2 * Kernel-based Virtual Machine driver for Linux
6 * Copyright (C) 2006 Qumranet, Inc.
9 * Yaniv Kamay <yaniv@qumranet.com>
10 * Avi Kivity <avi@qumranet.com>
12 * This work is licensed under the terms of the GNU GPL, version 2. See
13 * the COPYING file in the top-level directory.
16 #include <linux/kvm_host.h>
20 #include "kvm_cache_regs.h"
23 #include <linux/module.h>
24 #include <linux/kernel.h>
25 #include <linux/vmalloc.h>
26 #include <linux/highmem.h>
27 #include <linux/sched.h>
28 #include <linux/ftrace_event.h>
32 #include <asm/virtext.h>
35 #define __ex(x) __kvm_handle_fault_on_reboot(x)
37 MODULE_AUTHOR("Qumranet");
38 MODULE_LICENSE("GPL");
40 #define IOPM_ALLOC_ORDER 2
41 #define MSRPM_ALLOC_ORDER 1
43 #define SEG_TYPE_LDT 2
44 #define SEG_TYPE_BUSY_TSS16 3
46 #define SVM_FEATURE_NPT (1 << 0)
47 #define SVM_FEATURE_LBRV (1 << 1)
48 #define SVM_FEATURE_SVML (1 << 2)
50 #define NESTED_EXIT_HOST 0 /* Exit handled on host level */
51 #define NESTED_EXIT_DONE 1 /* Exit caused nested vmexit */
52 #define NESTED_EXIT_CONTINUE 2 /* Further checks needed */
54 #define DEBUGCTL_RESERVED_BITS (~(0x3fULL))
56 /* Turn on to get debugging output*/
57 /* #define NESTED_DEBUG */
60 #define nsvm_printk(fmt, args...) printk(KERN_INFO fmt, ## args)
62 #define nsvm_printk(fmt, args...) do {} while(0)
65 static const u32 host_save_user_msrs
[] = {
67 MSR_STAR
, MSR_LSTAR
, MSR_CSTAR
, MSR_SYSCALL_MASK
, MSR_KERNEL_GS_BASE
,
70 MSR_IA32_SYSENTER_CS
, MSR_IA32_SYSENTER_ESP
, MSR_IA32_SYSENTER_EIP
,
73 #define NR_HOST_SAVE_USER_MSRS ARRAY_SIZE(host_save_user_msrs)
82 /* These are the merged vectors */
85 /* gpa pointers to the real vectors */
88 /* cache for intercepts of the guest */
89 u16 intercept_cr_read
;
90 u16 intercept_cr_write
;
91 u16 intercept_dr_read
;
92 u16 intercept_dr_write
;
93 u32 intercept_exceptions
;
101 unsigned long vmcb_pa
;
102 struct svm_cpu_data
*svm_data
;
103 uint64_t asid_generation
;
104 uint64_t sysenter_esp
;
105 uint64_t sysenter_eip
;
109 u64 host_user_msrs
[NR_HOST_SAVE_USER_MSRS
];
114 struct nested_state nested
;
117 /* enable NPT for AMD64 and X86 with PAE */
118 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
119 static bool npt_enabled
= true;
121 static bool npt_enabled
= false;
125 module_param(npt
, int, S_IRUGO
);
127 static int nested
= 1;
128 module_param(nested
, int, S_IRUGO
);
130 static void svm_flush_tlb(struct kvm_vcpu
*vcpu
);
131 static void svm_complete_interrupts(struct vcpu_svm
*svm
);
133 static int nested_svm_exit_handled(struct vcpu_svm
*svm
);
134 static int nested_svm_vmexit(struct vcpu_svm
*svm
);
135 static int nested_svm_check_exception(struct vcpu_svm
*svm
, unsigned nr
,
136 bool has_error_code
, u32 error_code
);
138 static inline struct vcpu_svm
*to_svm(struct kvm_vcpu
*vcpu
)
140 return container_of(vcpu
, struct vcpu_svm
, vcpu
);
143 static inline bool is_nested(struct vcpu_svm
*svm
)
145 return svm
->nested
.vmcb
;
148 static inline void enable_gif(struct vcpu_svm
*svm
)
150 svm
->vcpu
.arch
.hflags
|= HF_GIF_MASK
;
153 static inline void disable_gif(struct vcpu_svm
*svm
)
155 svm
->vcpu
.arch
.hflags
&= ~HF_GIF_MASK
;
158 static inline bool gif_set(struct vcpu_svm
*svm
)
160 return !!(svm
->vcpu
.arch
.hflags
& HF_GIF_MASK
);
163 static unsigned long iopm_base
;
165 struct kvm_ldttss_desc
{
168 unsigned base1
: 8, type
: 5, dpl
: 2, p
: 1;
169 unsigned limit1
: 4, zero0
: 3, g
: 1, base2
: 8;
172 } __attribute__((packed
));
174 struct svm_cpu_data
{
180 struct kvm_ldttss_desc
*tss_desc
;
182 struct page
*save_area
;
185 static DEFINE_PER_CPU(struct svm_cpu_data
*, svm_data
);
186 static uint32_t svm_features
;
188 struct svm_init_data
{
193 static u32 msrpm_ranges
[] = {0, 0xc0000000, 0xc0010000};
195 #define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges)
196 #define MSRS_RANGE_SIZE 2048
197 #define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2)
199 #define MAX_INST_SIZE 15
201 static inline u32
svm_has(u32 feat
)
203 return svm_features
& feat
;
206 static inline void clgi(void)
208 asm volatile (__ex(SVM_CLGI
));
211 static inline void stgi(void)
213 asm volatile (__ex(SVM_STGI
));
216 static inline void invlpga(unsigned long addr
, u32 asid
)
218 asm volatile (__ex(SVM_INVLPGA
) :: "a"(addr
), "c"(asid
));
221 static inline void force_new_asid(struct kvm_vcpu
*vcpu
)
223 to_svm(vcpu
)->asid_generation
--;
226 static inline void flush_guest_tlb(struct kvm_vcpu
*vcpu
)
228 force_new_asid(vcpu
);
231 static void svm_set_efer(struct kvm_vcpu
*vcpu
, u64 efer
)
233 if (!npt_enabled
&& !(efer
& EFER_LMA
))
236 to_svm(vcpu
)->vmcb
->save
.efer
= efer
| EFER_SVME
;
237 vcpu
->arch
.shadow_efer
= efer
;
240 static void svm_queue_exception(struct kvm_vcpu
*vcpu
, unsigned nr
,
241 bool has_error_code
, u32 error_code
)
243 struct vcpu_svm
*svm
= to_svm(vcpu
);
245 /* If we are within a nested VM we'd better #VMEXIT and let the
246 guest handle the exception */
247 if (nested_svm_check_exception(svm
, nr
, has_error_code
, error_code
))
250 svm
->vmcb
->control
.event_inj
= nr
252 | (has_error_code
? SVM_EVTINJ_VALID_ERR
: 0)
253 | SVM_EVTINJ_TYPE_EXEPT
;
254 svm
->vmcb
->control
.event_inj_err
= error_code
;
257 static int is_external_interrupt(u32 info
)
259 info
&= SVM_EVTINJ_TYPE_MASK
| SVM_EVTINJ_VALID
;
260 return info
== (SVM_EVTINJ_VALID
| SVM_EVTINJ_TYPE_INTR
);
263 static u32
svm_get_interrupt_shadow(struct kvm_vcpu
*vcpu
, int mask
)
265 struct vcpu_svm
*svm
= to_svm(vcpu
);
268 if (svm
->vmcb
->control
.int_state
& SVM_INTERRUPT_SHADOW_MASK
)
269 ret
|= X86_SHADOW_INT_STI
| X86_SHADOW_INT_MOV_SS
;
273 static void svm_set_interrupt_shadow(struct kvm_vcpu
*vcpu
, int mask
)
275 struct vcpu_svm
*svm
= to_svm(vcpu
);
278 svm
->vmcb
->control
.int_state
&= ~SVM_INTERRUPT_SHADOW_MASK
;
280 svm
->vmcb
->control
.int_state
|= SVM_INTERRUPT_SHADOW_MASK
;
284 static void skip_emulated_instruction(struct kvm_vcpu
*vcpu
)
286 struct vcpu_svm
*svm
= to_svm(vcpu
);
288 if (!svm
->next_rip
) {
289 if (emulate_instruction(vcpu
, 0, 0, EMULTYPE_SKIP
) !=
291 printk(KERN_DEBUG
"%s: NOP\n", __func__
);
294 if (svm
->next_rip
- kvm_rip_read(vcpu
) > MAX_INST_SIZE
)
295 printk(KERN_ERR
"%s: ip 0x%lx next 0x%llx\n",
296 __func__
, kvm_rip_read(vcpu
), svm
->next_rip
);
298 kvm_rip_write(vcpu
, svm
->next_rip
);
299 svm_set_interrupt_shadow(vcpu
, 0);
302 static int has_svm(void)
306 if (!cpu_has_svm(&msg
)) {
307 printk(KERN_INFO
"has_svm: %s\n", msg
);
314 static void svm_hardware_disable(void *garbage
)
319 static int svm_hardware_enable(void *garbage
)
322 struct svm_cpu_data
*svm_data
;
324 struct descriptor_table gdt_descr
;
325 struct desc_struct
*gdt
;
326 int me
= raw_smp_processor_id();
328 rdmsrl(MSR_EFER
, efer
);
329 if (efer
& EFER_SVME
)
333 printk(KERN_ERR
"svm_hardware_enable: err EOPNOTSUPP on %d\n",
337 svm_data
= per_cpu(svm_data
, me
);
340 printk(KERN_ERR
"svm_hardware_enable: svm_data is NULL on %d\n",
345 svm_data
->asid_generation
= 1;
346 svm_data
->max_asid
= cpuid_ebx(SVM_CPUID_FUNC
) - 1;
347 svm_data
->next_asid
= svm_data
->max_asid
+ 1;
349 kvm_get_gdt(&gdt_descr
);
350 gdt
= (struct desc_struct
*)gdt_descr
.base
;
351 svm_data
->tss_desc
= (struct kvm_ldttss_desc
*)(gdt
+ GDT_ENTRY_TSS
);
353 wrmsrl(MSR_EFER
, efer
| EFER_SVME
);
355 wrmsrl(MSR_VM_HSAVE_PA
,
356 page_to_pfn(svm_data
->save_area
) << PAGE_SHIFT
);
361 static void svm_cpu_uninit(int cpu
)
363 struct svm_cpu_data
*svm_data
364 = per_cpu(svm_data
, raw_smp_processor_id());
369 per_cpu(svm_data
, raw_smp_processor_id()) = NULL
;
370 __free_page(svm_data
->save_area
);
374 static int svm_cpu_init(int cpu
)
376 struct svm_cpu_data
*svm_data
;
379 svm_data
= kzalloc(sizeof(struct svm_cpu_data
), GFP_KERNEL
);
383 svm_data
->save_area
= alloc_page(GFP_KERNEL
);
385 if (!svm_data
->save_area
)
388 per_cpu(svm_data
, cpu
) = svm_data
;
398 static void set_msr_interception(u32
*msrpm
, unsigned msr
,
403 for (i
= 0; i
< NUM_MSR_MAPS
; i
++) {
404 if (msr
>= msrpm_ranges
[i
] &&
405 msr
< msrpm_ranges
[i
] + MSRS_IN_RANGE
) {
406 u32 msr_offset
= (i
* MSRS_IN_RANGE
+ msr
-
407 msrpm_ranges
[i
]) * 2;
409 u32
*base
= msrpm
+ (msr_offset
/ 32);
410 u32 msr_shift
= msr_offset
% 32;
411 u32 mask
= ((write
) ? 0 : 2) | ((read
) ? 0 : 1);
412 *base
= (*base
& ~(0x3 << msr_shift
)) |
420 static void svm_vcpu_init_msrpm(u32
*msrpm
)
422 memset(msrpm
, 0xff, PAGE_SIZE
* (1 << MSRPM_ALLOC_ORDER
));
425 set_msr_interception(msrpm
, MSR_GS_BASE
, 1, 1);
426 set_msr_interception(msrpm
, MSR_FS_BASE
, 1, 1);
427 set_msr_interception(msrpm
, MSR_KERNEL_GS_BASE
, 1, 1);
428 set_msr_interception(msrpm
, MSR_LSTAR
, 1, 1);
429 set_msr_interception(msrpm
, MSR_CSTAR
, 1, 1);
430 set_msr_interception(msrpm
, MSR_SYSCALL_MASK
, 1, 1);
432 set_msr_interception(msrpm
, MSR_K6_STAR
, 1, 1);
433 set_msr_interception(msrpm
, MSR_IA32_SYSENTER_CS
, 1, 1);
436 static void svm_enable_lbrv(struct vcpu_svm
*svm
)
438 u32
*msrpm
= svm
->msrpm
;
440 svm
->vmcb
->control
.lbr_ctl
= 1;
441 set_msr_interception(msrpm
, MSR_IA32_LASTBRANCHFROMIP
, 1, 1);
442 set_msr_interception(msrpm
, MSR_IA32_LASTBRANCHTOIP
, 1, 1);
443 set_msr_interception(msrpm
, MSR_IA32_LASTINTFROMIP
, 1, 1);
444 set_msr_interception(msrpm
, MSR_IA32_LASTINTTOIP
, 1, 1);
447 static void svm_disable_lbrv(struct vcpu_svm
*svm
)
449 u32
*msrpm
= svm
->msrpm
;
451 svm
->vmcb
->control
.lbr_ctl
= 0;
452 set_msr_interception(msrpm
, MSR_IA32_LASTBRANCHFROMIP
, 0, 0);
453 set_msr_interception(msrpm
, MSR_IA32_LASTBRANCHTOIP
, 0, 0);
454 set_msr_interception(msrpm
, MSR_IA32_LASTINTFROMIP
, 0, 0);
455 set_msr_interception(msrpm
, MSR_IA32_LASTINTTOIP
, 0, 0);
458 static __init
int svm_hardware_setup(void)
461 struct page
*iopm_pages
;
465 iopm_pages
= alloc_pages(GFP_KERNEL
, IOPM_ALLOC_ORDER
);
470 iopm_va
= page_address(iopm_pages
);
471 memset(iopm_va
, 0xff, PAGE_SIZE
* (1 << IOPM_ALLOC_ORDER
));
472 iopm_base
= page_to_pfn(iopm_pages
) << PAGE_SHIFT
;
474 if (boot_cpu_has(X86_FEATURE_NX
))
475 kvm_enable_efer_bits(EFER_NX
);
477 if (boot_cpu_has(X86_FEATURE_FXSR_OPT
))
478 kvm_enable_efer_bits(EFER_FFXSR
);
481 printk(KERN_INFO
"kvm: Nested Virtualization enabled\n");
482 kvm_enable_efer_bits(EFER_SVME
);
485 for_each_possible_cpu(cpu
) {
486 r
= svm_cpu_init(cpu
);
491 svm_features
= cpuid_edx(SVM_CPUID_FUNC
);
493 if (!svm_has(SVM_FEATURE_NPT
))
496 if (npt_enabled
&& !npt
) {
497 printk(KERN_INFO
"kvm: Nested Paging disabled\n");
502 printk(KERN_INFO
"kvm: Nested Paging enabled\n");
510 __free_pages(iopm_pages
, IOPM_ALLOC_ORDER
);
515 static __exit
void svm_hardware_unsetup(void)
519 for_each_possible_cpu(cpu
)
522 __free_pages(pfn_to_page(iopm_base
>> PAGE_SHIFT
), IOPM_ALLOC_ORDER
);
526 static void init_seg(struct vmcb_seg
*seg
)
529 seg
->attrib
= SVM_SELECTOR_P_MASK
| SVM_SELECTOR_S_MASK
|
530 SVM_SELECTOR_WRITE_MASK
; /* Read/Write Data Segment */
535 static void init_sys_seg(struct vmcb_seg
*seg
, uint32_t type
)
538 seg
->attrib
= SVM_SELECTOR_P_MASK
| type
;
543 static void init_vmcb(struct vcpu_svm
*svm
)
545 struct vmcb_control_area
*control
= &svm
->vmcb
->control
;
546 struct vmcb_save_area
*save
= &svm
->vmcb
->save
;
548 control
->intercept_cr_read
= INTERCEPT_CR0_MASK
|
552 control
->intercept_cr_write
= INTERCEPT_CR0_MASK
|
557 control
->intercept_dr_read
= INTERCEPT_DR0_MASK
|
562 control
->intercept_dr_write
= INTERCEPT_DR0_MASK
|
569 control
->intercept_exceptions
= (1 << PF_VECTOR
) |
574 control
->intercept
= (1ULL << INTERCEPT_INTR
) |
575 (1ULL << INTERCEPT_NMI
) |
576 (1ULL << INTERCEPT_SMI
) |
577 (1ULL << INTERCEPT_CPUID
) |
578 (1ULL << INTERCEPT_INVD
) |
579 (1ULL << INTERCEPT_HLT
) |
580 (1ULL << INTERCEPT_INVLPG
) |
581 (1ULL << INTERCEPT_INVLPGA
) |
582 (1ULL << INTERCEPT_IOIO_PROT
) |
583 (1ULL << INTERCEPT_MSR_PROT
) |
584 (1ULL << INTERCEPT_TASK_SWITCH
) |
585 (1ULL << INTERCEPT_SHUTDOWN
) |
586 (1ULL << INTERCEPT_VMRUN
) |
587 (1ULL << INTERCEPT_VMMCALL
) |
588 (1ULL << INTERCEPT_VMLOAD
) |
589 (1ULL << INTERCEPT_VMSAVE
) |
590 (1ULL << INTERCEPT_STGI
) |
591 (1ULL << INTERCEPT_CLGI
) |
592 (1ULL << INTERCEPT_SKINIT
) |
593 (1ULL << INTERCEPT_WBINVD
) |
594 (1ULL << INTERCEPT_MONITOR
) |
595 (1ULL << INTERCEPT_MWAIT
);
597 control
->iopm_base_pa
= iopm_base
;
598 control
->msrpm_base_pa
= __pa(svm
->msrpm
);
599 control
->tsc_offset
= 0;
600 control
->int_ctl
= V_INTR_MASKING_MASK
;
608 save
->cs
.selector
= 0xf000;
609 /* Executable/Readable Code Segment */
610 save
->cs
.attrib
= SVM_SELECTOR_READ_MASK
| SVM_SELECTOR_P_MASK
|
611 SVM_SELECTOR_S_MASK
| SVM_SELECTOR_CODE_MASK
;
612 save
->cs
.limit
= 0xffff;
614 * cs.base should really be 0xffff0000, but vmx can't handle that, so
615 * be consistent with it.
617 * Replace when we have real mode working for vmx.
619 save
->cs
.base
= 0xf0000;
621 save
->gdtr
.limit
= 0xffff;
622 save
->idtr
.limit
= 0xffff;
624 init_sys_seg(&save
->ldtr
, SEG_TYPE_LDT
);
625 init_sys_seg(&save
->tr
, SEG_TYPE_BUSY_TSS16
);
627 save
->efer
= EFER_SVME
;
628 save
->dr6
= 0xffff0ff0;
631 save
->rip
= 0x0000fff0;
632 svm
->vcpu
.arch
.regs
[VCPU_REGS_RIP
] = save
->rip
;
635 * cr0 val on cpu init should be 0x60000010, we enable cpu
636 * cache by default. the orderly way is to enable cache in bios.
638 save
->cr0
= 0x00000010 | X86_CR0_PG
| X86_CR0_WP
;
639 save
->cr4
= X86_CR4_PAE
;
643 /* Setup VMCB for Nested Paging */
644 control
->nested_ctl
= 1;
645 control
->intercept
&= ~((1ULL << INTERCEPT_TASK_SWITCH
) |
646 (1ULL << INTERCEPT_INVLPG
));
647 control
->intercept_exceptions
&= ~(1 << PF_VECTOR
);
648 control
->intercept_cr_read
&= ~(INTERCEPT_CR0_MASK
|
650 control
->intercept_cr_write
&= ~(INTERCEPT_CR0_MASK
|
652 save
->g_pat
= 0x0007040600070406ULL
;
653 /* enable caching because the QEMU Bios doesn't enable it */
654 save
->cr0
= X86_CR0_ET
;
658 force_new_asid(&svm
->vcpu
);
660 svm
->nested
.vmcb
= 0;
661 svm
->vcpu
.arch
.hflags
= 0;
666 static int svm_vcpu_reset(struct kvm_vcpu
*vcpu
)
668 struct vcpu_svm
*svm
= to_svm(vcpu
);
672 if (!kvm_vcpu_is_bsp(vcpu
)) {
673 kvm_rip_write(vcpu
, 0);
674 svm
->vmcb
->save
.cs
.base
= svm
->vcpu
.arch
.sipi_vector
<< 12;
675 svm
->vmcb
->save
.cs
.selector
= svm
->vcpu
.arch
.sipi_vector
<< 8;
677 vcpu
->arch
.regs_avail
= ~0;
678 vcpu
->arch
.regs_dirty
= ~0;
683 static struct kvm_vcpu
*svm_create_vcpu(struct kvm
*kvm
, unsigned int id
)
685 struct vcpu_svm
*svm
;
687 struct page
*msrpm_pages
;
688 struct page
*hsave_page
;
689 struct page
*nested_msrpm_pages
;
692 svm
= kmem_cache_zalloc(kvm_vcpu_cache
, GFP_KERNEL
);
698 err
= kvm_vcpu_init(&svm
->vcpu
, kvm
, id
);
702 page
= alloc_page(GFP_KERNEL
);
709 msrpm_pages
= alloc_pages(GFP_KERNEL
, MSRPM_ALLOC_ORDER
);
713 nested_msrpm_pages
= alloc_pages(GFP_KERNEL
, MSRPM_ALLOC_ORDER
);
714 if (!nested_msrpm_pages
)
717 svm
->msrpm
= page_address(msrpm_pages
);
718 svm_vcpu_init_msrpm(svm
->msrpm
);
720 hsave_page
= alloc_page(GFP_KERNEL
);
723 svm
->nested
.hsave
= page_address(hsave_page
);
725 svm
->nested
.msrpm
= page_address(nested_msrpm_pages
);
727 svm
->vmcb
= page_address(page
);
728 clear_page(svm
->vmcb
);
729 svm
->vmcb_pa
= page_to_pfn(page
) << PAGE_SHIFT
;
730 svm
->asid_generation
= 0;
734 svm
->vcpu
.fpu_active
= 1;
735 svm
->vcpu
.arch
.apic_base
= 0xfee00000 | MSR_IA32_APICBASE_ENABLE
;
736 if (kvm_vcpu_is_bsp(&svm
->vcpu
))
737 svm
->vcpu
.arch
.apic_base
|= MSR_IA32_APICBASE_BSP
;
742 kvm_vcpu_uninit(&svm
->vcpu
);
744 kmem_cache_free(kvm_vcpu_cache
, svm
);
749 static void svm_free_vcpu(struct kvm_vcpu
*vcpu
)
751 struct vcpu_svm
*svm
= to_svm(vcpu
);
753 __free_page(pfn_to_page(svm
->vmcb_pa
>> PAGE_SHIFT
));
754 __free_pages(virt_to_page(svm
->msrpm
), MSRPM_ALLOC_ORDER
);
755 __free_page(virt_to_page(svm
->nested
.hsave
));
756 __free_pages(virt_to_page(svm
->nested
.msrpm
), MSRPM_ALLOC_ORDER
);
757 kvm_vcpu_uninit(vcpu
);
758 kmem_cache_free(kvm_vcpu_cache
, svm
);
761 static void svm_vcpu_load(struct kvm_vcpu
*vcpu
, int cpu
)
763 struct vcpu_svm
*svm
= to_svm(vcpu
);
766 if (unlikely(cpu
!= vcpu
->cpu
)) {
770 * Make sure that the guest sees a monotonically
773 delta
= vcpu
->arch
.host_tsc
- native_read_tsc();
774 svm
->vmcb
->control
.tsc_offset
+= delta
;
776 svm
->nested
.hsave
->control
.tsc_offset
+= delta
;
778 kvm_migrate_timers(vcpu
);
779 svm
->asid_generation
= 0;
782 for (i
= 0; i
< NR_HOST_SAVE_USER_MSRS
; i
++)
783 rdmsrl(host_save_user_msrs
[i
], svm
->host_user_msrs
[i
]);
786 static void svm_vcpu_put(struct kvm_vcpu
*vcpu
)
788 struct vcpu_svm
*svm
= to_svm(vcpu
);
791 ++vcpu
->stat
.host_state_reload
;
792 for (i
= 0; i
< NR_HOST_SAVE_USER_MSRS
; i
++)
793 wrmsrl(host_save_user_msrs
[i
], svm
->host_user_msrs
[i
]);
795 vcpu
->arch
.host_tsc
= native_read_tsc();
798 static unsigned long svm_get_rflags(struct kvm_vcpu
*vcpu
)
800 return to_svm(vcpu
)->vmcb
->save
.rflags
;
803 static void svm_set_rflags(struct kvm_vcpu
*vcpu
, unsigned long rflags
)
805 to_svm(vcpu
)->vmcb
->save
.rflags
= rflags
;
808 static void svm_cache_reg(struct kvm_vcpu
*vcpu
, enum kvm_reg reg
)
811 case VCPU_EXREG_PDPTR
:
812 BUG_ON(!npt_enabled
);
813 load_pdptrs(vcpu
, vcpu
->arch
.cr3
);
820 static void svm_set_vintr(struct vcpu_svm
*svm
)
822 svm
->vmcb
->control
.intercept
|= 1ULL << INTERCEPT_VINTR
;
825 static void svm_clear_vintr(struct vcpu_svm
*svm
)
827 svm
->vmcb
->control
.intercept
&= ~(1ULL << INTERCEPT_VINTR
);
830 static struct vmcb_seg
*svm_seg(struct kvm_vcpu
*vcpu
, int seg
)
832 struct vmcb_save_area
*save
= &to_svm(vcpu
)->vmcb
->save
;
835 case VCPU_SREG_CS
: return &save
->cs
;
836 case VCPU_SREG_DS
: return &save
->ds
;
837 case VCPU_SREG_ES
: return &save
->es
;
838 case VCPU_SREG_FS
: return &save
->fs
;
839 case VCPU_SREG_GS
: return &save
->gs
;
840 case VCPU_SREG_SS
: return &save
->ss
;
841 case VCPU_SREG_TR
: return &save
->tr
;
842 case VCPU_SREG_LDTR
: return &save
->ldtr
;
848 static u64
svm_get_segment_base(struct kvm_vcpu
*vcpu
, int seg
)
850 struct vmcb_seg
*s
= svm_seg(vcpu
, seg
);
855 static void svm_get_segment(struct kvm_vcpu
*vcpu
,
856 struct kvm_segment
*var
, int seg
)
858 struct vmcb_seg
*s
= svm_seg(vcpu
, seg
);
861 var
->limit
= s
->limit
;
862 var
->selector
= s
->selector
;
863 var
->type
= s
->attrib
& SVM_SELECTOR_TYPE_MASK
;
864 var
->s
= (s
->attrib
>> SVM_SELECTOR_S_SHIFT
) & 1;
865 var
->dpl
= (s
->attrib
>> SVM_SELECTOR_DPL_SHIFT
) & 3;
866 var
->present
= (s
->attrib
>> SVM_SELECTOR_P_SHIFT
) & 1;
867 var
->avl
= (s
->attrib
>> SVM_SELECTOR_AVL_SHIFT
) & 1;
868 var
->l
= (s
->attrib
>> SVM_SELECTOR_L_SHIFT
) & 1;
869 var
->db
= (s
->attrib
>> SVM_SELECTOR_DB_SHIFT
) & 1;
870 var
->g
= (s
->attrib
>> SVM_SELECTOR_G_SHIFT
) & 1;
872 /* AMD's VMCB does not have an explicit unusable field, so emulate it
873 * for cross vendor migration purposes by "not present"
875 var
->unusable
= !var
->present
|| (var
->type
== 0);
880 * SVM always stores 0 for the 'G' bit in the CS selector in
881 * the VMCB on a VMEXIT. This hurts cross-vendor migration:
882 * Intel's VMENTRY has a check on the 'G' bit.
884 var
->g
= s
->limit
> 0xfffff;
888 * Work around a bug where the busy flag in the tr selector
898 * The accessed bit must always be set in the segment
899 * descriptor cache, although it can be cleared in the
900 * descriptor, the cached bit always remains at 1. Since
901 * Intel has a check on this, set it here to support
902 * cross-vendor migration.
908 /* On AMD CPUs sometimes the DB bit in the segment
909 * descriptor is left as 1, although the whole segment has
910 * been made unusable. Clear it here to pass an Intel VMX
911 * entry check when cross vendor migrating.
919 static int svm_get_cpl(struct kvm_vcpu
*vcpu
)
921 struct vmcb_save_area
*save
= &to_svm(vcpu
)->vmcb
->save
;
926 static void svm_get_idt(struct kvm_vcpu
*vcpu
, struct descriptor_table
*dt
)
928 struct vcpu_svm
*svm
= to_svm(vcpu
);
930 dt
->limit
= svm
->vmcb
->save
.idtr
.limit
;
931 dt
->base
= svm
->vmcb
->save
.idtr
.base
;
934 static void svm_set_idt(struct kvm_vcpu
*vcpu
, struct descriptor_table
*dt
)
936 struct vcpu_svm
*svm
= to_svm(vcpu
);
938 svm
->vmcb
->save
.idtr
.limit
= dt
->limit
;
939 svm
->vmcb
->save
.idtr
.base
= dt
->base
;
942 static void svm_get_gdt(struct kvm_vcpu
*vcpu
, struct descriptor_table
*dt
)
944 struct vcpu_svm
*svm
= to_svm(vcpu
);
946 dt
->limit
= svm
->vmcb
->save
.gdtr
.limit
;
947 dt
->base
= svm
->vmcb
->save
.gdtr
.base
;
950 static void svm_set_gdt(struct kvm_vcpu
*vcpu
, struct descriptor_table
*dt
)
952 struct vcpu_svm
*svm
= to_svm(vcpu
);
954 svm
->vmcb
->save
.gdtr
.limit
= dt
->limit
;
955 svm
->vmcb
->save
.gdtr
.base
= dt
->base
;
958 static void svm_decache_cr4_guest_bits(struct kvm_vcpu
*vcpu
)
962 static void svm_set_cr0(struct kvm_vcpu
*vcpu
, unsigned long cr0
)
964 struct vcpu_svm
*svm
= to_svm(vcpu
);
967 if (vcpu
->arch
.shadow_efer
& EFER_LME
) {
968 if (!is_paging(vcpu
) && (cr0
& X86_CR0_PG
)) {
969 vcpu
->arch
.shadow_efer
|= EFER_LMA
;
970 svm
->vmcb
->save
.efer
|= EFER_LMA
| EFER_LME
;
973 if (is_paging(vcpu
) && !(cr0
& X86_CR0_PG
)) {
974 vcpu
->arch
.shadow_efer
&= ~EFER_LMA
;
975 svm
->vmcb
->save
.efer
&= ~(EFER_LMA
| EFER_LME
);
982 if ((vcpu
->arch
.cr0
& X86_CR0_TS
) && !(cr0
& X86_CR0_TS
)) {
983 svm
->vmcb
->control
.intercept_exceptions
&= ~(1 << NM_VECTOR
);
984 vcpu
->fpu_active
= 1;
987 vcpu
->arch
.cr0
= cr0
;
988 cr0
|= X86_CR0_PG
| X86_CR0_WP
;
989 if (!vcpu
->fpu_active
) {
990 svm
->vmcb
->control
.intercept_exceptions
|= (1 << NM_VECTOR
);
995 * re-enable caching here because the QEMU bios
996 * does not do it - this results in some delay at
999 cr0
&= ~(X86_CR0_CD
| X86_CR0_NW
);
1000 svm
->vmcb
->save
.cr0
= cr0
;
1003 static void svm_set_cr4(struct kvm_vcpu
*vcpu
, unsigned long cr4
)
1005 unsigned long host_cr4_mce
= read_cr4() & X86_CR4_MCE
;
1006 unsigned long old_cr4
= to_svm(vcpu
)->vmcb
->save
.cr4
;
1008 if (npt_enabled
&& ((old_cr4
^ cr4
) & X86_CR4_PGE
))
1009 force_new_asid(vcpu
);
1011 vcpu
->arch
.cr4
= cr4
;
1014 cr4
|= host_cr4_mce
;
1015 to_svm(vcpu
)->vmcb
->save
.cr4
= cr4
;
1018 static void svm_set_segment(struct kvm_vcpu
*vcpu
,
1019 struct kvm_segment
*var
, int seg
)
1021 struct vcpu_svm
*svm
= to_svm(vcpu
);
1022 struct vmcb_seg
*s
= svm_seg(vcpu
, seg
);
1024 s
->base
= var
->base
;
1025 s
->limit
= var
->limit
;
1026 s
->selector
= var
->selector
;
1030 s
->attrib
= (var
->type
& SVM_SELECTOR_TYPE_MASK
);
1031 s
->attrib
|= (var
->s
& 1) << SVM_SELECTOR_S_SHIFT
;
1032 s
->attrib
|= (var
->dpl
& 3) << SVM_SELECTOR_DPL_SHIFT
;
1033 s
->attrib
|= (var
->present
& 1) << SVM_SELECTOR_P_SHIFT
;
1034 s
->attrib
|= (var
->avl
& 1) << SVM_SELECTOR_AVL_SHIFT
;
1035 s
->attrib
|= (var
->l
& 1) << SVM_SELECTOR_L_SHIFT
;
1036 s
->attrib
|= (var
->db
& 1) << SVM_SELECTOR_DB_SHIFT
;
1037 s
->attrib
|= (var
->g
& 1) << SVM_SELECTOR_G_SHIFT
;
1039 if (seg
== VCPU_SREG_CS
)
1041 = (svm
->vmcb
->save
.cs
.attrib
1042 >> SVM_SELECTOR_DPL_SHIFT
) & 3;
1046 static void update_db_intercept(struct kvm_vcpu
*vcpu
)
1048 struct vcpu_svm
*svm
= to_svm(vcpu
);
1050 svm
->vmcb
->control
.intercept_exceptions
&=
1051 ~((1 << DB_VECTOR
) | (1 << BP_VECTOR
));
1053 if (vcpu
->arch
.singlestep
)
1054 svm
->vmcb
->control
.intercept_exceptions
|= (1 << DB_VECTOR
);
1056 if (vcpu
->guest_debug
& KVM_GUESTDBG_ENABLE
) {
1057 if (vcpu
->guest_debug
&
1058 (KVM_GUESTDBG_SINGLESTEP
| KVM_GUESTDBG_USE_HW_BP
))
1059 svm
->vmcb
->control
.intercept_exceptions
|=
1061 if (vcpu
->guest_debug
& KVM_GUESTDBG_USE_SW_BP
)
1062 svm
->vmcb
->control
.intercept_exceptions
|=
1065 vcpu
->guest_debug
= 0;
1068 static void svm_guest_debug(struct kvm_vcpu
*vcpu
, struct kvm_guest_debug
*dbg
)
1070 struct vcpu_svm
*svm
= to_svm(vcpu
);
1072 if (vcpu
->guest_debug
& KVM_GUESTDBG_USE_HW_BP
)
1073 svm
->vmcb
->save
.dr7
= dbg
->arch
.debugreg
[7];
1075 svm
->vmcb
->save
.dr7
= vcpu
->arch
.dr7
;
1077 update_db_intercept(vcpu
);
1080 static void load_host_msrs(struct kvm_vcpu
*vcpu
)
1082 #ifdef CONFIG_X86_64
1083 wrmsrl(MSR_GS_BASE
, to_svm(vcpu
)->host_gs_base
);
1087 static void save_host_msrs(struct kvm_vcpu
*vcpu
)
1089 #ifdef CONFIG_X86_64
1090 rdmsrl(MSR_GS_BASE
, to_svm(vcpu
)->host_gs_base
);
1094 static void new_asid(struct vcpu_svm
*svm
, struct svm_cpu_data
*svm_data
)
1096 if (svm_data
->next_asid
> svm_data
->max_asid
) {
1097 ++svm_data
->asid_generation
;
1098 svm_data
->next_asid
= 1;
1099 svm
->vmcb
->control
.tlb_ctl
= TLB_CONTROL_FLUSH_ALL_ASID
;
1102 svm
->asid_generation
= svm_data
->asid_generation
;
1103 svm
->vmcb
->control
.asid
= svm_data
->next_asid
++;
1106 static unsigned long svm_get_dr(struct kvm_vcpu
*vcpu
, int dr
)
1108 struct vcpu_svm
*svm
= to_svm(vcpu
);
1113 val
= vcpu
->arch
.db
[dr
];
1116 if (vcpu
->guest_debug
& KVM_GUESTDBG_USE_HW_BP
)
1117 val
= vcpu
->arch
.dr6
;
1119 val
= svm
->vmcb
->save
.dr6
;
1122 if (vcpu
->guest_debug
& KVM_GUESTDBG_USE_HW_BP
)
1123 val
= vcpu
->arch
.dr7
;
1125 val
= svm
->vmcb
->save
.dr7
;
1134 static void svm_set_dr(struct kvm_vcpu
*vcpu
, int dr
, unsigned long value
,
1137 struct vcpu_svm
*svm
= to_svm(vcpu
);
1143 vcpu
->arch
.db
[dr
] = value
;
1144 if (!(vcpu
->guest_debug
& KVM_GUESTDBG_USE_HW_BP
))
1145 vcpu
->arch
.eff_db
[dr
] = value
;
1148 if (vcpu
->arch
.cr4
& X86_CR4_DE
)
1149 *exception
= UD_VECTOR
;
1152 if (value
& 0xffffffff00000000ULL
) {
1153 *exception
= GP_VECTOR
;
1156 vcpu
->arch
.dr6
= (value
& DR6_VOLATILE
) | DR6_FIXED_1
;
1159 if (value
& 0xffffffff00000000ULL
) {
1160 *exception
= GP_VECTOR
;
1163 vcpu
->arch
.dr7
= (value
& DR7_VOLATILE
) | DR7_FIXED_1
;
1164 if (!(vcpu
->guest_debug
& KVM_GUESTDBG_USE_HW_BP
)) {
1165 svm
->vmcb
->save
.dr7
= vcpu
->arch
.dr7
;
1166 vcpu
->arch
.switch_db_regs
= (value
& DR7_BP_EN_MASK
);
1170 /* FIXME: Possible case? */
1171 printk(KERN_DEBUG
"%s: unexpected dr %u\n",
1173 *exception
= UD_VECTOR
;
1178 static int pf_interception(struct vcpu_svm
*svm
)
1183 fault_address
= svm
->vmcb
->control
.exit_info_2
;
1184 error_code
= svm
->vmcb
->control
.exit_info_1
;
1186 trace_kvm_page_fault(fault_address
, error_code
);
1187 if (!npt_enabled
&& kvm_event_needs_reinjection(&svm
->vcpu
))
1188 kvm_mmu_unprotect_page_virt(&svm
->vcpu
, fault_address
);
1189 return kvm_mmu_page_fault(&svm
->vcpu
, fault_address
, error_code
);
1192 static int db_interception(struct vcpu_svm
*svm
)
1194 struct kvm_run
*kvm_run
= svm
->vcpu
.run
;
1196 if (!(svm
->vcpu
.guest_debug
&
1197 (KVM_GUESTDBG_SINGLESTEP
| KVM_GUESTDBG_USE_HW_BP
)) &&
1198 !svm
->vcpu
.arch
.singlestep
) {
1199 kvm_queue_exception(&svm
->vcpu
, DB_VECTOR
);
1203 if (svm
->vcpu
.arch
.singlestep
) {
1204 svm
->vcpu
.arch
.singlestep
= false;
1205 if (!(svm
->vcpu
.guest_debug
& KVM_GUESTDBG_SINGLESTEP
))
1206 svm
->vmcb
->save
.rflags
&=
1207 ~(X86_EFLAGS_TF
| X86_EFLAGS_RF
);
1208 update_db_intercept(&svm
->vcpu
);
1211 if (svm
->vcpu
.guest_debug
&
1212 (KVM_GUESTDBG_SINGLESTEP
| KVM_GUESTDBG_USE_HW_BP
)){
1213 kvm_run
->exit_reason
= KVM_EXIT_DEBUG
;
1214 kvm_run
->debug
.arch
.pc
=
1215 svm
->vmcb
->save
.cs
.base
+ svm
->vmcb
->save
.rip
;
1216 kvm_run
->debug
.arch
.exception
= DB_VECTOR
;
1223 static int bp_interception(struct vcpu_svm
*svm
)
1225 struct kvm_run
*kvm_run
= svm
->vcpu
.run
;
1227 kvm_run
->exit_reason
= KVM_EXIT_DEBUG
;
1228 kvm_run
->debug
.arch
.pc
= svm
->vmcb
->save
.cs
.base
+ svm
->vmcb
->save
.rip
;
1229 kvm_run
->debug
.arch
.exception
= BP_VECTOR
;
1233 static int ud_interception(struct vcpu_svm
*svm
)
1237 er
= emulate_instruction(&svm
->vcpu
, 0, 0, EMULTYPE_TRAP_UD
);
1238 if (er
!= EMULATE_DONE
)
1239 kvm_queue_exception(&svm
->vcpu
, UD_VECTOR
);
1243 static int nm_interception(struct vcpu_svm
*svm
)
1245 svm
->vmcb
->control
.intercept_exceptions
&= ~(1 << NM_VECTOR
);
1246 if (!(svm
->vcpu
.arch
.cr0
& X86_CR0_TS
))
1247 svm
->vmcb
->save
.cr0
&= ~X86_CR0_TS
;
1248 svm
->vcpu
.fpu_active
= 1;
1253 static int mc_interception(struct vcpu_svm
*svm
)
1256 * On an #MC intercept the MCE handler is not called automatically in
1257 * the host. So do it by hand here.
1261 /* not sure if we ever come back to this point */
1266 static int shutdown_interception(struct vcpu_svm
*svm
)
1268 struct kvm_run
*kvm_run
= svm
->vcpu
.run
;
1271 * VMCB is undefined after a SHUTDOWN intercept
1272 * so reinitialize it.
1274 clear_page(svm
->vmcb
);
1277 kvm_run
->exit_reason
= KVM_EXIT_SHUTDOWN
;
1281 static int io_interception(struct vcpu_svm
*svm
)
1283 u32 io_info
= svm
->vmcb
->control
.exit_info_1
; /* address size bug? */
1284 int size
, in
, string
;
1287 ++svm
->vcpu
.stat
.io_exits
;
1289 svm
->next_rip
= svm
->vmcb
->control
.exit_info_2
;
1291 string
= (io_info
& SVM_IOIO_STR_MASK
) != 0;
1294 if (emulate_instruction(&svm
->vcpu
,
1295 0, 0, 0) == EMULATE_DO_MMIO
)
1300 in
= (io_info
& SVM_IOIO_TYPE_MASK
) != 0;
1301 port
= io_info
>> 16;
1302 size
= (io_info
& SVM_IOIO_SIZE_MASK
) >> SVM_IOIO_SIZE_SHIFT
;
1304 skip_emulated_instruction(&svm
->vcpu
);
1305 return kvm_emulate_pio(&svm
->vcpu
, in
, size
, port
);
1308 static int nmi_interception(struct vcpu_svm
*svm
)
1313 static int intr_interception(struct vcpu_svm
*svm
)
1315 ++svm
->vcpu
.stat
.irq_exits
;
1319 static int nop_on_interception(struct vcpu_svm
*svm
)
1324 static int halt_interception(struct vcpu_svm
*svm
)
1326 svm
->next_rip
= kvm_rip_read(&svm
->vcpu
) + 1;
1327 skip_emulated_instruction(&svm
->vcpu
);
1328 return kvm_emulate_halt(&svm
->vcpu
);
1331 static int vmmcall_interception(struct vcpu_svm
*svm
)
1333 svm
->next_rip
= kvm_rip_read(&svm
->vcpu
) + 3;
1334 skip_emulated_instruction(&svm
->vcpu
);
1335 kvm_emulate_hypercall(&svm
->vcpu
);
1339 static int nested_svm_check_permissions(struct vcpu_svm
*svm
)
1341 if (!(svm
->vcpu
.arch
.shadow_efer
& EFER_SVME
)
1342 || !is_paging(&svm
->vcpu
)) {
1343 kvm_queue_exception(&svm
->vcpu
, UD_VECTOR
);
1347 if (svm
->vmcb
->save
.cpl
) {
1348 kvm_inject_gp(&svm
->vcpu
, 0);
1355 static int nested_svm_check_exception(struct vcpu_svm
*svm
, unsigned nr
,
1356 bool has_error_code
, u32 error_code
)
1358 if (!is_nested(svm
))
1361 svm
->vmcb
->control
.exit_code
= SVM_EXIT_EXCP_BASE
+ nr
;
1362 svm
->vmcb
->control
.exit_code_hi
= 0;
1363 svm
->vmcb
->control
.exit_info_1
= error_code
;
1364 svm
->vmcb
->control
.exit_info_2
= svm
->vcpu
.arch
.cr2
;
1366 return nested_svm_exit_handled(svm
);
1369 static inline int nested_svm_intr(struct vcpu_svm
*svm
)
1371 if (!is_nested(svm
))
1374 if (!(svm
->vcpu
.arch
.hflags
& HF_VINTR_MASK
))
1377 if (!(svm
->vcpu
.arch
.hflags
& HF_HIF_MASK
))
1380 svm
->vmcb
->control
.exit_code
= SVM_EXIT_INTR
;
1382 if (nested_svm_exit_handled(svm
)) {
1383 nsvm_printk("VMexit -> INTR\n");
1390 static void *nested_svm_map(struct vcpu_svm
*svm
, u64 gpa
, enum km_type idx
)
1394 page
= gfn_to_page(svm
->vcpu
.kvm
, gpa
>> PAGE_SHIFT
);
1395 if (is_error_page(page
))
1398 return kmap_atomic(page
, idx
);
1401 kvm_release_page_clean(page
);
1402 kvm_inject_gp(&svm
->vcpu
, 0);
1407 static void nested_svm_unmap(void *addr
, enum km_type idx
)
1414 page
= kmap_atomic_to_page(addr
);
1416 kunmap_atomic(addr
, idx
);
1417 kvm_release_page_dirty(page
);
1420 static bool nested_svm_exit_handled_msr(struct vcpu_svm
*svm
)
1422 u32 param
= svm
->vmcb
->control
.exit_info_1
& 1;
1423 u32 msr
= svm
->vcpu
.arch
.regs
[VCPU_REGS_RCX
];
1428 if (!(svm
->nested
.intercept
& (1ULL << INTERCEPT_MSR_PROT
)))
1431 msrpm
= nested_svm_map(svm
, svm
->nested
.vmcb_msrpm
, KM_USER0
);
1441 case 0xc0000000 ... 0xc0001fff:
1442 t0
= (8192 + msr
- 0xc0000000) * 2;
1446 case 0xc0010000 ... 0xc0011fff:
1447 t0
= (16384 + msr
- 0xc0010000) * 2;
1456 ret
= msrpm
[t1
] & ((1 << param
) << t0
);
1459 nested_svm_unmap(msrpm
, KM_USER0
);
1464 static int nested_svm_exit_special(struct vcpu_svm
*svm
)
1466 u32 exit_code
= svm
->vmcb
->control
.exit_code
;
1468 switch (exit_code
) {
1471 return NESTED_EXIT_HOST
;
1472 /* For now we are always handling NPFs when using them */
1475 return NESTED_EXIT_HOST
;
1477 /* When we're shadowing, trap PFs */
1478 case SVM_EXIT_EXCP_BASE
+ PF_VECTOR
:
1480 return NESTED_EXIT_HOST
;
1486 return NESTED_EXIT_CONTINUE
;
1490 * If this function returns true, this #vmexit was already handled
1492 static int nested_svm_exit_handled(struct vcpu_svm
*svm
)
1494 u32 exit_code
= svm
->vmcb
->control
.exit_code
;
1495 int vmexit
= NESTED_EXIT_HOST
;
1497 switch (exit_code
) {
1499 vmexit
= nested_svm_exit_handled_msr(svm
);
1501 case SVM_EXIT_READ_CR0
... SVM_EXIT_READ_CR8
: {
1502 u32 cr_bits
= 1 << (exit_code
- SVM_EXIT_READ_CR0
);
1503 if (svm
->nested
.intercept_cr_read
& cr_bits
)
1504 vmexit
= NESTED_EXIT_DONE
;
1507 case SVM_EXIT_WRITE_CR0
... SVM_EXIT_WRITE_CR8
: {
1508 u32 cr_bits
= 1 << (exit_code
- SVM_EXIT_WRITE_CR0
);
1509 if (svm
->nested
.intercept_cr_write
& cr_bits
)
1510 vmexit
= NESTED_EXIT_DONE
;
1513 case SVM_EXIT_READ_DR0
... SVM_EXIT_READ_DR7
: {
1514 u32 dr_bits
= 1 << (exit_code
- SVM_EXIT_READ_DR0
);
1515 if (svm
->nested
.intercept_dr_read
& dr_bits
)
1516 vmexit
= NESTED_EXIT_DONE
;
1519 case SVM_EXIT_WRITE_DR0
... SVM_EXIT_WRITE_DR7
: {
1520 u32 dr_bits
= 1 << (exit_code
- SVM_EXIT_WRITE_DR0
);
1521 if (svm
->nested
.intercept_dr_write
& dr_bits
)
1522 vmexit
= NESTED_EXIT_DONE
;
1525 case SVM_EXIT_EXCP_BASE
... SVM_EXIT_EXCP_BASE
+ 0x1f: {
1526 u32 excp_bits
= 1 << (exit_code
- SVM_EXIT_EXCP_BASE
);
1527 if (svm
->nested
.intercept_exceptions
& excp_bits
)
1528 vmexit
= NESTED_EXIT_DONE
;
1532 u64 exit_bits
= 1ULL << (exit_code
- SVM_EXIT_INTR
);
1533 nsvm_printk("exit code: 0x%x\n", exit_code
);
1534 if (svm
->nested
.intercept
& exit_bits
)
1535 vmexit
= NESTED_EXIT_DONE
;
1539 if (vmexit
== NESTED_EXIT_DONE
) {
1540 nsvm_printk("#VMEXIT reason=%04x\n", exit_code
);
1541 nested_svm_vmexit(svm
);
1547 static inline void copy_vmcb_control_area(struct vmcb
*dst_vmcb
, struct vmcb
*from_vmcb
)
1549 struct vmcb_control_area
*dst
= &dst_vmcb
->control
;
1550 struct vmcb_control_area
*from
= &from_vmcb
->control
;
1552 dst
->intercept_cr_read
= from
->intercept_cr_read
;
1553 dst
->intercept_cr_write
= from
->intercept_cr_write
;
1554 dst
->intercept_dr_read
= from
->intercept_dr_read
;
1555 dst
->intercept_dr_write
= from
->intercept_dr_write
;
1556 dst
->intercept_exceptions
= from
->intercept_exceptions
;
1557 dst
->intercept
= from
->intercept
;
1558 dst
->iopm_base_pa
= from
->iopm_base_pa
;
1559 dst
->msrpm_base_pa
= from
->msrpm_base_pa
;
1560 dst
->tsc_offset
= from
->tsc_offset
;
1561 dst
->asid
= from
->asid
;
1562 dst
->tlb_ctl
= from
->tlb_ctl
;
1563 dst
->int_ctl
= from
->int_ctl
;
1564 dst
->int_vector
= from
->int_vector
;
1565 dst
->int_state
= from
->int_state
;
1566 dst
->exit_code
= from
->exit_code
;
1567 dst
->exit_code_hi
= from
->exit_code_hi
;
1568 dst
->exit_info_1
= from
->exit_info_1
;
1569 dst
->exit_info_2
= from
->exit_info_2
;
1570 dst
->exit_int_info
= from
->exit_int_info
;
1571 dst
->exit_int_info_err
= from
->exit_int_info_err
;
1572 dst
->nested_ctl
= from
->nested_ctl
;
1573 dst
->event_inj
= from
->event_inj
;
1574 dst
->event_inj_err
= from
->event_inj_err
;
1575 dst
->nested_cr3
= from
->nested_cr3
;
1576 dst
->lbr_ctl
= from
->lbr_ctl
;
1579 static int nested_svm_vmexit(struct vcpu_svm
*svm
)
1581 struct vmcb
*nested_vmcb
;
1582 struct vmcb
*hsave
= svm
->nested
.hsave
;
1583 struct vmcb
*vmcb
= svm
->vmcb
;
1585 nested_vmcb
= nested_svm_map(svm
, svm
->nested
.vmcb
, KM_USER0
);
1589 /* Give the current vmcb to the guest */
1592 nested_vmcb
->save
.es
= vmcb
->save
.es
;
1593 nested_vmcb
->save
.cs
= vmcb
->save
.cs
;
1594 nested_vmcb
->save
.ss
= vmcb
->save
.ss
;
1595 nested_vmcb
->save
.ds
= vmcb
->save
.ds
;
1596 nested_vmcb
->save
.gdtr
= vmcb
->save
.gdtr
;
1597 nested_vmcb
->save
.idtr
= vmcb
->save
.idtr
;
1599 nested_vmcb
->save
.cr3
= vmcb
->save
.cr3
;
1600 nested_vmcb
->save
.cr2
= vmcb
->save
.cr2
;
1601 nested_vmcb
->save
.rflags
= vmcb
->save
.rflags
;
1602 nested_vmcb
->save
.rip
= vmcb
->save
.rip
;
1603 nested_vmcb
->save
.rsp
= vmcb
->save
.rsp
;
1604 nested_vmcb
->save
.rax
= vmcb
->save
.rax
;
1605 nested_vmcb
->save
.dr7
= vmcb
->save
.dr7
;
1606 nested_vmcb
->save
.dr6
= vmcb
->save
.dr6
;
1607 nested_vmcb
->save
.cpl
= vmcb
->save
.cpl
;
1609 nested_vmcb
->control
.int_ctl
= vmcb
->control
.int_ctl
;
1610 nested_vmcb
->control
.int_vector
= vmcb
->control
.int_vector
;
1611 nested_vmcb
->control
.int_state
= vmcb
->control
.int_state
;
1612 nested_vmcb
->control
.exit_code
= vmcb
->control
.exit_code
;
1613 nested_vmcb
->control
.exit_code_hi
= vmcb
->control
.exit_code_hi
;
1614 nested_vmcb
->control
.exit_info_1
= vmcb
->control
.exit_info_1
;
1615 nested_vmcb
->control
.exit_info_2
= vmcb
->control
.exit_info_2
;
1616 nested_vmcb
->control
.exit_int_info
= vmcb
->control
.exit_int_info
;
1617 nested_vmcb
->control
.exit_int_info_err
= vmcb
->control
.exit_int_info_err
;
1620 * If we emulate a VMRUN/#VMEXIT in the same host #vmexit cycle we have
1621 * to make sure that we do not lose injected events. So check event_inj
1622 * here and copy it to exit_int_info if it is valid.
1623 * Exit_int_info and event_inj can't be both valid because the case
1624 * below only happens on a VMRUN instruction intercept which has
1625 * no valid exit_int_info set.
1627 if (vmcb
->control
.event_inj
& SVM_EVTINJ_VALID
) {
1628 struct vmcb_control_area
*nc
= &nested_vmcb
->control
;
1630 nc
->exit_int_info
= vmcb
->control
.event_inj
;
1631 nc
->exit_int_info_err
= vmcb
->control
.event_inj_err
;
1634 nested_vmcb
->control
.tlb_ctl
= 0;
1635 nested_vmcb
->control
.event_inj
= 0;
1636 nested_vmcb
->control
.event_inj_err
= 0;
1638 /* We always set V_INTR_MASKING and remember the old value in hflags */
1639 if (!(svm
->vcpu
.arch
.hflags
& HF_VINTR_MASK
))
1640 nested_vmcb
->control
.int_ctl
&= ~V_INTR_MASKING_MASK
;
1642 /* Restore the original control entries */
1643 copy_vmcb_control_area(vmcb
, hsave
);
1645 /* Kill any pending exceptions */
1646 if (svm
->vcpu
.arch
.exception
.pending
== true)
1647 nsvm_printk("WARNING: Pending Exception\n");
1649 kvm_clear_exception_queue(&svm
->vcpu
);
1650 kvm_clear_interrupt_queue(&svm
->vcpu
);
1652 /* Restore selected save entries */
1653 svm
->vmcb
->save
.es
= hsave
->save
.es
;
1654 svm
->vmcb
->save
.cs
= hsave
->save
.cs
;
1655 svm
->vmcb
->save
.ss
= hsave
->save
.ss
;
1656 svm
->vmcb
->save
.ds
= hsave
->save
.ds
;
1657 svm
->vmcb
->save
.gdtr
= hsave
->save
.gdtr
;
1658 svm
->vmcb
->save
.idtr
= hsave
->save
.idtr
;
1659 svm
->vmcb
->save
.rflags
= hsave
->save
.rflags
;
1660 svm_set_efer(&svm
->vcpu
, hsave
->save
.efer
);
1661 svm_set_cr0(&svm
->vcpu
, hsave
->save
.cr0
| X86_CR0_PE
);
1662 svm_set_cr4(&svm
->vcpu
, hsave
->save
.cr4
);
1664 svm
->vmcb
->save
.cr3
= hsave
->save
.cr3
;
1665 svm
->vcpu
.arch
.cr3
= hsave
->save
.cr3
;
1667 kvm_set_cr3(&svm
->vcpu
, hsave
->save
.cr3
);
1669 kvm_register_write(&svm
->vcpu
, VCPU_REGS_RAX
, hsave
->save
.rax
);
1670 kvm_register_write(&svm
->vcpu
, VCPU_REGS_RSP
, hsave
->save
.rsp
);
1671 kvm_register_write(&svm
->vcpu
, VCPU_REGS_RIP
, hsave
->save
.rip
);
1672 svm
->vmcb
->save
.dr7
= 0;
1673 svm
->vmcb
->save
.cpl
= 0;
1674 svm
->vmcb
->control
.exit_int_info
= 0;
1676 /* Exit nested SVM mode */
1677 svm
->nested
.vmcb
= 0;
1679 nested_svm_unmap(nested_vmcb
, KM_USER0
);
1681 kvm_mmu_reset_context(&svm
->vcpu
);
1682 kvm_mmu_load(&svm
->vcpu
);
1687 static bool nested_svm_vmrun_msrpm(struct vcpu_svm
*svm
)
1692 nested_msrpm
= nested_svm_map(svm
, svm
->nested
.vmcb_msrpm
, KM_USER0
);
1696 for (i
=0; i
< PAGE_SIZE
* (1 << MSRPM_ALLOC_ORDER
) / 4; i
++)
1697 svm
->nested
.msrpm
[i
] = svm
->msrpm
[i
] | nested_msrpm
[i
];
1699 svm
->vmcb
->control
.msrpm_base_pa
= __pa(svm
->nested
.msrpm
);
1701 nested_svm_unmap(nested_msrpm
, KM_USER0
);
1706 static bool nested_svm_vmrun(struct vcpu_svm
*svm
)
1708 struct vmcb
*nested_vmcb
;
1709 struct vmcb
*hsave
= svm
->nested
.hsave
;
1710 struct vmcb
*vmcb
= svm
->vmcb
;
1712 nested_vmcb
= nested_svm_map(svm
, svm
->vmcb
->save
.rax
, KM_USER0
);
1716 /* nested_vmcb is our indicator if nested SVM is activated */
1717 svm
->nested
.vmcb
= svm
->vmcb
->save
.rax
;
1719 /* Clear internal status */
1720 kvm_clear_exception_queue(&svm
->vcpu
);
1721 kvm_clear_interrupt_queue(&svm
->vcpu
);
1723 /* Save the old vmcb, so we don't need to pick what we save, but
1724 can restore everything when a VMEXIT occurs */
1725 hsave
->save
.es
= vmcb
->save
.es
;
1726 hsave
->save
.cs
= vmcb
->save
.cs
;
1727 hsave
->save
.ss
= vmcb
->save
.ss
;
1728 hsave
->save
.ds
= vmcb
->save
.ds
;
1729 hsave
->save
.gdtr
= vmcb
->save
.gdtr
;
1730 hsave
->save
.idtr
= vmcb
->save
.idtr
;
1731 hsave
->save
.efer
= svm
->vcpu
.arch
.shadow_efer
;
1732 hsave
->save
.cr0
= svm
->vcpu
.arch
.cr0
;
1733 hsave
->save
.cr4
= svm
->vcpu
.arch
.cr4
;
1734 hsave
->save
.rflags
= vmcb
->save
.rflags
;
1735 hsave
->save
.rip
= svm
->next_rip
;
1736 hsave
->save
.rsp
= vmcb
->save
.rsp
;
1737 hsave
->save
.rax
= vmcb
->save
.rax
;
1739 hsave
->save
.cr3
= vmcb
->save
.cr3
;
1741 hsave
->save
.cr3
= svm
->vcpu
.arch
.cr3
;
1743 copy_vmcb_control_area(hsave
, vmcb
);
1745 if (svm
->vmcb
->save
.rflags
& X86_EFLAGS_IF
)
1746 svm
->vcpu
.arch
.hflags
|= HF_HIF_MASK
;
1748 svm
->vcpu
.arch
.hflags
&= ~HF_HIF_MASK
;
1750 /* Load the nested guest state */
1751 svm
->vmcb
->save
.es
= nested_vmcb
->save
.es
;
1752 svm
->vmcb
->save
.cs
= nested_vmcb
->save
.cs
;
1753 svm
->vmcb
->save
.ss
= nested_vmcb
->save
.ss
;
1754 svm
->vmcb
->save
.ds
= nested_vmcb
->save
.ds
;
1755 svm
->vmcb
->save
.gdtr
= nested_vmcb
->save
.gdtr
;
1756 svm
->vmcb
->save
.idtr
= nested_vmcb
->save
.idtr
;
1757 svm
->vmcb
->save
.rflags
= nested_vmcb
->save
.rflags
;
1758 svm_set_efer(&svm
->vcpu
, nested_vmcb
->save
.efer
);
1759 svm_set_cr0(&svm
->vcpu
, nested_vmcb
->save
.cr0
);
1760 svm_set_cr4(&svm
->vcpu
, nested_vmcb
->save
.cr4
);
1762 svm
->vmcb
->save
.cr3
= nested_vmcb
->save
.cr3
;
1763 svm
->vcpu
.arch
.cr3
= nested_vmcb
->save
.cr3
;
1765 kvm_set_cr3(&svm
->vcpu
, nested_vmcb
->save
.cr3
);
1766 kvm_mmu_reset_context(&svm
->vcpu
);
1768 svm
->vmcb
->save
.cr2
= svm
->vcpu
.arch
.cr2
= nested_vmcb
->save
.cr2
;
1769 kvm_register_write(&svm
->vcpu
, VCPU_REGS_RAX
, nested_vmcb
->save
.rax
);
1770 kvm_register_write(&svm
->vcpu
, VCPU_REGS_RSP
, nested_vmcb
->save
.rsp
);
1771 kvm_register_write(&svm
->vcpu
, VCPU_REGS_RIP
, nested_vmcb
->save
.rip
);
1772 /* In case we don't even reach vcpu_run, the fields are not updated */
1773 svm
->vmcb
->save
.rax
= nested_vmcb
->save
.rax
;
1774 svm
->vmcb
->save
.rsp
= nested_vmcb
->save
.rsp
;
1775 svm
->vmcb
->save
.rip
= nested_vmcb
->save
.rip
;
1776 svm
->vmcb
->save
.dr7
= nested_vmcb
->save
.dr7
;
1777 svm
->vmcb
->save
.dr6
= nested_vmcb
->save
.dr6
;
1778 svm
->vmcb
->save
.cpl
= nested_vmcb
->save
.cpl
;
1780 /* We don't want a nested guest to be more powerful than the guest,
1781 so all intercepts are ORed */
1782 svm
->vmcb
->control
.intercept_cr_read
|=
1783 nested_vmcb
->control
.intercept_cr_read
;
1784 svm
->vmcb
->control
.intercept_cr_write
|=
1785 nested_vmcb
->control
.intercept_cr_write
;
1786 svm
->vmcb
->control
.intercept_dr_read
|=
1787 nested_vmcb
->control
.intercept_dr_read
;
1788 svm
->vmcb
->control
.intercept_dr_write
|=
1789 nested_vmcb
->control
.intercept_dr_write
;
1790 svm
->vmcb
->control
.intercept_exceptions
|=
1791 nested_vmcb
->control
.intercept_exceptions
;
1793 svm
->vmcb
->control
.intercept
|= nested_vmcb
->control
.intercept
;
1795 svm
->nested
.vmcb_msrpm
= nested_vmcb
->control
.msrpm_base_pa
;
1797 /* cache intercepts */
1798 svm
->nested
.intercept_cr_read
= nested_vmcb
->control
.intercept_cr_read
;
1799 svm
->nested
.intercept_cr_write
= nested_vmcb
->control
.intercept_cr_write
;
1800 svm
->nested
.intercept_dr_read
= nested_vmcb
->control
.intercept_dr_read
;
1801 svm
->nested
.intercept_dr_write
= nested_vmcb
->control
.intercept_dr_write
;
1802 svm
->nested
.intercept_exceptions
= nested_vmcb
->control
.intercept_exceptions
;
1803 svm
->nested
.intercept
= nested_vmcb
->control
.intercept
;
1805 force_new_asid(&svm
->vcpu
);
1806 svm
->vmcb
->control
.int_ctl
= nested_vmcb
->control
.int_ctl
| V_INTR_MASKING_MASK
;
1807 if (nested_vmcb
->control
.int_ctl
& V_IRQ_MASK
) {
1808 nsvm_printk("nSVM Injecting Interrupt: 0x%x\n",
1809 nested_vmcb
->control
.int_ctl
);
1811 if (nested_vmcb
->control
.int_ctl
& V_INTR_MASKING_MASK
)
1812 svm
->vcpu
.arch
.hflags
|= HF_VINTR_MASK
;
1814 svm
->vcpu
.arch
.hflags
&= ~HF_VINTR_MASK
;
1816 nsvm_printk("nSVM exit_int_info: 0x%x | int_state: 0x%x\n",
1817 nested_vmcb
->control
.exit_int_info
,
1818 nested_vmcb
->control
.int_state
);
1820 svm
->vmcb
->control
.int_vector
= nested_vmcb
->control
.int_vector
;
1821 svm
->vmcb
->control
.int_state
= nested_vmcb
->control
.int_state
;
1822 svm
->vmcb
->control
.tsc_offset
+= nested_vmcb
->control
.tsc_offset
;
1823 if (nested_vmcb
->control
.event_inj
& SVM_EVTINJ_VALID
)
1824 nsvm_printk("Injecting Event: 0x%x\n",
1825 nested_vmcb
->control
.event_inj
);
1826 svm
->vmcb
->control
.event_inj
= nested_vmcb
->control
.event_inj
;
1827 svm
->vmcb
->control
.event_inj_err
= nested_vmcb
->control
.event_inj_err
;
1829 nested_svm_unmap(nested_vmcb
, KM_USER0
);
1836 static void nested_svm_vmloadsave(struct vmcb
*from_vmcb
, struct vmcb
*to_vmcb
)
1838 to_vmcb
->save
.fs
= from_vmcb
->save
.fs
;
1839 to_vmcb
->save
.gs
= from_vmcb
->save
.gs
;
1840 to_vmcb
->save
.tr
= from_vmcb
->save
.tr
;
1841 to_vmcb
->save
.ldtr
= from_vmcb
->save
.ldtr
;
1842 to_vmcb
->save
.kernel_gs_base
= from_vmcb
->save
.kernel_gs_base
;
1843 to_vmcb
->save
.star
= from_vmcb
->save
.star
;
1844 to_vmcb
->save
.lstar
= from_vmcb
->save
.lstar
;
1845 to_vmcb
->save
.cstar
= from_vmcb
->save
.cstar
;
1846 to_vmcb
->save
.sfmask
= from_vmcb
->save
.sfmask
;
1847 to_vmcb
->save
.sysenter_cs
= from_vmcb
->save
.sysenter_cs
;
1848 to_vmcb
->save
.sysenter_esp
= from_vmcb
->save
.sysenter_esp
;
1849 to_vmcb
->save
.sysenter_eip
= from_vmcb
->save
.sysenter_eip
;
1852 static int vmload_interception(struct vcpu_svm
*svm
)
1854 struct vmcb
*nested_vmcb
;
1856 if (nested_svm_check_permissions(svm
))
1859 svm
->next_rip
= kvm_rip_read(&svm
->vcpu
) + 3;
1860 skip_emulated_instruction(&svm
->vcpu
);
1862 nested_vmcb
= nested_svm_map(svm
, svm
->vmcb
->save
.rax
, KM_USER0
);
1866 nested_svm_vmloadsave(nested_vmcb
, svm
->vmcb
);
1867 nested_svm_unmap(nested_vmcb
, KM_USER0
);
1872 static int vmsave_interception(struct vcpu_svm
*svm
)
1874 struct vmcb
*nested_vmcb
;
1876 if (nested_svm_check_permissions(svm
))
1879 svm
->next_rip
= kvm_rip_read(&svm
->vcpu
) + 3;
1880 skip_emulated_instruction(&svm
->vcpu
);
1882 nested_vmcb
= nested_svm_map(svm
, svm
->vmcb
->save
.rax
, KM_USER0
);
1886 nested_svm_vmloadsave(svm
->vmcb
, nested_vmcb
);
1887 nested_svm_unmap(nested_vmcb
, KM_USER0
);
1892 static int vmrun_interception(struct vcpu_svm
*svm
)
1894 nsvm_printk("VMrun\n");
1896 if (nested_svm_check_permissions(svm
))
1899 svm
->next_rip
= kvm_rip_read(&svm
->vcpu
) + 3;
1900 skip_emulated_instruction(&svm
->vcpu
);
1902 if (!nested_svm_vmrun(svm
))
1905 if (!nested_svm_vmrun_msrpm(svm
))
1912 svm
->vmcb
->control
.exit_code
= SVM_EXIT_ERR
;
1913 svm
->vmcb
->control
.exit_code_hi
= 0;
1914 svm
->vmcb
->control
.exit_info_1
= 0;
1915 svm
->vmcb
->control
.exit_info_2
= 0;
1917 nested_svm_vmexit(svm
);
1922 static int stgi_interception(struct vcpu_svm
*svm
)
1924 if (nested_svm_check_permissions(svm
))
1927 svm
->next_rip
= kvm_rip_read(&svm
->vcpu
) + 3;
1928 skip_emulated_instruction(&svm
->vcpu
);
1935 static int clgi_interception(struct vcpu_svm
*svm
)
1937 if (nested_svm_check_permissions(svm
))
1940 svm
->next_rip
= kvm_rip_read(&svm
->vcpu
) + 3;
1941 skip_emulated_instruction(&svm
->vcpu
);
1945 /* After a CLGI no interrupts should come */
1946 svm_clear_vintr(svm
);
1947 svm
->vmcb
->control
.int_ctl
&= ~V_IRQ_MASK
;
1952 static int invlpga_interception(struct vcpu_svm
*svm
)
1954 struct kvm_vcpu
*vcpu
= &svm
->vcpu
;
1955 nsvm_printk("INVLPGA\n");
1957 /* Let's treat INVLPGA the same as INVLPG (can be optimized!) */
1958 kvm_mmu_invlpg(vcpu
, vcpu
->arch
.regs
[VCPU_REGS_RAX
]);
1960 svm
->next_rip
= kvm_rip_read(&svm
->vcpu
) + 3;
1961 skip_emulated_instruction(&svm
->vcpu
);
1965 static int invalid_op_interception(struct vcpu_svm
*svm
)
1967 kvm_queue_exception(&svm
->vcpu
, UD_VECTOR
);
1971 static int task_switch_interception(struct vcpu_svm
*svm
)
1975 int int_type
= svm
->vmcb
->control
.exit_int_info
&
1976 SVM_EXITINTINFO_TYPE_MASK
;
1977 int int_vec
= svm
->vmcb
->control
.exit_int_info
& SVM_EVTINJ_VEC_MASK
;
1979 svm
->vmcb
->control
.exit_int_info
& SVM_EXITINTINFO_TYPE_MASK
;
1981 svm
->vmcb
->control
.exit_int_info
& SVM_EXITINTINFO_VALID
;
1983 tss_selector
= (u16
)svm
->vmcb
->control
.exit_info_1
;
1985 if (svm
->vmcb
->control
.exit_info_2
&
1986 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_IRET
))
1987 reason
= TASK_SWITCH_IRET
;
1988 else if (svm
->vmcb
->control
.exit_info_2
&
1989 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_JMP
))
1990 reason
= TASK_SWITCH_JMP
;
1992 reason
= TASK_SWITCH_GATE
;
1994 reason
= TASK_SWITCH_CALL
;
1996 if (reason
== TASK_SWITCH_GATE
) {
1998 case SVM_EXITINTINFO_TYPE_NMI
:
1999 svm
->vcpu
.arch
.nmi_injected
= false;
2001 case SVM_EXITINTINFO_TYPE_EXEPT
:
2002 kvm_clear_exception_queue(&svm
->vcpu
);
2004 case SVM_EXITINTINFO_TYPE_INTR
:
2005 kvm_clear_interrupt_queue(&svm
->vcpu
);
2012 if (reason
!= TASK_SWITCH_GATE
||
2013 int_type
== SVM_EXITINTINFO_TYPE_SOFT
||
2014 (int_type
== SVM_EXITINTINFO_TYPE_EXEPT
&&
2015 (int_vec
== OF_VECTOR
|| int_vec
== BP_VECTOR
)))
2016 skip_emulated_instruction(&svm
->vcpu
);
2018 return kvm_task_switch(&svm
->vcpu
, tss_selector
, reason
);
2021 static int cpuid_interception(struct vcpu_svm
*svm
)
2023 svm
->next_rip
= kvm_rip_read(&svm
->vcpu
) + 2;
2024 kvm_emulate_cpuid(&svm
->vcpu
);
2028 static int iret_interception(struct vcpu_svm
*svm
)
2030 ++svm
->vcpu
.stat
.nmi_window_exits
;
2031 svm
->vmcb
->control
.intercept
&= ~(1UL << INTERCEPT_IRET
);
2032 svm
->vcpu
.arch
.hflags
|= HF_IRET_MASK
;
2036 static int invlpg_interception(struct vcpu_svm
*svm
)
2038 if (emulate_instruction(&svm
->vcpu
, 0, 0, 0) != EMULATE_DONE
)
2039 pr_unimpl(&svm
->vcpu
, "%s: failed\n", __func__
);
2043 static int emulate_on_interception(struct vcpu_svm
*svm
)
2045 if (emulate_instruction(&svm
->vcpu
, 0, 0, 0) != EMULATE_DONE
)
2046 pr_unimpl(&svm
->vcpu
, "%s: failed\n", __func__
);
2050 static int cr8_write_interception(struct vcpu_svm
*svm
)
2052 struct kvm_run
*kvm_run
= svm
->vcpu
.run
;
2054 u8 cr8_prev
= kvm_get_cr8(&svm
->vcpu
);
2055 /* instruction emulation calls kvm_set_cr8() */
2056 emulate_instruction(&svm
->vcpu
, 0, 0, 0);
2057 if (irqchip_in_kernel(svm
->vcpu
.kvm
)) {
2058 svm
->vmcb
->control
.intercept_cr_write
&= ~INTERCEPT_CR8_MASK
;
2061 if (cr8_prev
<= kvm_get_cr8(&svm
->vcpu
))
2063 kvm_run
->exit_reason
= KVM_EXIT_SET_TPR
;
2067 static int svm_get_msr(struct kvm_vcpu
*vcpu
, unsigned ecx
, u64
*data
)
2069 struct vcpu_svm
*svm
= to_svm(vcpu
);
2072 case MSR_IA32_TSC
: {
2076 tsc_offset
= svm
->nested
.hsave
->control
.tsc_offset
;
2078 tsc_offset
= svm
->vmcb
->control
.tsc_offset
;
2080 *data
= tsc_offset
+ native_read_tsc();
2084 *data
= svm
->vmcb
->save
.star
;
2086 #ifdef CONFIG_X86_64
2088 *data
= svm
->vmcb
->save
.lstar
;
2091 *data
= svm
->vmcb
->save
.cstar
;
2093 case MSR_KERNEL_GS_BASE
:
2094 *data
= svm
->vmcb
->save
.kernel_gs_base
;
2096 case MSR_SYSCALL_MASK
:
2097 *data
= svm
->vmcb
->save
.sfmask
;
2100 case MSR_IA32_SYSENTER_CS
:
2101 *data
= svm
->vmcb
->save
.sysenter_cs
;
2103 case MSR_IA32_SYSENTER_EIP
:
2104 *data
= svm
->sysenter_eip
;
2106 case MSR_IA32_SYSENTER_ESP
:
2107 *data
= svm
->sysenter_esp
;
2109 /* Nobody will change the following 5 values in the VMCB so
2110 we can safely return them on rdmsr. They will always be 0
2111 until LBRV is implemented. */
2112 case MSR_IA32_DEBUGCTLMSR
:
2113 *data
= svm
->vmcb
->save
.dbgctl
;
2115 case MSR_IA32_LASTBRANCHFROMIP
:
2116 *data
= svm
->vmcb
->save
.br_from
;
2118 case MSR_IA32_LASTBRANCHTOIP
:
2119 *data
= svm
->vmcb
->save
.br_to
;
2121 case MSR_IA32_LASTINTFROMIP
:
2122 *data
= svm
->vmcb
->save
.last_excp_from
;
2124 case MSR_IA32_LASTINTTOIP
:
2125 *data
= svm
->vmcb
->save
.last_excp_to
;
2127 case MSR_VM_HSAVE_PA
:
2128 *data
= svm
->nested
.hsave_msr
;
2133 case MSR_IA32_UCODE_REV
:
2137 return kvm_get_msr_common(vcpu
, ecx
, data
);
2142 static int rdmsr_interception(struct vcpu_svm
*svm
)
2144 u32 ecx
= svm
->vcpu
.arch
.regs
[VCPU_REGS_RCX
];
2147 if (svm_get_msr(&svm
->vcpu
, ecx
, &data
))
2148 kvm_inject_gp(&svm
->vcpu
, 0);
2150 trace_kvm_msr_read(ecx
, data
);
2152 svm
->vcpu
.arch
.regs
[VCPU_REGS_RAX
] = data
& 0xffffffff;
2153 svm
->vcpu
.arch
.regs
[VCPU_REGS_RDX
] = data
>> 32;
2154 svm
->next_rip
= kvm_rip_read(&svm
->vcpu
) + 2;
2155 skip_emulated_instruction(&svm
->vcpu
);
2160 static int svm_set_msr(struct kvm_vcpu
*vcpu
, unsigned ecx
, u64 data
)
2162 struct vcpu_svm
*svm
= to_svm(vcpu
);
2165 case MSR_IA32_TSC
: {
2166 u64 tsc_offset
= data
- native_read_tsc();
2167 u64 g_tsc_offset
= 0;
2169 if (is_nested(svm
)) {
2170 g_tsc_offset
= svm
->vmcb
->control
.tsc_offset
-
2171 svm
->nested
.hsave
->control
.tsc_offset
;
2172 svm
->nested
.hsave
->control
.tsc_offset
= tsc_offset
;
2175 svm
->vmcb
->control
.tsc_offset
= tsc_offset
+ g_tsc_offset
;
2180 svm
->vmcb
->save
.star
= data
;
2182 #ifdef CONFIG_X86_64
2184 svm
->vmcb
->save
.lstar
= data
;
2187 svm
->vmcb
->save
.cstar
= data
;
2189 case MSR_KERNEL_GS_BASE
:
2190 svm
->vmcb
->save
.kernel_gs_base
= data
;
2192 case MSR_SYSCALL_MASK
:
2193 svm
->vmcb
->save
.sfmask
= data
;
2196 case MSR_IA32_SYSENTER_CS
:
2197 svm
->vmcb
->save
.sysenter_cs
= data
;
2199 case MSR_IA32_SYSENTER_EIP
:
2200 svm
->sysenter_eip
= data
;
2201 svm
->vmcb
->save
.sysenter_eip
= data
;
2203 case MSR_IA32_SYSENTER_ESP
:
2204 svm
->sysenter_esp
= data
;
2205 svm
->vmcb
->save
.sysenter_esp
= data
;
2207 case MSR_IA32_DEBUGCTLMSR
:
2208 if (!svm_has(SVM_FEATURE_LBRV
)) {
2209 pr_unimpl(vcpu
, "%s: MSR_IA32_DEBUGCTL 0x%llx, nop\n",
2213 if (data
& DEBUGCTL_RESERVED_BITS
)
2216 svm
->vmcb
->save
.dbgctl
= data
;
2217 if (data
& (1ULL<<0))
2218 svm_enable_lbrv(svm
);
2220 svm_disable_lbrv(svm
);
2222 case MSR_VM_HSAVE_PA
:
2223 svm
->nested
.hsave_msr
= data
;
2227 pr_unimpl(vcpu
, "unimplemented wrmsr: 0x%x data 0x%llx\n", ecx
, data
);
2230 return kvm_set_msr_common(vcpu
, ecx
, data
);
2235 static int wrmsr_interception(struct vcpu_svm
*svm
)
2237 u32 ecx
= svm
->vcpu
.arch
.regs
[VCPU_REGS_RCX
];
2238 u64 data
= (svm
->vcpu
.arch
.regs
[VCPU_REGS_RAX
] & -1u)
2239 | ((u64
)(svm
->vcpu
.arch
.regs
[VCPU_REGS_RDX
] & -1u) << 32);
2241 trace_kvm_msr_write(ecx
, data
);
2243 svm
->next_rip
= kvm_rip_read(&svm
->vcpu
) + 2;
2244 if (svm_set_msr(&svm
->vcpu
, ecx
, data
))
2245 kvm_inject_gp(&svm
->vcpu
, 0);
2247 skip_emulated_instruction(&svm
->vcpu
);
2251 static int msr_interception(struct vcpu_svm
*svm
)
2253 if (svm
->vmcb
->control
.exit_info_1
)
2254 return wrmsr_interception(svm
);
2256 return rdmsr_interception(svm
);
2259 static int interrupt_window_interception(struct vcpu_svm
*svm
)
2261 struct kvm_run
*kvm_run
= svm
->vcpu
.run
;
2263 svm_clear_vintr(svm
);
2264 svm
->vmcb
->control
.int_ctl
&= ~V_IRQ_MASK
;
2266 * If the user space waits to inject interrupts, exit as soon as
2269 if (!irqchip_in_kernel(svm
->vcpu
.kvm
) &&
2270 kvm_run
->request_interrupt_window
&&
2271 !kvm_cpu_has_interrupt(&svm
->vcpu
)) {
2272 ++svm
->vcpu
.stat
.irq_window_exits
;
2273 kvm_run
->exit_reason
= KVM_EXIT_IRQ_WINDOW_OPEN
;
2280 static int (*svm_exit_handlers
[])(struct vcpu_svm
*svm
) = {
2281 [SVM_EXIT_READ_CR0
] = emulate_on_interception
,
2282 [SVM_EXIT_READ_CR3
] = emulate_on_interception
,
2283 [SVM_EXIT_READ_CR4
] = emulate_on_interception
,
2284 [SVM_EXIT_READ_CR8
] = emulate_on_interception
,
2286 [SVM_EXIT_WRITE_CR0
] = emulate_on_interception
,
2287 [SVM_EXIT_WRITE_CR3
] = emulate_on_interception
,
2288 [SVM_EXIT_WRITE_CR4
] = emulate_on_interception
,
2289 [SVM_EXIT_WRITE_CR8
] = cr8_write_interception
,
2290 [SVM_EXIT_READ_DR0
] = emulate_on_interception
,
2291 [SVM_EXIT_READ_DR1
] = emulate_on_interception
,
2292 [SVM_EXIT_READ_DR2
] = emulate_on_interception
,
2293 [SVM_EXIT_READ_DR3
] = emulate_on_interception
,
2294 [SVM_EXIT_WRITE_DR0
] = emulate_on_interception
,
2295 [SVM_EXIT_WRITE_DR1
] = emulate_on_interception
,
2296 [SVM_EXIT_WRITE_DR2
] = emulate_on_interception
,
2297 [SVM_EXIT_WRITE_DR3
] = emulate_on_interception
,
2298 [SVM_EXIT_WRITE_DR5
] = emulate_on_interception
,
2299 [SVM_EXIT_WRITE_DR7
] = emulate_on_interception
,
2300 [SVM_EXIT_EXCP_BASE
+ DB_VECTOR
] = db_interception
,
2301 [SVM_EXIT_EXCP_BASE
+ BP_VECTOR
] = bp_interception
,
2302 [SVM_EXIT_EXCP_BASE
+ UD_VECTOR
] = ud_interception
,
2303 [SVM_EXIT_EXCP_BASE
+ PF_VECTOR
] = pf_interception
,
2304 [SVM_EXIT_EXCP_BASE
+ NM_VECTOR
] = nm_interception
,
2305 [SVM_EXIT_EXCP_BASE
+ MC_VECTOR
] = mc_interception
,
2306 [SVM_EXIT_INTR
] = intr_interception
,
2307 [SVM_EXIT_NMI
] = nmi_interception
,
2308 [SVM_EXIT_SMI
] = nop_on_interception
,
2309 [SVM_EXIT_INIT
] = nop_on_interception
,
2310 [SVM_EXIT_VINTR
] = interrupt_window_interception
,
2311 /* [SVM_EXIT_CR0_SEL_WRITE] = emulate_on_interception, */
2312 [SVM_EXIT_CPUID
] = cpuid_interception
,
2313 [SVM_EXIT_IRET
] = iret_interception
,
2314 [SVM_EXIT_INVD
] = emulate_on_interception
,
2315 [SVM_EXIT_HLT
] = halt_interception
,
2316 [SVM_EXIT_INVLPG
] = invlpg_interception
,
2317 [SVM_EXIT_INVLPGA
] = invlpga_interception
,
2318 [SVM_EXIT_IOIO
] = io_interception
,
2319 [SVM_EXIT_MSR
] = msr_interception
,
2320 [SVM_EXIT_TASK_SWITCH
] = task_switch_interception
,
2321 [SVM_EXIT_SHUTDOWN
] = shutdown_interception
,
2322 [SVM_EXIT_VMRUN
] = vmrun_interception
,
2323 [SVM_EXIT_VMMCALL
] = vmmcall_interception
,
2324 [SVM_EXIT_VMLOAD
] = vmload_interception
,
2325 [SVM_EXIT_VMSAVE
] = vmsave_interception
,
2326 [SVM_EXIT_STGI
] = stgi_interception
,
2327 [SVM_EXIT_CLGI
] = clgi_interception
,
2328 [SVM_EXIT_SKINIT
] = invalid_op_interception
,
2329 [SVM_EXIT_WBINVD
] = emulate_on_interception
,
2330 [SVM_EXIT_MONITOR
] = invalid_op_interception
,
2331 [SVM_EXIT_MWAIT
] = invalid_op_interception
,
2332 [SVM_EXIT_NPF
] = pf_interception
,
2335 static int handle_exit(struct kvm_vcpu
*vcpu
)
2337 struct vcpu_svm
*svm
= to_svm(vcpu
);
2338 struct kvm_run
*kvm_run
= vcpu
->run
;
2339 u32 exit_code
= svm
->vmcb
->control
.exit_code
;
2341 trace_kvm_exit(exit_code
, svm
->vmcb
->save
.rip
);
2343 if (is_nested(svm
)) {
2346 nsvm_printk("nested handle_exit: 0x%x | 0x%lx | 0x%lx | 0x%lx\n",
2347 exit_code
, svm
->vmcb
->control
.exit_info_1
,
2348 svm
->vmcb
->control
.exit_info_2
, svm
->vmcb
->save
.rip
);
2350 vmexit
= nested_svm_exit_special(svm
);
2352 if (vmexit
== NESTED_EXIT_CONTINUE
)
2353 vmexit
= nested_svm_exit_handled(svm
);
2355 if (vmexit
== NESTED_EXIT_DONE
)
2359 svm_complete_interrupts(svm
);
2363 if ((vcpu
->arch
.cr0
^ svm
->vmcb
->save
.cr0
) & X86_CR0_PG
) {
2364 svm_set_cr0(vcpu
, svm
->vmcb
->save
.cr0
);
2367 vcpu
->arch
.cr0
= svm
->vmcb
->save
.cr0
;
2368 vcpu
->arch
.cr3
= svm
->vmcb
->save
.cr3
;
2370 kvm_mmu_reset_context(vcpu
);
2376 if (svm
->vmcb
->control
.exit_code
== SVM_EXIT_ERR
) {
2377 kvm_run
->exit_reason
= KVM_EXIT_FAIL_ENTRY
;
2378 kvm_run
->fail_entry
.hardware_entry_failure_reason
2379 = svm
->vmcb
->control
.exit_code
;
2383 if (is_external_interrupt(svm
->vmcb
->control
.exit_int_info
) &&
2384 exit_code
!= SVM_EXIT_EXCP_BASE
+ PF_VECTOR
&&
2385 exit_code
!= SVM_EXIT_NPF
&& exit_code
!= SVM_EXIT_TASK_SWITCH
)
2386 printk(KERN_ERR
"%s: unexpected exit_ini_info 0x%x "
2388 __func__
, svm
->vmcb
->control
.exit_int_info
,
2391 if (exit_code
>= ARRAY_SIZE(svm_exit_handlers
)
2392 || !svm_exit_handlers
[exit_code
]) {
2393 kvm_run
->exit_reason
= KVM_EXIT_UNKNOWN
;
2394 kvm_run
->hw
.hardware_exit_reason
= exit_code
;
2398 return svm_exit_handlers
[exit_code
](svm
);
2401 static void reload_tss(struct kvm_vcpu
*vcpu
)
2403 int cpu
= raw_smp_processor_id();
2405 struct svm_cpu_data
*svm_data
= per_cpu(svm_data
, cpu
);
2406 svm_data
->tss_desc
->type
= 9; /* available 32/64-bit TSS */
2410 static void pre_svm_run(struct vcpu_svm
*svm
)
2412 int cpu
= raw_smp_processor_id();
2414 struct svm_cpu_data
*svm_data
= per_cpu(svm_data
, cpu
);
2416 svm
->vmcb
->control
.tlb_ctl
= TLB_CONTROL_DO_NOTHING
;
2417 /* FIXME: handle wraparound of asid_generation */
2418 if (svm
->asid_generation
!= svm_data
->asid_generation
)
2419 new_asid(svm
, svm_data
);
2422 static void svm_inject_nmi(struct kvm_vcpu
*vcpu
)
2424 struct vcpu_svm
*svm
= to_svm(vcpu
);
2426 svm
->vmcb
->control
.event_inj
= SVM_EVTINJ_VALID
| SVM_EVTINJ_TYPE_NMI
;
2427 vcpu
->arch
.hflags
|= HF_NMI_MASK
;
2428 svm
->vmcb
->control
.intercept
|= (1UL << INTERCEPT_IRET
);
2429 ++vcpu
->stat
.nmi_injections
;
2432 static inline void svm_inject_irq(struct vcpu_svm
*svm
, int irq
)
2434 struct vmcb_control_area
*control
;
2436 trace_kvm_inj_virq(irq
);
2438 ++svm
->vcpu
.stat
.irq_injections
;
2439 control
= &svm
->vmcb
->control
;
2440 control
->int_vector
= irq
;
2441 control
->int_ctl
&= ~V_INTR_PRIO_MASK
;
2442 control
->int_ctl
|= V_IRQ_MASK
|
2443 ((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT
);
2446 static void svm_set_irq(struct kvm_vcpu
*vcpu
)
2448 struct vcpu_svm
*svm
= to_svm(vcpu
);
2450 BUG_ON(!(gif_set(svm
)));
2452 svm
->vmcb
->control
.event_inj
= vcpu
->arch
.interrupt
.nr
|
2453 SVM_EVTINJ_VALID
| SVM_EVTINJ_TYPE_INTR
;
2456 static void update_cr8_intercept(struct kvm_vcpu
*vcpu
, int tpr
, int irr
)
2458 struct vcpu_svm
*svm
= to_svm(vcpu
);
2464 svm
->vmcb
->control
.intercept_cr_write
|= INTERCEPT_CR8_MASK
;
2467 static int svm_nmi_allowed(struct kvm_vcpu
*vcpu
)
2469 struct vcpu_svm
*svm
= to_svm(vcpu
);
2470 struct vmcb
*vmcb
= svm
->vmcb
;
2471 return !(vmcb
->control
.int_state
& SVM_INTERRUPT_SHADOW_MASK
) &&
2472 !(svm
->vcpu
.arch
.hflags
& HF_NMI_MASK
);
2475 static int svm_interrupt_allowed(struct kvm_vcpu
*vcpu
)
2477 struct vcpu_svm
*svm
= to_svm(vcpu
);
2478 struct vmcb
*vmcb
= svm
->vmcb
;
2481 if (!gif_set(svm
) ||
2482 (vmcb
->control
.int_state
& SVM_INTERRUPT_SHADOW_MASK
))
2485 ret
= !!(vmcb
->save
.rflags
& X86_EFLAGS_IF
);
2488 return ret
&& !(svm
->vcpu
.arch
.hflags
& HF_VINTR_MASK
);
2493 static void enable_irq_window(struct kvm_vcpu
*vcpu
)
2495 struct vcpu_svm
*svm
= to_svm(vcpu
);
2496 nsvm_printk("Trying to open IRQ window\n");
2498 nested_svm_intr(svm
);
2500 /* In case GIF=0 we can't rely on the CPU to tell us when
2501 * GIF becomes 1, because that's a separate STGI/VMRUN intercept.
2502 * The next time we get that intercept, this function will be
2503 * called again though and we'll get the vintr intercept. */
2506 svm_inject_irq(svm
, 0x0);
2510 static void enable_nmi_window(struct kvm_vcpu
*vcpu
)
2512 struct vcpu_svm
*svm
= to_svm(vcpu
);
2514 if ((svm
->vcpu
.arch
.hflags
& (HF_NMI_MASK
| HF_IRET_MASK
))
2516 return; /* IRET will cause a vm exit */
2518 /* Something prevents NMI from been injected. Single step over
2519 possible problem (IRET or exception injection or interrupt
2521 vcpu
->arch
.singlestep
= true;
2522 svm
->vmcb
->save
.rflags
|= (X86_EFLAGS_TF
| X86_EFLAGS_RF
);
2523 update_db_intercept(vcpu
);
2526 static int svm_set_tss_addr(struct kvm
*kvm
, unsigned int addr
)
2531 static void svm_flush_tlb(struct kvm_vcpu
*vcpu
)
2533 force_new_asid(vcpu
);
2536 static void svm_prepare_guest_switch(struct kvm_vcpu
*vcpu
)
2540 static inline void sync_cr8_to_lapic(struct kvm_vcpu
*vcpu
)
2542 struct vcpu_svm
*svm
= to_svm(vcpu
);
2544 if (!(svm
->vmcb
->control
.intercept_cr_write
& INTERCEPT_CR8_MASK
)) {
2545 int cr8
= svm
->vmcb
->control
.int_ctl
& V_TPR_MASK
;
2546 kvm_set_cr8(vcpu
, cr8
);
2550 static inline void sync_lapic_to_cr8(struct kvm_vcpu
*vcpu
)
2552 struct vcpu_svm
*svm
= to_svm(vcpu
);
2555 cr8
= kvm_get_cr8(vcpu
);
2556 svm
->vmcb
->control
.int_ctl
&= ~V_TPR_MASK
;
2557 svm
->vmcb
->control
.int_ctl
|= cr8
& V_TPR_MASK
;
2560 static void svm_complete_interrupts(struct vcpu_svm
*svm
)
2564 u32 exitintinfo
= svm
->vmcb
->control
.exit_int_info
;
2566 if (svm
->vcpu
.arch
.hflags
& HF_IRET_MASK
)
2567 svm
->vcpu
.arch
.hflags
&= ~(HF_NMI_MASK
| HF_IRET_MASK
);
2569 svm
->vcpu
.arch
.nmi_injected
= false;
2570 kvm_clear_exception_queue(&svm
->vcpu
);
2571 kvm_clear_interrupt_queue(&svm
->vcpu
);
2573 if (!(exitintinfo
& SVM_EXITINTINFO_VALID
))
2576 vector
= exitintinfo
& SVM_EXITINTINFO_VEC_MASK
;
2577 type
= exitintinfo
& SVM_EXITINTINFO_TYPE_MASK
;
2580 case SVM_EXITINTINFO_TYPE_NMI
:
2581 svm
->vcpu
.arch
.nmi_injected
= true;
2583 case SVM_EXITINTINFO_TYPE_EXEPT
:
2584 /* In case of software exception do not reinject an exception
2585 vector, but re-execute and instruction instead */
2588 if (kvm_exception_is_soft(vector
))
2590 if (exitintinfo
& SVM_EXITINTINFO_VALID_ERR
) {
2591 u32 err
= svm
->vmcb
->control
.exit_int_info_err
;
2592 kvm_queue_exception_e(&svm
->vcpu
, vector
, err
);
2595 kvm_queue_exception(&svm
->vcpu
, vector
);
2597 case SVM_EXITINTINFO_TYPE_INTR
:
2598 kvm_queue_interrupt(&svm
->vcpu
, vector
, false);
2605 #ifdef CONFIG_X86_64
2611 static void svm_vcpu_run(struct kvm_vcpu
*vcpu
)
2613 struct vcpu_svm
*svm
= to_svm(vcpu
);
2618 svm
->vmcb
->save
.rax
= vcpu
->arch
.regs
[VCPU_REGS_RAX
];
2619 svm
->vmcb
->save
.rsp
= vcpu
->arch
.regs
[VCPU_REGS_RSP
];
2620 svm
->vmcb
->save
.rip
= vcpu
->arch
.regs
[VCPU_REGS_RIP
];
2624 sync_lapic_to_cr8(vcpu
);
2626 save_host_msrs(vcpu
);
2627 fs_selector
= kvm_read_fs();
2628 gs_selector
= kvm_read_gs();
2629 ldt_selector
= kvm_read_ldt();
2630 svm
->vmcb
->save
.cr2
= vcpu
->arch
.cr2
;
2631 /* required for live migration with NPT */
2633 svm
->vmcb
->save
.cr3
= vcpu
->arch
.cr3
;
2640 "push %%"R
"bp; \n\t"
2641 "mov %c[rbx](%[svm]), %%"R
"bx \n\t"
2642 "mov %c[rcx](%[svm]), %%"R
"cx \n\t"
2643 "mov %c[rdx](%[svm]), %%"R
"dx \n\t"
2644 "mov %c[rsi](%[svm]), %%"R
"si \n\t"
2645 "mov %c[rdi](%[svm]), %%"R
"di \n\t"
2646 "mov %c[rbp](%[svm]), %%"R
"bp \n\t"
2647 #ifdef CONFIG_X86_64
2648 "mov %c[r8](%[svm]), %%r8 \n\t"
2649 "mov %c[r9](%[svm]), %%r9 \n\t"
2650 "mov %c[r10](%[svm]), %%r10 \n\t"
2651 "mov %c[r11](%[svm]), %%r11 \n\t"
2652 "mov %c[r12](%[svm]), %%r12 \n\t"
2653 "mov %c[r13](%[svm]), %%r13 \n\t"
2654 "mov %c[r14](%[svm]), %%r14 \n\t"
2655 "mov %c[r15](%[svm]), %%r15 \n\t"
2658 /* Enter guest mode */
2660 "mov %c[vmcb](%[svm]), %%"R
"ax \n\t"
2661 __ex(SVM_VMLOAD
) "\n\t"
2662 __ex(SVM_VMRUN
) "\n\t"
2663 __ex(SVM_VMSAVE
) "\n\t"
2666 /* Save guest registers, load host registers */
2667 "mov %%"R
"bx, %c[rbx](%[svm]) \n\t"
2668 "mov %%"R
"cx, %c[rcx](%[svm]) \n\t"
2669 "mov %%"R
"dx, %c[rdx](%[svm]) \n\t"
2670 "mov %%"R
"si, %c[rsi](%[svm]) \n\t"
2671 "mov %%"R
"di, %c[rdi](%[svm]) \n\t"
2672 "mov %%"R
"bp, %c[rbp](%[svm]) \n\t"
2673 #ifdef CONFIG_X86_64
2674 "mov %%r8, %c[r8](%[svm]) \n\t"
2675 "mov %%r9, %c[r9](%[svm]) \n\t"
2676 "mov %%r10, %c[r10](%[svm]) \n\t"
2677 "mov %%r11, %c[r11](%[svm]) \n\t"
2678 "mov %%r12, %c[r12](%[svm]) \n\t"
2679 "mov %%r13, %c[r13](%[svm]) \n\t"
2680 "mov %%r14, %c[r14](%[svm]) \n\t"
2681 "mov %%r15, %c[r15](%[svm]) \n\t"
2686 [vmcb
]"i"(offsetof(struct vcpu_svm
, vmcb_pa
)),
2687 [rbx
]"i"(offsetof(struct vcpu_svm
, vcpu
.arch
.regs
[VCPU_REGS_RBX
])),
2688 [rcx
]"i"(offsetof(struct vcpu_svm
, vcpu
.arch
.regs
[VCPU_REGS_RCX
])),
2689 [rdx
]"i"(offsetof(struct vcpu_svm
, vcpu
.arch
.regs
[VCPU_REGS_RDX
])),
2690 [rsi
]"i"(offsetof(struct vcpu_svm
, vcpu
.arch
.regs
[VCPU_REGS_RSI
])),
2691 [rdi
]"i"(offsetof(struct vcpu_svm
, vcpu
.arch
.regs
[VCPU_REGS_RDI
])),
2692 [rbp
]"i"(offsetof(struct vcpu_svm
, vcpu
.arch
.regs
[VCPU_REGS_RBP
]))
2693 #ifdef CONFIG_X86_64
2694 , [r8
]"i"(offsetof(struct vcpu_svm
, vcpu
.arch
.regs
[VCPU_REGS_R8
])),
2695 [r9
]"i"(offsetof(struct vcpu_svm
, vcpu
.arch
.regs
[VCPU_REGS_R9
])),
2696 [r10
]"i"(offsetof(struct vcpu_svm
, vcpu
.arch
.regs
[VCPU_REGS_R10
])),
2697 [r11
]"i"(offsetof(struct vcpu_svm
, vcpu
.arch
.regs
[VCPU_REGS_R11
])),
2698 [r12
]"i"(offsetof(struct vcpu_svm
, vcpu
.arch
.regs
[VCPU_REGS_R12
])),
2699 [r13
]"i"(offsetof(struct vcpu_svm
, vcpu
.arch
.regs
[VCPU_REGS_R13
])),
2700 [r14
]"i"(offsetof(struct vcpu_svm
, vcpu
.arch
.regs
[VCPU_REGS_R14
])),
2701 [r15
]"i"(offsetof(struct vcpu_svm
, vcpu
.arch
.regs
[VCPU_REGS_R15
]))
2704 , R
"bx", R
"cx", R
"dx", R
"si", R
"di"
2705 #ifdef CONFIG_X86_64
2706 , "r8", "r9", "r10", "r11" , "r12", "r13", "r14", "r15"
2710 vcpu
->arch
.cr2
= svm
->vmcb
->save
.cr2
;
2711 vcpu
->arch
.regs
[VCPU_REGS_RAX
] = svm
->vmcb
->save
.rax
;
2712 vcpu
->arch
.regs
[VCPU_REGS_RSP
] = svm
->vmcb
->save
.rsp
;
2713 vcpu
->arch
.regs
[VCPU_REGS_RIP
] = svm
->vmcb
->save
.rip
;
2715 kvm_load_fs(fs_selector
);
2716 kvm_load_gs(gs_selector
);
2717 kvm_load_ldt(ldt_selector
);
2718 load_host_msrs(vcpu
);
2722 local_irq_disable();
2726 sync_cr8_to_lapic(vcpu
);
2731 vcpu
->arch
.regs_avail
&= ~(1 << VCPU_EXREG_PDPTR
);
2732 vcpu
->arch
.regs_dirty
&= ~(1 << VCPU_EXREG_PDPTR
);
2738 static void svm_set_cr3(struct kvm_vcpu
*vcpu
, unsigned long root
)
2740 struct vcpu_svm
*svm
= to_svm(vcpu
);
2743 svm
->vmcb
->control
.nested_cr3
= root
;
2744 force_new_asid(vcpu
);
2748 svm
->vmcb
->save
.cr3
= root
;
2749 force_new_asid(vcpu
);
2751 if (vcpu
->fpu_active
) {
2752 svm
->vmcb
->control
.intercept_exceptions
|= (1 << NM_VECTOR
);
2753 svm
->vmcb
->save
.cr0
|= X86_CR0_TS
;
2754 vcpu
->fpu_active
= 0;
2758 static int is_disabled(void)
2762 rdmsrl(MSR_VM_CR
, vm_cr
);
2763 if (vm_cr
& (1 << SVM_VM_CR_SVM_DISABLE
))
2770 svm_patch_hypercall(struct kvm_vcpu
*vcpu
, unsigned char *hypercall
)
2773 * Patch in the VMMCALL instruction:
2775 hypercall
[0] = 0x0f;
2776 hypercall
[1] = 0x01;
2777 hypercall
[2] = 0xd9;
2780 static void svm_check_processor_compat(void *rtn
)
2785 static bool svm_cpu_has_accelerated_tpr(void)
2790 static int get_npt_level(void)
2792 #ifdef CONFIG_X86_64
2793 return PT64_ROOT_LEVEL
;
2795 return PT32E_ROOT_LEVEL
;
2799 static u64
svm_get_mt_mask(struct kvm_vcpu
*vcpu
, gfn_t gfn
, bool is_mmio
)
2804 static const struct trace_print_flags svm_exit_reasons_str
[] = {
2805 { SVM_EXIT_READ_CR0
, "read_cr0" },
2806 { SVM_EXIT_READ_CR3
, "read_cr3" },
2807 { SVM_EXIT_READ_CR4
, "read_cr4" },
2808 { SVM_EXIT_READ_CR8
, "read_cr8" },
2809 { SVM_EXIT_WRITE_CR0
, "write_cr0" },
2810 { SVM_EXIT_WRITE_CR3
, "write_cr3" },
2811 { SVM_EXIT_WRITE_CR4
, "write_cr4" },
2812 { SVM_EXIT_WRITE_CR8
, "write_cr8" },
2813 { SVM_EXIT_READ_DR0
, "read_dr0" },
2814 { SVM_EXIT_READ_DR1
, "read_dr1" },
2815 { SVM_EXIT_READ_DR2
, "read_dr2" },
2816 { SVM_EXIT_READ_DR3
, "read_dr3" },
2817 { SVM_EXIT_WRITE_DR0
, "write_dr0" },
2818 { SVM_EXIT_WRITE_DR1
, "write_dr1" },
2819 { SVM_EXIT_WRITE_DR2
, "write_dr2" },
2820 { SVM_EXIT_WRITE_DR3
, "write_dr3" },
2821 { SVM_EXIT_WRITE_DR5
, "write_dr5" },
2822 { SVM_EXIT_WRITE_DR7
, "write_dr7" },
2823 { SVM_EXIT_EXCP_BASE
+ DB_VECTOR
, "DB excp" },
2824 { SVM_EXIT_EXCP_BASE
+ BP_VECTOR
, "BP excp" },
2825 { SVM_EXIT_EXCP_BASE
+ UD_VECTOR
, "UD excp" },
2826 { SVM_EXIT_EXCP_BASE
+ PF_VECTOR
, "PF excp" },
2827 { SVM_EXIT_EXCP_BASE
+ NM_VECTOR
, "NM excp" },
2828 { SVM_EXIT_EXCP_BASE
+ MC_VECTOR
, "MC excp" },
2829 { SVM_EXIT_INTR
, "interrupt" },
2830 { SVM_EXIT_NMI
, "nmi" },
2831 { SVM_EXIT_SMI
, "smi" },
2832 { SVM_EXIT_INIT
, "init" },
2833 { SVM_EXIT_VINTR
, "vintr" },
2834 { SVM_EXIT_CPUID
, "cpuid" },
2835 { SVM_EXIT_INVD
, "invd" },
2836 { SVM_EXIT_HLT
, "hlt" },
2837 { SVM_EXIT_INVLPG
, "invlpg" },
2838 { SVM_EXIT_INVLPGA
, "invlpga" },
2839 { SVM_EXIT_IOIO
, "io" },
2840 { SVM_EXIT_MSR
, "msr" },
2841 { SVM_EXIT_TASK_SWITCH
, "task_switch" },
2842 { SVM_EXIT_SHUTDOWN
, "shutdown" },
2843 { SVM_EXIT_VMRUN
, "vmrun" },
2844 { SVM_EXIT_VMMCALL
, "hypercall" },
2845 { SVM_EXIT_VMLOAD
, "vmload" },
2846 { SVM_EXIT_VMSAVE
, "vmsave" },
2847 { SVM_EXIT_STGI
, "stgi" },
2848 { SVM_EXIT_CLGI
, "clgi" },
2849 { SVM_EXIT_SKINIT
, "skinit" },
2850 { SVM_EXIT_WBINVD
, "wbinvd" },
2851 { SVM_EXIT_MONITOR
, "monitor" },
2852 { SVM_EXIT_MWAIT
, "mwait" },
2853 { SVM_EXIT_NPF
, "npf" },
2857 static bool svm_gb_page_enable(void)
2862 static struct kvm_x86_ops svm_x86_ops
= {
2863 .cpu_has_kvm_support
= has_svm
,
2864 .disabled_by_bios
= is_disabled
,
2865 .hardware_setup
= svm_hardware_setup
,
2866 .hardware_unsetup
= svm_hardware_unsetup
,
2867 .check_processor_compatibility
= svm_check_processor_compat
,
2868 .hardware_enable
= svm_hardware_enable
,
2869 .hardware_disable
= svm_hardware_disable
,
2870 .cpu_has_accelerated_tpr
= svm_cpu_has_accelerated_tpr
,
2872 .vcpu_create
= svm_create_vcpu
,
2873 .vcpu_free
= svm_free_vcpu
,
2874 .vcpu_reset
= svm_vcpu_reset
,
2876 .prepare_guest_switch
= svm_prepare_guest_switch
,
2877 .vcpu_load
= svm_vcpu_load
,
2878 .vcpu_put
= svm_vcpu_put
,
2880 .set_guest_debug
= svm_guest_debug
,
2881 .get_msr
= svm_get_msr
,
2882 .set_msr
= svm_set_msr
,
2883 .get_segment_base
= svm_get_segment_base
,
2884 .get_segment
= svm_get_segment
,
2885 .set_segment
= svm_set_segment
,
2886 .get_cpl
= svm_get_cpl
,
2887 .get_cs_db_l_bits
= kvm_get_cs_db_l_bits
,
2888 .decache_cr4_guest_bits
= svm_decache_cr4_guest_bits
,
2889 .set_cr0
= svm_set_cr0
,
2890 .set_cr3
= svm_set_cr3
,
2891 .set_cr4
= svm_set_cr4
,
2892 .set_efer
= svm_set_efer
,
2893 .get_idt
= svm_get_idt
,
2894 .set_idt
= svm_set_idt
,
2895 .get_gdt
= svm_get_gdt
,
2896 .set_gdt
= svm_set_gdt
,
2897 .get_dr
= svm_get_dr
,
2898 .set_dr
= svm_set_dr
,
2899 .cache_reg
= svm_cache_reg
,
2900 .get_rflags
= svm_get_rflags
,
2901 .set_rflags
= svm_set_rflags
,
2903 .tlb_flush
= svm_flush_tlb
,
2905 .run
= svm_vcpu_run
,
2906 .handle_exit
= handle_exit
,
2907 .skip_emulated_instruction
= skip_emulated_instruction
,
2908 .set_interrupt_shadow
= svm_set_interrupt_shadow
,
2909 .get_interrupt_shadow
= svm_get_interrupt_shadow
,
2910 .patch_hypercall
= svm_patch_hypercall
,
2911 .set_irq
= svm_set_irq
,
2912 .set_nmi
= svm_inject_nmi
,
2913 .queue_exception
= svm_queue_exception
,
2914 .interrupt_allowed
= svm_interrupt_allowed
,
2915 .nmi_allowed
= svm_nmi_allowed
,
2916 .enable_nmi_window
= enable_nmi_window
,
2917 .enable_irq_window
= enable_irq_window
,
2918 .update_cr8_intercept
= update_cr8_intercept
,
2920 .set_tss_addr
= svm_set_tss_addr
,
2921 .get_tdp_level
= get_npt_level
,
2922 .get_mt_mask
= svm_get_mt_mask
,
2924 .exit_reasons_str
= svm_exit_reasons_str
,
2925 .gb_page_enable
= svm_gb_page_enable
,
2928 static int __init
svm_init(void)
2930 return kvm_init(&svm_x86_ops
, sizeof(struct vcpu_svm
),
2934 static void __exit
svm_exit(void)
2939 module_init(svm_init
)
2940 module_exit(svm_exit
)