Linux 2.6.21.1
[linux/fpc-iii.git] / drivers / char / ipmi / ipmi_kcs_sm.c
blobc1b8228cb7b685c619d437fac98f01ef68169437
1 /*
2 * ipmi_kcs_sm.c
4 * State machine for handling IPMI KCS interfaces.
6 * Author: MontaVista Software, Inc.
7 * Corey Minyard <minyard@mvista.com>
8 * source@mvista.com
10 * Copyright 2002 MontaVista Software Inc.
12 * This program is free software; you can redistribute it and/or modify it
13 * under the terms of the GNU General Public License as published by the
14 * Free Software Foundation; either version 2 of the License, or (at your
15 * option) any later version.
18 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
19 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
20 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
21 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
22 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
23 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
24 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
25 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
26 * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
27 * USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29 * You should have received a copy of the GNU General Public License along
30 * with this program; if not, write to the Free Software Foundation, Inc.,
31 * 675 Mass Ave, Cambridge, MA 02139, USA.
35 * This state machine is taken from the state machine in the IPMI spec,
36 * pretty much verbatim. If you have questions about the states, see
37 * that document.
40 #include <linux/kernel.h> /* For printk. */
41 #include <linux/module.h>
42 #include <linux/moduleparam.h>
43 #include <linux/string.h>
44 #include <linux/jiffies.h>
45 #include <linux/ipmi_msgdefs.h> /* for completion codes */
46 #include "ipmi_si_sm.h"
48 /* kcs_debug is a bit-field
49 * KCS_DEBUG_ENABLE - turned on for now
50 * KCS_DEBUG_MSG - commands and their responses
51 * KCS_DEBUG_STATES - state machine
53 #define KCS_DEBUG_STATES 4
54 #define KCS_DEBUG_MSG 2
55 #define KCS_DEBUG_ENABLE 1
57 static int kcs_debug;
58 module_param(kcs_debug, int, 0644);
59 MODULE_PARM_DESC(kcs_debug, "debug bitmask, 1=enable, 2=messages, 4=states");
61 /* The states the KCS driver may be in. */
62 enum kcs_states {
63 KCS_IDLE, /* The KCS interface is currently
64 doing nothing. */
65 KCS_START_OP, /* We are starting an operation. The
66 data is in the output buffer, but
67 nothing has been done to the
68 interface yet. This was added to
69 the state machine in the spec to
70 wait for the initial IBF. */
71 KCS_WAIT_WRITE_START, /* We have written a write cmd to the
72 interface. */
73 KCS_WAIT_WRITE, /* We are writing bytes to the
74 interface. */
75 KCS_WAIT_WRITE_END, /* We have written the write end cmd
76 to the interface, and still need to
77 write the last byte. */
78 KCS_WAIT_READ, /* We are waiting to read data from
79 the interface. */
80 KCS_ERROR0, /* State to transition to the error
81 handler, this was added to the
82 state machine in the spec to be
83 sure IBF was there. */
84 KCS_ERROR1, /* First stage error handler, wait for
85 the interface to respond. */
86 KCS_ERROR2, /* The abort cmd has been written,
87 wait for the interface to
88 respond. */
89 KCS_ERROR3, /* We wrote some data to the
90 interface, wait for it to switch to
91 read mode. */
92 KCS_HOSED /* The hardware failed to follow the
93 state machine. */
96 #define MAX_KCS_READ_SIZE IPMI_MAX_MSG_LENGTH
97 #define MAX_KCS_WRITE_SIZE IPMI_MAX_MSG_LENGTH
99 /* Timeouts in microseconds. */
100 #define IBF_RETRY_TIMEOUT 1000000
101 #define OBF_RETRY_TIMEOUT 1000000
102 #define MAX_ERROR_RETRIES 10
103 #define ERROR0_OBF_WAIT_JIFFIES (2*HZ)
105 struct si_sm_data
107 enum kcs_states state;
108 struct si_sm_io *io;
109 unsigned char write_data[MAX_KCS_WRITE_SIZE];
110 int write_pos;
111 int write_count;
112 int orig_write_count;
113 unsigned char read_data[MAX_KCS_READ_SIZE];
114 int read_pos;
115 int truncated;
117 unsigned int error_retries;
118 long ibf_timeout;
119 long obf_timeout;
120 unsigned long error0_timeout;
123 static unsigned int init_kcs_data(struct si_sm_data *kcs,
124 struct si_sm_io *io)
126 kcs->state = KCS_IDLE;
127 kcs->io = io;
128 kcs->write_pos = 0;
129 kcs->write_count = 0;
130 kcs->orig_write_count = 0;
131 kcs->read_pos = 0;
132 kcs->error_retries = 0;
133 kcs->truncated = 0;
134 kcs->ibf_timeout = IBF_RETRY_TIMEOUT;
135 kcs->obf_timeout = OBF_RETRY_TIMEOUT;
137 /* Reserve 2 I/O bytes. */
138 return 2;
141 static inline unsigned char read_status(struct si_sm_data *kcs)
143 return kcs->io->inputb(kcs->io, 1);
146 static inline unsigned char read_data(struct si_sm_data *kcs)
148 return kcs->io->inputb(kcs->io, 0);
151 static inline void write_cmd(struct si_sm_data *kcs, unsigned char data)
153 kcs->io->outputb(kcs->io, 1, data);
156 static inline void write_data(struct si_sm_data *kcs, unsigned char data)
158 kcs->io->outputb(kcs->io, 0, data);
161 /* Control codes. */
162 #define KCS_GET_STATUS_ABORT 0x60
163 #define KCS_WRITE_START 0x61
164 #define KCS_WRITE_END 0x62
165 #define KCS_READ_BYTE 0x68
167 /* Status bits. */
168 #define GET_STATUS_STATE(status) (((status) >> 6) & 0x03)
169 #define KCS_IDLE_STATE 0
170 #define KCS_READ_STATE 1
171 #define KCS_WRITE_STATE 2
172 #define KCS_ERROR_STATE 3
173 #define GET_STATUS_ATN(status) ((status) & 0x04)
174 #define GET_STATUS_IBF(status) ((status) & 0x02)
175 #define GET_STATUS_OBF(status) ((status) & 0x01)
178 static inline void write_next_byte(struct si_sm_data *kcs)
180 write_data(kcs, kcs->write_data[kcs->write_pos]);
181 (kcs->write_pos)++;
182 (kcs->write_count)--;
185 static inline void start_error_recovery(struct si_sm_data *kcs, char *reason)
187 (kcs->error_retries)++;
188 if (kcs->error_retries > MAX_ERROR_RETRIES) {
189 if (kcs_debug & KCS_DEBUG_ENABLE)
190 printk(KERN_DEBUG "ipmi_kcs_sm: kcs hosed: %s\n", reason);
191 kcs->state = KCS_HOSED;
192 } else {
193 kcs->error0_timeout = jiffies + ERROR0_OBF_WAIT_JIFFIES;
194 kcs->state = KCS_ERROR0;
198 static inline void read_next_byte(struct si_sm_data *kcs)
200 if (kcs->read_pos >= MAX_KCS_READ_SIZE) {
201 /* Throw the data away and mark it truncated. */
202 read_data(kcs);
203 kcs->truncated = 1;
204 } else {
205 kcs->read_data[kcs->read_pos] = read_data(kcs);
206 (kcs->read_pos)++;
208 write_data(kcs, KCS_READ_BYTE);
211 static inline int check_ibf(struct si_sm_data *kcs, unsigned char status,
212 long time)
214 if (GET_STATUS_IBF(status)) {
215 kcs->ibf_timeout -= time;
216 if (kcs->ibf_timeout < 0) {
217 start_error_recovery(kcs, "IBF not ready in time");
218 kcs->ibf_timeout = IBF_RETRY_TIMEOUT;
219 return 1;
221 return 0;
223 kcs->ibf_timeout = IBF_RETRY_TIMEOUT;
224 return 1;
227 static inline int check_obf(struct si_sm_data *kcs, unsigned char status,
228 long time)
230 if (!GET_STATUS_OBF(status)) {
231 kcs->obf_timeout -= time;
232 if (kcs->obf_timeout < 0) {
233 start_error_recovery(kcs, "OBF not ready in time");
234 return 1;
236 return 0;
238 kcs->obf_timeout = OBF_RETRY_TIMEOUT;
239 return 1;
242 static void clear_obf(struct si_sm_data *kcs, unsigned char status)
244 if (GET_STATUS_OBF(status))
245 read_data(kcs);
248 static void restart_kcs_transaction(struct si_sm_data *kcs)
250 kcs->write_count = kcs->orig_write_count;
251 kcs->write_pos = 0;
252 kcs->read_pos = 0;
253 kcs->state = KCS_WAIT_WRITE_START;
254 kcs->ibf_timeout = IBF_RETRY_TIMEOUT;
255 kcs->obf_timeout = OBF_RETRY_TIMEOUT;
256 write_cmd(kcs, KCS_WRITE_START);
259 static int start_kcs_transaction(struct si_sm_data *kcs, unsigned char *data,
260 unsigned int size)
262 unsigned int i;
264 if (size < 2)
265 return IPMI_REQ_LEN_INVALID_ERR;
266 if (size > MAX_KCS_WRITE_SIZE)
267 return IPMI_REQ_LEN_EXCEEDED_ERR;
269 if ((kcs->state != KCS_IDLE) && (kcs->state != KCS_HOSED))
270 return IPMI_NOT_IN_MY_STATE_ERR;
272 if (kcs_debug & KCS_DEBUG_MSG) {
273 printk(KERN_DEBUG "start_kcs_transaction -");
274 for (i = 0; i < size; i ++) {
275 printk(" %02x", (unsigned char) (data [i]));
277 printk ("\n");
279 kcs->error_retries = 0;
280 memcpy(kcs->write_data, data, size);
281 kcs->write_count = size;
282 kcs->orig_write_count = size;
283 kcs->write_pos = 0;
284 kcs->read_pos = 0;
285 kcs->state = KCS_START_OP;
286 kcs->ibf_timeout = IBF_RETRY_TIMEOUT;
287 kcs->obf_timeout = OBF_RETRY_TIMEOUT;
288 return 0;
291 static int get_kcs_result(struct si_sm_data *kcs, unsigned char *data,
292 unsigned int length)
294 if (length < kcs->read_pos) {
295 kcs->read_pos = length;
296 kcs->truncated = 1;
299 memcpy(data, kcs->read_data, kcs->read_pos);
301 if ((length >= 3) && (kcs->read_pos < 3)) {
302 /* Guarantee that we return at least 3 bytes, with an
303 error in the third byte if it is too short. */
304 data[2] = IPMI_ERR_UNSPECIFIED;
305 kcs->read_pos = 3;
307 if (kcs->truncated) {
308 /* Report a truncated error. We might overwrite
309 another error, but that's too bad, the user needs
310 to know it was truncated. */
311 data[2] = IPMI_ERR_MSG_TRUNCATED;
312 kcs->truncated = 0;
315 return kcs->read_pos;
318 /* This implements the state machine defined in the IPMI manual, see
319 that for details on how this works. Divide that flowchart into
320 sections delimited by "Wait for IBF" and this will become clear. */
321 static enum si_sm_result kcs_event(struct si_sm_data *kcs, long time)
323 unsigned char status;
324 unsigned char state;
326 status = read_status(kcs);
328 if (kcs_debug & KCS_DEBUG_STATES)
329 printk(KERN_DEBUG "KCS: State = %d, %x\n", kcs->state, status);
331 /* All states wait for ibf, so just do it here. */
332 if (!check_ibf(kcs, status, time))
333 return SI_SM_CALL_WITH_DELAY;
335 /* Just about everything looks at the KCS state, so grab that, too. */
336 state = GET_STATUS_STATE(status);
338 switch (kcs->state) {
339 case KCS_IDLE:
340 /* If there's and interrupt source, turn it off. */
341 clear_obf(kcs, status);
343 if (GET_STATUS_ATN(status))
344 return SI_SM_ATTN;
345 else
346 return SI_SM_IDLE;
348 case KCS_START_OP:
349 if (state != KCS_IDLE) {
350 start_error_recovery(kcs,
351 "State machine not idle at start");
352 break;
355 clear_obf(kcs, status);
356 write_cmd(kcs, KCS_WRITE_START);
357 kcs->state = KCS_WAIT_WRITE_START;
358 break;
360 case KCS_WAIT_WRITE_START:
361 if (state != KCS_WRITE_STATE) {
362 start_error_recovery(
363 kcs,
364 "Not in write state at write start");
365 break;
367 read_data(kcs);
368 if (kcs->write_count == 1) {
369 write_cmd(kcs, KCS_WRITE_END);
370 kcs->state = KCS_WAIT_WRITE_END;
371 } else {
372 write_next_byte(kcs);
373 kcs->state = KCS_WAIT_WRITE;
375 break;
377 case KCS_WAIT_WRITE:
378 if (state != KCS_WRITE_STATE) {
379 start_error_recovery(kcs,
380 "Not in write state for write");
381 break;
383 clear_obf(kcs, status);
384 if (kcs->write_count == 1) {
385 write_cmd(kcs, KCS_WRITE_END);
386 kcs->state = KCS_WAIT_WRITE_END;
387 } else {
388 write_next_byte(kcs);
390 break;
392 case KCS_WAIT_WRITE_END:
393 if (state != KCS_WRITE_STATE) {
394 start_error_recovery(kcs,
395 "Not in write state for write end");
396 break;
398 clear_obf(kcs, status);
399 write_next_byte(kcs);
400 kcs->state = KCS_WAIT_READ;
401 break;
403 case KCS_WAIT_READ:
404 if ((state != KCS_READ_STATE) && (state != KCS_IDLE_STATE)) {
405 start_error_recovery(
406 kcs,
407 "Not in read or idle in read state");
408 break;
411 if (state == KCS_READ_STATE) {
412 if (!check_obf(kcs, status, time))
413 return SI_SM_CALL_WITH_DELAY;
414 read_next_byte(kcs);
415 } else {
416 /* We don't implement this exactly like the state
417 machine in the spec. Some broken hardware
418 does not write the final dummy byte to the
419 read register. Thus obf will never go high
420 here. We just go straight to idle, and we
421 handle clearing out obf in idle state if it
422 happens to come in. */
423 clear_obf(kcs, status);
424 kcs->orig_write_count = 0;
425 kcs->state = KCS_IDLE;
426 return SI_SM_TRANSACTION_COMPLETE;
428 break;
430 case KCS_ERROR0:
431 clear_obf(kcs, status);
432 status = read_status(kcs);
433 if (GET_STATUS_OBF(status)) /* controller isn't responding */
434 if (time_before(jiffies, kcs->error0_timeout))
435 return SI_SM_CALL_WITH_TICK_DELAY;
436 write_cmd(kcs, KCS_GET_STATUS_ABORT);
437 kcs->state = KCS_ERROR1;
438 break;
440 case KCS_ERROR1:
441 clear_obf(kcs, status);
442 write_data(kcs, 0);
443 kcs->state = KCS_ERROR2;
444 break;
446 case KCS_ERROR2:
447 if (state != KCS_READ_STATE) {
448 start_error_recovery(kcs,
449 "Not in read state for error2");
450 break;
452 if (!check_obf(kcs, status, time))
453 return SI_SM_CALL_WITH_DELAY;
455 clear_obf(kcs, status);
456 write_data(kcs, KCS_READ_BYTE);
457 kcs->state = KCS_ERROR3;
458 break;
460 case KCS_ERROR3:
461 if (state != KCS_IDLE_STATE) {
462 start_error_recovery(kcs,
463 "Not in idle state for error3");
464 break;
467 if (!check_obf(kcs, status, time))
468 return SI_SM_CALL_WITH_DELAY;
470 clear_obf(kcs, status);
471 if (kcs->orig_write_count) {
472 restart_kcs_transaction(kcs);
473 } else {
474 kcs->state = KCS_IDLE;
475 return SI_SM_TRANSACTION_COMPLETE;
477 break;
479 case KCS_HOSED:
480 break;
483 if (kcs->state == KCS_HOSED) {
484 init_kcs_data(kcs, kcs->io);
485 return SI_SM_HOSED;
488 return SI_SM_CALL_WITHOUT_DELAY;
491 static int kcs_size(void)
493 return sizeof(struct si_sm_data);
496 static int kcs_detect(struct si_sm_data *kcs)
498 /* It's impossible for the KCS status register to be all 1's,
499 (assuming a properly functioning, self-initialized BMC)
500 but that's what you get from reading a bogus address, so we
501 test that first. */
502 if (read_status(kcs) == 0xff)
503 return 1;
505 return 0;
508 static void kcs_cleanup(struct si_sm_data *kcs)
512 struct si_sm_handlers kcs_smi_handlers =
514 .init_data = init_kcs_data,
515 .start_transaction = start_kcs_transaction,
516 .get_result = get_kcs_result,
517 .event = kcs_event,
518 .detect = kcs_detect,
519 .cleanup = kcs_cleanup,
520 .size = kcs_size,