serial: 8250_pci: add support for another kind of NetMos Technology PCI 9835 Multi...
[linux/fpc-iii.git] / drivers / spi / spi-omap2-mcspi.c
blob893c3d78e426f98253308c0ff336d62dc6168b24
1 /*
2 * OMAP2 McSPI controller driver
4 * Copyright (C) 2005, 2006 Nokia Corporation
5 * Author: Samuel Ortiz <samuel.ortiz@nokia.com> and
6 * Juha Yrj�l� <juha.yrjola@nokia.com>
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
24 #include <linux/kernel.h>
25 #include <linux/init.h>
26 #include <linux/interrupt.h>
27 #include <linux/module.h>
28 #include <linux/device.h>
29 #include <linux/delay.h>
30 #include <linux/dma-mapping.h>
31 #include <linux/dmaengine.h>
32 #include <linux/omap-dma.h>
33 #include <linux/platform_device.h>
34 #include <linux/err.h>
35 #include <linux/clk.h>
36 #include <linux/io.h>
37 #include <linux/slab.h>
38 #include <linux/pm_runtime.h>
39 #include <linux/of.h>
40 #include <linux/of_device.h>
41 #include <linux/pinctrl/consumer.h>
43 #include <linux/spi/spi.h>
45 #include <linux/platform_data/spi-omap2-mcspi.h>
47 #define OMAP2_MCSPI_MAX_FREQ 48000000
48 #define SPI_AUTOSUSPEND_TIMEOUT 2000
50 #define OMAP2_MCSPI_REVISION 0x00
51 #define OMAP2_MCSPI_SYSSTATUS 0x14
52 #define OMAP2_MCSPI_IRQSTATUS 0x18
53 #define OMAP2_MCSPI_IRQENABLE 0x1c
54 #define OMAP2_MCSPI_WAKEUPENABLE 0x20
55 #define OMAP2_MCSPI_SYST 0x24
56 #define OMAP2_MCSPI_MODULCTRL 0x28
58 /* per-channel banks, 0x14 bytes each, first is: */
59 #define OMAP2_MCSPI_CHCONF0 0x2c
60 #define OMAP2_MCSPI_CHSTAT0 0x30
61 #define OMAP2_MCSPI_CHCTRL0 0x34
62 #define OMAP2_MCSPI_TX0 0x38
63 #define OMAP2_MCSPI_RX0 0x3c
65 /* per-register bitmasks: */
67 #define OMAP2_MCSPI_MODULCTRL_SINGLE BIT(0)
68 #define OMAP2_MCSPI_MODULCTRL_MS BIT(2)
69 #define OMAP2_MCSPI_MODULCTRL_STEST BIT(3)
71 #define OMAP2_MCSPI_CHCONF_PHA BIT(0)
72 #define OMAP2_MCSPI_CHCONF_POL BIT(1)
73 #define OMAP2_MCSPI_CHCONF_CLKD_MASK (0x0f << 2)
74 #define OMAP2_MCSPI_CHCONF_EPOL BIT(6)
75 #define OMAP2_MCSPI_CHCONF_WL_MASK (0x1f << 7)
76 #define OMAP2_MCSPI_CHCONF_TRM_RX_ONLY BIT(12)
77 #define OMAP2_MCSPI_CHCONF_TRM_TX_ONLY BIT(13)
78 #define OMAP2_MCSPI_CHCONF_TRM_MASK (0x03 << 12)
79 #define OMAP2_MCSPI_CHCONF_DMAW BIT(14)
80 #define OMAP2_MCSPI_CHCONF_DMAR BIT(15)
81 #define OMAP2_MCSPI_CHCONF_DPE0 BIT(16)
82 #define OMAP2_MCSPI_CHCONF_DPE1 BIT(17)
83 #define OMAP2_MCSPI_CHCONF_IS BIT(18)
84 #define OMAP2_MCSPI_CHCONF_TURBO BIT(19)
85 #define OMAP2_MCSPI_CHCONF_FORCE BIT(20)
87 #define OMAP2_MCSPI_CHSTAT_RXS BIT(0)
88 #define OMAP2_MCSPI_CHSTAT_TXS BIT(1)
89 #define OMAP2_MCSPI_CHSTAT_EOT BIT(2)
91 #define OMAP2_MCSPI_CHCTRL_EN BIT(0)
93 #define OMAP2_MCSPI_WAKEUPENABLE_WKEN BIT(0)
95 /* We have 2 DMA channels per CS, one for RX and one for TX */
96 struct omap2_mcspi_dma {
97 struct dma_chan *dma_tx;
98 struct dma_chan *dma_rx;
100 int dma_tx_sync_dev;
101 int dma_rx_sync_dev;
103 struct completion dma_tx_completion;
104 struct completion dma_rx_completion;
107 /* use PIO for small transfers, avoiding DMA setup/teardown overhead and
108 * cache operations; better heuristics consider wordsize and bitrate.
110 #define DMA_MIN_BYTES 160
114 * Used for context save and restore, structure members to be updated whenever
115 * corresponding registers are modified.
117 struct omap2_mcspi_regs {
118 u32 modulctrl;
119 u32 wakeupenable;
120 struct list_head cs;
123 struct omap2_mcspi {
124 struct spi_master *master;
125 /* Virtual base address of the controller */
126 void __iomem *base;
127 unsigned long phys;
128 /* SPI1 has 4 channels, while SPI2 has 2 */
129 struct omap2_mcspi_dma *dma_channels;
130 struct device *dev;
131 struct omap2_mcspi_regs ctx;
132 unsigned int pin_dir:1;
135 struct omap2_mcspi_cs {
136 void __iomem *base;
137 unsigned long phys;
138 int word_len;
139 struct list_head node;
140 /* Context save and restore shadow register */
141 u32 chconf0;
144 static inline void mcspi_write_reg(struct spi_master *master,
145 int idx, u32 val)
147 struct omap2_mcspi *mcspi = spi_master_get_devdata(master);
149 __raw_writel(val, mcspi->base + idx);
152 static inline u32 mcspi_read_reg(struct spi_master *master, int idx)
154 struct omap2_mcspi *mcspi = spi_master_get_devdata(master);
156 return __raw_readl(mcspi->base + idx);
159 static inline void mcspi_write_cs_reg(const struct spi_device *spi,
160 int idx, u32 val)
162 struct omap2_mcspi_cs *cs = spi->controller_state;
164 __raw_writel(val, cs->base + idx);
167 static inline u32 mcspi_read_cs_reg(const struct spi_device *spi, int idx)
169 struct omap2_mcspi_cs *cs = spi->controller_state;
171 return __raw_readl(cs->base + idx);
174 static inline u32 mcspi_cached_chconf0(const struct spi_device *spi)
176 struct omap2_mcspi_cs *cs = spi->controller_state;
178 return cs->chconf0;
181 static inline void mcspi_write_chconf0(const struct spi_device *spi, u32 val)
183 struct omap2_mcspi_cs *cs = spi->controller_state;
185 cs->chconf0 = val;
186 mcspi_write_cs_reg(spi, OMAP2_MCSPI_CHCONF0, val);
187 mcspi_read_cs_reg(spi, OMAP2_MCSPI_CHCONF0);
190 static void omap2_mcspi_set_dma_req(const struct spi_device *spi,
191 int is_read, int enable)
193 u32 l, rw;
195 l = mcspi_cached_chconf0(spi);
197 if (is_read) /* 1 is read, 0 write */
198 rw = OMAP2_MCSPI_CHCONF_DMAR;
199 else
200 rw = OMAP2_MCSPI_CHCONF_DMAW;
202 if (enable)
203 l |= rw;
204 else
205 l &= ~rw;
207 mcspi_write_chconf0(spi, l);
210 static void omap2_mcspi_set_enable(const struct spi_device *spi, int enable)
212 u32 l;
214 l = enable ? OMAP2_MCSPI_CHCTRL_EN : 0;
215 mcspi_write_cs_reg(spi, OMAP2_MCSPI_CHCTRL0, l);
216 /* Flash post-writes */
217 mcspi_read_cs_reg(spi, OMAP2_MCSPI_CHCTRL0);
220 static void omap2_mcspi_force_cs(struct spi_device *spi, int cs_active)
222 u32 l;
224 l = mcspi_cached_chconf0(spi);
225 if (cs_active)
226 l |= OMAP2_MCSPI_CHCONF_FORCE;
227 else
228 l &= ~OMAP2_MCSPI_CHCONF_FORCE;
230 mcspi_write_chconf0(spi, l);
233 static void omap2_mcspi_set_master_mode(struct spi_master *master)
235 struct omap2_mcspi *mcspi = spi_master_get_devdata(master);
236 struct omap2_mcspi_regs *ctx = &mcspi->ctx;
237 u32 l;
240 * Setup when switching from (reset default) slave mode
241 * to single-channel master mode
243 l = mcspi_read_reg(master, OMAP2_MCSPI_MODULCTRL);
244 l &= ~(OMAP2_MCSPI_MODULCTRL_STEST | OMAP2_MCSPI_MODULCTRL_MS);
245 l |= OMAP2_MCSPI_MODULCTRL_SINGLE;
246 mcspi_write_reg(master, OMAP2_MCSPI_MODULCTRL, l);
248 ctx->modulctrl = l;
251 static void omap2_mcspi_restore_ctx(struct omap2_mcspi *mcspi)
253 struct spi_master *spi_cntrl = mcspi->master;
254 struct omap2_mcspi_regs *ctx = &mcspi->ctx;
255 struct omap2_mcspi_cs *cs;
257 /* McSPI: context restore */
258 mcspi_write_reg(spi_cntrl, OMAP2_MCSPI_MODULCTRL, ctx->modulctrl);
259 mcspi_write_reg(spi_cntrl, OMAP2_MCSPI_WAKEUPENABLE, ctx->wakeupenable);
261 list_for_each_entry(cs, &ctx->cs, node)
262 __raw_writel(cs->chconf0, cs->base + OMAP2_MCSPI_CHCONF0);
265 static int omap2_prepare_transfer(struct spi_master *master)
267 struct omap2_mcspi *mcspi = spi_master_get_devdata(master);
269 pm_runtime_get_sync(mcspi->dev);
270 return 0;
273 static int omap2_unprepare_transfer(struct spi_master *master)
275 struct omap2_mcspi *mcspi = spi_master_get_devdata(master);
277 pm_runtime_mark_last_busy(mcspi->dev);
278 pm_runtime_put_autosuspend(mcspi->dev);
279 return 0;
282 static int mcspi_wait_for_reg_bit(void __iomem *reg, unsigned long bit)
284 unsigned long timeout;
286 timeout = jiffies + msecs_to_jiffies(1000);
287 while (!(__raw_readl(reg) & bit)) {
288 if (time_after(jiffies, timeout))
289 return -1;
290 cpu_relax();
292 return 0;
295 static void omap2_mcspi_rx_callback(void *data)
297 struct spi_device *spi = data;
298 struct omap2_mcspi *mcspi = spi_master_get_devdata(spi->master);
299 struct omap2_mcspi_dma *mcspi_dma = &mcspi->dma_channels[spi->chip_select];
301 /* We must disable the DMA RX request */
302 omap2_mcspi_set_dma_req(spi, 1, 0);
304 complete(&mcspi_dma->dma_rx_completion);
307 static void omap2_mcspi_tx_callback(void *data)
309 struct spi_device *spi = data;
310 struct omap2_mcspi *mcspi = spi_master_get_devdata(spi->master);
311 struct omap2_mcspi_dma *mcspi_dma = &mcspi->dma_channels[spi->chip_select];
313 /* We must disable the DMA TX request */
314 omap2_mcspi_set_dma_req(spi, 0, 0);
316 complete(&mcspi_dma->dma_tx_completion);
319 static void omap2_mcspi_tx_dma(struct spi_device *spi,
320 struct spi_transfer *xfer,
321 struct dma_slave_config cfg)
323 struct omap2_mcspi *mcspi;
324 struct omap2_mcspi_dma *mcspi_dma;
325 unsigned int count;
327 mcspi = spi_master_get_devdata(spi->master);
328 mcspi_dma = &mcspi->dma_channels[spi->chip_select];
329 count = xfer->len;
331 if (mcspi_dma->dma_tx) {
332 struct dma_async_tx_descriptor *tx;
333 struct scatterlist sg;
335 dmaengine_slave_config(mcspi_dma->dma_tx, &cfg);
337 sg_init_table(&sg, 1);
338 sg_dma_address(&sg) = xfer->tx_dma;
339 sg_dma_len(&sg) = xfer->len;
341 tx = dmaengine_prep_slave_sg(mcspi_dma->dma_tx, &sg, 1,
342 DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
343 if (tx) {
344 tx->callback = omap2_mcspi_tx_callback;
345 tx->callback_param = spi;
346 dmaengine_submit(tx);
347 } else {
348 /* FIXME: fall back to PIO? */
351 dma_async_issue_pending(mcspi_dma->dma_tx);
352 omap2_mcspi_set_dma_req(spi, 0, 1);
356 static unsigned
357 omap2_mcspi_rx_dma(struct spi_device *spi, struct spi_transfer *xfer,
358 struct dma_slave_config cfg,
359 unsigned es)
361 struct omap2_mcspi *mcspi;
362 struct omap2_mcspi_dma *mcspi_dma;
363 unsigned int count;
364 u32 l;
365 int elements = 0;
366 int word_len, element_count;
367 struct omap2_mcspi_cs *cs = spi->controller_state;
368 mcspi = spi_master_get_devdata(spi->master);
369 mcspi_dma = &mcspi->dma_channels[spi->chip_select];
370 count = xfer->len;
371 word_len = cs->word_len;
372 l = mcspi_cached_chconf0(spi);
374 if (word_len <= 8)
375 element_count = count;
376 else if (word_len <= 16)
377 element_count = count >> 1;
378 else /* word_len <= 32 */
379 element_count = count >> 2;
381 if (mcspi_dma->dma_rx) {
382 struct dma_async_tx_descriptor *tx;
383 struct scatterlist sg;
384 size_t len = xfer->len - es;
386 dmaengine_slave_config(mcspi_dma->dma_rx, &cfg);
388 if (l & OMAP2_MCSPI_CHCONF_TURBO)
389 len -= es;
391 sg_init_table(&sg, 1);
392 sg_dma_address(&sg) = xfer->rx_dma;
393 sg_dma_len(&sg) = len;
395 tx = dmaengine_prep_slave_sg(mcspi_dma->dma_rx, &sg, 1,
396 DMA_DEV_TO_MEM, DMA_PREP_INTERRUPT |
397 DMA_CTRL_ACK);
398 if (tx) {
399 tx->callback = omap2_mcspi_rx_callback;
400 tx->callback_param = spi;
401 dmaengine_submit(tx);
402 } else {
403 /* FIXME: fall back to PIO? */
407 dma_async_issue_pending(mcspi_dma->dma_rx);
408 omap2_mcspi_set_dma_req(spi, 1, 1);
410 wait_for_completion(&mcspi_dma->dma_rx_completion);
411 dma_unmap_single(mcspi->dev, xfer->rx_dma, count,
412 DMA_FROM_DEVICE);
413 omap2_mcspi_set_enable(spi, 0);
415 elements = element_count - 1;
417 if (l & OMAP2_MCSPI_CHCONF_TURBO) {
418 elements--;
420 if (likely(mcspi_read_cs_reg(spi, OMAP2_MCSPI_CHSTAT0)
421 & OMAP2_MCSPI_CHSTAT_RXS)) {
422 u32 w;
424 w = mcspi_read_cs_reg(spi, OMAP2_MCSPI_RX0);
425 if (word_len <= 8)
426 ((u8 *)xfer->rx_buf)[elements++] = w;
427 else if (word_len <= 16)
428 ((u16 *)xfer->rx_buf)[elements++] = w;
429 else /* word_len <= 32 */
430 ((u32 *)xfer->rx_buf)[elements++] = w;
431 } else {
432 dev_err(&spi->dev, "DMA RX penultimate word empty");
433 count -= (word_len <= 8) ? 2 :
434 (word_len <= 16) ? 4 :
435 /* word_len <= 32 */ 8;
436 omap2_mcspi_set_enable(spi, 1);
437 return count;
440 if (likely(mcspi_read_cs_reg(spi, OMAP2_MCSPI_CHSTAT0)
441 & OMAP2_MCSPI_CHSTAT_RXS)) {
442 u32 w;
444 w = mcspi_read_cs_reg(spi, OMAP2_MCSPI_RX0);
445 if (word_len <= 8)
446 ((u8 *)xfer->rx_buf)[elements] = w;
447 else if (word_len <= 16)
448 ((u16 *)xfer->rx_buf)[elements] = w;
449 else /* word_len <= 32 */
450 ((u32 *)xfer->rx_buf)[elements] = w;
451 } else {
452 dev_err(&spi->dev, "DMA RX last word empty");
453 count -= (word_len <= 8) ? 1 :
454 (word_len <= 16) ? 2 :
455 /* word_len <= 32 */ 4;
457 omap2_mcspi_set_enable(spi, 1);
458 return count;
461 static unsigned
462 omap2_mcspi_txrx_dma(struct spi_device *spi, struct spi_transfer *xfer)
464 struct omap2_mcspi *mcspi;
465 struct omap2_mcspi_cs *cs = spi->controller_state;
466 struct omap2_mcspi_dma *mcspi_dma;
467 unsigned int count;
468 u32 l;
469 u8 *rx;
470 const u8 *tx;
471 struct dma_slave_config cfg;
472 enum dma_slave_buswidth width;
473 unsigned es;
474 void __iomem *chstat_reg;
476 mcspi = spi_master_get_devdata(spi->master);
477 mcspi_dma = &mcspi->dma_channels[spi->chip_select];
478 l = mcspi_cached_chconf0(spi);
481 if (cs->word_len <= 8) {
482 width = DMA_SLAVE_BUSWIDTH_1_BYTE;
483 es = 1;
484 } else if (cs->word_len <= 16) {
485 width = DMA_SLAVE_BUSWIDTH_2_BYTES;
486 es = 2;
487 } else {
488 width = DMA_SLAVE_BUSWIDTH_4_BYTES;
489 es = 4;
492 memset(&cfg, 0, sizeof(cfg));
493 cfg.src_addr = cs->phys + OMAP2_MCSPI_RX0;
494 cfg.dst_addr = cs->phys + OMAP2_MCSPI_TX0;
495 cfg.src_addr_width = width;
496 cfg.dst_addr_width = width;
497 cfg.src_maxburst = 1;
498 cfg.dst_maxburst = 1;
500 rx = xfer->rx_buf;
501 tx = xfer->tx_buf;
503 count = xfer->len;
505 if (tx != NULL)
506 omap2_mcspi_tx_dma(spi, xfer, cfg);
508 if (rx != NULL)
509 count = omap2_mcspi_rx_dma(spi, xfer, cfg, es);
511 if (tx != NULL) {
512 chstat_reg = cs->base + OMAP2_MCSPI_CHSTAT0;
513 wait_for_completion(&mcspi_dma->dma_tx_completion);
514 dma_unmap_single(mcspi->dev, xfer->tx_dma, xfer->len,
515 DMA_TO_DEVICE);
517 /* for TX_ONLY mode, be sure all words have shifted out */
518 if (rx == NULL) {
519 if (mcspi_wait_for_reg_bit(chstat_reg,
520 OMAP2_MCSPI_CHSTAT_TXS) < 0)
521 dev_err(&spi->dev, "TXS timed out\n");
522 else if (mcspi_wait_for_reg_bit(chstat_reg,
523 OMAP2_MCSPI_CHSTAT_EOT) < 0)
524 dev_err(&spi->dev, "EOT timed out\n");
527 return count;
530 static unsigned
531 omap2_mcspi_txrx_pio(struct spi_device *spi, struct spi_transfer *xfer)
533 struct omap2_mcspi *mcspi;
534 struct omap2_mcspi_cs *cs = spi->controller_state;
535 unsigned int count, c;
536 u32 l;
537 void __iomem *base = cs->base;
538 void __iomem *tx_reg;
539 void __iomem *rx_reg;
540 void __iomem *chstat_reg;
541 int word_len;
543 mcspi = spi_master_get_devdata(spi->master);
544 count = xfer->len;
545 c = count;
546 word_len = cs->word_len;
548 l = mcspi_cached_chconf0(spi);
550 /* We store the pre-calculated register addresses on stack to speed
551 * up the transfer loop. */
552 tx_reg = base + OMAP2_MCSPI_TX0;
553 rx_reg = base + OMAP2_MCSPI_RX0;
554 chstat_reg = base + OMAP2_MCSPI_CHSTAT0;
556 if (c < (word_len>>3))
557 return 0;
559 if (word_len <= 8) {
560 u8 *rx;
561 const u8 *tx;
563 rx = xfer->rx_buf;
564 tx = xfer->tx_buf;
566 do {
567 c -= 1;
568 if (tx != NULL) {
569 if (mcspi_wait_for_reg_bit(chstat_reg,
570 OMAP2_MCSPI_CHSTAT_TXS) < 0) {
571 dev_err(&spi->dev, "TXS timed out\n");
572 goto out;
574 dev_vdbg(&spi->dev, "write-%d %02x\n",
575 word_len, *tx);
576 __raw_writel(*tx++, tx_reg);
578 if (rx != NULL) {
579 if (mcspi_wait_for_reg_bit(chstat_reg,
580 OMAP2_MCSPI_CHSTAT_RXS) < 0) {
581 dev_err(&spi->dev, "RXS timed out\n");
582 goto out;
585 if (c == 1 && tx == NULL &&
586 (l & OMAP2_MCSPI_CHCONF_TURBO)) {
587 omap2_mcspi_set_enable(spi, 0);
588 *rx++ = __raw_readl(rx_reg);
589 dev_vdbg(&spi->dev, "read-%d %02x\n",
590 word_len, *(rx - 1));
591 if (mcspi_wait_for_reg_bit(chstat_reg,
592 OMAP2_MCSPI_CHSTAT_RXS) < 0) {
593 dev_err(&spi->dev,
594 "RXS timed out\n");
595 goto out;
597 c = 0;
598 } else if (c == 0 && tx == NULL) {
599 omap2_mcspi_set_enable(spi, 0);
602 *rx++ = __raw_readl(rx_reg);
603 dev_vdbg(&spi->dev, "read-%d %02x\n",
604 word_len, *(rx - 1));
606 } while (c);
607 } else if (word_len <= 16) {
608 u16 *rx;
609 const u16 *tx;
611 rx = xfer->rx_buf;
612 tx = xfer->tx_buf;
613 do {
614 c -= 2;
615 if (tx != NULL) {
616 if (mcspi_wait_for_reg_bit(chstat_reg,
617 OMAP2_MCSPI_CHSTAT_TXS) < 0) {
618 dev_err(&spi->dev, "TXS timed out\n");
619 goto out;
621 dev_vdbg(&spi->dev, "write-%d %04x\n",
622 word_len, *tx);
623 __raw_writel(*tx++, tx_reg);
625 if (rx != NULL) {
626 if (mcspi_wait_for_reg_bit(chstat_reg,
627 OMAP2_MCSPI_CHSTAT_RXS) < 0) {
628 dev_err(&spi->dev, "RXS timed out\n");
629 goto out;
632 if (c == 2 && tx == NULL &&
633 (l & OMAP2_MCSPI_CHCONF_TURBO)) {
634 omap2_mcspi_set_enable(spi, 0);
635 *rx++ = __raw_readl(rx_reg);
636 dev_vdbg(&spi->dev, "read-%d %04x\n",
637 word_len, *(rx - 1));
638 if (mcspi_wait_for_reg_bit(chstat_reg,
639 OMAP2_MCSPI_CHSTAT_RXS) < 0) {
640 dev_err(&spi->dev,
641 "RXS timed out\n");
642 goto out;
644 c = 0;
645 } else if (c == 0 && tx == NULL) {
646 omap2_mcspi_set_enable(spi, 0);
649 *rx++ = __raw_readl(rx_reg);
650 dev_vdbg(&spi->dev, "read-%d %04x\n",
651 word_len, *(rx - 1));
653 } while (c >= 2);
654 } else if (word_len <= 32) {
655 u32 *rx;
656 const u32 *tx;
658 rx = xfer->rx_buf;
659 tx = xfer->tx_buf;
660 do {
661 c -= 4;
662 if (tx != NULL) {
663 if (mcspi_wait_for_reg_bit(chstat_reg,
664 OMAP2_MCSPI_CHSTAT_TXS) < 0) {
665 dev_err(&spi->dev, "TXS timed out\n");
666 goto out;
668 dev_vdbg(&spi->dev, "write-%d %08x\n",
669 word_len, *tx);
670 __raw_writel(*tx++, tx_reg);
672 if (rx != NULL) {
673 if (mcspi_wait_for_reg_bit(chstat_reg,
674 OMAP2_MCSPI_CHSTAT_RXS) < 0) {
675 dev_err(&spi->dev, "RXS timed out\n");
676 goto out;
679 if (c == 4 && tx == NULL &&
680 (l & OMAP2_MCSPI_CHCONF_TURBO)) {
681 omap2_mcspi_set_enable(spi, 0);
682 *rx++ = __raw_readl(rx_reg);
683 dev_vdbg(&spi->dev, "read-%d %08x\n",
684 word_len, *(rx - 1));
685 if (mcspi_wait_for_reg_bit(chstat_reg,
686 OMAP2_MCSPI_CHSTAT_RXS) < 0) {
687 dev_err(&spi->dev,
688 "RXS timed out\n");
689 goto out;
691 c = 0;
692 } else if (c == 0 && tx == NULL) {
693 omap2_mcspi_set_enable(spi, 0);
696 *rx++ = __raw_readl(rx_reg);
697 dev_vdbg(&spi->dev, "read-%d %08x\n",
698 word_len, *(rx - 1));
700 } while (c >= 4);
703 /* for TX_ONLY mode, be sure all words have shifted out */
704 if (xfer->rx_buf == NULL) {
705 if (mcspi_wait_for_reg_bit(chstat_reg,
706 OMAP2_MCSPI_CHSTAT_TXS) < 0) {
707 dev_err(&spi->dev, "TXS timed out\n");
708 } else if (mcspi_wait_for_reg_bit(chstat_reg,
709 OMAP2_MCSPI_CHSTAT_EOT) < 0)
710 dev_err(&spi->dev, "EOT timed out\n");
712 /* disable chan to purge rx datas received in TX_ONLY transfer,
713 * otherwise these rx datas will affect the direct following
714 * RX_ONLY transfer.
716 omap2_mcspi_set_enable(spi, 0);
718 out:
719 omap2_mcspi_set_enable(spi, 1);
720 return count - c;
723 static u32 omap2_mcspi_calc_divisor(u32 speed_hz)
725 u32 div;
727 for (div = 0; div < 15; div++)
728 if (speed_hz >= (OMAP2_MCSPI_MAX_FREQ >> div))
729 return div;
731 return 15;
734 /* called only when no transfer is active to this device */
735 static int omap2_mcspi_setup_transfer(struct spi_device *spi,
736 struct spi_transfer *t)
738 struct omap2_mcspi_cs *cs = spi->controller_state;
739 struct omap2_mcspi *mcspi;
740 struct spi_master *spi_cntrl;
741 u32 l = 0, div = 0;
742 u8 word_len = spi->bits_per_word;
743 u32 speed_hz = spi->max_speed_hz;
745 mcspi = spi_master_get_devdata(spi->master);
746 spi_cntrl = mcspi->master;
748 if (t != NULL && t->bits_per_word)
749 word_len = t->bits_per_word;
751 cs->word_len = word_len;
753 if (t && t->speed_hz)
754 speed_hz = t->speed_hz;
756 speed_hz = min_t(u32, speed_hz, OMAP2_MCSPI_MAX_FREQ);
757 div = omap2_mcspi_calc_divisor(speed_hz);
759 l = mcspi_cached_chconf0(spi);
761 /* standard 4-wire master mode: SCK, MOSI/out, MISO/in, nCS
762 * REVISIT: this controller could support SPI_3WIRE mode.
764 if (mcspi->pin_dir == MCSPI_PINDIR_D0_IN_D1_OUT) {
765 l &= ~OMAP2_MCSPI_CHCONF_IS;
766 l &= ~OMAP2_MCSPI_CHCONF_DPE1;
767 l |= OMAP2_MCSPI_CHCONF_DPE0;
768 } else {
769 l |= OMAP2_MCSPI_CHCONF_IS;
770 l |= OMAP2_MCSPI_CHCONF_DPE1;
771 l &= ~OMAP2_MCSPI_CHCONF_DPE0;
774 /* wordlength */
775 l &= ~OMAP2_MCSPI_CHCONF_WL_MASK;
776 l |= (word_len - 1) << 7;
778 /* set chipselect polarity; manage with FORCE */
779 if (!(spi->mode & SPI_CS_HIGH))
780 l |= OMAP2_MCSPI_CHCONF_EPOL; /* active-low; normal */
781 else
782 l &= ~OMAP2_MCSPI_CHCONF_EPOL;
784 /* set clock divisor */
785 l &= ~OMAP2_MCSPI_CHCONF_CLKD_MASK;
786 l |= div << 2;
788 /* set SPI mode 0..3 */
789 if (spi->mode & SPI_CPOL)
790 l |= OMAP2_MCSPI_CHCONF_POL;
791 else
792 l &= ~OMAP2_MCSPI_CHCONF_POL;
793 if (spi->mode & SPI_CPHA)
794 l |= OMAP2_MCSPI_CHCONF_PHA;
795 else
796 l &= ~OMAP2_MCSPI_CHCONF_PHA;
798 mcspi_write_chconf0(spi, l);
800 dev_dbg(&spi->dev, "setup: speed %d, sample %s edge, clk %s\n",
801 OMAP2_MCSPI_MAX_FREQ >> div,
802 (spi->mode & SPI_CPHA) ? "trailing" : "leading",
803 (spi->mode & SPI_CPOL) ? "inverted" : "normal");
805 return 0;
808 static int omap2_mcspi_request_dma(struct spi_device *spi)
810 struct spi_master *master = spi->master;
811 struct omap2_mcspi *mcspi;
812 struct omap2_mcspi_dma *mcspi_dma;
813 dma_cap_mask_t mask;
814 unsigned sig;
816 mcspi = spi_master_get_devdata(master);
817 mcspi_dma = mcspi->dma_channels + spi->chip_select;
819 init_completion(&mcspi_dma->dma_rx_completion);
820 init_completion(&mcspi_dma->dma_tx_completion);
822 dma_cap_zero(mask);
823 dma_cap_set(DMA_SLAVE, mask);
824 sig = mcspi_dma->dma_rx_sync_dev;
825 mcspi_dma->dma_rx = dma_request_channel(mask, omap_dma_filter_fn, &sig);
826 if (!mcspi_dma->dma_rx) {
827 dev_err(&spi->dev, "no RX DMA engine channel for McSPI\n");
828 return -EAGAIN;
831 sig = mcspi_dma->dma_tx_sync_dev;
832 mcspi_dma->dma_tx = dma_request_channel(mask, omap_dma_filter_fn, &sig);
833 if (!mcspi_dma->dma_tx) {
834 dev_err(&spi->dev, "no TX DMA engine channel for McSPI\n");
835 dma_release_channel(mcspi_dma->dma_rx);
836 mcspi_dma->dma_rx = NULL;
837 return -EAGAIN;
840 return 0;
843 static int omap2_mcspi_setup(struct spi_device *spi)
845 int ret;
846 struct omap2_mcspi *mcspi = spi_master_get_devdata(spi->master);
847 struct omap2_mcspi_regs *ctx = &mcspi->ctx;
848 struct omap2_mcspi_dma *mcspi_dma;
849 struct omap2_mcspi_cs *cs = spi->controller_state;
851 if (spi->bits_per_word < 4 || spi->bits_per_word > 32) {
852 dev_dbg(&spi->dev, "setup: unsupported %d bit words\n",
853 spi->bits_per_word);
854 return -EINVAL;
857 mcspi_dma = &mcspi->dma_channels[spi->chip_select];
859 if (!cs) {
860 cs = kzalloc(sizeof *cs, GFP_KERNEL);
861 if (!cs)
862 return -ENOMEM;
863 cs->base = mcspi->base + spi->chip_select * 0x14;
864 cs->phys = mcspi->phys + spi->chip_select * 0x14;
865 cs->chconf0 = 0;
866 spi->controller_state = cs;
867 /* Link this to context save list */
868 list_add_tail(&cs->node, &ctx->cs);
871 if (!mcspi_dma->dma_rx || !mcspi_dma->dma_tx) {
872 ret = omap2_mcspi_request_dma(spi);
873 if (ret < 0)
874 return ret;
877 ret = pm_runtime_get_sync(mcspi->dev);
878 if (ret < 0)
879 return ret;
881 ret = omap2_mcspi_setup_transfer(spi, NULL);
882 pm_runtime_mark_last_busy(mcspi->dev);
883 pm_runtime_put_autosuspend(mcspi->dev);
885 return ret;
888 static void omap2_mcspi_cleanup(struct spi_device *spi)
890 struct omap2_mcspi *mcspi;
891 struct omap2_mcspi_dma *mcspi_dma;
892 struct omap2_mcspi_cs *cs;
894 mcspi = spi_master_get_devdata(spi->master);
896 if (spi->controller_state) {
897 /* Unlink controller state from context save list */
898 cs = spi->controller_state;
899 list_del(&cs->node);
901 kfree(cs);
904 if (spi->chip_select < spi->master->num_chipselect) {
905 mcspi_dma = &mcspi->dma_channels[spi->chip_select];
907 if (mcspi_dma->dma_rx) {
908 dma_release_channel(mcspi_dma->dma_rx);
909 mcspi_dma->dma_rx = NULL;
911 if (mcspi_dma->dma_tx) {
912 dma_release_channel(mcspi_dma->dma_tx);
913 mcspi_dma->dma_tx = NULL;
918 static void omap2_mcspi_work(struct omap2_mcspi *mcspi, struct spi_message *m)
921 /* We only enable one channel at a time -- the one whose message is
922 * -- although this controller would gladly
923 * arbitrate among multiple channels. This corresponds to "single
924 * channel" master mode. As a side effect, we need to manage the
925 * chipselect with the FORCE bit ... CS != channel enable.
928 struct spi_device *spi;
929 struct spi_transfer *t = NULL;
930 struct spi_master *master;
931 int cs_active = 0;
932 struct omap2_mcspi_cs *cs;
933 struct omap2_mcspi_device_config *cd;
934 int par_override = 0;
935 int status = 0;
936 u32 chconf;
938 spi = m->spi;
939 master = spi->master;
940 cs = spi->controller_state;
941 cd = spi->controller_data;
943 omap2_mcspi_set_enable(spi, 1);
944 list_for_each_entry(t, &m->transfers, transfer_list) {
945 if (t->tx_buf == NULL && t->rx_buf == NULL && t->len) {
946 status = -EINVAL;
947 break;
949 if (par_override || t->speed_hz || t->bits_per_word) {
950 par_override = 1;
951 status = omap2_mcspi_setup_transfer(spi, t);
952 if (status < 0)
953 break;
954 if (!t->speed_hz && !t->bits_per_word)
955 par_override = 0;
957 if (cd && cd->cs_per_word) {
958 chconf = mcspi->ctx.modulctrl;
959 chconf &= ~OMAP2_MCSPI_MODULCTRL_SINGLE;
960 mcspi_write_reg(master, OMAP2_MCSPI_MODULCTRL, chconf);
961 mcspi->ctx.modulctrl =
962 mcspi_read_cs_reg(spi, OMAP2_MCSPI_MODULCTRL);
966 if (!cs_active) {
967 omap2_mcspi_force_cs(spi, 1);
968 cs_active = 1;
971 chconf = mcspi_cached_chconf0(spi);
972 chconf &= ~OMAP2_MCSPI_CHCONF_TRM_MASK;
973 chconf &= ~OMAP2_MCSPI_CHCONF_TURBO;
975 if (t->tx_buf == NULL)
976 chconf |= OMAP2_MCSPI_CHCONF_TRM_RX_ONLY;
977 else if (t->rx_buf == NULL)
978 chconf |= OMAP2_MCSPI_CHCONF_TRM_TX_ONLY;
980 if (cd && cd->turbo_mode && t->tx_buf == NULL) {
981 /* Turbo mode is for more than one word */
982 if (t->len > ((cs->word_len + 7) >> 3))
983 chconf |= OMAP2_MCSPI_CHCONF_TURBO;
986 mcspi_write_chconf0(spi, chconf);
988 if (t->len) {
989 unsigned count;
991 /* RX_ONLY mode needs dummy data in TX reg */
992 if (t->tx_buf == NULL)
993 __raw_writel(0, cs->base
994 + OMAP2_MCSPI_TX0);
996 if (m->is_dma_mapped || t->len >= DMA_MIN_BYTES)
997 count = omap2_mcspi_txrx_dma(spi, t);
998 else
999 count = omap2_mcspi_txrx_pio(spi, t);
1000 m->actual_length += count;
1002 if (count != t->len) {
1003 status = -EIO;
1004 break;
1008 if (t->delay_usecs)
1009 udelay(t->delay_usecs);
1011 /* ignore the "leave it on after last xfer" hint */
1012 if (t->cs_change) {
1013 omap2_mcspi_force_cs(spi, 0);
1014 cs_active = 0;
1017 /* Restore defaults if they were overriden */
1018 if (par_override) {
1019 par_override = 0;
1020 status = omap2_mcspi_setup_transfer(spi, NULL);
1023 if (cs_active)
1024 omap2_mcspi_force_cs(spi, 0);
1026 if (cd && cd->cs_per_word) {
1027 chconf = mcspi->ctx.modulctrl;
1028 chconf |= OMAP2_MCSPI_MODULCTRL_SINGLE;
1029 mcspi_write_reg(master, OMAP2_MCSPI_MODULCTRL, chconf);
1030 mcspi->ctx.modulctrl =
1031 mcspi_read_cs_reg(spi, OMAP2_MCSPI_MODULCTRL);
1034 omap2_mcspi_set_enable(spi, 0);
1036 m->status = status;
1040 static int omap2_mcspi_transfer_one_message(struct spi_master *master,
1041 struct spi_message *m)
1043 struct omap2_mcspi *mcspi;
1044 struct spi_transfer *t;
1046 mcspi = spi_master_get_devdata(master);
1047 m->actual_length = 0;
1048 m->status = 0;
1050 /* reject invalid messages and transfers */
1051 if (list_empty(&m->transfers))
1052 return -EINVAL;
1053 list_for_each_entry(t, &m->transfers, transfer_list) {
1054 const void *tx_buf = t->tx_buf;
1055 void *rx_buf = t->rx_buf;
1056 unsigned len = t->len;
1058 if (t->speed_hz > OMAP2_MCSPI_MAX_FREQ
1059 || (len && !(rx_buf || tx_buf))
1060 || (t->bits_per_word &&
1061 ( t->bits_per_word < 4
1062 || t->bits_per_word > 32))) {
1063 dev_dbg(mcspi->dev, "transfer: %d Hz, %d %s%s, %d bpw\n",
1064 t->speed_hz,
1065 len,
1066 tx_buf ? "tx" : "",
1067 rx_buf ? "rx" : "",
1068 t->bits_per_word);
1069 return -EINVAL;
1071 if (t->speed_hz && t->speed_hz < (OMAP2_MCSPI_MAX_FREQ >> 15)) {
1072 dev_dbg(mcspi->dev, "speed_hz %d below minimum %d Hz\n",
1073 t->speed_hz,
1074 OMAP2_MCSPI_MAX_FREQ >> 15);
1075 return -EINVAL;
1078 if (m->is_dma_mapped || len < DMA_MIN_BYTES)
1079 continue;
1081 if (tx_buf != NULL) {
1082 t->tx_dma = dma_map_single(mcspi->dev, (void *) tx_buf,
1083 len, DMA_TO_DEVICE);
1084 if (dma_mapping_error(mcspi->dev, t->tx_dma)) {
1085 dev_dbg(mcspi->dev, "dma %cX %d bytes error\n",
1086 'T', len);
1087 return -EINVAL;
1090 if (rx_buf != NULL) {
1091 t->rx_dma = dma_map_single(mcspi->dev, rx_buf, t->len,
1092 DMA_FROM_DEVICE);
1093 if (dma_mapping_error(mcspi->dev, t->rx_dma)) {
1094 dev_dbg(mcspi->dev, "dma %cX %d bytes error\n",
1095 'R', len);
1096 if (tx_buf != NULL)
1097 dma_unmap_single(mcspi->dev, t->tx_dma,
1098 len, DMA_TO_DEVICE);
1099 return -EINVAL;
1104 omap2_mcspi_work(mcspi, m);
1105 spi_finalize_current_message(master);
1106 return 0;
1109 static int omap2_mcspi_master_setup(struct omap2_mcspi *mcspi)
1111 struct spi_master *master = mcspi->master;
1112 struct omap2_mcspi_regs *ctx = &mcspi->ctx;
1113 int ret = 0;
1115 ret = pm_runtime_get_sync(mcspi->dev);
1116 if (ret < 0)
1117 return ret;
1119 mcspi_write_reg(master, OMAP2_MCSPI_WAKEUPENABLE,
1120 OMAP2_MCSPI_WAKEUPENABLE_WKEN);
1121 ctx->wakeupenable = OMAP2_MCSPI_WAKEUPENABLE_WKEN;
1123 omap2_mcspi_set_master_mode(master);
1124 pm_runtime_mark_last_busy(mcspi->dev);
1125 pm_runtime_put_autosuspend(mcspi->dev);
1126 return 0;
1129 static int omap_mcspi_runtime_resume(struct device *dev)
1131 struct omap2_mcspi *mcspi;
1132 struct spi_master *master;
1134 master = dev_get_drvdata(dev);
1135 mcspi = spi_master_get_devdata(master);
1136 omap2_mcspi_restore_ctx(mcspi);
1138 return 0;
1141 static struct omap2_mcspi_platform_config omap2_pdata = {
1142 .regs_offset = 0,
1145 static struct omap2_mcspi_platform_config omap4_pdata = {
1146 .regs_offset = OMAP4_MCSPI_REG_OFFSET,
1149 static const struct of_device_id omap_mcspi_of_match[] = {
1151 .compatible = "ti,omap2-mcspi",
1152 .data = &omap2_pdata,
1155 .compatible = "ti,omap4-mcspi",
1156 .data = &omap4_pdata,
1158 { },
1160 MODULE_DEVICE_TABLE(of, omap_mcspi_of_match);
1162 static int omap2_mcspi_probe(struct platform_device *pdev)
1164 struct spi_master *master;
1165 const struct omap2_mcspi_platform_config *pdata;
1166 struct omap2_mcspi *mcspi;
1167 struct resource *r;
1168 int status = 0, i;
1169 u32 regs_offset = 0;
1170 static int bus_num = 1;
1171 struct device_node *node = pdev->dev.of_node;
1172 const struct of_device_id *match;
1173 struct pinctrl *pinctrl;
1175 master = spi_alloc_master(&pdev->dev, sizeof *mcspi);
1176 if (master == NULL) {
1177 dev_dbg(&pdev->dev, "master allocation failed\n");
1178 return -ENOMEM;
1181 /* the spi->mode bits understood by this driver: */
1182 master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
1184 master->setup = omap2_mcspi_setup;
1185 master->prepare_transfer_hardware = omap2_prepare_transfer;
1186 master->unprepare_transfer_hardware = omap2_unprepare_transfer;
1187 master->transfer_one_message = omap2_mcspi_transfer_one_message;
1188 master->cleanup = omap2_mcspi_cleanup;
1189 master->dev.of_node = node;
1191 dev_set_drvdata(&pdev->dev, master);
1193 mcspi = spi_master_get_devdata(master);
1194 mcspi->master = master;
1196 match = of_match_device(omap_mcspi_of_match, &pdev->dev);
1197 if (match) {
1198 u32 num_cs = 1; /* default number of chipselect */
1199 pdata = match->data;
1201 of_property_read_u32(node, "ti,spi-num-cs", &num_cs);
1202 master->num_chipselect = num_cs;
1203 master->bus_num = bus_num++;
1204 if (of_get_property(node, "ti,pindir-d0-out-d1-in", NULL))
1205 mcspi->pin_dir = MCSPI_PINDIR_D0_OUT_D1_IN;
1206 } else {
1207 pdata = pdev->dev.platform_data;
1208 master->num_chipselect = pdata->num_cs;
1209 if (pdev->id != -1)
1210 master->bus_num = pdev->id;
1211 mcspi->pin_dir = pdata->pin_dir;
1213 regs_offset = pdata->regs_offset;
1215 r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1216 if (r == NULL) {
1217 status = -ENODEV;
1218 goto free_master;
1221 r->start += regs_offset;
1222 r->end += regs_offset;
1223 mcspi->phys = r->start;
1225 mcspi->base = devm_ioremap_resource(&pdev->dev, r);
1226 if (IS_ERR(mcspi->base)) {
1227 status = PTR_ERR(mcspi->base);
1228 goto free_master;
1231 mcspi->dev = &pdev->dev;
1233 INIT_LIST_HEAD(&mcspi->ctx.cs);
1235 mcspi->dma_channels = kcalloc(master->num_chipselect,
1236 sizeof(struct omap2_mcspi_dma),
1237 GFP_KERNEL);
1239 if (mcspi->dma_channels == NULL)
1240 goto free_master;
1242 for (i = 0; i < master->num_chipselect; i++) {
1243 char dma_ch_name[14];
1244 struct resource *dma_res;
1246 sprintf(dma_ch_name, "rx%d", i);
1247 dma_res = platform_get_resource_byname(pdev, IORESOURCE_DMA,
1248 dma_ch_name);
1249 if (!dma_res) {
1250 dev_dbg(&pdev->dev, "cannot get DMA RX channel\n");
1251 status = -ENODEV;
1252 break;
1255 mcspi->dma_channels[i].dma_rx_sync_dev = dma_res->start;
1256 sprintf(dma_ch_name, "tx%d", i);
1257 dma_res = platform_get_resource_byname(pdev, IORESOURCE_DMA,
1258 dma_ch_name);
1259 if (!dma_res) {
1260 dev_dbg(&pdev->dev, "cannot get DMA TX channel\n");
1261 status = -ENODEV;
1262 break;
1265 mcspi->dma_channels[i].dma_tx_sync_dev = dma_res->start;
1268 if (status < 0)
1269 goto dma_chnl_free;
1271 pinctrl = devm_pinctrl_get_select_default(&pdev->dev);
1272 if (IS_ERR(pinctrl))
1273 dev_warn(&pdev->dev,
1274 "pins are not configured from the driver\n");
1276 pm_runtime_use_autosuspend(&pdev->dev);
1277 pm_runtime_set_autosuspend_delay(&pdev->dev, SPI_AUTOSUSPEND_TIMEOUT);
1278 pm_runtime_enable(&pdev->dev);
1280 if (status || omap2_mcspi_master_setup(mcspi) < 0)
1281 goto disable_pm;
1283 status = spi_register_master(master);
1284 if (status < 0)
1285 goto disable_pm;
1287 return status;
1289 disable_pm:
1290 pm_runtime_disable(&pdev->dev);
1291 dma_chnl_free:
1292 kfree(mcspi->dma_channels);
1293 free_master:
1294 spi_master_put(master);
1295 return status;
1298 static int omap2_mcspi_remove(struct platform_device *pdev)
1300 struct spi_master *master;
1301 struct omap2_mcspi *mcspi;
1302 struct omap2_mcspi_dma *dma_channels;
1304 master = dev_get_drvdata(&pdev->dev);
1305 mcspi = spi_master_get_devdata(master);
1306 dma_channels = mcspi->dma_channels;
1308 pm_runtime_put_sync(mcspi->dev);
1309 pm_runtime_disable(&pdev->dev);
1311 spi_unregister_master(master);
1312 kfree(dma_channels);
1314 return 0;
1317 /* work with hotplug and coldplug */
1318 MODULE_ALIAS("platform:omap2_mcspi");
1320 #ifdef CONFIG_SUSPEND
1322 * When SPI wake up from off-mode, CS is in activate state. If it was in
1323 * unactive state when driver was suspend, then force it to unactive state at
1324 * wake up.
1326 static int omap2_mcspi_resume(struct device *dev)
1328 struct spi_master *master = dev_get_drvdata(dev);
1329 struct omap2_mcspi *mcspi = spi_master_get_devdata(master);
1330 struct omap2_mcspi_regs *ctx = &mcspi->ctx;
1331 struct omap2_mcspi_cs *cs;
1333 pm_runtime_get_sync(mcspi->dev);
1334 list_for_each_entry(cs, &ctx->cs, node) {
1335 if ((cs->chconf0 & OMAP2_MCSPI_CHCONF_FORCE) == 0) {
1337 * We need to toggle CS state for OMAP take this
1338 * change in account.
1340 cs->chconf0 |= OMAP2_MCSPI_CHCONF_FORCE;
1341 __raw_writel(cs->chconf0, cs->base + OMAP2_MCSPI_CHCONF0);
1342 cs->chconf0 &= ~OMAP2_MCSPI_CHCONF_FORCE;
1343 __raw_writel(cs->chconf0, cs->base + OMAP2_MCSPI_CHCONF0);
1346 pm_runtime_mark_last_busy(mcspi->dev);
1347 pm_runtime_put_autosuspend(mcspi->dev);
1348 return 0;
1350 #else
1351 #define omap2_mcspi_resume NULL
1352 #endif
1354 static const struct dev_pm_ops omap2_mcspi_pm_ops = {
1355 .resume = omap2_mcspi_resume,
1356 .runtime_resume = omap_mcspi_runtime_resume,
1359 static struct platform_driver omap2_mcspi_driver = {
1360 .driver = {
1361 .name = "omap2_mcspi",
1362 .owner = THIS_MODULE,
1363 .pm = &omap2_mcspi_pm_ops,
1364 .of_match_table = omap_mcspi_of_match,
1366 .probe = omap2_mcspi_probe,
1367 .remove = omap2_mcspi_remove,
1370 module_platform_driver(omap2_mcspi_driver);
1371 MODULE_LICENSE("GPL");