2432 static inline void svm_inject_irq(struct vcpu_svm *svm, int irq)
2434 struct vmcb_control_area *control;
2436 trace_kvm_inj_virq(irq);
2438 ++svm->vcpu.stat.irq_injections;
2439 control = &svm->vmcb->control;
2440 control->int_vector = irq;
2441 control->int_ctl &= ~V_INTR_PRIO_MASK;
2442 control->int_ctl |= V_IRQ_MASK |
2443 ((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT);
2446 static void svm_set_irq(struct kvm_vcpu *vcpu)
2448 struct vcpu_svm *svm = to_svm(vcpu);
2450 BUG_ON(!(gif_set(svm)));
2452 svm->vmcb->control.event_inj = vcpu->arch.interrupt.nr |
2453 SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR;
2456 static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
2458 struct vcpu_svm *svm = to_svm(vcpu);
2460 if (irr == -1)
2461 return;
2463 if (tpr >= irr)
2464 svm->vmcb->control.intercept_cr_write |= INTERCEPT_CR8_MASK;
2467 static int svm_nmi_allowed(struct kvm_vcpu *vcpu)
2469 struct vcpu_svm *svm = to_svm(vcpu);
2470 struct vmcb *vmcb = svm->vmcb;
2471 return !(vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) &&
2472 !(svm->vcpu.arch.hflags & HF_NMI_MASK);
2475 static int svm_interrupt_allowed(struct kvm_vcpu *vcpu)
2477 struct vcpu_svm *svm = to_svm(vcpu);
2478 struct vmcb *vmcb = svm->vmcb;
2479 int ret;
2481 if (!gif_set(svm) ||
2482 (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK))
2483 return 0;
2485 ret = !!(vmcb->save.rflags & X86_EFLAGS_IF);
2487 if (is_nested(svm))
2488 return ret && !(svm->vcpu.arch.hflags & HF_VINTR_MASK);
2490 return ret;
2493 static void enable_irq_window(struct kvm_vcpu *vcpu)
2495 struct vcpu_svm *svm = to_svm(vcpu);
2496 nsvm_printk("Trying to open IRQ window\n");
2498 nested_svm_intr(svm);
2500 /* In case GIF=0 we can't rely on the CPU to tell us when
2501 * GIF becomes 1, because that's a separate STGI/VMRUN intercept.
2502 * The next time we get that intercept, this function will be
2503 * called again though and we'll get the vintr intercept. */
2504 if (gif_set(svm)) {
2505 svm_set_vintr(svm);
2506 svm_inject_irq(svm, 0x0);
2510 static void enable_nmi_window(struct kvm_vcpu *vcpu)
2512 struct vcpu_svm *svm = to_svm(vcpu);
2514 if ((svm->vcpu.arch.hflags & (HF_NMI_MASK | HF_IRET_MASK))
2515 == HF_NMI_MASK)
2516 return; /* IRET will cause a vm exit */
2518 /* Something prevents NMI from been injected. Single step over
2519 possible problem (IRET or exception injection or interrupt
2520 shadow) */
2521 vcpu->arch.singlestep = true;
2522 svm->vmcb->save.rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
2523 update_db_intercept(vcpu);
2526 static int svm_set_tss_addr(struct kvm *kvm, unsigned int addr)
2528 return 0;
2531 static void svm_flush_tlb(struct kvm_vcpu *vcpu)
2533 force_new_asid(vcpu);
2536 static void svm_prepare_guest_switch(struct kvm_vcpu *vcpu)
2540 static inline void sync_cr8_to_lapic(struct kvm_vcpu *vcpu)
2542 struct vcpu_svm *svm = to_svm(vcpu);
2544 if (!(svm->vmcb->control.intercept_cr_write & INTERCEPT_CR8_MASK)) {
2545 int cr8 = svm->vmcb->control.int_ctl & V_TPR_MASK;
2546 kvm_set_cr8(vcpu, cr8);
2550 static inline void sync_lapic_to_cr8(struct kvm_vcpu *vcpu)
2552 struct vcpu_svm *svm = to_svm(vcpu);
2553 u64 cr8;
2555 cr8 = kvm_get_cr8(vcpu);
2556 svm->vmcb->control.int_ctl &= ~V_TPR_MASK;
2557 svm->vmcb->control.int_ctl |= cr8 & V_TPR_MASK;
2560 static void svm_complete_interrupts(struct vcpu_svm *svm)
2562 u8 vector;
2563 int type;
2564 u32 exitintinfo = svm->vmcb->control.exit_int_info;
2566 if (svm->vcpu.arch.hflags & HF_IRET_MASK)
2567 svm->vcpu.arch.hflags &= ~(HF_NMI_MASK | HF_IRET_MASK);
2569 svm->vcpu.arch.nmi_injected = false;
2570 kvm_clear_exception_queue(&svm->vcpu);
2571 kvm_clear_interrupt_queue(&svm->vcpu);
2573 if (!(exitintinfo & SVM_EXITINTINFO_VALID))
2574 return;
2576 vector = exitintinfo & SVM_EXITINTINFO_VEC_MASK;
2577 type = exitintinfo & SVM_EXITINTINFO_TYPE_MASK;
2579 switch (type) {
2580 case SVM_EXITINTINFO_TYPE_NMI:
2581 svm->vcpu.arch.nmi_injected = true;
2582 break;
2583 case SVM_EXITINTINFO_TYPE_EXEPT:
2584 /* In case of software exception do not reinject an exception
2585 vector, but re-execute and instruction instead */
2586 if (is_nested(svm))
2587 break;
2588 if (kvm_exception_is_soft(vector))
2589 break;
2590 if (exitintinfo & SVM_EXITINTINFO_VALID_ERR) {
2591 u32 err = svm->vmcb->control.exit_int_info_err;
2592 kvm_queue_exception_e(&svm->vcpu, vector, err);
2594 } else
2595 kvm_queue_exception(&svm->vcpu, vector);
2596 break;
2597 case SVM_EXITINTINFO_TYPE_INTR:
2598 kvm_queue_interrupt(&svm->vcpu, vector, false);
2599 break;
2600 default:
2601 break;
2605 #ifdef CONFIG_X86_64
2606 #define R "r"
2607 #else
2608 #define R "e"
2609 #endif
2611 static void svm_vcpu_run(struct kvm_vcpu *vcpu)
2613 struct vcpu_svm *svm = to_svm(vcpu);
2614 u16 fs_selector;
2615 u16 gs_selector;
2616 u16 ldt_selector;
2618 svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
2619 svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
2620 svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
2622 pre_svm_run(svm);
2624 sync_lapic_to_cr8(vcpu);
2626 save_host_msrs(vcpu);
2627 fs_selector = kvm_read_fs();
2628 gs_selector = kvm_read_gs();
2629 ldt_selector = kvm_read_ldt();
2630 svm->vmcb->save.cr2 = vcpu->arch.cr2;
2631 /* required for live migration with NPT */
2632 if (npt_enabled)
2633 svm->vmcb->save.cr3 = vcpu->arch.cr3;
2635 clgi();
2637 local_irq_enable();
2639 asm volatile (
2640 "push %%"R"bp; \n\t"
2641 "mov %c[rbx](%[svm]), %%"R"bx \n\t"
2642 "mov %c[rcx](%[svm]), %%"R"cx \n\t"
2643 "mov %c[rdx](%[svm]), %%"R"dx \n\t"
2644 "mov %c[rsi](%[svm]), %%"R"si \n\t"
2645 "mov %c[rdi](%[svm]), %%"R"di \n\t"
2646 "mov %c[rbp](%[svm]), %%"R"bp \n\t"
2647 #ifdef CONFIG_X86_64
2648 "mov %c[r8](%[svm]), %%r8 \n\t"
2649 "mov %c[r9](%[svm]), %%r9 \n\t"
2650 "mov %c[r10](%[svm]), %%r10 \n\t"
2651 "mov %c[r11](%[svm]), %%r11 \n\t"
2652 "mov %c[r12](%[svm]), %%r12 \n\t"
2653 "mov %c[r13](%[svm]), %%r13 \n\t"
2654 "mov %c[r14](%[svm]), %%r14 \n\t"
2655 "mov %c[r15](%[svm]), %%r15 \n\t"
2656 #endif
2658 /* Enter guest mode */
2659 "push %%"R"ax \n\t"
2660 "mov %c[vmcb](%[svm]), %%"R"ax \n\t"
2661 __ex(SVM_VMLOAD) "\n\t"
2662 __ex(SVM_VMRUN) "\n\t"
2663 __ex(SVM_VMSAVE) "\n\t"
2664 "pop %%"R"ax \n\t"
2666 /* Save guest registers, load host registers */
2667 "mov %%"R"bx, %c[rbx](%[svm]) \n\t"
2668 "mov %%"R"cx, %c[rcx](%[svm]) \n\t"
2669 "mov %%"R"dx, %c[rdx](%[svm]) \n\t"
2670 "mov %%"R"si, %c[rsi](%[svm]) \n\t"
2671 "mov %%"R"di, %c[rdi](%[svm]) \n\t"
2672 "mov %%"R"bp, %c[rbp](%[svm]) \n\t"
2673 #ifdef CONFIG_X86_64
2674 "mov %%r8, %c[r8](%[svm]) \n\t"
2675 "mov %%r9, %c[r9](%[svm]) \n\t"
2676 "mov %%r10, %c[r10](%[svm]) \n\t"
2677 "mov %%r11, %c[r11](%[svm]) \n\t"
2678 "mov %%r12, %c[r12](%[svm]) \n\t"
2679 "mov %%r13, %c[r13](%[svm]) \n\t"
2680 "mov %%r14, %c[r14](%[svm]) \n\t"
2681 "mov %%r15, %c[r15](%[svm]) \n\t"
2682 #endif
2683 "pop %%"R"bp"
2685 : [svm]"a"(svm),
2686 [vmcb]"i"(offsetof(struct vcpu_svm, vmcb_pa)),
2687 [rbx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBX])),
2688 [rcx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RCX])),
2689 [rdx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDX])),
2690 [rsi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RSI])),
2691 [rdi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDI])),
2692 [rbp]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBP]))
2693 #ifdef CONFIG_X86_64
2694 , [r8]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R8])),
2695 [r9]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R9])),
2696 [r10]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R10])),
2697 [r11]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R11])),
2698 [r12]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R12])),
2699 [r13]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R13])),
2700 [r14]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R14])),
2701 [r15]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R15]))
2702 #endif
2703 : "cc", "memory"
2704 , R"bx", R"cx", R"dx", R"si", R"di"
2705 #ifdef CONFIG_X86_64
2706 , "r8", "r9", "r10", "r11" , "r12", "r13", "r14", "r15"
2707 #endif
2710 vcpu->arch.cr2 = svm->vmcb->save.cr2;
2711 vcpu->arch.regs[VCPU_REGS_RAX] = svm->vmcb->save.rax;
2712 vcpu->arch.regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp;
2713 vcpu->arch.regs[VCPU_REGS_RIP] = svm->vmcb->save.rip;
2715 kvm_load_fs(fs_selector);
2716 kvm_load_gs(gs_selector);
2717 kvm_load_ldt(ldt_selector);
2718 load_host_msrs(vcpu);
2720 reload_tss(vcpu);
2722 local_irq_disable();
2724 stgi();
2726 sync_cr8_to_lapic(vcpu);
2728 svm->next_rip = 0;
2730 if (npt_enabled) {
2731 vcpu->arch.regs_avail &= ~(1 << VCPU_EXREG_PDPTR);
2732 vcpu->arch.regs_dirty &= ~(1 << VCPU_EXREG_PDPTR);
2736 #undef R
2738 static void svm_set_cr3(struct kvm_vcpu *vcpu, unsigned long root)
2740 struct vcpu_svm *svm = to_svm(vcpu);
2742 if (npt_enabled) {
2743 svm->vmcb->control.nested_cr3 = root;
2744 force_new_asid(vcpu);
2745 return;
2748 svm->vmcb->save.cr3 = root;
2749 force_new_asid(vcpu);
2751 if (vcpu->fpu_active) {
2752 svm->vmcb->control.intercept_exceptions |= (1 << NM_VECTOR);
2753 svm->vmcb->save.cr0 |= X86_CR0_TS;
2754 vcpu->fpu_active = 0;
2758 static int is_disabled(void)
2760 u64 vm_cr;
2762 rdmsrl(MSR_VM_CR, vm_cr);
2763 if (vm_cr & (1 << SVM_VM_CR_SVM_DISABLE))
2764 return 1;
2766 return 0;
2769 static void
2770 svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
2773 * Patch in the VMMCALL instruction:
2775 hypercall[0] = 0x0f;
2776 hypercall[1] = 0x01;
2777 hypercall[2] = 0xd9;
2780 static void svm_check_processor_compat(void *rtn)
2782 *(int *)rtn = 0;
2785 static bool svm_cpu_has_accelerated_tpr(void)
2787 return false;
2790 static int get_npt_level(void)
2792 #ifdef CONFIG_X86_64
2793 return PT64_ROOT_LEVEL;
2794 #else
2795 return PT32E_ROOT_LEVEL;
2796 #endif
2799 static u64 svm_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
2801 return 0;
2804 static const struct trace_print_flags svm_exit_reasons_str[] = {
2805 { SVM_EXIT_READ_CR0, "read_cr0" },
2806 { SVM_EXIT_READ_CR3, "read_cr3" },
2807 { SVM_EXIT_READ_CR4, "read_cr4" },
2808 { SVM_EXIT_READ_CR8, "read_cr8" },
2809 { SVM_EXIT_WRITE_CR0, "write_cr0" },
2810 { SVM_EXIT_WRITE_CR3, "write_cr3" },
2811 { SVM_EXIT_WRITE_CR4, "write_cr4" },
2812 { SVM_EXIT_WRITE_CR8, "write_cr8" },
2813 { SVM_EXIT_READ_DR0, "read_dr0" },
2814 { SVM_EXIT_READ_DR1, "read_dr1" },
2815 { SVM_EXIT_READ_DR2, "read_dr2" },
2816 { SVM_EXIT_READ_DR3, "read_dr3" },
2817 { SVM_EXIT_WRITE_DR0, "write_dr0" },
2818 { SVM_EXIT_WRITE_DR1, "write_dr1" },
2819 { SVM_EXIT_WRITE_DR2, "write_dr2" },
2820 { SVM_EXIT_WRITE_DR3, "write_dr3" },
2821 { SVM_EXIT_WRITE_DR5, "write_dr5" },
2822 { SVM_EXIT_WRITE_DR7, "write_dr7" },
2823 { SVM_EXIT_EXCP_BASE + DB_VECTOR, "DB excp" },
2824 { SVM_EXIT_EXCP_BASE + BP_VECTOR, "BP excp" },
2825 { SVM_EXIT_EXCP_BASE + UD_VECTOR, "UD excp" },
2826 { SVM_EXIT_EXCP_BASE + PF_VECTOR, "PF excp" },
2827 { SVM_EXIT_EXCP_BASE + NM_VECTOR, "NM excp" },
2828 { SVM_EXIT_EXCP_BASE + MC_VECTOR, "MC excp" },
2829 { SVM_EXIT_INTR, "interrupt" },
2830 { SVM_EXIT_NMI, "nmi" },
2831 { SVM_EXIT_SMI, "smi" },
2832 { SVM_EXIT_INIT, "init" },
2833 { SVM_EXIT_VINTR, "vintr" },
2834 { SVM_EXIT_CPUID, "cpuid" },
2835 { SVM_EXIT_INVD, "invd" },
2836 { SVM_EXIT_HLT, "hlt" },
2837 { SVM_EXIT_INVLPG, "invlpg" },
2838 { SVM_EXIT_INVLPGA, "invlpga" },
2839 { SVM_EXIT_IOIO, "io" },
2840 { SVM_EXIT_MSR, "msr" },
2841 { SVM_EXIT_TASK_SWITCH, "task_switch" },
2842 { SVM_EXIT_SHUTDOWN, "shutdown" },
2843 { SVM_EXIT_VMRUN, "vmrun" },
2844 { SVM_EXIT_VMMCALL, "hypercall" },
2845 { SVM_EXIT_VMLOAD, "vmload" },
2846 { SVM_EXIT_VMSAVE, "vmsave" },
2847 { SVM_EXIT_STGI, "stgi" },
2848 { SVM_EXIT_CLGI, "clgi" },
2849 { SVM_EXIT_SKINIT, "skinit" },
2850 { SVM_EXIT_WBINVD, "wbinvd" },
2851 { SVM_EXIT_MONITOR, "monitor" },
2852 { SVM_EXIT_MWAIT, "mwait" },
2853 { SVM_EXIT_NPF, "npf" },
2854 { -1, NULL }
2857 static bool svm_gb_page_enable(void)
2859 return true;
2862 static struct kvm_x86_ops svm_x86_ops = {
2863 .cpu_has_kvm_support = has_svm,
2864 .disabled_by_bios = is_disabled,
2865 .hardware_setup = svm_hardware_setup,
2866 .hardware_unsetup = svm_hardware_unsetup,
2867 .check_processor_compatibility = svm_check_processor_compat,
2868 .hardware_enable = svm_hardware_enable,
2869 .hardware_disable = svm_hardware_disable,
2870 .cpu_has_accelerated_tpr = svm_cpu_has_accelerated_tpr,
2872 .vcpu_create = svm_create_vcpu,
2873 .vcpu_free = svm_free_vcpu,
2874 .vcpu_reset = svm_vcpu_reset,
2876 .prepare_guest_switch = svm_prepare_guest_switch,
2877 .vcpu_load = svm_vcpu_load,
2878 .vcpu_put = svm_vcpu_put,
2880 .set_guest_debug = svm_guest_debug,
2881 .get_msr = svm_get_msr,
2882 .set_msr = svm_set_msr,
2883 .get_segment_base = svm_get_segment_base,
2884 .get_segment = svm_get_segment,
2885 .set_segment = svm_set_segment,
2886 .get_cpl = svm_get_cpl,
2887 .get_cs_db_l_bits = kvm_get_cs_db_l_bits,
2888 .decache_cr4_guest_bits = svm_decache_cr4_guest_bits,
2889 .set_cr0 = svm_set_cr0,
2890 .set_cr3 = svm_set_cr3,
2891 .set_cr4 = svm_set_cr4,
2892 .set_efer = svm_set_efer,
2893 .get_idt = svm_get_idt,
2894 .set_idt = svm_set_idt,
2895 .get_gdt = svm_get_gdt,
2896 .set_gdt = svm_set_gdt,
2897 .get_dr = svm_get_dr,
2898 .set_dr = svm_set_dr,
2899 .cache_reg = svm_cache_reg,
2900 .get_rflags = svm_get_rflags,
2901 .set_rflags = svm_set_rflags,
2903 .tlb_flush = svm_flush_tlb,
2905 .run = svm_vcpu_run,
2906 .handle_exit = handle_exit,
2907 .skip_emulated_instruction = skip_emulated_instruction,
2908 .set_interrupt_shadow = svm_set_interrupt_shadow,
2909 .get_interrupt_shadow = svm_get_interrupt_shadow,
2910 .patch_hypercall = svm_patch_hypercall,
2911 .set_irq = svm_set_irq,
2912 .set_nmi = svm_inject_nmi,
2913 .queue_exception = svm_queue_exception,
2914 .interrupt_allowed = svm_interrupt_allowed,
2915 .nmi_allowed = svm_nmi_allowed,
2916 .enable_nmi_window = enable_nmi_window,
2917 .enable_irq_window = enable_irq_window,
2918 .update_cr8_intercept = update_cr8_intercept,
2920 .set_tss_addr = svm_set_tss_addr,
2921 .get_tdp_level = get_npt_level,
2922 .get_mt_mask = svm_get_mt_mask,
2924 .exit_reasons_str = svm_exit_reasons_str,
2925 .gb_page_enable = svm_gb_page_enable,
2928 static int __init svm_init(void)
2930 return kvm_init(&svm_x86_ops, sizeof(struct vcpu_svm),
2931 THIS_MODULE);
2934 static void __exit svm_exit(void)
2936 kvm_exit();
2939 module_init(svm_init)
2940 module_exit(svm_exit)