1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (C) 2009 Oracle. All rights reserved.
6 #include <linux/sched.h>
7 #include <linux/pagemap.h>
8 #include <linux/writeback.h>
9 #include <linux/blkdev.h>
10 #include <linux/rbtree.h>
11 #include <linux/slab.h>
12 #include <linux/error-injection.h>
15 #include "transaction.h"
18 #include "btrfs_inode.h"
19 #include "async-thread.h"
20 #include "free-space-cache.h"
21 #include "inode-map.h"
23 #include "print-tree.h"
24 #include "delalloc-space.h"
25 #include "block-group.h"
32 * [What does relocation do]
34 * The objective of relocation is to relocate all extents of the target block
35 * group to other block groups.
36 * This is utilized by resize (shrink only), profile converting, compacting
37 * space, or balance routine to spread chunks over devices.
40 * ------------------------------------------------------------------
41 * BG A: 10 data extents | BG A: deleted
42 * BG B: 2 data extents | BG B: 10 data extents (2 old + 8 relocated)
43 * BG C: 1 extents | BG C: 3 data extents (1 old + 2 relocated)
45 * [How does relocation work]
47 * 1. Mark the target block group read-only
48 * New extents won't be allocated from the target block group.
50 * 2.1 Record each extent in the target block group
51 * To build a proper map of extents to be relocated.
53 * 2.2 Build data reloc tree and reloc trees
54 * Data reloc tree will contain an inode, recording all newly relocated
56 * There will be only one data reloc tree for one data block group.
58 * Reloc tree will be a special snapshot of its source tree, containing
59 * relocated tree blocks.
60 * Each tree referring to a tree block in target block group will get its
63 * 2.3 Swap source tree with its corresponding reloc tree
64 * Each involved tree only refers to new extents after swap.
66 * 3. Cleanup reloc trees and data reloc tree.
67 * As old extents in the target block group are still referenced by reloc
68 * trees, we need to clean them up before really freeing the target block
71 * The main complexity is in steps 2.2 and 2.3.
73 * The entry point of relocation is relocate_block_group() function.
76 #define RELOCATION_RESERVED_NODES 256
78 * map address of tree root to tree
82 struct rb_node rb_node
;
84 }; /* Use rb_simle_node for search/insert */
89 struct rb_root rb_root
;
94 * present a tree block to process
98 struct rb_node rb_node
;
100 }; /* Use rb_simple_node for search/insert */
101 struct btrfs_key key
;
102 unsigned int level
:8;
103 unsigned int key_ready
:1;
106 #define MAX_EXTENTS 128
108 struct file_extent_cluster
{
111 u64 boundary
[MAX_EXTENTS
];
115 struct reloc_control
{
116 /* block group to relocate */
117 struct btrfs_block_group
*block_group
;
119 struct btrfs_root
*extent_root
;
120 /* inode for moving data */
121 struct inode
*data_inode
;
123 struct btrfs_block_rsv
*block_rsv
;
125 struct btrfs_backref_cache backref_cache
;
127 struct file_extent_cluster cluster
;
128 /* tree blocks have been processed */
129 struct extent_io_tree processed_blocks
;
130 /* map start of tree root to corresponding reloc tree */
131 struct mapping_tree reloc_root_tree
;
132 /* list of reloc trees */
133 struct list_head reloc_roots
;
134 /* list of subvolume trees that get relocated */
135 struct list_head dirty_subvol_roots
;
136 /* size of metadata reservation for merging reloc trees */
137 u64 merging_rsv_size
;
138 /* size of relocated tree nodes */
140 /* reserved size for block group relocation*/
146 unsigned int stage
:8;
147 unsigned int create_reloc_tree
:1;
148 unsigned int merge_reloc_tree
:1;
149 unsigned int found_file_extent
:1;
152 /* stages of data relocation */
153 #define MOVE_DATA_EXTENTS 0
154 #define UPDATE_DATA_PTRS 1
156 static void mark_block_processed(struct reloc_control
*rc
,
157 struct btrfs_backref_node
*node
)
161 if (node
->level
== 0 ||
162 in_range(node
->bytenr
, rc
->block_group
->start
,
163 rc
->block_group
->length
)) {
164 blocksize
= rc
->extent_root
->fs_info
->nodesize
;
165 set_extent_bits(&rc
->processed_blocks
, node
->bytenr
,
166 node
->bytenr
+ blocksize
- 1, EXTENT_DIRTY
);
172 static void mapping_tree_init(struct mapping_tree
*tree
)
174 tree
->rb_root
= RB_ROOT
;
175 spin_lock_init(&tree
->lock
);
179 * walk up backref nodes until reach node presents tree root
181 static struct btrfs_backref_node
*walk_up_backref(
182 struct btrfs_backref_node
*node
,
183 struct btrfs_backref_edge
*edges
[], int *index
)
185 struct btrfs_backref_edge
*edge
;
188 while (!list_empty(&node
->upper
)) {
189 edge
= list_entry(node
->upper
.next
,
190 struct btrfs_backref_edge
, list
[LOWER
]);
192 node
= edge
->node
[UPPER
];
194 BUG_ON(node
->detached
);
200 * walk down backref nodes to find start of next reference path
202 static struct btrfs_backref_node
*walk_down_backref(
203 struct btrfs_backref_edge
*edges
[], int *index
)
205 struct btrfs_backref_edge
*edge
;
206 struct btrfs_backref_node
*lower
;
210 edge
= edges
[idx
- 1];
211 lower
= edge
->node
[LOWER
];
212 if (list_is_last(&edge
->list
[LOWER
], &lower
->upper
)) {
216 edge
= list_entry(edge
->list
[LOWER
].next
,
217 struct btrfs_backref_edge
, list
[LOWER
]);
218 edges
[idx
- 1] = edge
;
220 return edge
->node
[UPPER
];
226 static void update_backref_node(struct btrfs_backref_cache
*cache
,
227 struct btrfs_backref_node
*node
, u64 bytenr
)
229 struct rb_node
*rb_node
;
230 rb_erase(&node
->rb_node
, &cache
->rb_root
);
231 node
->bytenr
= bytenr
;
232 rb_node
= rb_simple_insert(&cache
->rb_root
, node
->bytenr
, &node
->rb_node
);
234 btrfs_backref_panic(cache
->fs_info
, bytenr
, -EEXIST
);
238 * update backref cache after a transaction commit
240 static int update_backref_cache(struct btrfs_trans_handle
*trans
,
241 struct btrfs_backref_cache
*cache
)
243 struct btrfs_backref_node
*node
;
246 if (cache
->last_trans
== 0) {
247 cache
->last_trans
= trans
->transid
;
251 if (cache
->last_trans
== trans
->transid
)
255 * detached nodes are used to avoid unnecessary backref
256 * lookup. transaction commit changes the extent tree.
257 * so the detached nodes are no longer useful.
259 while (!list_empty(&cache
->detached
)) {
260 node
= list_entry(cache
->detached
.next
,
261 struct btrfs_backref_node
, list
);
262 btrfs_backref_cleanup_node(cache
, node
);
265 while (!list_empty(&cache
->changed
)) {
266 node
= list_entry(cache
->changed
.next
,
267 struct btrfs_backref_node
, list
);
268 list_del_init(&node
->list
);
269 BUG_ON(node
->pending
);
270 update_backref_node(cache
, node
, node
->new_bytenr
);
274 * some nodes can be left in the pending list if there were
275 * errors during processing the pending nodes.
277 for (level
= 0; level
< BTRFS_MAX_LEVEL
; level
++) {
278 list_for_each_entry(node
, &cache
->pending
[level
], list
) {
279 BUG_ON(!node
->pending
);
280 if (node
->bytenr
== node
->new_bytenr
)
282 update_backref_node(cache
, node
, node
->new_bytenr
);
286 cache
->last_trans
= 0;
290 static bool reloc_root_is_dead(struct btrfs_root
*root
)
293 * Pair with set_bit/clear_bit in clean_dirty_subvols and
294 * btrfs_update_reloc_root. We need to see the updated bit before
295 * trying to access reloc_root
298 if (test_bit(BTRFS_ROOT_DEAD_RELOC_TREE
, &root
->state
))
304 * Check if this subvolume tree has valid reloc tree.
306 * Reloc tree after swap is considered dead, thus not considered as valid.
307 * This is enough for most callers, as they don't distinguish dead reloc root
308 * from no reloc root. But btrfs_should_ignore_reloc_root() below is a
311 static bool have_reloc_root(struct btrfs_root
*root
)
313 if (reloc_root_is_dead(root
))
315 if (!root
->reloc_root
)
320 int btrfs_should_ignore_reloc_root(struct btrfs_root
*root
)
322 struct btrfs_root
*reloc_root
;
324 if (!test_bit(BTRFS_ROOT_SHAREABLE
, &root
->state
))
327 /* This root has been merged with its reloc tree, we can ignore it */
328 if (reloc_root_is_dead(root
))
331 reloc_root
= root
->reloc_root
;
335 if (btrfs_header_generation(reloc_root
->commit_root
) ==
336 root
->fs_info
->running_transaction
->transid
)
339 * if there is reloc tree and it was created in previous
340 * transaction backref lookup can find the reloc tree,
341 * so backref node for the fs tree root is useless for
348 * find reloc tree by address of tree root
350 struct btrfs_root
*find_reloc_root(struct btrfs_fs_info
*fs_info
, u64 bytenr
)
352 struct reloc_control
*rc
= fs_info
->reloc_ctl
;
353 struct rb_node
*rb_node
;
354 struct mapping_node
*node
;
355 struct btrfs_root
*root
= NULL
;
358 spin_lock(&rc
->reloc_root_tree
.lock
);
359 rb_node
= rb_simple_search(&rc
->reloc_root_tree
.rb_root
, bytenr
);
361 node
= rb_entry(rb_node
, struct mapping_node
, rb_node
);
362 root
= (struct btrfs_root
*)node
->data
;
364 spin_unlock(&rc
->reloc_root_tree
.lock
);
365 return btrfs_grab_root(root
);
369 * For useless nodes, do two major clean ups:
371 * - Cleanup the children edges and nodes
372 * If child node is also orphan (no parent) during cleanup, then the child
373 * node will also be cleaned up.
375 * - Freeing up leaves (level 0), keeps nodes detached
376 * For nodes, the node is still cached as "detached"
378 * Return false if @node is not in the @useless_nodes list.
379 * Return true if @node is in the @useless_nodes list.
381 static bool handle_useless_nodes(struct reloc_control
*rc
,
382 struct btrfs_backref_node
*node
)
384 struct btrfs_backref_cache
*cache
= &rc
->backref_cache
;
385 struct list_head
*useless_node
= &cache
->useless_node
;
388 while (!list_empty(useless_node
)) {
389 struct btrfs_backref_node
*cur
;
391 cur
= list_first_entry(useless_node
, struct btrfs_backref_node
,
393 list_del_init(&cur
->list
);
395 /* Only tree root nodes can be added to @useless_nodes */
396 ASSERT(list_empty(&cur
->upper
));
401 /* The node is the lowest node */
403 list_del_init(&cur
->lower
);
407 /* Cleanup the lower edges */
408 while (!list_empty(&cur
->lower
)) {
409 struct btrfs_backref_edge
*edge
;
410 struct btrfs_backref_node
*lower
;
412 edge
= list_entry(cur
->lower
.next
,
413 struct btrfs_backref_edge
, list
[UPPER
]);
414 list_del(&edge
->list
[UPPER
]);
415 list_del(&edge
->list
[LOWER
]);
416 lower
= edge
->node
[LOWER
];
417 btrfs_backref_free_edge(cache
, edge
);
419 /* Child node is also orphan, queue for cleanup */
420 if (list_empty(&lower
->upper
))
421 list_add(&lower
->list
, useless_node
);
423 /* Mark this block processed for relocation */
424 mark_block_processed(rc
, cur
);
427 * Backref nodes for tree leaves are deleted from the cache.
428 * Backref nodes for upper level tree blocks are left in the
429 * cache to avoid unnecessary backref lookup.
431 if (cur
->level
> 0) {
432 list_add(&cur
->list
, &cache
->detached
);
435 rb_erase(&cur
->rb_node
, &cache
->rb_root
);
436 btrfs_backref_free_node(cache
, cur
);
443 * Build backref tree for a given tree block. Root of the backref tree
444 * corresponds the tree block, leaves of the backref tree correspond roots of
445 * b-trees that reference the tree block.
447 * The basic idea of this function is check backrefs of a given block to find
448 * upper level blocks that reference the block, and then check backrefs of
449 * these upper level blocks recursively. The recursion stops when tree root is
450 * reached or backrefs for the block is cached.
452 * NOTE: if we find that backrefs for a block are cached, we know backrefs for
453 * all upper level blocks that directly/indirectly reference the block are also
456 static noinline_for_stack
struct btrfs_backref_node
*build_backref_tree(
457 struct reloc_control
*rc
, struct btrfs_key
*node_key
,
458 int level
, u64 bytenr
)
460 struct btrfs_backref_iter
*iter
;
461 struct btrfs_backref_cache
*cache
= &rc
->backref_cache
;
462 /* For searching parent of TREE_BLOCK_REF */
463 struct btrfs_path
*path
;
464 struct btrfs_backref_node
*cur
;
465 struct btrfs_backref_node
*node
= NULL
;
466 struct btrfs_backref_edge
*edge
;
470 iter
= btrfs_backref_iter_alloc(rc
->extent_root
->fs_info
, GFP_NOFS
);
472 return ERR_PTR(-ENOMEM
);
473 path
= btrfs_alloc_path();
479 node
= btrfs_backref_alloc_node(cache
, bytenr
, level
);
488 /* Breadth-first search to build backref cache */
490 ret
= btrfs_backref_add_tree_node(cache
, path
, iter
, node_key
,
496 edge
= list_first_entry_or_null(&cache
->pending_edge
,
497 struct btrfs_backref_edge
, list
[UPPER
]);
499 * The pending list isn't empty, take the first block to
503 list_del_init(&edge
->list
[UPPER
]);
504 cur
= edge
->node
[UPPER
];
508 /* Finish the upper linkage of newly added edges/nodes */
509 ret
= btrfs_backref_finish_upper_links(cache
, node
);
515 if (handle_useless_nodes(rc
, node
))
518 btrfs_backref_iter_free(iter
);
519 btrfs_free_path(path
);
521 btrfs_backref_error_cleanup(cache
, node
);
524 ASSERT(!node
|| !node
->detached
);
525 ASSERT(list_empty(&cache
->useless_node
) &&
526 list_empty(&cache
->pending_edge
));
531 * helper to add backref node for the newly created snapshot.
532 * the backref node is created by cloning backref node that
533 * corresponds to root of source tree
535 static int clone_backref_node(struct btrfs_trans_handle
*trans
,
536 struct reloc_control
*rc
,
537 struct btrfs_root
*src
,
538 struct btrfs_root
*dest
)
540 struct btrfs_root
*reloc_root
= src
->reloc_root
;
541 struct btrfs_backref_cache
*cache
= &rc
->backref_cache
;
542 struct btrfs_backref_node
*node
= NULL
;
543 struct btrfs_backref_node
*new_node
;
544 struct btrfs_backref_edge
*edge
;
545 struct btrfs_backref_edge
*new_edge
;
546 struct rb_node
*rb_node
;
548 if (cache
->last_trans
> 0)
549 update_backref_cache(trans
, cache
);
551 rb_node
= rb_simple_search(&cache
->rb_root
, src
->commit_root
->start
);
553 node
= rb_entry(rb_node
, struct btrfs_backref_node
, rb_node
);
557 BUG_ON(node
->new_bytenr
!= reloc_root
->node
->start
);
561 rb_node
= rb_simple_search(&cache
->rb_root
,
562 reloc_root
->commit_root
->start
);
564 node
= rb_entry(rb_node
, struct btrfs_backref_node
,
566 BUG_ON(node
->detached
);
573 new_node
= btrfs_backref_alloc_node(cache
, dest
->node
->start
,
578 new_node
->lowest
= node
->lowest
;
579 new_node
->checked
= 1;
580 new_node
->root
= btrfs_grab_root(dest
);
581 ASSERT(new_node
->root
);
584 list_for_each_entry(edge
, &node
->lower
, list
[UPPER
]) {
585 new_edge
= btrfs_backref_alloc_edge(cache
);
589 btrfs_backref_link_edge(new_edge
, edge
->node
[LOWER
],
590 new_node
, LINK_UPPER
);
593 list_add_tail(&new_node
->lower
, &cache
->leaves
);
596 rb_node
= rb_simple_insert(&cache
->rb_root
, new_node
->bytenr
,
599 btrfs_backref_panic(trans
->fs_info
, new_node
->bytenr
, -EEXIST
);
601 if (!new_node
->lowest
) {
602 list_for_each_entry(new_edge
, &new_node
->lower
, list
[UPPER
]) {
603 list_add_tail(&new_edge
->list
[LOWER
],
604 &new_edge
->node
[LOWER
]->upper
);
609 while (!list_empty(&new_node
->lower
)) {
610 new_edge
= list_entry(new_node
->lower
.next
,
611 struct btrfs_backref_edge
, list
[UPPER
]);
612 list_del(&new_edge
->list
[UPPER
]);
613 btrfs_backref_free_edge(cache
, new_edge
);
615 btrfs_backref_free_node(cache
, new_node
);
620 * helper to add 'address of tree root -> reloc tree' mapping
622 static int __must_check
__add_reloc_root(struct btrfs_root
*root
)
624 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
625 struct rb_node
*rb_node
;
626 struct mapping_node
*node
;
627 struct reloc_control
*rc
= fs_info
->reloc_ctl
;
629 node
= kmalloc(sizeof(*node
), GFP_NOFS
);
633 node
->bytenr
= root
->commit_root
->start
;
636 spin_lock(&rc
->reloc_root_tree
.lock
);
637 rb_node
= rb_simple_insert(&rc
->reloc_root_tree
.rb_root
,
638 node
->bytenr
, &node
->rb_node
);
639 spin_unlock(&rc
->reloc_root_tree
.lock
);
641 btrfs_panic(fs_info
, -EEXIST
,
642 "Duplicate root found for start=%llu while inserting into relocation tree",
646 list_add_tail(&root
->root_list
, &rc
->reloc_roots
);
651 * helper to delete the 'address of tree root -> reloc tree'
654 static void __del_reloc_root(struct btrfs_root
*root
)
656 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
657 struct rb_node
*rb_node
;
658 struct mapping_node
*node
= NULL
;
659 struct reloc_control
*rc
= fs_info
->reloc_ctl
;
660 bool put_ref
= false;
662 if (rc
&& root
->node
) {
663 spin_lock(&rc
->reloc_root_tree
.lock
);
664 rb_node
= rb_simple_search(&rc
->reloc_root_tree
.rb_root
,
665 root
->commit_root
->start
);
667 node
= rb_entry(rb_node
, struct mapping_node
, rb_node
);
668 rb_erase(&node
->rb_node
, &rc
->reloc_root_tree
.rb_root
);
669 RB_CLEAR_NODE(&node
->rb_node
);
671 spin_unlock(&rc
->reloc_root_tree
.lock
);
674 BUG_ON((struct btrfs_root
*)node
->data
!= root
);
678 * We only put the reloc root here if it's on the list. There's a lot
679 * of places where the pattern is to splice the rc->reloc_roots, process
680 * the reloc roots, and then add the reloc root back onto
681 * rc->reloc_roots. If we call __del_reloc_root while it's off of the
682 * list we don't want the reference being dropped, because the guy
683 * messing with the list is in charge of the reference.
685 spin_lock(&fs_info
->trans_lock
);
686 if (!list_empty(&root
->root_list
)) {
688 list_del_init(&root
->root_list
);
690 spin_unlock(&fs_info
->trans_lock
);
692 btrfs_put_root(root
);
697 * helper to update the 'address of tree root -> reloc tree'
700 static int __update_reloc_root(struct btrfs_root
*root
)
702 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
703 struct rb_node
*rb_node
;
704 struct mapping_node
*node
= NULL
;
705 struct reloc_control
*rc
= fs_info
->reloc_ctl
;
707 spin_lock(&rc
->reloc_root_tree
.lock
);
708 rb_node
= rb_simple_search(&rc
->reloc_root_tree
.rb_root
,
709 root
->commit_root
->start
);
711 node
= rb_entry(rb_node
, struct mapping_node
, rb_node
);
712 rb_erase(&node
->rb_node
, &rc
->reloc_root_tree
.rb_root
);
714 spin_unlock(&rc
->reloc_root_tree
.lock
);
718 BUG_ON((struct btrfs_root
*)node
->data
!= root
);
720 spin_lock(&rc
->reloc_root_tree
.lock
);
721 node
->bytenr
= root
->node
->start
;
722 rb_node
= rb_simple_insert(&rc
->reloc_root_tree
.rb_root
,
723 node
->bytenr
, &node
->rb_node
);
724 spin_unlock(&rc
->reloc_root_tree
.lock
);
726 btrfs_backref_panic(fs_info
, node
->bytenr
, -EEXIST
);
730 static struct btrfs_root
*create_reloc_root(struct btrfs_trans_handle
*trans
,
731 struct btrfs_root
*root
, u64 objectid
)
733 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
734 struct btrfs_root
*reloc_root
;
735 struct extent_buffer
*eb
;
736 struct btrfs_root_item
*root_item
;
737 struct btrfs_key root_key
;
740 root_item
= kmalloc(sizeof(*root_item
), GFP_NOFS
);
743 root_key
.objectid
= BTRFS_TREE_RELOC_OBJECTID
;
744 root_key
.type
= BTRFS_ROOT_ITEM_KEY
;
745 root_key
.offset
= objectid
;
747 if (root
->root_key
.objectid
== objectid
) {
750 /* called by btrfs_init_reloc_root */
751 ret
= btrfs_copy_root(trans
, root
, root
->commit_root
, &eb
,
752 BTRFS_TREE_RELOC_OBJECTID
);
755 * Set the last_snapshot field to the generation of the commit
756 * root - like this ctree.c:btrfs_block_can_be_shared() behaves
757 * correctly (returns true) when the relocation root is created
758 * either inside the critical section of a transaction commit
759 * (through transaction.c:qgroup_account_snapshot()) and when
760 * it's created before the transaction commit is started.
762 commit_root_gen
= btrfs_header_generation(root
->commit_root
);
763 btrfs_set_root_last_snapshot(&root
->root_item
, commit_root_gen
);
766 * called by btrfs_reloc_post_snapshot_hook.
767 * the source tree is a reloc tree, all tree blocks
768 * modified after it was created have RELOC flag
769 * set in their headers. so it's OK to not update
770 * the 'last_snapshot'.
772 ret
= btrfs_copy_root(trans
, root
, root
->node
, &eb
,
773 BTRFS_TREE_RELOC_OBJECTID
);
777 memcpy(root_item
, &root
->root_item
, sizeof(*root_item
));
778 btrfs_set_root_bytenr(root_item
, eb
->start
);
779 btrfs_set_root_level(root_item
, btrfs_header_level(eb
));
780 btrfs_set_root_generation(root_item
, trans
->transid
);
782 if (root
->root_key
.objectid
== objectid
) {
783 btrfs_set_root_refs(root_item
, 0);
784 memset(&root_item
->drop_progress
, 0,
785 sizeof(struct btrfs_disk_key
));
786 root_item
->drop_level
= 0;
789 btrfs_tree_unlock(eb
);
790 free_extent_buffer(eb
);
792 ret
= btrfs_insert_root(trans
, fs_info
->tree_root
,
793 &root_key
, root_item
);
797 reloc_root
= btrfs_read_tree_root(fs_info
->tree_root
, &root_key
);
798 BUG_ON(IS_ERR(reloc_root
));
799 set_bit(BTRFS_ROOT_SHAREABLE
, &reloc_root
->state
);
800 reloc_root
->last_trans
= trans
->transid
;
805 * create reloc tree for a given fs tree. reloc tree is just a
806 * snapshot of the fs tree with special root objectid.
808 * The reloc_root comes out of here with two references, one for
809 * root->reloc_root, and another for being on the rc->reloc_roots list.
811 int btrfs_init_reloc_root(struct btrfs_trans_handle
*trans
,
812 struct btrfs_root
*root
)
814 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
815 struct btrfs_root
*reloc_root
;
816 struct reloc_control
*rc
= fs_info
->reloc_ctl
;
817 struct btrfs_block_rsv
*rsv
;
825 * The subvolume has reloc tree but the swap is finished, no need to
826 * create/update the dead reloc tree
828 if (reloc_root_is_dead(root
))
832 * This is subtle but important. We do not do
833 * record_root_in_transaction for reloc roots, instead we record their
834 * corresponding fs root, and then here we update the last trans for the
835 * reloc root. This means that we have to do this for the entire life
836 * of the reloc root, regardless of which stage of the relocation we are
839 if (root
->reloc_root
) {
840 reloc_root
= root
->reloc_root
;
841 reloc_root
->last_trans
= trans
->transid
;
846 * We are merging reloc roots, we do not need new reloc trees. Also
847 * reloc trees never need their own reloc tree.
849 if (!rc
->create_reloc_tree
||
850 root
->root_key
.objectid
== BTRFS_TREE_RELOC_OBJECTID
)
853 if (!trans
->reloc_reserved
) {
854 rsv
= trans
->block_rsv
;
855 trans
->block_rsv
= rc
->block_rsv
;
858 reloc_root
= create_reloc_root(trans
, root
, root
->root_key
.objectid
);
860 trans
->block_rsv
= rsv
;
862 ret
= __add_reloc_root(reloc_root
);
864 root
->reloc_root
= btrfs_grab_root(reloc_root
);
869 * update root item of reloc tree
871 int btrfs_update_reloc_root(struct btrfs_trans_handle
*trans
,
872 struct btrfs_root
*root
)
874 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
875 struct btrfs_root
*reloc_root
;
876 struct btrfs_root_item
*root_item
;
879 if (!have_reloc_root(root
))
882 reloc_root
= root
->reloc_root
;
883 root_item
= &reloc_root
->root_item
;
886 * We are probably ok here, but __del_reloc_root() will drop its ref of
887 * the root. We have the ref for root->reloc_root, but just in case
888 * hold it while we update the reloc root.
890 btrfs_grab_root(reloc_root
);
892 /* root->reloc_root will stay until current relocation finished */
893 if (fs_info
->reloc_ctl
->merge_reloc_tree
&&
894 btrfs_root_refs(root_item
) == 0) {
895 set_bit(BTRFS_ROOT_DEAD_RELOC_TREE
, &root
->state
);
897 * Mark the tree as dead before we change reloc_root so
898 * have_reloc_root will not touch it from now on.
901 __del_reloc_root(reloc_root
);
904 if (reloc_root
->commit_root
!= reloc_root
->node
) {
905 __update_reloc_root(reloc_root
);
906 btrfs_set_root_node(root_item
, reloc_root
->node
);
907 free_extent_buffer(reloc_root
->commit_root
);
908 reloc_root
->commit_root
= btrfs_root_node(reloc_root
);
911 ret
= btrfs_update_root(trans
, fs_info
->tree_root
,
912 &reloc_root
->root_key
, root_item
);
914 btrfs_put_root(reloc_root
);
920 * helper to find first cached inode with inode number >= objectid
923 static struct inode
*find_next_inode(struct btrfs_root
*root
, u64 objectid
)
925 struct rb_node
*node
;
926 struct rb_node
*prev
;
927 struct btrfs_inode
*entry
;
930 spin_lock(&root
->inode_lock
);
932 node
= root
->inode_tree
.rb_node
;
936 entry
= rb_entry(node
, struct btrfs_inode
, rb_node
);
938 if (objectid
< btrfs_ino(entry
))
939 node
= node
->rb_left
;
940 else if (objectid
> btrfs_ino(entry
))
941 node
= node
->rb_right
;
947 entry
= rb_entry(prev
, struct btrfs_inode
, rb_node
);
948 if (objectid
<= btrfs_ino(entry
)) {
952 prev
= rb_next(prev
);
956 entry
= rb_entry(node
, struct btrfs_inode
, rb_node
);
957 inode
= igrab(&entry
->vfs_inode
);
959 spin_unlock(&root
->inode_lock
);
963 objectid
= btrfs_ino(entry
) + 1;
964 if (cond_resched_lock(&root
->inode_lock
))
967 node
= rb_next(node
);
969 spin_unlock(&root
->inode_lock
);
974 * get new location of data
976 static int get_new_location(struct inode
*reloc_inode
, u64
*new_bytenr
,
977 u64 bytenr
, u64 num_bytes
)
979 struct btrfs_root
*root
= BTRFS_I(reloc_inode
)->root
;
980 struct btrfs_path
*path
;
981 struct btrfs_file_extent_item
*fi
;
982 struct extent_buffer
*leaf
;
985 path
= btrfs_alloc_path();
989 bytenr
-= BTRFS_I(reloc_inode
)->index_cnt
;
990 ret
= btrfs_lookup_file_extent(NULL
, root
, path
,
991 btrfs_ino(BTRFS_I(reloc_inode
)), bytenr
, 0);
999 leaf
= path
->nodes
[0];
1000 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
1001 struct btrfs_file_extent_item
);
1003 BUG_ON(btrfs_file_extent_offset(leaf
, fi
) ||
1004 btrfs_file_extent_compression(leaf
, fi
) ||
1005 btrfs_file_extent_encryption(leaf
, fi
) ||
1006 btrfs_file_extent_other_encoding(leaf
, fi
));
1008 if (num_bytes
!= btrfs_file_extent_disk_num_bytes(leaf
, fi
)) {
1013 *new_bytenr
= btrfs_file_extent_disk_bytenr(leaf
, fi
);
1016 btrfs_free_path(path
);
1021 * update file extent items in the tree leaf to point to
1022 * the new locations.
1024 static noinline_for_stack
1025 int replace_file_extents(struct btrfs_trans_handle
*trans
,
1026 struct reloc_control
*rc
,
1027 struct btrfs_root
*root
,
1028 struct extent_buffer
*leaf
)
1030 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
1031 struct btrfs_key key
;
1032 struct btrfs_file_extent_item
*fi
;
1033 struct inode
*inode
= NULL
;
1045 if (rc
->stage
!= UPDATE_DATA_PTRS
)
1048 /* reloc trees always use full backref */
1049 if (root
->root_key
.objectid
== BTRFS_TREE_RELOC_OBJECTID
)
1050 parent
= leaf
->start
;
1054 nritems
= btrfs_header_nritems(leaf
);
1055 for (i
= 0; i
< nritems
; i
++) {
1056 struct btrfs_ref ref
= { 0 };
1059 btrfs_item_key_to_cpu(leaf
, &key
, i
);
1060 if (key
.type
!= BTRFS_EXTENT_DATA_KEY
)
1062 fi
= btrfs_item_ptr(leaf
, i
, struct btrfs_file_extent_item
);
1063 if (btrfs_file_extent_type(leaf
, fi
) ==
1064 BTRFS_FILE_EXTENT_INLINE
)
1066 bytenr
= btrfs_file_extent_disk_bytenr(leaf
, fi
);
1067 num_bytes
= btrfs_file_extent_disk_num_bytes(leaf
, fi
);
1070 if (!in_range(bytenr
, rc
->block_group
->start
,
1071 rc
->block_group
->length
))
1075 * if we are modifying block in fs tree, wait for readpage
1076 * to complete and drop the extent cache
1078 if (root
->root_key
.objectid
!= BTRFS_TREE_RELOC_OBJECTID
) {
1080 inode
= find_next_inode(root
, key
.objectid
);
1082 } else if (inode
&& btrfs_ino(BTRFS_I(inode
)) < key
.objectid
) {
1083 btrfs_add_delayed_iput(inode
);
1084 inode
= find_next_inode(root
, key
.objectid
);
1086 if (inode
&& btrfs_ino(BTRFS_I(inode
)) == key
.objectid
) {
1088 btrfs_file_extent_num_bytes(leaf
, fi
);
1089 WARN_ON(!IS_ALIGNED(key
.offset
,
1090 fs_info
->sectorsize
));
1091 WARN_ON(!IS_ALIGNED(end
, fs_info
->sectorsize
));
1093 ret
= try_lock_extent(&BTRFS_I(inode
)->io_tree
,
1098 btrfs_drop_extent_cache(BTRFS_I(inode
),
1099 key
.offset
, end
, 1);
1100 unlock_extent(&BTRFS_I(inode
)->io_tree
,
1105 ret
= get_new_location(rc
->data_inode
, &new_bytenr
,
1109 * Don't have to abort since we've not changed anything
1110 * in the file extent yet.
1115 btrfs_set_file_extent_disk_bytenr(leaf
, fi
, new_bytenr
);
1118 key
.offset
-= btrfs_file_extent_offset(leaf
, fi
);
1119 btrfs_init_generic_ref(&ref
, BTRFS_ADD_DELAYED_REF
, new_bytenr
,
1121 ref
.real_root
= root
->root_key
.objectid
;
1122 btrfs_init_data_ref(&ref
, btrfs_header_owner(leaf
),
1123 key
.objectid
, key
.offset
);
1124 ret
= btrfs_inc_extent_ref(trans
, &ref
);
1126 btrfs_abort_transaction(trans
, ret
);
1130 btrfs_init_generic_ref(&ref
, BTRFS_DROP_DELAYED_REF
, bytenr
,
1132 ref
.real_root
= root
->root_key
.objectid
;
1133 btrfs_init_data_ref(&ref
, btrfs_header_owner(leaf
),
1134 key
.objectid
, key
.offset
);
1135 ret
= btrfs_free_extent(trans
, &ref
);
1137 btrfs_abort_transaction(trans
, ret
);
1142 btrfs_mark_buffer_dirty(leaf
);
1144 btrfs_add_delayed_iput(inode
);
1148 static noinline_for_stack
1149 int memcmp_node_keys(struct extent_buffer
*eb
, int slot
,
1150 struct btrfs_path
*path
, int level
)
1152 struct btrfs_disk_key key1
;
1153 struct btrfs_disk_key key2
;
1154 btrfs_node_key(eb
, &key1
, slot
);
1155 btrfs_node_key(path
->nodes
[level
], &key2
, path
->slots
[level
]);
1156 return memcmp(&key1
, &key2
, sizeof(key1
));
1160 * try to replace tree blocks in fs tree with the new blocks
1161 * in reloc tree. tree blocks haven't been modified since the
1162 * reloc tree was create can be replaced.
1164 * if a block was replaced, level of the block + 1 is returned.
1165 * if no block got replaced, 0 is returned. if there are other
1166 * errors, a negative error number is returned.
1168 static noinline_for_stack
1169 int replace_path(struct btrfs_trans_handle
*trans
, struct reloc_control
*rc
,
1170 struct btrfs_root
*dest
, struct btrfs_root
*src
,
1171 struct btrfs_path
*path
, struct btrfs_key
*next_key
,
1172 int lowest_level
, int max_level
)
1174 struct btrfs_fs_info
*fs_info
= dest
->fs_info
;
1175 struct extent_buffer
*eb
;
1176 struct extent_buffer
*parent
;
1177 struct btrfs_ref ref
= { 0 };
1178 struct btrfs_key key
;
1190 BUG_ON(src
->root_key
.objectid
!= BTRFS_TREE_RELOC_OBJECTID
);
1191 BUG_ON(dest
->root_key
.objectid
== BTRFS_TREE_RELOC_OBJECTID
);
1193 last_snapshot
= btrfs_root_last_snapshot(&src
->root_item
);
1195 slot
= path
->slots
[lowest_level
];
1196 btrfs_node_key_to_cpu(path
->nodes
[lowest_level
], &key
, slot
);
1198 eb
= btrfs_lock_root_node(dest
);
1199 btrfs_set_lock_blocking_write(eb
);
1200 level
= btrfs_header_level(eb
);
1202 if (level
< lowest_level
) {
1203 btrfs_tree_unlock(eb
);
1204 free_extent_buffer(eb
);
1209 ret
= btrfs_cow_block(trans
, dest
, eb
, NULL
, 0, &eb
);
1212 btrfs_set_lock_blocking_write(eb
);
1215 next_key
->objectid
= (u64
)-1;
1216 next_key
->type
= (u8
)-1;
1217 next_key
->offset
= (u64
)-1;
1222 struct btrfs_key first_key
;
1224 level
= btrfs_header_level(parent
);
1225 BUG_ON(level
< lowest_level
);
1227 ret
= btrfs_bin_search(parent
, &key
, &slot
);
1230 if (ret
&& slot
> 0)
1233 if (next_key
&& slot
+ 1 < btrfs_header_nritems(parent
))
1234 btrfs_node_key_to_cpu(parent
, next_key
, slot
+ 1);
1236 old_bytenr
= btrfs_node_blockptr(parent
, slot
);
1237 blocksize
= fs_info
->nodesize
;
1238 old_ptr_gen
= btrfs_node_ptr_generation(parent
, slot
);
1239 btrfs_node_key_to_cpu(parent
, &first_key
, slot
);
1241 if (level
<= max_level
) {
1242 eb
= path
->nodes
[level
];
1243 new_bytenr
= btrfs_node_blockptr(eb
,
1244 path
->slots
[level
]);
1245 new_ptr_gen
= btrfs_node_ptr_generation(eb
,
1246 path
->slots
[level
]);
1252 if (WARN_ON(new_bytenr
> 0 && new_bytenr
== old_bytenr
)) {
1257 if (new_bytenr
== 0 || old_ptr_gen
> last_snapshot
||
1258 memcmp_node_keys(parent
, slot
, path
, level
)) {
1259 if (level
<= lowest_level
) {
1264 eb
= read_tree_block(fs_info
, old_bytenr
, old_ptr_gen
,
1265 level
- 1, &first_key
);
1269 } else if (!extent_buffer_uptodate(eb
)) {
1271 free_extent_buffer(eb
);
1274 btrfs_tree_lock(eb
);
1276 ret
= btrfs_cow_block(trans
, dest
, eb
, parent
,
1280 btrfs_set_lock_blocking_write(eb
);
1282 btrfs_tree_unlock(parent
);
1283 free_extent_buffer(parent
);
1290 btrfs_tree_unlock(parent
);
1291 free_extent_buffer(parent
);
1296 btrfs_node_key_to_cpu(path
->nodes
[level
], &key
,
1297 path
->slots
[level
]);
1298 btrfs_release_path(path
);
1300 path
->lowest_level
= level
;
1301 ret
= btrfs_search_slot(trans
, src
, &key
, path
, 0, 1);
1302 path
->lowest_level
= 0;
1306 * Info qgroup to trace both subtrees.
1308 * We must trace both trees.
1309 * 1) Tree reloc subtree
1310 * If not traced, we will leak data numbers
1312 * If not traced, we will double count old data
1314 * We don't scan the subtree right now, but only record
1315 * the swapped tree blocks.
1316 * The real subtree rescan is delayed until we have new
1317 * CoW on the subtree root node before transaction commit.
1319 ret
= btrfs_qgroup_add_swapped_blocks(trans
, dest
,
1320 rc
->block_group
, parent
, slot
,
1321 path
->nodes
[level
], path
->slots
[level
],
1326 * swap blocks in fs tree and reloc tree.
1328 btrfs_set_node_blockptr(parent
, slot
, new_bytenr
);
1329 btrfs_set_node_ptr_generation(parent
, slot
, new_ptr_gen
);
1330 btrfs_mark_buffer_dirty(parent
);
1332 btrfs_set_node_blockptr(path
->nodes
[level
],
1333 path
->slots
[level
], old_bytenr
);
1334 btrfs_set_node_ptr_generation(path
->nodes
[level
],
1335 path
->slots
[level
], old_ptr_gen
);
1336 btrfs_mark_buffer_dirty(path
->nodes
[level
]);
1338 btrfs_init_generic_ref(&ref
, BTRFS_ADD_DELAYED_REF
, old_bytenr
,
1339 blocksize
, path
->nodes
[level
]->start
);
1340 ref
.skip_qgroup
= true;
1341 btrfs_init_tree_ref(&ref
, level
- 1, src
->root_key
.objectid
);
1342 ret
= btrfs_inc_extent_ref(trans
, &ref
);
1344 btrfs_init_generic_ref(&ref
, BTRFS_ADD_DELAYED_REF
, new_bytenr
,
1346 ref
.skip_qgroup
= true;
1347 btrfs_init_tree_ref(&ref
, level
- 1, dest
->root_key
.objectid
);
1348 ret
= btrfs_inc_extent_ref(trans
, &ref
);
1351 btrfs_init_generic_ref(&ref
, BTRFS_DROP_DELAYED_REF
, new_bytenr
,
1352 blocksize
, path
->nodes
[level
]->start
);
1353 btrfs_init_tree_ref(&ref
, level
- 1, src
->root_key
.objectid
);
1354 ref
.skip_qgroup
= true;
1355 ret
= btrfs_free_extent(trans
, &ref
);
1358 btrfs_init_generic_ref(&ref
, BTRFS_DROP_DELAYED_REF
, old_bytenr
,
1360 btrfs_init_tree_ref(&ref
, level
- 1, dest
->root_key
.objectid
);
1361 ref
.skip_qgroup
= true;
1362 ret
= btrfs_free_extent(trans
, &ref
);
1365 btrfs_unlock_up_safe(path
, 0);
1370 btrfs_tree_unlock(parent
);
1371 free_extent_buffer(parent
);
1376 * helper to find next relocated block in reloc tree
1378 static noinline_for_stack
1379 int walk_up_reloc_tree(struct btrfs_root
*root
, struct btrfs_path
*path
,
1382 struct extent_buffer
*eb
;
1387 last_snapshot
= btrfs_root_last_snapshot(&root
->root_item
);
1389 for (i
= 0; i
< *level
; i
++) {
1390 free_extent_buffer(path
->nodes
[i
]);
1391 path
->nodes
[i
] = NULL
;
1394 for (i
= *level
; i
< BTRFS_MAX_LEVEL
&& path
->nodes
[i
]; i
++) {
1395 eb
= path
->nodes
[i
];
1396 nritems
= btrfs_header_nritems(eb
);
1397 while (path
->slots
[i
] + 1 < nritems
) {
1399 if (btrfs_node_ptr_generation(eb
, path
->slots
[i
]) <=
1406 free_extent_buffer(path
->nodes
[i
]);
1407 path
->nodes
[i
] = NULL
;
1413 * walk down reloc tree to find relocated block of lowest level
1415 static noinline_for_stack
1416 int walk_down_reloc_tree(struct btrfs_root
*root
, struct btrfs_path
*path
,
1419 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
1420 struct extent_buffer
*eb
= NULL
;
1427 last_snapshot
= btrfs_root_last_snapshot(&root
->root_item
);
1429 for (i
= *level
; i
> 0; i
--) {
1430 struct btrfs_key first_key
;
1432 eb
= path
->nodes
[i
];
1433 nritems
= btrfs_header_nritems(eb
);
1434 while (path
->slots
[i
] < nritems
) {
1435 ptr_gen
= btrfs_node_ptr_generation(eb
, path
->slots
[i
]);
1436 if (ptr_gen
> last_snapshot
)
1440 if (path
->slots
[i
] >= nritems
) {
1451 bytenr
= btrfs_node_blockptr(eb
, path
->slots
[i
]);
1452 btrfs_node_key_to_cpu(eb
, &first_key
, path
->slots
[i
]);
1453 eb
= read_tree_block(fs_info
, bytenr
, ptr_gen
, i
- 1,
1457 } else if (!extent_buffer_uptodate(eb
)) {
1458 free_extent_buffer(eb
);
1461 BUG_ON(btrfs_header_level(eb
) != i
- 1);
1462 path
->nodes
[i
- 1] = eb
;
1463 path
->slots
[i
- 1] = 0;
1469 * invalidate extent cache for file extents whose key in range of
1470 * [min_key, max_key)
1472 static int invalidate_extent_cache(struct btrfs_root
*root
,
1473 struct btrfs_key
*min_key
,
1474 struct btrfs_key
*max_key
)
1476 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
1477 struct inode
*inode
= NULL
;
1482 objectid
= min_key
->objectid
;
1487 if (objectid
> max_key
->objectid
)
1490 inode
= find_next_inode(root
, objectid
);
1493 ino
= btrfs_ino(BTRFS_I(inode
));
1495 if (ino
> max_key
->objectid
) {
1501 if (!S_ISREG(inode
->i_mode
))
1504 if (unlikely(min_key
->objectid
== ino
)) {
1505 if (min_key
->type
> BTRFS_EXTENT_DATA_KEY
)
1507 if (min_key
->type
< BTRFS_EXTENT_DATA_KEY
)
1510 start
= min_key
->offset
;
1511 WARN_ON(!IS_ALIGNED(start
, fs_info
->sectorsize
));
1517 if (unlikely(max_key
->objectid
== ino
)) {
1518 if (max_key
->type
< BTRFS_EXTENT_DATA_KEY
)
1520 if (max_key
->type
> BTRFS_EXTENT_DATA_KEY
) {
1523 if (max_key
->offset
== 0)
1525 end
= max_key
->offset
;
1526 WARN_ON(!IS_ALIGNED(end
, fs_info
->sectorsize
));
1533 /* the lock_extent waits for readpage to complete */
1534 lock_extent(&BTRFS_I(inode
)->io_tree
, start
, end
);
1535 btrfs_drop_extent_cache(BTRFS_I(inode
), start
, end
, 1);
1536 unlock_extent(&BTRFS_I(inode
)->io_tree
, start
, end
);
1541 static int find_next_key(struct btrfs_path
*path
, int level
,
1542 struct btrfs_key
*key
)
1545 while (level
< BTRFS_MAX_LEVEL
) {
1546 if (!path
->nodes
[level
])
1548 if (path
->slots
[level
] + 1 <
1549 btrfs_header_nritems(path
->nodes
[level
])) {
1550 btrfs_node_key_to_cpu(path
->nodes
[level
], key
,
1551 path
->slots
[level
] + 1);
1560 * Insert current subvolume into reloc_control::dirty_subvol_roots
1562 static void insert_dirty_subvol(struct btrfs_trans_handle
*trans
,
1563 struct reloc_control
*rc
,
1564 struct btrfs_root
*root
)
1566 struct btrfs_root
*reloc_root
= root
->reloc_root
;
1567 struct btrfs_root_item
*reloc_root_item
;
1569 /* @root must be a subvolume tree root with a valid reloc tree */
1570 ASSERT(root
->root_key
.objectid
!= BTRFS_TREE_RELOC_OBJECTID
);
1573 reloc_root_item
= &reloc_root
->root_item
;
1574 memset(&reloc_root_item
->drop_progress
, 0,
1575 sizeof(reloc_root_item
->drop_progress
));
1576 reloc_root_item
->drop_level
= 0;
1577 btrfs_set_root_refs(reloc_root_item
, 0);
1578 btrfs_update_reloc_root(trans
, root
);
1580 if (list_empty(&root
->reloc_dirty_list
)) {
1581 btrfs_grab_root(root
);
1582 list_add_tail(&root
->reloc_dirty_list
, &rc
->dirty_subvol_roots
);
1586 static int clean_dirty_subvols(struct reloc_control
*rc
)
1588 struct btrfs_root
*root
;
1589 struct btrfs_root
*next
;
1593 list_for_each_entry_safe(root
, next
, &rc
->dirty_subvol_roots
,
1595 if (root
->root_key
.objectid
!= BTRFS_TREE_RELOC_OBJECTID
) {
1596 /* Merged subvolume, cleanup its reloc root */
1597 struct btrfs_root
*reloc_root
= root
->reloc_root
;
1599 list_del_init(&root
->reloc_dirty_list
);
1600 root
->reloc_root
= NULL
;
1602 * Need barrier to ensure clear_bit() only happens after
1603 * root->reloc_root = NULL. Pairs with have_reloc_root.
1606 clear_bit(BTRFS_ROOT_DEAD_RELOC_TREE
, &root
->state
);
1609 * btrfs_drop_snapshot drops our ref we hold for
1610 * ->reloc_root. If it fails however we must
1611 * drop the ref ourselves.
1613 ret2
= btrfs_drop_snapshot(reloc_root
, 0, 1);
1615 btrfs_put_root(reloc_root
);
1620 btrfs_put_root(root
);
1622 /* Orphan reloc tree, just clean it up */
1623 ret2
= btrfs_drop_snapshot(root
, 0, 1);
1625 btrfs_put_root(root
);
1635 * merge the relocated tree blocks in reloc tree with corresponding
1638 static noinline_for_stack
int merge_reloc_root(struct reloc_control
*rc
,
1639 struct btrfs_root
*root
)
1641 struct btrfs_fs_info
*fs_info
= rc
->extent_root
->fs_info
;
1642 struct btrfs_key key
;
1643 struct btrfs_key next_key
;
1644 struct btrfs_trans_handle
*trans
= NULL
;
1645 struct btrfs_root
*reloc_root
;
1646 struct btrfs_root_item
*root_item
;
1647 struct btrfs_path
*path
;
1648 struct extent_buffer
*leaf
;
1656 path
= btrfs_alloc_path();
1659 path
->reada
= READA_FORWARD
;
1661 reloc_root
= root
->reloc_root
;
1662 root_item
= &reloc_root
->root_item
;
1664 if (btrfs_disk_key_objectid(&root_item
->drop_progress
) == 0) {
1665 level
= btrfs_root_level(root_item
);
1666 atomic_inc(&reloc_root
->node
->refs
);
1667 path
->nodes
[level
] = reloc_root
->node
;
1668 path
->slots
[level
] = 0;
1670 btrfs_disk_key_to_cpu(&key
, &root_item
->drop_progress
);
1672 level
= root_item
->drop_level
;
1674 path
->lowest_level
= level
;
1675 ret
= btrfs_search_slot(NULL
, reloc_root
, &key
, path
, 0, 0);
1676 path
->lowest_level
= 0;
1678 btrfs_free_path(path
);
1682 btrfs_node_key_to_cpu(path
->nodes
[level
], &next_key
,
1683 path
->slots
[level
]);
1684 WARN_ON(memcmp(&key
, &next_key
, sizeof(key
)));
1686 btrfs_unlock_up_safe(path
, 0);
1690 * In merge_reloc_root(), we modify the upper level pointer to swap the
1691 * tree blocks between reloc tree and subvolume tree. Thus for tree
1692 * block COW, we COW at most from level 1 to root level for each tree.
1694 * Thus the needed metadata size is at most root_level * nodesize,
1695 * and * 2 since we have two trees to COW.
1697 min_reserved
= fs_info
->nodesize
* btrfs_root_level(root_item
) * 2;
1698 memset(&next_key
, 0, sizeof(next_key
));
1701 ret
= btrfs_block_rsv_refill(root
, rc
->block_rsv
, min_reserved
,
1702 BTRFS_RESERVE_FLUSH_LIMIT
);
1707 trans
= btrfs_start_transaction(root
, 0);
1708 if (IS_ERR(trans
)) {
1709 err
= PTR_ERR(trans
);
1715 * At this point we no longer have a reloc_control, so we can't
1716 * depend on btrfs_init_reloc_root to update our last_trans.
1718 * But that's ok, we started the trans handle on our
1719 * corresponding fs_root, which means it's been added to the
1720 * dirty list. At commit time we'll still call
1721 * btrfs_update_reloc_root() and update our root item
1724 reloc_root
->last_trans
= trans
->transid
;
1725 trans
->block_rsv
= rc
->block_rsv
;
1730 ret
= walk_down_reloc_tree(reloc_root
, path
, &level
);
1738 if (!find_next_key(path
, level
, &key
) &&
1739 btrfs_comp_cpu_keys(&next_key
, &key
) >= 0) {
1742 ret
= replace_path(trans
, rc
, root
, reloc_root
, path
,
1743 &next_key
, level
, max_level
);
1752 btrfs_node_key_to_cpu(path
->nodes
[level
], &key
,
1753 path
->slots
[level
]);
1757 ret
= walk_up_reloc_tree(reloc_root
, path
, &level
);
1763 * save the merging progress in the drop_progress.
1764 * this is OK since root refs == 1 in this case.
1766 btrfs_node_key(path
->nodes
[level
], &root_item
->drop_progress
,
1767 path
->slots
[level
]);
1768 root_item
->drop_level
= level
;
1770 btrfs_end_transaction_throttle(trans
);
1773 btrfs_btree_balance_dirty(fs_info
);
1775 if (replaced
&& rc
->stage
== UPDATE_DATA_PTRS
)
1776 invalidate_extent_cache(root
, &key
, &next_key
);
1780 * handle the case only one block in the fs tree need to be
1781 * relocated and the block is tree root.
1783 leaf
= btrfs_lock_root_node(root
);
1784 ret
= btrfs_cow_block(trans
, root
, leaf
, NULL
, 0, &leaf
);
1785 btrfs_tree_unlock(leaf
);
1786 free_extent_buffer(leaf
);
1790 btrfs_free_path(path
);
1793 insert_dirty_subvol(trans
, rc
, root
);
1796 btrfs_end_transaction_throttle(trans
);
1798 btrfs_btree_balance_dirty(fs_info
);
1800 if (replaced
&& rc
->stage
== UPDATE_DATA_PTRS
)
1801 invalidate_extent_cache(root
, &key
, &next_key
);
1806 static noinline_for_stack
1807 int prepare_to_merge(struct reloc_control
*rc
, int err
)
1809 struct btrfs_root
*root
= rc
->extent_root
;
1810 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
1811 struct btrfs_root
*reloc_root
;
1812 struct btrfs_trans_handle
*trans
;
1813 LIST_HEAD(reloc_roots
);
1817 mutex_lock(&fs_info
->reloc_mutex
);
1818 rc
->merging_rsv_size
+= fs_info
->nodesize
* (BTRFS_MAX_LEVEL
- 1) * 2;
1819 rc
->merging_rsv_size
+= rc
->nodes_relocated
* 2;
1820 mutex_unlock(&fs_info
->reloc_mutex
);
1824 num_bytes
= rc
->merging_rsv_size
;
1825 ret
= btrfs_block_rsv_add(root
, rc
->block_rsv
, num_bytes
,
1826 BTRFS_RESERVE_FLUSH_ALL
);
1831 trans
= btrfs_join_transaction(rc
->extent_root
);
1832 if (IS_ERR(trans
)) {
1834 btrfs_block_rsv_release(fs_info
, rc
->block_rsv
,
1836 return PTR_ERR(trans
);
1840 if (num_bytes
!= rc
->merging_rsv_size
) {
1841 btrfs_end_transaction(trans
);
1842 btrfs_block_rsv_release(fs_info
, rc
->block_rsv
,
1848 rc
->merge_reloc_tree
= 1;
1850 while (!list_empty(&rc
->reloc_roots
)) {
1851 reloc_root
= list_entry(rc
->reloc_roots
.next
,
1852 struct btrfs_root
, root_list
);
1853 list_del_init(&reloc_root
->root_list
);
1855 root
= btrfs_get_fs_root(fs_info
, reloc_root
->root_key
.offset
,
1857 BUG_ON(IS_ERR(root
));
1858 BUG_ON(root
->reloc_root
!= reloc_root
);
1861 * set reference count to 1, so btrfs_recover_relocation
1862 * knows it should resumes merging
1865 btrfs_set_root_refs(&reloc_root
->root_item
, 1);
1866 btrfs_update_reloc_root(trans
, root
);
1868 list_add(&reloc_root
->root_list
, &reloc_roots
);
1869 btrfs_put_root(root
);
1872 list_splice(&reloc_roots
, &rc
->reloc_roots
);
1875 btrfs_commit_transaction(trans
);
1877 btrfs_end_transaction(trans
);
1881 static noinline_for_stack
1882 void free_reloc_roots(struct list_head
*list
)
1884 struct btrfs_root
*reloc_root
, *tmp
;
1886 list_for_each_entry_safe(reloc_root
, tmp
, list
, root_list
)
1887 __del_reloc_root(reloc_root
);
1890 static noinline_for_stack
1891 void merge_reloc_roots(struct reloc_control
*rc
)
1893 struct btrfs_fs_info
*fs_info
= rc
->extent_root
->fs_info
;
1894 struct btrfs_root
*root
;
1895 struct btrfs_root
*reloc_root
;
1896 LIST_HEAD(reloc_roots
);
1900 root
= rc
->extent_root
;
1903 * this serializes us with btrfs_record_root_in_transaction,
1904 * we have to make sure nobody is in the middle of
1905 * adding their roots to the list while we are
1908 mutex_lock(&fs_info
->reloc_mutex
);
1909 list_splice_init(&rc
->reloc_roots
, &reloc_roots
);
1910 mutex_unlock(&fs_info
->reloc_mutex
);
1912 while (!list_empty(&reloc_roots
)) {
1914 reloc_root
= list_entry(reloc_roots
.next
,
1915 struct btrfs_root
, root_list
);
1917 root
= btrfs_get_fs_root(fs_info
, reloc_root
->root_key
.offset
,
1919 if (btrfs_root_refs(&reloc_root
->root_item
) > 0) {
1920 BUG_ON(IS_ERR(root
));
1921 BUG_ON(root
->reloc_root
!= reloc_root
);
1922 ret
= merge_reloc_root(rc
, root
);
1923 btrfs_put_root(root
);
1925 if (list_empty(&reloc_root
->root_list
))
1926 list_add_tail(&reloc_root
->root_list
,
1931 if (!IS_ERR(root
)) {
1932 if (root
->reloc_root
== reloc_root
) {
1933 root
->reloc_root
= NULL
;
1934 btrfs_put_root(reloc_root
);
1936 clear_bit(BTRFS_ROOT_DEAD_RELOC_TREE
,
1938 btrfs_put_root(root
);
1941 list_del_init(&reloc_root
->root_list
);
1942 /* Don't forget to queue this reloc root for cleanup */
1943 list_add_tail(&reloc_root
->reloc_dirty_list
,
1944 &rc
->dirty_subvol_roots
);
1954 btrfs_handle_fs_error(fs_info
, ret
, NULL
);
1955 free_reloc_roots(&reloc_roots
);
1957 /* new reloc root may be added */
1958 mutex_lock(&fs_info
->reloc_mutex
);
1959 list_splice_init(&rc
->reloc_roots
, &reloc_roots
);
1960 mutex_unlock(&fs_info
->reloc_mutex
);
1961 free_reloc_roots(&reloc_roots
);
1967 * BUG_ON(!RB_EMPTY_ROOT(&rc->reloc_root_tree.rb_root));
1969 * here, but it's wrong. If we fail to start the transaction in
1970 * prepare_to_merge() we will have only 0 ref reloc roots, none of which
1971 * have actually been removed from the reloc_root_tree rb tree. This is
1972 * fine because we're bailing here, and we hold a reference on the root
1973 * for the list that holds it, so these roots will be cleaned up when we
1974 * do the reloc_dirty_list afterwards. Meanwhile the root->reloc_root
1975 * will be cleaned up on unmount.
1977 * The remaining nodes will be cleaned up by free_reloc_control.
1981 static void free_block_list(struct rb_root
*blocks
)
1983 struct tree_block
*block
;
1984 struct rb_node
*rb_node
;
1985 while ((rb_node
= rb_first(blocks
))) {
1986 block
= rb_entry(rb_node
, struct tree_block
, rb_node
);
1987 rb_erase(rb_node
, blocks
);
1992 static int record_reloc_root_in_trans(struct btrfs_trans_handle
*trans
,
1993 struct btrfs_root
*reloc_root
)
1995 struct btrfs_fs_info
*fs_info
= reloc_root
->fs_info
;
1996 struct btrfs_root
*root
;
1999 if (reloc_root
->last_trans
== trans
->transid
)
2002 root
= btrfs_get_fs_root(fs_info
, reloc_root
->root_key
.offset
, false);
2003 BUG_ON(IS_ERR(root
));
2004 BUG_ON(root
->reloc_root
!= reloc_root
);
2005 ret
= btrfs_record_root_in_trans(trans
, root
);
2006 btrfs_put_root(root
);
2011 static noinline_for_stack
2012 struct btrfs_root
*select_reloc_root(struct btrfs_trans_handle
*trans
,
2013 struct reloc_control
*rc
,
2014 struct btrfs_backref_node
*node
,
2015 struct btrfs_backref_edge
*edges
[])
2017 struct btrfs_backref_node
*next
;
2018 struct btrfs_root
*root
;
2024 next
= walk_up_backref(next
, edges
, &index
);
2027 BUG_ON(!test_bit(BTRFS_ROOT_SHAREABLE
, &root
->state
));
2029 if (root
->root_key
.objectid
== BTRFS_TREE_RELOC_OBJECTID
) {
2030 record_reloc_root_in_trans(trans
, root
);
2034 btrfs_record_root_in_trans(trans
, root
);
2035 root
= root
->reloc_root
;
2037 if (next
->new_bytenr
!= root
->node
->start
) {
2038 BUG_ON(next
->new_bytenr
);
2039 BUG_ON(!list_empty(&next
->list
));
2040 next
->new_bytenr
= root
->node
->start
;
2041 btrfs_put_root(next
->root
);
2042 next
->root
= btrfs_grab_root(root
);
2044 list_add_tail(&next
->list
,
2045 &rc
->backref_cache
.changed
);
2046 mark_block_processed(rc
, next
);
2052 next
= walk_down_backref(edges
, &index
);
2053 if (!next
|| next
->level
<= node
->level
)
2060 /* setup backref node path for btrfs_reloc_cow_block */
2062 rc
->backref_cache
.path
[next
->level
] = next
;
2065 next
= edges
[index
]->node
[UPPER
];
2071 * Select a tree root for relocation.
2073 * Return NULL if the block is not shareable. We should use do_relocation() in
2076 * Return a tree root pointer if the block is shareable.
2077 * Return -ENOENT if the block is root of reloc tree.
2079 static noinline_for_stack
2080 struct btrfs_root
*select_one_root(struct btrfs_backref_node
*node
)
2082 struct btrfs_backref_node
*next
;
2083 struct btrfs_root
*root
;
2084 struct btrfs_root
*fs_root
= NULL
;
2085 struct btrfs_backref_edge
*edges
[BTRFS_MAX_LEVEL
- 1];
2091 next
= walk_up_backref(next
, edges
, &index
);
2095 /* No other choice for non-shareable tree */
2096 if (!test_bit(BTRFS_ROOT_SHAREABLE
, &root
->state
))
2099 if (root
->root_key
.objectid
!= BTRFS_TREE_RELOC_OBJECTID
)
2105 next
= walk_down_backref(edges
, &index
);
2106 if (!next
|| next
->level
<= node
->level
)
2111 return ERR_PTR(-ENOENT
);
2115 static noinline_for_stack
2116 u64
calcu_metadata_size(struct reloc_control
*rc
,
2117 struct btrfs_backref_node
*node
, int reserve
)
2119 struct btrfs_fs_info
*fs_info
= rc
->extent_root
->fs_info
;
2120 struct btrfs_backref_node
*next
= node
;
2121 struct btrfs_backref_edge
*edge
;
2122 struct btrfs_backref_edge
*edges
[BTRFS_MAX_LEVEL
- 1];
2126 BUG_ON(reserve
&& node
->processed
);
2131 if (next
->processed
&& (reserve
|| next
!= node
))
2134 num_bytes
+= fs_info
->nodesize
;
2136 if (list_empty(&next
->upper
))
2139 edge
= list_entry(next
->upper
.next
,
2140 struct btrfs_backref_edge
, list
[LOWER
]);
2141 edges
[index
++] = edge
;
2142 next
= edge
->node
[UPPER
];
2144 next
= walk_down_backref(edges
, &index
);
2149 static int reserve_metadata_space(struct btrfs_trans_handle
*trans
,
2150 struct reloc_control
*rc
,
2151 struct btrfs_backref_node
*node
)
2153 struct btrfs_root
*root
= rc
->extent_root
;
2154 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
2159 num_bytes
= calcu_metadata_size(rc
, node
, 1) * 2;
2161 trans
->block_rsv
= rc
->block_rsv
;
2162 rc
->reserved_bytes
+= num_bytes
;
2165 * We are under a transaction here so we can only do limited flushing.
2166 * If we get an enospc just kick back -EAGAIN so we know to drop the
2167 * transaction and try to refill when we can flush all the things.
2169 ret
= btrfs_block_rsv_refill(root
, rc
->block_rsv
, num_bytes
,
2170 BTRFS_RESERVE_FLUSH_LIMIT
);
2172 tmp
= fs_info
->nodesize
* RELOCATION_RESERVED_NODES
;
2173 while (tmp
<= rc
->reserved_bytes
)
2176 * only one thread can access block_rsv at this point,
2177 * so we don't need hold lock to protect block_rsv.
2178 * we expand more reservation size here to allow enough
2179 * space for relocation and we will return earlier in
2182 rc
->block_rsv
->size
= tmp
+ fs_info
->nodesize
*
2183 RELOCATION_RESERVED_NODES
;
2191 * relocate a block tree, and then update pointers in upper level
2192 * blocks that reference the block to point to the new location.
2194 * if called by link_to_upper, the block has already been relocated.
2195 * in that case this function just updates pointers.
2197 static int do_relocation(struct btrfs_trans_handle
*trans
,
2198 struct reloc_control
*rc
,
2199 struct btrfs_backref_node
*node
,
2200 struct btrfs_key
*key
,
2201 struct btrfs_path
*path
, int lowest
)
2203 struct btrfs_fs_info
*fs_info
= rc
->extent_root
->fs_info
;
2204 struct btrfs_backref_node
*upper
;
2205 struct btrfs_backref_edge
*edge
;
2206 struct btrfs_backref_edge
*edges
[BTRFS_MAX_LEVEL
- 1];
2207 struct btrfs_root
*root
;
2208 struct extent_buffer
*eb
;
2216 BUG_ON(lowest
&& node
->eb
);
2218 path
->lowest_level
= node
->level
+ 1;
2219 rc
->backref_cache
.path
[node
->level
] = node
;
2220 list_for_each_entry(edge
, &node
->upper
, list
[LOWER
]) {
2221 struct btrfs_key first_key
;
2222 struct btrfs_ref ref
= { 0 };
2226 upper
= edge
->node
[UPPER
];
2227 root
= select_reloc_root(trans
, rc
, upper
, edges
);
2230 if (upper
->eb
&& !upper
->locked
) {
2232 ret
= btrfs_bin_search(upper
->eb
, key
, &slot
);
2238 bytenr
= btrfs_node_blockptr(upper
->eb
, slot
);
2239 if (node
->eb
->start
== bytenr
)
2242 btrfs_backref_drop_node_buffer(upper
);
2246 ret
= btrfs_search_slot(trans
, root
, key
, path
, 0, 1);
2253 btrfs_release_path(path
);
2258 upper
->eb
= path
->nodes
[upper
->level
];
2259 path
->nodes
[upper
->level
] = NULL
;
2261 BUG_ON(upper
->eb
!= path
->nodes
[upper
->level
]);
2265 path
->locks
[upper
->level
] = 0;
2267 slot
= path
->slots
[upper
->level
];
2268 btrfs_release_path(path
);
2270 ret
= btrfs_bin_search(upper
->eb
, key
, &slot
);
2278 bytenr
= btrfs_node_blockptr(upper
->eb
, slot
);
2280 if (bytenr
!= node
->bytenr
) {
2281 btrfs_err(root
->fs_info
,
2282 "lowest leaf/node mismatch: bytenr %llu node->bytenr %llu slot %d upper %llu",
2283 bytenr
, node
->bytenr
, slot
,
2289 if (node
->eb
->start
== bytenr
)
2293 blocksize
= root
->fs_info
->nodesize
;
2294 generation
= btrfs_node_ptr_generation(upper
->eb
, slot
);
2295 btrfs_node_key_to_cpu(upper
->eb
, &first_key
, slot
);
2296 eb
= read_tree_block(fs_info
, bytenr
, generation
,
2297 upper
->level
- 1, &first_key
);
2301 } else if (!extent_buffer_uptodate(eb
)) {
2302 free_extent_buffer(eb
);
2306 btrfs_tree_lock(eb
);
2307 btrfs_set_lock_blocking_write(eb
);
2310 ret
= btrfs_cow_block(trans
, root
, eb
, upper
->eb
,
2312 btrfs_tree_unlock(eb
);
2313 free_extent_buffer(eb
);
2318 BUG_ON(node
->eb
!= eb
);
2320 btrfs_set_node_blockptr(upper
->eb
, slot
,
2322 btrfs_set_node_ptr_generation(upper
->eb
, slot
,
2324 btrfs_mark_buffer_dirty(upper
->eb
);
2326 btrfs_init_generic_ref(&ref
, BTRFS_ADD_DELAYED_REF
,
2327 node
->eb
->start
, blocksize
,
2329 ref
.real_root
= root
->root_key
.objectid
;
2330 btrfs_init_tree_ref(&ref
, node
->level
,
2331 btrfs_header_owner(upper
->eb
));
2332 ret
= btrfs_inc_extent_ref(trans
, &ref
);
2335 ret
= btrfs_drop_subtree(trans
, root
, eb
, upper
->eb
);
2339 if (!upper
->pending
)
2340 btrfs_backref_drop_node_buffer(upper
);
2342 btrfs_backref_unlock_node_buffer(upper
);
2347 if (!err
&& node
->pending
) {
2348 btrfs_backref_drop_node_buffer(node
);
2349 list_move_tail(&node
->list
, &rc
->backref_cache
.changed
);
2353 path
->lowest_level
= 0;
2354 BUG_ON(err
== -ENOSPC
);
2358 static int link_to_upper(struct btrfs_trans_handle
*trans
,
2359 struct reloc_control
*rc
,
2360 struct btrfs_backref_node
*node
,
2361 struct btrfs_path
*path
)
2363 struct btrfs_key key
;
2365 btrfs_node_key_to_cpu(node
->eb
, &key
, 0);
2366 return do_relocation(trans
, rc
, node
, &key
, path
, 0);
2369 static int finish_pending_nodes(struct btrfs_trans_handle
*trans
,
2370 struct reloc_control
*rc
,
2371 struct btrfs_path
*path
, int err
)
2374 struct btrfs_backref_cache
*cache
= &rc
->backref_cache
;
2375 struct btrfs_backref_node
*node
;
2379 for (level
= 0; level
< BTRFS_MAX_LEVEL
; level
++) {
2380 while (!list_empty(&cache
->pending
[level
])) {
2381 node
= list_entry(cache
->pending
[level
].next
,
2382 struct btrfs_backref_node
, list
);
2383 list_move_tail(&node
->list
, &list
);
2384 BUG_ON(!node
->pending
);
2387 ret
= link_to_upper(trans
, rc
, node
, path
);
2392 list_splice_init(&list
, &cache
->pending
[level
]);
2398 * mark a block and all blocks directly/indirectly reference the block
2401 static void update_processed_blocks(struct reloc_control
*rc
,
2402 struct btrfs_backref_node
*node
)
2404 struct btrfs_backref_node
*next
= node
;
2405 struct btrfs_backref_edge
*edge
;
2406 struct btrfs_backref_edge
*edges
[BTRFS_MAX_LEVEL
- 1];
2412 if (next
->processed
)
2415 mark_block_processed(rc
, next
);
2417 if (list_empty(&next
->upper
))
2420 edge
= list_entry(next
->upper
.next
,
2421 struct btrfs_backref_edge
, list
[LOWER
]);
2422 edges
[index
++] = edge
;
2423 next
= edge
->node
[UPPER
];
2425 next
= walk_down_backref(edges
, &index
);
2429 static int tree_block_processed(u64 bytenr
, struct reloc_control
*rc
)
2431 u32 blocksize
= rc
->extent_root
->fs_info
->nodesize
;
2433 if (test_range_bit(&rc
->processed_blocks
, bytenr
,
2434 bytenr
+ blocksize
- 1, EXTENT_DIRTY
, 1, NULL
))
2439 static int get_tree_block_key(struct btrfs_fs_info
*fs_info
,
2440 struct tree_block
*block
)
2442 struct extent_buffer
*eb
;
2444 eb
= read_tree_block(fs_info
, block
->bytenr
, block
->key
.offset
,
2445 block
->level
, NULL
);
2448 } else if (!extent_buffer_uptodate(eb
)) {
2449 free_extent_buffer(eb
);
2452 if (block
->level
== 0)
2453 btrfs_item_key_to_cpu(eb
, &block
->key
, 0);
2455 btrfs_node_key_to_cpu(eb
, &block
->key
, 0);
2456 free_extent_buffer(eb
);
2457 block
->key_ready
= 1;
2462 * helper function to relocate a tree block
2464 static int relocate_tree_block(struct btrfs_trans_handle
*trans
,
2465 struct reloc_control
*rc
,
2466 struct btrfs_backref_node
*node
,
2467 struct btrfs_key
*key
,
2468 struct btrfs_path
*path
)
2470 struct btrfs_root
*root
;
2477 * If we fail here we want to drop our backref_node because we are going
2478 * to start over and regenerate the tree for it.
2480 ret
= reserve_metadata_space(trans
, rc
, node
);
2484 BUG_ON(node
->processed
);
2485 root
= select_one_root(node
);
2486 if (root
== ERR_PTR(-ENOENT
)) {
2487 update_processed_blocks(rc
, node
);
2492 if (test_bit(BTRFS_ROOT_SHAREABLE
, &root
->state
)) {
2493 BUG_ON(node
->new_bytenr
);
2494 BUG_ON(!list_empty(&node
->list
));
2495 btrfs_record_root_in_trans(trans
, root
);
2496 root
= root
->reloc_root
;
2497 node
->new_bytenr
= root
->node
->start
;
2498 btrfs_put_root(node
->root
);
2499 node
->root
= btrfs_grab_root(root
);
2501 list_add_tail(&node
->list
, &rc
->backref_cache
.changed
);
2503 path
->lowest_level
= node
->level
;
2504 ret
= btrfs_search_slot(trans
, root
, key
, path
, 0, 1);
2505 btrfs_release_path(path
);
2510 update_processed_blocks(rc
, node
);
2512 ret
= do_relocation(trans
, rc
, node
, key
, path
, 1);
2515 if (ret
|| node
->level
== 0 || node
->cowonly
)
2516 btrfs_backref_cleanup_node(&rc
->backref_cache
, node
);
2521 * relocate a list of blocks
2523 static noinline_for_stack
2524 int relocate_tree_blocks(struct btrfs_trans_handle
*trans
,
2525 struct reloc_control
*rc
, struct rb_root
*blocks
)
2527 struct btrfs_fs_info
*fs_info
= rc
->extent_root
->fs_info
;
2528 struct btrfs_backref_node
*node
;
2529 struct btrfs_path
*path
;
2530 struct tree_block
*block
;
2531 struct tree_block
*next
;
2535 path
= btrfs_alloc_path();
2538 goto out_free_blocks
;
2541 /* Kick in readahead for tree blocks with missing keys */
2542 rbtree_postorder_for_each_entry_safe(block
, next
, blocks
, rb_node
) {
2543 if (!block
->key_ready
)
2544 readahead_tree_block(fs_info
, block
->bytenr
);
2547 /* Get first keys */
2548 rbtree_postorder_for_each_entry_safe(block
, next
, blocks
, rb_node
) {
2549 if (!block
->key_ready
) {
2550 err
= get_tree_block_key(fs_info
, block
);
2556 /* Do tree relocation */
2557 rbtree_postorder_for_each_entry_safe(block
, next
, blocks
, rb_node
) {
2558 node
= build_backref_tree(rc
, &block
->key
,
2559 block
->level
, block
->bytenr
);
2561 err
= PTR_ERR(node
);
2565 ret
= relocate_tree_block(trans
, rc
, node
, &block
->key
,
2573 err
= finish_pending_nodes(trans
, rc
, path
, err
);
2576 btrfs_free_path(path
);
2578 free_block_list(blocks
);
2582 static noinline_for_stack
int prealloc_file_extent_cluster(
2583 struct btrfs_inode
*inode
,
2584 struct file_extent_cluster
*cluster
)
2589 u64 offset
= inode
->index_cnt
;
2593 u64 prealloc_start
= cluster
->start
- offset
;
2594 u64 prealloc_end
= cluster
->end
- offset
;
2595 u64 cur_offset
= prealloc_start
;
2597 BUG_ON(cluster
->start
!= cluster
->boundary
[0]);
2598 ret
= btrfs_alloc_data_chunk_ondemand(inode
,
2599 prealloc_end
+ 1 - prealloc_start
);
2603 inode_lock(&inode
->vfs_inode
);
2604 for (nr
= 0; nr
< cluster
->nr
; nr
++) {
2605 start
= cluster
->boundary
[nr
] - offset
;
2606 if (nr
+ 1 < cluster
->nr
)
2607 end
= cluster
->boundary
[nr
+ 1] - 1 - offset
;
2609 end
= cluster
->end
- offset
;
2611 lock_extent(&inode
->io_tree
, start
, end
);
2612 num_bytes
= end
+ 1 - start
;
2613 ret
= btrfs_prealloc_file_range(&inode
->vfs_inode
, 0, start
,
2614 num_bytes
, num_bytes
,
2615 end
+ 1, &alloc_hint
);
2616 cur_offset
= end
+ 1;
2617 unlock_extent(&inode
->io_tree
, start
, end
);
2621 inode_unlock(&inode
->vfs_inode
);
2623 if (cur_offset
< prealloc_end
)
2624 btrfs_free_reserved_data_space_noquota(inode
->root
->fs_info
,
2625 prealloc_end
+ 1 - cur_offset
);
2629 static noinline_for_stack
2630 int setup_extent_mapping(struct inode
*inode
, u64 start
, u64 end
,
2633 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
2634 struct extent_map
*em
;
2637 em
= alloc_extent_map();
2642 em
->len
= end
+ 1 - start
;
2643 em
->block_len
= em
->len
;
2644 em
->block_start
= block_start
;
2645 set_bit(EXTENT_FLAG_PINNED
, &em
->flags
);
2647 lock_extent(&BTRFS_I(inode
)->io_tree
, start
, end
);
2649 write_lock(&em_tree
->lock
);
2650 ret
= add_extent_mapping(em_tree
, em
, 0);
2651 write_unlock(&em_tree
->lock
);
2652 if (ret
!= -EEXIST
) {
2653 free_extent_map(em
);
2656 btrfs_drop_extent_cache(BTRFS_I(inode
), start
, end
, 0);
2658 unlock_extent(&BTRFS_I(inode
)->io_tree
, start
, end
);
2663 * Allow error injection to test balance cancellation
2665 int btrfs_should_cancel_balance(struct btrfs_fs_info
*fs_info
)
2667 return atomic_read(&fs_info
->balance_cancel_req
) ||
2668 fatal_signal_pending(current
);
2670 ALLOW_ERROR_INJECTION(btrfs_should_cancel_balance
, TRUE
);
2672 static int relocate_file_extent_cluster(struct inode
*inode
,
2673 struct file_extent_cluster
*cluster
)
2675 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
2678 u64 offset
= BTRFS_I(inode
)->index_cnt
;
2679 unsigned long index
;
2680 unsigned long last_index
;
2682 struct file_ra_state
*ra
;
2683 gfp_t mask
= btrfs_alloc_write_mask(inode
->i_mapping
);
2690 ra
= kzalloc(sizeof(*ra
), GFP_NOFS
);
2694 ret
= prealloc_file_extent_cluster(BTRFS_I(inode
), cluster
);
2698 file_ra_state_init(ra
, inode
->i_mapping
);
2700 ret
= setup_extent_mapping(inode
, cluster
->start
- offset
,
2701 cluster
->end
- offset
, cluster
->start
);
2705 index
= (cluster
->start
- offset
) >> PAGE_SHIFT
;
2706 last_index
= (cluster
->end
- offset
) >> PAGE_SHIFT
;
2707 while (index
<= last_index
) {
2708 ret
= btrfs_delalloc_reserve_metadata(BTRFS_I(inode
),
2713 page
= find_lock_page(inode
->i_mapping
, index
);
2715 page_cache_sync_readahead(inode
->i_mapping
,
2717 last_index
+ 1 - index
);
2718 page
= find_or_create_page(inode
->i_mapping
, index
,
2721 btrfs_delalloc_release_metadata(BTRFS_I(inode
),
2723 btrfs_delalloc_release_extents(BTRFS_I(inode
),
2730 if (PageReadahead(page
)) {
2731 page_cache_async_readahead(inode
->i_mapping
,
2732 ra
, NULL
, page
, index
,
2733 last_index
+ 1 - index
);
2736 if (!PageUptodate(page
)) {
2737 btrfs_readpage(NULL
, page
);
2739 if (!PageUptodate(page
)) {
2742 btrfs_delalloc_release_metadata(BTRFS_I(inode
),
2744 btrfs_delalloc_release_extents(BTRFS_I(inode
),
2751 page_start
= page_offset(page
);
2752 page_end
= page_start
+ PAGE_SIZE
- 1;
2754 lock_extent(&BTRFS_I(inode
)->io_tree
, page_start
, page_end
);
2756 set_page_extent_mapped(page
);
2758 if (nr
< cluster
->nr
&&
2759 page_start
+ offset
== cluster
->boundary
[nr
]) {
2760 set_extent_bits(&BTRFS_I(inode
)->io_tree
,
2761 page_start
, page_end
,
2766 ret
= btrfs_set_extent_delalloc(BTRFS_I(inode
), page_start
,
2771 btrfs_delalloc_release_metadata(BTRFS_I(inode
),
2773 btrfs_delalloc_release_extents(BTRFS_I(inode
),
2776 clear_extent_bits(&BTRFS_I(inode
)->io_tree
,
2777 page_start
, page_end
,
2778 EXTENT_LOCKED
| EXTENT_BOUNDARY
);
2782 set_page_dirty(page
);
2784 unlock_extent(&BTRFS_I(inode
)->io_tree
,
2785 page_start
, page_end
);
2790 btrfs_delalloc_release_extents(BTRFS_I(inode
), PAGE_SIZE
);
2791 balance_dirty_pages_ratelimited(inode
->i_mapping
);
2792 btrfs_throttle(fs_info
);
2793 if (btrfs_should_cancel_balance(fs_info
)) {
2798 WARN_ON(nr
!= cluster
->nr
);
2804 static noinline_for_stack
2805 int relocate_data_extent(struct inode
*inode
, struct btrfs_key
*extent_key
,
2806 struct file_extent_cluster
*cluster
)
2810 if (cluster
->nr
> 0 && extent_key
->objectid
!= cluster
->end
+ 1) {
2811 ret
= relocate_file_extent_cluster(inode
, cluster
);
2818 cluster
->start
= extent_key
->objectid
;
2820 BUG_ON(cluster
->nr
>= MAX_EXTENTS
);
2821 cluster
->end
= extent_key
->objectid
+ extent_key
->offset
- 1;
2822 cluster
->boundary
[cluster
->nr
] = extent_key
->objectid
;
2825 if (cluster
->nr
>= MAX_EXTENTS
) {
2826 ret
= relocate_file_extent_cluster(inode
, cluster
);
2835 * helper to add a tree block to the list.
2836 * the major work is getting the generation and level of the block
2838 static int add_tree_block(struct reloc_control
*rc
,
2839 struct btrfs_key
*extent_key
,
2840 struct btrfs_path
*path
,
2841 struct rb_root
*blocks
)
2843 struct extent_buffer
*eb
;
2844 struct btrfs_extent_item
*ei
;
2845 struct btrfs_tree_block_info
*bi
;
2846 struct tree_block
*block
;
2847 struct rb_node
*rb_node
;
2852 eb
= path
->nodes
[0];
2853 item_size
= btrfs_item_size_nr(eb
, path
->slots
[0]);
2855 if (extent_key
->type
== BTRFS_METADATA_ITEM_KEY
||
2856 item_size
>= sizeof(*ei
) + sizeof(*bi
)) {
2857 ei
= btrfs_item_ptr(eb
, path
->slots
[0],
2858 struct btrfs_extent_item
);
2859 if (extent_key
->type
== BTRFS_EXTENT_ITEM_KEY
) {
2860 bi
= (struct btrfs_tree_block_info
*)(ei
+ 1);
2861 level
= btrfs_tree_block_level(eb
, bi
);
2863 level
= (int)extent_key
->offset
;
2865 generation
= btrfs_extent_generation(eb
, ei
);
2866 } else if (unlikely(item_size
== sizeof(struct btrfs_extent_item_v0
))) {
2867 btrfs_print_v0_err(eb
->fs_info
);
2868 btrfs_handle_fs_error(eb
->fs_info
, -EINVAL
, NULL
);
2874 btrfs_release_path(path
);
2876 BUG_ON(level
== -1);
2878 block
= kmalloc(sizeof(*block
), GFP_NOFS
);
2882 block
->bytenr
= extent_key
->objectid
;
2883 block
->key
.objectid
= rc
->extent_root
->fs_info
->nodesize
;
2884 block
->key
.offset
= generation
;
2885 block
->level
= level
;
2886 block
->key_ready
= 0;
2888 rb_node
= rb_simple_insert(blocks
, block
->bytenr
, &block
->rb_node
);
2890 btrfs_backref_panic(rc
->extent_root
->fs_info
, block
->bytenr
,
2897 * helper to add tree blocks for backref of type BTRFS_SHARED_DATA_REF_KEY
2899 static int __add_tree_block(struct reloc_control
*rc
,
2900 u64 bytenr
, u32 blocksize
,
2901 struct rb_root
*blocks
)
2903 struct btrfs_fs_info
*fs_info
= rc
->extent_root
->fs_info
;
2904 struct btrfs_path
*path
;
2905 struct btrfs_key key
;
2907 bool skinny
= btrfs_fs_incompat(fs_info
, SKINNY_METADATA
);
2909 if (tree_block_processed(bytenr
, rc
))
2912 if (rb_simple_search(blocks
, bytenr
))
2915 path
= btrfs_alloc_path();
2919 key
.objectid
= bytenr
;
2921 key
.type
= BTRFS_METADATA_ITEM_KEY
;
2922 key
.offset
= (u64
)-1;
2924 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
2925 key
.offset
= blocksize
;
2928 path
->search_commit_root
= 1;
2929 path
->skip_locking
= 1;
2930 ret
= btrfs_search_slot(NULL
, rc
->extent_root
, &key
, path
, 0, 0);
2934 if (ret
> 0 && skinny
) {
2935 if (path
->slots
[0]) {
2937 btrfs_item_key_to_cpu(path
->nodes
[0], &key
,
2939 if (key
.objectid
== bytenr
&&
2940 (key
.type
== BTRFS_METADATA_ITEM_KEY
||
2941 (key
.type
== BTRFS_EXTENT_ITEM_KEY
&&
2942 key
.offset
== blocksize
)))
2948 btrfs_release_path(path
);
2954 btrfs_print_leaf(path
->nodes
[0]);
2956 "tree block extent item (%llu) is not found in extent tree",
2963 ret
= add_tree_block(rc
, &key
, path
, blocks
);
2965 btrfs_free_path(path
);
2969 static int delete_block_group_cache(struct btrfs_fs_info
*fs_info
,
2970 struct btrfs_block_group
*block_group
,
2971 struct inode
*inode
,
2974 struct btrfs_root
*root
= fs_info
->tree_root
;
2975 struct btrfs_trans_handle
*trans
;
2981 inode
= btrfs_iget(fs_info
->sb
, ino
, root
);
2986 ret
= btrfs_check_trunc_cache_free_space(fs_info
,
2987 &fs_info
->global_block_rsv
);
2991 trans
= btrfs_join_transaction(root
);
2992 if (IS_ERR(trans
)) {
2993 ret
= PTR_ERR(trans
);
2997 ret
= btrfs_truncate_free_space_cache(trans
, block_group
, inode
);
2999 btrfs_end_transaction(trans
);
3000 btrfs_btree_balance_dirty(fs_info
);
3007 * Locate the free space cache EXTENT_DATA in root tree leaf and delete the
3008 * cache inode, to avoid free space cache data extent blocking data relocation.
3010 static int delete_v1_space_cache(struct extent_buffer
*leaf
,
3011 struct btrfs_block_group
*block_group
,
3014 u64 space_cache_ino
;
3015 struct btrfs_file_extent_item
*ei
;
3016 struct btrfs_key key
;
3021 if (btrfs_header_owner(leaf
) != BTRFS_ROOT_TREE_OBJECTID
)
3024 for (i
= 0; i
< btrfs_header_nritems(leaf
); i
++) {
3025 btrfs_item_key_to_cpu(leaf
, &key
, i
);
3026 if (key
.type
!= BTRFS_EXTENT_DATA_KEY
)
3028 ei
= btrfs_item_ptr(leaf
, i
, struct btrfs_file_extent_item
);
3029 if (btrfs_file_extent_type(leaf
, ei
) == BTRFS_FILE_EXTENT_REG
&&
3030 btrfs_file_extent_disk_bytenr(leaf
, ei
) == data_bytenr
) {
3032 space_cache_ino
= key
.objectid
;
3038 ret
= delete_block_group_cache(leaf
->fs_info
, block_group
, NULL
,
3044 * helper to find all tree blocks that reference a given data extent
3046 static noinline_for_stack
3047 int add_data_references(struct reloc_control
*rc
,
3048 struct btrfs_key
*extent_key
,
3049 struct btrfs_path
*path
,
3050 struct rb_root
*blocks
)
3052 struct btrfs_fs_info
*fs_info
= rc
->extent_root
->fs_info
;
3053 struct ulist
*leaves
= NULL
;
3054 struct ulist_iterator leaf_uiter
;
3055 struct ulist_node
*ref_node
= NULL
;
3056 const u32 blocksize
= fs_info
->nodesize
;
3059 btrfs_release_path(path
);
3060 ret
= btrfs_find_all_leafs(NULL
, fs_info
, extent_key
->objectid
,
3061 0, &leaves
, NULL
, true);
3065 ULIST_ITER_INIT(&leaf_uiter
);
3066 while ((ref_node
= ulist_next(leaves
, &leaf_uiter
))) {
3067 struct extent_buffer
*eb
;
3069 eb
= read_tree_block(fs_info
, ref_node
->val
, 0, 0, NULL
);
3074 ret
= delete_v1_space_cache(eb
, rc
->block_group
,
3075 extent_key
->objectid
);
3076 free_extent_buffer(eb
);
3079 ret
= __add_tree_block(rc
, ref_node
->val
, blocksize
, blocks
);
3084 free_block_list(blocks
);
3090 * helper to find next unprocessed extent
3092 static noinline_for_stack
3093 int find_next_extent(struct reloc_control
*rc
, struct btrfs_path
*path
,
3094 struct btrfs_key
*extent_key
)
3096 struct btrfs_fs_info
*fs_info
= rc
->extent_root
->fs_info
;
3097 struct btrfs_key key
;
3098 struct extent_buffer
*leaf
;
3099 u64 start
, end
, last
;
3102 last
= rc
->block_group
->start
+ rc
->block_group
->length
;
3105 if (rc
->search_start
>= last
) {
3110 key
.objectid
= rc
->search_start
;
3111 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
3114 path
->search_commit_root
= 1;
3115 path
->skip_locking
= 1;
3116 ret
= btrfs_search_slot(NULL
, rc
->extent_root
, &key
, path
,
3121 leaf
= path
->nodes
[0];
3122 if (path
->slots
[0] >= btrfs_header_nritems(leaf
)) {
3123 ret
= btrfs_next_leaf(rc
->extent_root
, path
);
3126 leaf
= path
->nodes
[0];
3129 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
3130 if (key
.objectid
>= last
) {
3135 if (key
.type
!= BTRFS_EXTENT_ITEM_KEY
&&
3136 key
.type
!= BTRFS_METADATA_ITEM_KEY
) {
3141 if (key
.type
== BTRFS_EXTENT_ITEM_KEY
&&
3142 key
.objectid
+ key
.offset
<= rc
->search_start
) {
3147 if (key
.type
== BTRFS_METADATA_ITEM_KEY
&&
3148 key
.objectid
+ fs_info
->nodesize
<=
3154 ret
= find_first_extent_bit(&rc
->processed_blocks
,
3155 key
.objectid
, &start
, &end
,
3156 EXTENT_DIRTY
, NULL
);
3158 if (ret
== 0 && start
<= key
.objectid
) {
3159 btrfs_release_path(path
);
3160 rc
->search_start
= end
+ 1;
3162 if (key
.type
== BTRFS_EXTENT_ITEM_KEY
)
3163 rc
->search_start
= key
.objectid
+ key
.offset
;
3165 rc
->search_start
= key
.objectid
+
3167 memcpy(extent_key
, &key
, sizeof(key
));
3171 btrfs_release_path(path
);
3175 static void set_reloc_control(struct reloc_control
*rc
)
3177 struct btrfs_fs_info
*fs_info
= rc
->extent_root
->fs_info
;
3179 mutex_lock(&fs_info
->reloc_mutex
);
3180 fs_info
->reloc_ctl
= rc
;
3181 mutex_unlock(&fs_info
->reloc_mutex
);
3184 static void unset_reloc_control(struct reloc_control
*rc
)
3186 struct btrfs_fs_info
*fs_info
= rc
->extent_root
->fs_info
;
3188 mutex_lock(&fs_info
->reloc_mutex
);
3189 fs_info
->reloc_ctl
= NULL
;
3190 mutex_unlock(&fs_info
->reloc_mutex
);
3193 static int check_extent_flags(u64 flags
)
3195 if ((flags
& BTRFS_EXTENT_FLAG_DATA
) &&
3196 (flags
& BTRFS_EXTENT_FLAG_TREE_BLOCK
))
3198 if (!(flags
& BTRFS_EXTENT_FLAG_DATA
) &&
3199 !(flags
& BTRFS_EXTENT_FLAG_TREE_BLOCK
))
3201 if ((flags
& BTRFS_EXTENT_FLAG_DATA
) &&
3202 (flags
& BTRFS_BLOCK_FLAG_FULL_BACKREF
))
3207 static noinline_for_stack
3208 int prepare_to_relocate(struct reloc_control
*rc
)
3210 struct btrfs_trans_handle
*trans
;
3213 rc
->block_rsv
= btrfs_alloc_block_rsv(rc
->extent_root
->fs_info
,
3214 BTRFS_BLOCK_RSV_TEMP
);
3218 memset(&rc
->cluster
, 0, sizeof(rc
->cluster
));
3219 rc
->search_start
= rc
->block_group
->start
;
3220 rc
->extents_found
= 0;
3221 rc
->nodes_relocated
= 0;
3222 rc
->merging_rsv_size
= 0;
3223 rc
->reserved_bytes
= 0;
3224 rc
->block_rsv
->size
= rc
->extent_root
->fs_info
->nodesize
*
3225 RELOCATION_RESERVED_NODES
;
3226 ret
= btrfs_block_rsv_refill(rc
->extent_root
,
3227 rc
->block_rsv
, rc
->block_rsv
->size
,
3228 BTRFS_RESERVE_FLUSH_ALL
);
3232 rc
->create_reloc_tree
= 1;
3233 set_reloc_control(rc
);
3235 trans
= btrfs_join_transaction(rc
->extent_root
);
3236 if (IS_ERR(trans
)) {
3237 unset_reloc_control(rc
);
3239 * extent tree is not a ref_cow tree and has no reloc_root to
3240 * cleanup. And callers are responsible to free the above
3243 return PTR_ERR(trans
);
3245 btrfs_commit_transaction(trans
);
3249 static noinline_for_stack
int relocate_block_group(struct reloc_control
*rc
)
3251 struct btrfs_fs_info
*fs_info
= rc
->extent_root
->fs_info
;
3252 struct rb_root blocks
= RB_ROOT
;
3253 struct btrfs_key key
;
3254 struct btrfs_trans_handle
*trans
= NULL
;
3255 struct btrfs_path
*path
;
3256 struct btrfs_extent_item
*ei
;
3263 path
= btrfs_alloc_path();
3266 path
->reada
= READA_FORWARD
;
3268 ret
= prepare_to_relocate(rc
);
3275 rc
->reserved_bytes
= 0;
3276 ret
= btrfs_block_rsv_refill(rc
->extent_root
,
3277 rc
->block_rsv
, rc
->block_rsv
->size
,
3278 BTRFS_RESERVE_FLUSH_ALL
);
3284 trans
= btrfs_start_transaction(rc
->extent_root
, 0);
3285 if (IS_ERR(trans
)) {
3286 err
= PTR_ERR(trans
);
3291 if (update_backref_cache(trans
, &rc
->backref_cache
)) {
3292 btrfs_end_transaction(trans
);
3297 ret
= find_next_extent(rc
, path
, &key
);
3303 rc
->extents_found
++;
3305 ei
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
3306 struct btrfs_extent_item
);
3307 item_size
= btrfs_item_size_nr(path
->nodes
[0], path
->slots
[0]);
3308 if (item_size
>= sizeof(*ei
)) {
3309 flags
= btrfs_extent_flags(path
->nodes
[0], ei
);
3310 ret
= check_extent_flags(flags
);
3312 } else if (unlikely(item_size
== sizeof(struct btrfs_extent_item_v0
))) {
3314 btrfs_print_v0_err(trans
->fs_info
);
3315 btrfs_abort_transaction(trans
, err
);
3321 if (flags
& BTRFS_EXTENT_FLAG_TREE_BLOCK
) {
3322 ret
= add_tree_block(rc
, &key
, path
, &blocks
);
3323 } else if (rc
->stage
== UPDATE_DATA_PTRS
&&
3324 (flags
& BTRFS_EXTENT_FLAG_DATA
)) {
3325 ret
= add_data_references(rc
, &key
, path
, &blocks
);
3327 btrfs_release_path(path
);
3335 if (!RB_EMPTY_ROOT(&blocks
)) {
3336 ret
= relocate_tree_blocks(trans
, rc
, &blocks
);
3338 if (ret
!= -EAGAIN
) {
3342 rc
->extents_found
--;
3343 rc
->search_start
= key
.objectid
;
3347 btrfs_end_transaction_throttle(trans
);
3348 btrfs_btree_balance_dirty(fs_info
);
3351 if (rc
->stage
== MOVE_DATA_EXTENTS
&&
3352 (flags
& BTRFS_EXTENT_FLAG_DATA
)) {
3353 rc
->found_file_extent
= 1;
3354 ret
= relocate_data_extent(rc
->data_inode
,
3355 &key
, &rc
->cluster
);
3361 if (btrfs_should_cancel_balance(fs_info
)) {
3366 if (trans
&& progress
&& err
== -ENOSPC
) {
3367 ret
= btrfs_force_chunk_alloc(trans
, rc
->block_group
->flags
);
3375 btrfs_release_path(path
);
3376 clear_extent_bits(&rc
->processed_blocks
, 0, (u64
)-1, EXTENT_DIRTY
);
3379 btrfs_end_transaction_throttle(trans
);
3380 btrfs_btree_balance_dirty(fs_info
);
3384 ret
= relocate_file_extent_cluster(rc
->data_inode
,
3390 rc
->create_reloc_tree
= 0;
3391 set_reloc_control(rc
);
3393 btrfs_backref_release_cache(&rc
->backref_cache
);
3394 btrfs_block_rsv_release(fs_info
, rc
->block_rsv
, (u64
)-1, NULL
);
3397 * Even in the case when the relocation is cancelled, we should all go
3398 * through prepare_to_merge() and merge_reloc_roots().
3400 * For error (including cancelled balance), prepare_to_merge() will
3401 * mark all reloc trees orphan, then queue them for cleanup in
3402 * merge_reloc_roots()
3404 err
= prepare_to_merge(rc
, err
);
3406 merge_reloc_roots(rc
);
3408 rc
->merge_reloc_tree
= 0;
3409 unset_reloc_control(rc
);
3410 btrfs_block_rsv_release(fs_info
, rc
->block_rsv
, (u64
)-1, NULL
);
3412 /* get rid of pinned extents */
3413 trans
= btrfs_join_transaction(rc
->extent_root
);
3414 if (IS_ERR(trans
)) {
3415 err
= PTR_ERR(trans
);
3418 btrfs_commit_transaction(trans
);
3420 ret
= clean_dirty_subvols(rc
);
3421 if (ret
< 0 && !err
)
3423 btrfs_free_block_rsv(fs_info
, rc
->block_rsv
);
3424 btrfs_free_path(path
);
3428 static int __insert_orphan_inode(struct btrfs_trans_handle
*trans
,
3429 struct btrfs_root
*root
, u64 objectid
)
3431 struct btrfs_path
*path
;
3432 struct btrfs_inode_item
*item
;
3433 struct extent_buffer
*leaf
;
3436 path
= btrfs_alloc_path();
3440 ret
= btrfs_insert_empty_inode(trans
, root
, path
, objectid
);
3444 leaf
= path
->nodes
[0];
3445 item
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_inode_item
);
3446 memzero_extent_buffer(leaf
, (unsigned long)item
, sizeof(*item
));
3447 btrfs_set_inode_generation(leaf
, item
, 1);
3448 btrfs_set_inode_size(leaf
, item
, 0);
3449 btrfs_set_inode_mode(leaf
, item
, S_IFREG
| 0600);
3450 btrfs_set_inode_flags(leaf
, item
, BTRFS_INODE_NOCOMPRESS
|
3451 BTRFS_INODE_PREALLOC
);
3452 btrfs_mark_buffer_dirty(leaf
);
3454 btrfs_free_path(path
);
3459 * helper to create inode for data relocation.
3460 * the inode is in data relocation tree and its link count is 0
3462 static noinline_for_stack
3463 struct inode
*create_reloc_inode(struct btrfs_fs_info
*fs_info
,
3464 struct btrfs_block_group
*group
)
3466 struct inode
*inode
= NULL
;
3467 struct btrfs_trans_handle
*trans
;
3468 struct btrfs_root
*root
;
3472 root
= btrfs_grab_root(fs_info
->data_reloc_root
);
3473 trans
= btrfs_start_transaction(root
, 6);
3474 if (IS_ERR(trans
)) {
3475 btrfs_put_root(root
);
3476 return ERR_CAST(trans
);
3479 err
= btrfs_find_free_objectid(root
, &objectid
);
3483 err
= __insert_orphan_inode(trans
, root
, objectid
);
3486 inode
= btrfs_iget(fs_info
->sb
, objectid
, root
);
3487 BUG_ON(IS_ERR(inode
));
3488 BTRFS_I(inode
)->index_cnt
= group
->start
;
3490 err
= btrfs_orphan_add(trans
, BTRFS_I(inode
));
3492 btrfs_put_root(root
);
3493 btrfs_end_transaction(trans
);
3494 btrfs_btree_balance_dirty(fs_info
);
3498 inode
= ERR_PTR(err
);
3503 static struct reloc_control
*alloc_reloc_control(struct btrfs_fs_info
*fs_info
)
3505 struct reloc_control
*rc
;
3507 rc
= kzalloc(sizeof(*rc
), GFP_NOFS
);
3511 INIT_LIST_HEAD(&rc
->reloc_roots
);
3512 INIT_LIST_HEAD(&rc
->dirty_subvol_roots
);
3513 btrfs_backref_init_cache(fs_info
, &rc
->backref_cache
, 1);
3514 mapping_tree_init(&rc
->reloc_root_tree
);
3515 extent_io_tree_init(fs_info
, &rc
->processed_blocks
,
3516 IO_TREE_RELOC_BLOCKS
, NULL
);
3520 static void free_reloc_control(struct reloc_control
*rc
)
3522 struct mapping_node
*node
, *tmp
;
3524 free_reloc_roots(&rc
->reloc_roots
);
3525 rbtree_postorder_for_each_entry_safe(node
, tmp
,
3526 &rc
->reloc_root_tree
.rb_root
, rb_node
)
3533 * Print the block group being relocated
3535 static void describe_relocation(struct btrfs_fs_info
*fs_info
,
3536 struct btrfs_block_group
*block_group
)
3538 char buf
[128] = {'\0'};
3540 btrfs_describe_block_groups(block_group
->flags
, buf
, sizeof(buf
));
3543 "relocating block group %llu flags %s",
3544 block_group
->start
, buf
);
3547 static const char *stage_to_string(int stage
)
3549 if (stage
== MOVE_DATA_EXTENTS
)
3550 return "move data extents";
3551 if (stage
== UPDATE_DATA_PTRS
)
3552 return "update data pointers";
3557 * function to relocate all extents in a block group.
3559 int btrfs_relocate_block_group(struct btrfs_fs_info
*fs_info
, u64 group_start
)
3561 struct btrfs_block_group
*bg
;
3562 struct btrfs_root
*extent_root
= fs_info
->extent_root
;
3563 struct reloc_control
*rc
;
3564 struct inode
*inode
;
3565 struct btrfs_path
*path
;
3570 bg
= btrfs_lookup_block_group(fs_info
, group_start
);
3574 if (btrfs_pinned_by_swapfile(fs_info
, bg
)) {
3575 btrfs_put_block_group(bg
);
3579 rc
= alloc_reloc_control(fs_info
);
3581 btrfs_put_block_group(bg
);
3585 rc
->extent_root
= extent_root
;
3586 rc
->block_group
= bg
;
3588 ret
= btrfs_inc_block_group_ro(rc
->block_group
, true);
3595 path
= btrfs_alloc_path();
3601 inode
= lookup_free_space_inode(rc
->block_group
, path
);
3602 btrfs_free_path(path
);
3605 ret
= delete_block_group_cache(fs_info
, rc
->block_group
, inode
, 0);
3607 ret
= PTR_ERR(inode
);
3609 if (ret
&& ret
!= -ENOENT
) {
3614 rc
->data_inode
= create_reloc_inode(fs_info
, rc
->block_group
);
3615 if (IS_ERR(rc
->data_inode
)) {
3616 err
= PTR_ERR(rc
->data_inode
);
3617 rc
->data_inode
= NULL
;
3621 describe_relocation(fs_info
, rc
->block_group
);
3623 btrfs_wait_block_group_reservations(rc
->block_group
);
3624 btrfs_wait_nocow_writers(rc
->block_group
);
3625 btrfs_wait_ordered_roots(fs_info
, U64_MAX
,
3626 rc
->block_group
->start
,
3627 rc
->block_group
->length
);
3632 mutex_lock(&fs_info
->cleaner_mutex
);
3633 ret
= relocate_block_group(rc
);
3634 mutex_unlock(&fs_info
->cleaner_mutex
);
3638 finishes_stage
= rc
->stage
;
3640 * We may have gotten ENOSPC after we already dirtied some
3641 * extents. If writeout happens while we're relocating a
3642 * different block group we could end up hitting the
3643 * BUG_ON(rc->stage == UPDATE_DATA_PTRS) in
3644 * btrfs_reloc_cow_block. Make sure we write everything out
3645 * properly so we don't trip over this problem, and then break
3646 * out of the loop if we hit an error.
3648 if (rc
->stage
== MOVE_DATA_EXTENTS
&& rc
->found_file_extent
) {
3649 ret
= btrfs_wait_ordered_range(rc
->data_inode
, 0,
3653 invalidate_mapping_pages(rc
->data_inode
->i_mapping
,
3655 rc
->stage
= UPDATE_DATA_PTRS
;
3661 if (rc
->extents_found
== 0)
3664 btrfs_info(fs_info
, "found %llu extents, stage: %s",
3665 rc
->extents_found
, stage_to_string(finishes_stage
));
3668 WARN_ON(rc
->block_group
->pinned
> 0);
3669 WARN_ON(rc
->block_group
->reserved
> 0);
3670 WARN_ON(rc
->block_group
->used
> 0);
3673 btrfs_dec_block_group_ro(rc
->block_group
);
3674 iput(rc
->data_inode
);
3675 btrfs_put_block_group(rc
->block_group
);
3676 free_reloc_control(rc
);
3680 static noinline_for_stack
int mark_garbage_root(struct btrfs_root
*root
)
3682 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
3683 struct btrfs_trans_handle
*trans
;
3686 trans
= btrfs_start_transaction(fs_info
->tree_root
, 0);
3688 return PTR_ERR(trans
);
3690 memset(&root
->root_item
.drop_progress
, 0,
3691 sizeof(root
->root_item
.drop_progress
));
3692 root
->root_item
.drop_level
= 0;
3693 btrfs_set_root_refs(&root
->root_item
, 0);
3694 ret
= btrfs_update_root(trans
, fs_info
->tree_root
,
3695 &root
->root_key
, &root
->root_item
);
3697 err
= btrfs_end_transaction(trans
);
3704 * recover relocation interrupted by system crash.
3706 * this function resumes merging reloc trees with corresponding fs trees.
3707 * this is important for keeping the sharing of tree blocks
3709 int btrfs_recover_relocation(struct btrfs_root
*root
)
3711 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
3712 LIST_HEAD(reloc_roots
);
3713 struct btrfs_key key
;
3714 struct btrfs_root
*fs_root
;
3715 struct btrfs_root
*reloc_root
;
3716 struct btrfs_path
*path
;
3717 struct extent_buffer
*leaf
;
3718 struct reloc_control
*rc
= NULL
;
3719 struct btrfs_trans_handle
*trans
;
3723 path
= btrfs_alloc_path();
3726 path
->reada
= READA_BACK
;
3728 key
.objectid
= BTRFS_TREE_RELOC_OBJECTID
;
3729 key
.type
= BTRFS_ROOT_ITEM_KEY
;
3730 key
.offset
= (u64
)-1;
3733 ret
= btrfs_search_slot(NULL
, fs_info
->tree_root
, &key
,
3740 if (path
->slots
[0] == 0)
3744 leaf
= path
->nodes
[0];
3745 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
3746 btrfs_release_path(path
);
3748 if (key
.objectid
!= BTRFS_TREE_RELOC_OBJECTID
||
3749 key
.type
!= BTRFS_ROOT_ITEM_KEY
)
3752 reloc_root
= btrfs_read_tree_root(root
, &key
);
3753 if (IS_ERR(reloc_root
)) {
3754 err
= PTR_ERR(reloc_root
);
3758 set_bit(BTRFS_ROOT_SHAREABLE
, &reloc_root
->state
);
3759 list_add(&reloc_root
->root_list
, &reloc_roots
);
3761 if (btrfs_root_refs(&reloc_root
->root_item
) > 0) {
3762 fs_root
= btrfs_get_fs_root(fs_info
,
3763 reloc_root
->root_key
.offset
, false);
3764 if (IS_ERR(fs_root
)) {
3765 ret
= PTR_ERR(fs_root
);
3766 if (ret
!= -ENOENT
) {
3770 ret
= mark_garbage_root(reloc_root
);
3776 btrfs_put_root(fs_root
);
3780 if (key
.offset
== 0)
3785 btrfs_release_path(path
);
3787 if (list_empty(&reloc_roots
))
3790 rc
= alloc_reloc_control(fs_info
);
3796 rc
->extent_root
= fs_info
->extent_root
;
3798 set_reloc_control(rc
);
3800 trans
= btrfs_join_transaction(rc
->extent_root
);
3801 if (IS_ERR(trans
)) {
3802 err
= PTR_ERR(trans
);
3806 rc
->merge_reloc_tree
= 1;
3808 while (!list_empty(&reloc_roots
)) {
3809 reloc_root
= list_entry(reloc_roots
.next
,
3810 struct btrfs_root
, root_list
);
3811 list_del(&reloc_root
->root_list
);
3813 if (btrfs_root_refs(&reloc_root
->root_item
) == 0) {
3814 list_add_tail(&reloc_root
->root_list
,
3819 fs_root
= btrfs_get_fs_root(fs_info
, reloc_root
->root_key
.offset
,
3821 if (IS_ERR(fs_root
)) {
3822 err
= PTR_ERR(fs_root
);
3823 list_add_tail(&reloc_root
->root_list
, &reloc_roots
);
3824 btrfs_end_transaction(trans
);
3828 err
= __add_reloc_root(reloc_root
);
3829 BUG_ON(err
< 0); /* -ENOMEM or logic error */
3830 fs_root
->reloc_root
= btrfs_grab_root(reloc_root
);
3831 btrfs_put_root(fs_root
);
3834 err
= btrfs_commit_transaction(trans
);
3838 merge_reloc_roots(rc
);
3840 unset_reloc_control(rc
);
3842 trans
= btrfs_join_transaction(rc
->extent_root
);
3843 if (IS_ERR(trans
)) {
3844 err
= PTR_ERR(trans
);
3847 err
= btrfs_commit_transaction(trans
);
3849 ret
= clean_dirty_subvols(rc
);
3850 if (ret
< 0 && !err
)
3853 unset_reloc_control(rc
);
3854 free_reloc_control(rc
);
3856 free_reloc_roots(&reloc_roots
);
3858 btrfs_free_path(path
);
3861 /* cleanup orphan inode in data relocation tree */
3862 fs_root
= btrfs_grab_root(fs_info
->data_reloc_root
);
3864 err
= btrfs_orphan_cleanup(fs_root
);
3865 btrfs_put_root(fs_root
);
3871 * helper to add ordered checksum for data relocation.
3873 * cloning checksum properly handles the nodatasum extents.
3874 * it also saves CPU time to re-calculate the checksum.
3876 int btrfs_reloc_clone_csums(struct btrfs_inode
*inode
, u64 file_pos
, u64 len
)
3878 struct btrfs_fs_info
*fs_info
= inode
->root
->fs_info
;
3879 struct btrfs_ordered_sum
*sums
;
3880 struct btrfs_ordered_extent
*ordered
;
3886 ordered
= btrfs_lookup_ordered_extent(inode
, file_pos
);
3887 BUG_ON(ordered
->file_offset
!= file_pos
|| ordered
->num_bytes
!= len
);
3889 disk_bytenr
= file_pos
+ inode
->index_cnt
;
3890 ret
= btrfs_lookup_csums_range(fs_info
->csum_root
, disk_bytenr
,
3891 disk_bytenr
+ len
- 1, &list
, 0);
3895 while (!list_empty(&list
)) {
3896 sums
= list_entry(list
.next
, struct btrfs_ordered_sum
, list
);
3897 list_del_init(&sums
->list
);
3900 * We need to offset the new_bytenr based on where the csum is.
3901 * We need to do this because we will read in entire prealloc
3902 * extents but we may have written to say the middle of the
3903 * prealloc extent, so we need to make sure the csum goes with
3904 * the right disk offset.
3906 * We can do this because the data reloc inode refers strictly
3907 * to the on disk bytes, so we don't have to worry about
3908 * disk_len vs real len like with real inodes since it's all
3911 new_bytenr
= ordered
->disk_bytenr
+ sums
->bytenr
- disk_bytenr
;
3912 sums
->bytenr
= new_bytenr
;
3914 btrfs_add_ordered_sum(ordered
, sums
);
3917 btrfs_put_ordered_extent(ordered
);
3921 int btrfs_reloc_cow_block(struct btrfs_trans_handle
*trans
,
3922 struct btrfs_root
*root
, struct extent_buffer
*buf
,
3923 struct extent_buffer
*cow
)
3925 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
3926 struct reloc_control
*rc
;
3927 struct btrfs_backref_node
*node
;
3932 rc
= fs_info
->reloc_ctl
;
3936 BUG_ON(rc
->stage
== UPDATE_DATA_PTRS
&&
3937 root
->root_key
.objectid
== BTRFS_DATA_RELOC_TREE_OBJECTID
);
3939 level
= btrfs_header_level(buf
);
3940 if (btrfs_header_generation(buf
) <=
3941 btrfs_root_last_snapshot(&root
->root_item
))
3944 if (root
->root_key
.objectid
== BTRFS_TREE_RELOC_OBJECTID
&&
3945 rc
->create_reloc_tree
) {
3946 WARN_ON(!first_cow
&& level
== 0);
3948 node
= rc
->backref_cache
.path
[level
];
3949 BUG_ON(node
->bytenr
!= buf
->start
&&
3950 node
->new_bytenr
!= buf
->start
);
3952 btrfs_backref_drop_node_buffer(node
);
3953 atomic_inc(&cow
->refs
);
3955 node
->new_bytenr
= cow
->start
;
3957 if (!node
->pending
) {
3958 list_move_tail(&node
->list
,
3959 &rc
->backref_cache
.pending
[level
]);
3964 mark_block_processed(rc
, node
);
3966 if (first_cow
&& level
> 0)
3967 rc
->nodes_relocated
+= buf
->len
;
3970 if (level
== 0 && first_cow
&& rc
->stage
== UPDATE_DATA_PTRS
)
3971 ret
= replace_file_extents(trans
, rc
, root
, cow
);
3976 * called before creating snapshot. it calculates metadata reservation
3977 * required for relocating tree blocks in the snapshot
3979 void btrfs_reloc_pre_snapshot(struct btrfs_pending_snapshot
*pending
,
3980 u64
*bytes_to_reserve
)
3982 struct btrfs_root
*root
= pending
->root
;
3983 struct reloc_control
*rc
= root
->fs_info
->reloc_ctl
;
3985 if (!rc
|| !have_reloc_root(root
))
3988 if (!rc
->merge_reloc_tree
)
3991 root
= root
->reloc_root
;
3992 BUG_ON(btrfs_root_refs(&root
->root_item
) == 0);
3994 * relocation is in the stage of merging trees. the space
3995 * used by merging a reloc tree is twice the size of
3996 * relocated tree nodes in the worst case. half for cowing
3997 * the reloc tree, half for cowing the fs tree. the space
3998 * used by cowing the reloc tree will be freed after the
3999 * tree is dropped. if we create snapshot, cowing the fs
4000 * tree may use more space than it frees. so we need
4001 * reserve extra space.
4003 *bytes_to_reserve
+= rc
->nodes_relocated
;
4007 * called after snapshot is created. migrate block reservation
4008 * and create reloc root for the newly created snapshot
4010 * This is similar to btrfs_init_reloc_root(), we come out of here with two
4011 * references held on the reloc_root, one for root->reloc_root and one for
4014 int btrfs_reloc_post_snapshot(struct btrfs_trans_handle
*trans
,
4015 struct btrfs_pending_snapshot
*pending
)
4017 struct btrfs_root
*root
= pending
->root
;
4018 struct btrfs_root
*reloc_root
;
4019 struct btrfs_root
*new_root
;
4020 struct reloc_control
*rc
= root
->fs_info
->reloc_ctl
;
4023 if (!rc
|| !have_reloc_root(root
))
4026 rc
= root
->fs_info
->reloc_ctl
;
4027 rc
->merging_rsv_size
+= rc
->nodes_relocated
;
4029 if (rc
->merge_reloc_tree
) {
4030 ret
= btrfs_block_rsv_migrate(&pending
->block_rsv
,
4032 rc
->nodes_relocated
, true);
4037 new_root
= pending
->snap
;
4038 reloc_root
= create_reloc_root(trans
, root
->reloc_root
,
4039 new_root
->root_key
.objectid
);
4040 if (IS_ERR(reloc_root
))
4041 return PTR_ERR(reloc_root
);
4043 ret
= __add_reloc_root(reloc_root
);
4045 new_root
->reloc_root
= btrfs_grab_root(reloc_root
);
4047 if (rc
->create_reloc_tree
)
4048 ret
= clone_backref_node(trans
, rc
, root
, reloc_root
);