1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (C) 2007 Oracle. All rights reserved.
6 #include <linux/sched.h>
7 #include <linux/sched/signal.h>
8 #include <linux/pagemap.h>
9 #include <linux/writeback.h>
10 #include <linux/blkdev.h>
11 #include <linux/sort.h>
12 #include <linux/rcupdate.h>
13 #include <linux/kthread.h>
14 #include <linux/slab.h>
15 #include <linux/ratelimit.h>
16 #include <linux/percpu_counter.h>
17 #include <linux/lockdep.h>
18 #include <linux/crc32c.h>
22 #include "print-tree.h"
26 #include "free-space-cache.h"
27 #include "free-space-tree.h"
30 #include "ref-verify.h"
31 #include "space-info.h"
32 #include "block-rsv.h"
33 #include "delalloc-space.h"
34 #include "block-group.h"
37 #undef SCRAMBLE_DELAYED_REFS
40 static int __btrfs_free_extent(struct btrfs_trans_handle
*trans
,
41 struct btrfs_delayed_ref_node
*node
, u64 parent
,
42 u64 root_objectid
, u64 owner_objectid
,
43 u64 owner_offset
, int refs_to_drop
,
44 struct btrfs_delayed_extent_op
*extra_op
);
45 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op
*extent_op
,
46 struct extent_buffer
*leaf
,
47 struct btrfs_extent_item
*ei
);
48 static int alloc_reserved_file_extent(struct btrfs_trans_handle
*trans
,
49 u64 parent
, u64 root_objectid
,
50 u64 flags
, u64 owner
, u64 offset
,
51 struct btrfs_key
*ins
, int ref_mod
);
52 static int alloc_reserved_tree_block(struct btrfs_trans_handle
*trans
,
53 struct btrfs_delayed_ref_node
*node
,
54 struct btrfs_delayed_extent_op
*extent_op
);
55 static int find_next_key(struct btrfs_path
*path
, int level
,
56 struct btrfs_key
*key
);
58 static int block_group_bits(struct btrfs_block_group
*cache
, u64 bits
)
60 return (cache
->flags
& bits
) == bits
;
63 int btrfs_add_excluded_extent(struct btrfs_fs_info
*fs_info
,
64 u64 start
, u64 num_bytes
)
66 u64 end
= start
+ num_bytes
- 1;
67 set_extent_bits(&fs_info
->excluded_extents
, start
, end
,
72 void btrfs_free_excluded_extents(struct btrfs_block_group
*cache
)
74 struct btrfs_fs_info
*fs_info
= cache
->fs_info
;
78 end
= start
+ cache
->length
- 1;
80 clear_extent_bits(&fs_info
->excluded_extents
, start
, end
,
84 static u64
generic_ref_to_space_flags(struct btrfs_ref
*ref
)
86 if (ref
->type
== BTRFS_REF_METADATA
) {
87 if (ref
->tree_ref
.root
== BTRFS_CHUNK_TREE_OBJECTID
)
88 return BTRFS_BLOCK_GROUP_SYSTEM
;
90 return BTRFS_BLOCK_GROUP_METADATA
;
92 return BTRFS_BLOCK_GROUP_DATA
;
95 static void add_pinned_bytes(struct btrfs_fs_info
*fs_info
,
96 struct btrfs_ref
*ref
)
98 struct btrfs_space_info
*space_info
;
99 u64 flags
= generic_ref_to_space_flags(ref
);
101 space_info
= btrfs_find_space_info(fs_info
, flags
);
103 percpu_counter_add_batch(&space_info
->total_bytes_pinned
, ref
->len
,
104 BTRFS_TOTAL_BYTES_PINNED_BATCH
);
107 static void sub_pinned_bytes(struct btrfs_fs_info
*fs_info
,
108 struct btrfs_ref
*ref
)
110 struct btrfs_space_info
*space_info
;
111 u64 flags
= generic_ref_to_space_flags(ref
);
113 space_info
= btrfs_find_space_info(fs_info
, flags
);
115 percpu_counter_add_batch(&space_info
->total_bytes_pinned
, -ref
->len
,
116 BTRFS_TOTAL_BYTES_PINNED_BATCH
);
119 /* simple helper to search for an existing data extent at a given offset */
120 int btrfs_lookup_data_extent(struct btrfs_fs_info
*fs_info
, u64 start
, u64 len
)
123 struct btrfs_key key
;
124 struct btrfs_path
*path
;
126 path
= btrfs_alloc_path();
130 key
.objectid
= start
;
132 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
133 ret
= btrfs_search_slot(NULL
, fs_info
->extent_root
, &key
, path
, 0, 0);
134 btrfs_free_path(path
);
139 * helper function to lookup reference count and flags of a tree block.
141 * the head node for delayed ref is used to store the sum of all the
142 * reference count modifications queued up in the rbtree. the head
143 * node may also store the extent flags to set. This way you can check
144 * to see what the reference count and extent flags would be if all of
145 * the delayed refs are not processed.
147 int btrfs_lookup_extent_info(struct btrfs_trans_handle
*trans
,
148 struct btrfs_fs_info
*fs_info
, u64 bytenr
,
149 u64 offset
, int metadata
, u64
*refs
, u64
*flags
)
151 struct btrfs_delayed_ref_head
*head
;
152 struct btrfs_delayed_ref_root
*delayed_refs
;
153 struct btrfs_path
*path
;
154 struct btrfs_extent_item
*ei
;
155 struct extent_buffer
*leaf
;
156 struct btrfs_key key
;
163 * If we don't have skinny metadata, don't bother doing anything
166 if (metadata
&& !btrfs_fs_incompat(fs_info
, SKINNY_METADATA
)) {
167 offset
= fs_info
->nodesize
;
171 path
= btrfs_alloc_path();
176 path
->skip_locking
= 1;
177 path
->search_commit_root
= 1;
181 key
.objectid
= bytenr
;
184 key
.type
= BTRFS_METADATA_ITEM_KEY
;
186 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
188 ret
= btrfs_search_slot(trans
, fs_info
->extent_root
, &key
, path
, 0, 0);
192 if (ret
> 0 && metadata
&& key
.type
== BTRFS_METADATA_ITEM_KEY
) {
193 if (path
->slots
[0]) {
195 btrfs_item_key_to_cpu(path
->nodes
[0], &key
,
197 if (key
.objectid
== bytenr
&&
198 key
.type
== BTRFS_EXTENT_ITEM_KEY
&&
199 key
.offset
== fs_info
->nodesize
)
205 leaf
= path
->nodes
[0];
206 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
207 if (item_size
>= sizeof(*ei
)) {
208 ei
= btrfs_item_ptr(leaf
, path
->slots
[0],
209 struct btrfs_extent_item
);
210 num_refs
= btrfs_extent_refs(leaf
, ei
);
211 extent_flags
= btrfs_extent_flags(leaf
, ei
);
214 btrfs_print_v0_err(fs_info
);
216 btrfs_abort_transaction(trans
, ret
);
218 btrfs_handle_fs_error(fs_info
, ret
, NULL
);
223 BUG_ON(num_refs
== 0);
233 delayed_refs
= &trans
->transaction
->delayed_refs
;
234 spin_lock(&delayed_refs
->lock
);
235 head
= btrfs_find_delayed_ref_head(delayed_refs
, bytenr
);
237 if (!mutex_trylock(&head
->mutex
)) {
238 refcount_inc(&head
->refs
);
239 spin_unlock(&delayed_refs
->lock
);
241 btrfs_release_path(path
);
244 * Mutex was contended, block until it's released and try
247 mutex_lock(&head
->mutex
);
248 mutex_unlock(&head
->mutex
);
249 btrfs_put_delayed_ref_head(head
);
252 spin_lock(&head
->lock
);
253 if (head
->extent_op
&& head
->extent_op
->update_flags
)
254 extent_flags
|= head
->extent_op
->flags_to_set
;
256 BUG_ON(num_refs
== 0);
258 num_refs
+= head
->ref_mod
;
259 spin_unlock(&head
->lock
);
260 mutex_unlock(&head
->mutex
);
262 spin_unlock(&delayed_refs
->lock
);
264 WARN_ON(num_refs
== 0);
268 *flags
= extent_flags
;
270 btrfs_free_path(path
);
275 * Back reference rules. Back refs have three main goals:
277 * 1) differentiate between all holders of references to an extent so that
278 * when a reference is dropped we can make sure it was a valid reference
279 * before freeing the extent.
281 * 2) Provide enough information to quickly find the holders of an extent
282 * if we notice a given block is corrupted or bad.
284 * 3) Make it easy to migrate blocks for FS shrinking or storage pool
285 * maintenance. This is actually the same as #2, but with a slightly
286 * different use case.
288 * There are two kinds of back refs. The implicit back refs is optimized
289 * for pointers in non-shared tree blocks. For a given pointer in a block,
290 * back refs of this kind provide information about the block's owner tree
291 * and the pointer's key. These information allow us to find the block by
292 * b-tree searching. The full back refs is for pointers in tree blocks not
293 * referenced by their owner trees. The location of tree block is recorded
294 * in the back refs. Actually the full back refs is generic, and can be
295 * used in all cases the implicit back refs is used. The major shortcoming
296 * of the full back refs is its overhead. Every time a tree block gets
297 * COWed, we have to update back refs entry for all pointers in it.
299 * For a newly allocated tree block, we use implicit back refs for
300 * pointers in it. This means most tree related operations only involve
301 * implicit back refs. For a tree block created in old transaction, the
302 * only way to drop a reference to it is COW it. So we can detect the
303 * event that tree block loses its owner tree's reference and do the
304 * back refs conversion.
306 * When a tree block is COWed through a tree, there are four cases:
308 * The reference count of the block is one and the tree is the block's
309 * owner tree. Nothing to do in this case.
311 * The reference count of the block is one and the tree is not the
312 * block's owner tree. In this case, full back refs is used for pointers
313 * in the block. Remove these full back refs, add implicit back refs for
314 * every pointers in the new block.
316 * The reference count of the block is greater than one and the tree is
317 * the block's owner tree. In this case, implicit back refs is used for
318 * pointers in the block. Add full back refs for every pointers in the
319 * block, increase lower level extents' reference counts. The original
320 * implicit back refs are entailed to the new block.
322 * The reference count of the block is greater than one and the tree is
323 * not the block's owner tree. Add implicit back refs for every pointer in
324 * the new block, increase lower level extents' reference count.
326 * Back Reference Key composing:
328 * The key objectid corresponds to the first byte in the extent,
329 * The key type is used to differentiate between types of back refs.
330 * There are different meanings of the key offset for different types
333 * File extents can be referenced by:
335 * - multiple snapshots, subvolumes, or different generations in one subvol
336 * - different files inside a single subvolume
337 * - different offsets inside a file (bookend extents in file.c)
339 * The extent ref structure for the implicit back refs has fields for:
341 * - Objectid of the subvolume root
342 * - objectid of the file holding the reference
343 * - original offset in the file
344 * - how many bookend extents
346 * The key offset for the implicit back refs is hash of the first
349 * The extent ref structure for the full back refs has field for:
351 * - number of pointers in the tree leaf
353 * The key offset for the implicit back refs is the first byte of
356 * When a file extent is allocated, The implicit back refs is used.
357 * the fields are filled in:
359 * (root_key.objectid, inode objectid, offset in file, 1)
361 * When a file extent is removed file truncation, we find the
362 * corresponding implicit back refs and check the following fields:
364 * (btrfs_header_owner(leaf), inode objectid, offset in file)
366 * Btree extents can be referenced by:
368 * - Different subvolumes
370 * Both the implicit back refs and the full back refs for tree blocks
371 * only consist of key. The key offset for the implicit back refs is
372 * objectid of block's owner tree. The key offset for the full back refs
373 * is the first byte of parent block.
375 * When implicit back refs is used, information about the lowest key and
376 * level of the tree block are required. These information are stored in
377 * tree block info structure.
381 * is_data == BTRFS_REF_TYPE_BLOCK, tree block type is required,
382 * is_data == BTRFS_REF_TYPE_DATA, data type is requiried,
383 * is_data == BTRFS_REF_TYPE_ANY, either type is OK.
385 int btrfs_get_extent_inline_ref_type(const struct extent_buffer
*eb
,
386 struct btrfs_extent_inline_ref
*iref
,
387 enum btrfs_inline_ref_type is_data
)
389 int type
= btrfs_extent_inline_ref_type(eb
, iref
);
390 u64 offset
= btrfs_extent_inline_ref_offset(eb
, iref
);
392 if (type
== BTRFS_TREE_BLOCK_REF_KEY
||
393 type
== BTRFS_SHARED_BLOCK_REF_KEY
||
394 type
== BTRFS_SHARED_DATA_REF_KEY
||
395 type
== BTRFS_EXTENT_DATA_REF_KEY
) {
396 if (is_data
== BTRFS_REF_TYPE_BLOCK
) {
397 if (type
== BTRFS_TREE_BLOCK_REF_KEY
)
399 if (type
== BTRFS_SHARED_BLOCK_REF_KEY
) {
402 * Every shared one has parent tree
403 * block, which must be aligned to
407 IS_ALIGNED(offset
, eb
->fs_info
->nodesize
))
410 } else if (is_data
== BTRFS_REF_TYPE_DATA
) {
411 if (type
== BTRFS_EXTENT_DATA_REF_KEY
)
413 if (type
== BTRFS_SHARED_DATA_REF_KEY
) {
416 * Every shared one has parent tree
417 * block, which must be aligned to
421 IS_ALIGNED(offset
, eb
->fs_info
->nodesize
))
425 ASSERT(is_data
== BTRFS_REF_TYPE_ANY
);
430 btrfs_print_leaf((struct extent_buffer
*)eb
);
431 btrfs_err(eb
->fs_info
, "eb %llu invalid extent inline ref type %d",
435 return BTRFS_REF_TYPE_INVALID
;
438 u64
hash_extent_data_ref(u64 root_objectid
, u64 owner
, u64 offset
)
440 u32 high_crc
= ~(u32
)0;
441 u32 low_crc
= ~(u32
)0;
444 lenum
= cpu_to_le64(root_objectid
);
445 high_crc
= btrfs_crc32c(high_crc
, &lenum
, sizeof(lenum
));
446 lenum
= cpu_to_le64(owner
);
447 low_crc
= btrfs_crc32c(low_crc
, &lenum
, sizeof(lenum
));
448 lenum
= cpu_to_le64(offset
);
449 low_crc
= btrfs_crc32c(low_crc
, &lenum
, sizeof(lenum
));
451 return ((u64
)high_crc
<< 31) ^ (u64
)low_crc
;
454 static u64
hash_extent_data_ref_item(struct extent_buffer
*leaf
,
455 struct btrfs_extent_data_ref
*ref
)
457 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf
, ref
),
458 btrfs_extent_data_ref_objectid(leaf
, ref
),
459 btrfs_extent_data_ref_offset(leaf
, ref
));
462 static int match_extent_data_ref(struct extent_buffer
*leaf
,
463 struct btrfs_extent_data_ref
*ref
,
464 u64 root_objectid
, u64 owner
, u64 offset
)
466 if (btrfs_extent_data_ref_root(leaf
, ref
) != root_objectid
||
467 btrfs_extent_data_ref_objectid(leaf
, ref
) != owner
||
468 btrfs_extent_data_ref_offset(leaf
, ref
) != offset
)
473 static noinline
int lookup_extent_data_ref(struct btrfs_trans_handle
*trans
,
474 struct btrfs_path
*path
,
475 u64 bytenr
, u64 parent
,
477 u64 owner
, u64 offset
)
479 struct btrfs_root
*root
= trans
->fs_info
->extent_root
;
480 struct btrfs_key key
;
481 struct btrfs_extent_data_ref
*ref
;
482 struct extent_buffer
*leaf
;
488 key
.objectid
= bytenr
;
490 key
.type
= BTRFS_SHARED_DATA_REF_KEY
;
493 key
.type
= BTRFS_EXTENT_DATA_REF_KEY
;
494 key
.offset
= hash_extent_data_ref(root_objectid
,
499 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
511 leaf
= path
->nodes
[0];
512 nritems
= btrfs_header_nritems(leaf
);
514 if (path
->slots
[0] >= nritems
) {
515 ret
= btrfs_next_leaf(root
, path
);
521 leaf
= path
->nodes
[0];
522 nritems
= btrfs_header_nritems(leaf
);
526 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
527 if (key
.objectid
!= bytenr
||
528 key
.type
!= BTRFS_EXTENT_DATA_REF_KEY
)
531 ref
= btrfs_item_ptr(leaf
, path
->slots
[0],
532 struct btrfs_extent_data_ref
);
534 if (match_extent_data_ref(leaf
, ref
, root_objectid
,
537 btrfs_release_path(path
);
549 static noinline
int insert_extent_data_ref(struct btrfs_trans_handle
*trans
,
550 struct btrfs_path
*path
,
551 u64 bytenr
, u64 parent
,
552 u64 root_objectid
, u64 owner
,
553 u64 offset
, int refs_to_add
)
555 struct btrfs_root
*root
= trans
->fs_info
->extent_root
;
556 struct btrfs_key key
;
557 struct extent_buffer
*leaf
;
562 key
.objectid
= bytenr
;
564 key
.type
= BTRFS_SHARED_DATA_REF_KEY
;
566 size
= sizeof(struct btrfs_shared_data_ref
);
568 key
.type
= BTRFS_EXTENT_DATA_REF_KEY
;
569 key
.offset
= hash_extent_data_ref(root_objectid
,
571 size
= sizeof(struct btrfs_extent_data_ref
);
574 ret
= btrfs_insert_empty_item(trans
, root
, path
, &key
, size
);
575 if (ret
&& ret
!= -EEXIST
)
578 leaf
= path
->nodes
[0];
580 struct btrfs_shared_data_ref
*ref
;
581 ref
= btrfs_item_ptr(leaf
, path
->slots
[0],
582 struct btrfs_shared_data_ref
);
584 btrfs_set_shared_data_ref_count(leaf
, ref
, refs_to_add
);
586 num_refs
= btrfs_shared_data_ref_count(leaf
, ref
);
587 num_refs
+= refs_to_add
;
588 btrfs_set_shared_data_ref_count(leaf
, ref
, num_refs
);
591 struct btrfs_extent_data_ref
*ref
;
592 while (ret
== -EEXIST
) {
593 ref
= btrfs_item_ptr(leaf
, path
->slots
[0],
594 struct btrfs_extent_data_ref
);
595 if (match_extent_data_ref(leaf
, ref
, root_objectid
,
598 btrfs_release_path(path
);
600 ret
= btrfs_insert_empty_item(trans
, root
, path
, &key
,
602 if (ret
&& ret
!= -EEXIST
)
605 leaf
= path
->nodes
[0];
607 ref
= btrfs_item_ptr(leaf
, path
->slots
[0],
608 struct btrfs_extent_data_ref
);
610 btrfs_set_extent_data_ref_root(leaf
, ref
,
612 btrfs_set_extent_data_ref_objectid(leaf
, ref
, owner
);
613 btrfs_set_extent_data_ref_offset(leaf
, ref
, offset
);
614 btrfs_set_extent_data_ref_count(leaf
, ref
, refs_to_add
);
616 num_refs
= btrfs_extent_data_ref_count(leaf
, ref
);
617 num_refs
+= refs_to_add
;
618 btrfs_set_extent_data_ref_count(leaf
, ref
, num_refs
);
621 btrfs_mark_buffer_dirty(leaf
);
624 btrfs_release_path(path
);
628 static noinline
int remove_extent_data_ref(struct btrfs_trans_handle
*trans
,
629 struct btrfs_path
*path
,
630 int refs_to_drop
, int *last_ref
)
632 struct btrfs_key key
;
633 struct btrfs_extent_data_ref
*ref1
= NULL
;
634 struct btrfs_shared_data_ref
*ref2
= NULL
;
635 struct extent_buffer
*leaf
;
639 leaf
= path
->nodes
[0];
640 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
642 if (key
.type
== BTRFS_EXTENT_DATA_REF_KEY
) {
643 ref1
= btrfs_item_ptr(leaf
, path
->slots
[0],
644 struct btrfs_extent_data_ref
);
645 num_refs
= btrfs_extent_data_ref_count(leaf
, ref1
);
646 } else if (key
.type
== BTRFS_SHARED_DATA_REF_KEY
) {
647 ref2
= btrfs_item_ptr(leaf
, path
->slots
[0],
648 struct btrfs_shared_data_ref
);
649 num_refs
= btrfs_shared_data_ref_count(leaf
, ref2
);
650 } else if (unlikely(key
.type
== BTRFS_EXTENT_REF_V0_KEY
)) {
651 btrfs_print_v0_err(trans
->fs_info
);
652 btrfs_abort_transaction(trans
, -EINVAL
);
658 BUG_ON(num_refs
< refs_to_drop
);
659 num_refs
-= refs_to_drop
;
662 ret
= btrfs_del_item(trans
, trans
->fs_info
->extent_root
, path
);
665 if (key
.type
== BTRFS_EXTENT_DATA_REF_KEY
)
666 btrfs_set_extent_data_ref_count(leaf
, ref1
, num_refs
);
667 else if (key
.type
== BTRFS_SHARED_DATA_REF_KEY
)
668 btrfs_set_shared_data_ref_count(leaf
, ref2
, num_refs
);
669 btrfs_mark_buffer_dirty(leaf
);
674 static noinline u32
extent_data_ref_count(struct btrfs_path
*path
,
675 struct btrfs_extent_inline_ref
*iref
)
677 struct btrfs_key key
;
678 struct extent_buffer
*leaf
;
679 struct btrfs_extent_data_ref
*ref1
;
680 struct btrfs_shared_data_ref
*ref2
;
684 leaf
= path
->nodes
[0];
685 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
687 BUG_ON(key
.type
== BTRFS_EXTENT_REF_V0_KEY
);
690 * If type is invalid, we should have bailed out earlier than
693 type
= btrfs_get_extent_inline_ref_type(leaf
, iref
, BTRFS_REF_TYPE_DATA
);
694 ASSERT(type
!= BTRFS_REF_TYPE_INVALID
);
695 if (type
== BTRFS_EXTENT_DATA_REF_KEY
) {
696 ref1
= (struct btrfs_extent_data_ref
*)(&iref
->offset
);
697 num_refs
= btrfs_extent_data_ref_count(leaf
, ref1
);
699 ref2
= (struct btrfs_shared_data_ref
*)(iref
+ 1);
700 num_refs
= btrfs_shared_data_ref_count(leaf
, ref2
);
702 } else if (key
.type
== BTRFS_EXTENT_DATA_REF_KEY
) {
703 ref1
= btrfs_item_ptr(leaf
, path
->slots
[0],
704 struct btrfs_extent_data_ref
);
705 num_refs
= btrfs_extent_data_ref_count(leaf
, ref1
);
706 } else if (key
.type
== BTRFS_SHARED_DATA_REF_KEY
) {
707 ref2
= btrfs_item_ptr(leaf
, path
->slots
[0],
708 struct btrfs_shared_data_ref
);
709 num_refs
= btrfs_shared_data_ref_count(leaf
, ref2
);
716 static noinline
int lookup_tree_block_ref(struct btrfs_trans_handle
*trans
,
717 struct btrfs_path
*path
,
718 u64 bytenr
, u64 parent
,
721 struct btrfs_root
*root
= trans
->fs_info
->extent_root
;
722 struct btrfs_key key
;
725 key
.objectid
= bytenr
;
727 key
.type
= BTRFS_SHARED_BLOCK_REF_KEY
;
730 key
.type
= BTRFS_TREE_BLOCK_REF_KEY
;
731 key
.offset
= root_objectid
;
734 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
740 static noinline
int insert_tree_block_ref(struct btrfs_trans_handle
*trans
,
741 struct btrfs_path
*path
,
742 u64 bytenr
, u64 parent
,
745 struct btrfs_key key
;
748 key
.objectid
= bytenr
;
750 key
.type
= BTRFS_SHARED_BLOCK_REF_KEY
;
753 key
.type
= BTRFS_TREE_BLOCK_REF_KEY
;
754 key
.offset
= root_objectid
;
757 ret
= btrfs_insert_empty_item(trans
, trans
->fs_info
->extent_root
,
759 btrfs_release_path(path
);
763 static inline int extent_ref_type(u64 parent
, u64 owner
)
766 if (owner
< BTRFS_FIRST_FREE_OBJECTID
) {
768 type
= BTRFS_SHARED_BLOCK_REF_KEY
;
770 type
= BTRFS_TREE_BLOCK_REF_KEY
;
773 type
= BTRFS_SHARED_DATA_REF_KEY
;
775 type
= BTRFS_EXTENT_DATA_REF_KEY
;
780 static int find_next_key(struct btrfs_path
*path
, int level
,
781 struct btrfs_key
*key
)
784 for (; level
< BTRFS_MAX_LEVEL
; level
++) {
785 if (!path
->nodes
[level
])
787 if (path
->slots
[level
] + 1 >=
788 btrfs_header_nritems(path
->nodes
[level
]))
791 btrfs_item_key_to_cpu(path
->nodes
[level
], key
,
792 path
->slots
[level
] + 1);
794 btrfs_node_key_to_cpu(path
->nodes
[level
], key
,
795 path
->slots
[level
] + 1);
802 * look for inline back ref. if back ref is found, *ref_ret is set
803 * to the address of inline back ref, and 0 is returned.
805 * if back ref isn't found, *ref_ret is set to the address where it
806 * should be inserted, and -ENOENT is returned.
808 * if insert is true and there are too many inline back refs, the path
809 * points to the extent item, and -EAGAIN is returned.
811 * NOTE: inline back refs are ordered in the same way that back ref
812 * items in the tree are ordered.
814 static noinline_for_stack
815 int lookup_inline_extent_backref(struct btrfs_trans_handle
*trans
,
816 struct btrfs_path
*path
,
817 struct btrfs_extent_inline_ref
**ref_ret
,
818 u64 bytenr
, u64 num_bytes
,
819 u64 parent
, u64 root_objectid
,
820 u64 owner
, u64 offset
, int insert
)
822 struct btrfs_fs_info
*fs_info
= trans
->fs_info
;
823 struct btrfs_root
*root
= fs_info
->extent_root
;
824 struct btrfs_key key
;
825 struct extent_buffer
*leaf
;
826 struct btrfs_extent_item
*ei
;
827 struct btrfs_extent_inline_ref
*iref
;
837 bool skinny_metadata
= btrfs_fs_incompat(fs_info
, SKINNY_METADATA
);
840 key
.objectid
= bytenr
;
841 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
842 key
.offset
= num_bytes
;
844 want
= extent_ref_type(parent
, owner
);
846 extra_size
= btrfs_extent_inline_ref_size(want
);
847 path
->keep_locks
= 1;
852 * Owner is our level, so we can just add one to get the level for the
853 * block we are interested in.
855 if (skinny_metadata
&& owner
< BTRFS_FIRST_FREE_OBJECTID
) {
856 key
.type
= BTRFS_METADATA_ITEM_KEY
;
861 ret
= btrfs_search_slot(trans
, root
, &key
, path
, extra_size
, 1);
868 * We may be a newly converted file system which still has the old fat
869 * extent entries for metadata, so try and see if we have one of those.
871 if (ret
> 0 && skinny_metadata
) {
872 skinny_metadata
= false;
873 if (path
->slots
[0]) {
875 btrfs_item_key_to_cpu(path
->nodes
[0], &key
,
877 if (key
.objectid
== bytenr
&&
878 key
.type
== BTRFS_EXTENT_ITEM_KEY
&&
879 key
.offset
== num_bytes
)
883 key
.objectid
= bytenr
;
884 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
885 key
.offset
= num_bytes
;
886 btrfs_release_path(path
);
891 if (ret
&& !insert
) {
894 } else if (WARN_ON(ret
)) {
899 leaf
= path
->nodes
[0];
900 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
901 if (unlikely(item_size
< sizeof(*ei
))) {
903 btrfs_print_v0_err(fs_info
);
904 btrfs_abort_transaction(trans
, err
);
908 ei
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_extent_item
);
909 flags
= btrfs_extent_flags(leaf
, ei
);
911 ptr
= (unsigned long)(ei
+ 1);
912 end
= (unsigned long)ei
+ item_size
;
914 if (flags
& BTRFS_EXTENT_FLAG_TREE_BLOCK
&& !skinny_metadata
) {
915 ptr
+= sizeof(struct btrfs_tree_block_info
);
919 if (owner
>= BTRFS_FIRST_FREE_OBJECTID
)
920 needed
= BTRFS_REF_TYPE_DATA
;
922 needed
= BTRFS_REF_TYPE_BLOCK
;
930 iref
= (struct btrfs_extent_inline_ref
*)ptr
;
931 type
= btrfs_get_extent_inline_ref_type(leaf
, iref
, needed
);
932 if (type
== BTRFS_REF_TYPE_INVALID
) {
940 ptr
+= btrfs_extent_inline_ref_size(type
);
944 if (type
== BTRFS_EXTENT_DATA_REF_KEY
) {
945 struct btrfs_extent_data_ref
*dref
;
946 dref
= (struct btrfs_extent_data_ref
*)(&iref
->offset
);
947 if (match_extent_data_ref(leaf
, dref
, root_objectid
,
952 if (hash_extent_data_ref_item(leaf
, dref
) <
953 hash_extent_data_ref(root_objectid
, owner
, offset
))
957 ref_offset
= btrfs_extent_inline_ref_offset(leaf
, iref
);
959 if (parent
== ref_offset
) {
963 if (ref_offset
< parent
)
966 if (root_objectid
== ref_offset
) {
970 if (ref_offset
< root_objectid
)
974 ptr
+= btrfs_extent_inline_ref_size(type
);
976 if (err
== -ENOENT
&& insert
) {
977 if (item_size
+ extra_size
>=
978 BTRFS_MAX_EXTENT_ITEM_SIZE(root
)) {
983 * To add new inline back ref, we have to make sure
984 * there is no corresponding back ref item.
985 * For simplicity, we just do not add new inline back
986 * ref if there is any kind of item for this block
988 if (find_next_key(path
, 0, &key
) == 0 &&
989 key
.objectid
== bytenr
&&
990 key
.type
< BTRFS_BLOCK_GROUP_ITEM_KEY
) {
995 *ref_ret
= (struct btrfs_extent_inline_ref
*)ptr
;
998 path
->keep_locks
= 0;
999 btrfs_unlock_up_safe(path
, 1);
1005 * helper to add new inline back ref
1007 static noinline_for_stack
1008 void setup_inline_extent_backref(struct btrfs_fs_info
*fs_info
,
1009 struct btrfs_path
*path
,
1010 struct btrfs_extent_inline_ref
*iref
,
1011 u64 parent
, u64 root_objectid
,
1012 u64 owner
, u64 offset
, int refs_to_add
,
1013 struct btrfs_delayed_extent_op
*extent_op
)
1015 struct extent_buffer
*leaf
;
1016 struct btrfs_extent_item
*ei
;
1019 unsigned long item_offset
;
1024 leaf
= path
->nodes
[0];
1025 ei
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_extent_item
);
1026 item_offset
= (unsigned long)iref
- (unsigned long)ei
;
1028 type
= extent_ref_type(parent
, owner
);
1029 size
= btrfs_extent_inline_ref_size(type
);
1031 btrfs_extend_item(path
, size
);
1033 ei
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_extent_item
);
1034 refs
= btrfs_extent_refs(leaf
, ei
);
1035 refs
+= refs_to_add
;
1036 btrfs_set_extent_refs(leaf
, ei
, refs
);
1038 __run_delayed_extent_op(extent_op
, leaf
, ei
);
1040 ptr
= (unsigned long)ei
+ item_offset
;
1041 end
= (unsigned long)ei
+ btrfs_item_size_nr(leaf
, path
->slots
[0]);
1042 if (ptr
< end
- size
)
1043 memmove_extent_buffer(leaf
, ptr
+ size
, ptr
,
1046 iref
= (struct btrfs_extent_inline_ref
*)ptr
;
1047 btrfs_set_extent_inline_ref_type(leaf
, iref
, type
);
1048 if (type
== BTRFS_EXTENT_DATA_REF_KEY
) {
1049 struct btrfs_extent_data_ref
*dref
;
1050 dref
= (struct btrfs_extent_data_ref
*)(&iref
->offset
);
1051 btrfs_set_extent_data_ref_root(leaf
, dref
, root_objectid
);
1052 btrfs_set_extent_data_ref_objectid(leaf
, dref
, owner
);
1053 btrfs_set_extent_data_ref_offset(leaf
, dref
, offset
);
1054 btrfs_set_extent_data_ref_count(leaf
, dref
, refs_to_add
);
1055 } else if (type
== BTRFS_SHARED_DATA_REF_KEY
) {
1056 struct btrfs_shared_data_ref
*sref
;
1057 sref
= (struct btrfs_shared_data_ref
*)(iref
+ 1);
1058 btrfs_set_shared_data_ref_count(leaf
, sref
, refs_to_add
);
1059 btrfs_set_extent_inline_ref_offset(leaf
, iref
, parent
);
1060 } else if (type
== BTRFS_SHARED_BLOCK_REF_KEY
) {
1061 btrfs_set_extent_inline_ref_offset(leaf
, iref
, parent
);
1063 btrfs_set_extent_inline_ref_offset(leaf
, iref
, root_objectid
);
1065 btrfs_mark_buffer_dirty(leaf
);
1068 static int lookup_extent_backref(struct btrfs_trans_handle
*trans
,
1069 struct btrfs_path
*path
,
1070 struct btrfs_extent_inline_ref
**ref_ret
,
1071 u64 bytenr
, u64 num_bytes
, u64 parent
,
1072 u64 root_objectid
, u64 owner
, u64 offset
)
1076 ret
= lookup_inline_extent_backref(trans
, path
, ref_ret
, bytenr
,
1077 num_bytes
, parent
, root_objectid
,
1082 btrfs_release_path(path
);
1085 if (owner
< BTRFS_FIRST_FREE_OBJECTID
) {
1086 ret
= lookup_tree_block_ref(trans
, path
, bytenr
, parent
,
1089 ret
= lookup_extent_data_ref(trans
, path
, bytenr
, parent
,
1090 root_objectid
, owner
, offset
);
1096 * helper to update/remove inline back ref
1098 static noinline_for_stack
1099 void update_inline_extent_backref(struct btrfs_path
*path
,
1100 struct btrfs_extent_inline_ref
*iref
,
1102 struct btrfs_delayed_extent_op
*extent_op
,
1105 struct extent_buffer
*leaf
= path
->nodes
[0];
1106 struct btrfs_extent_item
*ei
;
1107 struct btrfs_extent_data_ref
*dref
= NULL
;
1108 struct btrfs_shared_data_ref
*sref
= NULL
;
1116 ei
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_extent_item
);
1117 refs
= btrfs_extent_refs(leaf
, ei
);
1118 WARN_ON(refs_to_mod
< 0 && refs
+ refs_to_mod
<= 0);
1119 refs
+= refs_to_mod
;
1120 btrfs_set_extent_refs(leaf
, ei
, refs
);
1122 __run_delayed_extent_op(extent_op
, leaf
, ei
);
1125 * If type is invalid, we should have bailed out after
1126 * lookup_inline_extent_backref().
1128 type
= btrfs_get_extent_inline_ref_type(leaf
, iref
, BTRFS_REF_TYPE_ANY
);
1129 ASSERT(type
!= BTRFS_REF_TYPE_INVALID
);
1131 if (type
== BTRFS_EXTENT_DATA_REF_KEY
) {
1132 dref
= (struct btrfs_extent_data_ref
*)(&iref
->offset
);
1133 refs
= btrfs_extent_data_ref_count(leaf
, dref
);
1134 } else if (type
== BTRFS_SHARED_DATA_REF_KEY
) {
1135 sref
= (struct btrfs_shared_data_ref
*)(iref
+ 1);
1136 refs
= btrfs_shared_data_ref_count(leaf
, sref
);
1139 BUG_ON(refs_to_mod
!= -1);
1142 BUG_ON(refs_to_mod
< 0 && refs
< -refs_to_mod
);
1143 refs
+= refs_to_mod
;
1146 if (type
== BTRFS_EXTENT_DATA_REF_KEY
)
1147 btrfs_set_extent_data_ref_count(leaf
, dref
, refs
);
1149 btrfs_set_shared_data_ref_count(leaf
, sref
, refs
);
1152 size
= btrfs_extent_inline_ref_size(type
);
1153 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
1154 ptr
= (unsigned long)iref
;
1155 end
= (unsigned long)ei
+ item_size
;
1156 if (ptr
+ size
< end
)
1157 memmove_extent_buffer(leaf
, ptr
, ptr
+ size
,
1160 btrfs_truncate_item(path
, item_size
, 1);
1162 btrfs_mark_buffer_dirty(leaf
);
1165 static noinline_for_stack
1166 int insert_inline_extent_backref(struct btrfs_trans_handle
*trans
,
1167 struct btrfs_path
*path
,
1168 u64 bytenr
, u64 num_bytes
, u64 parent
,
1169 u64 root_objectid
, u64 owner
,
1170 u64 offset
, int refs_to_add
,
1171 struct btrfs_delayed_extent_op
*extent_op
)
1173 struct btrfs_extent_inline_ref
*iref
;
1176 ret
= lookup_inline_extent_backref(trans
, path
, &iref
, bytenr
,
1177 num_bytes
, parent
, root_objectid
,
1180 BUG_ON(owner
< BTRFS_FIRST_FREE_OBJECTID
);
1181 update_inline_extent_backref(path
, iref
, refs_to_add
,
1183 } else if (ret
== -ENOENT
) {
1184 setup_inline_extent_backref(trans
->fs_info
, path
, iref
, parent
,
1185 root_objectid
, owner
, offset
,
1186 refs_to_add
, extent_op
);
1192 static int remove_extent_backref(struct btrfs_trans_handle
*trans
,
1193 struct btrfs_path
*path
,
1194 struct btrfs_extent_inline_ref
*iref
,
1195 int refs_to_drop
, int is_data
, int *last_ref
)
1199 BUG_ON(!is_data
&& refs_to_drop
!= 1);
1201 update_inline_extent_backref(path
, iref
, -refs_to_drop
, NULL
,
1203 } else if (is_data
) {
1204 ret
= remove_extent_data_ref(trans
, path
, refs_to_drop
,
1208 ret
= btrfs_del_item(trans
, trans
->fs_info
->extent_root
, path
);
1213 static int btrfs_issue_discard(struct block_device
*bdev
, u64 start
, u64 len
,
1214 u64
*discarded_bytes
)
1217 u64 bytes_left
, end
;
1218 u64 aligned_start
= ALIGN(start
, 1 << 9);
1220 if (WARN_ON(start
!= aligned_start
)) {
1221 len
-= aligned_start
- start
;
1222 len
= round_down(len
, 1 << 9);
1223 start
= aligned_start
;
1226 *discarded_bytes
= 0;
1234 /* Skip any superblocks on this device. */
1235 for (j
= 0; j
< BTRFS_SUPER_MIRROR_MAX
; j
++) {
1236 u64 sb_start
= btrfs_sb_offset(j
);
1237 u64 sb_end
= sb_start
+ BTRFS_SUPER_INFO_SIZE
;
1238 u64 size
= sb_start
- start
;
1240 if (!in_range(sb_start
, start
, bytes_left
) &&
1241 !in_range(sb_end
, start
, bytes_left
) &&
1242 !in_range(start
, sb_start
, BTRFS_SUPER_INFO_SIZE
))
1246 * Superblock spans beginning of range. Adjust start and
1249 if (sb_start
<= start
) {
1250 start
+= sb_end
- start
;
1255 bytes_left
= end
- start
;
1260 ret
= blkdev_issue_discard(bdev
, start
>> 9, size
>> 9,
1263 *discarded_bytes
+= size
;
1264 else if (ret
!= -EOPNOTSUPP
)
1273 bytes_left
= end
- start
;
1277 ret
= blkdev_issue_discard(bdev
, start
>> 9, bytes_left
>> 9,
1280 *discarded_bytes
+= bytes_left
;
1285 int btrfs_discard_extent(struct btrfs_fs_info
*fs_info
, u64 bytenr
,
1286 u64 num_bytes
, u64
*actual_bytes
)
1289 u64 discarded_bytes
= 0;
1290 u64 end
= bytenr
+ num_bytes
;
1292 struct btrfs_bio
*bbio
= NULL
;
1296 * Avoid races with device replace and make sure our bbio has devices
1297 * associated to its stripes that don't go away while we are discarding.
1299 btrfs_bio_counter_inc_blocked(fs_info
);
1301 struct btrfs_bio_stripe
*stripe
;
1304 num_bytes
= end
- cur
;
1305 /* Tell the block device(s) that the sectors can be discarded */
1306 ret
= btrfs_map_block(fs_info
, BTRFS_MAP_DISCARD
, cur
,
1307 &num_bytes
, &bbio
, 0);
1309 * Error can be -ENOMEM, -ENOENT (no such chunk mapping) or
1310 * -EOPNOTSUPP. For any such error, @num_bytes is not updated,
1311 * thus we can't continue anyway.
1316 stripe
= bbio
->stripes
;
1317 for (i
= 0; i
< bbio
->num_stripes
; i
++, stripe
++) {
1319 struct request_queue
*req_q
;
1321 if (!stripe
->dev
->bdev
) {
1322 ASSERT(btrfs_test_opt(fs_info
, DEGRADED
));
1325 req_q
= bdev_get_queue(stripe
->dev
->bdev
);
1326 if (!blk_queue_discard(req_q
))
1329 ret
= btrfs_issue_discard(stripe
->dev
->bdev
,
1334 discarded_bytes
+= bytes
;
1335 } else if (ret
!= -EOPNOTSUPP
) {
1337 * Logic errors or -ENOMEM, or -EIO, but
1338 * unlikely to happen.
1340 * And since there are two loops, explicitly
1341 * go to out to avoid confusion.
1343 btrfs_put_bbio(bbio
);
1348 * Just in case we get back EOPNOTSUPP for some reason,
1349 * just ignore the return value so we don't screw up
1350 * people calling discard_extent.
1354 btrfs_put_bbio(bbio
);
1358 btrfs_bio_counter_dec(fs_info
);
1361 *actual_bytes
= discarded_bytes
;
1364 if (ret
== -EOPNOTSUPP
)
1369 /* Can return -ENOMEM */
1370 int btrfs_inc_extent_ref(struct btrfs_trans_handle
*trans
,
1371 struct btrfs_ref
*generic_ref
)
1373 struct btrfs_fs_info
*fs_info
= trans
->fs_info
;
1374 int old_ref_mod
, new_ref_mod
;
1377 ASSERT(generic_ref
->type
!= BTRFS_REF_NOT_SET
&&
1378 generic_ref
->action
);
1379 BUG_ON(generic_ref
->type
== BTRFS_REF_METADATA
&&
1380 generic_ref
->tree_ref
.root
== BTRFS_TREE_LOG_OBJECTID
);
1382 if (generic_ref
->type
== BTRFS_REF_METADATA
)
1383 ret
= btrfs_add_delayed_tree_ref(trans
, generic_ref
,
1384 NULL
, &old_ref_mod
, &new_ref_mod
);
1386 ret
= btrfs_add_delayed_data_ref(trans
, generic_ref
, 0,
1387 &old_ref_mod
, &new_ref_mod
);
1389 btrfs_ref_tree_mod(fs_info
, generic_ref
);
1391 if (ret
== 0 && old_ref_mod
< 0 && new_ref_mod
>= 0)
1392 sub_pinned_bytes(fs_info
, generic_ref
);
1398 * __btrfs_inc_extent_ref - insert backreference for a given extent
1400 * @trans: Handle of transaction
1402 * @node: The delayed ref node used to get the bytenr/length for
1403 * extent whose references are incremented.
1405 * @parent: If this is a shared extent (BTRFS_SHARED_DATA_REF_KEY/
1406 * BTRFS_SHARED_BLOCK_REF_KEY) then it holds the logical
1407 * bytenr of the parent block. Since new extents are always
1408 * created with indirect references, this will only be the case
1409 * when relocating a shared extent. In that case, root_objectid
1410 * will be BTRFS_TREE_RELOC_OBJECTID. Otheriwse, parent must
1413 * @root_objectid: The id of the root where this modification has originated,
1414 * this can be either one of the well-known metadata trees or
1415 * the subvolume id which references this extent.
1417 * @owner: For data extents it is the inode number of the owning file.
1418 * For metadata extents this parameter holds the level in the
1419 * tree of the extent.
1421 * @offset: For metadata extents the offset is ignored and is currently
1422 * always passed as 0. For data extents it is the fileoffset
1423 * this extent belongs to.
1425 * @refs_to_add Number of references to add
1427 * @extent_op Pointer to a structure, holding information necessary when
1428 * updating a tree block's flags
1431 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle
*trans
,
1432 struct btrfs_delayed_ref_node
*node
,
1433 u64 parent
, u64 root_objectid
,
1434 u64 owner
, u64 offset
, int refs_to_add
,
1435 struct btrfs_delayed_extent_op
*extent_op
)
1437 struct btrfs_path
*path
;
1438 struct extent_buffer
*leaf
;
1439 struct btrfs_extent_item
*item
;
1440 struct btrfs_key key
;
1441 u64 bytenr
= node
->bytenr
;
1442 u64 num_bytes
= node
->num_bytes
;
1446 path
= btrfs_alloc_path();
1450 path
->leave_spinning
= 1;
1451 /* this will setup the path even if it fails to insert the back ref */
1452 ret
= insert_inline_extent_backref(trans
, path
, bytenr
, num_bytes
,
1453 parent
, root_objectid
, owner
,
1454 offset
, refs_to_add
, extent_op
);
1455 if ((ret
< 0 && ret
!= -EAGAIN
) || !ret
)
1459 * Ok we had -EAGAIN which means we didn't have space to insert and
1460 * inline extent ref, so just update the reference count and add a
1463 leaf
= path
->nodes
[0];
1464 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
1465 item
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_extent_item
);
1466 refs
= btrfs_extent_refs(leaf
, item
);
1467 btrfs_set_extent_refs(leaf
, item
, refs
+ refs_to_add
);
1469 __run_delayed_extent_op(extent_op
, leaf
, item
);
1471 btrfs_mark_buffer_dirty(leaf
);
1472 btrfs_release_path(path
);
1474 path
->leave_spinning
= 1;
1475 /* now insert the actual backref */
1476 if (owner
< BTRFS_FIRST_FREE_OBJECTID
) {
1477 BUG_ON(refs_to_add
!= 1);
1478 ret
= insert_tree_block_ref(trans
, path
, bytenr
, parent
,
1481 ret
= insert_extent_data_ref(trans
, path
, bytenr
, parent
,
1482 root_objectid
, owner
, offset
,
1486 btrfs_abort_transaction(trans
, ret
);
1488 btrfs_free_path(path
);
1492 static int run_delayed_data_ref(struct btrfs_trans_handle
*trans
,
1493 struct btrfs_delayed_ref_node
*node
,
1494 struct btrfs_delayed_extent_op
*extent_op
,
1495 int insert_reserved
)
1498 struct btrfs_delayed_data_ref
*ref
;
1499 struct btrfs_key ins
;
1504 ins
.objectid
= node
->bytenr
;
1505 ins
.offset
= node
->num_bytes
;
1506 ins
.type
= BTRFS_EXTENT_ITEM_KEY
;
1508 ref
= btrfs_delayed_node_to_data_ref(node
);
1509 trace_run_delayed_data_ref(trans
->fs_info
, node
, ref
, node
->action
);
1511 if (node
->type
== BTRFS_SHARED_DATA_REF_KEY
)
1512 parent
= ref
->parent
;
1513 ref_root
= ref
->root
;
1515 if (node
->action
== BTRFS_ADD_DELAYED_REF
&& insert_reserved
) {
1517 flags
|= extent_op
->flags_to_set
;
1518 ret
= alloc_reserved_file_extent(trans
, parent
, ref_root
,
1519 flags
, ref
->objectid
,
1522 } else if (node
->action
== BTRFS_ADD_DELAYED_REF
) {
1523 ret
= __btrfs_inc_extent_ref(trans
, node
, parent
, ref_root
,
1524 ref
->objectid
, ref
->offset
,
1525 node
->ref_mod
, extent_op
);
1526 } else if (node
->action
== BTRFS_DROP_DELAYED_REF
) {
1527 ret
= __btrfs_free_extent(trans
, node
, parent
,
1528 ref_root
, ref
->objectid
,
1529 ref
->offset
, node
->ref_mod
,
1537 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op
*extent_op
,
1538 struct extent_buffer
*leaf
,
1539 struct btrfs_extent_item
*ei
)
1541 u64 flags
= btrfs_extent_flags(leaf
, ei
);
1542 if (extent_op
->update_flags
) {
1543 flags
|= extent_op
->flags_to_set
;
1544 btrfs_set_extent_flags(leaf
, ei
, flags
);
1547 if (extent_op
->update_key
) {
1548 struct btrfs_tree_block_info
*bi
;
1549 BUG_ON(!(flags
& BTRFS_EXTENT_FLAG_TREE_BLOCK
));
1550 bi
= (struct btrfs_tree_block_info
*)(ei
+ 1);
1551 btrfs_set_tree_block_key(leaf
, bi
, &extent_op
->key
);
1555 static int run_delayed_extent_op(struct btrfs_trans_handle
*trans
,
1556 struct btrfs_delayed_ref_head
*head
,
1557 struct btrfs_delayed_extent_op
*extent_op
)
1559 struct btrfs_fs_info
*fs_info
= trans
->fs_info
;
1560 struct btrfs_key key
;
1561 struct btrfs_path
*path
;
1562 struct btrfs_extent_item
*ei
;
1563 struct extent_buffer
*leaf
;
1567 int metadata
= !extent_op
->is_data
;
1569 if (TRANS_ABORTED(trans
))
1572 if (metadata
&& !btrfs_fs_incompat(fs_info
, SKINNY_METADATA
))
1575 path
= btrfs_alloc_path();
1579 key
.objectid
= head
->bytenr
;
1582 key
.type
= BTRFS_METADATA_ITEM_KEY
;
1583 key
.offset
= extent_op
->level
;
1585 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
1586 key
.offset
= head
->num_bytes
;
1590 path
->leave_spinning
= 1;
1591 ret
= btrfs_search_slot(trans
, fs_info
->extent_root
, &key
, path
, 0, 1);
1598 if (path
->slots
[0] > 0) {
1600 btrfs_item_key_to_cpu(path
->nodes
[0], &key
,
1602 if (key
.objectid
== head
->bytenr
&&
1603 key
.type
== BTRFS_EXTENT_ITEM_KEY
&&
1604 key
.offset
== head
->num_bytes
)
1608 btrfs_release_path(path
);
1611 key
.objectid
= head
->bytenr
;
1612 key
.offset
= head
->num_bytes
;
1613 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
1622 leaf
= path
->nodes
[0];
1623 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
1625 if (unlikely(item_size
< sizeof(*ei
))) {
1627 btrfs_print_v0_err(fs_info
);
1628 btrfs_abort_transaction(trans
, err
);
1632 ei
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_extent_item
);
1633 __run_delayed_extent_op(extent_op
, leaf
, ei
);
1635 btrfs_mark_buffer_dirty(leaf
);
1637 btrfs_free_path(path
);
1641 static int run_delayed_tree_ref(struct btrfs_trans_handle
*trans
,
1642 struct btrfs_delayed_ref_node
*node
,
1643 struct btrfs_delayed_extent_op
*extent_op
,
1644 int insert_reserved
)
1647 struct btrfs_delayed_tree_ref
*ref
;
1651 ref
= btrfs_delayed_node_to_tree_ref(node
);
1652 trace_run_delayed_tree_ref(trans
->fs_info
, node
, ref
, node
->action
);
1654 if (node
->type
== BTRFS_SHARED_BLOCK_REF_KEY
)
1655 parent
= ref
->parent
;
1656 ref_root
= ref
->root
;
1658 if (node
->ref_mod
!= 1) {
1659 btrfs_err(trans
->fs_info
,
1660 "btree block(%llu) has %d references rather than 1: action %d ref_root %llu parent %llu",
1661 node
->bytenr
, node
->ref_mod
, node
->action
, ref_root
,
1665 if (node
->action
== BTRFS_ADD_DELAYED_REF
&& insert_reserved
) {
1666 BUG_ON(!extent_op
|| !extent_op
->update_flags
);
1667 ret
= alloc_reserved_tree_block(trans
, node
, extent_op
);
1668 } else if (node
->action
== BTRFS_ADD_DELAYED_REF
) {
1669 ret
= __btrfs_inc_extent_ref(trans
, node
, parent
, ref_root
,
1670 ref
->level
, 0, 1, extent_op
);
1671 } else if (node
->action
== BTRFS_DROP_DELAYED_REF
) {
1672 ret
= __btrfs_free_extent(trans
, node
, parent
, ref_root
,
1673 ref
->level
, 0, 1, extent_op
);
1680 /* helper function to actually process a single delayed ref entry */
1681 static int run_one_delayed_ref(struct btrfs_trans_handle
*trans
,
1682 struct btrfs_delayed_ref_node
*node
,
1683 struct btrfs_delayed_extent_op
*extent_op
,
1684 int insert_reserved
)
1688 if (TRANS_ABORTED(trans
)) {
1689 if (insert_reserved
)
1690 btrfs_pin_extent(trans
, node
->bytenr
, node
->num_bytes
, 1);
1694 if (node
->type
== BTRFS_TREE_BLOCK_REF_KEY
||
1695 node
->type
== BTRFS_SHARED_BLOCK_REF_KEY
)
1696 ret
= run_delayed_tree_ref(trans
, node
, extent_op
,
1698 else if (node
->type
== BTRFS_EXTENT_DATA_REF_KEY
||
1699 node
->type
== BTRFS_SHARED_DATA_REF_KEY
)
1700 ret
= run_delayed_data_ref(trans
, node
, extent_op
,
1704 if (ret
&& insert_reserved
)
1705 btrfs_pin_extent(trans
, node
->bytenr
, node
->num_bytes
, 1);
1709 static inline struct btrfs_delayed_ref_node
*
1710 select_delayed_ref(struct btrfs_delayed_ref_head
*head
)
1712 struct btrfs_delayed_ref_node
*ref
;
1714 if (RB_EMPTY_ROOT(&head
->ref_tree
.rb_root
))
1718 * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first.
1719 * This is to prevent a ref count from going down to zero, which deletes
1720 * the extent item from the extent tree, when there still are references
1721 * to add, which would fail because they would not find the extent item.
1723 if (!list_empty(&head
->ref_add_list
))
1724 return list_first_entry(&head
->ref_add_list
,
1725 struct btrfs_delayed_ref_node
, add_list
);
1727 ref
= rb_entry(rb_first_cached(&head
->ref_tree
),
1728 struct btrfs_delayed_ref_node
, ref_node
);
1729 ASSERT(list_empty(&ref
->add_list
));
1733 static void unselect_delayed_ref_head(struct btrfs_delayed_ref_root
*delayed_refs
,
1734 struct btrfs_delayed_ref_head
*head
)
1736 spin_lock(&delayed_refs
->lock
);
1737 head
->processing
= 0;
1738 delayed_refs
->num_heads_ready
++;
1739 spin_unlock(&delayed_refs
->lock
);
1740 btrfs_delayed_ref_unlock(head
);
1743 static struct btrfs_delayed_extent_op
*cleanup_extent_op(
1744 struct btrfs_delayed_ref_head
*head
)
1746 struct btrfs_delayed_extent_op
*extent_op
= head
->extent_op
;
1751 if (head
->must_insert_reserved
) {
1752 head
->extent_op
= NULL
;
1753 btrfs_free_delayed_extent_op(extent_op
);
1759 static int run_and_cleanup_extent_op(struct btrfs_trans_handle
*trans
,
1760 struct btrfs_delayed_ref_head
*head
)
1762 struct btrfs_delayed_extent_op
*extent_op
;
1765 extent_op
= cleanup_extent_op(head
);
1768 head
->extent_op
= NULL
;
1769 spin_unlock(&head
->lock
);
1770 ret
= run_delayed_extent_op(trans
, head
, extent_op
);
1771 btrfs_free_delayed_extent_op(extent_op
);
1772 return ret
? ret
: 1;
1775 void btrfs_cleanup_ref_head_accounting(struct btrfs_fs_info
*fs_info
,
1776 struct btrfs_delayed_ref_root
*delayed_refs
,
1777 struct btrfs_delayed_ref_head
*head
)
1779 int nr_items
= 1; /* Dropping this ref head update. */
1781 if (head
->total_ref_mod
< 0) {
1782 struct btrfs_space_info
*space_info
;
1786 flags
= BTRFS_BLOCK_GROUP_DATA
;
1787 else if (head
->is_system
)
1788 flags
= BTRFS_BLOCK_GROUP_SYSTEM
;
1790 flags
= BTRFS_BLOCK_GROUP_METADATA
;
1791 space_info
= btrfs_find_space_info(fs_info
, flags
);
1793 percpu_counter_add_batch(&space_info
->total_bytes_pinned
,
1795 BTRFS_TOTAL_BYTES_PINNED_BATCH
);
1798 * We had csum deletions accounted for in our delayed refs rsv,
1799 * we need to drop the csum leaves for this update from our
1802 if (head
->is_data
) {
1803 spin_lock(&delayed_refs
->lock
);
1804 delayed_refs
->pending_csums
-= head
->num_bytes
;
1805 spin_unlock(&delayed_refs
->lock
);
1806 nr_items
+= btrfs_csum_bytes_to_leaves(fs_info
,
1811 btrfs_delayed_refs_rsv_release(fs_info
, nr_items
);
1814 static int cleanup_ref_head(struct btrfs_trans_handle
*trans
,
1815 struct btrfs_delayed_ref_head
*head
)
1818 struct btrfs_fs_info
*fs_info
= trans
->fs_info
;
1819 struct btrfs_delayed_ref_root
*delayed_refs
;
1822 delayed_refs
= &trans
->transaction
->delayed_refs
;
1824 ret
= run_and_cleanup_extent_op(trans
, head
);
1826 unselect_delayed_ref_head(delayed_refs
, head
);
1827 btrfs_debug(fs_info
, "run_delayed_extent_op returned %d", ret
);
1834 * Need to drop our head ref lock and re-acquire the delayed ref lock
1835 * and then re-check to make sure nobody got added.
1837 spin_unlock(&head
->lock
);
1838 spin_lock(&delayed_refs
->lock
);
1839 spin_lock(&head
->lock
);
1840 if (!RB_EMPTY_ROOT(&head
->ref_tree
.rb_root
) || head
->extent_op
) {
1841 spin_unlock(&head
->lock
);
1842 spin_unlock(&delayed_refs
->lock
);
1845 btrfs_delete_ref_head(delayed_refs
, head
);
1846 spin_unlock(&head
->lock
);
1847 spin_unlock(&delayed_refs
->lock
);
1849 if (head
->must_insert_reserved
) {
1850 btrfs_pin_extent(trans
, head
->bytenr
, head
->num_bytes
, 1);
1851 if (head
->is_data
) {
1852 ret
= btrfs_del_csums(trans
, fs_info
->csum_root
,
1853 head
->bytenr
, head
->num_bytes
);
1857 btrfs_cleanup_ref_head_accounting(fs_info
, delayed_refs
, head
);
1859 trace_run_delayed_ref_head(fs_info
, head
, 0);
1860 btrfs_delayed_ref_unlock(head
);
1861 btrfs_put_delayed_ref_head(head
);
1865 static struct btrfs_delayed_ref_head
*btrfs_obtain_ref_head(
1866 struct btrfs_trans_handle
*trans
)
1868 struct btrfs_delayed_ref_root
*delayed_refs
=
1869 &trans
->transaction
->delayed_refs
;
1870 struct btrfs_delayed_ref_head
*head
= NULL
;
1873 spin_lock(&delayed_refs
->lock
);
1874 head
= btrfs_select_ref_head(delayed_refs
);
1876 spin_unlock(&delayed_refs
->lock
);
1881 * Grab the lock that says we are going to process all the refs for
1884 ret
= btrfs_delayed_ref_lock(delayed_refs
, head
);
1885 spin_unlock(&delayed_refs
->lock
);
1888 * We may have dropped the spin lock to get the head mutex lock, and
1889 * that might have given someone else time to free the head. If that's
1890 * true, it has been removed from our list and we can move on.
1893 head
= ERR_PTR(-EAGAIN
);
1898 static int btrfs_run_delayed_refs_for_head(struct btrfs_trans_handle
*trans
,
1899 struct btrfs_delayed_ref_head
*locked_ref
,
1900 unsigned long *run_refs
)
1902 struct btrfs_fs_info
*fs_info
= trans
->fs_info
;
1903 struct btrfs_delayed_ref_root
*delayed_refs
;
1904 struct btrfs_delayed_extent_op
*extent_op
;
1905 struct btrfs_delayed_ref_node
*ref
;
1906 int must_insert_reserved
= 0;
1909 delayed_refs
= &trans
->transaction
->delayed_refs
;
1911 lockdep_assert_held(&locked_ref
->mutex
);
1912 lockdep_assert_held(&locked_ref
->lock
);
1914 while ((ref
= select_delayed_ref(locked_ref
))) {
1916 btrfs_check_delayed_seq(fs_info
, ref
->seq
)) {
1917 spin_unlock(&locked_ref
->lock
);
1918 unselect_delayed_ref_head(delayed_refs
, locked_ref
);
1924 rb_erase_cached(&ref
->ref_node
, &locked_ref
->ref_tree
);
1925 RB_CLEAR_NODE(&ref
->ref_node
);
1926 if (!list_empty(&ref
->add_list
))
1927 list_del(&ref
->add_list
);
1929 * When we play the delayed ref, also correct the ref_mod on
1932 switch (ref
->action
) {
1933 case BTRFS_ADD_DELAYED_REF
:
1934 case BTRFS_ADD_DELAYED_EXTENT
:
1935 locked_ref
->ref_mod
-= ref
->ref_mod
;
1937 case BTRFS_DROP_DELAYED_REF
:
1938 locked_ref
->ref_mod
+= ref
->ref_mod
;
1943 atomic_dec(&delayed_refs
->num_entries
);
1946 * Record the must_insert_reserved flag before we drop the
1949 must_insert_reserved
= locked_ref
->must_insert_reserved
;
1950 locked_ref
->must_insert_reserved
= 0;
1952 extent_op
= locked_ref
->extent_op
;
1953 locked_ref
->extent_op
= NULL
;
1954 spin_unlock(&locked_ref
->lock
);
1956 ret
= run_one_delayed_ref(trans
, ref
, extent_op
,
1957 must_insert_reserved
);
1959 btrfs_free_delayed_extent_op(extent_op
);
1961 unselect_delayed_ref_head(delayed_refs
, locked_ref
);
1962 btrfs_put_delayed_ref(ref
);
1963 btrfs_debug(fs_info
, "run_one_delayed_ref returned %d",
1968 btrfs_put_delayed_ref(ref
);
1971 spin_lock(&locked_ref
->lock
);
1972 btrfs_merge_delayed_refs(trans
, delayed_refs
, locked_ref
);
1979 * Returns 0 on success or if called with an already aborted transaction.
1980 * Returns -ENOMEM or -EIO on failure and will abort the transaction.
1982 static noinline
int __btrfs_run_delayed_refs(struct btrfs_trans_handle
*trans
,
1985 struct btrfs_fs_info
*fs_info
= trans
->fs_info
;
1986 struct btrfs_delayed_ref_root
*delayed_refs
;
1987 struct btrfs_delayed_ref_head
*locked_ref
= NULL
;
1988 ktime_t start
= ktime_get();
1990 unsigned long count
= 0;
1991 unsigned long actual_count
= 0;
1993 delayed_refs
= &trans
->transaction
->delayed_refs
;
1996 locked_ref
= btrfs_obtain_ref_head(trans
);
1997 if (IS_ERR_OR_NULL(locked_ref
)) {
1998 if (PTR_ERR(locked_ref
) == -EAGAIN
) {
2007 * We need to try and merge add/drops of the same ref since we
2008 * can run into issues with relocate dropping the implicit ref
2009 * and then it being added back again before the drop can
2010 * finish. If we merged anything we need to re-loop so we can
2012 * Or we can get node references of the same type that weren't
2013 * merged when created due to bumps in the tree mod seq, and
2014 * we need to merge them to prevent adding an inline extent
2015 * backref before dropping it (triggering a BUG_ON at
2016 * insert_inline_extent_backref()).
2018 spin_lock(&locked_ref
->lock
);
2019 btrfs_merge_delayed_refs(trans
, delayed_refs
, locked_ref
);
2021 ret
= btrfs_run_delayed_refs_for_head(trans
, locked_ref
,
2023 if (ret
< 0 && ret
!= -EAGAIN
) {
2025 * Error, btrfs_run_delayed_refs_for_head already
2026 * unlocked everything so just bail out
2031 * Success, perform the usual cleanup of a processed
2034 ret
= cleanup_ref_head(trans
, locked_ref
);
2036 /* We dropped our lock, we need to loop. */
2045 * Either success case or btrfs_run_delayed_refs_for_head
2046 * returned -EAGAIN, meaning we need to select another head
2051 } while ((nr
!= -1 && count
< nr
) || locked_ref
);
2054 * We don't want to include ref heads since we can have empty ref heads
2055 * and those will drastically skew our runtime down since we just do
2056 * accounting, no actual extent tree updates.
2058 if (actual_count
> 0) {
2059 u64 runtime
= ktime_to_ns(ktime_sub(ktime_get(), start
));
2063 * We weigh the current average higher than our current runtime
2064 * to avoid large swings in the average.
2066 spin_lock(&delayed_refs
->lock
);
2067 avg
= fs_info
->avg_delayed_ref_runtime
* 3 + runtime
;
2068 fs_info
->avg_delayed_ref_runtime
= avg
>> 2; /* div by 4 */
2069 spin_unlock(&delayed_refs
->lock
);
2074 #ifdef SCRAMBLE_DELAYED_REFS
2076 * Normally delayed refs get processed in ascending bytenr order. This
2077 * correlates in most cases to the order added. To expose dependencies on this
2078 * order, we start to process the tree in the middle instead of the beginning
2080 static u64
find_middle(struct rb_root
*root
)
2082 struct rb_node
*n
= root
->rb_node
;
2083 struct btrfs_delayed_ref_node
*entry
;
2086 u64 first
= 0, last
= 0;
2090 entry
= rb_entry(n
, struct btrfs_delayed_ref_node
, rb_node
);
2091 first
= entry
->bytenr
;
2095 entry
= rb_entry(n
, struct btrfs_delayed_ref_node
, rb_node
);
2096 last
= entry
->bytenr
;
2101 entry
= rb_entry(n
, struct btrfs_delayed_ref_node
, rb_node
);
2102 WARN_ON(!entry
->in_tree
);
2104 middle
= entry
->bytenr
;
2118 * Takes the number of bytes to be csumm'ed and figures out how many leaves it
2119 * would require to store the csums for that many bytes.
2121 u64
btrfs_csum_bytes_to_leaves(struct btrfs_fs_info
*fs_info
, u64 csum_bytes
)
2124 u64 num_csums_per_leaf
;
2127 csum_size
= BTRFS_MAX_ITEM_SIZE(fs_info
);
2128 num_csums_per_leaf
= div64_u64(csum_size
,
2129 (u64
)btrfs_super_csum_size(fs_info
->super_copy
));
2130 num_csums
= div64_u64(csum_bytes
, fs_info
->sectorsize
);
2131 num_csums
+= num_csums_per_leaf
- 1;
2132 num_csums
= div64_u64(num_csums
, num_csums_per_leaf
);
2137 * this starts processing the delayed reference count updates and
2138 * extent insertions we have queued up so far. count can be
2139 * 0, which means to process everything in the tree at the start
2140 * of the run (but not newly added entries), or it can be some target
2141 * number you'd like to process.
2143 * Returns 0 on success or if called with an aborted transaction
2144 * Returns <0 on error and aborts the transaction
2146 int btrfs_run_delayed_refs(struct btrfs_trans_handle
*trans
,
2147 unsigned long count
)
2149 struct btrfs_fs_info
*fs_info
= trans
->fs_info
;
2150 struct rb_node
*node
;
2151 struct btrfs_delayed_ref_root
*delayed_refs
;
2152 struct btrfs_delayed_ref_head
*head
;
2154 int run_all
= count
== (unsigned long)-1;
2156 /* We'll clean this up in btrfs_cleanup_transaction */
2157 if (TRANS_ABORTED(trans
))
2160 if (test_bit(BTRFS_FS_CREATING_FREE_SPACE_TREE
, &fs_info
->flags
))
2163 delayed_refs
= &trans
->transaction
->delayed_refs
;
2165 count
= atomic_read(&delayed_refs
->num_entries
) * 2;
2168 #ifdef SCRAMBLE_DELAYED_REFS
2169 delayed_refs
->run_delayed_start
= find_middle(&delayed_refs
->root
);
2171 ret
= __btrfs_run_delayed_refs(trans
, count
);
2173 btrfs_abort_transaction(trans
, ret
);
2178 btrfs_create_pending_block_groups(trans
);
2180 spin_lock(&delayed_refs
->lock
);
2181 node
= rb_first_cached(&delayed_refs
->href_root
);
2183 spin_unlock(&delayed_refs
->lock
);
2186 head
= rb_entry(node
, struct btrfs_delayed_ref_head
,
2188 refcount_inc(&head
->refs
);
2189 spin_unlock(&delayed_refs
->lock
);
2191 /* Mutex was contended, block until it's released and retry. */
2192 mutex_lock(&head
->mutex
);
2193 mutex_unlock(&head
->mutex
);
2195 btrfs_put_delayed_ref_head(head
);
2203 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle
*trans
,
2204 struct extent_buffer
*eb
, u64 flags
,
2205 int level
, int is_data
)
2207 struct btrfs_delayed_extent_op
*extent_op
;
2210 extent_op
= btrfs_alloc_delayed_extent_op();
2214 extent_op
->flags_to_set
= flags
;
2215 extent_op
->update_flags
= true;
2216 extent_op
->update_key
= false;
2217 extent_op
->is_data
= is_data
? true : false;
2218 extent_op
->level
= level
;
2220 ret
= btrfs_add_delayed_extent_op(trans
, eb
->start
, eb
->len
, extent_op
);
2222 btrfs_free_delayed_extent_op(extent_op
);
2226 static noinline
int check_delayed_ref(struct btrfs_root
*root
,
2227 struct btrfs_path
*path
,
2228 u64 objectid
, u64 offset
, u64 bytenr
)
2230 struct btrfs_delayed_ref_head
*head
;
2231 struct btrfs_delayed_ref_node
*ref
;
2232 struct btrfs_delayed_data_ref
*data_ref
;
2233 struct btrfs_delayed_ref_root
*delayed_refs
;
2234 struct btrfs_transaction
*cur_trans
;
2235 struct rb_node
*node
;
2238 spin_lock(&root
->fs_info
->trans_lock
);
2239 cur_trans
= root
->fs_info
->running_transaction
;
2241 refcount_inc(&cur_trans
->use_count
);
2242 spin_unlock(&root
->fs_info
->trans_lock
);
2246 delayed_refs
= &cur_trans
->delayed_refs
;
2247 spin_lock(&delayed_refs
->lock
);
2248 head
= btrfs_find_delayed_ref_head(delayed_refs
, bytenr
);
2250 spin_unlock(&delayed_refs
->lock
);
2251 btrfs_put_transaction(cur_trans
);
2255 if (!mutex_trylock(&head
->mutex
)) {
2256 refcount_inc(&head
->refs
);
2257 spin_unlock(&delayed_refs
->lock
);
2259 btrfs_release_path(path
);
2262 * Mutex was contended, block until it's released and let
2265 mutex_lock(&head
->mutex
);
2266 mutex_unlock(&head
->mutex
);
2267 btrfs_put_delayed_ref_head(head
);
2268 btrfs_put_transaction(cur_trans
);
2271 spin_unlock(&delayed_refs
->lock
);
2273 spin_lock(&head
->lock
);
2275 * XXX: We should replace this with a proper search function in the
2278 for (node
= rb_first_cached(&head
->ref_tree
); node
;
2279 node
= rb_next(node
)) {
2280 ref
= rb_entry(node
, struct btrfs_delayed_ref_node
, ref_node
);
2281 /* If it's a shared ref we know a cross reference exists */
2282 if (ref
->type
!= BTRFS_EXTENT_DATA_REF_KEY
) {
2287 data_ref
= btrfs_delayed_node_to_data_ref(ref
);
2290 * If our ref doesn't match the one we're currently looking at
2291 * then we have a cross reference.
2293 if (data_ref
->root
!= root
->root_key
.objectid
||
2294 data_ref
->objectid
!= objectid
||
2295 data_ref
->offset
!= offset
) {
2300 spin_unlock(&head
->lock
);
2301 mutex_unlock(&head
->mutex
);
2302 btrfs_put_transaction(cur_trans
);
2306 static noinline
int check_committed_ref(struct btrfs_root
*root
,
2307 struct btrfs_path
*path
,
2308 u64 objectid
, u64 offset
, u64 bytenr
)
2310 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
2311 struct btrfs_root
*extent_root
= fs_info
->extent_root
;
2312 struct extent_buffer
*leaf
;
2313 struct btrfs_extent_data_ref
*ref
;
2314 struct btrfs_extent_inline_ref
*iref
;
2315 struct btrfs_extent_item
*ei
;
2316 struct btrfs_key key
;
2321 key
.objectid
= bytenr
;
2322 key
.offset
= (u64
)-1;
2323 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
2325 ret
= btrfs_search_slot(NULL
, extent_root
, &key
, path
, 0, 0);
2328 BUG_ON(ret
== 0); /* Corruption */
2331 if (path
->slots
[0] == 0)
2335 leaf
= path
->nodes
[0];
2336 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
2338 if (key
.objectid
!= bytenr
|| key
.type
!= BTRFS_EXTENT_ITEM_KEY
)
2342 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
2343 ei
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_extent_item
);
2345 /* If extent item has more than 1 inline ref then it's shared */
2346 if (item_size
!= sizeof(*ei
) +
2347 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY
))
2350 /* If extent created before last snapshot => it's definitely shared */
2351 if (btrfs_extent_generation(leaf
, ei
) <=
2352 btrfs_root_last_snapshot(&root
->root_item
))
2355 iref
= (struct btrfs_extent_inline_ref
*)(ei
+ 1);
2357 /* If this extent has SHARED_DATA_REF then it's shared */
2358 type
= btrfs_get_extent_inline_ref_type(leaf
, iref
, BTRFS_REF_TYPE_DATA
);
2359 if (type
!= BTRFS_EXTENT_DATA_REF_KEY
)
2362 ref
= (struct btrfs_extent_data_ref
*)(&iref
->offset
);
2363 if (btrfs_extent_refs(leaf
, ei
) !=
2364 btrfs_extent_data_ref_count(leaf
, ref
) ||
2365 btrfs_extent_data_ref_root(leaf
, ref
) !=
2366 root
->root_key
.objectid
||
2367 btrfs_extent_data_ref_objectid(leaf
, ref
) != objectid
||
2368 btrfs_extent_data_ref_offset(leaf
, ref
) != offset
)
2376 int btrfs_cross_ref_exist(struct btrfs_root
*root
, u64 objectid
, u64 offset
,
2379 struct btrfs_path
*path
;
2382 path
= btrfs_alloc_path();
2387 ret
= check_committed_ref(root
, path
, objectid
,
2389 if (ret
&& ret
!= -ENOENT
)
2392 ret
= check_delayed_ref(root
, path
, objectid
, offset
, bytenr
);
2393 } while (ret
== -EAGAIN
);
2396 btrfs_free_path(path
);
2397 if (root
->root_key
.objectid
== BTRFS_DATA_RELOC_TREE_OBJECTID
)
2402 static int __btrfs_mod_ref(struct btrfs_trans_handle
*trans
,
2403 struct btrfs_root
*root
,
2404 struct extent_buffer
*buf
,
2405 int full_backref
, int inc
)
2407 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
2413 struct btrfs_key key
;
2414 struct btrfs_file_extent_item
*fi
;
2415 struct btrfs_ref generic_ref
= { 0 };
2416 bool for_reloc
= btrfs_header_flag(buf
, BTRFS_HEADER_FLAG_RELOC
);
2422 if (btrfs_is_testing(fs_info
))
2425 ref_root
= btrfs_header_owner(buf
);
2426 nritems
= btrfs_header_nritems(buf
);
2427 level
= btrfs_header_level(buf
);
2429 if (!test_bit(BTRFS_ROOT_SHAREABLE
, &root
->state
) && level
== 0)
2433 parent
= buf
->start
;
2437 action
= BTRFS_ADD_DELAYED_REF
;
2439 action
= BTRFS_DROP_DELAYED_REF
;
2441 for (i
= 0; i
< nritems
; i
++) {
2443 btrfs_item_key_to_cpu(buf
, &key
, i
);
2444 if (key
.type
!= BTRFS_EXTENT_DATA_KEY
)
2446 fi
= btrfs_item_ptr(buf
, i
,
2447 struct btrfs_file_extent_item
);
2448 if (btrfs_file_extent_type(buf
, fi
) ==
2449 BTRFS_FILE_EXTENT_INLINE
)
2451 bytenr
= btrfs_file_extent_disk_bytenr(buf
, fi
);
2455 num_bytes
= btrfs_file_extent_disk_num_bytes(buf
, fi
);
2456 key
.offset
-= btrfs_file_extent_offset(buf
, fi
);
2457 btrfs_init_generic_ref(&generic_ref
, action
, bytenr
,
2459 generic_ref
.real_root
= root
->root_key
.objectid
;
2460 btrfs_init_data_ref(&generic_ref
, ref_root
, key
.objectid
,
2462 generic_ref
.skip_qgroup
= for_reloc
;
2464 ret
= btrfs_inc_extent_ref(trans
, &generic_ref
);
2466 ret
= btrfs_free_extent(trans
, &generic_ref
);
2470 bytenr
= btrfs_node_blockptr(buf
, i
);
2471 num_bytes
= fs_info
->nodesize
;
2472 btrfs_init_generic_ref(&generic_ref
, action
, bytenr
,
2474 generic_ref
.real_root
= root
->root_key
.objectid
;
2475 btrfs_init_tree_ref(&generic_ref
, level
- 1, ref_root
);
2476 generic_ref
.skip_qgroup
= for_reloc
;
2478 ret
= btrfs_inc_extent_ref(trans
, &generic_ref
);
2480 ret
= btrfs_free_extent(trans
, &generic_ref
);
2490 int btrfs_inc_ref(struct btrfs_trans_handle
*trans
, struct btrfs_root
*root
,
2491 struct extent_buffer
*buf
, int full_backref
)
2493 return __btrfs_mod_ref(trans
, root
, buf
, full_backref
, 1);
2496 int btrfs_dec_ref(struct btrfs_trans_handle
*trans
, struct btrfs_root
*root
,
2497 struct extent_buffer
*buf
, int full_backref
)
2499 return __btrfs_mod_ref(trans
, root
, buf
, full_backref
, 0);
2502 int btrfs_extent_readonly(struct btrfs_fs_info
*fs_info
, u64 bytenr
)
2504 struct btrfs_block_group
*block_group
;
2507 block_group
= btrfs_lookup_block_group(fs_info
, bytenr
);
2508 if (!block_group
|| block_group
->ro
)
2511 btrfs_put_block_group(block_group
);
2515 static u64
get_alloc_profile_by_root(struct btrfs_root
*root
, int data
)
2517 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
2522 flags
= BTRFS_BLOCK_GROUP_DATA
;
2523 else if (root
== fs_info
->chunk_root
)
2524 flags
= BTRFS_BLOCK_GROUP_SYSTEM
;
2526 flags
= BTRFS_BLOCK_GROUP_METADATA
;
2528 ret
= btrfs_get_alloc_profile(fs_info
, flags
);
2532 static u64
first_logical_byte(struct btrfs_fs_info
*fs_info
, u64 search_start
)
2534 struct btrfs_block_group
*cache
;
2537 spin_lock(&fs_info
->block_group_cache_lock
);
2538 bytenr
= fs_info
->first_logical_byte
;
2539 spin_unlock(&fs_info
->block_group_cache_lock
);
2541 if (bytenr
< (u64
)-1)
2544 cache
= btrfs_lookup_first_block_group(fs_info
, search_start
);
2548 bytenr
= cache
->start
;
2549 btrfs_put_block_group(cache
);
2554 static int pin_down_extent(struct btrfs_trans_handle
*trans
,
2555 struct btrfs_block_group
*cache
,
2556 u64 bytenr
, u64 num_bytes
, int reserved
)
2558 struct btrfs_fs_info
*fs_info
= cache
->fs_info
;
2560 spin_lock(&cache
->space_info
->lock
);
2561 spin_lock(&cache
->lock
);
2562 cache
->pinned
+= num_bytes
;
2563 btrfs_space_info_update_bytes_pinned(fs_info
, cache
->space_info
,
2566 cache
->reserved
-= num_bytes
;
2567 cache
->space_info
->bytes_reserved
-= num_bytes
;
2569 spin_unlock(&cache
->lock
);
2570 spin_unlock(&cache
->space_info
->lock
);
2572 percpu_counter_add_batch(&cache
->space_info
->total_bytes_pinned
,
2573 num_bytes
, BTRFS_TOTAL_BYTES_PINNED_BATCH
);
2574 set_extent_dirty(&trans
->transaction
->pinned_extents
, bytenr
,
2575 bytenr
+ num_bytes
- 1, GFP_NOFS
| __GFP_NOFAIL
);
2579 int btrfs_pin_extent(struct btrfs_trans_handle
*trans
,
2580 u64 bytenr
, u64 num_bytes
, int reserved
)
2582 struct btrfs_block_group
*cache
;
2584 cache
= btrfs_lookup_block_group(trans
->fs_info
, bytenr
);
2585 BUG_ON(!cache
); /* Logic error */
2587 pin_down_extent(trans
, cache
, bytenr
, num_bytes
, reserved
);
2589 btrfs_put_block_group(cache
);
2594 * this function must be called within transaction
2596 int btrfs_pin_extent_for_log_replay(struct btrfs_trans_handle
*trans
,
2597 u64 bytenr
, u64 num_bytes
)
2599 struct btrfs_block_group
*cache
;
2602 btrfs_add_excluded_extent(trans
->fs_info
, bytenr
, num_bytes
);
2604 cache
= btrfs_lookup_block_group(trans
->fs_info
, bytenr
);
2609 * pull in the free space cache (if any) so that our pin
2610 * removes the free space from the cache. We have load_only set
2611 * to one because the slow code to read in the free extents does check
2612 * the pinned extents.
2614 btrfs_cache_block_group(cache
, 1);
2616 pin_down_extent(trans
, cache
, bytenr
, num_bytes
, 0);
2618 /* remove us from the free space cache (if we're there at all) */
2619 ret
= btrfs_remove_free_space(cache
, bytenr
, num_bytes
);
2620 btrfs_put_block_group(cache
);
2624 static int __exclude_logged_extent(struct btrfs_fs_info
*fs_info
,
2625 u64 start
, u64 num_bytes
)
2628 struct btrfs_block_group
*block_group
;
2629 struct btrfs_caching_control
*caching_ctl
;
2631 block_group
= btrfs_lookup_block_group(fs_info
, start
);
2635 btrfs_cache_block_group(block_group
, 0);
2636 caching_ctl
= btrfs_get_caching_control(block_group
);
2640 BUG_ON(!btrfs_block_group_done(block_group
));
2641 ret
= btrfs_remove_free_space(block_group
, start
, num_bytes
);
2643 mutex_lock(&caching_ctl
->mutex
);
2645 if (start
>= caching_ctl
->progress
) {
2646 ret
= btrfs_add_excluded_extent(fs_info
, start
,
2648 } else if (start
+ num_bytes
<= caching_ctl
->progress
) {
2649 ret
= btrfs_remove_free_space(block_group
,
2652 num_bytes
= caching_ctl
->progress
- start
;
2653 ret
= btrfs_remove_free_space(block_group
,
2658 num_bytes
= (start
+ num_bytes
) -
2659 caching_ctl
->progress
;
2660 start
= caching_ctl
->progress
;
2661 ret
= btrfs_add_excluded_extent(fs_info
, start
,
2665 mutex_unlock(&caching_ctl
->mutex
);
2666 btrfs_put_caching_control(caching_ctl
);
2668 btrfs_put_block_group(block_group
);
2672 int btrfs_exclude_logged_extents(struct extent_buffer
*eb
)
2674 struct btrfs_fs_info
*fs_info
= eb
->fs_info
;
2675 struct btrfs_file_extent_item
*item
;
2676 struct btrfs_key key
;
2681 if (!btrfs_fs_incompat(fs_info
, MIXED_GROUPS
))
2684 for (i
= 0; i
< btrfs_header_nritems(eb
); i
++) {
2685 btrfs_item_key_to_cpu(eb
, &key
, i
);
2686 if (key
.type
!= BTRFS_EXTENT_DATA_KEY
)
2688 item
= btrfs_item_ptr(eb
, i
, struct btrfs_file_extent_item
);
2689 found_type
= btrfs_file_extent_type(eb
, item
);
2690 if (found_type
== BTRFS_FILE_EXTENT_INLINE
)
2692 if (btrfs_file_extent_disk_bytenr(eb
, item
) == 0)
2694 key
.objectid
= btrfs_file_extent_disk_bytenr(eb
, item
);
2695 key
.offset
= btrfs_file_extent_disk_num_bytes(eb
, item
);
2696 ret
= __exclude_logged_extent(fs_info
, key
.objectid
, key
.offset
);
2705 btrfs_inc_block_group_reservations(struct btrfs_block_group
*bg
)
2707 atomic_inc(&bg
->reservations
);
2710 void btrfs_prepare_extent_commit(struct btrfs_fs_info
*fs_info
)
2712 struct btrfs_caching_control
*next
;
2713 struct btrfs_caching_control
*caching_ctl
;
2714 struct btrfs_block_group
*cache
;
2716 down_write(&fs_info
->commit_root_sem
);
2718 list_for_each_entry_safe(caching_ctl
, next
,
2719 &fs_info
->caching_block_groups
, list
) {
2720 cache
= caching_ctl
->block_group
;
2721 if (btrfs_block_group_done(cache
)) {
2722 cache
->last_byte_to_unpin
= (u64
)-1;
2723 list_del_init(&caching_ctl
->list
);
2724 btrfs_put_caching_control(caching_ctl
);
2726 cache
->last_byte_to_unpin
= caching_ctl
->progress
;
2730 up_write(&fs_info
->commit_root_sem
);
2732 btrfs_update_global_block_rsv(fs_info
);
2736 * Returns the free cluster for the given space info and sets empty_cluster to
2737 * what it should be based on the mount options.
2739 static struct btrfs_free_cluster
*
2740 fetch_cluster_info(struct btrfs_fs_info
*fs_info
,
2741 struct btrfs_space_info
*space_info
, u64
*empty_cluster
)
2743 struct btrfs_free_cluster
*ret
= NULL
;
2746 if (btrfs_mixed_space_info(space_info
))
2749 if (space_info
->flags
& BTRFS_BLOCK_GROUP_METADATA
) {
2750 ret
= &fs_info
->meta_alloc_cluster
;
2751 if (btrfs_test_opt(fs_info
, SSD
))
2752 *empty_cluster
= SZ_2M
;
2754 *empty_cluster
= SZ_64K
;
2755 } else if ((space_info
->flags
& BTRFS_BLOCK_GROUP_DATA
) &&
2756 btrfs_test_opt(fs_info
, SSD_SPREAD
)) {
2757 *empty_cluster
= SZ_2M
;
2758 ret
= &fs_info
->data_alloc_cluster
;
2764 static int unpin_extent_range(struct btrfs_fs_info
*fs_info
,
2766 const bool return_free_space
)
2768 struct btrfs_block_group
*cache
= NULL
;
2769 struct btrfs_space_info
*space_info
;
2770 struct btrfs_block_rsv
*global_rsv
= &fs_info
->global_block_rsv
;
2771 struct btrfs_free_cluster
*cluster
= NULL
;
2773 u64 total_unpinned
= 0;
2774 u64 empty_cluster
= 0;
2777 while (start
<= end
) {
2780 start
>= cache
->start
+ cache
->length
) {
2782 btrfs_put_block_group(cache
);
2784 cache
= btrfs_lookup_block_group(fs_info
, start
);
2785 BUG_ON(!cache
); /* Logic error */
2787 cluster
= fetch_cluster_info(fs_info
,
2790 empty_cluster
<<= 1;
2793 len
= cache
->start
+ cache
->length
- start
;
2794 len
= min(len
, end
+ 1 - start
);
2796 if (start
< cache
->last_byte_to_unpin
) {
2797 len
= min(len
, cache
->last_byte_to_unpin
- start
);
2798 if (return_free_space
)
2799 btrfs_add_free_space(cache
, start
, len
);
2803 total_unpinned
+= len
;
2804 space_info
= cache
->space_info
;
2807 * If this space cluster has been marked as fragmented and we've
2808 * unpinned enough in this block group to potentially allow a
2809 * cluster to be created inside of it go ahead and clear the
2812 if (cluster
&& cluster
->fragmented
&&
2813 total_unpinned
> empty_cluster
) {
2814 spin_lock(&cluster
->lock
);
2815 cluster
->fragmented
= 0;
2816 spin_unlock(&cluster
->lock
);
2819 spin_lock(&space_info
->lock
);
2820 spin_lock(&cache
->lock
);
2821 cache
->pinned
-= len
;
2822 btrfs_space_info_update_bytes_pinned(fs_info
, space_info
, -len
);
2823 space_info
->max_extent_size
= 0;
2824 percpu_counter_add_batch(&space_info
->total_bytes_pinned
,
2825 -len
, BTRFS_TOTAL_BYTES_PINNED_BATCH
);
2827 space_info
->bytes_readonly
+= len
;
2830 spin_unlock(&cache
->lock
);
2831 if (!readonly
&& return_free_space
&&
2832 global_rsv
->space_info
== space_info
) {
2835 spin_lock(&global_rsv
->lock
);
2836 if (!global_rsv
->full
) {
2837 to_add
= min(len
, global_rsv
->size
-
2838 global_rsv
->reserved
);
2839 global_rsv
->reserved
+= to_add
;
2840 btrfs_space_info_update_bytes_may_use(fs_info
,
2841 space_info
, to_add
);
2842 if (global_rsv
->reserved
>= global_rsv
->size
)
2843 global_rsv
->full
= 1;
2846 spin_unlock(&global_rsv
->lock
);
2847 /* Add to any tickets we may have */
2849 btrfs_try_granting_tickets(fs_info
,
2852 spin_unlock(&space_info
->lock
);
2856 btrfs_put_block_group(cache
);
2860 int btrfs_finish_extent_commit(struct btrfs_trans_handle
*trans
)
2862 struct btrfs_fs_info
*fs_info
= trans
->fs_info
;
2863 struct btrfs_block_group
*block_group
, *tmp
;
2864 struct list_head
*deleted_bgs
;
2865 struct extent_io_tree
*unpin
;
2870 unpin
= &trans
->transaction
->pinned_extents
;
2872 while (!TRANS_ABORTED(trans
)) {
2873 struct extent_state
*cached_state
= NULL
;
2875 mutex_lock(&fs_info
->unused_bg_unpin_mutex
);
2876 ret
= find_first_extent_bit(unpin
, 0, &start
, &end
,
2877 EXTENT_DIRTY
, &cached_state
);
2879 mutex_unlock(&fs_info
->unused_bg_unpin_mutex
);
2882 if (test_bit(BTRFS_FS_LOG_RECOVERING
, &fs_info
->flags
))
2883 clear_extent_bits(&fs_info
->excluded_extents
, start
,
2884 end
, EXTENT_UPTODATE
);
2886 if (btrfs_test_opt(fs_info
, DISCARD_SYNC
))
2887 ret
= btrfs_discard_extent(fs_info
, start
,
2888 end
+ 1 - start
, NULL
);
2890 clear_extent_dirty(unpin
, start
, end
, &cached_state
);
2891 unpin_extent_range(fs_info
, start
, end
, true);
2892 mutex_unlock(&fs_info
->unused_bg_unpin_mutex
);
2893 free_extent_state(cached_state
);
2897 if (btrfs_test_opt(fs_info
, DISCARD_ASYNC
)) {
2898 btrfs_discard_calc_delay(&fs_info
->discard_ctl
);
2899 btrfs_discard_schedule_work(&fs_info
->discard_ctl
, true);
2903 * Transaction is finished. We don't need the lock anymore. We
2904 * do need to clean up the block groups in case of a transaction
2907 deleted_bgs
= &trans
->transaction
->deleted_bgs
;
2908 list_for_each_entry_safe(block_group
, tmp
, deleted_bgs
, bg_list
) {
2912 if (!TRANS_ABORTED(trans
))
2913 ret
= btrfs_discard_extent(fs_info
,
2915 block_group
->length
,
2918 list_del_init(&block_group
->bg_list
);
2919 btrfs_unfreeze_block_group(block_group
);
2920 btrfs_put_block_group(block_group
);
2923 const char *errstr
= btrfs_decode_error(ret
);
2925 "discard failed while removing blockgroup: errno=%d %s",
2933 static int __btrfs_free_extent(struct btrfs_trans_handle
*trans
,
2934 struct btrfs_delayed_ref_node
*node
, u64 parent
,
2935 u64 root_objectid
, u64 owner_objectid
,
2936 u64 owner_offset
, int refs_to_drop
,
2937 struct btrfs_delayed_extent_op
*extent_op
)
2939 struct btrfs_fs_info
*info
= trans
->fs_info
;
2940 struct btrfs_key key
;
2941 struct btrfs_path
*path
;
2942 struct btrfs_root
*extent_root
= info
->extent_root
;
2943 struct extent_buffer
*leaf
;
2944 struct btrfs_extent_item
*ei
;
2945 struct btrfs_extent_inline_ref
*iref
;
2948 int extent_slot
= 0;
2949 int found_extent
= 0;
2953 u64 bytenr
= node
->bytenr
;
2954 u64 num_bytes
= node
->num_bytes
;
2956 bool skinny_metadata
= btrfs_fs_incompat(info
, SKINNY_METADATA
);
2958 path
= btrfs_alloc_path();
2962 path
->leave_spinning
= 1;
2964 is_data
= owner_objectid
>= BTRFS_FIRST_FREE_OBJECTID
;
2965 BUG_ON(!is_data
&& refs_to_drop
!= 1);
2968 skinny_metadata
= false;
2970 ret
= lookup_extent_backref(trans
, path
, &iref
, bytenr
, num_bytes
,
2971 parent
, root_objectid
, owner_objectid
,
2974 extent_slot
= path
->slots
[0];
2975 while (extent_slot
>= 0) {
2976 btrfs_item_key_to_cpu(path
->nodes
[0], &key
,
2978 if (key
.objectid
!= bytenr
)
2980 if (key
.type
== BTRFS_EXTENT_ITEM_KEY
&&
2981 key
.offset
== num_bytes
) {
2985 if (key
.type
== BTRFS_METADATA_ITEM_KEY
&&
2986 key
.offset
== owner_objectid
) {
2990 if (path
->slots
[0] - extent_slot
> 5)
2995 if (!found_extent
) {
2997 ret
= remove_extent_backref(trans
, path
, NULL
,
2999 is_data
, &last_ref
);
3001 btrfs_abort_transaction(trans
, ret
);
3004 btrfs_release_path(path
);
3005 path
->leave_spinning
= 1;
3007 key
.objectid
= bytenr
;
3008 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
3009 key
.offset
= num_bytes
;
3011 if (!is_data
&& skinny_metadata
) {
3012 key
.type
= BTRFS_METADATA_ITEM_KEY
;
3013 key
.offset
= owner_objectid
;
3016 ret
= btrfs_search_slot(trans
, extent_root
,
3018 if (ret
> 0 && skinny_metadata
&& path
->slots
[0]) {
3020 * Couldn't find our skinny metadata item,
3021 * see if we have ye olde extent item.
3024 btrfs_item_key_to_cpu(path
->nodes
[0], &key
,
3026 if (key
.objectid
== bytenr
&&
3027 key
.type
== BTRFS_EXTENT_ITEM_KEY
&&
3028 key
.offset
== num_bytes
)
3032 if (ret
> 0 && skinny_metadata
) {
3033 skinny_metadata
= false;
3034 key
.objectid
= bytenr
;
3035 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
3036 key
.offset
= num_bytes
;
3037 btrfs_release_path(path
);
3038 ret
= btrfs_search_slot(trans
, extent_root
,
3044 "umm, got %d back from search, was looking for %llu",
3047 btrfs_print_leaf(path
->nodes
[0]);
3050 btrfs_abort_transaction(trans
, ret
);
3053 extent_slot
= path
->slots
[0];
3055 } else if (WARN_ON(ret
== -ENOENT
)) {
3056 btrfs_print_leaf(path
->nodes
[0]);
3058 "unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu",
3059 bytenr
, parent
, root_objectid
, owner_objectid
,
3061 btrfs_abort_transaction(trans
, ret
);
3064 btrfs_abort_transaction(trans
, ret
);
3068 leaf
= path
->nodes
[0];
3069 item_size
= btrfs_item_size_nr(leaf
, extent_slot
);
3070 if (unlikely(item_size
< sizeof(*ei
))) {
3072 btrfs_print_v0_err(info
);
3073 btrfs_abort_transaction(trans
, ret
);
3076 ei
= btrfs_item_ptr(leaf
, extent_slot
,
3077 struct btrfs_extent_item
);
3078 if (owner_objectid
< BTRFS_FIRST_FREE_OBJECTID
&&
3079 key
.type
== BTRFS_EXTENT_ITEM_KEY
) {
3080 struct btrfs_tree_block_info
*bi
;
3081 BUG_ON(item_size
< sizeof(*ei
) + sizeof(*bi
));
3082 bi
= (struct btrfs_tree_block_info
*)(ei
+ 1);
3083 WARN_ON(owner_objectid
!= btrfs_tree_block_level(leaf
, bi
));
3086 refs
= btrfs_extent_refs(leaf
, ei
);
3087 if (refs
< refs_to_drop
) {
3089 "trying to drop %d refs but we only have %Lu for bytenr %Lu",
3090 refs_to_drop
, refs
, bytenr
);
3092 btrfs_abort_transaction(trans
, ret
);
3095 refs
-= refs_to_drop
;
3099 __run_delayed_extent_op(extent_op
, leaf
, ei
);
3101 * In the case of inline back ref, reference count will
3102 * be updated by remove_extent_backref
3105 BUG_ON(!found_extent
);
3107 btrfs_set_extent_refs(leaf
, ei
, refs
);
3108 btrfs_mark_buffer_dirty(leaf
);
3111 ret
= remove_extent_backref(trans
, path
, iref
,
3112 refs_to_drop
, is_data
,
3115 btrfs_abort_transaction(trans
, ret
);
3121 BUG_ON(is_data
&& refs_to_drop
!=
3122 extent_data_ref_count(path
, iref
));
3124 BUG_ON(path
->slots
[0] != extent_slot
);
3126 BUG_ON(path
->slots
[0] != extent_slot
+ 1);
3127 path
->slots
[0] = extent_slot
;
3133 ret
= btrfs_del_items(trans
, extent_root
, path
, path
->slots
[0],
3136 btrfs_abort_transaction(trans
, ret
);
3139 btrfs_release_path(path
);
3142 ret
= btrfs_del_csums(trans
, info
->csum_root
, bytenr
,
3145 btrfs_abort_transaction(trans
, ret
);
3150 ret
= add_to_free_space_tree(trans
, bytenr
, num_bytes
);
3152 btrfs_abort_transaction(trans
, ret
);
3156 ret
= btrfs_update_block_group(trans
, bytenr
, num_bytes
, 0);
3158 btrfs_abort_transaction(trans
, ret
);
3162 btrfs_release_path(path
);
3165 btrfs_free_path(path
);
3170 * when we free an block, it is possible (and likely) that we free the last
3171 * delayed ref for that extent as well. This searches the delayed ref tree for
3172 * a given extent, and if there are no other delayed refs to be processed, it
3173 * removes it from the tree.
3175 static noinline
int check_ref_cleanup(struct btrfs_trans_handle
*trans
,
3178 struct btrfs_delayed_ref_head
*head
;
3179 struct btrfs_delayed_ref_root
*delayed_refs
;
3182 delayed_refs
= &trans
->transaction
->delayed_refs
;
3183 spin_lock(&delayed_refs
->lock
);
3184 head
= btrfs_find_delayed_ref_head(delayed_refs
, bytenr
);
3186 goto out_delayed_unlock
;
3188 spin_lock(&head
->lock
);
3189 if (!RB_EMPTY_ROOT(&head
->ref_tree
.rb_root
))
3192 if (cleanup_extent_op(head
) != NULL
)
3196 * waiting for the lock here would deadlock. If someone else has it
3197 * locked they are already in the process of dropping it anyway
3199 if (!mutex_trylock(&head
->mutex
))
3202 btrfs_delete_ref_head(delayed_refs
, head
);
3203 head
->processing
= 0;
3205 spin_unlock(&head
->lock
);
3206 spin_unlock(&delayed_refs
->lock
);
3208 BUG_ON(head
->extent_op
);
3209 if (head
->must_insert_reserved
)
3212 btrfs_cleanup_ref_head_accounting(trans
->fs_info
, delayed_refs
, head
);
3213 mutex_unlock(&head
->mutex
);
3214 btrfs_put_delayed_ref_head(head
);
3217 spin_unlock(&head
->lock
);
3220 spin_unlock(&delayed_refs
->lock
);
3224 void btrfs_free_tree_block(struct btrfs_trans_handle
*trans
,
3225 struct btrfs_root
*root
,
3226 struct extent_buffer
*buf
,
3227 u64 parent
, int last_ref
)
3229 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
3230 struct btrfs_ref generic_ref
= { 0 };
3234 btrfs_init_generic_ref(&generic_ref
, BTRFS_DROP_DELAYED_REF
,
3235 buf
->start
, buf
->len
, parent
);
3236 btrfs_init_tree_ref(&generic_ref
, btrfs_header_level(buf
),
3237 root
->root_key
.objectid
);
3239 if (root
->root_key
.objectid
!= BTRFS_TREE_LOG_OBJECTID
) {
3240 int old_ref_mod
, new_ref_mod
;
3242 btrfs_ref_tree_mod(fs_info
, &generic_ref
);
3243 ret
= btrfs_add_delayed_tree_ref(trans
, &generic_ref
, NULL
,
3244 &old_ref_mod
, &new_ref_mod
);
3245 BUG_ON(ret
); /* -ENOMEM */
3246 pin
= old_ref_mod
>= 0 && new_ref_mod
< 0;
3249 if (last_ref
&& btrfs_header_generation(buf
) == trans
->transid
) {
3250 struct btrfs_block_group
*cache
;
3252 if (root
->root_key
.objectid
!= BTRFS_TREE_LOG_OBJECTID
) {
3253 ret
= check_ref_cleanup(trans
, buf
->start
);
3259 cache
= btrfs_lookup_block_group(fs_info
, buf
->start
);
3261 if (btrfs_header_flag(buf
, BTRFS_HEADER_FLAG_WRITTEN
)) {
3262 pin_down_extent(trans
, cache
, buf
->start
, buf
->len
, 1);
3263 btrfs_put_block_group(cache
);
3267 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY
, &buf
->bflags
));
3269 btrfs_add_free_space(cache
, buf
->start
, buf
->len
);
3270 btrfs_free_reserved_bytes(cache
, buf
->len
, 0);
3271 btrfs_put_block_group(cache
);
3272 trace_btrfs_reserved_extent_free(fs_info
, buf
->start
, buf
->len
);
3276 add_pinned_bytes(fs_info
, &generic_ref
);
3280 * Deleting the buffer, clear the corrupt flag since it doesn't
3283 clear_bit(EXTENT_BUFFER_CORRUPT
, &buf
->bflags
);
3287 /* Can return -ENOMEM */
3288 int btrfs_free_extent(struct btrfs_trans_handle
*trans
, struct btrfs_ref
*ref
)
3290 struct btrfs_fs_info
*fs_info
= trans
->fs_info
;
3291 int old_ref_mod
, new_ref_mod
;
3294 if (btrfs_is_testing(fs_info
))
3298 * tree log blocks never actually go into the extent allocation
3299 * tree, just update pinning info and exit early.
3301 if ((ref
->type
== BTRFS_REF_METADATA
&&
3302 ref
->tree_ref
.root
== BTRFS_TREE_LOG_OBJECTID
) ||
3303 (ref
->type
== BTRFS_REF_DATA
&&
3304 ref
->data_ref
.ref_root
== BTRFS_TREE_LOG_OBJECTID
)) {
3305 /* unlocks the pinned mutex */
3306 btrfs_pin_extent(trans
, ref
->bytenr
, ref
->len
, 1);
3307 old_ref_mod
= new_ref_mod
= 0;
3309 } else if (ref
->type
== BTRFS_REF_METADATA
) {
3310 ret
= btrfs_add_delayed_tree_ref(trans
, ref
, NULL
,
3311 &old_ref_mod
, &new_ref_mod
);
3313 ret
= btrfs_add_delayed_data_ref(trans
, ref
, 0,
3314 &old_ref_mod
, &new_ref_mod
);
3317 if (!((ref
->type
== BTRFS_REF_METADATA
&&
3318 ref
->tree_ref
.root
== BTRFS_TREE_LOG_OBJECTID
) ||
3319 (ref
->type
== BTRFS_REF_DATA
&&
3320 ref
->data_ref
.ref_root
== BTRFS_TREE_LOG_OBJECTID
)))
3321 btrfs_ref_tree_mod(fs_info
, ref
);
3323 if (ret
== 0 && old_ref_mod
>= 0 && new_ref_mod
< 0)
3324 add_pinned_bytes(fs_info
, ref
);
3329 enum btrfs_loop_type
{
3330 LOOP_CACHING_NOWAIT
,
3337 btrfs_lock_block_group(struct btrfs_block_group
*cache
,
3341 down_read(&cache
->data_rwsem
);
3344 static inline void btrfs_grab_block_group(struct btrfs_block_group
*cache
,
3347 btrfs_get_block_group(cache
);
3349 down_read(&cache
->data_rwsem
);
3352 static struct btrfs_block_group
*btrfs_lock_cluster(
3353 struct btrfs_block_group
*block_group
,
3354 struct btrfs_free_cluster
*cluster
,
3356 __acquires(&cluster
->refill_lock
)
3358 struct btrfs_block_group
*used_bg
= NULL
;
3360 spin_lock(&cluster
->refill_lock
);
3362 used_bg
= cluster
->block_group
;
3366 if (used_bg
== block_group
)
3369 btrfs_get_block_group(used_bg
);
3374 if (down_read_trylock(&used_bg
->data_rwsem
))
3377 spin_unlock(&cluster
->refill_lock
);
3379 /* We should only have one-level nested. */
3380 down_read_nested(&used_bg
->data_rwsem
, SINGLE_DEPTH_NESTING
);
3382 spin_lock(&cluster
->refill_lock
);
3383 if (used_bg
== cluster
->block_group
)
3386 up_read(&used_bg
->data_rwsem
);
3387 btrfs_put_block_group(used_bg
);
3392 btrfs_release_block_group(struct btrfs_block_group
*cache
,
3396 up_read(&cache
->data_rwsem
);
3397 btrfs_put_block_group(cache
);
3400 enum btrfs_extent_allocation_policy
{
3401 BTRFS_EXTENT_ALLOC_CLUSTERED
,
3405 * Structure used internally for find_free_extent() function. Wraps needed
3408 struct find_free_extent_ctl
{
3409 /* Basic allocation info */
3415 /* Where to start the search inside the bg */
3418 /* For clustered allocation */
3420 struct btrfs_free_cluster
*last_ptr
;
3423 bool have_caching_bg
;
3424 bool orig_have_caching_bg
;
3426 /* RAID index, converted from flags */
3430 * Current loop number, check find_free_extent_update_loop() for details
3435 * Whether we're refilling a cluster, if true we need to re-search
3436 * current block group but don't try to refill the cluster again.
3438 bool retry_clustered
;
3441 * Whether we're updating free space cache, if true we need to re-search
3442 * current block group but don't try updating free space cache again.
3444 bool retry_unclustered
;
3446 /* If current block group is cached */
3449 /* Max contiguous hole found */
3450 u64 max_extent_size
;
3452 /* Total free space from free space cache, not always contiguous */
3453 u64 total_free_space
;
3458 /* Hint where to start looking for an empty space */
3461 /* Allocation policy */
3462 enum btrfs_extent_allocation_policy policy
;
3467 * Helper function for find_free_extent().
3469 * Return -ENOENT to inform caller that we need fallback to unclustered mode.
3470 * Return -EAGAIN to inform caller that we need to re-search this block group
3471 * Return >0 to inform caller that we find nothing
3472 * Return 0 means we have found a location and set ffe_ctl->found_offset.
3474 static int find_free_extent_clustered(struct btrfs_block_group
*bg
,
3475 struct find_free_extent_ctl
*ffe_ctl
,
3476 struct btrfs_block_group
**cluster_bg_ret
)
3478 struct btrfs_block_group
*cluster_bg
;
3479 struct btrfs_free_cluster
*last_ptr
= ffe_ctl
->last_ptr
;
3480 u64 aligned_cluster
;
3484 cluster_bg
= btrfs_lock_cluster(bg
, last_ptr
, ffe_ctl
->delalloc
);
3486 goto refill_cluster
;
3487 if (cluster_bg
!= bg
&& (cluster_bg
->ro
||
3488 !block_group_bits(cluster_bg
, ffe_ctl
->flags
)))
3489 goto release_cluster
;
3491 offset
= btrfs_alloc_from_cluster(cluster_bg
, last_ptr
,
3492 ffe_ctl
->num_bytes
, cluster_bg
->start
,
3493 &ffe_ctl
->max_extent_size
);
3495 /* We have a block, we're done */
3496 spin_unlock(&last_ptr
->refill_lock
);
3497 trace_btrfs_reserve_extent_cluster(cluster_bg
,
3498 ffe_ctl
->search_start
, ffe_ctl
->num_bytes
);
3499 *cluster_bg_ret
= cluster_bg
;
3500 ffe_ctl
->found_offset
= offset
;
3503 WARN_ON(last_ptr
->block_group
!= cluster_bg
);
3507 * If we are on LOOP_NO_EMPTY_SIZE, we can't set up a new clusters, so
3508 * lets just skip it and let the allocator find whatever block it can
3509 * find. If we reach this point, we will have tried the cluster
3510 * allocator plenty of times and not have found anything, so we are
3511 * likely way too fragmented for the clustering stuff to find anything.
3513 * However, if the cluster is taken from the current block group,
3514 * release the cluster first, so that we stand a better chance of
3515 * succeeding in the unclustered allocation.
3517 if (ffe_ctl
->loop
>= LOOP_NO_EMPTY_SIZE
&& cluster_bg
!= bg
) {
3518 spin_unlock(&last_ptr
->refill_lock
);
3519 btrfs_release_block_group(cluster_bg
, ffe_ctl
->delalloc
);
3523 /* This cluster didn't work out, free it and start over */
3524 btrfs_return_cluster_to_free_space(NULL
, last_ptr
);
3526 if (cluster_bg
!= bg
)
3527 btrfs_release_block_group(cluster_bg
, ffe_ctl
->delalloc
);
3530 if (ffe_ctl
->loop
>= LOOP_NO_EMPTY_SIZE
) {
3531 spin_unlock(&last_ptr
->refill_lock
);
3535 aligned_cluster
= max_t(u64
,
3536 ffe_ctl
->empty_cluster
+ ffe_ctl
->empty_size
,
3537 bg
->full_stripe_len
);
3538 ret
= btrfs_find_space_cluster(bg
, last_ptr
, ffe_ctl
->search_start
,
3539 ffe_ctl
->num_bytes
, aligned_cluster
);
3541 /* Now pull our allocation out of this cluster */
3542 offset
= btrfs_alloc_from_cluster(bg
, last_ptr
,
3543 ffe_ctl
->num_bytes
, ffe_ctl
->search_start
,
3544 &ffe_ctl
->max_extent_size
);
3546 /* We found one, proceed */
3547 spin_unlock(&last_ptr
->refill_lock
);
3548 trace_btrfs_reserve_extent_cluster(bg
,
3549 ffe_ctl
->search_start
,
3550 ffe_ctl
->num_bytes
);
3551 ffe_ctl
->found_offset
= offset
;
3554 } else if (!ffe_ctl
->cached
&& ffe_ctl
->loop
> LOOP_CACHING_NOWAIT
&&
3555 !ffe_ctl
->retry_clustered
) {
3556 spin_unlock(&last_ptr
->refill_lock
);
3558 ffe_ctl
->retry_clustered
= true;
3559 btrfs_wait_block_group_cache_progress(bg
, ffe_ctl
->num_bytes
+
3560 ffe_ctl
->empty_cluster
+ ffe_ctl
->empty_size
);
3564 * At this point we either didn't find a cluster or we weren't able to
3565 * allocate a block from our cluster. Free the cluster we've been
3566 * trying to use, and go to the next block group.
3568 btrfs_return_cluster_to_free_space(NULL
, last_ptr
);
3569 spin_unlock(&last_ptr
->refill_lock
);
3574 * Return >0 to inform caller that we find nothing
3575 * Return 0 when we found an free extent and set ffe_ctrl->found_offset
3576 * Return -EAGAIN to inform caller that we need to re-search this block group
3578 static int find_free_extent_unclustered(struct btrfs_block_group
*bg
,
3579 struct find_free_extent_ctl
*ffe_ctl
)
3581 struct btrfs_free_cluster
*last_ptr
= ffe_ctl
->last_ptr
;
3585 * We are doing an unclustered allocation, set the fragmented flag so
3586 * we don't bother trying to setup a cluster again until we get more
3589 if (unlikely(last_ptr
)) {
3590 spin_lock(&last_ptr
->lock
);
3591 last_ptr
->fragmented
= 1;
3592 spin_unlock(&last_ptr
->lock
);
3594 if (ffe_ctl
->cached
) {
3595 struct btrfs_free_space_ctl
*free_space_ctl
;
3597 free_space_ctl
= bg
->free_space_ctl
;
3598 spin_lock(&free_space_ctl
->tree_lock
);
3599 if (free_space_ctl
->free_space
<
3600 ffe_ctl
->num_bytes
+ ffe_ctl
->empty_cluster
+
3601 ffe_ctl
->empty_size
) {
3602 ffe_ctl
->total_free_space
= max_t(u64
,
3603 ffe_ctl
->total_free_space
,
3604 free_space_ctl
->free_space
);
3605 spin_unlock(&free_space_ctl
->tree_lock
);
3608 spin_unlock(&free_space_ctl
->tree_lock
);
3611 offset
= btrfs_find_space_for_alloc(bg
, ffe_ctl
->search_start
,
3612 ffe_ctl
->num_bytes
, ffe_ctl
->empty_size
,
3613 &ffe_ctl
->max_extent_size
);
3616 * If we didn't find a chunk, and we haven't failed on this block group
3617 * before, and this block group is in the middle of caching and we are
3618 * ok with waiting, then go ahead and wait for progress to be made, and
3619 * set @retry_unclustered to true.
3621 * If @retry_unclustered is true then we've already waited on this
3622 * block group once and should move on to the next block group.
3624 if (!offset
&& !ffe_ctl
->retry_unclustered
&& !ffe_ctl
->cached
&&
3625 ffe_ctl
->loop
> LOOP_CACHING_NOWAIT
) {
3626 btrfs_wait_block_group_cache_progress(bg
, ffe_ctl
->num_bytes
+
3627 ffe_ctl
->empty_size
);
3628 ffe_ctl
->retry_unclustered
= true;
3630 } else if (!offset
) {
3633 ffe_ctl
->found_offset
= offset
;
3637 static int do_allocation_clustered(struct btrfs_block_group
*block_group
,
3638 struct find_free_extent_ctl
*ffe_ctl
,
3639 struct btrfs_block_group
**bg_ret
)
3643 /* We want to try and use the cluster allocator, so lets look there */
3644 if (ffe_ctl
->last_ptr
&& ffe_ctl
->use_cluster
) {
3645 ret
= find_free_extent_clustered(block_group
, ffe_ctl
, bg_ret
);
3646 if (ret
>= 0 || ret
== -EAGAIN
)
3648 /* ret == -ENOENT case falls through */
3651 return find_free_extent_unclustered(block_group
, ffe_ctl
);
3654 static int do_allocation(struct btrfs_block_group
*block_group
,
3655 struct find_free_extent_ctl
*ffe_ctl
,
3656 struct btrfs_block_group
**bg_ret
)
3658 switch (ffe_ctl
->policy
) {
3659 case BTRFS_EXTENT_ALLOC_CLUSTERED
:
3660 return do_allocation_clustered(block_group
, ffe_ctl
, bg_ret
);
3666 static void release_block_group(struct btrfs_block_group
*block_group
,
3667 struct find_free_extent_ctl
*ffe_ctl
,
3670 switch (ffe_ctl
->policy
) {
3671 case BTRFS_EXTENT_ALLOC_CLUSTERED
:
3672 ffe_ctl
->retry_clustered
= false;
3673 ffe_ctl
->retry_unclustered
= false;
3679 BUG_ON(btrfs_bg_flags_to_raid_index(block_group
->flags
) !=
3681 btrfs_release_block_group(block_group
, delalloc
);
3684 static void found_extent_clustered(struct find_free_extent_ctl
*ffe_ctl
,
3685 struct btrfs_key
*ins
)
3687 struct btrfs_free_cluster
*last_ptr
= ffe_ctl
->last_ptr
;
3689 if (!ffe_ctl
->use_cluster
&& last_ptr
) {
3690 spin_lock(&last_ptr
->lock
);
3691 last_ptr
->window_start
= ins
->objectid
;
3692 spin_unlock(&last_ptr
->lock
);
3696 static void found_extent(struct find_free_extent_ctl
*ffe_ctl
,
3697 struct btrfs_key
*ins
)
3699 switch (ffe_ctl
->policy
) {
3700 case BTRFS_EXTENT_ALLOC_CLUSTERED
:
3701 found_extent_clustered(ffe_ctl
, ins
);
3708 static int chunk_allocation_failed(struct find_free_extent_ctl
*ffe_ctl
)
3710 switch (ffe_ctl
->policy
) {
3711 case BTRFS_EXTENT_ALLOC_CLUSTERED
:
3713 * If we can't allocate a new chunk we've already looped through
3714 * at least once, move on to the NO_EMPTY_SIZE case.
3716 ffe_ctl
->loop
= LOOP_NO_EMPTY_SIZE
;
3724 * Return >0 means caller needs to re-search for free extent
3725 * Return 0 means we have the needed free extent.
3726 * Return <0 means we failed to locate any free extent.
3728 static int find_free_extent_update_loop(struct btrfs_fs_info
*fs_info
,
3729 struct btrfs_key
*ins
,
3730 struct find_free_extent_ctl
*ffe_ctl
,
3733 struct btrfs_root
*root
= fs_info
->extent_root
;
3736 if ((ffe_ctl
->loop
== LOOP_CACHING_NOWAIT
) &&
3737 ffe_ctl
->have_caching_bg
&& !ffe_ctl
->orig_have_caching_bg
)
3738 ffe_ctl
->orig_have_caching_bg
= true;
3740 if (!ins
->objectid
&& ffe_ctl
->loop
>= LOOP_CACHING_WAIT
&&
3741 ffe_ctl
->have_caching_bg
)
3744 if (!ins
->objectid
&& ++(ffe_ctl
->index
) < BTRFS_NR_RAID_TYPES
)
3747 if (ins
->objectid
) {
3748 found_extent(ffe_ctl
, ins
);
3753 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
3754 * caching kthreads as we move along
3755 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
3756 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
3757 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
3760 if (ffe_ctl
->loop
< LOOP_NO_EMPTY_SIZE
) {
3762 if (ffe_ctl
->loop
== LOOP_CACHING_NOWAIT
) {
3764 * We want to skip the LOOP_CACHING_WAIT step if we
3765 * don't have any uncached bgs and we've already done a
3766 * full search through.
3768 if (ffe_ctl
->orig_have_caching_bg
|| !full_search
)
3769 ffe_ctl
->loop
= LOOP_CACHING_WAIT
;
3771 ffe_ctl
->loop
= LOOP_ALLOC_CHUNK
;
3776 if (ffe_ctl
->loop
== LOOP_ALLOC_CHUNK
) {
3777 struct btrfs_trans_handle
*trans
;
3780 trans
= current
->journal_info
;
3784 trans
= btrfs_join_transaction(root
);
3786 if (IS_ERR(trans
)) {
3787 ret
= PTR_ERR(trans
);
3791 ret
= btrfs_chunk_alloc(trans
, ffe_ctl
->flags
,
3794 /* Do not bail out on ENOSPC since we can do more. */
3796 ret
= chunk_allocation_failed(ffe_ctl
);
3798 btrfs_abort_transaction(trans
, ret
);
3802 btrfs_end_transaction(trans
);
3807 if (ffe_ctl
->loop
== LOOP_NO_EMPTY_SIZE
) {
3808 if (ffe_ctl
->policy
!= BTRFS_EXTENT_ALLOC_CLUSTERED
)
3812 * Don't loop again if we already have no empty_size and
3815 if (ffe_ctl
->empty_size
== 0 &&
3816 ffe_ctl
->empty_cluster
== 0)
3818 ffe_ctl
->empty_size
= 0;
3819 ffe_ctl
->empty_cluster
= 0;
3826 static int prepare_allocation_clustered(struct btrfs_fs_info
*fs_info
,
3827 struct find_free_extent_ctl
*ffe_ctl
,
3828 struct btrfs_space_info
*space_info
,
3829 struct btrfs_key
*ins
)
3832 * If our free space is heavily fragmented we may not be able to make
3833 * big contiguous allocations, so instead of doing the expensive search
3834 * for free space, simply return ENOSPC with our max_extent_size so we
3835 * can go ahead and search for a more manageable chunk.
3837 * If our max_extent_size is large enough for our allocation simply
3838 * disable clustering since we will likely not be able to find enough
3839 * space to create a cluster and induce latency trying.
3841 if (space_info
->max_extent_size
) {
3842 spin_lock(&space_info
->lock
);
3843 if (space_info
->max_extent_size
&&
3844 ffe_ctl
->num_bytes
> space_info
->max_extent_size
) {
3845 ins
->offset
= space_info
->max_extent_size
;
3846 spin_unlock(&space_info
->lock
);
3848 } else if (space_info
->max_extent_size
) {
3849 ffe_ctl
->use_cluster
= false;
3851 spin_unlock(&space_info
->lock
);
3854 ffe_ctl
->last_ptr
= fetch_cluster_info(fs_info
, space_info
,
3855 &ffe_ctl
->empty_cluster
);
3856 if (ffe_ctl
->last_ptr
) {
3857 struct btrfs_free_cluster
*last_ptr
= ffe_ctl
->last_ptr
;
3859 spin_lock(&last_ptr
->lock
);
3860 if (last_ptr
->block_group
)
3861 ffe_ctl
->hint_byte
= last_ptr
->window_start
;
3862 if (last_ptr
->fragmented
) {
3864 * We still set window_start so we can keep track of the
3865 * last place we found an allocation to try and save
3868 ffe_ctl
->hint_byte
= last_ptr
->window_start
;
3869 ffe_ctl
->use_cluster
= false;
3871 spin_unlock(&last_ptr
->lock
);
3877 static int prepare_allocation(struct btrfs_fs_info
*fs_info
,
3878 struct find_free_extent_ctl
*ffe_ctl
,
3879 struct btrfs_space_info
*space_info
,
3880 struct btrfs_key
*ins
)
3882 switch (ffe_ctl
->policy
) {
3883 case BTRFS_EXTENT_ALLOC_CLUSTERED
:
3884 return prepare_allocation_clustered(fs_info
, ffe_ctl
,
3892 * walks the btree of allocated extents and find a hole of a given size.
3893 * The key ins is changed to record the hole:
3894 * ins->objectid == start position
3895 * ins->flags = BTRFS_EXTENT_ITEM_KEY
3896 * ins->offset == the size of the hole.
3897 * Any available blocks before search_start are skipped.
3899 * If there is no suitable free space, we will record the max size of
3900 * the free space extent currently.
3902 * The overall logic and call chain:
3904 * find_free_extent()
3905 * |- Iterate through all block groups
3906 * | |- Get a valid block group
3907 * | |- Try to do clustered allocation in that block group
3908 * | |- Try to do unclustered allocation in that block group
3909 * | |- Check if the result is valid
3910 * | | |- If valid, then exit
3911 * | |- Jump to next block group
3913 * |- Push harder to find free extents
3914 * |- If not found, re-iterate all block groups
3916 static noinline
int find_free_extent(struct btrfs_fs_info
*fs_info
,
3917 u64 ram_bytes
, u64 num_bytes
, u64 empty_size
,
3918 u64 hint_byte_orig
, struct btrfs_key
*ins
,
3919 u64 flags
, int delalloc
)
3922 int cache_block_group_error
= 0;
3923 struct btrfs_block_group
*block_group
= NULL
;
3924 struct find_free_extent_ctl ffe_ctl
= {0};
3925 struct btrfs_space_info
*space_info
;
3926 bool full_search
= false;
3928 WARN_ON(num_bytes
< fs_info
->sectorsize
);
3930 ffe_ctl
.num_bytes
= num_bytes
;
3931 ffe_ctl
.empty_size
= empty_size
;
3932 ffe_ctl
.flags
= flags
;
3933 ffe_ctl
.search_start
= 0;
3934 ffe_ctl
.delalloc
= delalloc
;
3935 ffe_ctl
.index
= btrfs_bg_flags_to_raid_index(flags
);
3936 ffe_ctl
.have_caching_bg
= false;
3937 ffe_ctl
.orig_have_caching_bg
= false;
3938 ffe_ctl
.found_offset
= 0;
3939 ffe_ctl
.hint_byte
= hint_byte_orig
;
3940 ffe_ctl
.policy
= BTRFS_EXTENT_ALLOC_CLUSTERED
;
3942 /* For clustered allocation */
3943 ffe_ctl
.retry_clustered
= false;
3944 ffe_ctl
.retry_unclustered
= false;
3945 ffe_ctl
.last_ptr
= NULL
;
3946 ffe_ctl
.use_cluster
= true;
3948 ins
->type
= BTRFS_EXTENT_ITEM_KEY
;
3952 trace_find_free_extent(fs_info
, num_bytes
, empty_size
, flags
);
3954 space_info
= btrfs_find_space_info(fs_info
, flags
);
3956 btrfs_err(fs_info
, "No space info for %llu", flags
);
3960 ret
= prepare_allocation(fs_info
, &ffe_ctl
, space_info
, ins
);
3964 ffe_ctl
.search_start
= max(ffe_ctl
.search_start
,
3965 first_logical_byte(fs_info
, 0));
3966 ffe_ctl
.search_start
= max(ffe_ctl
.search_start
, ffe_ctl
.hint_byte
);
3967 if (ffe_ctl
.search_start
== ffe_ctl
.hint_byte
) {
3968 block_group
= btrfs_lookup_block_group(fs_info
,
3969 ffe_ctl
.search_start
);
3971 * we don't want to use the block group if it doesn't match our
3972 * allocation bits, or if its not cached.
3974 * However if we are re-searching with an ideal block group
3975 * picked out then we don't care that the block group is cached.
3977 if (block_group
&& block_group_bits(block_group
, flags
) &&
3978 block_group
->cached
!= BTRFS_CACHE_NO
) {
3979 down_read(&space_info
->groups_sem
);
3980 if (list_empty(&block_group
->list
) ||
3983 * someone is removing this block group,
3984 * we can't jump into the have_block_group
3985 * target because our list pointers are not
3988 btrfs_put_block_group(block_group
);
3989 up_read(&space_info
->groups_sem
);
3991 ffe_ctl
.index
= btrfs_bg_flags_to_raid_index(
3992 block_group
->flags
);
3993 btrfs_lock_block_group(block_group
, delalloc
);
3994 goto have_block_group
;
3996 } else if (block_group
) {
3997 btrfs_put_block_group(block_group
);
4001 ffe_ctl
.have_caching_bg
= false;
4002 if (ffe_ctl
.index
== btrfs_bg_flags_to_raid_index(flags
) ||
4005 down_read(&space_info
->groups_sem
);
4006 list_for_each_entry(block_group
,
4007 &space_info
->block_groups
[ffe_ctl
.index
], list
) {
4008 struct btrfs_block_group
*bg_ret
;
4010 /* If the block group is read-only, we can skip it entirely. */
4011 if (unlikely(block_group
->ro
))
4014 btrfs_grab_block_group(block_group
, delalloc
);
4015 ffe_ctl
.search_start
= block_group
->start
;
4018 * this can happen if we end up cycling through all the
4019 * raid types, but we want to make sure we only allocate
4020 * for the proper type.
4022 if (!block_group_bits(block_group
, flags
)) {
4023 u64 extra
= BTRFS_BLOCK_GROUP_DUP
|
4024 BTRFS_BLOCK_GROUP_RAID1_MASK
|
4025 BTRFS_BLOCK_GROUP_RAID56_MASK
|
4026 BTRFS_BLOCK_GROUP_RAID10
;
4029 * if they asked for extra copies and this block group
4030 * doesn't provide them, bail. This does allow us to
4031 * fill raid0 from raid1.
4033 if ((flags
& extra
) && !(block_group
->flags
& extra
))
4037 * This block group has different flags than we want.
4038 * It's possible that we have MIXED_GROUP flag but no
4039 * block group is mixed. Just skip such block group.
4041 btrfs_release_block_group(block_group
, delalloc
);
4046 ffe_ctl
.cached
= btrfs_block_group_done(block_group
);
4047 if (unlikely(!ffe_ctl
.cached
)) {
4048 ffe_ctl
.have_caching_bg
= true;
4049 ret
= btrfs_cache_block_group(block_group
, 0);
4052 * If we get ENOMEM here or something else we want to
4053 * try other block groups, because it may not be fatal.
4054 * However if we can't find anything else we need to
4055 * save our return here so that we return the actual
4056 * error that caused problems, not ENOSPC.
4059 if (!cache_block_group_error
)
4060 cache_block_group_error
= ret
;
4067 if (unlikely(block_group
->cached
== BTRFS_CACHE_ERROR
))
4071 ret
= do_allocation(block_group
, &ffe_ctl
, &bg_ret
);
4073 if (bg_ret
&& bg_ret
!= block_group
) {
4074 btrfs_release_block_group(block_group
, delalloc
);
4075 block_group
= bg_ret
;
4077 } else if (ret
== -EAGAIN
) {
4078 goto have_block_group
;
4079 } else if (ret
> 0) {
4084 ffe_ctl
.search_start
= round_up(ffe_ctl
.found_offset
,
4085 fs_info
->stripesize
);
4087 /* move on to the next group */
4088 if (ffe_ctl
.search_start
+ num_bytes
>
4089 block_group
->start
+ block_group
->length
) {
4090 btrfs_add_free_space(block_group
, ffe_ctl
.found_offset
,
4095 if (ffe_ctl
.found_offset
< ffe_ctl
.search_start
)
4096 btrfs_add_free_space(block_group
, ffe_ctl
.found_offset
,
4097 ffe_ctl
.search_start
- ffe_ctl
.found_offset
);
4099 ret
= btrfs_add_reserved_bytes(block_group
, ram_bytes
,
4100 num_bytes
, delalloc
);
4101 if (ret
== -EAGAIN
) {
4102 btrfs_add_free_space(block_group
, ffe_ctl
.found_offset
,
4106 btrfs_inc_block_group_reservations(block_group
);
4108 /* we are all good, lets return */
4109 ins
->objectid
= ffe_ctl
.search_start
;
4110 ins
->offset
= num_bytes
;
4112 trace_btrfs_reserve_extent(block_group
, ffe_ctl
.search_start
,
4114 btrfs_release_block_group(block_group
, delalloc
);
4117 release_block_group(block_group
, &ffe_ctl
, delalloc
);
4120 up_read(&space_info
->groups_sem
);
4122 ret
= find_free_extent_update_loop(fs_info
, ins
, &ffe_ctl
, full_search
);
4126 if (ret
== -ENOSPC
&& !cache_block_group_error
) {
4128 * Use ffe_ctl->total_free_space as fallback if we can't find
4129 * any contiguous hole.
4131 if (!ffe_ctl
.max_extent_size
)
4132 ffe_ctl
.max_extent_size
= ffe_ctl
.total_free_space
;
4133 spin_lock(&space_info
->lock
);
4134 space_info
->max_extent_size
= ffe_ctl
.max_extent_size
;
4135 spin_unlock(&space_info
->lock
);
4136 ins
->offset
= ffe_ctl
.max_extent_size
;
4137 } else if (ret
== -ENOSPC
) {
4138 ret
= cache_block_group_error
;
4144 * btrfs_reserve_extent - entry point to the extent allocator. Tries to find a
4145 * hole that is at least as big as @num_bytes.
4147 * @root - The root that will contain this extent
4149 * @ram_bytes - The amount of space in ram that @num_bytes take. This
4150 * is used for accounting purposes. This value differs
4151 * from @num_bytes only in the case of compressed extents.
4153 * @num_bytes - Number of bytes to allocate on-disk.
4155 * @min_alloc_size - Indicates the minimum amount of space that the
4156 * allocator should try to satisfy. In some cases
4157 * @num_bytes may be larger than what is required and if
4158 * the filesystem is fragmented then allocation fails.
4159 * However, the presence of @min_alloc_size gives a
4160 * chance to try and satisfy the smaller allocation.
4162 * @empty_size - A hint that you plan on doing more COW. This is the
4163 * size in bytes the allocator should try to find free
4164 * next to the block it returns. This is just a hint and
4165 * may be ignored by the allocator.
4167 * @hint_byte - Hint to the allocator to start searching above the byte
4168 * address passed. It might be ignored.
4170 * @ins - This key is modified to record the found hole. It will
4171 * have the following values:
4172 * ins->objectid == start position
4173 * ins->flags = BTRFS_EXTENT_ITEM_KEY
4174 * ins->offset == the size of the hole.
4176 * @is_data - Boolean flag indicating whether an extent is
4177 * allocated for data (true) or metadata (false)
4179 * @delalloc - Boolean flag indicating whether this allocation is for
4180 * delalloc or not. If 'true' data_rwsem of block groups
4181 * is going to be acquired.
4184 * Returns 0 when an allocation succeeded or < 0 when an error occurred. In
4185 * case -ENOSPC is returned then @ins->offset will contain the size of the
4186 * largest available hole the allocator managed to find.
4188 int btrfs_reserve_extent(struct btrfs_root
*root
, u64 ram_bytes
,
4189 u64 num_bytes
, u64 min_alloc_size
,
4190 u64 empty_size
, u64 hint_byte
,
4191 struct btrfs_key
*ins
, int is_data
, int delalloc
)
4193 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
4194 bool final_tried
= num_bytes
== min_alloc_size
;
4198 flags
= get_alloc_profile_by_root(root
, is_data
);
4200 WARN_ON(num_bytes
< fs_info
->sectorsize
);
4201 ret
= find_free_extent(fs_info
, ram_bytes
, num_bytes
, empty_size
,
4202 hint_byte
, ins
, flags
, delalloc
);
4203 if (!ret
&& !is_data
) {
4204 btrfs_dec_block_group_reservations(fs_info
, ins
->objectid
);
4205 } else if (ret
== -ENOSPC
) {
4206 if (!final_tried
&& ins
->offset
) {
4207 num_bytes
= min(num_bytes
>> 1, ins
->offset
);
4208 num_bytes
= round_down(num_bytes
,
4209 fs_info
->sectorsize
);
4210 num_bytes
= max(num_bytes
, min_alloc_size
);
4211 ram_bytes
= num_bytes
;
4212 if (num_bytes
== min_alloc_size
)
4215 } else if (btrfs_test_opt(fs_info
, ENOSPC_DEBUG
)) {
4216 struct btrfs_space_info
*sinfo
;
4218 sinfo
= btrfs_find_space_info(fs_info
, flags
);
4220 "allocation failed flags %llu, wanted %llu",
4223 btrfs_dump_space_info(fs_info
, sinfo
,
4231 int btrfs_free_reserved_extent(struct btrfs_fs_info
*fs_info
,
4232 u64 start
, u64 len
, int delalloc
)
4234 struct btrfs_block_group
*cache
;
4236 cache
= btrfs_lookup_block_group(fs_info
, start
);
4238 btrfs_err(fs_info
, "Unable to find block group for %llu",
4243 btrfs_add_free_space(cache
, start
, len
);
4244 btrfs_free_reserved_bytes(cache
, len
, delalloc
);
4245 trace_btrfs_reserved_extent_free(fs_info
, start
, len
);
4247 btrfs_put_block_group(cache
);
4251 int btrfs_pin_reserved_extent(struct btrfs_trans_handle
*trans
, u64 start
,
4254 struct btrfs_block_group
*cache
;
4257 cache
= btrfs_lookup_block_group(trans
->fs_info
, start
);
4259 btrfs_err(trans
->fs_info
, "unable to find block group for %llu",
4264 ret
= pin_down_extent(trans
, cache
, start
, len
, 1);
4265 btrfs_put_block_group(cache
);
4269 static int alloc_reserved_file_extent(struct btrfs_trans_handle
*trans
,
4270 u64 parent
, u64 root_objectid
,
4271 u64 flags
, u64 owner
, u64 offset
,
4272 struct btrfs_key
*ins
, int ref_mod
)
4274 struct btrfs_fs_info
*fs_info
= trans
->fs_info
;
4276 struct btrfs_extent_item
*extent_item
;
4277 struct btrfs_extent_inline_ref
*iref
;
4278 struct btrfs_path
*path
;
4279 struct extent_buffer
*leaf
;
4284 type
= BTRFS_SHARED_DATA_REF_KEY
;
4286 type
= BTRFS_EXTENT_DATA_REF_KEY
;
4288 size
= sizeof(*extent_item
) + btrfs_extent_inline_ref_size(type
);
4290 path
= btrfs_alloc_path();
4294 path
->leave_spinning
= 1;
4295 ret
= btrfs_insert_empty_item(trans
, fs_info
->extent_root
, path
,
4298 btrfs_free_path(path
);
4302 leaf
= path
->nodes
[0];
4303 extent_item
= btrfs_item_ptr(leaf
, path
->slots
[0],
4304 struct btrfs_extent_item
);
4305 btrfs_set_extent_refs(leaf
, extent_item
, ref_mod
);
4306 btrfs_set_extent_generation(leaf
, extent_item
, trans
->transid
);
4307 btrfs_set_extent_flags(leaf
, extent_item
,
4308 flags
| BTRFS_EXTENT_FLAG_DATA
);
4310 iref
= (struct btrfs_extent_inline_ref
*)(extent_item
+ 1);
4311 btrfs_set_extent_inline_ref_type(leaf
, iref
, type
);
4313 struct btrfs_shared_data_ref
*ref
;
4314 ref
= (struct btrfs_shared_data_ref
*)(iref
+ 1);
4315 btrfs_set_extent_inline_ref_offset(leaf
, iref
, parent
);
4316 btrfs_set_shared_data_ref_count(leaf
, ref
, ref_mod
);
4318 struct btrfs_extent_data_ref
*ref
;
4319 ref
= (struct btrfs_extent_data_ref
*)(&iref
->offset
);
4320 btrfs_set_extent_data_ref_root(leaf
, ref
, root_objectid
);
4321 btrfs_set_extent_data_ref_objectid(leaf
, ref
, owner
);
4322 btrfs_set_extent_data_ref_offset(leaf
, ref
, offset
);
4323 btrfs_set_extent_data_ref_count(leaf
, ref
, ref_mod
);
4326 btrfs_mark_buffer_dirty(path
->nodes
[0]);
4327 btrfs_free_path(path
);
4329 ret
= remove_from_free_space_tree(trans
, ins
->objectid
, ins
->offset
);
4333 ret
= btrfs_update_block_group(trans
, ins
->objectid
, ins
->offset
, 1);
4334 if (ret
) { /* -ENOENT, logic error */
4335 btrfs_err(fs_info
, "update block group failed for %llu %llu",
4336 ins
->objectid
, ins
->offset
);
4339 trace_btrfs_reserved_extent_alloc(fs_info
, ins
->objectid
, ins
->offset
);
4343 static int alloc_reserved_tree_block(struct btrfs_trans_handle
*trans
,
4344 struct btrfs_delayed_ref_node
*node
,
4345 struct btrfs_delayed_extent_op
*extent_op
)
4347 struct btrfs_fs_info
*fs_info
= trans
->fs_info
;
4349 struct btrfs_extent_item
*extent_item
;
4350 struct btrfs_key extent_key
;
4351 struct btrfs_tree_block_info
*block_info
;
4352 struct btrfs_extent_inline_ref
*iref
;
4353 struct btrfs_path
*path
;
4354 struct extent_buffer
*leaf
;
4355 struct btrfs_delayed_tree_ref
*ref
;
4356 u32 size
= sizeof(*extent_item
) + sizeof(*iref
);
4358 u64 flags
= extent_op
->flags_to_set
;
4359 bool skinny_metadata
= btrfs_fs_incompat(fs_info
, SKINNY_METADATA
);
4361 ref
= btrfs_delayed_node_to_tree_ref(node
);
4363 extent_key
.objectid
= node
->bytenr
;
4364 if (skinny_metadata
) {
4365 extent_key
.offset
= ref
->level
;
4366 extent_key
.type
= BTRFS_METADATA_ITEM_KEY
;
4367 num_bytes
= fs_info
->nodesize
;
4369 extent_key
.offset
= node
->num_bytes
;
4370 extent_key
.type
= BTRFS_EXTENT_ITEM_KEY
;
4371 size
+= sizeof(*block_info
);
4372 num_bytes
= node
->num_bytes
;
4375 path
= btrfs_alloc_path();
4379 path
->leave_spinning
= 1;
4380 ret
= btrfs_insert_empty_item(trans
, fs_info
->extent_root
, path
,
4383 btrfs_free_path(path
);
4387 leaf
= path
->nodes
[0];
4388 extent_item
= btrfs_item_ptr(leaf
, path
->slots
[0],
4389 struct btrfs_extent_item
);
4390 btrfs_set_extent_refs(leaf
, extent_item
, 1);
4391 btrfs_set_extent_generation(leaf
, extent_item
, trans
->transid
);
4392 btrfs_set_extent_flags(leaf
, extent_item
,
4393 flags
| BTRFS_EXTENT_FLAG_TREE_BLOCK
);
4395 if (skinny_metadata
) {
4396 iref
= (struct btrfs_extent_inline_ref
*)(extent_item
+ 1);
4398 block_info
= (struct btrfs_tree_block_info
*)(extent_item
+ 1);
4399 btrfs_set_tree_block_key(leaf
, block_info
, &extent_op
->key
);
4400 btrfs_set_tree_block_level(leaf
, block_info
, ref
->level
);
4401 iref
= (struct btrfs_extent_inline_ref
*)(block_info
+ 1);
4404 if (node
->type
== BTRFS_SHARED_BLOCK_REF_KEY
) {
4405 BUG_ON(!(flags
& BTRFS_BLOCK_FLAG_FULL_BACKREF
));
4406 btrfs_set_extent_inline_ref_type(leaf
, iref
,
4407 BTRFS_SHARED_BLOCK_REF_KEY
);
4408 btrfs_set_extent_inline_ref_offset(leaf
, iref
, ref
->parent
);
4410 btrfs_set_extent_inline_ref_type(leaf
, iref
,
4411 BTRFS_TREE_BLOCK_REF_KEY
);
4412 btrfs_set_extent_inline_ref_offset(leaf
, iref
, ref
->root
);
4415 btrfs_mark_buffer_dirty(leaf
);
4416 btrfs_free_path(path
);
4418 ret
= remove_from_free_space_tree(trans
, extent_key
.objectid
,
4423 ret
= btrfs_update_block_group(trans
, extent_key
.objectid
,
4424 fs_info
->nodesize
, 1);
4425 if (ret
) { /* -ENOENT, logic error */
4426 btrfs_err(fs_info
, "update block group failed for %llu %llu",
4427 extent_key
.objectid
, extent_key
.offset
);
4431 trace_btrfs_reserved_extent_alloc(fs_info
, extent_key
.objectid
,
4436 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle
*trans
,
4437 struct btrfs_root
*root
, u64 owner
,
4438 u64 offset
, u64 ram_bytes
,
4439 struct btrfs_key
*ins
)
4441 struct btrfs_ref generic_ref
= { 0 };
4444 BUG_ON(root
->root_key
.objectid
== BTRFS_TREE_LOG_OBJECTID
);
4446 btrfs_init_generic_ref(&generic_ref
, BTRFS_ADD_DELAYED_EXTENT
,
4447 ins
->objectid
, ins
->offset
, 0);
4448 btrfs_init_data_ref(&generic_ref
, root
->root_key
.objectid
, owner
, offset
);
4449 btrfs_ref_tree_mod(root
->fs_info
, &generic_ref
);
4450 ret
= btrfs_add_delayed_data_ref(trans
, &generic_ref
,
4451 ram_bytes
, NULL
, NULL
);
4456 * this is used by the tree logging recovery code. It records that
4457 * an extent has been allocated and makes sure to clear the free
4458 * space cache bits as well
4460 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle
*trans
,
4461 u64 root_objectid
, u64 owner
, u64 offset
,
4462 struct btrfs_key
*ins
)
4464 struct btrfs_fs_info
*fs_info
= trans
->fs_info
;
4466 struct btrfs_block_group
*block_group
;
4467 struct btrfs_space_info
*space_info
;
4470 * Mixed block groups will exclude before processing the log so we only
4471 * need to do the exclude dance if this fs isn't mixed.
4473 if (!btrfs_fs_incompat(fs_info
, MIXED_GROUPS
)) {
4474 ret
= __exclude_logged_extent(fs_info
, ins
->objectid
,
4480 block_group
= btrfs_lookup_block_group(fs_info
, ins
->objectid
);
4484 space_info
= block_group
->space_info
;
4485 spin_lock(&space_info
->lock
);
4486 spin_lock(&block_group
->lock
);
4487 space_info
->bytes_reserved
+= ins
->offset
;
4488 block_group
->reserved
+= ins
->offset
;
4489 spin_unlock(&block_group
->lock
);
4490 spin_unlock(&space_info
->lock
);
4492 ret
= alloc_reserved_file_extent(trans
, 0, root_objectid
, 0, owner
,
4495 btrfs_pin_extent(trans
, ins
->objectid
, ins
->offset
, 1);
4496 btrfs_put_block_group(block_group
);
4500 static struct extent_buffer
*
4501 btrfs_init_new_buffer(struct btrfs_trans_handle
*trans
, struct btrfs_root
*root
,
4502 u64 bytenr
, int level
, u64 owner
)
4504 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
4505 struct extent_buffer
*buf
;
4507 buf
= btrfs_find_create_tree_block(fs_info
, bytenr
);
4512 * Extra safety check in case the extent tree is corrupted and extent
4513 * allocator chooses to use a tree block which is already used and
4516 if (buf
->lock_owner
== current
->pid
) {
4517 btrfs_err_rl(fs_info
,
4518 "tree block %llu owner %llu already locked by pid=%d, extent tree corruption detected",
4519 buf
->start
, btrfs_header_owner(buf
), current
->pid
);
4520 free_extent_buffer(buf
);
4521 return ERR_PTR(-EUCLEAN
);
4524 btrfs_set_buffer_lockdep_class(root
->root_key
.objectid
, buf
, level
);
4525 btrfs_tree_lock(buf
);
4526 btrfs_clean_tree_block(buf
);
4527 clear_bit(EXTENT_BUFFER_STALE
, &buf
->bflags
);
4529 btrfs_set_lock_blocking_write(buf
);
4530 set_extent_buffer_uptodate(buf
);
4532 memzero_extent_buffer(buf
, 0, sizeof(struct btrfs_header
));
4533 btrfs_set_header_level(buf
, level
);
4534 btrfs_set_header_bytenr(buf
, buf
->start
);
4535 btrfs_set_header_generation(buf
, trans
->transid
);
4536 btrfs_set_header_backref_rev(buf
, BTRFS_MIXED_BACKREF_REV
);
4537 btrfs_set_header_owner(buf
, owner
);
4538 write_extent_buffer_fsid(buf
, fs_info
->fs_devices
->metadata_uuid
);
4539 write_extent_buffer_chunk_tree_uuid(buf
, fs_info
->chunk_tree_uuid
);
4540 if (root
->root_key
.objectid
== BTRFS_TREE_LOG_OBJECTID
) {
4541 buf
->log_index
= root
->log_transid
% 2;
4543 * we allow two log transactions at a time, use different
4544 * EXTENT bit to differentiate dirty pages.
4546 if (buf
->log_index
== 0)
4547 set_extent_dirty(&root
->dirty_log_pages
, buf
->start
,
4548 buf
->start
+ buf
->len
- 1, GFP_NOFS
);
4550 set_extent_new(&root
->dirty_log_pages
, buf
->start
,
4551 buf
->start
+ buf
->len
- 1);
4553 buf
->log_index
= -1;
4554 set_extent_dirty(&trans
->transaction
->dirty_pages
, buf
->start
,
4555 buf
->start
+ buf
->len
- 1, GFP_NOFS
);
4557 trans
->dirty
= true;
4558 /* this returns a buffer locked for blocking */
4563 * finds a free extent and does all the dirty work required for allocation
4564 * returns the tree buffer or an ERR_PTR on error.
4566 struct extent_buffer
*btrfs_alloc_tree_block(struct btrfs_trans_handle
*trans
,
4567 struct btrfs_root
*root
,
4568 u64 parent
, u64 root_objectid
,
4569 const struct btrfs_disk_key
*key
,
4570 int level
, u64 hint
,
4573 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
4574 struct btrfs_key ins
;
4575 struct btrfs_block_rsv
*block_rsv
;
4576 struct extent_buffer
*buf
;
4577 struct btrfs_delayed_extent_op
*extent_op
;
4578 struct btrfs_ref generic_ref
= { 0 };
4581 u32 blocksize
= fs_info
->nodesize
;
4582 bool skinny_metadata
= btrfs_fs_incompat(fs_info
, SKINNY_METADATA
);
4584 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4585 if (btrfs_is_testing(fs_info
)) {
4586 buf
= btrfs_init_new_buffer(trans
, root
, root
->alloc_bytenr
,
4587 level
, root_objectid
);
4589 root
->alloc_bytenr
+= blocksize
;
4594 block_rsv
= btrfs_use_block_rsv(trans
, root
, blocksize
);
4595 if (IS_ERR(block_rsv
))
4596 return ERR_CAST(block_rsv
);
4598 ret
= btrfs_reserve_extent(root
, blocksize
, blocksize
, blocksize
,
4599 empty_size
, hint
, &ins
, 0, 0);
4603 buf
= btrfs_init_new_buffer(trans
, root
, ins
.objectid
, level
,
4607 goto out_free_reserved
;
4610 if (root_objectid
== BTRFS_TREE_RELOC_OBJECTID
) {
4612 parent
= ins
.objectid
;
4613 flags
|= BTRFS_BLOCK_FLAG_FULL_BACKREF
;
4617 if (root_objectid
!= BTRFS_TREE_LOG_OBJECTID
) {
4618 extent_op
= btrfs_alloc_delayed_extent_op();
4624 memcpy(&extent_op
->key
, key
, sizeof(extent_op
->key
));
4626 memset(&extent_op
->key
, 0, sizeof(extent_op
->key
));
4627 extent_op
->flags_to_set
= flags
;
4628 extent_op
->update_key
= skinny_metadata
? false : true;
4629 extent_op
->update_flags
= true;
4630 extent_op
->is_data
= false;
4631 extent_op
->level
= level
;
4633 btrfs_init_generic_ref(&generic_ref
, BTRFS_ADD_DELAYED_EXTENT
,
4634 ins
.objectid
, ins
.offset
, parent
);
4635 generic_ref
.real_root
= root
->root_key
.objectid
;
4636 btrfs_init_tree_ref(&generic_ref
, level
, root_objectid
);
4637 btrfs_ref_tree_mod(fs_info
, &generic_ref
);
4638 ret
= btrfs_add_delayed_tree_ref(trans
, &generic_ref
,
4639 extent_op
, NULL
, NULL
);
4641 goto out_free_delayed
;
4646 btrfs_free_delayed_extent_op(extent_op
);
4648 free_extent_buffer(buf
);
4650 btrfs_free_reserved_extent(fs_info
, ins
.objectid
, ins
.offset
, 0);
4652 btrfs_unuse_block_rsv(fs_info
, block_rsv
, blocksize
);
4653 return ERR_PTR(ret
);
4656 struct walk_control
{
4657 u64 refs
[BTRFS_MAX_LEVEL
];
4658 u64 flags
[BTRFS_MAX_LEVEL
];
4659 struct btrfs_key update_progress
;
4660 struct btrfs_key drop_progress
;
4672 #define DROP_REFERENCE 1
4673 #define UPDATE_BACKREF 2
4675 static noinline
void reada_walk_down(struct btrfs_trans_handle
*trans
,
4676 struct btrfs_root
*root
,
4677 struct walk_control
*wc
,
4678 struct btrfs_path
*path
)
4680 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
4686 struct btrfs_key key
;
4687 struct extent_buffer
*eb
;
4692 if (path
->slots
[wc
->level
] < wc
->reada_slot
) {
4693 wc
->reada_count
= wc
->reada_count
* 2 / 3;
4694 wc
->reada_count
= max(wc
->reada_count
, 2);
4696 wc
->reada_count
= wc
->reada_count
* 3 / 2;
4697 wc
->reada_count
= min_t(int, wc
->reada_count
,
4698 BTRFS_NODEPTRS_PER_BLOCK(fs_info
));
4701 eb
= path
->nodes
[wc
->level
];
4702 nritems
= btrfs_header_nritems(eb
);
4704 for (slot
= path
->slots
[wc
->level
]; slot
< nritems
; slot
++) {
4705 if (nread
>= wc
->reada_count
)
4709 bytenr
= btrfs_node_blockptr(eb
, slot
);
4710 generation
= btrfs_node_ptr_generation(eb
, slot
);
4712 if (slot
== path
->slots
[wc
->level
])
4715 if (wc
->stage
== UPDATE_BACKREF
&&
4716 generation
<= root
->root_key
.offset
)
4719 /* We don't lock the tree block, it's OK to be racy here */
4720 ret
= btrfs_lookup_extent_info(trans
, fs_info
, bytenr
,
4721 wc
->level
- 1, 1, &refs
,
4723 /* We don't care about errors in readahead. */
4728 if (wc
->stage
== DROP_REFERENCE
) {
4732 if (wc
->level
== 1 &&
4733 (flags
& BTRFS_BLOCK_FLAG_FULL_BACKREF
))
4735 if (!wc
->update_ref
||
4736 generation
<= root
->root_key
.offset
)
4738 btrfs_node_key_to_cpu(eb
, &key
, slot
);
4739 ret
= btrfs_comp_cpu_keys(&key
,
4740 &wc
->update_progress
);
4744 if (wc
->level
== 1 &&
4745 (flags
& BTRFS_BLOCK_FLAG_FULL_BACKREF
))
4749 readahead_tree_block(fs_info
, bytenr
);
4752 wc
->reada_slot
= slot
;
4756 * helper to process tree block while walking down the tree.
4758 * when wc->stage == UPDATE_BACKREF, this function updates
4759 * back refs for pointers in the block.
4761 * NOTE: return value 1 means we should stop walking down.
4763 static noinline
int walk_down_proc(struct btrfs_trans_handle
*trans
,
4764 struct btrfs_root
*root
,
4765 struct btrfs_path
*path
,
4766 struct walk_control
*wc
, int lookup_info
)
4768 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
4769 int level
= wc
->level
;
4770 struct extent_buffer
*eb
= path
->nodes
[level
];
4771 u64 flag
= BTRFS_BLOCK_FLAG_FULL_BACKREF
;
4774 if (wc
->stage
== UPDATE_BACKREF
&&
4775 btrfs_header_owner(eb
) != root
->root_key
.objectid
)
4779 * when reference count of tree block is 1, it won't increase
4780 * again. once full backref flag is set, we never clear it.
4783 ((wc
->stage
== DROP_REFERENCE
&& wc
->refs
[level
] != 1) ||
4784 (wc
->stage
== UPDATE_BACKREF
&& !(wc
->flags
[level
] & flag
)))) {
4785 BUG_ON(!path
->locks
[level
]);
4786 ret
= btrfs_lookup_extent_info(trans
, fs_info
,
4787 eb
->start
, level
, 1,
4790 BUG_ON(ret
== -ENOMEM
);
4793 BUG_ON(wc
->refs
[level
] == 0);
4796 if (wc
->stage
== DROP_REFERENCE
) {
4797 if (wc
->refs
[level
] > 1)
4800 if (path
->locks
[level
] && !wc
->keep_locks
) {
4801 btrfs_tree_unlock_rw(eb
, path
->locks
[level
]);
4802 path
->locks
[level
] = 0;
4807 /* wc->stage == UPDATE_BACKREF */
4808 if (!(wc
->flags
[level
] & flag
)) {
4809 BUG_ON(!path
->locks
[level
]);
4810 ret
= btrfs_inc_ref(trans
, root
, eb
, 1);
4811 BUG_ON(ret
); /* -ENOMEM */
4812 ret
= btrfs_dec_ref(trans
, root
, eb
, 0);
4813 BUG_ON(ret
); /* -ENOMEM */
4814 ret
= btrfs_set_disk_extent_flags(trans
, eb
, flag
,
4815 btrfs_header_level(eb
), 0);
4816 BUG_ON(ret
); /* -ENOMEM */
4817 wc
->flags
[level
] |= flag
;
4821 * the block is shared by multiple trees, so it's not good to
4822 * keep the tree lock
4824 if (path
->locks
[level
] && level
> 0) {
4825 btrfs_tree_unlock_rw(eb
, path
->locks
[level
]);
4826 path
->locks
[level
] = 0;
4832 * This is used to verify a ref exists for this root to deal with a bug where we
4833 * would have a drop_progress key that hadn't been updated properly.
4835 static int check_ref_exists(struct btrfs_trans_handle
*trans
,
4836 struct btrfs_root
*root
, u64 bytenr
, u64 parent
,
4839 struct btrfs_path
*path
;
4840 struct btrfs_extent_inline_ref
*iref
;
4843 path
= btrfs_alloc_path();
4847 ret
= lookup_extent_backref(trans
, path
, &iref
, bytenr
,
4848 root
->fs_info
->nodesize
, parent
,
4849 root
->root_key
.objectid
, level
, 0);
4850 btrfs_free_path(path
);
4859 * helper to process tree block pointer.
4861 * when wc->stage == DROP_REFERENCE, this function checks
4862 * reference count of the block pointed to. if the block
4863 * is shared and we need update back refs for the subtree
4864 * rooted at the block, this function changes wc->stage to
4865 * UPDATE_BACKREF. if the block is shared and there is no
4866 * need to update back, this function drops the reference
4869 * NOTE: return value 1 means we should stop walking down.
4871 static noinline
int do_walk_down(struct btrfs_trans_handle
*trans
,
4872 struct btrfs_root
*root
,
4873 struct btrfs_path
*path
,
4874 struct walk_control
*wc
, int *lookup_info
)
4876 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
4880 struct btrfs_key key
;
4881 struct btrfs_key first_key
;
4882 struct btrfs_ref ref
= { 0 };
4883 struct extent_buffer
*next
;
4884 int level
= wc
->level
;
4887 bool need_account
= false;
4889 generation
= btrfs_node_ptr_generation(path
->nodes
[level
],
4890 path
->slots
[level
]);
4892 * if the lower level block was created before the snapshot
4893 * was created, we know there is no need to update back refs
4896 if (wc
->stage
== UPDATE_BACKREF
&&
4897 generation
<= root
->root_key
.offset
) {
4902 bytenr
= btrfs_node_blockptr(path
->nodes
[level
], path
->slots
[level
]);
4903 btrfs_node_key_to_cpu(path
->nodes
[level
], &first_key
,
4904 path
->slots
[level
]);
4906 next
= find_extent_buffer(fs_info
, bytenr
);
4908 next
= btrfs_find_create_tree_block(fs_info
, bytenr
);
4910 return PTR_ERR(next
);
4912 btrfs_set_buffer_lockdep_class(root
->root_key
.objectid
, next
,
4916 btrfs_tree_lock(next
);
4917 btrfs_set_lock_blocking_write(next
);
4919 ret
= btrfs_lookup_extent_info(trans
, fs_info
, bytenr
, level
- 1, 1,
4920 &wc
->refs
[level
- 1],
4921 &wc
->flags
[level
- 1]);
4925 if (unlikely(wc
->refs
[level
- 1] == 0)) {
4926 btrfs_err(fs_info
, "Missing references.");
4932 if (wc
->stage
== DROP_REFERENCE
) {
4933 if (wc
->refs
[level
- 1] > 1) {
4934 need_account
= true;
4936 (wc
->flags
[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF
))
4939 if (!wc
->update_ref
||
4940 generation
<= root
->root_key
.offset
)
4943 btrfs_node_key_to_cpu(path
->nodes
[level
], &key
,
4944 path
->slots
[level
]);
4945 ret
= btrfs_comp_cpu_keys(&key
, &wc
->update_progress
);
4949 wc
->stage
= UPDATE_BACKREF
;
4950 wc
->shared_level
= level
- 1;
4954 (wc
->flags
[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF
))
4958 if (!btrfs_buffer_uptodate(next
, generation
, 0)) {
4959 btrfs_tree_unlock(next
);
4960 free_extent_buffer(next
);
4966 if (reada
&& level
== 1)
4967 reada_walk_down(trans
, root
, wc
, path
);
4968 next
= read_tree_block(fs_info
, bytenr
, generation
, level
- 1,
4971 return PTR_ERR(next
);
4972 } else if (!extent_buffer_uptodate(next
)) {
4973 free_extent_buffer(next
);
4976 btrfs_tree_lock(next
);
4977 btrfs_set_lock_blocking_write(next
);
4981 ASSERT(level
== btrfs_header_level(next
));
4982 if (level
!= btrfs_header_level(next
)) {
4983 btrfs_err(root
->fs_info
, "mismatched level");
4987 path
->nodes
[level
] = next
;
4988 path
->slots
[level
] = 0;
4989 path
->locks
[level
] = BTRFS_WRITE_LOCK_BLOCKING
;
4995 wc
->refs
[level
- 1] = 0;
4996 wc
->flags
[level
- 1] = 0;
4997 if (wc
->stage
== DROP_REFERENCE
) {
4998 if (wc
->flags
[level
] & BTRFS_BLOCK_FLAG_FULL_BACKREF
) {
4999 parent
= path
->nodes
[level
]->start
;
5001 ASSERT(root
->root_key
.objectid
==
5002 btrfs_header_owner(path
->nodes
[level
]));
5003 if (root
->root_key
.objectid
!=
5004 btrfs_header_owner(path
->nodes
[level
])) {
5005 btrfs_err(root
->fs_info
,
5006 "mismatched block owner");
5014 * If we had a drop_progress we need to verify the refs are set
5015 * as expected. If we find our ref then we know that from here
5016 * on out everything should be correct, and we can clear the
5019 if (wc
->restarted
) {
5020 ret
= check_ref_exists(trans
, root
, bytenr
, parent
,
5031 * Reloc tree doesn't contribute to qgroup numbers, and we have
5032 * already accounted them at merge time (replace_path),
5033 * thus we could skip expensive subtree trace here.
5035 if (root
->root_key
.objectid
!= BTRFS_TREE_RELOC_OBJECTID
&&
5037 ret
= btrfs_qgroup_trace_subtree(trans
, next
,
5038 generation
, level
- 1);
5040 btrfs_err_rl(fs_info
,
5041 "Error %d accounting shared subtree. Quota is out of sync, rescan required.",
5047 * We need to update the next key in our walk control so we can
5048 * update the drop_progress key accordingly. We don't care if
5049 * find_next_key doesn't find a key because that means we're at
5050 * the end and are going to clean up now.
5052 wc
->drop_level
= level
;
5053 find_next_key(path
, level
, &wc
->drop_progress
);
5055 btrfs_init_generic_ref(&ref
, BTRFS_DROP_DELAYED_REF
, bytenr
,
5056 fs_info
->nodesize
, parent
);
5057 btrfs_init_tree_ref(&ref
, level
- 1, root
->root_key
.objectid
);
5058 ret
= btrfs_free_extent(trans
, &ref
);
5067 btrfs_tree_unlock(next
);
5068 free_extent_buffer(next
);
5074 * helper to process tree block while walking up the tree.
5076 * when wc->stage == DROP_REFERENCE, this function drops
5077 * reference count on the block.
5079 * when wc->stage == UPDATE_BACKREF, this function changes
5080 * wc->stage back to DROP_REFERENCE if we changed wc->stage
5081 * to UPDATE_BACKREF previously while processing the block.
5083 * NOTE: return value 1 means we should stop walking up.
5085 static noinline
int walk_up_proc(struct btrfs_trans_handle
*trans
,
5086 struct btrfs_root
*root
,
5087 struct btrfs_path
*path
,
5088 struct walk_control
*wc
)
5090 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
5092 int level
= wc
->level
;
5093 struct extent_buffer
*eb
= path
->nodes
[level
];
5096 if (wc
->stage
== UPDATE_BACKREF
) {
5097 BUG_ON(wc
->shared_level
< level
);
5098 if (level
< wc
->shared_level
)
5101 ret
= find_next_key(path
, level
+ 1, &wc
->update_progress
);
5105 wc
->stage
= DROP_REFERENCE
;
5106 wc
->shared_level
= -1;
5107 path
->slots
[level
] = 0;
5110 * check reference count again if the block isn't locked.
5111 * we should start walking down the tree again if reference
5114 if (!path
->locks
[level
]) {
5116 btrfs_tree_lock(eb
);
5117 btrfs_set_lock_blocking_write(eb
);
5118 path
->locks
[level
] = BTRFS_WRITE_LOCK_BLOCKING
;
5120 ret
= btrfs_lookup_extent_info(trans
, fs_info
,
5121 eb
->start
, level
, 1,
5125 btrfs_tree_unlock_rw(eb
, path
->locks
[level
]);
5126 path
->locks
[level
] = 0;
5129 BUG_ON(wc
->refs
[level
] == 0);
5130 if (wc
->refs
[level
] == 1) {
5131 btrfs_tree_unlock_rw(eb
, path
->locks
[level
]);
5132 path
->locks
[level
] = 0;
5138 /* wc->stage == DROP_REFERENCE */
5139 BUG_ON(wc
->refs
[level
] > 1 && !path
->locks
[level
]);
5141 if (wc
->refs
[level
] == 1) {
5143 if (wc
->flags
[level
] & BTRFS_BLOCK_FLAG_FULL_BACKREF
)
5144 ret
= btrfs_dec_ref(trans
, root
, eb
, 1);
5146 ret
= btrfs_dec_ref(trans
, root
, eb
, 0);
5147 BUG_ON(ret
); /* -ENOMEM */
5148 if (is_fstree(root
->root_key
.objectid
)) {
5149 ret
= btrfs_qgroup_trace_leaf_items(trans
, eb
);
5151 btrfs_err_rl(fs_info
,
5152 "error %d accounting leaf items, quota is out of sync, rescan required",
5157 /* make block locked assertion in btrfs_clean_tree_block happy */
5158 if (!path
->locks
[level
] &&
5159 btrfs_header_generation(eb
) == trans
->transid
) {
5160 btrfs_tree_lock(eb
);
5161 btrfs_set_lock_blocking_write(eb
);
5162 path
->locks
[level
] = BTRFS_WRITE_LOCK_BLOCKING
;
5164 btrfs_clean_tree_block(eb
);
5167 if (eb
== root
->node
) {
5168 if (wc
->flags
[level
] & BTRFS_BLOCK_FLAG_FULL_BACKREF
)
5170 else if (root
->root_key
.objectid
!= btrfs_header_owner(eb
))
5171 goto owner_mismatch
;
5173 if (wc
->flags
[level
+ 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF
)
5174 parent
= path
->nodes
[level
+ 1]->start
;
5175 else if (root
->root_key
.objectid
!=
5176 btrfs_header_owner(path
->nodes
[level
+ 1]))
5177 goto owner_mismatch
;
5180 btrfs_free_tree_block(trans
, root
, eb
, parent
, wc
->refs
[level
] == 1);
5182 wc
->refs
[level
] = 0;
5183 wc
->flags
[level
] = 0;
5187 btrfs_err_rl(fs_info
, "unexpected tree owner, have %llu expect %llu",
5188 btrfs_header_owner(eb
), root
->root_key
.objectid
);
5192 static noinline
int walk_down_tree(struct btrfs_trans_handle
*trans
,
5193 struct btrfs_root
*root
,
5194 struct btrfs_path
*path
,
5195 struct walk_control
*wc
)
5197 int level
= wc
->level
;
5198 int lookup_info
= 1;
5201 while (level
>= 0) {
5202 ret
= walk_down_proc(trans
, root
, path
, wc
, lookup_info
);
5209 if (path
->slots
[level
] >=
5210 btrfs_header_nritems(path
->nodes
[level
]))
5213 ret
= do_walk_down(trans
, root
, path
, wc
, &lookup_info
);
5215 path
->slots
[level
]++;
5224 static noinline
int walk_up_tree(struct btrfs_trans_handle
*trans
,
5225 struct btrfs_root
*root
,
5226 struct btrfs_path
*path
,
5227 struct walk_control
*wc
, int max_level
)
5229 int level
= wc
->level
;
5232 path
->slots
[level
] = btrfs_header_nritems(path
->nodes
[level
]);
5233 while (level
< max_level
&& path
->nodes
[level
]) {
5235 if (path
->slots
[level
] + 1 <
5236 btrfs_header_nritems(path
->nodes
[level
])) {
5237 path
->slots
[level
]++;
5240 ret
= walk_up_proc(trans
, root
, path
, wc
);
5246 if (path
->locks
[level
]) {
5247 btrfs_tree_unlock_rw(path
->nodes
[level
],
5248 path
->locks
[level
]);
5249 path
->locks
[level
] = 0;
5251 free_extent_buffer(path
->nodes
[level
]);
5252 path
->nodes
[level
] = NULL
;
5260 * drop a subvolume tree.
5262 * this function traverses the tree freeing any blocks that only
5263 * referenced by the tree.
5265 * when a shared tree block is found. this function decreases its
5266 * reference count by one. if update_ref is true, this function
5267 * also make sure backrefs for the shared block and all lower level
5268 * blocks are properly updated.
5270 * If called with for_reloc == 0, may exit early with -EAGAIN
5272 int btrfs_drop_snapshot(struct btrfs_root
*root
, int update_ref
, int for_reloc
)
5274 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
5275 struct btrfs_path
*path
;
5276 struct btrfs_trans_handle
*trans
;
5277 struct btrfs_root
*tree_root
= fs_info
->tree_root
;
5278 struct btrfs_root_item
*root_item
= &root
->root_item
;
5279 struct walk_control
*wc
;
5280 struct btrfs_key key
;
5284 bool root_dropped
= false;
5286 btrfs_debug(fs_info
, "Drop subvolume %llu", root
->root_key
.objectid
);
5288 path
= btrfs_alloc_path();
5294 wc
= kzalloc(sizeof(*wc
), GFP_NOFS
);
5296 btrfs_free_path(path
);
5302 * Use join to avoid potential EINTR from transaction start. See
5303 * wait_reserve_ticket and the whole reservation callchain.
5306 trans
= btrfs_join_transaction(tree_root
);
5308 trans
= btrfs_start_transaction(tree_root
, 0);
5309 if (IS_ERR(trans
)) {
5310 err
= PTR_ERR(trans
);
5314 err
= btrfs_run_delayed_items(trans
);
5319 * This will help us catch people modifying the fs tree while we're
5320 * dropping it. It is unsafe to mess with the fs tree while it's being
5321 * dropped as we unlock the root node and parent nodes as we walk down
5322 * the tree, assuming nothing will change. If something does change
5323 * then we'll have stale information and drop references to blocks we've
5326 set_bit(BTRFS_ROOT_DELETING
, &root
->state
);
5327 if (btrfs_disk_key_objectid(&root_item
->drop_progress
) == 0) {
5328 level
= btrfs_header_level(root
->node
);
5329 path
->nodes
[level
] = btrfs_lock_root_node(root
);
5330 btrfs_set_lock_blocking_write(path
->nodes
[level
]);
5331 path
->slots
[level
] = 0;
5332 path
->locks
[level
] = BTRFS_WRITE_LOCK_BLOCKING
;
5333 memset(&wc
->update_progress
, 0,
5334 sizeof(wc
->update_progress
));
5336 btrfs_disk_key_to_cpu(&key
, &root_item
->drop_progress
);
5337 memcpy(&wc
->update_progress
, &key
,
5338 sizeof(wc
->update_progress
));
5340 level
= root_item
->drop_level
;
5342 path
->lowest_level
= level
;
5343 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
5344 path
->lowest_level
= 0;
5352 * unlock our path, this is safe because only this
5353 * function is allowed to delete this snapshot
5355 btrfs_unlock_up_safe(path
, 0);
5357 level
= btrfs_header_level(root
->node
);
5359 btrfs_tree_lock(path
->nodes
[level
]);
5360 btrfs_set_lock_blocking_write(path
->nodes
[level
]);
5361 path
->locks
[level
] = BTRFS_WRITE_LOCK_BLOCKING
;
5363 ret
= btrfs_lookup_extent_info(trans
, fs_info
,
5364 path
->nodes
[level
]->start
,
5365 level
, 1, &wc
->refs
[level
],
5371 BUG_ON(wc
->refs
[level
] == 0);
5373 if (level
== root_item
->drop_level
)
5376 btrfs_tree_unlock(path
->nodes
[level
]);
5377 path
->locks
[level
] = 0;
5378 WARN_ON(wc
->refs
[level
] != 1);
5383 wc
->restarted
= test_bit(BTRFS_ROOT_DEAD_TREE
, &root
->state
);
5385 wc
->shared_level
= -1;
5386 wc
->stage
= DROP_REFERENCE
;
5387 wc
->update_ref
= update_ref
;
5389 wc
->reada_count
= BTRFS_NODEPTRS_PER_BLOCK(fs_info
);
5393 ret
= walk_down_tree(trans
, root
, path
, wc
);
5399 ret
= walk_up_tree(trans
, root
, path
, wc
, BTRFS_MAX_LEVEL
);
5406 BUG_ON(wc
->stage
!= DROP_REFERENCE
);
5410 if (wc
->stage
== DROP_REFERENCE
) {
5411 wc
->drop_level
= wc
->level
;
5412 btrfs_node_key_to_cpu(path
->nodes
[wc
->drop_level
],
5414 path
->slots
[wc
->drop_level
]);
5416 btrfs_cpu_key_to_disk(&root_item
->drop_progress
,
5417 &wc
->drop_progress
);
5418 root_item
->drop_level
= wc
->drop_level
;
5420 BUG_ON(wc
->level
== 0);
5421 if (btrfs_should_end_transaction(trans
) ||
5422 (!for_reloc
&& btrfs_need_cleaner_sleep(fs_info
))) {
5423 ret
= btrfs_update_root(trans
, tree_root
,
5427 btrfs_abort_transaction(trans
, ret
);
5432 btrfs_end_transaction_throttle(trans
);
5433 if (!for_reloc
&& btrfs_need_cleaner_sleep(fs_info
)) {
5434 btrfs_debug(fs_info
,
5435 "drop snapshot early exit");
5440 trans
= btrfs_start_transaction(tree_root
, 0);
5441 if (IS_ERR(trans
)) {
5442 err
= PTR_ERR(trans
);
5447 btrfs_release_path(path
);
5451 ret
= btrfs_del_root(trans
, &root
->root_key
);
5453 btrfs_abort_transaction(trans
, ret
);
5458 if (root
->root_key
.objectid
!= BTRFS_TREE_RELOC_OBJECTID
) {
5459 ret
= btrfs_find_root(tree_root
, &root
->root_key
, path
,
5462 btrfs_abort_transaction(trans
, ret
);
5465 } else if (ret
> 0) {
5466 /* if we fail to delete the orphan item this time
5467 * around, it'll get picked up the next time.
5469 * The most common failure here is just -ENOENT.
5471 btrfs_del_orphan_item(trans
, tree_root
,
5472 root
->root_key
.objectid
);
5477 * This subvolume is going to be completely dropped, and won't be
5478 * recorded as dirty roots, thus pertrans meta rsv will not be freed at
5479 * commit transaction time. So free it here manually.
5481 btrfs_qgroup_convert_reserved_meta(root
, INT_MAX
);
5482 btrfs_qgroup_free_meta_all_pertrans(root
);
5484 if (test_bit(BTRFS_ROOT_IN_RADIX
, &root
->state
))
5485 btrfs_add_dropped_root(trans
, root
);
5487 btrfs_put_root(root
);
5488 root_dropped
= true;
5490 btrfs_end_transaction_throttle(trans
);
5493 btrfs_free_path(path
);
5496 * So if we need to stop dropping the snapshot for whatever reason we
5497 * need to make sure to add it back to the dead root list so that we
5498 * keep trying to do the work later. This also cleans up roots if we
5499 * don't have it in the radix (like when we recover after a power fail
5500 * or unmount) so we don't leak memory.
5502 if (!for_reloc
&& !root_dropped
)
5503 btrfs_add_dead_root(root
);
5508 * drop subtree rooted at tree block 'node'.
5510 * NOTE: this function will unlock and release tree block 'node'
5511 * only used by relocation code
5513 int btrfs_drop_subtree(struct btrfs_trans_handle
*trans
,
5514 struct btrfs_root
*root
,
5515 struct extent_buffer
*node
,
5516 struct extent_buffer
*parent
)
5518 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
5519 struct btrfs_path
*path
;
5520 struct walk_control
*wc
;
5526 BUG_ON(root
->root_key
.objectid
!= BTRFS_TREE_RELOC_OBJECTID
);
5528 path
= btrfs_alloc_path();
5532 wc
= kzalloc(sizeof(*wc
), GFP_NOFS
);
5534 btrfs_free_path(path
);
5538 btrfs_assert_tree_locked(parent
);
5539 parent_level
= btrfs_header_level(parent
);
5540 atomic_inc(&parent
->refs
);
5541 path
->nodes
[parent_level
] = parent
;
5542 path
->slots
[parent_level
] = btrfs_header_nritems(parent
);
5544 btrfs_assert_tree_locked(node
);
5545 level
= btrfs_header_level(node
);
5546 path
->nodes
[level
] = node
;
5547 path
->slots
[level
] = 0;
5548 path
->locks
[level
] = BTRFS_WRITE_LOCK_BLOCKING
;
5550 wc
->refs
[parent_level
] = 1;
5551 wc
->flags
[parent_level
] = BTRFS_BLOCK_FLAG_FULL_BACKREF
;
5553 wc
->shared_level
= -1;
5554 wc
->stage
= DROP_REFERENCE
;
5557 wc
->reada_count
= BTRFS_NODEPTRS_PER_BLOCK(fs_info
);
5560 wret
= walk_down_tree(trans
, root
, path
, wc
);
5566 wret
= walk_up_tree(trans
, root
, path
, wc
, parent_level
);
5574 btrfs_free_path(path
);
5579 * helper to account the unused space of all the readonly block group in the
5580 * space_info. takes mirrors into account.
5582 u64
btrfs_account_ro_block_groups_free_space(struct btrfs_space_info
*sinfo
)
5584 struct btrfs_block_group
*block_group
;
5588 /* It's df, we don't care if it's racy */
5589 if (list_empty(&sinfo
->ro_bgs
))
5592 spin_lock(&sinfo
->lock
);
5593 list_for_each_entry(block_group
, &sinfo
->ro_bgs
, ro_list
) {
5594 spin_lock(&block_group
->lock
);
5596 if (!block_group
->ro
) {
5597 spin_unlock(&block_group
->lock
);
5601 factor
= btrfs_bg_type_to_factor(block_group
->flags
);
5602 free_bytes
+= (block_group
->length
-
5603 block_group
->used
) * factor
;
5605 spin_unlock(&block_group
->lock
);
5607 spin_unlock(&sinfo
->lock
);
5612 int btrfs_error_unpin_extent_range(struct btrfs_fs_info
*fs_info
,
5615 return unpin_extent_range(fs_info
, start
, end
, false);
5619 * It used to be that old block groups would be left around forever.
5620 * Iterating over them would be enough to trim unused space. Since we
5621 * now automatically remove them, we also need to iterate over unallocated
5624 * We don't want a transaction for this since the discard may take a
5625 * substantial amount of time. We don't require that a transaction be
5626 * running, but we do need to take a running transaction into account
5627 * to ensure that we're not discarding chunks that were released or
5628 * allocated in the current transaction.
5630 * Holding the chunks lock will prevent other threads from allocating
5631 * or releasing chunks, but it won't prevent a running transaction
5632 * from committing and releasing the memory that the pending chunks
5633 * list head uses. For that, we need to take a reference to the
5634 * transaction and hold the commit root sem. We only need to hold
5635 * it while performing the free space search since we have already
5636 * held back allocations.
5638 static int btrfs_trim_free_extents(struct btrfs_device
*device
, u64
*trimmed
)
5640 u64 start
= SZ_1M
, len
= 0, end
= 0;
5645 /* Discard not supported = nothing to do. */
5646 if (!blk_queue_discard(bdev_get_queue(device
->bdev
)))
5649 /* Not writable = nothing to do. */
5650 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE
, &device
->dev_state
))
5653 /* No free space = nothing to do. */
5654 if (device
->total_bytes
<= device
->bytes_used
)
5660 struct btrfs_fs_info
*fs_info
= device
->fs_info
;
5663 ret
= mutex_lock_interruptible(&fs_info
->chunk_mutex
);
5667 find_first_clear_extent_bit(&device
->alloc_state
, start
,
5669 CHUNK_TRIMMED
| CHUNK_ALLOCATED
);
5671 /* Ensure we skip the reserved area in the first 1M */
5672 start
= max_t(u64
, start
, SZ_1M
);
5675 * If find_first_clear_extent_bit find a range that spans the
5676 * end of the device it will set end to -1, in this case it's up
5677 * to the caller to trim the value to the size of the device.
5679 end
= min(end
, device
->total_bytes
- 1);
5681 len
= end
- start
+ 1;
5683 /* We didn't find any extents */
5685 mutex_unlock(&fs_info
->chunk_mutex
);
5690 ret
= btrfs_issue_discard(device
->bdev
, start
, len
,
5693 set_extent_bits(&device
->alloc_state
, start
,
5696 mutex_unlock(&fs_info
->chunk_mutex
);
5704 if (fatal_signal_pending(current
)) {
5716 * Trim the whole filesystem by:
5717 * 1) trimming the free space in each block group
5718 * 2) trimming the unallocated space on each device
5720 * This will also continue trimming even if a block group or device encounters
5721 * an error. The return value will be the last error, or 0 if nothing bad
5724 int btrfs_trim_fs(struct btrfs_fs_info
*fs_info
, struct fstrim_range
*range
)
5726 struct btrfs_block_group
*cache
= NULL
;
5727 struct btrfs_device
*device
;
5728 struct list_head
*devices
;
5730 u64 range_end
= U64_MAX
;
5741 * Check range overflow if range->len is set.
5742 * The default range->len is U64_MAX.
5744 if (range
->len
!= U64_MAX
&&
5745 check_add_overflow(range
->start
, range
->len
, &range_end
))
5748 cache
= btrfs_lookup_first_block_group(fs_info
, range
->start
);
5749 for (; cache
; cache
= btrfs_next_block_group(cache
)) {
5750 if (cache
->start
>= range_end
) {
5751 btrfs_put_block_group(cache
);
5755 start
= max(range
->start
, cache
->start
);
5756 end
= min(range_end
, cache
->start
+ cache
->length
);
5758 if (end
- start
>= range
->minlen
) {
5759 if (!btrfs_block_group_done(cache
)) {
5760 ret
= btrfs_cache_block_group(cache
, 0);
5766 ret
= btrfs_wait_block_group_cache_done(cache
);
5773 ret
= btrfs_trim_block_group(cache
,
5779 trimmed
+= group_trimmed
;
5790 "failed to trim %llu block group(s), last error %d",
5792 mutex_lock(&fs_info
->fs_devices
->device_list_mutex
);
5793 devices
= &fs_info
->fs_devices
->devices
;
5794 list_for_each_entry(device
, devices
, dev_list
) {
5795 ret
= btrfs_trim_free_extents(device
, &group_trimmed
);
5802 trimmed
+= group_trimmed
;
5804 mutex_unlock(&fs_info
->fs_devices
->device_list_mutex
);
5808 "failed to trim %llu device(s), last error %d",
5809 dev_failed
, dev_ret
);
5810 range
->len
= trimmed
;