1 /************************************************************************
2 * s2io.c: A Linux PCI-X Ethernet driver for Neterion 10GbE Server NIC
3 * Copyright(c) 2002-2005 Neterion Inc.
5 * This software may be used and distributed according to the terms of
6 * the GNU General Public License (GPL), incorporated herein by reference.
7 * Drivers based on or derived from this code fall under the GPL and must
8 * retain the authorship, copyright and license notice. This file is not
9 * a complete program and may only be used when the entire operating
10 * system is licensed under the GPL.
11 * See the file COPYING in this distribution for more information.
14 * Jeff Garzik : For pointing out the improper error condition
15 * check in the s2io_xmit routine and also some
16 * issues in the Tx watch dog function. Also for
17 * patiently answering all those innumerable
18 * questions regaring the 2.6 porting issues.
19 * Stephen Hemminger : Providing proper 2.6 porting mechanism for some
20 * macros available only in 2.6 Kernel.
21 * Francois Romieu : For pointing out all code part that were
22 * deprecated and also styling related comments.
23 * Grant Grundler : For helping me get rid of some Architecture
25 * Christopher Hellwig : Some more 2.6 specific issues in the driver.
27 * The module loadable parameters that are supported by the driver and a brief
28 * explaination of all the variables.
30 * rx_ring_num : This can be used to program the number of receive rings used
32 * rx_ring_sz: This defines the number of receive blocks each ring can have.
33 * This is also an array of size 8.
34 * rx_ring_mode: This defines the operation mode of all 8 rings. The valid
35 * values are 1, 2 and 3.
36 * tx_fifo_num: This defines the number of Tx FIFOs thats used int the driver.
37 * tx_fifo_len: This too is an array of 8. Each element defines the number of
38 * Tx descriptors that can be associated with each corresponding FIFO.
39 * intr_type: This defines the type of interrupt. The values can be 0(INTA),
40 * 1(MSI), 2(MSI_X). Default value is '0(INTA)'
41 * lro: Specifies whether to enable Large Receive Offload (LRO) or not.
42 * Possible values '1' for enable '0' for disable. Default is '0'
43 * lro_max_pkts: This parameter defines maximum number of packets can be
44 * aggregated as a single large packet
45 * napi: This parameter used to enable/disable NAPI (polling Rx)
46 * Possible values '1' for enable and '0' for disable. Default is '1'
47 * ufo: This parameter used to enable/disable UDP Fragmentation Offload(UFO)
48 * Possible values '1' for enable and '0' for disable. Default is '0'
49 * vlan_tag_strip: This can be used to enable or disable vlan stripping.
50 * Possible values '1' for enable , '0' for disable.
51 * Default is '2' - which means disable in promisc mode
52 * and enable in non-promiscuous mode.
53 ************************************************************************/
55 #include <linux/module.h>
56 #include <linux/types.h>
57 #include <linux/errno.h>
58 #include <linux/ioport.h>
59 #include <linux/pci.h>
60 #include <linux/dma-mapping.h>
61 #include <linux/kernel.h>
62 #include <linux/netdevice.h>
63 #include <linux/etherdevice.h>
64 #include <linux/skbuff.h>
65 #include <linux/init.h>
66 #include <linux/delay.h>
67 #include <linux/stddef.h>
68 #include <linux/ioctl.h>
69 #include <linux/timex.h>
70 #include <linux/ethtool.h>
71 #include <linux/workqueue.h>
72 #include <linux/if_vlan.h>
74 #include <linux/tcp.h>
77 #include <asm/system.h>
78 #include <asm/uaccess.h>
80 #include <asm/div64.h>
85 #include "s2io-regs.h"
87 #define DRV_VERSION "2.0.17.1"
89 /* S2io Driver name & version. */
90 static char s2io_driver_name
[] = "Neterion";
91 static char s2io_driver_version
[] = DRV_VERSION
;
93 static int rxd_size
[4] = {32,48,48,64};
94 static int rxd_count
[4] = {127,85,85,63};
96 static inline int RXD_IS_UP2DT(struct RxD_t
*rxdp
)
100 ret
= ((!(rxdp
->Control_1
& RXD_OWN_XENA
)) &&
101 (GET_RXD_MARKER(rxdp
->Control_2
) != THE_RXD_MARK
));
107 * Cards with following subsystem_id have a link state indication
108 * problem, 600B, 600C, 600D, 640B, 640C and 640D.
109 * macro below identifies these cards given the subsystem_id.
111 #define CARDS_WITH_FAULTY_LINK_INDICATORS(dev_type, subid) \
112 (dev_type == XFRAME_I_DEVICE) ? \
113 ((((subid >= 0x600B) && (subid <= 0x600D)) || \
114 ((subid >= 0x640B) && (subid <= 0x640D))) ? 1 : 0) : 0
116 #define LINK_IS_UP(val64) (!(val64 & (ADAPTER_STATUS_RMAC_REMOTE_FAULT | \
117 ADAPTER_STATUS_RMAC_LOCAL_FAULT)))
118 #define TASKLET_IN_USE test_and_set_bit(0, (&sp->tasklet_status))
121 static inline int rx_buffer_level(struct s2io_nic
* sp
, int rxb_size
, int ring
)
123 struct mac_info
*mac_control
;
125 mac_control
= &sp
->mac_control
;
126 if (rxb_size
<= rxd_count
[sp
->rxd_mode
])
128 else if ((mac_control
->rings
[ring
].pkt_cnt
- rxb_size
) > 16)
133 /* Ethtool related variables and Macros. */
134 static char s2io_gstrings
[][ETH_GSTRING_LEN
] = {
135 "Register test\t(offline)",
136 "Eeprom test\t(offline)",
137 "Link test\t(online)",
138 "RLDRAM test\t(offline)",
139 "BIST Test\t(offline)"
142 static char ethtool_xena_stats_keys
[][ETH_GSTRING_LEN
] = {
144 {"tmac_data_octets"},
148 {"tmac_pause_ctrl_frms"},
152 {"tmac_any_err_frms"},
153 {"tmac_ttl_less_fb_octets"},
154 {"tmac_vld_ip_octets"},
162 {"rmac_data_octets"},
163 {"rmac_fcs_err_frms"},
165 {"rmac_vld_mcst_frms"},
166 {"rmac_vld_bcst_frms"},
167 {"rmac_in_rng_len_err_frms"},
168 {"rmac_out_rng_len_err_frms"},
170 {"rmac_pause_ctrl_frms"},
171 {"rmac_unsup_ctrl_frms"},
173 {"rmac_accepted_ucst_frms"},
174 {"rmac_accepted_nucst_frms"},
175 {"rmac_discarded_frms"},
176 {"rmac_drop_events"},
177 {"rmac_ttl_less_fb_octets"},
179 {"rmac_usized_frms"},
180 {"rmac_osized_frms"},
182 {"rmac_jabber_frms"},
183 {"rmac_ttl_64_frms"},
184 {"rmac_ttl_65_127_frms"},
185 {"rmac_ttl_128_255_frms"},
186 {"rmac_ttl_256_511_frms"},
187 {"rmac_ttl_512_1023_frms"},
188 {"rmac_ttl_1024_1518_frms"},
196 {"rmac_err_drp_udp"},
197 {"rmac_xgmii_err_sym"},
215 {"rmac_xgmii_data_err_cnt"},
216 {"rmac_xgmii_ctrl_err_cnt"},
217 {"rmac_accepted_ip"},
221 {"new_rd_req_rtry_cnt"},
223 {"wr_rtry_rd_ack_cnt"},
226 {"new_wr_req_rtry_cnt"},
229 {"rd_rtry_wr_ack_cnt"},
239 static char ethtool_enhanced_stats_keys
[][ETH_GSTRING_LEN
] = {
240 {"rmac_ttl_1519_4095_frms"},
241 {"rmac_ttl_4096_8191_frms"},
242 {"rmac_ttl_8192_max_frms"},
243 {"rmac_ttl_gt_max_frms"},
244 {"rmac_osized_alt_frms"},
245 {"rmac_jabber_alt_frms"},
246 {"rmac_gt_max_alt_frms"},
248 {"rmac_len_discard"},
249 {"rmac_fcs_discard"},
252 {"rmac_red_discard"},
253 {"rmac_rts_discard"},
254 {"rmac_ingm_full_discard"},
258 static char ethtool_driver_stats_keys
[][ETH_GSTRING_LEN
] = {
259 {"\n DRIVER STATISTICS"},
260 {"single_bit_ecc_errs"},
261 {"double_bit_ecc_errs"},
267 ("alarm_transceiver_temp_high"),
268 ("alarm_transceiver_temp_low"),
269 ("alarm_laser_bias_current_high"),
270 ("alarm_laser_bias_current_low"),
271 ("alarm_laser_output_power_high"),
272 ("alarm_laser_output_power_low"),
273 ("warn_transceiver_temp_high"),
274 ("warn_transceiver_temp_low"),
275 ("warn_laser_bias_current_high"),
276 ("warn_laser_bias_current_low"),
277 ("warn_laser_output_power_high"),
278 ("warn_laser_output_power_low"),
279 ("lro_aggregated_pkts"),
280 ("lro_flush_both_count"),
281 ("lro_out_of_sequence_pkts"),
282 ("lro_flush_due_to_max_pkts"),
283 ("lro_avg_aggr_pkts"),
286 #define S2IO_XENA_STAT_LEN sizeof(ethtool_xena_stats_keys)/ ETH_GSTRING_LEN
287 #define S2IO_ENHANCED_STAT_LEN sizeof(ethtool_enhanced_stats_keys)/ \
289 #define S2IO_DRIVER_STAT_LEN sizeof(ethtool_driver_stats_keys)/ ETH_GSTRING_LEN
291 #define XFRAME_I_STAT_LEN (S2IO_XENA_STAT_LEN + S2IO_DRIVER_STAT_LEN )
292 #define XFRAME_II_STAT_LEN (XFRAME_I_STAT_LEN + S2IO_ENHANCED_STAT_LEN )
294 #define XFRAME_I_STAT_STRINGS_LEN ( XFRAME_I_STAT_LEN * ETH_GSTRING_LEN )
295 #define XFRAME_II_STAT_STRINGS_LEN ( XFRAME_II_STAT_LEN * ETH_GSTRING_LEN )
297 #define S2IO_TEST_LEN sizeof(s2io_gstrings) / ETH_GSTRING_LEN
298 #define S2IO_STRINGS_LEN S2IO_TEST_LEN * ETH_GSTRING_LEN
300 #define S2IO_TIMER_CONF(timer, handle, arg, exp) \
301 init_timer(&timer); \
302 timer.function = handle; \
303 timer.data = (unsigned long) arg; \
304 mod_timer(&timer, (jiffies + exp)) \
307 static void s2io_vlan_rx_register(struct net_device
*dev
,
308 struct vlan_group
*grp
)
310 struct s2io_nic
*nic
= dev
->priv
;
313 spin_lock_irqsave(&nic
->tx_lock
, flags
);
315 spin_unlock_irqrestore(&nic
->tx_lock
, flags
);
318 /* A flag indicating whether 'RX_PA_CFG_STRIP_VLAN_TAG' bit is set or not */
321 /* Unregister the vlan */
322 static void s2io_vlan_rx_kill_vid(struct net_device
*dev
, unsigned long vid
)
324 struct s2io_nic
*nic
= dev
->priv
;
327 spin_lock_irqsave(&nic
->tx_lock
, flags
);
328 vlan_group_set_device(nic
->vlgrp
, vid
, NULL
);
329 spin_unlock_irqrestore(&nic
->tx_lock
, flags
);
333 * Constants to be programmed into the Xena's registers, to configure
338 static const u64 herc_act_dtx_cfg
[] = {
340 0x8000051536750000ULL
, 0x80000515367500E0ULL
,
342 0x8000051536750004ULL
, 0x80000515367500E4ULL
,
344 0x80010515003F0000ULL
, 0x80010515003F00E0ULL
,
346 0x80010515003F0004ULL
, 0x80010515003F00E4ULL
,
348 0x801205150D440000ULL
, 0x801205150D4400E0ULL
,
350 0x801205150D440004ULL
, 0x801205150D4400E4ULL
,
352 0x80020515F2100000ULL
, 0x80020515F21000E0ULL
,
354 0x80020515F2100004ULL
, 0x80020515F21000E4ULL
,
359 static const u64 xena_dtx_cfg
[] = {
361 0x8000051500000000ULL
, 0x80000515000000E0ULL
,
363 0x80000515D9350004ULL
, 0x80000515D93500E4ULL
,
365 0x8001051500000000ULL
, 0x80010515000000E0ULL
,
367 0x80010515001E0004ULL
, 0x80010515001E00E4ULL
,
369 0x8002051500000000ULL
, 0x80020515000000E0ULL
,
371 0x80020515F2100004ULL
, 0x80020515F21000E4ULL
,
376 * Constants for Fixing the MacAddress problem seen mostly on
379 static const u64 fix_mac
[] = {
380 0x0060000000000000ULL
, 0x0060600000000000ULL
,
381 0x0040600000000000ULL
, 0x0000600000000000ULL
,
382 0x0020600000000000ULL
, 0x0060600000000000ULL
,
383 0x0020600000000000ULL
, 0x0060600000000000ULL
,
384 0x0020600000000000ULL
, 0x0060600000000000ULL
,
385 0x0020600000000000ULL
, 0x0060600000000000ULL
,
386 0x0020600000000000ULL
, 0x0060600000000000ULL
,
387 0x0020600000000000ULL
, 0x0060600000000000ULL
,
388 0x0020600000000000ULL
, 0x0060600000000000ULL
,
389 0x0020600000000000ULL
, 0x0060600000000000ULL
,
390 0x0020600000000000ULL
, 0x0060600000000000ULL
,
391 0x0020600000000000ULL
, 0x0060600000000000ULL
,
392 0x0020600000000000ULL
, 0x0000600000000000ULL
,
393 0x0040600000000000ULL
, 0x0060600000000000ULL
,
397 MODULE_AUTHOR("Raghavendra Koushik <raghavendra.koushik@neterion.com>");
398 MODULE_LICENSE("GPL");
399 MODULE_VERSION(DRV_VERSION
);
402 /* Module Loadable parameters. */
403 S2IO_PARM_INT(tx_fifo_num
, 1);
404 S2IO_PARM_INT(rx_ring_num
, 1);
407 S2IO_PARM_INT(rx_ring_mode
, 1);
408 S2IO_PARM_INT(use_continuous_tx_intrs
, 1);
409 S2IO_PARM_INT(rmac_pause_time
, 0x100);
410 S2IO_PARM_INT(mc_pause_threshold_q0q3
, 187);
411 S2IO_PARM_INT(mc_pause_threshold_q4q7
, 187);
412 S2IO_PARM_INT(shared_splits
, 0);
413 S2IO_PARM_INT(tmac_util_period
, 5);
414 S2IO_PARM_INT(rmac_util_period
, 5);
415 S2IO_PARM_INT(bimodal
, 0);
416 S2IO_PARM_INT(l3l4hdr_size
, 128);
417 /* Frequency of Rx desc syncs expressed as power of 2 */
418 S2IO_PARM_INT(rxsync_frequency
, 3);
419 /* Interrupt type. Values can be 0(INTA), 1(MSI), 2(MSI_X) */
420 S2IO_PARM_INT(intr_type
, 0);
421 /* Large receive offload feature */
422 S2IO_PARM_INT(lro
, 0);
423 /* Max pkts to be aggregated by LRO at one time. If not specified,
424 * aggregation happens until we hit max IP pkt size(64K)
426 S2IO_PARM_INT(lro_max_pkts
, 0xFFFF);
427 S2IO_PARM_INT(indicate_max_pkts
, 0);
429 S2IO_PARM_INT(napi
, 1);
430 S2IO_PARM_INT(ufo
, 0);
431 S2IO_PARM_INT(vlan_tag_strip
, NO_STRIP_IN_PROMISC
);
433 static unsigned int tx_fifo_len
[MAX_TX_FIFOS
] =
434 {DEFAULT_FIFO_0_LEN
, [1 ...(MAX_TX_FIFOS
- 1)] = DEFAULT_FIFO_1_7_LEN
};
435 static unsigned int rx_ring_sz
[MAX_RX_RINGS
] =
436 {[0 ...(MAX_RX_RINGS
- 1)] = SMALL_BLK_CNT
};
437 static unsigned int rts_frm_len
[MAX_RX_RINGS
] =
438 {[0 ...(MAX_RX_RINGS
- 1)] = 0 };
440 module_param_array(tx_fifo_len
, uint
, NULL
, 0);
441 module_param_array(rx_ring_sz
, uint
, NULL
, 0);
442 module_param_array(rts_frm_len
, uint
, NULL
, 0);
446 * This table lists all the devices that this driver supports.
448 static struct pci_device_id s2io_tbl
[] __devinitdata
= {
449 {PCI_VENDOR_ID_S2IO
, PCI_DEVICE_ID_S2IO_WIN
,
450 PCI_ANY_ID
, PCI_ANY_ID
},
451 {PCI_VENDOR_ID_S2IO
, PCI_DEVICE_ID_S2IO_UNI
,
452 PCI_ANY_ID
, PCI_ANY_ID
},
453 {PCI_VENDOR_ID_S2IO
, PCI_DEVICE_ID_HERC_WIN
,
454 PCI_ANY_ID
, PCI_ANY_ID
},
455 {PCI_VENDOR_ID_S2IO
, PCI_DEVICE_ID_HERC_UNI
,
456 PCI_ANY_ID
, PCI_ANY_ID
},
460 MODULE_DEVICE_TABLE(pci
, s2io_tbl
);
462 static struct pci_driver s2io_driver
= {
464 .id_table
= s2io_tbl
,
465 .probe
= s2io_init_nic
,
466 .remove
= __devexit_p(s2io_rem_nic
),
469 /* A simplifier macro used both by init and free shared_mem Fns(). */
470 #define TXD_MEM_PAGE_CNT(len, per_each) ((len+per_each - 1) / per_each)
473 * init_shared_mem - Allocation and Initialization of Memory
474 * @nic: Device private variable.
475 * Description: The function allocates all the memory areas shared
476 * between the NIC and the driver. This includes Tx descriptors,
477 * Rx descriptors and the statistics block.
480 static int init_shared_mem(struct s2io_nic
*nic
)
483 void *tmp_v_addr
, *tmp_v_addr_next
;
484 dma_addr_t tmp_p_addr
, tmp_p_addr_next
;
485 struct RxD_block
*pre_rxd_blk
= NULL
;
487 int lst_size
, lst_per_page
;
488 struct net_device
*dev
= nic
->dev
;
492 struct mac_info
*mac_control
;
493 struct config_param
*config
;
495 mac_control
= &nic
->mac_control
;
496 config
= &nic
->config
;
499 /* Allocation and initialization of TXDLs in FIOFs */
501 for (i
= 0; i
< config
->tx_fifo_num
; i
++) {
502 size
+= config
->tx_cfg
[i
].fifo_len
;
504 if (size
> MAX_AVAILABLE_TXDS
) {
505 DBG_PRINT(ERR_DBG
, "s2io: Requested TxDs too high, ");
506 DBG_PRINT(ERR_DBG
, "Requested: %d, max supported: 8192\n", size
);
510 lst_size
= (sizeof(struct TxD
) * config
->max_txds
);
511 lst_per_page
= PAGE_SIZE
/ lst_size
;
513 for (i
= 0; i
< config
->tx_fifo_num
; i
++) {
514 int fifo_len
= config
->tx_cfg
[i
].fifo_len
;
515 int list_holder_size
= fifo_len
* sizeof(struct list_info_hold
);
516 mac_control
->fifos
[i
].list_info
= kmalloc(list_holder_size
,
518 if (!mac_control
->fifos
[i
].list_info
) {
520 "Malloc failed for list_info\n");
523 memset(mac_control
->fifos
[i
].list_info
, 0, list_holder_size
);
525 for (i
= 0; i
< config
->tx_fifo_num
; i
++) {
526 int page_num
= TXD_MEM_PAGE_CNT(config
->tx_cfg
[i
].fifo_len
,
528 mac_control
->fifos
[i
].tx_curr_put_info
.offset
= 0;
529 mac_control
->fifos
[i
].tx_curr_put_info
.fifo_len
=
530 config
->tx_cfg
[i
].fifo_len
- 1;
531 mac_control
->fifos
[i
].tx_curr_get_info
.offset
= 0;
532 mac_control
->fifos
[i
].tx_curr_get_info
.fifo_len
=
533 config
->tx_cfg
[i
].fifo_len
- 1;
534 mac_control
->fifos
[i
].fifo_no
= i
;
535 mac_control
->fifos
[i
].nic
= nic
;
536 mac_control
->fifos
[i
].max_txds
= MAX_SKB_FRAGS
+ 2;
538 for (j
= 0; j
< page_num
; j
++) {
542 tmp_v
= pci_alloc_consistent(nic
->pdev
,
546 "pci_alloc_consistent ");
547 DBG_PRINT(ERR_DBG
, "failed for TxDL\n");
550 /* If we got a zero DMA address(can happen on
551 * certain platforms like PPC), reallocate.
552 * Store virtual address of page we don't want,
556 mac_control
->zerodma_virt_addr
= tmp_v
;
558 "%s: Zero DMA address for TxDL. ", dev
->name
);
560 "Virtual address %p\n", tmp_v
);
561 tmp_v
= pci_alloc_consistent(nic
->pdev
,
565 "pci_alloc_consistent ");
566 DBG_PRINT(ERR_DBG
, "failed for TxDL\n");
570 while (k
< lst_per_page
) {
571 int l
= (j
* lst_per_page
) + k
;
572 if (l
== config
->tx_cfg
[i
].fifo_len
)
574 mac_control
->fifos
[i
].list_info
[l
].list_virt_addr
=
575 tmp_v
+ (k
* lst_size
);
576 mac_control
->fifos
[i
].list_info
[l
].list_phy_addr
=
577 tmp_p
+ (k
* lst_size
);
583 nic
->ufo_in_band_v
= kcalloc(size
, sizeof(u64
), GFP_KERNEL
);
584 if (!nic
->ufo_in_band_v
)
587 /* Allocation and initialization of RXDs in Rings */
589 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
590 if (config
->rx_cfg
[i
].num_rxd
%
591 (rxd_count
[nic
->rxd_mode
] + 1)) {
592 DBG_PRINT(ERR_DBG
, "%s: RxD count of ", dev
->name
);
593 DBG_PRINT(ERR_DBG
, "Ring%d is not a multiple of ",
595 DBG_PRINT(ERR_DBG
, "RxDs per Block");
598 size
+= config
->rx_cfg
[i
].num_rxd
;
599 mac_control
->rings
[i
].block_count
=
600 config
->rx_cfg
[i
].num_rxd
/
601 (rxd_count
[nic
->rxd_mode
] + 1 );
602 mac_control
->rings
[i
].pkt_cnt
= config
->rx_cfg
[i
].num_rxd
-
603 mac_control
->rings
[i
].block_count
;
605 if (nic
->rxd_mode
== RXD_MODE_1
)
606 size
= (size
* (sizeof(struct RxD1
)));
608 size
= (size
* (sizeof(struct RxD3
)));
610 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
611 mac_control
->rings
[i
].rx_curr_get_info
.block_index
= 0;
612 mac_control
->rings
[i
].rx_curr_get_info
.offset
= 0;
613 mac_control
->rings
[i
].rx_curr_get_info
.ring_len
=
614 config
->rx_cfg
[i
].num_rxd
- 1;
615 mac_control
->rings
[i
].rx_curr_put_info
.block_index
= 0;
616 mac_control
->rings
[i
].rx_curr_put_info
.offset
= 0;
617 mac_control
->rings
[i
].rx_curr_put_info
.ring_len
=
618 config
->rx_cfg
[i
].num_rxd
- 1;
619 mac_control
->rings
[i
].nic
= nic
;
620 mac_control
->rings
[i
].ring_no
= i
;
622 blk_cnt
= config
->rx_cfg
[i
].num_rxd
/
623 (rxd_count
[nic
->rxd_mode
] + 1);
624 /* Allocating all the Rx blocks */
625 for (j
= 0; j
< blk_cnt
; j
++) {
626 struct rx_block_info
*rx_blocks
;
629 rx_blocks
= &mac_control
->rings
[i
].rx_blocks
[j
];
630 size
= SIZE_OF_BLOCK
; //size is always page size
631 tmp_v_addr
= pci_alloc_consistent(nic
->pdev
, size
,
633 if (tmp_v_addr
== NULL
) {
635 * In case of failure, free_shared_mem()
636 * is called, which should free any
637 * memory that was alloced till the
640 rx_blocks
->block_virt_addr
= tmp_v_addr
;
643 memset(tmp_v_addr
, 0, size
);
644 rx_blocks
->block_virt_addr
= tmp_v_addr
;
645 rx_blocks
->block_dma_addr
= tmp_p_addr
;
646 rx_blocks
->rxds
= kmalloc(sizeof(struct rxd_info
)*
647 rxd_count
[nic
->rxd_mode
],
649 if (!rx_blocks
->rxds
)
651 for (l
=0; l
<rxd_count
[nic
->rxd_mode
];l
++) {
652 rx_blocks
->rxds
[l
].virt_addr
=
653 rx_blocks
->block_virt_addr
+
654 (rxd_size
[nic
->rxd_mode
] * l
);
655 rx_blocks
->rxds
[l
].dma_addr
=
656 rx_blocks
->block_dma_addr
+
657 (rxd_size
[nic
->rxd_mode
] * l
);
660 /* Interlinking all Rx Blocks */
661 for (j
= 0; j
< blk_cnt
; j
++) {
663 mac_control
->rings
[i
].rx_blocks
[j
].block_virt_addr
;
665 mac_control
->rings
[i
].rx_blocks
[(j
+ 1) %
666 blk_cnt
].block_virt_addr
;
668 mac_control
->rings
[i
].rx_blocks
[j
].block_dma_addr
;
670 mac_control
->rings
[i
].rx_blocks
[(j
+ 1) %
671 blk_cnt
].block_dma_addr
;
673 pre_rxd_blk
= (struct RxD_block
*) tmp_v_addr
;
674 pre_rxd_blk
->reserved_2_pNext_RxD_block
=
675 (unsigned long) tmp_v_addr_next
;
676 pre_rxd_blk
->pNext_RxD_Blk_physical
=
677 (u64
) tmp_p_addr_next
;
680 if (nic
->rxd_mode
>= RXD_MODE_3A
) {
682 * Allocation of Storages for buffer addresses in 2BUFF mode
683 * and the buffers as well.
685 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
686 blk_cnt
= config
->rx_cfg
[i
].num_rxd
/
687 (rxd_count
[nic
->rxd_mode
]+ 1);
688 mac_control
->rings
[i
].ba
=
689 kmalloc((sizeof(struct buffAdd
*) * blk_cnt
),
691 if (!mac_control
->rings
[i
].ba
)
693 for (j
= 0; j
< blk_cnt
; j
++) {
695 mac_control
->rings
[i
].ba
[j
] =
696 kmalloc((sizeof(struct buffAdd
) *
697 (rxd_count
[nic
->rxd_mode
] + 1)),
699 if (!mac_control
->rings
[i
].ba
[j
])
701 while (k
!= rxd_count
[nic
->rxd_mode
]) {
702 ba
= &mac_control
->rings
[i
].ba
[j
][k
];
704 ba
->ba_0_org
= (void *) kmalloc
705 (BUF0_LEN
+ ALIGN_SIZE
, GFP_KERNEL
);
708 tmp
= (unsigned long)ba
->ba_0_org
;
710 tmp
&= ~((unsigned long) ALIGN_SIZE
);
711 ba
->ba_0
= (void *) tmp
;
713 ba
->ba_1_org
= (void *) kmalloc
714 (BUF1_LEN
+ ALIGN_SIZE
, GFP_KERNEL
);
717 tmp
= (unsigned long) ba
->ba_1_org
;
719 tmp
&= ~((unsigned long) ALIGN_SIZE
);
720 ba
->ba_1
= (void *) tmp
;
727 /* Allocation and initialization of Statistics block */
728 size
= sizeof(struct stat_block
);
729 mac_control
->stats_mem
= pci_alloc_consistent
730 (nic
->pdev
, size
, &mac_control
->stats_mem_phy
);
732 if (!mac_control
->stats_mem
) {
734 * In case of failure, free_shared_mem() is called, which
735 * should free any memory that was alloced till the
740 mac_control
->stats_mem_sz
= size
;
742 tmp_v_addr
= mac_control
->stats_mem
;
743 mac_control
->stats_info
= (struct stat_block
*) tmp_v_addr
;
744 memset(tmp_v_addr
, 0, size
);
745 DBG_PRINT(INIT_DBG
, "%s:Ring Mem PHY: 0x%llx\n", dev
->name
,
746 (unsigned long long) tmp_p_addr
);
752 * free_shared_mem - Free the allocated Memory
753 * @nic: Device private variable.
754 * Description: This function is to free all memory locations allocated by
755 * the init_shared_mem() function and return it to the kernel.
758 static void free_shared_mem(struct s2io_nic
*nic
)
760 int i
, j
, blk_cnt
, size
;
762 dma_addr_t tmp_p_addr
;
763 struct mac_info
*mac_control
;
764 struct config_param
*config
;
765 int lst_size
, lst_per_page
;
766 struct net_device
*dev
= nic
->dev
;
771 mac_control
= &nic
->mac_control
;
772 config
= &nic
->config
;
774 lst_size
= (sizeof(struct TxD
) * config
->max_txds
);
775 lst_per_page
= PAGE_SIZE
/ lst_size
;
777 for (i
= 0; i
< config
->tx_fifo_num
; i
++) {
778 int page_num
= TXD_MEM_PAGE_CNT(config
->tx_cfg
[i
].fifo_len
,
780 for (j
= 0; j
< page_num
; j
++) {
781 int mem_blks
= (j
* lst_per_page
);
782 if (!mac_control
->fifos
[i
].list_info
)
784 if (!mac_control
->fifos
[i
].list_info
[mem_blks
].
787 pci_free_consistent(nic
->pdev
, PAGE_SIZE
,
788 mac_control
->fifos
[i
].
791 mac_control
->fifos
[i
].
795 /* If we got a zero DMA address during allocation,
798 if (mac_control
->zerodma_virt_addr
) {
799 pci_free_consistent(nic
->pdev
, PAGE_SIZE
,
800 mac_control
->zerodma_virt_addr
,
803 "%s: Freeing TxDL with zero DMA addr. ",
805 DBG_PRINT(INIT_DBG
, "Virtual address %p\n",
806 mac_control
->zerodma_virt_addr
);
808 kfree(mac_control
->fifos
[i
].list_info
);
811 size
= SIZE_OF_BLOCK
;
812 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
813 blk_cnt
= mac_control
->rings
[i
].block_count
;
814 for (j
= 0; j
< blk_cnt
; j
++) {
815 tmp_v_addr
= mac_control
->rings
[i
].rx_blocks
[j
].
817 tmp_p_addr
= mac_control
->rings
[i
].rx_blocks
[j
].
819 if (tmp_v_addr
== NULL
)
821 pci_free_consistent(nic
->pdev
, size
,
822 tmp_v_addr
, tmp_p_addr
);
823 kfree(mac_control
->rings
[i
].rx_blocks
[j
].rxds
);
827 if (nic
->rxd_mode
>= RXD_MODE_3A
) {
828 /* Freeing buffer storage addresses in 2BUFF mode. */
829 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
830 blk_cnt
= config
->rx_cfg
[i
].num_rxd
/
831 (rxd_count
[nic
->rxd_mode
] + 1);
832 for (j
= 0; j
< blk_cnt
; j
++) {
834 if (!mac_control
->rings
[i
].ba
[j
])
836 while (k
!= rxd_count
[nic
->rxd_mode
]) {
838 &mac_control
->rings
[i
].ba
[j
][k
];
843 kfree(mac_control
->rings
[i
].ba
[j
]);
845 kfree(mac_control
->rings
[i
].ba
);
849 if (mac_control
->stats_mem
) {
850 pci_free_consistent(nic
->pdev
,
851 mac_control
->stats_mem_sz
,
852 mac_control
->stats_mem
,
853 mac_control
->stats_mem_phy
);
855 if (nic
->ufo_in_band_v
)
856 kfree(nic
->ufo_in_band_v
);
860 * s2io_verify_pci_mode -
863 static int s2io_verify_pci_mode(struct s2io_nic
*nic
)
865 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
866 register u64 val64
= 0;
869 val64
= readq(&bar0
->pci_mode
);
870 mode
= (u8
)GET_PCI_MODE(val64
);
872 if ( val64
& PCI_MODE_UNKNOWN_MODE
)
873 return -1; /* Unknown PCI mode */
877 #define NEC_VENID 0x1033
878 #define NEC_DEVID 0x0125
879 static int s2io_on_nec_bridge(struct pci_dev
*s2io_pdev
)
881 struct pci_dev
*tdev
= NULL
;
882 while ((tdev
= pci_get_device(PCI_ANY_ID
, PCI_ANY_ID
, tdev
)) != NULL
) {
883 if (tdev
->vendor
== NEC_VENID
&& tdev
->device
== NEC_DEVID
) {
884 if (tdev
->bus
== s2io_pdev
->bus
->parent
)
892 static int bus_speed
[8] = {33, 133, 133, 200, 266, 133, 200, 266};
894 * s2io_print_pci_mode -
896 static int s2io_print_pci_mode(struct s2io_nic
*nic
)
898 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
899 register u64 val64
= 0;
901 struct config_param
*config
= &nic
->config
;
903 val64
= readq(&bar0
->pci_mode
);
904 mode
= (u8
)GET_PCI_MODE(val64
);
906 if ( val64
& PCI_MODE_UNKNOWN_MODE
)
907 return -1; /* Unknown PCI mode */
909 config
->bus_speed
= bus_speed
[mode
];
911 if (s2io_on_nec_bridge(nic
->pdev
)) {
912 DBG_PRINT(ERR_DBG
, "%s: Device is on PCI-E bus\n",
917 if (val64
& PCI_MODE_32_BITS
) {
918 DBG_PRINT(ERR_DBG
, "%s: Device is on 32 bit ", nic
->dev
->name
);
920 DBG_PRINT(ERR_DBG
, "%s: Device is on 64 bit ", nic
->dev
->name
);
924 case PCI_MODE_PCI_33
:
925 DBG_PRINT(ERR_DBG
, "33MHz PCI bus\n");
927 case PCI_MODE_PCI_66
:
928 DBG_PRINT(ERR_DBG
, "66MHz PCI bus\n");
930 case PCI_MODE_PCIX_M1_66
:
931 DBG_PRINT(ERR_DBG
, "66MHz PCIX(M1) bus\n");
933 case PCI_MODE_PCIX_M1_100
:
934 DBG_PRINT(ERR_DBG
, "100MHz PCIX(M1) bus\n");
936 case PCI_MODE_PCIX_M1_133
:
937 DBG_PRINT(ERR_DBG
, "133MHz PCIX(M1) bus\n");
939 case PCI_MODE_PCIX_M2_66
:
940 DBG_PRINT(ERR_DBG
, "133MHz PCIX(M2) bus\n");
942 case PCI_MODE_PCIX_M2_100
:
943 DBG_PRINT(ERR_DBG
, "200MHz PCIX(M2) bus\n");
945 case PCI_MODE_PCIX_M2_133
:
946 DBG_PRINT(ERR_DBG
, "266MHz PCIX(M2) bus\n");
949 return -1; /* Unsupported bus speed */
956 * init_nic - Initialization of hardware
957 * @nic: device peivate variable
958 * Description: The function sequentially configures every block
959 * of the H/W from their reset values.
960 * Return Value: SUCCESS on success and
961 * '-1' on failure (endian settings incorrect).
964 static int init_nic(struct s2io_nic
*nic
)
966 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
967 struct net_device
*dev
= nic
->dev
;
968 register u64 val64
= 0;
972 struct mac_info
*mac_control
;
973 struct config_param
*config
;
975 unsigned long long mem_share
;
978 mac_control
= &nic
->mac_control
;
979 config
= &nic
->config
;
981 /* to set the swapper controle on the card */
982 if(s2io_set_swapper(nic
)) {
983 DBG_PRINT(ERR_DBG
,"ERROR: Setting Swapper failed\n");
988 * Herc requires EOI to be removed from reset before XGXS, so..
990 if (nic
->device_type
& XFRAME_II_DEVICE
) {
991 val64
= 0xA500000000ULL
;
992 writeq(val64
, &bar0
->sw_reset
);
994 val64
= readq(&bar0
->sw_reset
);
997 /* Remove XGXS from reset state */
999 writeq(val64
, &bar0
->sw_reset
);
1001 val64
= readq(&bar0
->sw_reset
);
1003 /* Enable Receiving broadcasts */
1004 add
= &bar0
->mac_cfg
;
1005 val64
= readq(&bar0
->mac_cfg
);
1006 val64
|= MAC_RMAC_BCAST_ENABLE
;
1007 writeq(RMAC_CFG_KEY(0x4C0D), &bar0
->rmac_cfg_key
);
1008 writel((u32
) val64
, add
);
1009 writeq(RMAC_CFG_KEY(0x4C0D), &bar0
->rmac_cfg_key
);
1010 writel((u32
) (val64
>> 32), (add
+ 4));
1012 /* Read registers in all blocks */
1013 val64
= readq(&bar0
->mac_int_mask
);
1014 val64
= readq(&bar0
->mc_int_mask
);
1015 val64
= readq(&bar0
->xgxs_int_mask
);
1019 writeq(vBIT(val64
, 2, 14), &bar0
->rmac_max_pyld_len
);
1021 if (nic
->device_type
& XFRAME_II_DEVICE
) {
1022 while (herc_act_dtx_cfg
[dtx_cnt
] != END_SIGN
) {
1023 SPECIAL_REG_WRITE(herc_act_dtx_cfg
[dtx_cnt
],
1024 &bar0
->dtx_control
, UF
);
1026 msleep(1); /* Necessary!! */
1030 while (xena_dtx_cfg
[dtx_cnt
] != END_SIGN
) {
1031 SPECIAL_REG_WRITE(xena_dtx_cfg
[dtx_cnt
],
1032 &bar0
->dtx_control
, UF
);
1033 val64
= readq(&bar0
->dtx_control
);
1038 /* Tx DMA Initialization */
1040 writeq(val64
, &bar0
->tx_fifo_partition_0
);
1041 writeq(val64
, &bar0
->tx_fifo_partition_1
);
1042 writeq(val64
, &bar0
->tx_fifo_partition_2
);
1043 writeq(val64
, &bar0
->tx_fifo_partition_3
);
1046 for (i
= 0, j
= 0; i
< config
->tx_fifo_num
; i
++) {
1048 vBIT(config
->tx_cfg
[i
].fifo_len
- 1, ((i
* 32) + 19),
1049 13) | vBIT(config
->tx_cfg
[i
].fifo_priority
,
1052 if (i
== (config
->tx_fifo_num
- 1)) {
1059 writeq(val64
, &bar0
->tx_fifo_partition_0
);
1063 writeq(val64
, &bar0
->tx_fifo_partition_1
);
1067 writeq(val64
, &bar0
->tx_fifo_partition_2
);
1071 writeq(val64
, &bar0
->tx_fifo_partition_3
);
1077 * Disable 4 PCCs for Xena1, 2 and 3 as per H/W bug
1078 * SXE-008 TRANSMIT DMA ARBITRATION ISSUE.
1080 if ((nic
->device_type
== XFRAME_I_DEVICE
) &&
1081 (get_xena_rev_id(nic
->pdev
) < 4))
1082 writeq(PCC_ENABLE_FOUR
, &bar0
->pcc_enable
);
1084 val64
= readq(&bar0
->tx_fifo_partition_0
);
1085 DBG_PRINT(INIT_DBG
, "Fifo partition at: 0x%p is: 0x%llx\n",
1086 &bar0
->tx_fifo_partition_0
, (unsigned long long) val64
);
1089 * Initialization of Tx_PA_CONFIG register to ignore packet
1090 * integrity checking.
1092 val64
= readq(&bar0
->tx_pa_cfg
);
1093 val64
|= TX_PA_CFG_IGNORE_FRM_ERR
| TX_PA_CFG_IGNORE_SNAP_OUI
|
1094 TX_PA_CFG_IGNORE_LLC_CTRL
| TX_PA_CFG_IGNORE_L2_ERR
;
1095 writeq(val64
, &bar0
->tx_pa_cfg
);
1097 /* Rx DMA intialization. */
1099 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
1101 vBIT(config
->rx_cfg
[i
].ring_priority
, (5 + (i
* 8)),
1104 writeq(val64
, &bar0
->rx_queue_priority
);
1107 * Allocating equal share of memory to all the
1111 if (nic
->device_type
& XFRAME_II_DEVICE
)
1116 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
1119 mem_share
= (mem_size
/ config
->rx_ring_num
+
1120 mem_size
% config
->rx_ring_num
);
1121 val64
|= RX_QUEUE_CFG_Q0_SZ(mem_share
);
1124 mem_share
= (mem_size
/ config
->rx_ring_num
);
1125 val64
|= RX_QUEUE_CFG_Q1_SZ(mem_share
);
1128 mem_share
= (mem_size
/ config
->rx_ring_num
);
1129 val64
|= RX_QUEUE_CFG_Q2_SZ(mem_share
);
1132 mem_share
= (mem_size
/ config
->rx_ring_num
);
1133 val64
|= RX_QUEUE_CFG_Q3_SZ(mem_share
);
1136 mem_share
= (mem_size
/ config
->rx_ring_num
);
1137 val64
|= RX_QUEUE_CFG_Q4_SZ(mem_share
);
1140 mem_share
= (mem_size
/ config
->rx_ring_num
);
1141 val64
|= RX_QUEUE_CFG_Q5_SZ(mem_share
);
1144 mem_share
= (mem_size
/ config
->rx_ring_num
);
1145 val64
|= RX_QUEUE_CFG_Q6_SZ(mem_share
);
1148 mem_share
= (mem_size
/ config
->rx_ring_num
);
1149 val64
|= RX_QUEUE_CFG_Q7_SZ(mem_share
);
1153 writeq(val64
, &bar0
->rx_queue_cfg
);
1156 * Filling Tx round robin registers
1157 * as per the number of FIFOs
1159 switch (config
->tx_fifo_num
) {
1161 val64
= 0x0000000000000000ULL
;
1162 writeq(val64
, &bar0
->tx_w_round_robin_0
);
1163 writeq(val64
, &bar0
->tx_w_round_robin_1
);
1164 writeq(val64
, &bar0
->tx_w_round_robin_2
);
1165 writeq(val64
, &bar0
->tx_w_round_robin_3
);
1166 writeq(val64
, &bar0
->tx_w_round_robin_4
);
1169 val64
= 0x0000010000010000ULL
;
1170 writeq(val64
, &bar0
->tx_w_round_robin_0
);
1171 val64
= 0x0100000100000100ULL
;
1172 writeq(val64
, &bar0
->tx_w_round_robin_1
);
1173 val64
= 0x0001000001000001ULL
;
1174 writeq(val64
, &bar0
->tx_w_round_robin_2
);
1175 val64
= 0x0000010000010000ULL
;
1176 writeq(val64
, &bar0
->tx_w_round_robin_3
);
1177 val64
= 0x0100000000000000ULL
;
1178 writeq(val64
, &bar0
->tx_w_round_robin_4
);
1181 val64
= 0x0001000102000001ULL
;
1182 writeq(val64
, &bar0
->tx_w_round_robin_0
);
1183 val64
= 0x0001020000010001ULL
;
1184 writeq(val64
, &bar0
->tx_w_round_robin_1
);
1185 val64
= 0x0200000100010200ULL
;
1186 writeq(val64
, &bar0
->tx_w_round_robin_2
);
1187 val64
= 0x0001000102000001ULL
;
1188 writeq(val64
, &bar0
->tx_w_round_robin_3
);
1189 val64
= 0x0001020000000000ULL
;
1190 writeq(val64
, &bar0
->tx_w_round_robin_4
);
1193 val64
= 0x0001020300010200ULL
;
1194 writeq(val64
, &bar0
->tx_w_round_robin_0
);
1195 val64
= 0x0100000102030001ULL
;
1196 writeq(val64
, &bar0
->tx_w_round_robin_1
);
1197 val64
= 0x0200010000010203ULL
;
1198 writeq(val64
, &bar0
->tx_w_round_robin_2
);
1199 val64
= 0x0001020001000001ULL
;
1200 writeq(val64
, &bar0
->tx_w_round_robin_3
);
1201 val64
= 0x0203000100000000ULL
;
1202 writeq(val64
, &bar0
->tx_w_round_robin_4
);
1205 val64
= 0x0001000203000102ULL
;
1206 writeq(val64
, &bar0
->tx_w_round_robin_0
);
1207 val64
= 0x0001020001030004ULL
;
1208 writeq(val64
, &bar0
->tx_w_round_robin_1
);
1209 val64
= 0x0001000203000102ULL
;
1210 writeq(val64
, &bar0
->tx_w_round_robin_2
);
1211 val64
= 0x0001020001030004ULL
;
1212 writeq(val64
, &bar0
->tx_w_round_robin_3
);
1213 val64
= 0x0001000000000000ULL
;
1214 writeq(val64
, &bar0
->tx_w_round_robin_4
);
1217 val64
= 0x0001020304000102ULL
;
1218 writeq(val64
, &bar0
->tx_w_round_robin_0
);
1219 val64
= 0x0304050001020001ULL
;
1220 writeq(val64
, &bar0
->tx_w_round_robin_1
);
1221 val64
= 0x0203000100000102ULL
;
1222 writeq(val64
, &bar0
->tx_w_round_robin_2
);
1223 val64
= 0x0304000102030405ULL
;
1224 writeq(val64
, &bar0
->tx_w_round_robin_3
);
1225 val64
= 0x0001000200000000ULL
;
1226 writeq(val64
, &bar0
->tx_w_round_robin_4
);
1229 val64
= 0x0001020001020300ULL
;
1230 writeq(val64
, &bar0
->tx_w_round_robin_0
);
1231 val64
= 0x0102030400010203ULL
;
1232 writeq(val64
, &bar0
->tx_w_round_robin_1
);
1233 val64
= 0x0405060001020001ULL
;
1234 writeq(val64
, &bar0
->tx_w_round_robin_2
);
1235 val64
= 0x0304050000010200ULL
;
1236 writeq(val64
, &bar0
->tx_w_round_robin_3
);
1237 val64
= 0x0102030000000000ULL
;
1238 writeq(val64
, &bar0
->tx_w_round_robin_4
);
1241 val64
= 0x0001020300040105ULL
;
1242 writeq(val64
, &bar0
->tx_w_round_robin_0
);
1243 val64
= 0x0200030106000204ULL
;
1244 writeq(val64
, &bar0
->tx_w_round_robin_1
);
1245 val64
= 0x0103000502010007ULL
;
1246 writeq(val64
, &bar0
->tx_w_round_robin_2
);
1247 val64
= 0x0304010002060500ULL
;
1248 writeq(val64
, &bar0
->tx_w_round_robin_3
);
1249 val64
= 0x0103020400000000ULL
;
1250 writeq(val64
, &bar0
->tx_w_round_robin_4
);
1254 /* Enable all configured Tx FIFO partitions */
1255 val64
= readq(&bar0
->tx_fifo_partition_0
);
1256 val64
|= (TX_FIFO_PARTITION_EN
);
1257 writeq(val64
, &bar0
->tx_fifo_partition_0
);
1259 /* Filling the Rx round robin registers as per the
1260 * number of Rings and steering based on QoS.
1262 switch (config
->rx_ring_num
) {
1264 val64
= 0x8080808080808080ULL
;
1265 writeq(val64
, &bar0
->rts_qos_steering
);
1268 val64
= 0x0000010000010000ULL
;
1269 writeq(val64
, &bar0
->rx_w_round_robin_0
);
1270 val64
= 0x0100000100000100ULL
;
1271 writeq(val64
, &bar0
->rx_w_round_robin_1
);
1272 val64
= 0x0001000001000001ULL
;
1273 writeq(val64
, &bar0
->rx_w_round_robin_2
);
1274 val64
= 0x0000010000010000ULL
;
1275 writeq(val64
, &bar0
->rx_w_round_robin_3
);
1276 val64
= 0x0100000000000000ULL
;
1277 writeq(val64
, &bar0
->rx_w_round_robin_4
);
1279 val64
= 0x8080808040404040ULL
;
1280 writeq(val64
, &bar0
->rts_qos_steering
);
1283 val64
= 0x0001000102000001ULL
;
1284 writeq(val64
, &bar0
->rx_w_round_robin_0
);
1285 val64
= 0x0001020000010001ULL
;
1286 writeq(val64
, &bar0
->rx_w_round_robin_1
);
1287 val64
= 0x0200000100010200ULL
;
1288 writeq(val64
, &bar0
->rx_w_round_robin_2
);
1289 val64
= 0x0001000102000001ULL
;
1290 writeq(val64
, &bar0
->rx_w_round_robin_3
);
1291 val64
= 0x0001020000000000ULL
;
1292 writeq(val64
, &bar0
->rx_w_round_robin_4
);
1294 val64
= 0x8080804040402020ULL
;
1295 writeq(val64
, &bar0
->rts_qos_steering
);
1298 val64
= 0x0001020300010200ULL
;
1299 writeq(val64
, &bar0
->rx_w_round_robin_0
);
1300 val64
= 0x0100000102030001ULL
;
1301 writeq(val64
, &bar0
->rx_w_round_robin_1
);
1302 val64
= 0x0200010000010203ULL
;
1303 writeq(val64
, &bar0
->rx_w_round_robin_2
);
1304 val64
= 0x0001020001000001ULL
;
1305 writeq(val64
, &bar0
->rx_w_round_robin_3
);
1306 val64
= 0x0203000100000000ULL
;
1307 writeq(val64
, &bar0
->rx_w_round_robin_4
);
1309 val64
= 0x8080404020201010ULL
;
1310 writeq(val64
, &bar0
->rts_qos_steering
);
1313 val64
= 0x0001000203000102ULL
;
1314 writeq(val64
, &bar0
->rx_w_round_robin_0
);
1315 val64
= 0x0001020001030004ULL
;
1316 writeq(val64
, &bar0
->rx_w_round_robin_1
);
1317 val64
= 0x0001000203000102ULL
;
1318 writeq(val64
, &bar0
->rx_w_round_robin_2
);
1319 val64
= 0x0001020001030004ULL
;
1320 writeq(val64
, &bar0
->rx_w_round_robin_3
);
1321 val64
= 0x0001000000000000ULL
;
1322 writeq(val64
, &bar0
->rx_w_round_robin_4
);
1324 val64
= 0x8080404020201008ULL
;
1325 writeq(val64
, &bar0
->rts_qos_steering
);
1328 val64
= 0x0001020304000102ULL
;
1329 writeq(val64
, &bar0
->rx_w_round_robin_0
);
1330 val64
= 0x0304050001020001ULL
;
1331 writeq(val64
, &bar0
->rx_w_round_robin_1
);
1332 val64
= 0x0203000100000102ULL
;
1333 writeq(val64
, &bar0
->rx_w_round_robin_2
);
1334 val64
= 0x0304000102030405ULL
;
1335 writeq(val64
, &bar0
->rx_w_round_robin_3
);
1336 val64
= 0x0001000200000000ULL
;
1337 writeq(val64
, &bar0
->rx_w_round_robin_4
);
1339 val64
= 0x8080404020100804ULL
;
1340 writeq(val64
, &bar0
->rts_qos_steering
);
1343 val64
= 0x0001020001020300ULL
;
1344 writeq(val64
, &bar0
->rx_w_round_robin_0
);
1345 val64
= 0x0102030400010203ULL
;
1346 writeq(val64
, &bar0
->rx_w_round_robin_1
);
1347 val64
= 0x0405060001020001ULL
;
1348 writeq(val64
, &bar0
->rx_w_round_robin_2
);
1349 val64
= 0x0304050000010200ULL
;
1350 writeq(val64
, &bar0
->rx_w_round_robin_3
);
1351 val64
= 0x0102030000000000ULL
;
1352 writeq(val64
, &bar0
->rx_w_round_robin_4
);
1354 val64
= 0x8080402010080402ULL
;
1355 writeq(val64
, &bar0
->rts_qos_steering
);
1358 val64
= 0x0001020300040105ULL
;
1359 writeq(val64
, &bar0
->rx_w_round_robin_0
);
1360 val64
= 0x0200030106000204ULL
;
1361 writeq(val64
, &bar0
->rx_w_round_robin_1
);
1362 val64
= 0x0103000502010007ULL
;
1363 writeq(val64
, &bar0
->rx_w_round_robin_2
);
1364 val64
= 0x0304010002060500ULL
;
1365 writeq(val64
, &bar0
->rx_w_round_robin_3
);
1366 val64
= 0x0103020400000000ULL
;
1367 writeq(val64
, &bar0
->rx_w_round_robin_4
);
1369 val64
= 0x8040201008040201ULL
;
1370 writeq(val64
, &bar0
->rts_qos_steering
);
1376 for (i
= 0; i
< 8; i
++)
1377 writeq(val64
, &bar0
->rts_frm_len_n
[i
]);
1379 /* Set the default rts frame length for the rings configured */
1380 val64
= MAC_RTS_FRM_LEN_SET(dev
->mtu
+22);
1381 for (i
= 0 ; i
< config
->rx_ring_num
; i
++)
1382 writeq(val64
, &bar0
->rts_frm_len_n
[i
]);
1384 /* Set the frame length for the configured rings
1385 * desired by the user
1387 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
1388 /* If rts_frm_len[i] == 0 then it is assumed that user not
1389 * specified frame length steering.
1390 * If the user provides the frame length then program
1391 * the rts_frm_len register for those values or else
1392 * leave it as it is.
1394 if (rts_frm_len
[i
] != 0) {
1395 writeq(MAC_RTS_FRM_LEN_SET(rts_frm_len
[i
]),
1396 &bar0
->rts_frm_len_n
[i
]);
1400 /* Disable differentiated services steering logic */
1401 for (i
= 0; i
< 64; i
++) {
1402 if (rts_ds_steer(nic
, i
, 0) == FAILURE
) {
1403 DBG_PRINT(ERR_DBG
, "%s: failed rts ds steering",
1405 DBG_PRINT(ERR_DBG
, "set on codepoint %d\n", i
);
1410 /* Program statistics memory */
1411 writeq(mac_control
->stats_mem_phy
, &bar0
->stat_addr
);
1413 if (nic
->device_type
== XFRAME_II_DEVICE
) {
1414 val64
= STAT_BC(0x320);
1415 writeq(val64
, &bar0
->stat_byte_cnt
);
1419 * Initializing the sampling rate for the device to calculate the
1420 * bandwidth utilization.
1422 val64
= MAC_TX_LINK_UTIL_VAL(tmac_util_period
) |
1423 MAC_RX_LINK_UTIL_VAL(rmac_util_period
);
1424 writeq(val64
, &bar0
->mac_link_util
);
1428 * Initializing the Transmit and Receive Traffic Interrupt
1432 * TTI Initialization. Default Tx timer gets us about
1433 * 250 interrupts per sec. Continuous interrupts are enabled
1436 if (nic
->device_type
== XFRAME_II_DEVICE
) {
1437 int count
= (nic
->config
.bus_speed
* 125)/2;
1438 val64
= TTI_DATA1_MEM_TX_TIMER_VAL(count
);
1441 val64
= TTI_DATA1_MEM_TX_TIMER_VAL(0x2078);
1443 val64
|= TTI_DATA1_MEM_TX_URNG_A(0xA) |
1444 TTI_DATA1_MEM_TX_URNG_B(0x10) |
1445 TTI_DATA1_MEM_TX_URNG_C(0x30) | TTI_DATA1_MEM_TX_TIMER_AC_EN
;
1446 if (use_continuous_tx_intrs
)
1447 val64
|= TTI_DATA1_MEM_TX_TIMER_CI_EN
;
1448 writeq(val64
, &bar0
->tti_data1_mem
);
1450 val64
= TTI_DATA2_MEM_TX_UFC_A(0x10) |
1451 TTI_DATA2_MEM_TX_UFC_B(0x20) |
1452 TTI_DATA2_MEM_TX_UFC_C(0x40) | TTI_DATA2_MEM_TX_UFC_D(0x80);
1453 writeq(val64
, &bar0
->tti_data2_mem
);
1455 val64
= TTI_CMD_MEM_WE
| TTI_CMD_MEM_STROBE_NEW_CMD
;
1456 writeq(val64
, &bar0
->tti_command_mem
);
1459 * Once the operation completes, the Strobe bit of the command
1460 * register will be reset. We poll for this particular condition
1461 * We wait for a maximum of 500ms for the operation to complete,
1462 * if it's not complete by then we return error.
1466 val64
= readq(&bar0
->tti_command_mem
);
1467 if (!(val64
& TTI_CMD_MEM_STROBE_NEW_CMD
)) {
1471 DBG_PRINT(ERR_DBG
, "%s: TTI init Failed\n",
1479 if (nic
->config
.bimodal
) {
1481 for (k
= 0; k
< config
->rx_ring_num
; k
++) {
1482 val64
= TTI_CMD_MEM_WE
| TTI_CMD_MEM_STROBE_NEW_CMD
;
1483 val64
|= TTI_CMD_MEM_OFFSET(0x38+k
);
1484 writeq(val64
, &bar0
->tti_command_mem
);
1487 * Once the operation completes, the Strobe bit of the command
1488 * register will be reset. We poll for this particular condition
1489 * We wait for a maximum of 500ms for the operation to complete,
1490 * if it's not complete by then we return error.
1494 val64
= readq(&bar0
->tti_command_mem
);
1495 if (!(val64
& TTI_CMD_MEM_STROBE_NEW_CMD
)) {
1500 "%s: TTI init Failed\n",
1510 /* RTI Initialization */
1511 if (nic
->device_type
== XFRAME_II_DEVICE
) {
1513 * Programmed to generate Apprx 500 Intrs per
1516 int count
= (nic
->config
.bus_speed
* 125)/4;
1517 val64
= RTI_DATA1_MEM_RX_TIMER_VAL(count
);
1519 val64
= RTI_DATA1_MEM_RX_TIMER_VAL(0xFFF);
1521 val64
|= RTI_DATA1_MEM_RX_URNG_A(0xA) |
1522 RTI_DATA1_MEM_RX_URNG_B(0x10) |
1523 RTI_DATA1_MEM_RX_URNG_C(0x30) | RTI_DATA1_MEM_RX_TIMER_AC_EN
;
1525 writeq(val64
, &bar0
->rti_data1_mem
);
1527 val64
= RTI_DATA2_MEM_RX_UFC_A(0x1) |
1528 RTI_DATA2_MEM_RX_UFC_B(0x2) ;
1529 if (nic
->intr_type
== MSI_X
)
1530 val64
|= (RTI_DATA2_MEM_RX_UFC_C(0x20) | \
1531 RTI_DATA2_MEM_RX_UFC_D(0x40));
1533 val64
|= (RTI_DATA2_MEM_RX_UFC_C(0x40) | \
1534 RTI_DATA2_MEM_RX_UFC_D(0x80));
1535 writeq(val64
, &bar0
->rti_data2_mem
);
1537 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
1538 val64
= RTI_CMD_MEM_WE
| RTI_CMD_MEM_STROBE_NEW_CMD
1539 | RTI_CMD_MEM_OFFSET(i
);
1540 writeq(val64
, &bar0
->rti_command_mem
);
1543 * Once the operation completes, the Strobe bit of the
1544 * command register will be reset. We poll for this
1545 * particular condition. We wait for a maximum of 500ms
1546 * for the operation to complete, if it's not complete
1547 * by then we return error.
1551 val64
= readq(&bar0
->rti_command_mem
);
1552 if (!(val64
& RTI_CMD_MEM_STROBE_NEW_CMD
)) {
1556 DBG_PRINT(ERR_DBG
, "%s: RTI init Failed\n",
1567 * Initializing proper values as Pause threshold into all
1568 * the 8 Queues on Rx side.
1570 writeq(0xffbbffbbffbbffbbULL
, &bar0
->mc_pause_thresh_q0q3
);
1571 writeq(0xffbbffbbffbbffbbULL
, &bar0
->mc_pause_thresh_q4q7
);
1573 /* Disable RMAC PAD STRIPPING */
1574 add
= &bar0
->mac_cfg
;
1575 val64
= readq(&bar0
->mac_cfg
);
1576 val64
&= ~(MAC_CFG_RMAC_STRIP_PAD
);
1577 writeq(RMAC_CFG_KEY(0x4C0D), &bar0
->rmac_cfg_key
);
1578 writel((u32
) (val64
), add
);
1579 writeq(RMAC_CFG_KEY(0x4C0D), &bar0
->rmac_cfg_key
);
1580 writel((u32
) (val64
>> 32), (add
+ 4));
1581 val64
= readq(&bar0
->mac_cfg
);
1583 /* Enable FCS stripping by adapter */
1584 add
= &bar0
->mac_cfg
;
1585 val64
= readq(&bar0
->mac_cfg
);
1586 val64
|= MAC_CFG_RMAC_STRIP_FCS
;
1587 if (nic
->device_type
== XFRAME_II_DEVICE
)
1588 writeq(val64
, &bar0
->mac_cfg
);
1590 writeq(RMAC_CFG_KEY(0x4C0D), &bar0
->rmac_cfg_key
);
1591 writel((u32
) (val64
), add
);
1592 writeq(RMAC_CFG_KEY(0x4C0D), &bar0
->rmac_cfg_key
);
1593 writel((u32
) (val64
>> 32), (add
+ 4));
1597 * Set the time value to be inserted in the pause frame
1598 * generated by xena.
1600 val64
= readq(&bar0
->rmac_pause_cfg
);
1601 val64
&= ~(RMAC_PAUSE_HG_PTIME(0xffff));
1602 val64
|= RMAC_PAUSE_HG_PTIME(nic
->mac_control
.rmac_pause_time
);
1603 writeq(val64
, &bar0
->rmac_pause_cfg
);
1606 * Set the Threshold Limit for Generating the pause frame
1607 * If the amount of data in any Queue exceeds ratio of
1608 * (mac_control.mc_pause_threshold_q0q3 or q4q7)/256
1609 * pause frame is generated
1612 for (i
= 0; i
< 4; i
++) {
1614 (((u64
) 0xFF00 | nic
->mac_control
.
1615 mc_pause_threshold_q0q3
)
1618 writeq(val64
, &bar0
->mc_pause_thresh_q0q3
);
1621 for (i
= 0; i
< 4; i
++) {
1623 (((u64
) 0xFF00 | nic
->mac_control
.
1624 mc_pause_threshold_q4q7
)
1627 writeq(val64
, &bar0
->mc_pause_thresh_q4q7
);
1630 * TxDMA will stop Read request if the number of read split has
1631 * exceeded the limit pointed by shared_splits
1633 val64
= readq(&bar0
->pic_control
);
1634 val64
|= PIC_CNTL_SHARED_SPLITS(shared_splits
);
1635 writeq(val64
, &bar0
->pic_control
);
1637 if (nic
->config
.bus_speed
== 266) {
1638 writeq(TXREQTO_VAL(0x7f) | TXREQTO_EN
, &bar0
->txreqtimeout
);
1639 writeq(0x0, &bar0
->read_retry_delay
);
1640 writeq(0x0, &bar0
->write_retry_delay
);
1644 * Programming the Herc to split every write transaction
1645 * that does not start on an ADB to reduce disconnects.
1647 if (nic
->device_type
== XFRAME_II_DEVICE
) {
1648 val64
= FAULT_BEHAVIOUR
| EXT_REQ_EN
|
1649 MISC_LINK_STABILITY_PRD(3);
1650 writeq(val64
, &bar0
->misc_control
);
1651 val64
= readq(&bar0
->pic_control2
);
1652 val64
&= ~(BIT(13)|BIT(14)|BIT(15));
1653 writeq(val64
, &bar0
->pic_control2
);
1655 if (strstr(nic
->product_name
, "CX4")) {
1656 val64
= TMAC_AVG_IPG(0x17);
1657 writeq(val64
, &bar0
->tmac_avg_ipg
);
1662 #define LINK_UP_DOWN_INTERRUPT 1
1663 #define MAC_RMAC_ERR_TIMER 2
1665 static int s2io_link_fault_indication(struct s2io_nic
*nic
)
1667 if (nic
->intr_type
!= INTA
)
1668 return MAC_RMAC_ERR_TIMER
;
1669 if (nic
->device_type
== XFRAME_II_DEVICE
)
1670 return LINK_UP_DOWN_INTERRUPT
;
1672 return MAC_RMAC_ERR_TIMER
;
1676 * en_dis_able_nic_intrs - Enable or Disable the interrupts
1677 * @nic: device private variable,
1678 * @mask: A mask indicating which Intr block must be modified and,
1679 * @flag: A flag indicating whether to enable or disable the Intrs.
1680 * Description: This function will either disable or enable the interrupts
1681 * depending on the flag argument. The mask argument can be used to
1682 * enable/disable any Intr block.
1683 * Return Value: NONE.
1686 static void en_dis_able_nic_intrs(struct s2io_nic
*nic
, u16 mask
, int flag
)
1688 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
1689 register u64 val64
= 0, temp64
= 0;
1691 /* Top level interrupt classification */
1692 /* PIC Interrupts */
1693 if ((mask
& (TX_PIC_INTR
| RX_PIC_INTR
))) {
1694 /* Enable PIC Intrs in the general intr mask register */
1695 val64
= TXPIC_INT_M
;
1696 if (flag
== ENABLE_INTRS
) {
1697 temp64
= readq(&bar0
->general_int_mask
);
1698 temp64
&= ~((u64
) val64
);
1699 writeq(temp64
, &bar0
->general_int_mask
);
1701 * If Hercules adapter enable GPIO otherwise
1702 * disable all PCIX, Flash, MDIO, IIC and GPIO
1703 * interrupts for now.
1706 if (s2io_link_fault_indication(nic
) ==
1707 LINK_UP_DOWN_INTERRUPT
) {
1708 temp64
= readq(&bar0
->pic_int_mask
);
1709 temp64
&= ~((u64
) PIC_INT_GPIO
);
1710 writeq(temp64
, &bar0
->pic_int_mask
);
1711 temp64
= readq(&bar0
->gpio_int_mask
);
1712 temp64
&= ~((u64
) GPIO_INT_MASK_LINK_UP
);
1713 writeq(temp64
, &bar0
->gpio_int_mask
);
1715 writeq(DISABLE_ALL_INTRS
, &bar0
->pic_int_mask
);
1718 * No MSI Support is available presently, so TTI and
1719 * RTI interrupts are also disabled.
1721 } else if (flag
== DISABLE_INTRS
) {
1723 * Disable PIC Intrs in the general
1724 * intr mask register
1726 writeq(DISABLE_ALL_INTRS
, &bar0
->pic_int_mask
);
1727 temp64
= readq(&bar0
->general_int_mask
);
1729 writeq(val64
, &bar0
->general_int_mask
);
1733 /* MAC Interrupts */
1734 /* Enabling/Disabling MAC interrupts */
1735 if (mask
& (TX_MAC_INTR
| RX_MAC_INTR
)) {
1736 val64
= TXMAC_INT_M
| RXMAC_INT_M
;
1737 if (flag
== ENABLE_INTRS
) {
1738 temp64
= readq(&bar0
->general_int_mask
);
1739 temp64
&= ~((u64
) val64
);
1740 writeq(temp64
, &bar0
->general_int_mask
);
1742 * All MAC block error interrupts are disabled for now
1745 } else if (flag
== DISABLE_INTRS
) {
1747 * Disable MAC Intrs in the general intr mask register
1749 writeq(DISABLE_ALL_INTRS
, &bar0
->mac_int_mask
);
1750 writeq(DISABLE_ALL_INTRS
,
1751 &bar0
->mac_rmac_err_mask
);
1753 temp64
= readq(&bar0
->general_int_mask
);
1755 writeq(val64
, &bar0
->general_int_mask
);
1759 /* Tx traffic interrupts */
1760 if (mask
& TX_TRAFFIC_INTR
) {
1761 val64
= TXTRAFFIC_INT_M
;
1762 if (flag
== ENABLE_INTRS
) {
1763 temp64
= readq(&bar0
->general_int_mask
);
1764 temp64
&= ~((u64
) val64
);
1765 writeq(temp64
, &bar0
->general_int_mask
);
1767 * Enable all the Tx side interrupts
1768 * writing 0 Enables all 64 TX interrupt levels
1770 writeq(0x0, &bar0
->tx_traffic_mask
);
1771 } else if (flag
== DISABLE_INTRS
) {
1773 * Disable Tx Traffic Intrs in the general intr mask
1776 writeq(DISABLE_ALL_INTRS
, &bar0
->tx_traffic_mask
);
1777 temp64
= readq(&bar0
->general_int_mask
);
1779 writeq(val64
, &bar0
->general_int_mask
);
1783 /* Rx traffic interrupts */
1784 if (mask
& RX_TRAFFIC_INTR
) {
1785 val64
= RXTRAFFIC_INT_M
;
1786 if (flag
== ENABLE_INTRS
) {
1787 temp64
= readq(&bar0
->general_int_mask
);
1788 temp64
&= ~((u64
) val64
);
1789 writeq(temp64
, &bar0
->general_int_mask
);
1790 /* writing 0 Enables all 8 RX interrupt levels */
1791 writeq(0x0, &bar0
->rx_traffic_mask
);
1792 } else if (flag
== DISABLE_INTRS
) {
1794 * Disable Rx Traffic Intrs in the general intr mask
1797 writeq(DISABLE_ALL_INTRS
, &bar0
->rx_traffic_mask
);
1798 temp64
= readq(&bar0
->general_int_mask
);
1800 writeq(val64
, &bar0
->general_int_mask
);
1806 * verify_pcc_quiescent- Checks for PCC quiescent state
1807 * Return: 1 If PCC is quiescence
1808 * 0 If PCC is not quiescence
1810 static int verify_pcc_quiescent(struct s2io_nic
*sp
, int flag
)
1813 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
1814 u64 val64
= readq(&bar0
->adapter_status
);
1816 herc
= (sp
->device_type
== XFRAME_II_DEVICE
);
1818 if (flag
== FALSE
) {
1819 if ((!herc
&& (get_xena_rev_id(sp
->pdev
) >= 4)) || herc
) {
1820 if (!(val64
& ADAPTER_STATUS_RMAC_PCC_IDLE
))
1823 if (!(val64
& ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE
))
1827 if ((!herc
&& (get_xena_rev_id(sp
->pdev
) >= 4)) || herc
) {
1828 if (((val64
& ADAPTER_STATUS_RMAC_PCC_IDLE
) ==
1829 ADAPTER_STATUS_RMAC_PCC_IDLE
))
1832 if (((val64
& ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE
) ==
1833 ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE
))
1841 * verify_xena_quiescence - Checks whether the H/W is ready
1842 * Description: Returns whether the H/W is ready to go or not. Depending
1843 * on whether adapter enable bit was written or not the comparison
1844 * differs and the calling function passes the input argument flag to
1846 * Return: 1 If xena is quiescence
1847 * 0 If Xena is not quiescence
1850 static int verify_xena_quiescence(struct s2io_nic
*sp
)
1853 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
1854 u64 val64
= readq(&bar0
->adapter_status
);
1855 mode
= s2io_verify_pci_mode(sp
);
1857 if (!(val64
& ADAPTER_STATUS_TDMA_READY
)) {
1858 DBG_PRINT(ERR_DBG
, "%s", "TDMA is not ready!");
1861 if (!(val64
& ADAPTER_STATUS_RDMA_READY
)) {
1862 DBG_PRINT(ERR_DBG
, "%s", "RDMA is not ready!");
1865 if (!(val64
& ADAPTER_STATUS_PFC_READY
)) {
1866 DBG_PRINT(ERR_DBG
, "%s", "PFC is not ready!");
1869 if (!(val64
& ADAPTER_STATUS_TMAC_BUF_EMPTY
)) {
1870 DBG_PRINT(ERR_DBG
, "%s", "TMAC BUF is not empty!");
1873 if (!(val64
& ADAPTER_STATUS_PIC_QUIESCENT
)) {
1874 DBG_PRINT(ERR_DBG
, "%s", "PIC is not QUIESCENT!");
1877 if (!(val64
& ADAPTER_STATUS_MC_DRAM_READY
)) {
1878 DBG_PRINT(ERR_DBG
, "%s", "MC_DRAM is not ready!");
1881 if (!(val64
& ADAPTER_STATUS_MC_QUEUES_READY
)) {
1882 DBG_PRINT(ERR_DBG
, "%s", "MC_QUEUES is not ready!");
1885 if (!(val64
& ADAPTER_STATUS_M_PLL_LOCK
)) {
1886 DBG_PRINT(ERR_DBG
, "%s", "M_PLL is not locked!");
1891 * In PCI 33 mode, the P_PLL is not used, and therefore,
1892 * the the P_PLL_LOCK bit in the adapter_status register will
1895 if (!(val64
& ADAPTER_STATUS_P_PLL_LOCK
) &&
1896 sp
->device_type
== XFRAME_II_DEVICE
&& mode
!=
1898 DBG_PRINT(ERR_DBG
, "%s", "P_PLL is not locked!");
1901 if (!((val64
& ADAPTER_STATUS_RC_PRC_QUIESCENT
) ==
1902 ADAPTER_STATUS_RC_PRC_QUIESCENT
)) {
1903 DBG_PRINT(ERR_DBG
, "%s", "RC_PRC is not QUIESCENT!");
1910 * fix_mac_address - Fix for Mac addr problem on Alpha platforms
1911 * @sp: Pointer to device specifc structure
1913 * New procedure to clear mac address reading problems on Alpha platforms
1917 static void fix_mac_address(struct s2io_nic
* sp
)
1919 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
1923 while (fix_mac
[i
] != END_SIGN
) {
1924 writeq(fix_mac
[i
++], &bar0
->gpio_control
);
1926 val64
= readq(&bar0
->gpio_control
);
1931 * start_nic - Turns the device on
1932 * @nic : device private variable.
1934 * This function actually turns the device on. Before this function is
1935 * called,all Registers are configured from their reset states
1936 * and shared memory is allocated but the NIC is still quiescent. On
1937 * calling this function, the device interrupts are cleared and the NIC is
1938 * literally switched on by writing into the adapter control register.
1940 * SUCCESS on success and -1 on failure.
1943 static int start_nic(struct s2io_nic
*nic
)
1945 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
1946 struct net_device
*dev
= nic
->dev
;
1947 register u64 val64
= 0;
1949 struct mac_info
*mac_control
;
1950 struct config_param
*config
;
1952 mac_control
= &nic
->mac_control
;
1953 config
= &nic
->config
;
1955 /* PRC Initialization and configuration */
1956 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
1957 writeq((u64
) mac_control
->rings
[i
].rx_blocks
[0].block_dma_addr
,
1958 &bar0
->prc_rxd0_n
[i
]);
1960 val64
= readq(&bar0
->prc_ctrl_n
[i
]);
1961 if (nic
->config
.bimodal
)
1962 val64
|= PRC_CTRL_BIMODAL_INTERRUPT
;
1963 if (nic
->rxd_mode
== RXD_MODE_1
)
1964 val64
|= PRC_CTRL_RC_ENABLED
;
1966 val64
|= PRC_CTRL_RC_ENABLED
| PRC_CTRL_RING_MODE_3
;
1967 if (nic
->device_type
== XFRAME_II_DEVICE
)
1968 val64
|= PRC_CTRL_GROUP_READS
;
1969 val64
&= ~PRC_CTRL_RXD_BACKOFF_INTERVAL(0xFFFFFF);
1970 val64
|= PRC_CTRL_RXD_BACKOFF_INTERVAL(0x1000);
1971 writeq(val64
, &bar0
->prc_ctrl_n
[i
]);
1974 if (nic
->rxd_mode
== RXD_MODE_3B
) {
1975 /* Enabling 2 buffer mode by writing into Rx_pa_cfg reg. */
1976 val64
= readq(&bar0
->rx_pa_cfg
);
1977 val64
|= RX_PA_CFG_IGNORE_L2_ERR
;
1978 writeq(val64
, &bar0
->rx_pa_cfg
);
1981 if (vlan_tag_strip
== 0) {
1982 val64
= readq(&bar0
->rx_pa_cfg
);
1983 val64
&= ~RX_PA_CFG_STRIP_VLAN_TAG
;
1984 writeq(val64
, &bar0
->rx_pa_cfg
);
1985 vlan_strip_flag
= 0;
1989 * Enabling MC-RLDRAM. After enabling the device, we timeout
1990 * for around 100ms, which is approximately the time required
1991 * for the device to be ready for operation.
1993 val64
= readq(&bar0
->mc_rldram_mrs
);
1994 val64
|= MC_RLDRAM_QUEUE_SIZE_ENABLE
| MC_RLDRAM_MRS_ENABLE
;
1995 SPECIAL_REG_WRITE(val64
, &bar0
->mc_rldram_mrs
, UF
);
1996 val64
= readq(&bar0
->mc_rldram_mrs
);
1998 msleep(100); /* Delay by around 100 ms. */
2000 /* Enabling ECC Protection. */
2001 val64
= readq(&bar0
->adapter_control
);
2002 val64
&= ~ADAPTER_ECC_EN
;
2003 writeq(val64
, &bar0
->adapter_control
);
2006 * Clearing any possible Link state change interrupts that
2007 * could have popped up just before Enabling the card.
2009 val64
= readq(&bar0
->mac_rmac_err_reg
);
2011 writeq(val64
, &bar0
->mac_rmac_err_reg
);
2014 * Verify if the device is ready to be enabled, if so enable
2017 val64
= readq(&bar0
->adapter_status
);
2018 if (!verify_xena_quiescence(nic
)) {
2019 DBG_PRINT(ERR_DBG
, "%s: device is not ready, ", dev
->name
);
2020 DBG_PRINT(ERR_DBG
, "Adapter status reads: 0x%llx\n",
2021 (unsigned long long) val64
);
2026 * With some switches, link might be already up at this point.
2027 * Because of this weird behavior, when we enable laser,
2028 * we may not get link. We need to handle this. We cannot
2029 * figure out which switch is misbehaving. So we are forced to
2030 * make a global change.
2033 /* Enabling Laser. */
2034 val64
= readq(&bar0
->adapter_control
);
2035 val64
|= ADAPTER_EOI_TX_ON
;
2036 writeq(val64
, &bar0
->adapter_control
);
2038 if (s2io_link_fault_indication(nic
) == MAC_RMAC_ERR_TIMER
) {
2040 * Dont see link state interrupts initally on some switches,
2041 * so directly scheduling the link state task here.
2043 schedule_work(&nic
->set_link_task
);
2045 /* SXE-002: Initialize link and activity LED */
2046 subid
= nic
->pdev
->subsystem_device
;
2047 if (((subid
& 0xFF) >= 0x07) &&
2048 (nic
->device_type
== XFRAME_I_DEVICE
)) {
2049 val64
= readq(&bar0
->gpio_control
);
2050 val64
|= 0x0000800000000000ULL
;
2051 writeq(val64
, &bar0
->gpio_control
);
2052 val64
= 0x0411040400000000ULL
;
2053 writeq(val64
, (void __iomem
*)bar0
+ 0x2700);
2059 * s2io_txdl_getskb - Get the skb from txdl, unmap and return skb
2061 static struct sk_buff
*s2io_txdl_getskb(struct fifo_info
*fifo_data
, struct \
2062 TxD
*txdlp
, int get_off
)
2064 struct s2io_nic
*nic
= fifo_data
->nic
;
2065 struct sk_buff
*skb
;
2070 if (txds
->Host_Control
== (u64
)(long)nic
->ufo_in_band_v
) {
2071 pci_unmap_single(nic
->pdev
, (dma_addr_t
)
2072 txds
->Buffer_Pointer
, sizeof(u64
),
2077 skb
= (struct sk_buff
*) ((unsigned long)
2078 txds
->Host_Control
);
2080 memset(txdlp
, 0, (sizeof(struct TxD
) * fifo_data
->max_txds
));
2083 pci_unmap_single(nic
->pdev
, (dma_addr_t
)
2084 txds
->Buffer_Pointer
,
2085 skb
->len
- skb
->data_len
,
2087 frg_cnt
= skb_shinfo(skb
)->nr_frags
;
2090 for (j
= 0; j
< frg_cnt
; j
++, txds
++) {
2091 skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[j
];
2092 if (!txds
->Buffer_Pointer
)
2094 pci_unmap_page(nic
->pdev
, (dma_addr_t
)
2095 txds
->Buffer_Pointer
,
2096 frag
->size
, PCI_DMA_TODEVICE
);
2099 memset(txdlp
,0, (sizeof(struct TxD
) * fifo_data
->max_txds
));
2104 * free_tx_buffers - Free all queued Tx buffers
2105 * @nic : device private variable.
2107 * Free all queued Tx buffers.
2108 * Return Value: void
2111 static void free_tx_buffers(struct s2io_nic
*nic
)
2113 struct net_device
*dev
= nic
->dev
;
2114 struct sk_buff
*skb
;
2117 struct mac_info
*mac_control
;
2118 struct config_param
*config
;
2121 mac_control
= &nic
->mac_control
;
2122 config
= &nic
->config
;
2124 for (i
= 0; i
< config
->tx_fifo_num
; i
++) {
2125 for (j
= 0; j
< config
->tx_cfg
[i
].fifo_len
- 1; j
++) {
2126 txdp
= (struct TxD
*) mac_control
->fifos
[i
].list_info
[j
].
2128 skb
= s2io_txdl_getskb(&mac_control
->fifos
[i
], txdp
, j
);
2135 "%s:forcibly freeing %d skbs on FIFO%d\n",
2137 mac_control
->fifos
[i
].tx_curr_get_info
.offset
= 0;
2138 mac_control
->fifos
[i
].tx_curr_put_info
.offset
= 0;
2143 * stop_nic - To stop the nic
2144 * @nic ; device private variable.
2146 * This function does exactly the opposite of what the start_nic()
2147 * function does. This function is called to stop the device.
2152 static void stop_nic(struct s2io_nic
*nic
)
2154 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
2155 register u64 val64
= 0;
2157 struct mac_info
*mac_control
;
2158 struct config_param
*config
;
2160 mac_control
= &nic
->mac_control
;
2161 config
= &nic
->config
;
2163 /* Disable all interrupts */
2164 interruptible
= TX_TRAFFIC_INTR
| RX_TRAFFIC_INTR
;
2165 interruptible
|= TX_PIC_INTR
| RX_PIC_INTR
;
2166 interruptible
|= TX_MAC_INTR
| RX_MAC_INTR
;
2167 en_dis_able_nic_intrs(nic
, interruptible
, DISABLE_INTRS
);
2169 /* Clearing Adapter_En bit of ADAPTER_CONTROL Register */
2170 val64
= readq(&bar0
->adapter_control
);
2171 val64
&= ~(ADAPTER_CNTL_EN
);
2172 writeq(val64
, &bar0
->adapter_control
);
2175 static int fill_rxd_3buf(struct s2io_nic
*nic
, struct RxD_t
*rxdp
, struct \
2178 struct net_device
*dev
= nic
->dev
;
2179 struct sk_buff
*frag_list
;
2182 /* Buffer-1 receives L3/L4 headers */
2183 ((struct RxD3
*)rxdp
)->Buffer1_ptr
= pci_map_single
2184 (nic
->pdev
, skb
->data
, l3l4hdr_size
+ 4,
2185 PCI_DMA_FROMDEVICE
);
2187 /* skb_shinfo(skb)->frag_list will have L4 data payload */
2188 skb_shinfo(skb
)->frag_list
= dev_alloc_skb(dev
->mtu
+ ALIGN_SIZE
);
2189 if (skb_shinfo(skb
)->frag_list
== NULL
) {
2190 DBG_PRINT(ERR_DBG
, "%s: dev_alloc_skb failed\n ", dev
->name
);
2193 frag_list
= skb_shinfo(skb
)->frag_list
;
2194 skb
->truesize
+= frag_list
->truesize
;
2195 frag_list
->next
= NULL
;
2196 tmp
= (void *)ALIGN((long)frag_list
->data
, ALIGN_SIZE
+ 1);
2197 frag_list
->data
= tmp
;
2198 frag_list
->tail
= tmp
;
2200 /* Buffer-2 receives L4 data payload */
2201 ((struct RxD3
*)rxdp
)->Buffer2_ptr
= pci_map_single(nic
->pdev
,
2202 frag_list
->data
, dev
->mtu
,
2203 PCI_DMA_FROMDEVICE
);
2204 rxdp
->Control_2
|= SET_BUFFER1_SIZE_3(l3l4hdr_size
+ 4);
2205 rxdp
->Control_2
|= SET_BUFFER2_SIZE_3(dev
->mtu
);
2211 * fill_rx_buffers - Allocates the Rx side skbs
2212 * @nic: device private variable
2213 * @ring_no: ring number
2215 * The function allocates Rx side skbs and puts the physical
2216 * address of these buffers into the RxD buffer pointers, so that the NIC
2217 * can DMA the received frame into these locations.
2218 * The NIC supports 3 receive modes, viz
2220 * 2. three buffer and
2221 * 3. Five buffer modes.
2222 * Each mode defines how many fragments the received frame will be split
2223 * up into by the NIC. The frame is split into L3 header, L4 Header,
2224 * L4 payload in three buffer mode and in 5 buffer mode, L4 payload itself
2225 * is split into 3 fragments. As of now only single buffer mode is
2228 * SUCCESS on success or an appropriate -ve value on failure.
2231 static int fill_rx_buffers(struct s2io_nic
*nic
, int ring_no
)
2233 struct net_device
*dev
= nic
->dev
;
2234 struct sk_buff
*skb
;
2236 int off
, off1
, size
, block_no
, block_no1
;
2239 struct mac_info
*mac_control
;
2240 struct config_param
*config
;
2243 unsigned long flags
;
2244 struct RxD_t
*first_rxdp
= NULL
;
2246 mac_control
= &nic
->mac_control
;
2247 config
= &nic
->config
;
2248 alloc_cnt
= mac_control
->rings
[ring_no
].pkt_cnt
-
2249 atomic_read(&nic
->rx_bufs_left
[ring_no
]);
2251 block_no1
= mac_control
->rings
[ring_no
].rx_curr_get_info
.block_index
;
2252 off1
= mac_control
->rings
[ring_no
].rx_curr_get_info
.offset
;
2253 while (alloc_tab
< alloc_cnt
) {
2254 block_no
= mac_control
->rings
[ring_no
].rx_curr_put_info
.
2256 off
= mac_control
->rings
[ring_no
].rx_curr_put_info
.offset
;
2258 rxdp
= mac_control
->rings
[ring_no
].
2259 rx_blocks
[block_no
].rxds
[off
].virt_addr
;
2261 if ((block_no
== block_no1
) && (off
== off1
) &&
2262 (rxdp
->Host_Control
)) {
2263 DBG_PRINT(INTR_DBG
, "%s: Get and Put",
2265 DBG_PRINT(INTR_DBG
, " info equated\n");
2268 if (off
&& (off
== rxd_count
[nic
->rxd_mode
])) {
2269 mac_control
->rings
[ring_no
].rx_curr_put_info
.
2271 if (mac_control
->rings
[ring_no
].rx_curr_put_info
.
2272 block_index
== mac_control
->rings
[ring_no
].
2274 mac_control
->rings
[ring_no
].rx_curr_put_info
.
2276 block_no
= mac_control
->rings
[ring_no
].
2277 rx_curr_put_info
.block_index
;
2278 if (off
== rxd_count
[nic
->rxd_mode
])
2280 mac_control
->rings
[ring_no
].rx_curr_put_info
.
2282 rxdp
= mac_control
->rings
[ring_no
].
2283 rx_blocks
[block_no
].block_virt_addr
;
2284 DBG_PRINT(INTR_DBG
, "%s: Next block at: %p\n",
2288 spin_lock_irqsave(&nic
->put_lock
, flags
);
2289 mac_control
->rings
[ring_no
].put_pos
=
2290 (block_no
* (rxd_count
[nic
->rxd_mode
] + 1)) + off
;
2291 spin_unlock_irqrestore(&nic
->put_lock
, flags
);
2293 mac_control
->rings
[ring_no
].put_pos
=
2294 (block_no
* (rxd_count
[nic
->rxd_mode
] + 1)) + off
;
2296 if ((rxdp
->Control_1
& RXD_OWN_XENA
) &&
2297 ((nic
->rxd_mode
>= RXD_MODE_3A
) &&
2298 (rxdp
->Control_2
& BIT(0)))) {
2299 mac_control
->rings
[ring_no
].rx_curr_put_info
.
2303 /* calculate size of skb based on ring mode */
2304 size
= dev
->mtu
+ HEADER_ETHERNET_II_802_3_SIZE
+
2305 HEADER_802_2_SIZE
+ HEADER_SNAP_SIZE
;
2306 if (nic
->rxd_mode
== RXD_MODE_1
)
2307 size
+= NET_IP_ALIGN
;
2308 else if (nic
->rxd_mode
== RXD_MODE_3B
)
2309 size
= dev
->mtu
+ ALIGN_SIZE
+ BUF0_LEN
+ 4;
2311 size
= l3l4hdr_size
+ ALIGN_SIZE
+ BUF0_LEN
+ 4;
2314 skb
= dev_alloc_skb(size
);
2316 DBG_PRINT(ERR_DBG
, "%s: Out of ", dev
->name
);
2317 DBG_PRINT(ERR_DBG
, "memory to allocate SKBs\n");
2320 first_rxdp
->Control_1
|= RXD_OWN_XENA
;
2324 if (nic
->rxd_mode
== RXD_MODE_1
) {
2325 /* 1 buffer mode - normal operation mode */
2326 memset(rxdp
, 0, sizeof(struct RxD1
));
2327 skb_reserve(skb
, NET_IP_ALIGN
);
2328 ((struct RxD1
*)rxdp
)->Buffer0_ptr
= pci_map_single
2329 (nic
->pdev
, skb
->data
, size
- NET_IP_ALIGN
,
2330 PCI_DMA_FROMDEVICE
);
2331 rxdp
->Control_2
= SET_BUFFER0_SIZE_1(size
- NET_IP_ALIGN
);
2333 } else if (nic
->rxd_mode
>= RXD_MODE_3A
) {
2335 * 2 or 3 buffer mode -
2336 * Both 2 buffer mode and 3 buffer mode provides 128
2337 * byte aligned receive buffers.
2339 * 3 buffer mode provides header separation where in
2340 * skb->data will have L3/L4 headers where as
2341 * skb_shinfo(skb)->frag_list will have the L4 data
2345 memset(rxdp
, 0, sizeof(struct RxD3
));
2346 ba
= &mac_control
->rings
[ring_no
].ba
[block_no
][off
];
2347 skb_reserve(skb
, BUF0_LEN
);
2348 tmp
= (u64
)(unsigned long) skb
->data
;
2351 skb
->data
= (void *) (unsigned long)tmp
;
2352 skb
->tail
= (void *) (unsigned long)tmp
;
2354 if (!(((struct RxD3
*)rxdp
)->Buffer0_ptr
))
2355 ((struct RxD3
*)rxdp
)->Buffer0_ptr
=
2356 pci_map_single(nic
->pdev
, ba
->ba_0
, BUF0_LEN
,
2357 PCI_DMA_FROMDEVICE
);
2359 pci_dma_sync_single_for_device(nic
->pdev
,
2360 (dma_addr_t
) ((struct RxD3
*)rxdp
)->Buffer0_ptr
,
2361 BUF0_LEN
, PCI_DMA_FROMDEVICE
);
2362 rxdp
->Control_2
= SET_BUFFER0_SIZE_3(BUF0_LEN
);
2363 if (nic
->rxd_mode
== RXD_MODE_3B
) {
2364 /* Two buffer mode */
2367 * Buffer2 will have L3/L4 header plus
2370 ((struct RxD3
*)rxdp
)->Buffer2_ptr
= pci_map_single
2371 (nic
->pdev
, skb
->data
, dev
->mtu
+ 4,
2372 PCI_DMA_FROMDEVICE
);
2374 /* Buffer-1 will be dummy buffer. Not used */
2375 if (!(((struct RxD3
*)rxdp
)->Buffer1_ptr
)) {
2376 ((struct RxD3
*)rxdp
)->Buffer1_ptr
=
2377 pci_map_single(nic
->pdev
,
2379 PCI_DMA_FROMDEVICE
);
2381 rxdp
->Control_2
|= SET_BUFFER1_SIZE_3(1);
2382 rxdp
->Control_2
|= SET_BUFFER2_SIZE_3
2386 if (fill_rxd_3buf(nic
, rxdp
, skb
) == -ENOMEM
) {
2387 dev_kfree_skb_irq(skb
);
2390 first_rxdp
->Control_1
|=
2396 rxdp
->Control_2
|= BIT(0);
2398 rxdp
->Host_Control
= (unsigned long) (skb
);
2399 if (alloc_tab
& ((1 << rxsync_frequency
) - 1))
2400 rxdp
->Control_1
|= RXD_OWN_XENA
;
2402 if (off
== (rxd_count
[nic
->rxd_mode
] + 1))
2404 mac_control
->rings
[ring_no
].rx_curr_put_info
.offset
= off
;
2406 rxdp
->Control_2
|= SET_RXD_MARKER
;
2407 if (!(alloc_tab
& ((1 << rxsync_frequency
) - 1))) {
2410 first_rxdp
->Control_1
|= RXD_OWN_XENA
;
2414 atomic_inc(&nic
->rx_bufs_left
[ring_no
]);
2419 /* Transfer ownership of first descriptor to adapter just before
2420 * exiting. Before that, use memory barrier so that ownership
2421 * and other fields are seen by adapter correctly.
2425 first_rxdp
->Control_1
|= RXD_OWN_XENA
;
2431 static void free_rxd_blk(struct s2io_nic
*sp
, int ring_no
, int blk
)
2433 struct net_device
*dev
= sp
->dev
;
2435 struct sk_buff
*skb
;
2437 struct mac_info
*mac_control
;
2440 mac_control
= &sp
->mac_control
;
2441 for (j
= 0 ; j
< rxd_count
[sp
->rxd_mode
]; j
++) {
2442 rxdp
= mac_control
->rings
[ring_no
].
2443 rx_blocks
[blk
].rxds
[j
].virt_addr
;
2444 skb
= (struct sk_buff
*)
2445 ((unsigned long) rxdp
->Host_Control
);
2449 if (sp
->rxd_mode
== RXD_MODE_1
) {
2450 pci_unmap_single(sp
->pdev
, (dma_addr_t
)
2451 ((struct RxD1
*)rxdp
)->Buffer0_ptr
,
2453 HEADER_ETHERNET_II_802_3_SIZE
2454 + HEADER_802_2_SIZE
+
2456 PCI_DMA_FROMDEVICE
);
2457 memset(rxdp
, 0, sizeof(struct RxD1
));
2458 } else if(sp
->rxd_mode
== RXD_MODE_3B
) {
2459 ba
= &mac_control
->rings
[ring_no
].
2461 pci_unmap_single(sp
->pdev
, (dma_addr_t
)
2462 ((struct RxD3
*)rxdp
)->Buffer0_ptr
,
2464 PCI_DMA_FROMDEVICE
);
2465 pci_unmap_single(sp
->pdev
, (dma_addr_t
)
2466 ((struct RxD3
*)rxdp
)->Buffer1_ptr
,
2468 PCI_DMA_FROMDEVICE
);
2469 pci_unmap_single(sp
->pdev
, (dma_addr_t
)
2470 ((struct RxD3
*)rxdp
)->Buffer2_ptr
,
2472 PCI_DMA_FROMDEVICE
);
2473 memset(rxdp
, 0, sizeof(struct RxD3
));
2475 pci_unmap_single(sp
->pdev
, (dma_addr_t
)
2476 ((struct RxD3
*)rxdp
)->Buffer0_ptr
, BUF0_LEN
,
2477 PCI_DMA_FROMDEVICE
);
2478 pci_unmap_single(sp
->pdev
, (dma_addr_t
)
2479 ((struct RxD3
*)rxdp
)->Buffer1_ptr
,
2481 PCI_DMA_FROMDEVICE
);
2482 pci_unmap_single(sp
->pdev
, (dma_addr_t
)
2483 ((struct RxD3
*)rxdp
)->Buffer2_ptr
, dev
->mtu
,
2484 PCI_DMA_FROMDEVICE
);
2485 memset(rxdp
, 0, sizeof(struct RxD3
));
2488 atomic_dec(&sp
->rx_bufs_left
[ring_no
]);
2493 * free_rx_buffers - Frees all Rx buffers
2494 * @sp: device private variable.
2496 * This function will free all Rx buffers allocated by host.
2501 static void free_rx_buffers(struct s2io_nic
*sp
)
2503 struct net_device
*dev
= sp
->dev
;
2504 int i
, blk
= 0, buf_cnt
= 0;
2505 struct mac_info
*mac_control
;
2506 struct config_param
*config
;
2508 mac_control
= &sp
->mac_control
;
2509 config
= &sp
->config
;
2511 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
2512 for (blk
= 0; blk
< rx_ring_sz
[i
]; blk
++)
2513 free_rxd_blk(sp
,i
,blk
);
2515 mac_control
->rings
[i
].rx_curr_put_info
.block_index
= 0;
2516 mac_control
->rings
[i
].rx_curr_get_info
.block_index
= 0;
2517 mac_control
->rings
[i
].rx_curr_put_info
.offset
= 0;
2518 mac_control
->rings
[i
].rx_curr_get_info
.offset
= 0;
2519 atomic_set(&sp
->rx_bufs_left
[i
], 0);
2520 DBG_PRINT(INIT_DBG
, "%s:Freed 0x%x Rx Buffers on ring%d\n",
2521 dev
->name
, buf_cnt
, i
);
2526 * s2io_poll - Rx interrupt handler for NAPI support
2527 * @dev : pointer to the device structure.
2528 * @budget : The number of packets that were budgeted to be processed
2529 * during one pass through the 'Poll" function.
2531 * Comes into picture only if NAPI support has been incorporated. It does
2532 * the same thing that rx_intr_handler does, but not in a interrupt context
2533 * also It will process only a given number of packets.
2535 * 0 on success and 1 if there are No Rx packets to be processed.
2538 static int s2io_poll(struct net_device
*dev
, int *budget
)
2540 struct s2io_nic
*nic
= dev
->priv
;
2541 int pkt_cnt
= 0, org_pkts_to_process
;
2542 struct mac_info
*mac_control
;
2543 struct config_param
*config
;
2544 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
2547 atomic_inc(&nic
->isr_cnt
);
2548 mac_control
= &nic
->mac_control
;
2549 config
= &nic
->config
;
2551 nic
->pkts_to_process
= *budget
;
2552 if (nic
->pkts_to_process
> dev
->quota
)
2553 nic
->pkts_to_process
= dev
->quota
;
2554 org_pkts_to_process
= nic
->pkts_to_process
;
2556 writeq(S2IO_MINUS_ONE
, &bar0
->rx_traffic_int
);
2557 readl(&bar0
->rx_traffic_int
);
2559 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
2560 rx_intr_handler(&mac_control
->rings
[i
]);
2561 pkt_cnt
= org_pkts_to_process
- nic
->pkts_to_process
;
2562 if (!nic
->pkts_to_process
) {
2563 /* Quota for the current iteration has been met */
2570 dev
->quota
-= pkt_cnt
;
2572 netif_rx_complete(dev
);
2574 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
2575 if (fill_rx_buffers(nic
, i
) == -ENOMEM
) {
2576 DBG_PRINT(ERR_DBG
, "%s:Out of memory", dev
->name
);
2577 DBG_PRINT(ERR_DBG
, " in Rx Poll!!\n");
2581 /* Re enable the Rx interrupts. */
2582 writeq(0x0, &bar0
->rx_traffic_mask
);
2583 readl(&bar0
->rx_traffic_mask
);
2584 atomic_dec(&nic
->isr_cnt
);
2588 dev
->quota
-= pkt_cnt
;
2591 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
2592 if (fill_rx_buffers(nic
, i
) == -ENOMEM
) {
2593 DBG_PRINT(ERR_DBG
, "%s:Out of memory", dev
->name
);
2594 DBG_PRINT(ERR_DBG
, " in Rx Poll!!\n");
2598 atomic_dec(&nic
->isr_cnt
);
2602 #ifdef CONFIG_NET_POLL_CONTROLLER
2604 * s2io_netpoll - netpoll event handler entry point
2605 * @dev : pointer to the device structure.
2607 * This function will be called by upper layer to check for events on the
2608 * interface in situations where interrupts are disabled. It is used for
2609 * specific in-kernel networking tasks, such as remote consoles and kernel
2610 * debugging over the network (example netdump in RedHat).
2612 static void s2io_netpoll(struct net_device
*dev
)
2614 struct s2io_nic
*nic
= dev
->priv
;
2615 struct mac_info
*mac_control
;
2616 struct config_param
*config
;
2617 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
2618 u64 val64
= 0xFFFFFFFFFFFFFFFFULL
;
2621 disable_irq(dev
->irq
);
2623 atomic_inc(&nic
->isr_cnt
);
2624 mac_control
= &nic
->mac_control
;
2625 config
= &nic
->config
;
2627 writeq(val64
, &bar0
->rx_traffic_int
);
2628 writeq(val64
, &bar0
->tx_traffic_int
);
2630 /* we need to free up the transmitted skbufs or else netpoll will
2631 * run out of skbs and will fail and eventually netpoll application such
2632 * as netdump will fail.
2634 for (i
= 0; i
< config
->tx_fifo_num
; i
++)
2635 tx_intr_handler(&mac_control
->fifos
[i
]);
2637 /* check for received packet and indicate up to network */
2638 for (i
= 0; i
< config
->rx_ring_num
; i
++)
2639 rx_intr_handler(&mac_control
->rings
[i
]);
2641 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
2642 if (fill_rx_buffers(nic
, i
) == -ENOMEM
) {
2643 DBG_PRINT(ERR_DBG
, "%s:Out of memory", dev
->name
);
2644 DBG_PRINT(ERR_DBG
, " in Rx Netpoll!!\n");
2648 atomic_dec(&nic
->isr_cnt
);
2649 enable_irq(dev
->irq
);
2655 * rx_intr_handler - Rx interrupt handler
2656 * @nic: device private variable.
2658 * If the interrupt is because of a received frame or if the
2659 * receive ring contains fresh as yet un-processed frames,this function is
2660 * called. It picks out the RxD at which place the last Rx processing had
2661 * stopped and sends the skb to the OSM's Rx handler and then increments
2666 static void rx_intr_handler(struct ring_info
*ring_data
)
2668 struct s2io_nic
*nic
= ring_data
->nic
;
2669 struct net_device
*dev
= (struct net_device
*) nic
->dev
;
2670 int get_block
, put_block
, put_offset
;
2671 struct rx_curr_get_info get_info
, put_info
;
2673 struct sk_buff
*skb
;
2677 spin_lock(&nic
->rx_lock
);
2678 if (atomic_read(&nic
->card_state
) == CARD_DOWN
) {
2679 DBG_PRINT(INTR_DBG
, "%s: %s going down for reset\n",
2680 __FUNCTION__
, dev
->name
);
2681 spin_unlock(&nic
->rx_lock
);
2685 get_info
= ring_data
->rx_curr_get_info
;
2686 get_block
= get_info
.block_index
;
2687 memcpy(&put_info
, &ring_data
->rx_curr_put_info
, sizeof(put_info
));
2688 put_block
= put_info
.block_index
;
2689 rxdp
= ring_data
->rx_blocks
[get_block
].rxds
[get_info
.offset
].virt_addr
;
2691 spin_lock(&nic
->put_lock
);
2692 put_offset
= ring_data
->put_pos
;
2693 spin_unlock(&nic
->put_lock
);
2695 put_offset
= ring_data
->put_pos
;
2697 while (RXD_IS_UP2DT(rxdp
)) {
2699 * If your are next to put index then it's
2700 * FIFO full condition
2702 if ((get_block
== put_block
) &&
2703 (get_info
.offset
+ 1) == put_info
.offset
) {
2704 DBG_PRINT(INTR_DBG
, "%s: Ring Full\n",dev
->name
);
2707 skb
= (struct sk_buff
*) ((unsigned long)rxdp
->Host_Control
);
2709 DBG_PRINT(ERR_DBG
, "%s: The skb is ",
2711 DBG_PRINT(ERR_DBG
, "Null in Rx Intr\n");
2712 spin_unlock(&nic
->rx_lock
);
2715 if (nic
->rxd_mode
== RXD_MODE_1
) {
2716 pci_unmap_single(nic
->pdev
, (dma_addr_t
)
2717 ((struct RxD1
*)rxdp
)->Buffer0_ptr
,
2719 HEADER_ETHERNET_II_802_3_SIZE
+
2722 PCI_DMA_FROMDEVICE
);
2723 } else if (nic
->rxd_mode
== RXD_MODE_3B
) {
2724 pci_dma_sync_single_for_cpu(nic
->pdev
, (dma_addr_t
)
2725 ((struct RxD3
*)rxdp
)->Buffer0_ptr
,
2726 BUF0_LEN
, PCI_DMA_FROMDEVICE
);
2727 pci_unmap_single(nic
->pdev
, (dma_addr_t
)
2728 ((struct RxD3
*)rxdp
)->Buffer2_ptr
,
2730 PCI_DMA_FROMDEVICE
);
2732 pci_dma_sync_single_for_cpu(nic
->pdev
, (dma_addr_t
)
2733 ((struct RxD3
*)rxdp
)->Buffer0_ptr
, BUF0_LEN
,
2734 PCI_DMA_FROMDEVICE
);
2735 pci_unmap_single(nic
->pdev
, (dma_addr_t
)
2736 ((struct RxD3
*)rxdp
)->Buffer1_ptr
,
2738 PCI_DMA_FROMDEVICE
);
2739 pci_unmap_single(nic
->pdev
, (dma_addr_t
)
2740 ((struct RxD3
*)rxdp
)->Buffer2_ptr
,
2741 dev
->mtu
, PCI_DMA_FROMDEVICE
);
2743 prefetch(skb
->data
);
2744 rx_osm_handler(ring_data
, rxdp
);
2746 ring_data
->rx_curr_get_info
.offset
= get_info
.offset
;
2747 rxdp
= ring_data
->rx_blocks
[get_block
].
2748 rxds
[get_info
.offset
].virt_addr
;
2749 if (get_info
.offset
== rxd_count
[nic
->rxd_mode
]) {
2750 get_info
.offset
= 0;
2751 ring_data
->rx_curr_get_info
.offset
= get_info
.offset
;
2753 if (get_block
== ring_data
->block_count
)
2755 ring_data
->rx_curr_get_info
.block_index
= get_block
;
2756 rxdp
= ring_data
->rx_blocks
[get_block
].block_virt_addr
;
2759 nic
->pkts_to_process
-= 1;
2760 if ((napi
) && (!nic
->pkts_to_process
))
2763 if ((indicate_max_pkts
) && (pkt_cnt
> indicate_max_pkts
))
2767 /* Clear all LRO sessions before exiting */
2768 for (i
=0; i
<MAX_LRO_SESSIONS
; i
++) {
2769 struct lro
*lro
= &nic
->lro0_n
[i
];
2771 update_L3L4_header(nic
, lro
);
2772 queue_rx_frame(lro
->parent
);
2773 clear_lro_session(lro
);
2778 spin_unlock(&nic
->rx_lock
);
2782 * tx_intr_handler - Transmit interrupt handler
2783 * @nic : device private variable
2785 * If an interrupt was raised to indicate DMA complete of the
2786 * Tx packet, this function is called. It identifies the last TxD
2787 * whose buffer was freed and frees all skbs whose data have already
2788 * DMA'ed into the NICs internal memory.
2793 static void tx_intr_handler(struct fifo_info
*fifo_data
)
2795 struct s2io_nic
*nic
= fifo_data
->nic
;
2796 struct net_device
*dev
= (struct net_device
*) nic
->dev
;
2797 struct tx_curr_get_info get_info
, put_info
;
2798 struct sk_buff
*skb
;
2801 get_info
= fifo_data
->tx_curr_get_info
;
2802 memcpy(&put_info
, &fifo_data
->tx_curr_put_info
, sizeof(put_info
));
2803 txdlp
= (struct TxD
*) fifo_data
->list_info
[get_info
.offset
].
2805 while ((!(txdlp
->Control_1
& TXD_LIST_OWN_XENA
)) &&
2806 (get_info
.offset
!= put_info
.offset
) &&
2807 (txdlp
->Host_Control
)) {
2808 /* Check for TxD errors */
2809 if (txdlp
->Control_1
& TXD_T_CODE
) {
2810 unsigned long long err
;
2811 err
= txdlp
->Control_1
& TXD_T_CODE
;
2813 nic
->mac_control
.stats_info
->sw_stat
.
2816 if ((err
>> 48) == 0xA) {
2817 DBG_PRINT(TX_DBG
, "TxD returned due \
2818 to loss of link\n");
2821 DBG_PRINT(ERR_DBG
, "***TxD error %llx\n", err
);
2825 skb
= s2io_txdl_getskb(fifo_data
, txdlp
, get_info
.offset
);
2827 DBG_PRINT(ERR_DBG
, "%s: Null skb ",
2829 DBG_PRINT(ERR_DBG
, "in Tx Free Intr\n");
2833 /* Updating the statistics block */
2834 nic
->stats
.tx_bytes
+= skb
->len
;
2835 dev_kfree_skb_irq(skb
);
2838 if (get_info
.offset
== get_info
.fifo_len
+ 1)
2839 get_info
.offset
= 0;
2840 txdlp
= (struct TxD
*) fifo_data
->list_info
2841 [get_info
.offset
].list_virt_addr
;
2842 fifo_data
->tx_curr_get_info
.offset
=
2846 spin_lock(&nic
->tx_lock
);
2847 if (netif_queue_stopped(dev
))
2848 netif_wake_queue(dev
);
2849 spin_unlock(&nic
->tx_lock
);
2853 * s2io_mdio_write - Function to write in to MDIO registers
2854 * @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
2855 * @addr : address value
2856 * @value : data value
2857 * @dev : pointer to net_device structure
2859 * This function is used to write values to the MDIO registers
2862 static void s2io_mdio_write(u32 mmd_type
, u64 addr
, u16 value
, struct net_device
*dev
)
2865 struct s2io_nic
*sp
= dev
->priv
;
2866 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
2868 //address transaction
2869 val64
= val64
| MDIO_MMD_INDX_ADDR(addr
)
2870 | MDIO_MMD_DEV_ADDR(mmd_type
)
2871 | MDIO_MMS_PRT_ADDR(0x0);
2872 writeq(val64
, &bar0
->mdio_control
);
2873 val64
= val64
| MDIO_CTRL_START_TRANS(0xE);
2874 writeq(val64
, &bar0
->mdio_control
);
2879 val64
= val64
| MDIO_MMD_INDX_ADDR(addr
)
2880 | MDIO_MMD_DEV_ADDR(mmd_type
)
2881 | MDIO_MMS_PRT_ADDR(0x0)
2882 | MDIO_MDIO_DATA(value
)
2883 | MDIO_OP(MDIO_OP_WRITE_TRANS
);
2884 writeq(val64
, &bar0
->mdio_control
);
2885 val64
= val64
| MDIO_CTRL_START_TRANS(0xE);
2886 writeq(val64
, &bar0
->mdio_control
);
2890 val64
= val64
| MDIO_MMD_INDX_ADDR(addr
)
2891 | MDIO_MMD_DEV_ADDR(mmd_type
)
2892 | MDIO_MMS_PRT_ADDR(0x0)
2893 | MDIO_OP(MDIO_OP_READ_TRANS
);
2894 writeq(val64
, &bar0
->mdio_control
);
2895 val64
= val64
| MDIO_CTRL_START_TRANS(0xE);
2896 writeq(val64
, &bar0
->mdio_control
);
2902 * s2io_mdio_read - Function to write in to MDIO registers
2903 * @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
2904 * @addr : address value
2905 * @dev : pointer to net_device structure
2907 * This function is used to read values to the MDIO registers
2910 static u64
s2io_mdio_read(u32 mmd_type
, u64 addr
, struct net_device
*dev
)
2914 struct s2io_nic
*sp
= dev
->priv
;
2915 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
2917 /* address transaction */
2918 val64
= val64
| MDIO_MMD_INDX_ADDR(addr
)
2919 | MDIO_MMD_DEV_ADDR(mmd_type
)
2920 | MDIO_MMS_PRT_ADDR(0x0);
2921 writeq(val64
, &bar0
->mdio_control
);
2922 val64
= val64
| MDIO_CTRL_START_TRANS(0xE);
2923 writeq(val64
, &bar0
->mdio_control
);
2926 /* Data transaction */
2928 val64
= val64
| MDIO_MMD_INDX_ADDR(addr
)
2929 | MDIO_MMD_DEV_ADDR(mmd_type
)
2930 | MDIO_MMS_PRT_ADDR(0x0)
2931 | MDIO_OP(MDIO_OP_READ_TRANS
);
2932 writeq(val64
, &bar0
->mdio_control
);
2933 val64
= val64
| MDIO_CTRL_START_TRANS(0xE);
2934 writeq(val64
, &bar0
->mdio_control
);
2937 /* Read the value from regs */
2938 rval64
= readq(&bar0
->mdio_control
);
2939 rval64
= rval64
& 0xFFFF0000;
2940 rval64
= rval64
>> 16;
2944 * s2io_chk_xpak_counter - Function to check the status of the xpak counters
2945 * @counter : couter value to be updated
2946 * @flag : flag to indicate the status
2947 * @type : counter type
2949 * This function is to check the status of the xpak counters value
2953 static void s2io_chk_xpak_counter(u64
*counter
, u64
* regs_stat
, u32 index
, u16 flag
, u16 type
)
2958 for(i
= 0; i
<index
; i
++)
2963 *counter
= *counter
+ 1;
2964 val64
= *regs_stat
& mask
;
2965 val64
= val64
>> (index
* 0x2);
2972 DBG_PRINT(ERR_DBG
, "Take Xframe NIC out of "
2973 "service. Excessive temperatures may "
2974 "result in premature transceiver "
2978 DBG_PRINT(ERR_DBG
, "Take Xframe NIC out of "
2979 "service Excessive bias currents may "
2980 "indicate imminent laser diode "
2984 DBG_PRINT(ERR_DBG
, "Take Xframe NIC out of "
2985 "service Excessive laser output "
2986 "power may saturate far-end "
2990 DBG_PRINT(ERR_DBG
, "Incorrect XPAK Alarm "
2995 val64
= val64
<< (index
* 0x2);
2996 *regs_stat
= (*regs_stat
& (~mask
)) | (val64
);
2999 *regs_stat
= *regs_stat
& (~mask
);
3004 * s2io_updt_xpak_counter - Function to update the xpak counters
3005 * @dev : pointer to net_device struct
3007 * This function is to upate the status of the xpak counters value
3010 static void s2io_updt_xpak_counter(struct net_device
*dev
)
3018 struct s2io_nic
*sp
= dev
->priv
;
3019 struct stat_block
*stat_info
= sp
->mac_control
.stats_info
;
3021 /* Check the communication with the MDIO slave */
3024 val64
= s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR
, addr
, dev
);
3025 if((val64
== 0xFFFF) || (val64
== 0x0000))
3027 DBG_PRINT(ERR_DBG
, "ERR: MDIO slave access failed - "
3028 "Returned %llx\n", (unsigned long long)val64
);
3032 /* Check for the expecte value of 2040 at PMA address 0x0000 */
3035 DBG_PRINT(ERR_DBG
, "Incorrect value at PMA address 0x0000 - ");
3036 DBG_PRINT(ERR_DBG
, "Returned: %llx- Expected: 0x2040\n",
3037 (unsigned long long)val64
);
3041 /* Loading the DOM register to MDIO register */
3043 s2io_mdio_write(MDIO_MMD_PMA_DEV_ADDR
, addr
, val16
, dev
);
3044 val64
= s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR
, addr
, dev
);
3046 /* Reading the Alarm flags */
3049 val64
= s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR
, addr
, dev
);
3051 flag
= CHECKBIT(val64
, 0x7);
3053 s2io_chk_xpak_counter(&stat_info
->xpak_stat
.alarm_transceiver_temp_high
,
3054 &stat_info
->xpak_stat
.xpak_regs_stat
,
3057 if(CHECKBIT(val64
, 0x6))
3058 stat_info
->xpak_stat
.alarm_transceiver_temp_low
++;
3060 flag
= CHECKBIT(val64
, 0x3);
3062 s2io_chk_xpak_counter(&stat_info
->xpak_stat
.alarm_laser_bias_current_high
,
3063 &stat_info
->xpak_stat
.xpak_regs_stat
,
3066 if(CHECKBIT(val64
, 0x2))
3067 stat_info
->xpak_stat
.alarm_laser_bias_current_low
++;
3069 flag
= CHECKBIT(val64
, 0x1);
3071 s2io_chk_xpak_counter(&stat_info
->xpak_stat
.alarm_laser_output_power_high
,
3072 &stat_info
->xpak_stat
.xpak_regs_stat
,
3075 if(CHECKBIT(val64
, 0x0))
3076 stat_info
->xpak_stat
.alarm_laser_output_power_low
++;
3078 /* Reading the Warning flags */
3081 val64
= s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR
, addr
, dev
);
3083 if(CHECKBIT(val64
, 0x7))
3084 stat_info
->xpak_stat
.warn_transceiver_temp_high
++;
3086 if(CHECKBIT(val64
, 0x6))
3087 stat_info
->xpak_stat
.warn_transceiver_temp_low
++;
3089 if(CHECKBIT(val64
, 0x3))
3090 stat_info
->xpak_stat
.warn_laser_bias_current_high
++;
3092 if(CHECKBIT(val64
, 0x2))
3093 stat_info
->xpak_stat
.warn_laser_bias_current_low
++;
3095 if(CHECKBIT(val64
, 0x1))
3096 stat_info
->xpak_stat
.warn_laser_output_power_high
++;
3098 if(CHECKBIT(val64
, 0x0))
3099 stat_info
->xpak_stat
.warn_laser_output_power_low
++;
3103 * alarm_intr_handler - Alarm Interrrupt handler
3104 * @nic: device private variable
3105 * Description: If the interrupt was neither because of Rx packet or Tx
3106 * complete, this function is called. If the interrupt was to indicate
3107 * a loss of link, the OSM link status handler is invoked for any other
3108 * alarm interrupt the block that raised the interrupt is displayed
3109 * and a H/W reset is issued.
3114 static void alarm_intr_handler(struct s2io_nic
*nic
)
3116 struct net_device
*dev
= (struct net_device
*) nic
->dev
;
3117 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
3118 register u64 val64
= 0, err_reg
= 0;
3121 if (atomic_read(&nic
->card_state
) == CARD_DOWN
)
3123 nic
->mac_control
.stats_info
->sw_stat
.ring_full_cnt
= 0;
3124 /* Handling the XPAK counters update */
3125 if(nic
->mac_control
.stats_info
->xpak_stat
.xpak_timer_count
< 72000) {
3126 /* waiting for an hour */
3127 nic
->mac_control
.stats_info
->xpak_stat
.xpak_timer_count
++;
3129 s2io_updt_xpak_counter(dev
);
3130 /* reset the count to zero */
3131 nic
->mac_control
.stats_info
->xpak_stat
.xpak_timer_count
= 0;
3134 /* Handling link status change error Intr */
3135 if (s2io_link_fault_indication(nic
) == MAC_RMAC_ERR_TIMER
) {
3136 err_reg
= readq(&bar0
->mac_rmac_err_reg
);
3137 writeq(err_reg
, &bar0
->mac_rmac_err_reg
);
3138 if (err_reg
& RMAC_LINK_STATE_CHANGE_INT
) {
3139 schedule_work(&nic
->set_link_task
);
3143 /* Handling Ecc errors */
3144 val64
= readq(&bar0
->mc_err_reg
);
3145 writeq(val64
, &bar0
->mc_err_reg
);
3146 if (val64
& (MC_ERR_REG_ECC_ALL_SNG
| MC_ERR_REG_ECC_ALL_DBL
)) {
3147 if (val64
& MC_ERR_REG_ECC_ALL_DBL
) {
3148 nic
->mac_control
.stats_info
->sw_stat
.
3150 DBG_PRINT(INIT_DBG
, "%s: Device indicates ",
3152 DBG_PRINT(INIT_DBG
, "double ECC error!!\n");
3153 if (nic
->device_type
!= XFRAME_II_DEVICE
) {
3154 /* Reset XframeI only if critical error */
3155 if (val64
& (MC_ERR_REG_MIRI_ECC_DB_ERR_0
|
3156 MC_ERR_REG_MIRI_ECC_DB_ERR_1
)) {
3157 netif_stop_queue(dev
);
3158 schedule_work(&nic
->rst_timer_task
);
3159 nic
->mac_control
.stats_info
->sw_stat
.
3164 nic
->mac_control
.stats_info
->sw_stat
.
3169 /* In case of a serious error, the device will be Reset. */
3170 val64
= readq(&bar0
->serr_source
);
3171 if (val64
& SERR_SOURCE_ANY
) {
3172 nic
->mac_control
.stats_info
->sw_stat
.serious_err_cnt
++;
3173 DBG_PRINT(ERR_DBG
, "%s: Device indicates ", dev
->name
);
3174 DBG_PRINT(ERR_DBG
, "serious error %llx!!\n",
3175 (unsigned long long)val64
);
3176 netif_stop_queue(dev
);
3177 schedule_work(&nic
->rst_timer_task
);
3178 nic
->mac_control
.stats_info
->sw_stat
.soft_reset_cnt
++;
3182 * Also as mentioned in the latest Errata sheets if the PCC_FB_ECC
3183 * Error occurs, the adapter will be recycled by disabling the
3184 * adapter enable bit and enabling it again after the device
3185 * becomes Quiescent.
3187 val64
= readq(&bar0
->pcc_err_reg
);
3188 writeq(val64
, &bar0
->pcc_err_reg
);
3189 if (val64
& PCC_FB_ECC_DB_ERR
) {
3190 u64 ac
= readq(&bar0
->adapter_control
);
3191 ac
&= ~(ADAPTER_CNTL_EN
);
3192 writeq(ac
, &bar0
->adapter_control
);
3193 ac
= readq(&bar0
->adapter_control
);
3194 schedule_work(&nic
->set_link_task
);
3196 /* Check for data parity error */
3197 val64
= readq(&bar0
->pic_int_status
);
3198 if (val64
& PIC_INT_GPIO
) {
3199 val64
= readq(&bar0
->gpio_int_reg
);
3200 if (val64
& GPIO_INT_REG_DP_ERR_INT
) {
3201 nic
->mac_control
.stats_info
->sw_stat
.parity_err_cnt
++;
3202 schedule_work(&nic
->rst_timer_task
);
3203 nic
->mac_control
.stats_info
->sw_stat
.soft_reset_cnt
++;
3207 /* Check for ring full counter */
3208 if (nic
->device_type
& XFRAME_II_DEVICE
) {
3209 val64
= readq(&bar0
->ring_bump_counter1
);
3210 for (i
=0; i
<4; i
++) {
3211 cnt
= ( val64
& vBIT(0xFFFF,(i
*16),16));
3212 cnt
>>= 64 - ((i
+1)*16);
3213 nic
->mac_control
.stats_info
->sw_stat
.ring_full_cnt
3217 val64
= readq(&bar0
->ring_bump_counter2
);
3218 for (i
=0; i
<4; i
++) {
3219 cnt
= ( val64
& vBIT(0xFFFF,(i
*16),16));
3220 cnt
>>= 64 - ((i
+1)*16);
3221 nic
->mac_control
.stats_info
->sw_stat
.ring_full_cnt
3226 /* Other type of interrupts are not being handled now, TODO */
3230 * wait_for_cmd_complete - waits for a command to complete.
3231 * @sp : private member of the device structure, which is a pointer to the
3232 * s2io_nic structure.
3233 * Description: Function that waits for a command to Write into RMAC
3234 * ADDR DATA registers to be completed and returns either success or
3235 * error depending on whether the command was complete or not.
3237 * SUCCESS on success and FAILURE on failure.
3240 static int wait_for_cmd_complete(void __iomem
*addr
, u64 busy_bit
,
3243 int ret
= FAILURE
, cnt
= 0, delay
= 1;
3246 if ((bit_state
!= S2IO_BIT_RESET
) && (bit_state
!= S2IO_BIT_SET
))
3250 val64
= readq(addr
);
3251 if (bit_state
== S2IO_BIT_RESET
) {
3252 if (!(val64
& busy_bit
)) {
3257 if (!(val64
& busy_bit
)) {
3274 * check_pci_device_id - Checks if the device id is supported
3276 * Description: Function to check if the pci device id is supported by driver.
3277 * Return value: Actual device id if supported else PCI_ANY_ID
3279 static u16
check_pci_device_id(u16 id
)
3282 case PCI_DEVICE_ID_HERC_WIN
:
3283 case PCI_DEVICE_ID_HERC_UNI
:
3284 return XFRAME_II_DEVICE
;
3285 case PCI_DEVICE_ID_S2IO_UNI
:
3286 case PCI_DEVICE_ID_S2IO_WIN
:
3287 return XFRAME_I_DEVICE
;
3294 * s2io_reset - Resets the card.
3295 * @sp : private member of the device structure.
3296 * Description: Function to Reset the card. This function then also
3297 * restores the previously saved PCI configuration space registers as
3298 * the card reset also resets the configuration space.
3303 static void s2io_reset(struct s2io_nic
* sp
)
3305 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
3310 DBG_PRINT(INIT_DBG
,"%s - Resetting XFrame card %s\n",
3311 __FUNCTION__
, sp
->dev
->name
);
3313 /* Back up the PCI-X CMD reg, dont want to lose MMRBC, OST settings */
3314 pci_read_config_word(sp
->pdev
, PCIX_COMMAND_REGISTER
, &(pci_cmd
));
3316 if (sp
->device_type
== XFRAME_II_DEVICE
) {
3318 ret
= pci_set_power_state(sp
->pdev
, 3);
3320 ret
= pci_set_power_state(sp
->pdev
, 0);
3322 DBG_PRINT(ERR_DBG
,"%s PME based SW_Reset failed!\n",
3330 val64
= SW_RESET_ALL
;
3331 writeq(val64
, &bar0
->sw_reset
);
3333 if (strstr(sp
->product_name
, "CX4")) {
3337 for (i
= 0; i
< S2IO_MAX_PCI_CONFIG_SPACE_REINIT
; i
++) {
3339 /* Restore the PCI state saved during initialization. */
3340 pci_restore_state(sp
->pdev
);
3341 pci_read_config_word(sp
->pdev
, 0x2, &val16
);
3342 if (check_pci_device_id(val16
) != (u16
)PCI_ANY_ID
)
3347 if (check_pci_device_id(val16
) == (u16
)PCI_ANY_ID
) {
3348 DBG_PRINT(ERR_DBG
,"%s SW_Reset failed!\n", __FUNCTION__
);
3351 pci_write_config_word(sp
->pdev
, PCIX_COMMAND_REGISTER
, pci_cmd
);
3355 /* Set swapper to enable I/O register access */
3356 s2io_set_swapper(sp
);
3358 /* Restore the MSIX table entries from local variables */
3359 restore_xmsi_data(sp
);
3361 /* Clear certain PCI/PCI-X fields after reset */
3362 if (sp
->device_type
== XFRAME_II_DEVICE
) {
3363 /* Clear "detected parity error" bit */
3364 pci_write_config_word(sp
->pdev
, PCI_STATUS
, 0x8000);
3366 /* Clearing PCIX Ecc status register */
3367 pci_write_config_dword(sp
->pdev
, 0x68, 0x7C);
3369 /* Clearing PCI_STATUS error reflected here */
3370 writeq(BIT(62), &bar0
->txpic_int_reg
);
3373 /* Reset device statistics maintained by OS */
3374 memset(&sp
->stats
, 0, sizeof (struct net_device_stats
));
3376 /* SXE-002: Configure link and activity LED to turn it off */
3377 subid
= sp
->pdev
->subsystem_device
;
3378 if (((subid
& 0xFF) >= 0x07) &&
3379 (sp
->device_type
== XFRAME_I_DEVICE
)) {
3380 val64
= readq(&bar0
->gpio_control
);
3381 val64
|= 0x0000800000000000ULL
;
3382 writeq(val64
, &bar0
->gpio_control
);
3383 val64
= 0x0411040400000000ULL
;
3384 writeq(val64
, (void __iomem
*)bar0
+ 0x2700);
3388 * Clear spurious ECC interrupts that would have occured on
3389 * XFRAME II cards after reset.
3391 if (sp
->device_type
== XFRAME_II_DEVICE
) {
3392 val64
= readq(&bar0
->pcc_err_reg
);
3393 writeq(val64
, &bar0
->pcc_err_reg
);
3396 /* restore the previously assigned mac address */
3397 s2io_set_mac_addr(sp
->dev
, (u8
*)&sp
->def_mac_addr
[0].mac_addr
);
3399 sp
->device_enabled_once
= FALSE
;
3403 * s2io_set_swapper - to set the swapper controle on the card
3404 * @sp : private member of the device structure,
3405 * pointer to the s2io_nic structure.
3406 * Description: Function to set the swapper control on the card
3407 * correctly depending on the 'endianness' of the system.
3409 * SUCCESS on success and FAILURE on failure.
3412 static int s2io_set_swapper(struct s2io_nic
* sp
)
3414 struct net_device
*dev
= sp
->dev
;
3415 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
3416 u64 val64
, valt
, valr
;
3419 * Set proper endian settings and verify the same by reading
3420 * the PIF Feed-back register.
3423 val64
= readq(&bar0
->pif_rd_swapper_fb
);
3424 if (val64
!= 0x0123456789ABCDEFULL
) {
3426 u64 value
[] = { 0xC30000C3C30000C3ULL
, /* FE=1, SE=1 */
3427 0x8100008181000081ULL
, /* FE=1, SE=0 */
3428 0x4200004242000042ULL
, /* FE=0, SE=1 */
3429 0}; /* FE=0, SE=0 */
3432 writeq(value
[i
], &bar0
->swapper_ctrl
);
3433 val64
= readq(&bar0
->pif_rd_swapper_fb
);
3434 if (val64
== 0x0123456789ABCDEFULL
)
3439 DBG_PRINT(ERR_DBG
, "%s: Endian settings are wrong, ",
3441 DBG_PRINT(ERR_DBG
, "feedback read %llx\n",
3442 (unsigned long long) val64
);
3447 valr
= readq(&bar0
->swapper_ctrl
);
3450 valt
= 0x0123456789ABCDEFULL
;
3451 writeq(valt
, &bar0
->xmsi_address
);
3452 val64
= readq(&bar0
->xmsi_address
);
3456 u64 value
[] = { 0x00C3C30000C3C300ULL
, /* FE=1, SE=1 */
3457 0x0081810000818100ULL
, /* FE=1, SE=0 */
3458 0x0042420000424200ULL
, /* FE=0, SE=1 */
3459 0}; /* FE=0, SE=0 */
3462 writeq((value
[i
] | valr
), &bar0
->swapper_ctrl
);
3463 writeq(valt
, &bar0
->xmsi_address
);
3464 val64
= readq(&bar0
->xmsi_address
);
3470 unsigned long long x
= val64
;
3471 DBG_PRINT(ERR_DBG
, "Write failed, Xmsi_addr ");
3472 DBG_PRINT(ERR_DBG
, "reads:0x%llx\n", x
);
3476 val64
= readq(&bar0
->swapper_ctrl
);
3477 val64
&= 0xFFFF000000000000ULL
;
3481 * The device by default set to a big endian format, so a
3482 * big endian driver need not set anything.
3484 val64
|= (SWAPPER_CTRL_TXP_FE
|
3485 SWAPPER_CTRL_TXP_SE
|
3486 SWAPPER_CTRL_TXD_R_FE
|
3487 SWAPPER_CTRL_TXD_W_FE
|
3488 SWAPPER_CTRL_TXF_R_FE
|
3489 SWAPPER_CTRL_RXD_R_FE
|
3490 SWAPPER_CTRL_RXD_W_FE
|
3491 SWAPPER_CTRL_RXF_W_FE
|
3492 SWAPPER_CTRL_XMSI_FE
|
3493 SWAPPER_CTRL_STATS_FE
| SWAPPER_CTRL_STATS_SE
);
3494 if (sp
->intr_type
== INTA
)
3495 val64
|= SWAPPER_CTRL_XMSI_SE
;
3496 writeq(val64
, &bar0
->swapper_ctrl
);
3499 * Initially we enable all bits to make it accessible by the
3500 * driver, then we selectively enable only those bits that
3503 val64
|= (SWAPPER_CTRL_TXP_FE
|
3504 SWAPPER_CTRL_TXP_SE
|
3505 SWAPPER_CTRL_TXD_R_FE
|
3506 SWAPPER_CTRL_TXD_R_SE
|
3507 SWAPPER_CTRL_TXD_W_FE
|
3508 SWAPPER_CTRL_TXD_W_SE
|
3509 SWAPPER_CTRL_TXF_R_FE
|
3510 SWAPPER_CTRL_RXD_R_FE
|
3511 SWAPPER_CTRL_RXD_R_SE
|
3512 SWAPPER_CTRL_RXD_W_FE
|
3513 SWAPPER_CTRL_RXD_W_SE
|
3514 SWAPPER_CTRL_RXF_W_FE
|
3515 SWAPPER_CTRL_XMSI_FE
|
3516 SWAPPER_CTRL_STATS_FE
| SWAPPER_CTRL_STATS_SE
);
3517 if (sp
->intr_type
== INTA
)
3518 val64
|= SWAPPER_CTRL_XMSI_SE
;
3519 writeq(val64
, &bar0
->swapper_ctrl
);
3521 val64
= readq(&bar0
->swapper_ctrl
);
3524 * Verifying if endian settings are accurate by reading a
3525 * feedback register.
3527 val64
= readq(&bar0
->pif_rd_swapper_fb
);
3528 if (val64
!= 0x0123456789ABCDEFULL
) {
3529 /* Endian settings are incorrect, calls for another dekko. */
3530 DBG_PRINT(ERR_DBG
, "%s: Endian settings are wrong, ",
3532 DBG_PRINT(ERR_DBG
, "feedback read %llx\n",
3533 (unsigned long long) val64
);
3540 static int wait_for_msix_trans(struct s2io_nic
*nic
, int i
)
3542 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
3544 int ret
= 0, cnt
= 0;
3547 val64
= readq(&bar0
->xmsi_access
);
3548 if (!(val64
& BIT(15)))
3554 DBG_PRINT(ERR_DBG
, "XMSI # %d Access failed\n", i
);
3561 static void restore_xmsi_data(struct s2io_nic
*nic
)
3563 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
3567 for (i
=0; i
< MAX_REQUESTED_MSI_X
; i
++) {
3568 writeq(nic
->msix_info
[i
].addr
, &bar0
->xmsi_address
);
3569 writeq(nic
->msix_info
[i
].data
, &bar0
->xmsi_data
);
3570 val64
= (BIT(7) | BIT(15) | vBIT(i
, 26, 6));
3571 writeq(val64
, &bar0
->xmsi_access
);
3572 if (wait_for_msix_trans(nic
, i
)) {
3573 DBG_PRINT(ERR_DBG
, "failed in %s\n", __FUNCTION__
);
3579 static void store_xmsi_data(struct s2io_nic
*nic
)
3581 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
3582 u64 val64
, addr
, data
;
3585 /* Store and display */
3586 for (i
=0; i
< MAX_REQUESTED_MSI_X
; i
++) {
3587 val64
= (BIT(15) | vBIT(i
, 26, 6));
3588 writeq(val64
, &bar0
->xmsi_access
);
3589 if (wait_for_msix_trans(nic
, i
)) {
3590 DBG_PRINT(ERR_DBG
, "failed in %s\n", __FUNCTION__
);
3593 addr
= readq(&bar0
->xmsi_address
);
3594 data
= readq(&bar0
->xmsi_data
);
3596 nic
->msix_info
[i
].addr
= addr
;
3597 nic
->msix_info
[i
].data
= data
;
3602 int s2io_enable_msi(struct s2io_nic
*nic
)
3604 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
3605 u16 msi_ctrl
, msg_val
;
3606 struct config_param
*config
= &nic
->config
;
3607 struct net_device
*dev
= nic
->dev
;
3608 u64 val64
, tx_mat
, rx_mat
;
3611 val64
= readq(&bar0
->pic_control
);
3613 writeq(val64
, &bar0
->pic_control
);
3615 err
= pci_enable_msi(nic
->pdev
);
3617 DBG_PRINT(ERR_DBG
, "%s: enabling MSI failed\n",
3623 * Enable MSI and use MSI-1 in stead of the standard MSI-0
3624 * for interrupt handling.
3626 pci_read_config_word(nic
->pdev
, 0x4c, &msg_val
);
3628 pci_write_config_word(nic
->pdev
, 0x4c, msg_val
);
3629 pci_read_config_word(nic
->pdev
, 0x4c, &msg_val
);
3631 pci_read_config_word(nic
->pdev
, 0x42, &msi_ctrl
);
3633 pci_write_config_word(nic
->pdev
, 0x42, msi_ctrl
);
3635 /* program MSI-1 into all usable Tx_Mat and Rx_Mat fields */
3636 tx_mat
= readq(&bar0
->tx_mat0_n
[0]);
3637 for (i
=0; i
<config
->tx_fifo_num
; i
++) {
3638 tx_mat
|= TX_MAT_SET(i
, 1);
3640 writeq(tx_mat
, &bar0
->tx_mat0_n
[0]);
3642 rx_mat
= readq(&bar0
->rx_mat
);
3643 for (i
=0; i
<config
->rx_ring_num
; i
++) {
3644 rx_mat
|= RX_MAT_SET(i
, 1);
3646 writeq(rx_mat
, &bar0
->rx_mat
);
3648 dev
->irq
= nic
->pdev
->irq
;
3652 static int s2io_enable_msi_x(struct s2io_nic
*nic
)
3654 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
3656 u16 msi_control
; /* Temp variable */
3657 int ret
, i
, j
, msix_indx
= 1;
3659 nic
->entries
= kmalloc(MAX_REQUESTED_MSI_X
* sizeof(struct msix_entry
),
3661 if (nic
->entries
== NULL
) {
3662 DBG_PRINT(ERR_DBG
, "%s: Memory allocation failed\n", __FUNCTION__
);
3665 memset(nic
->entries
, 0, MAX_REQUESTED_MSI_X
* sizeof(struct msix_entry
));
3668 kmalloc(MAX_REQUESTED_MSI_X
* sizeof(struct s2io_msix_entry
),
3670 if (nic
->s2io_entries
== NULL
) {
3671 DBG_PRINT(ERR_DBG
, "%s: Memory allocation failed\n", __FUNCTION__
);
3672 kfree(nic
->entries
);
3675 memset(nic
->s2io_entries
, 0,
3676 MAX_REQUESTED_MSI_X
* sizeof(struct s2io_msix_entry
));
3678 for (i
=0; i
< MAX_REQUESTED_MSI_X
; i
++) {
3679 nic
->entries
[i
].entry
= i
;
3680 nic
->s2io_entries
[i
].entry
= i
;
3681 nic
->s2io_entries
[i
].arg
= NULL
;
3682 nic
->s2io_entries
[i
].in_use
= 0;
3685 tx_mat
= readq(&bar0
->tx_mat0_n
[0]);
3686 for (i
=0; i
<nic
->config
.tx_fifo_num
; i
++, msix_indx
++) {
3687 tx_mat
|= TX_MAT_SET(i
, msix_indx
);
3688 nic
->s2io_entries
[msix_indx
].arg
= &nic
->mac_control
.fifos
[i
];
3689 nic
->s2io_entries
[msix_indx
].type
= MSIX_FIFO_TYPE
;
3690 nic
->s2io_entries
[msix_indx
].in_use
= MSIX_FLG
;
3692 writeq(tx_mat
, &bar0
->tx_mat0_n
[0]);
3694 if (!nic
->config
.bimodal
) {
3695 rx_mat
= readq(&bar0
->rx_mat
);
3696 for (j
=0; j
<nic
->config
.rx_ring_num
; j
++, msix_indx
++) {
3697 rx_mat
|= RX_MAT_SET(j
, msix_indx
);
3698 nic
->s2io_entries
[msix_indx
].arg
= &nic
->mac_control
.rings
[j
];
3699 nic
->s2io_entries
[msix_indx
].type
= MSIX_RING_TYPE
;
3700 nic
->s2io_entries
[msix_indx
].in_use
= MSIX_FLG
;
3702 writeq(rx_mat
, &bar0
->rx_mat
);
3704 tx_mat
= readq(&bar0
->tx_mat0_n
[7]);
3705 for (j
=0; j
<nic
->config
.rx_ring_num
; j
++, msix_indx
++) {
3706 tx_mat
|= TX_MAT_SET(i
, msix_indx
);
3707 nic
->s2io_entries
[msix_indx
].arg
= &nic
->mac_control
.rings
[j
];
3708 nic
->s2io_entries
[msix_indx
].type
= MSIX_RING_TYPE
;
3709 nic
->s2io_entries
[msix_indx
].in_use
= MSIX_FLG
;
3711 writeq(tx_mat
, &bar0
->tx_mat0_n
[7]);
3714 nic
->avail_msix_vectors
= 0;
3715 ret
= pci_enable_msix(nic
->pdev
, nic
->entries
, MAX_REQUESTED_MSI_X
);
3716 /* We fail init if error or we get less vectors than min required */
3717 if (ret
>= (nic
->config
.tx_fifo_num
+ nic
->config
.rx_ring_num
+ 1)) {
3718 nic
->avail_msix_vectors
= ret
;
3719 ret
= pci_enable_msix(nic
->pdev
, nic
->entries
, ret
);
3722 DBG_PRINT(ERR_DBG
, "%s: Enabling MSIX failed\n", nic
->dev
->name
);
3723 kfree(nic
->entries
);
3724 kfree(nic
->s2io_entries
);
3725 nic
->entries
= NULL
;
3726 nic
->s2io_entries
= NULL
;
3727 nic
->avail_msix_vectors
= 0;
3730 if (!nic
->avail_msix_vectors
)
3731 nic
->avail_msix_vectors
= MAX_REQUESTED_MSI_X
;
3734 * To enable MSI-X, MSI also needs to be enabled, due to a bug
3735 * in the herc NIC. (Temp change, needs to be removed later)
3737 pci_read_config_word(nic
->pdev
, 0x42, &msi_control
);
3738 msi_control
|= 0x1; /* Enable MSI */
3739 pci_write_config_word(nic
->pdev
, 0x42, msi_control
);
3744 /* ********************************************************* *
3745 * Functions defined below concern the OS part of the driver *
3746 * ********************************************************* */
3749 * s2io_open - open entry point of the driver
3750 * @dev : pointer to the device structure.
3752 * This function is the open entry point of the driver. It mainly calls a
3753 * function to allocate Rx buffers and inserts them into the buffer
3754 * descriptors and then enables the Rx part of the NIC.
3756 * 0 on success and an appropriate (-)ve integer as defined in errno.h
3760 static int s2io_open(struct net_device
*dev
)
3762 struct s2io_nic
*sp
= dev
->priv
;
3766 * Make sure you have link off by default every time
3767 * Nic is initialized
3769 netif_carrier_off(dev
);
3770 sp
->last_link_state
= 0;
3772 /* Initialize H/W and enable interrupts */
3773 err
= s2io_card_up(sp
);
3775 DBG_PRINT(ERR_DBG
, "%s: H/W initialization failed\n",
3777 goto hw_init_failed
;
3780 if (s2io_set_mac_addr(dev
, dev
->dev_addr
) == FAILURE
) {
3781 DBG_PRINT(ERR_DBG
, "Set Mac Address Failed\n");
3784 goto hw_init_failed
;
3787 netif_start_queue(dev
);
3791 if (sp
->intr_type
== MSI_X
) {
3794 if (sp
->s2io_entries
)
3795 kfree(sp
->s2io_entries
);
3801 * s2io_close -close entry point of the driver
3802 * @dev : device pointer.
3804 * This is the stop entry point of the driver. It needs to undo exactly
3805 * whatever was done by the open entry point,thus it's usually referred to
3806 * as the close function.Among other things this function mainly stops the
3807 * Rx side of the NIC and frees all the Rx buffers in the Rx rings.
3809 * 0 on success and an appropriate (-)ve integer as defined in errno.h
3813 static int s2io_close(struct net_device
*dev
)
3815 struct s2io_nic
*sp
= dev
->priv
;
3817 netif_stop_queue(dev
);
3818 /* Reset card, kill tasklet and free Tx and Rx buffers. */
3821 sp
->device_close_flag
= TRUE
; /* Device is shut down. */
3826 * s2io_xmit - Tx entry point of te driver
3827 * @skb : the socket buffer containing the Tx data.
3828 * @dev : device pointer.
3830 * This function is the Tx entry point of the driver. S2IO NIC supports
3831 * certain protocol assist features on Tx side, namely CSO, S/G, LSO.
3832 * NOTE: when device cant queue the pkt,just the trans_start variable will
3835 * 0 on success & 1 on failure.
3838 static int s2io_xmit(struct sk_buff
*skb
, struct net_device
*dev
)
3840 struct s2io_nic
*sp
= dev
->priv
;
3841 u16 frg_cnt
, frg_len
, i
, queue
, queue_len
, put_off
, get_off
;
3844 struct TxFIFO_element __iomem
*tx_fifo
;
3845 unsigned long flags
;
3847 int vlan_priority
= 0;
3848 struct mac_info
*mac_control
;
3849 struct config_param
*config
;
3852 mac_control
= &sp
->mac_control
;
3853 config
= &sp
->config
;
3855 DBG_PRINT(TX_DBG
, "%s: In Neterion Tx routine\n", dev
->name
);
3856 spin_lock_irqsave(&sp
->tx_lock
, flags
);
3857 if (atomic_read(&sp
->card_state
) == CARD_DOWN
) {
3858 DBG_PRINT(TX_DBG
, "%s: Card going down for reset\n",
3860 spin_unlock_irqrestore(&sp
->tx_lock
, flags
);
3867 /* Get Fifo number to Transmit based on vlan priority */
3868 if (sp
->vlgrp
&& vlan_tx_tag_present(skb
)) {
3869 vlan_tag
= vlan_tx_tag_get(skb
);
3870 vlan_priority
= vlan_tag
>> 13;
3871 queue
= config
->fifo_mapping
[vlan_priority
];
3874 put_off
= (u16
) mac_control
->fifos
[queue
].tx_curr_put_info
.offset
;
3875 get_off
= (u16
) mac_control
->fifos
[queue
].tx_curr_get_info
.offset
;
3876 txdp
= (struct TxD
*) mac_control
->fifos
[queue
].list_info
[put_off
].
3879 queue_len
= mac_control
->fifos
[queue
].tx_curr_put_info
.fifo_len
+ 1;
3880 /* Avoid "put" pointer going beyond "get" pointer */
3881 if (txdp
->Host_Control
||
3882 ((put_off
+1) == queue_len
? 0 : (put_off
+1)) == get_off
) {
3883 DBG_PRINT(TX_DBG
, "Error in xmit, No free TXDs.\n");
3884 netif_stop_queue(dev
);
3886 spin_unlock_irqrestore(&sp
->tx_lock
, flags
);
3890 /* A buffer with no data will be dropped */
3892 DBG_PRINT(TX_DBG
, "%s:Buffer has no data..\n", dev
->name
);
3894 spin_unlock_irqrestore(&sp
->tx_lock
, flags
);
3898 offload_type
= s2io_offload_type(skb
);
3899 if (offload_type
& (SKB_GSO_TCPV4
| SKB_GSO_TCPV6
)) {
3900 txdp
->Control_1
|= TXD_TCP_LSO_EN
;
3901 txdp
->Control_1
|= TXD_TCP_LSO_MSS(s2io_tcp_mss(skb
));
3903 if (skb
->ip_summed
== CHECKSUM_PARTIAL
) {
3905 (TXD_TX_CKO_IPV4_EN
| TXD_TX_CKO_TCP_EN
|
3908 txdp
->Control_1
|= TXD_GATHER_CODE_FIRST
;
3909 txdp
->Control_1
|= TXD_LIST_OWN_XENA
;
3910 txdp
->Control_2
|= config
->tx_intr_type
;
3912 if (sp
->vlgrp
&& vlan_tx_tag_present(skb
)) {
3913 txdp
->Control_2
|= TXD_VLAN_ENABLE
;
3914 txdp
->Control_2
|= TXD_VLAN_TAG(vlan_tag
);
3917 frg_len
= skb
->len
- skb
->data_len
;
3918 if (offload_type
== SKB_GSO_UDP
) {
3921 ufo_size
= s2io_udp_mss(skb
);
3923 txdp
->Control_1
|= TXD_UFO_EN
;
3924 txdp
->Control_1
|= TXD_UFO_MSS(ufo_size
);
3925 txdp
->Control_1
|= TXD_BUFFER0_SIZE(8);
3927 sp
->ufo_in_band_v
[put_off
] =
3928 (u64
)skb_shinfo(skb
)->ip6_frag_id
;
3930 sp
->ufo_in_band_v
[put_off
] =
3931 (u64
)skb_shinfo(skb
)->ip6_frag_id
<< 32;
3933 txdp
->Host_Control
= (unsigned long)sp
->ufo_in_band_v
;
3934 txdp
->Buffer_Pointer
= pci_map_single(sp
->pdev
,
3936 sizeof(u64
), PCI_DMA_TODEVICE
);
3940 txdp
->Buffer_Pointer
= pci_map_single
3941 (sp
->pdev
, skb
->data
, frg_len
, PCI_DMA_TODEVICE
);
3942 txdp
->Host_Control
= (unsigned long) skb
;
3943 txdp
->Control_1
|= TXD_BUFFER0_SIZE(frg_len
);
3944 if (offload_type
== SKB_GSO_UDP
)
3945 txdp
->Control_1
|= TXD_UFO_EN
;
3947 frg_cnt
= skb_shinfo(skb
)->nr_frags
;
3948 /* For fragmented SKB. */
3949 for (i
= 0; i
< frg_cnt
; i
++) {
3950 skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[i
];
3951 /* A '0' length fragment will be ignored */
3955 txdp
->Buffer_Pointer
= (u64
) pci_map_page
3956 (sp
->pdev
, frag
->page
, frag
->page_offset
,
3957 frag
->size
, PCI_DMA_TODEVICE
);
3958 txdp
->Control_1
= TXD_BUFFER0_SIZE(frag
->size
);
3959 if (offload_type
== SKB_GSO_UDP
)
3960 txdp
->Control_1
|= TXD_UFO_EN
;
3962 txdp
->Control_1
|= TXD_GATHER_CODE_LAST
;
3964 if (offload_type
== SKB_GSO_UDP
)
3965 frg_cnt
++; /* as Txd0 was used for inband header */
3967 tx_fifo
= mac_control
->tx_FIFO_start
[queue
];
3968 val64
= mac_control
->fifos
[queue
].list_info
[put_off
].list_phy_addr
;
3969 writeq(val64
, &tx_fifo
->TxDL_Pointer
);
3971 val64
= (TX_FIFO_LAST_TXD_NUM(frg_cnt
) | TX_FIFO_FIRST_LIST
|
3974 val64
|= TX_FIFO_SPECIAL_FUNC
;
3976 writeq(val64
, &tx_fifo
->List_Control
);
3981 if (put_off
== mac_control
->fifos
[queue
].tx_curr_put_info
.fifo_len
+ 1)
3983 mac_control
->fifos
[queue
].tx_curr_put_info
.offset
= put_off
;
3985 /* Avoid "put" pointer going beyond "get" pointer */
3986 if (((put_off
+1) == queue_len
? 0 : (put_off
+1)) == get_off
) {
3987 sp
->mac_control
.stats_info
->sw_stat
.fifo_full_cnt
++;
3989 "No free TxDs for xmit, Put: 0x%x Get:0x%x\n",
3991 netif_stop_queue(dev
);
3994 dev
->trans_start
= jiffies
;
3995 spin_unlock_irqrestore(&sp
->tx_lock
, flags
);
4001 s2io_alarm_handle(unsigned long data
)
4003 struct s2io_nic
*sp
= (struct s2io_nic
*)data
;
4005 alarm_intr_handler(sp
);
4006 mod_timer(&sp
->alarm_timer
, jiffies
+ HZ
/ 2);
4009 static int s2io_chk_rx_buffers(struct s2io_nic
*sp
, int rng_n
)
4011 int rxb_size
, level
;
4014 rxb_size
= atomic_read(&sp
->rx_bufs_left
[rng_n
]);
4015 level
= rx_buffer_level(sp
, rxb_size
, rng_n
);
4017 if ((level
== PANIC
) && (!TASKLET_IN_USE
)) {
4019 DBG_PRINT(INTR_DBG
, "%s: Rx BD hit ", __FUNCTION__
);
4020 DBG_PRINT(INTR_DBG
, "PANIC levels\n");
4021 if ((ret
= fill_rx_buffers(sp
, rng_n
)) == -ENOMEM
) {
4022 DBG_PRINT(ERR_DBG
, "Out of memory in %s",
4024 clear_bit(0, (&sp
->tasklet_status
));
4027 clear_bit(0, (&sp
->tasklet_status
));
4028 } else if (level
== LOW
)
4029 tasklet_schedule(&sp
->task
);
4031 } else if (fill_rx_buffers(sp
, rng_n
) == -ENOMEM
) {
4032 DBG_PRINT(ERR_DBG
, "%s:Out of memory", sp
->dev
->name
);
4033 DBG_PRINT(ERR_DBG
, " in Rx Intr!!\n");
4038 static irqreturn_t
s2io_msi_handle(int irq
, void *dev_id
)
4040 struct net_device
*dev
= (struct net_device
*) dev_id
;
4041 struct s2io_nic
*sp
= dev
->priv
;
4043 struct mac_info
*mac_control
;
4044 struct config_param
*config
;
4046 atomic_inc(&sp
->isr_cnt
);
4047 mac_control
= &sp
->mac_control
;
4048 config
= &sp
->config
;
4049 DBG_PRINT(INTR_DBG
, "%s: MSI handler\n", __FUNCTION__
);
4051 /* If Intr is because of Rx Traffic */
4052 for (i
= 0; i
< config
->rx_ring_num
; i
++)
4053 rx_intr_handler(&mac_control
->rings
[i
]);
4055 /* If Intr is because of Tx Traffic */
4056 for (i
= 0; i
< config
->tx_fifo_num
; i
++)
4057 tx_intr_handler(&mac_control
->fifos
[i
]);
4060 * If the Rx buffer count is below the panic threshold then
4061 * reallocate the buffers from the interrupt handler itself,
4062 * else schedule a tasklet to reallocate the buffers.
4064 for (i
= 0; i
< config
->rx_ring_num
; i
++)
4065 s2io_chk_rx_buffers(sp
, i
);
4067 atomic_dec(&sp
->isr_cnt
);
4071 static irqreturn_t
s2io_msix_ring_handle(int irq
, void *dev_id
)
4073 struct ring_info
*ring
= (struct ring_info
*)dev_id
;
4074 struct s2io_nic
*sp
= ring
->nic
;
4076 atomic_inc(&sp
->isr_cnt
);
4078 rx_intr_handler(ring
);
4079 s2io_chk_rx_buffers(sp
, ring
->ring_no
);
4081 atomic_dec(&sp
->isr_cnt
);
4085 static irqreturn_t
s2io_msix_fifo_handle(int irq
, void *dev_id
)
4087 struct fifo_info
*fifo
= (struct fifo_info
*)dev_id
;
4088 struct s2io_nic
*sp
= fifo
->nic
;
4090 atomic_inc(&sp
->isr_cnt
);
4091 tx_intr_handler(fifo
);
4092 atomic_dec(&sp
->isr_cnt
);
4095 static void s2io_txpic_intr_handle(struct s2io_nic
*sp
)
4097 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
4100 val64
= readq(&bar0
->pic_int_status
);
4101 if (val64
& PIC_INT_GPIO
) {
4102 val64
= readq(&bar0
->gpio_int_reg
);
4103 if ((val64
& GPIO_INT_REG_LINK_DOWN
) &&
4104 (val64
& GPIO_INT_REG_LINK_UP
)) {
4106 * This is unstable state so clear both up/down
4107 * interrupt and adapter to re-evaluate the link state.
4109 val64
|= GPIO_INT_REG_LINK_DOWN
;
4110 val64
|= GPIO_INT_REG_LINK_UP
;
4111 writeq(val64
, &bar0
->gpio_int_reg
);
4112 val64
= readq(&bar0
->gpio_int_mask
);
4113 val64
&= ~(GPIO_INT_MASK_LINK_UP
|
4114 GPIO_INT_MASK_LINK_DOWN
);
4115 writeq(val64
, &bar0
->gpio_int_mask
);
4117 else if (val64
& GPIO_INT_REG_LINK_UP
) {
4118 val64
= readq(&bar0
->adapter_status
);
4119 /* Enable Adapter */
4120 val64
= readq(&bar0
->adapter_control
);
4121 val64
|= ADAPTER_CNTL_EN
;
4122 writeq(val64
, &bar0
->adapter_control
);
4123 val64
|= ADAPTER_LED_ON
;
4124 writeq(val64
, &bar0
->adapter_control
);
4125 if (!sp
->device_enabled_once
)
4126 sp
->device_enabled_once
= 1;
4128 s2io_link(sp
, LINK_UP
);
4130 * unmask link down interrupt and mask link-up
4133 val64
= readq(&bar0
->gpio_int_mask
);
4134 val64
&= ~GPIO_INT_MASK_LINK_DOWN
;
4135 val64
|= GPIO_INT_MASK_LINK_UP
;
4136 writeq(val64
, &bar0
->gpio_int_mask
);
4138 }else if (val64
& GPIO_INT_REG_LINK_DOWN
) {
4139 val64
= readq(&bar0
->adapter_status
);
4140 s2io_link(sp
, LINK_DOWN
);
4141 /* Link is down so unmaks link up interrupt */
4142 val64
= readq(&bar0
->gpio_int_mask
);
4143 val64
&= ~GPIO_INT_MASK_LINK_UP
;
4144 val64
|= GPIO_INT_MASK_LINK_DOWN
;
4145 writeq(val64
, &bar0
->gpio_int_mask
);
4148 val64
= readq(&bar0
->adapter_control
);
4149 val64
= val64
&(~ADAPTER_LED_ON
);
4150 writeq(val64
, &bar0
->adapter_control
);
4153 val64
= readq(&bar0
->gpio_int_mask
);
4157 * s2io_isr - ISR handler of the device .
4158 * @irq: the irq of the device.
4159 * @dev_id: a void pointer to the dev structure of the NIC.
4160 * Description: This function is the ISR handler of the device. It
4161 * identifies the reason for the interrupt and calls the relevant
4162 * service routines. As a contongency measure, this ISR allocates the
4163 * recv buffers, if their numbers are below the panic value which is
4164 * presently set to 25% of the original number of rcv buffers allocated.
4166 * IRQ_HANDLED: will be returned if IRQ was handled by this routine
4167 * IRQ_NONE: will be returned if interrupt is not from our device
4169 static irqreturn_t
s2io_isr(int irq
, void *dev_id
)
4171 struct net_device
*dev
= (struct net_device
*) dev_id
;
4172 struct s2io_nic
*sp
= dev
->priv
;
4173 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
4176 struct mac_info
*mac_control
;
4177 struct config_param
*config
;
4179 atomic_inc(&sp
->isr_cnt
);
4180 mac_control
= &sp
->mac_control
;
4181 config
= &sp
->config
;
4184 * Identify the cause for interrupt and call the appropriate
4185 * interrupt handler. Causes for the interrupt could be;
4189 * 4. Error in any functional blocks of the NIC.
4191 reason
= readq(&bar0
->general_int_status
);
4194 /* The interrupt was not raised by us. */
4195 atomic_dec(&sp
->isr_cnt
);
4198 else if (unlikely(reason
== S2IO_MINUS_ONE
) ) {
4199 /* Disable device and get out */
4200 atomic_dec(&sp
->isr_cnt
);
4205 if (reason
& GEN_INTR_RXTRAFFIC
) {
4206 if ( likely ( netif_rx_schedule_prep(dev
)) ) {
4207 __netif_rx_schedule(dev
);
4208 writeq(S2IO_MINUS_ONE
, &bar0
->rx_traffic_mask
);
4211 writeq(S2IO_MINUS_ONE
, &bar0
->rx_traffic_int
);
4215 * Rx handler is called by default, without checking for the
4216 * cause of interrupt.
4217 * rx_traffic_int reg is an R1 register, writing all 1's
4218 * will ensure that the actual interrupt causing bit get's
4219 * cleared and hence a read can be avoided.
4221 if (reason
& GEN_INTR_RXTRAFFIC
)
4222 writeq(S2IO_MINUS_ONE
, &bar0
->rx_traffic_int
);
4224 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
4225 rx_intr_handler(&mac_control
->rings
[i
]);
4230 * tx_traffic_int reg is an R1 register, writing all 1's
4231 * will ensure that the actual interrupt causing bit get's
4232 * cleared and hence a read can be avoided.
4234 if (reason
& GEN_INTR_TXTRAFFIC
)
4235 writeq(S2IO_MINUS_ONE
, &bar0
->tx_traffic_int
);
4237 for (i
= 0; i
< config
->tx_fifo_num
; i
++)
4238 tx_intr_handler(&mac_control
->fifos
[i
]);
4240 if (reason
& GEN_INTR_TXPIC
)
4241 s2io_txpic_intr_handle(sp
);
4243 * If the Rx buffer count is below the panic threshold then
4244 * reallocate the buffers from the interrupt handler itself,
4245 * else schedule a tasklet to reallocate the buffers.
4248 for (i
= 0; i
< config
->rx_ring_num
; i
++)
4249 s2io_chk_rx_buffers(sp
, i
);
4252 writeq(0, &bar0
->general_int_mask
);
4253 readl(&bar0
->general_int_status
);
4255 atomic_dec(&sp
->isr_cnt
);
4262 static void s2io_updt_stats(struct s2io_nic
*sp
)
4264 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
4268 if (atomic_read(&sp
->card_state
) == CARD_UP
) {
4269 /* Apprx 30us on a 133 MHz bus */
4270 val64
= SET_UPDT_CLICKS(10) |
4271 STAT_CFG_ONE_SHOT_EN
| STAT_CFG_STAT_EN
;
4272 writeq(val64
, &bar0
->stat_cfg
);
4275 val64
= readq(&bar0
->stat_cfg
);
4276 if (!(val64
& BIT(0)))
4280 break; /* Updt failed */
4283 memset(sp
->mac_control
.stats_info
, 0, sizeof(struct stat_block
));
4288 * s2io_get_stats - Updates the device statistics structure.
4289 * @dev : pointer to the device structure.
4291 * This function updates the device statistics structure in the s2io_nic
4292 * structure and returns a pointer to the same.
4294 * pointer to the updated net_device_stats structure.
4297 static struct net_device_stats
*s2io_get_stats(struct net_device
*dev
)
4299 struct s2io_nic
*sp
= dev
->priv
;
4300 struct mac_info
*mac_control
;
4301 struct config_param
*config
;
4304 mac_control
= &sp
->mac_control
;
4305 config
= &sp
->config
;
4307 /* Configure Stats for immediate updt */
4308 s2io_updt_stats(sp
);
4310 sp
->stats
.tx_packets
=
4311 le32_to_cpu(mac_control
->stats_info
->tmac_frms
);
4312 sp
->stats
.tx_errors
=
4313 le32_to_cpu(mac_control
->stats_info
->tmac_any_err_frms
);
4314 sp
->stats
.rx_errors
=
4315 le64_to_cpu(mac_control
->stats_info
->rmac_drop_frms
);
4316 sp
->stats
.multicast
=
4317 le32_to_cpu(mac_control
->stats_info
->rmac_vld_mcst_frms
);
4318 sp
->stats
.rx_length_errors
=
4319 le64_to_cpu(mac_control
->stats_info
->rmac_long_frms
);
4321 return (&sp
->stats
);
4325 * s2io_set_multicast - entry point for multicast address enable/disable.
4326 * @dev : pointer to the device structure
4328 * This function is a driver entry point which gets called by the kernel
4329 * whenever multicast addresses must be enabled/disabled. This also gets
4330 * called to set/reset promiscuous mode. Depending on the deivce flag, we
4331 * determine, if multicast address must be enabled or if promiscuous mode
4332 * is to be disabled etc.
4337 static void s2io_set_multicast(struct net_device
*dev
)
4340 struct dev_mc_list
*mclist
;
4341 struct s2io_nic
*sp
= dev
->priv
;
4342 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
4343 u64 val64
= 0, multi_mac
= 0x010203040506ULL
, mask
=
4345 u64 dis_addr
= 0xffffffffffffULL
, mac_addr
= 0;
4348 if ((dev
->flags
& IFF_ALLMULTI
) && (!sp
->m_cast_flg
)) {
4349 /* Enable all Multicast addresses */
4350 writeq(RMAC_ADDR_DATA0_MEM_ADDR(multi_mac
),
4351 &bar0
->rmac_addr_data0_mem
);
4352 writeq(RMAC_ADDR_DATA1_MEM_MASK(mask
),
4353 &bar0
->rmac_addr_data1_mem
);
4354 val64
= RMAC_ADDR_CMD_MEM_WE
|
4355 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD
|
4356 RMAC_ADDR_CMD_MEM_OFFSET(MAC_MC_ALL_MC_ADDR_OFFSET
);
4357 writeq(val64
, &bar0
->rmac_addr_cmd_mem
);
4358 /* Wait till command completes */
4359 wait_for_cmd_complete(&bar0
->rmac_addr_cmd_mem
,
4360 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING
,
4364 sp
->all_multi_pos
= MAC_MC_ALL_MC_ADDR_OFFSET
;
4365 } else if ((dev
->flags
& IFF_ALLMULTI
) && (sp
->m_cast_flg
)) {
4366 /* Disable all Multicast addresses */
4367 writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr
),
4368 &bar0
->rmac_addr_data0_mem
);
4369 writeq(RMAC_ADDR_DATA1_MEM_MASK(0x0),
4370 &bar0
->rmac_addr_data1_mem
);
4371 val64
= RMAC_ADDR_CMD_MEM_WE
|
4372 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD
|
4373 RMAC_ADDR_CMD_MEM_OFFSET(sp
->all_multi_pos
);
4374 writeq(val64
, &bar0
->rmac_addr_cmd_mem
);
4375 /* Wait till command completes */
4376 wait_for_cmd_complete(&bar0
->rmac_addr_cmd_mem
,
4377 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING
,
4381 sp
->all_multi_pos
= 0;
4384 if ((dev
->flags
& IFF_PROMISC
) && (!sp
->promisc_flg
)) {
4385 /* Put the NIC into promiscuous mode */
4386 add
= &bar0
->mac_cfg
;
4387 val64
= readq(&bar0
->mac_cfg
);
4388 val64
|= MAC_CFG_RMAC_PROM_ENABLE
;
4390 writeq(RMAC_CFG_KEY(0x4C0D), &bar0
->rmac_cfg_key
);
4391 writel((u32
) val64
, add
);
4392 writeq(RMAC_CFG_KEY(0x4C0D), &bar0
->rmac_cfg_key
);
4393 writel((u32
) (val64
>> 32), (add
+ 4));
4395 if (vlan_tag_strip
!= 1) {
4396 val64
= readq(&bar0
->rx_pa_cfg
);
4397 val64
&= ~RX_PA_CFG_STRIP_VLAN_TAG
;
4398 writeq(val64
, &bar0
->rx_pa_cfg
);
4399 vlan_strip_flag
= 0;
4402 val64
= readq(&bar0
->mac_cfg
);
4403 sp
->promisc_flg
= 1;
4404 DBG_PRINT(INFO_DBG
, "%s: entered promiscuous mode\n",
4406 } else if (!(dev
->flags
& IFF_PROMISC
) && (sp
->promisc_flg
)) {
4407 /* Remove the NIC from promiscuous mode */
4408 add
= &bar0
->mac_cfg
;
4409 val64
= readq(&bar0
->mac_cfg
);
4410 val64
&= ~MAC_CFG_RMAC_PROM_ENABLE
;
4412 writeq(RMAC_CFG_KEY(0x4C0D), &bar0
->rmac_cfg_key
);
4413 writel((u32
) val64
, add
);
4414 writeq(RMAC_CFG_KEY(0x4C0D), &bar0
->rmac_cfg_key
);
4415 writel((u32
) (val64
>> 32), (add
+ 4));
4417 if (vlan_tag_strip
!= 0) {
4418 val64
= readq(&bar0
->rx_pa_cfg
);
4419 val64
|= RX_PA_CFG_STRIP_VLAN_TAG
;
4420 writeq(val64
, &bar0
->rx_pa_cfg
);
4421 vlan_strip_flag
= 1;
4424 val64
= readq(&bar0
->mac_cfg
);
4425 sp
->promisc_flg
= 0;
4426 DBG_PRINT(INFO_DBG
, "%s: left promiscuous mode\n",
4430 /* Update individual M_CAST address list */
4431 if ((!sp
->m_cast_flg
) && dev
->mc_count
) {
4433 (MAX_ADDRS_SUPPORTED
- MAC_MC_ADDR_START_OFFSET
- 1)) {
4434 DBG_PRINT(ERR_DBG
, "%s: No more Rx filters ",
4436 DBG_PRINT(ERR_DBG
, "can be added, please enable ");
4437 DBG_PRINT(ERR_DBG
, "ALL_MULTI instead\n");
4441 prev_cnt
= sp
->mc_addr_count
;
4442 sp
->mc_addr_count
= dev
->mc_count
;
4444 /* Clear out the previous list of Mc in the H/W. */
4445 for (i
= 0; i
< prev_cnt
; i
++) {
4446 writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr
),
4447 &bar0
->rmac_addr_data0_mem
);
4448 writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
4449 &bar0
->rmac_addr_data1_mem
);
4450 val64
= RMAC_ADDR_CMD_MEM_WE
|
4451 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD
|
4452 RMAC_ADDR_CMD_MEM_OFFSET
4453 (MAC_MC_ADDR_START_OFFSET
+ i
);
4454 writeq(val64
, &bar0
->rmac_addr_cmd_mem
);
4456 /* Wait for command completes */
4457 if (wait_for_cmd_complete(&bar0
->rmac_addr_cmd_mem
,
4458 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING
,
4460 DBG_PRINT(ERR_DBG
, "%s: Adding ",
4462 DBG_PRINT(ERR_DBG
, "Multicasts failed\n");
4467 /* Create the new Rx filter list and update the same in H/W. */
4468 for (i
= 0, mclist
= dev
->mc_list
; i
< dev
->mc_count
;
4469 i
++, mclist
= mclist
->next
) {
4470 memcpy(sp
->usr_addrs
[i
].addr
, mclist
->dmi_addr
,
4473 for (j
= 0; j
< ETH_ALEN
; j
++) {
4474 mac_addr
|= mclist
->dmi_addr
[j
];
4478 writeq(RMAC_ADDR_DATA0_MEM_ADDR(mac_addr
),
4479 &bar0
->rmac_addr_data0_mem
);
4480 writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
4481 &bar0
->rmac_addr_data1_mem
);
4482 val64
= RMAC_ADDR_CMD_MEM_WE
|
4483 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD
|
4484 RMAC_ADDR_CMD_MEM_OFFSET
4485 (i
+ MAC_MC_ADDR_START_OFFSET
);
4486 writeq(val64
, &bar0
->rmac_addr_cmd_mem
);
4488 /* Wait for command completes */
4489 if (wait_for_cmd_complete(&bar0
->rmac_addr_cmd_mem
,
4490 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING
,
4492 DBG_PRINT(ERR_DBG
, "%s: Adding ",
4494 DBG_PRINT(ERR_DBG
, "Multicasts failed\n");
4502 * s2io_set_mac_addr - Programs the Xframe mac address
4503 * @dev : pointer to the device structure.
4504 * @addr: a uchar pointer to the new mac address which is to be set.
4505 * Description : This procedure will program the Xframe to receive
4506 * frames with new Mac Address
4507 * Return value: SUCCESS on success and an appropriate (-)ve integer
4508 * as defined in errno.h file on failure.
4511 static int s2io_set_mac_addr(struct net_device
*dev
, u8
* addr
)
4513 struct s2io_nic
*sp
= dev
->priv
;
4514 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
4515 register u64 val64
, mac_addr
= 0;
4517 u64 old_mac_addr
= 0;
4520 * Set the new MAC address as the new unicast filter and reflect this
4521 * change on the device address registered with the OS. It will be
4524 for (i
= 0; i
< ETH_ALEN
; i
++) {
4526 mac_addr
|= addr
[i
];
4528 old_mac_addr
|= sp
->def_mac_addr
[0].mac_addr
[i
];
4534 /* Update the internal structure with this new mac address */
4535 if(mac_addr
!= old_mac_addr
) {
4536 memset(sp
->def_mac_addr
[0].mac_addr
, 0, sizeof(ETH_ALEN
));
4537 sp
->def_mac_addr
[0].mac_addr
[5] = (u8
) (mac_addr
);
4538 sp
->def_mac_addr
[0].mac_addr
[4] = (u8
) (mac_addr
>> 8);
4539 sp
->def_mac_addr
[0].mac_addr
[3] = (u8
) (mac_addr
>> 16);
4540 sp
->def_mac_addr
[0].mac_addr
[2] = (u8
) (mac_addr
>> 24);
4541 sp
->def_mac_addr
[0].mac_addr
[1] = (u8
) (mac_addr
>> 32);
4542 sp
->def_mac_addr
[0].mac_addr
[0] = (u8
) (mac_addr
>> 40);
4545 writeq(RMAC_ADDR_DATA0_MEM_ADDR(mac_addr
),
4546 &bar0
->rmac_addr_data0_mem
);
4549 RMAC_ADDR_CMD_MEM_WE
| RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD
|
4550 RMAC_ADDR_CMD_MEM_OFFSET(0);
4551 writeq(val64
, &bar0
->rmac_addr_cmd_mem
);
4552 /* Wait till command completes */
4553 if (wait_for_cmd_complete(&bar0
->rmac_addr_cmd_mem
,
4554 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING
, S2IO_BIT_RESET
)) {
4555 DBG_PRINT(ERR_DBG
, "%s: set_mac_addr failed\n", dev
->name
);
4563 * s2io_ethtool_sset - Sets different link parameters.
4564 * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure.
4565 * @info: pointer to the structure with parameters given by ethtool to set
4568 * The function sets different link parameters provided by the user onto
4574 static int s2io_ethtool_sset(struct net_device
*dev
,
4575 struct ethtool_cmd
*info
)
4577 struct s2io_nic
*sp
= dev
->priv
;
4578 if ((info
->autoneg
== AUTONEG_ENABLE
) ||
4579 (info
->speed
!= SPEED_10000
) || (info
->duplex
!= DUPLEX_FULL
))
4582 s2io_close(sp
->dev
);
4590 * s2io_ethtol_gset - Return link specific information.
4591 * @sp : private member of the device structure, pointer to the
4592 * s2io_nic structure.
4593 * @info : pointer to the structure with parameters given by ethtool
4594 * to return link information.
4596 * Returns link specific information like speed, duplex etc.. to ethtool.
4598 * return 0 on success.
4601 static int s2io_ethtool_gset(struct net_device
*dev
, struct ethtool_cmd
*info
)
4603 struct s2io_nic
*sp
= dev
->priv
;
4604 info
->supported
= (SUPPORTED_10000baseT_Full
| SUPPORTED_FIBRE
);
4605 info
->advertising
= (SUPPORTED_10000baseT_Full
| SUPPORTED_FIBRE
);
4606 info
->port
= PORT_FIBRE
;
4607 /* info->transceiver?? TODO */
4609 if (netif_carrier_ok(sp
->dev
)) {
4610 info
->speed
= 10000;
4611 info
->duplex
= DUPLEX_FULL
;
4617 info
->autoneg
= AUTONEG_DISABLE
;
4622 * s2io_ethtool_gdrvinfo - Returns driver specific information.
4623 * @sp : private member of the device structure, which is a pointer to the
4624 * s2io_nic structure.
4625 * @info : pointer to the structure with parameters given by ethtool to
4626 * return driver information.
4628 * Returns driver specefic information like name, version etc.. to ethtool.
4633 static void s2io_ethtool_gdrvinfo(struct net_device
*dev
,
4634 struct ethtool_drvinfo
*info
)
4636 struct s2io_nic
*sp
= dev
->priv
;
4638 strncpy(info
->driver
, s2io_driver_name
, sizeof(info
->driver
));
4639 strncpy(info
->version
, s2io_driver_version
, sizeof(info
->version
));
4640 strncpy(info
->fw_version
, "", sizeof(info
->fw_version
));
4641 strncpy(info
->bus_info
, pci_name(sp
->pdev
), sizeof(info
->bus_info
));
4642 info
->regdump_len
= XENA_REG_SPACE
;
4643 info
->eedump_len
= XENA_EEPROM_SPACE
;
4644 info
->testinfo_len
= S2IO_TEST_LEN
;
4646 if (sp
->device_type
== XFRAME_I_DEVICE
)
4647 info
->n_stats
= XFRAME_I_STAT_LEN
;
4649 info
->n_stats
= XFRAME_II_STAT_LEN
;
4653 * s2io_ethtool_gregs - dumps the entire space of Xfame into the buffer.
4654 * @sp: private member of the device structure, which is a pointer to the
4655 * s2io_nic structure.
4656 * @regs : pointer to the structure with parameters given by ethtool for
4657 * dumping the registers.
4658 * @reg_space: The input argumnet into which all the registers are dumped.
4660 * Dumps the entire register space of xFrame NIC into the user given
4666 static void s2io_ethtool_gregs(struct net_device
*dev
,
4667 struct ethtool_regs
*regs
, void *space
)
4671 u8
*reg_space
= (u8
*) space
;
4672 struct s2io_nic
*sp
= dev
->priv
;
4674 regs
->len
= XENA_REG_SPACE
;
4675 regs
->version
= sp
->pdev
->subsystem_device
;
4677 for (i
= 0; i
< regs
->len
; i
+= 8) {
4678 reg
= readq(sp
->bar0
+ i
);
4679 memcpy((reg_space
+ i
), ®
, 8);
4684 * s2io_phy_id - timer function that alternates adapter LED.
4685 * @data : address of the private member of the device structure, which
4686 * is a pointer to the s2io_nic structure, provided as an u32.
4687 * Description: This is actually the timer function that alternates the
4688 * adapter LED bit of the adapter control bit to set/reset every time on
4689 * invocation. The timer is set for 1/2 a second, hence tha NIC blinks
4690 * once every second.
4692 static void s2io_phy_id(unsigned long data
)
4694 struct s2io_nic
*sp
= (struct s2io_nic
*) data
;
4695 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
4699 subid
= sp
->pdev
->subsystem_device
;
4700 if ((sp
->device_type
== XFRAME_II_DEVICE
) ||
4701 ((subid
& 0xFF) >= 0x07)) {
4702 val64
= readq(&bar0
->gpio_control
);
4703 val64
^= GPIO_CTRL_GPIO_0
;
4704 writeq(val64
, &bar0
->gpio_control
);
4706 val64
= readq(&bar0
->adapter_control
);
4707 val64
^= ADAPTER_LED_ON
;
4708 writeq(val64
, &bar0
->adapter_control
);
4711 mod_timer(&sp
->id_timer
, jiffies
+ HZ
/ 2);
4715 * s2io_ethtool_idnic - To physically identify the nic on the system.
4716 * @sp : private member of the device structure, which is a pointer to the
4717 * s2io_nic structure.
4718 * @id : pointer to the structure with identification parameters given by
4720 * Description: Used to physically identify the NIC on the system.
4721 * The Link LED will blink for a time specified by the user for
4723 * NOTE: The Link has to be Up to be able to blink the LED. Hence
4724 * identification is possible only if it's link is up.
4726 * int , returns 0 on success
4729 static int s2io_ethtool_idnic(struct net_device
*dev
, u32 data
)
4731 u64 val64
= 0, last_gpio_ctrl_val
;
4732 struct s2io_nic
*sp
= dev
->priv
;
4733 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
4736 subid
= sp
->pdev
->subsystem_device
;
4737 last_gpio_ctrl_val
= readq(&bar0
->gpio_control
);
4738 if ((sp
->device_type
== XFRAME_I_DEVICE
) &&
4739 ((subid
& 0xFF) < 0x07)) {
4740 val64
= readq(&bar0
->adapter_control
);
4741 if (!(val64
& ADAPTER_CNTL_EN
)) {
4743 "Adapter Link down, cannot blink LED\n");
4747 if (sp
->id_timer
.function
== NULL
) {
4748 init_timer(&sp
->id_timer
);
4749 sp
->id_timer
.function
= s2io_phy_id
;
4750 sp
->id_timer
.data
= (unsigned long) sp
;
4752 mod_timer(&sp
->id_timer
, jiffies
);
4754 msleep_interruptible(data
* HZ
);
4756 msleep_interruptible(MAX_FLICKER_TIME
);
4757 del_timer_sync(&sp
->id_timer
);
4759 if (CARDS_WITH_FAULTY_LINK_INDICATORS(sp
->device_type
, subid
)) {
4760 writeq(last_gpio_ctrl_val
, &bar0
->gpio_control
);
4761 last_gpio_ctrl_val
= readq(&bar0
->gpio_control
);
4768 * s2io_ethtool_getpause_data -Pause frame frame generation and reception.
4769 * @sp : private member of the device structure, which is a pointer to the
4770 * s2io_nic structure.
4771 * @ep : pointer to the structure with pause parameters given by ethtool.
4773 * Returns the Pause frame generation and reception capability of the NIC.
4777 static void s2io_ethtool_getpause_data(struct net_device
*dev
,
4778 struct ethtool_pauseparam
*ep
)
4781 struct s2io_nic
*sp
= dev
->priv
;
4782 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
4784 val64
= readq(&bar0
->rmac_pause_cfg
);
4785 if (val64
& RMAC_PAUSE_GEN_ENABLE
)
4786 ep
->tx_pause
= TRUE
;
4787 if (val64
& RMAC_PAUSE_RX_ENABLE
)
4788 ep
->rx_pause
= TRUE
;
4789 ep
->autoneg
= FALSE
;
4793 * s2io_ethtool_setpause_data - set/reset pause frame generation.
4794 * @sp : private member of the device structure, which is a pointer to the
4795 * s2io_nic structure.
4796 * @ep : pointer to the structure with pause parameters given by ethtool.
4798 * It can be used to set or reset Pause frame generation or reception
4799 * support of the NIC.
4801 * int, returns 0 on Success
4804 static int s2io_ethtool_setpause_data(struct net_device
*dev
,
4805 struct ethtool_pauseparam
*ep
)
4808 struct s2io_nic
*sp
= dev
->priv
;
4809 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
4811 val64
= readq(&bar0
->rmac_pause_cfg
);
4813 val64
|= RMAC_PAUSE_GEN_ENABLE
;
4815 val64
&= ~RMAC_PAUSE_GEN_ENABLE
;
4817 val64
|= RMAC_PAUSE_RX_ENABLE
;
4819 val64
&= ~RMAC_PAUSE_RX_ENABLE
;
4820 writeq(val64
, &bar0
->rmac_pause_cfg
);
4825 * read_eeprom - reads 4 bytes of data from user given offset.
4826 * @sp : private member of the device structure, which is a pointer to the
4827 * s2io_nic structure.
4828 * @off : offset at which the data must be written
4829 * @data : Its an output parameter where the data read at the given
4832 * Will read 4 bytes of data from the user given offset and return the
4834 * NOTE: Will allow to read only part of the EEPROM visible through the
4837 * -1 on failure and 0 on success.
4840 #define S2IO_DEV_ID 5
4841 static int read_eeprom(struct s2io_nic
* sp
, int off
, u64
* data
)
4846 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
4848 if (sp
->device_type
== XFRAME_I_DEVICE
) {
4849 val64
= I2C_CONTROL_DEV_ID(S2IO_DEV_ID
) | I2C_CONTROL_ADDR(off
) |
4850 I2C_CONTROL_BYTE_CNT(0x3) | I2C_CONTROL_READ
|
4851 I2C_CONTROL_CNTL_START
;
4852 SPECIAL_REG_WRITE(val64
, &bar0
->i2c_control
, LF
);
4854 while (exit_cnt
< 5) {
4855 val64
= readq(&bar0
->i2c_control
);
4856 if (I2C_CONTROL_CNTL_END(val64
)) {
4857 *data
= I2C_CONTROL_GET_DATA(val64
);
4866 if (sp
->device_type
== XFRAME_II_DEVICE
) {
4867 val64
= SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1
|
4868 SPI_CONTROL_BYTECNT(0x3) |
4869 SPI_CONTROL_CMD(0x3) | SPI_CONTROL_ADDR(off
);
4870 SPECIAL_REG_WRITE(val64
, &bar0
->spi_control
, LF
);
4871 val64
|= SPI_CONTROL_REQ
;
4872 SPECIAL_REG_WRITE(val64
, &bar0
->spi_control
, LF
);
4873 while (exit_cnt
< 5) {
4874 val64
= readq(&bar0
->spi_control
);
4875 if (val64
& SPI_CONTROL_NACK
) {
4878 } else if (val64
& SPI_CONTROL_DONE
) {
4879 *data
= readq(&bar0
->spi_data
);
4892 * write_eeprom - actually writes the relevant part of the data value.
4893 * @sp : private member of the device structure, which is a pointer to the
4894 * s2io_nic structure.
4895 * @off : offset at which the data must be written
4896 * @data : The data that is to be written
4897 * @cnt : Number of bytes of the data that are actually to be written into
4898 * the Eeprom. (max of 3)
4900 * Actually writes the relevant part of the data value into the Eeprom
4901 * through the I2C bus.
4903 * 0 on success, -1 on failure.
4906 static int write_eeprom(struct s2io_nic
* sp
, int off
, u64 data
, int cnt
)
4908 int exit_cnt
= 0, ret
= -1;
4910 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
4912 if (sp
->device_type
== XFRAME_I_DEVICE
) {
4913 val64
= I2C_CONTROL_DEV_ID(S2IO_DEV_ID
) | I2C_CONTROL_ADDR(off
) |
4914 I2C_CONTROL_BYTE_CNT(cnt
) | I2C_CONTROL_SET_DATA((u32
)data
) |
4915 I2C_CONTROL_CNTL_START
;
4916 SPECIAL_REG_WRITE(val64
, &bar0
->i2c_control
, LF
);
4918 while (exit_cnt
< 5) {
4919 val64
= readq(&bar0
->i2c_control
);
4920 if (I2C_CONTROL_CNTL_END(val64
)) {
4921 if (!(val64
& I2C_CONTROL_NACK
))
4930 if (sp
->device_type
== XFRAME_II_DEVICE
) {
4931 int write_cnt
= (cnt
== 8) ? 0 : cnt
;
4932 writeq(SPI_DATA_WRITE(data
,(cnt
<<3)), &bar0
->spi_data
);
4934 val64
= SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1
|
4935 SPI_CONTROL_BYTECNT(write_cnt
) |
4936 SPI_CONTROL_CMD(0x2) | SPI_CONTROL_ADDR(off
);
4937 SPECIAL_REG_WRITE(val64
, &bar0
->spi_control
, LF
);
4938 val64
|= SPI_CONTROL_REQ
;
4939 SPECIAL_REG_WRITE(val64
, &bar0
->spi_control
, LF
);
4940 while (exit_cnt
< 5) {
4941 val64
= readq(&bar0
->spi_control
);
4942 if (val64
& SPI_CONTROL_NACK
) {
4945 } else if (val64
& SPI_CONTROL_DONE
) {
4955 static void s2io_vpd_read(struct s2io_nic
*nic
)
4959 int i
=0, cnt
, fail
= 0;
4960 int vpd_addr
= 0x80;
4962 if (nic
->device_type
== XFRAME_II_DEVICE
) {
4963 strcpy(nic
->product_name
, "Xframe II 10GbE network adapter");
4967 strcpy(nic
->product_name
, "Xframe I 10GbE network adapter");
4970 strcpy(nic
->serial_num
, "NOT AVAILABLE");
4972 vpd_data
= kmalloc(256, GFP_KERNEL
);
4976 for (i
= 0; i
< 256; i
+=4 ) {
4977 pci_write_config_byte(nic
->pdev
, (vpd_addr
+ 2), i
);
4978 pci_read_config_byte(nic
->pdev
, (vpd_addr
+ 2), &data
);
4979 pci_write_config_byte(nic
->pdev
, (vpd_addr
+ 3), 0);
4980 for (cnt
= 0; cnt
<5; cnt
++) {
4982 pci_read_config_byte(nic
->pdev
, (vpd_addr
+ 3), &data
);
4987 DBG_PRINT(ERR_DBG
, "Read of VPD data failed\n");
4991 pci_read_config_dword(nic
->pdev
, (vpd_addr
+ 4),
4992 (u32
*)&vpd_data
[i
]);
4996 /* read serial number of adapter */
4997 for (cnt
= 0; cnt
< 256; cnt
++) {
4998 if ((vpd_data
[cnt
] == 'S') &&
4999 (vpd_data
[cnt
+1] == 'N') &&
5000 (vpd_data
[cnt
+2] < VPD_STRING_LEN
)) {
5001 memset(nic
->serial_num
, 0, VPD_STRING_LEN
);
5002 memcpy(nic
->serial_num
, &vpd_data
[cnt
+ 3],
5009 if ((!fail
) && (vpd_data
[1] < VPD_STRING_LEN
)) {
5010 memset(nic
->product_name
, 0, vpd_data
[1]);
5011 memcpy(nic
->product_name
, &vpd_data
[3], vpd_data
[1]);
5017 * s2io_ethtool_geeprom - reads the value stored in the Eeprom.
5018 * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure.
5019 * @eeprom : pointer to the user level structure provided by ethtool,
5020 * containing all relevant information.
5021 * @data_buf : user defined value to be written into Eeprom.
5022 * Description: Reads the values stored in the Eeprom at given offset
5023 * for a given length. Stores these values int the input argument data
5024 * buffer 'data_buf' and returns these to the caller (ethtool.)
5029 static int s2io_ethtool_geeprom(struct net_device
*dev
,
5030 struct ethtool_eeprom
*eeprom
, u8
* data_buf
)
5034 struct s2io_nic
*sp
= dev
->priv
;
5036 eeprom
->magic
= sp
->pdev
->vendor
| (sp
->pdev
->device
<< 16);
5038 if ((eeprom
->offset
+ eeprom
->len
) > (XENA_EEPROM_SPACE
))
5039 eeprom
->len
= XENA_EEPROM_SPACE
- eeprom
->offset
;
5041 for (i
= 0; i
< eeprom
->len
; i
+= 4) {
5042 if (read_eeprom(sp
, (eeprom
->offset
+ i
), &data
)) {
5043 DBG_PRINT(ERR_DBG
, "Read of EEPROM failed\n");
5047 memcpy((data_buf
+ i
), &valid
, 4);
5053 * s2io_ethtool_seeprom - tries to write the user provided value in Eeprom
5054 * @sp : private member of the device structure, which is a pointer to the
5055 * s2io_nic structure.
5056 * @eeprom : pointer to the user level structure provided by ethtool,
5057 * containing all relevant information.
5058 * @data_buf ; user defined value to be written into Eeprom.
5060 * Tries to write the user provided value in the Eeprom, at the offset
5061 * given by the user.
5063 * 0 on success, -EFAULT on failure.
5066 static int s2io_ethtool_seeprom(struct net_device
*dev
,
5067 struct ethtool_eeprom
*eeprom
,
5070 int len
= eeprom
->len
, cnt
= 0;
5071 u64 valid
= 0, data
;
5072 struct s2io_nic
*sp
= dev
->priv
;
5074 if (eeprom
->magic
!= (sp
->pdev
->vendor
| (sp
->pdev
->device
<< 16))) {
5076 "ETHTOOL_WRITE_EEPROM Err: Magic value ");
5077 DBG_PRINT(ERR_DBG
, "is wrong, Its not 0x%x\n",
5083 data
= (u32
) data_buf
[cnt
] & 0x000000FF;
5085 valid
= (u32
) (data
<< 24);
5089 if (write_eeprom(sp
, (eeprom
->offset
+ cnt
), valid
, 0)) {
5091 "ETHTOOL_WRITE_EEPROM Err: Cannot ");
5093 "write into the specified offset\n");
5104 * s2io_register_test - reads and writes into all clock domains.
5105 * @sp : private member of the device structure, which is a pointer to the
5106 * s2io_nic structure.
5107 * @data : variable that returns the result of each of the test conducted b
5110 * Read and write into all clock domains. The NIC has 3 clock domains,
5111 * see that registers in all the three regions are accessible.
5116 static int s2io_register_test(struct s2io_nic
* sp
, uint64_t * data
)
5118 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
5119 u64 val64
= 0, exp_val
;
5122 val64
= readq(&bar0
->pif_rd_swapper_fb
);
5123 if (val64
!= 0x123456789abcdefULL
) {
5125 DBG_PRINT(INFO_DBG
, "Read Test level 1 fails\n");
5128 val64
= readq(&bar0
->rmac_pause_cfg
);
5129 if (val64
!= 0xc000ffff00000000ULL
) {
5131 DBG_PRINT(INFO_DBG
, "Read Test level 2 fails\n");
5134 val64
= readq(&bar0
->rx_queue_cfg
);
5135 if (sp
->device_type
== XFRAME_II_DEVICE
)
5136 exp_val
= 0x0404040404040404ULL
;
5138 exp_val
= 0x0808080808080808ULL
;
5139 if (val64
!= exp_val
) {
5141 DBG_PRINT(INFO_DBG
, "Read Test level 3 fails\n");
5144 val64
= readq(&bar0
->xgxs_efifo_cfg
);
5145 if (val64
!= 0x000000001923141EULL
) {
5147 DBG_PRINT(INFO_DBG
, "Read Test level 4 fails\n");
5150 val64
= 0x5A5A5A5A5A5A5A5AULL
;
5151 writeq(val64
, &bar0
->xmsi_data
);
5152 val64
= readq(&bar0
->xmsi_data
);
5153 if (val64
!= 0x5A5A5A5A5A5A5A5AULL
) {
5155 DBG_PRINT(ERR_DBG
, "Write Test level 1 fails\n");
5158 val64
= 0xA5A5A5A5A5A5A5A5ULL
;
5159 writeq(val64
, &bar0
->xmsi_data
);
5160 val64
= readq(&bar0
->xmsi_data
);
5161 if (val64
!= 0xA5A5A5A5A5A5A5A5ULL
) {
5163 DBG_PRINT(ERR_DBG
, "Write Test level 2 fails\n");
5171 * s2io_eeprom_test - to verify that EEprom in the xena can be programmed.
5172 * @sp : private member of the device structure, which is a pointer to the
5173 * s2io_nic structure.
5174 * @data:variable that returns the result of each of the test conducted by
5177 * Verify that EEPROM in the xena can be programmed using I2C_CONTROL
5183 static int s2io_eeprom_test(struct s2io_nic
* sp
, uint64_t * data
)
5186 u64 ret_data
, org_4F0
, org_7F0
;
5187 u8 saved_4F0
= 0, saved_7F0
= 0;
5188 struct net_device
*dev
= sp
->dev
;
5190 /* Test Write Error at offset 0 */
5191 /* Note that SPI interface allows write access to all areas
5192 * of EEPROM. Hence doing all negative testing only for Xframe I.
5194 if (sp
->device_type
== XFRAME_I_DEVICE
)
5195 if (!write_eeprom(sp
, 0, 0, 3))
5198 /* Save current values at offsets 0x4F0 and 0x7F0 */
5199 if (!read_eeprom(sp
, 0x4F0, &org_4F0
))
5201 if (!read_eeprom(sp
, 0x7F0, &org_7F0
))
5204 /* Test Write at offset 4f0 */
5205 if (write_eeprom(sp
, 0x4F0, 0x012345, 3))
5207 if (read_eeprom(sp
, 0x4F0, &ret_data
))
5210 if (ret_data
!= 0x012345) {
5211 DBG_PRINT(ERR_DBG
, "%s: eeprom test error at offset 0x4F0. "
5212 "Data written %llx Data read %llx\n",
5213 dev
->name
, (unsigned long long)0x12345,
5214 (unsigned long long)ret_data
);
5218 /* Reset the EEPROM data go FFFF */
5219 write_eeprom(sp
, 0x4F0, 0xFFFFFF, 3);
5221 /* Test Write Request Error at offset 0x7c */
5222 if (sp
->device_type
== XFRAME_I_DEVICE
)
5223 if (!write_eeprom(sp
, 0x07C, 0, 3))
5226 /* Test Write Request at offset 0x7f0 */
5227 if (write_eeprom(sp
, 0x7F0, 0x012345, 3))
5229 if (read_eeprom(sp
, 0x7F0, &ret_data
))
5232 if (ret_data
!= 0x012345) {
5233 DBG_PRINT(ERR_DBG
, "%s: eeprom test error at offset 0x7F0. "
5234 "Data written %llx Data read %llx\n",
5235 dev
->name
, (unsigned long long)0x12345,
5236 (unsigned long long)ret_data
);
5240 /* Reset the EEPROM data go FFFF */
5241 write_eeprom(sp
, 0x7F0, 0xFFFFFF, 3);
5243 if (sp
->device_type
== XFRAME_I_DEVICE
) {
5244 /* Test Write Error at offset 0x80 */
5245 if (!write_eeprom(sp
, 0x080, 0, 3))
5248 /* Test Write Error at offset 0xfc */
5249 if (!write_eeprom(sp
, 0x0FC, 0, 3))
5252 /* Test Write Error at offset 0x100 */
5253 if (!write_eeprom(sp
, 0x100, 0, 3))
5256 /* Test Write Error at offset 4ec */
5257 if (!write_eeprom(sp
, 0x4EC, 0, 3))
5261 /* Restore values at offsets 0x4F0 and 0x7F0 */
5263 write_eeprom(sp
, 0x4F0, org_4F0
, 3);
5265 write_eeprom(sp
, 0x7F0, org_7F0
, 3);
5272 * s2io_bist_test - invokes the MemBist test of the card .
5273 * @sp : private member of the device structure, which is a pointer to the
5274 * s2io_nic structure.
5275 * @data:variable that returns the result of each of the test conducted by
5278 * This invokes the MemBist test of the card. We give around
5279 * 2 secs time for the Test to complete. If it's still not complete
5280 * within this peiod, we consider that the test failed.
5282 * 0 on success and -1 on failure.
5285 static int s2io_bist_test(struct s2io_nic
* sp
, uint64_t * data
)
5288 int cnt
= 0, ret
= -1;
5290 pci_read_config_byte(sp
->pdev
, PCI_BIST
, &bist
);
5291 bist
|= PCI_BIST_START
;
5292 pci_write_config_word(sp
->pdev
, PCI_BIST
, bist
);
5295 pci_read_config_byte(sp
->pdev
, PCI_BIST
, &bist
);
5296 if (!(bist
& PCI_BIST_START
)) {
5297 *data
= (bist
& PCI_BIST_CODE_MASK
);
5309 * s2io-link_test - verifies the link state of the nic
5310 * @sp ; private member of the device structure, which is a pointer to the
5311 * s2io_nic structure.
5312 * @data: variable that returns the result of each of the test conducted by
5315 * The function verifies the link state of the NIC and updates the input
5316 * argument 'data' appropriately.
5321 static int s2io_link_test(struct s2io_nic
* sp
, uint64_t * data
)
5323 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
5326 val64
= readq(&bar0
->adapter_status
);
5327 if(!(LINK_IS_UP(val64
)))
5336 * s2io_rldram_test - offline test for access to the RldRam chip on the NIC
5337 * @sp - private member of the device structure, which is a pointer to the
5338 * s2io_nic structure.
5339 * @data - variable that returns the result of each of the test
5340 * conducted by the driver.
5342 * This is one of the offline test that tests the read and write
5343 * access to the RldRam chip on the NIC.
5348 static int s2io_rldram_test(struct s2io_nic
* sp
, uint64_t * data
)
5350 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
5352 int cnt
, iteration
= 0, test_fail
= 0;
5354 val64
= readq(&bar0
->adapter_control
);
5355 val64
&= ~ADAPTER_ECC_EN
;
5356 writeq(val64
, &bar0
->adapter_control
);
5358 val64
= readq(&bar0
->mc_rldram_test_ctrl
);
5359 val64
|= MC_RLDRAM_TEST_MODE
;
5360 SPECIAL_REG_WRITE(val64
, &bar0
->mc_rldram_test_ctrl
, LF
);
5362 val64
= readq(&bar0
->mc_rldram_mrs
);
5363 val64
|= MC_RLDRAM_QUEUE_SIZE_ENABLE
;
5364 SPECIAL_REG_WRITE(val64
, &bar0
->mc_rldram_mrs
, UF
);
5366 val64
|= MC_RLDRAM_MRS_ENABLE
;
5367 SPECIAL_REG_WRITE(val64
, &bar0
->mc_rldram_mrs
, UF
);
5369 while (iteration
< 2) {
5370 val64
= 0x55555555aaaa0000ULL
;
5371 if (iteration
== 1) {
5372 val64
^= 0xFFFFFFFFFFFF0000ULL
;
5374 writeq(val64
, &bar0
->mc_rldram_test_d0
);
5376 val64
= 0xaaaa5a5555550000ULL
;
5377 if (iteration
== 1) {
5378 val64
^= 0xFFFFFFFFFFFF0000ULL
;
5380 writeq(val64
, &bar0
->mc_rldram_test_d1
);
5382 val64
= 0x55aaaaaaaa5a0000ULL
;
5383 if (iteration
== 1) {
5384 val64
^= 0xFFFFFFFFFFFF0000ULL
;
5386 writeq(val64
, &bar0
->mc_rldram_test_d2
);
5388 val64
= (u64
) (0x0000003ffffe0100ULL
);
5389 writeq(val64
, &bar0
->mc_rldram_test_add
);
5391 val64
= MC_RLDRAM_TEST_MODE
| MC_RLDRAM_TEST_WRITE
|
5393 SPECIAL_REG_WRITE(val64
, &bar0
->mc_rldram_test_ctrl
, LF
);
5395 for (cnt
= 0; cnt
< 5; cnt
++) {
5396 val64
= readq(&bar0
->mc_rldram_test_ctrl
);
5397 if (val64
& MC_RLDRAM_TEST_DONE
)
5405 val64
= MC_RLDRAM_TEST_MODE
| MC_RLDRAM_TEST_GO
;
5406 SPECIAL_REG_WRITE(val64
, &bar0
->mc_rldram_test_ctrl
, LF
);
5408 for (cnt
= 0; cnt
< 5; cnt
++) {
5409 val64
= readq(&bar0
->mc_rldram_test_ctrl
);
5410 if (val64
& MC_RLDRAM_TEST_DONE
)
5418 val64
= readq(&bar0
->mc_rldram_test_ctrl
);
5419 if (!(val64
& MC_RLDRAM_TEST_PASS
))
5427 /* Bring the adapter out of test mode */
5428 SPECIAL_REG_WRITE(0, &bar0
->mc_rldram_test_ctrl
, LF
);
5434 * s2io_ethtool_test - conducts 6 tsets to determine the health of card.
5435 * @sp : private member of the device structure, which is a pointer to the
5436 * s2io_nic structure.
5437 * @ethtest : pointer to a ethtool command specific structure that will be
5438 * returned to the user.
5439 * @data : variable that returns the result of each of the test
5440 * conducted by the driver.
5442 * This function conducts 6 tests ( 4 offline and 2 online) to determine
5443 * the health of the card.
5448 static void s2io_ethtool_test(struct net_device
*dev
,
5449 struct ethtool_test
*ethtest
,
5452 struct s2io_nic
*sp
= dev
->priv
;
5453 int orig_state
= netif_running(sp
->dev
);
5455 if (ethtest
->flags
== ETH_TEST_FL_OFFLINE
) {
5456 /* Offline Tests. */
5458 s2io_close(sp
->dev
);
5460 if (s2io_register_test(sp
, &data
[0]))
5461 ethtest
->flags
|= ETH_TEST_FL_FAILED
;
5465 if (s2io_rldram_test(sp
, &data
[3]))
5466 ethtest
->flags
|= ETH_TEST_FL_FAILED
;
5470 if (s2io_eeprom_test(sp
, &data
[1]))
5471 ethtest
->flags
|= ETH_TEST_FL_FAILED
;
5473 if (s2io_bist_test(sp
, &data
[4]))
5474 ethtest
->flags
|= ETH_TEST_FL_FAILED
;
5484 "%s: is not up, cannot run test\n",
5493 if (s2io_link_test(sp
, &data
[2]))
5494 ethtest
->flags
|= ETH_TEST_FL_FAILED
;
5503 static void s2io_get_ethtool_stats(struct net_device
*dev
,
5504 struct ethtool_stats
*estats
,
5508 struct s2io_nic
*sp
= dev
->priv
;
5509 struct stat_block
*stat_info
= sp
->mac_control
.stats_info
;
5511 s2io_updt_stats(sp
);
5513 (u64
)le32_to_cpu(stat_info
->tmac_frms_oflow
) << 32 |
5514 le32_to_cpu(stat_info
->tmac_frms
);
5516 (u64
)le32_to_cpu(stat_info
->tmac_data_octets_oflow
) << 32 |
5517 le32_to_cpu(stat_info
->tmac_data_octets
);
5518 tmp_stats
[i
++] = le64_to_cpu(stat_info
->tmac_drop_frms
);
5520 (u64
)le32_to_cpu(stat_info
->tmac_mcst_frms_oflow
) << 32 |
5521 le32_to_cpu(stat_info
->tmac_mcst_frms
);
5523 (u64
)le32_to_cpu(stat_info
->tmac_bcst_frms_oflow
) << 32 |
5524 le32_to_cpu(stat_info
->tmac_bcst_frms
);
5525 tmp_stats
[i
++] = le64_to_cpu(stat_info
->tmac_pause_ctrl_frms
);
5527 (u64
)le32_to_cpu(stat_info
->tmac_ttl_octets_oflow
) << 32 |
5528 le32_to_cpu(stat_info
->tmac_ttl_octets
);
5530 (u64
)le32_to_cpu(stat_info
->tmac_ucst_frms_oflow
) << 32 |
5531 le32_to_cpu(stat_info
->tmac_ucst_frms
);
5533 (u64
)le32_to_cpu(stat_info
->tmac_nucst_frms_oflow
) << 32 |
5534 le32_to_cpu(stat_info
->tmac_nucst_frms
);
5536 (u64
)le32_to_cpu(stat_info
->tmac_any_err_frms_oflow
) << 32 |
5537 le32_to_cpu(stat_info
->tmac_any_err_frms
);
5538 tmp_stats
[i
++] = le64_to_cpu(stat_info
->tmac_ttl_less_fb_octets
);
5539 tmp_stats
[i
++] = le64_to_cpu(stat_info
->tmac_vld_ip_octets
);
5541 (u64
)le32_to_cpu(stat_info
->tmac_vld_ip_oflow
) << 32 |
5542 le32_to_cpu(stat_info
->tmac_vld_ip
);
5544 (u64
)le32_to_cpu(stat_info
->tmac_drop_ip_oflow
) << 32 |
5545 le32_to_cpu(stat_info
->tmac_drop_ip
);
5547 (u64
)le32_to_cpu(stat_info
->tmac_icmp_oflow
) << 32 |
5548 le32_to_cpu(stat_info
->tmac_icmp
);
5550 (u64
)le32_to_cpu(stat_info
->tmac_rst_tcp_oflow
) << 32 |
5551 le32_to_cpu(stat_info
->tmac_rst_tcp
);
5552 tmp_stats
[i
++] = le64_to_cpu(stat_info
->tmac_tcp
);
5553 tmp_stats
[i
++] = (u64
)le32_to_cpu(stat_info
->tmac_udp_oflow
) << 32 |
5554 le32_to_cpu(stat_info
->tmac_udp
);
5556 (u64
)le32_to_cpu(stat_info
->rmac_vld_frms_oflow
) << 32 |
5557 le32_to_cpu(stat_info
->rmac_vld_frms
);
5559 (u64
)le32_to_cpu(stat_info
->rmac_data_octets_oflow
) << 32 |
5560 le32_to_cpu(stat_info
->rmac_data_octets
);
5561 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_fcs_err_frms
);
5562 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_drop_frms
);
5564 (u64
)le32_to_cpu(stat_info
->rmac_vld_mcst_frms_oflow
) << 32 |
5565 le32_to_cpu(stat_info
->rmac_vld_mcst_frms
);
5567 (u64
)le32_to_cpu(stat_info
->rmac_vld_bcst_frms_oflow
) << 32 |
5568 le32_to_cpu(stat_info
->rmac_vld_bcst_frms
);
5569 tmp_stats
[i
++] = le32_to_cpu(stat_info
->rmac_in_rng_len_err_frms
);
5570 tmp_stats
[i
++] = le32_to_cpu(stat_info
->rmac_out_rng_len_err_frms
);
5571 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_long_frms
);
5572 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_pause_ctrl_frms
);
5573 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_unsup_ctrl_frms
);
5575 (u64
)le32_to_cpu(stat_info
->rmac_ttl_octets_oflow
) << 32 |
5576 le32_to_cpu(stat_info
->rmac_ttl_octets
);
5578 (u64
)le32_to_cpu(stat_info
->rmac_accepted_ucst_frms_oflow
)
5579 << 32 | le32_to_cpu(stat_info
->rmac_accepted_ucst_frms
);
5581 (u64
)le32_to_cpu(stat_info
->rmac_accepted_nucst_frms_oflow
)
5582 << 32 | le32_to_cpu(stat_info
->rmac_accepted_nucst_frms
);
5584 (u64
)le32_to_cpu(stat_info
->rmac_discarded_frms_oflow
) << 32 |
5585 le32_to_cpu(stat_info
->rmac_discarded_frms
);
5587 (u64
)le32_to_cpu(stat_info
->rmac_drop_events_oflow
)
5588 << 32 | le32_to_cpu(stat_info
->rmac_drop_events
);
5589 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_ttl_less_fb_octets
);
5590 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_ttl_frms
);
5592 (u64
)le32_to_cpu(stat_info
->rmac_usized_frms_oflow
) << 32 |
5593 le32_to_cpu(stat_info
->rmac_usized_frms
);
5595 (u64
)le32_to_cpu(stat_info
->rmac_osized_frms_oflow
) << 32 |
5596 le32_to_cpu(stat_info
->rmac_osized_frms
);
5598 (u64
)le32_to_cpu(stat_info
->rmac_frag_frms_oflow
) << 32 |
5599 le32_to_cpu(stat_info
->rmac_frag_frms
);
5601 (u64
)le32_to_cpu(stat_info
->rmac_jabber_frms_oflow
) << 32 |
5602 le32_to_cpu(stat_info
->rmac_jabber_frms
);
5603 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_ttl_64_frms
);
5604 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_ttl_65_127_frms
);
5605 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_ttl_128_255_frms
);
5606 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_ttl_256_511_frms
);
5607 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_ttl_512_1023_frms
);
5608 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_ttl_1024_1518_frms
);
5610 (u64
)le32_to_cpu(stat_info
->rmac_ip_oflow
) << 32 |
5611 le32_to_cpu(stat_info
->rmac_ip
);
5612 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_ip_octets
);
5613 tmp_stats
[i
++] = le32_to_cpu(stat_info
->rmac_hdr_err_ip
);
5615 (u64
)le32_to_cpu(stat_info
->rmac_drop_ip_oflow
) << 32 |
5616 le32_to_cpu(stat_info
->rmac_drop_ip
);
5618 (u64
)le32_to_cpu(stat_info
->rmac_icmp_oflow
) << 32 |
5619 le32_to_cpu(stat_info
->rmac_icmp
);
5620 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_tcp
);
5622 (u64
)le32_to_cpu(stat_info
->rmac_udp_oflow
) << 32 |
5623 le32_to_cpu(stat_info
->rmac_udp
);
5625 (u64
)le32_to_cpu(stat_info
->rmac_err_drp_udp_oflow
) << 32 |
5626 le32_to_cpu(stat_info
->rmac_err_drp_udp
);
5627 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_xgmii_err_sym
);
5628 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_frms_q0
);
5629 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_frms_q1
);
5630 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_frms_q2
);
5631 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_frms_q3
);
5632 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_frms_q4
);
5633 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_frms_q5
);
5634 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_frms_q6
);
5635 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_frms_q7
);
5636 tmp_stats
[i
++] = le16_to_cpu(stat_info
->rmac_full_q0
);
5637 tmp_stats
[i
++] = le16_to_cpu(stat_info
->rmac_full_q1
);
5638 tmp_stats
[i
++] = le16_to_cpu(stat_info
->rmac_full_q2
);
5639 tmp_stats
[i
++] = le16_to_cpu(stat_info
->rmac_full_q3
);
5640 tmp_stats
[i
++] = le16_to_cpu(stat_info
->rmac_full_q4
);
5641 tmp_stats
[i
++] = le16_to_cpu(stat_info
->rmac_full_q5
);
5642 tmp_stats
[i
++] = le16_to_cpu(stat_info
->rmac_full_q6
);
5643 tmp_stats
[i
++] = le16_to_cpu(stat_info
->rmac_full_q7
);
5645 (u64
)le32_to_cpu(stat_info
->rmac_pause_cnt_oflow
) << 32 |
5646 le32_to_cpu(stat_info
->rmac_pause_cnt
);
5647 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_xgmii_data_err_cnt
);
5648 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_xgmii_ctrl_err_cnt
);
5650 (u64
)le32_to_cpu(stat_info
->rmac_accepted_ip_oflow
) << 32 |
5651 le32_to_cpu(stat_info
->rmac_accepted_ip
);
5652 tmp_stats
[i
++] = le32_to_cpu(stat_info
->rmac_err_tcp
);
5653 tmp_stats
[i
++] = le32_to_cpu(stat_info
->rd_req_cnt
);
5654 tmp_stats
[i
++] = le32_to_cpu(stat_info
->new_rd_req_cnt
);
5655 tmp_stats
[i
++] = le32_to_cpu(stat_info
->new_rd_req_rtry_cnt
);
5656 tmp_stats
[i
++] = le32_to_cpu(stat_info
->rd_rtry_cnt
);
5657 tmp_stats
[i
++] = le32_to_cpu(stat_info
->wr_rtry_rd_ack_cnt
);
5658 tmp_stats
[i
++] = le32_to_cpu(stat_info
->wr_req_cnt
);
5659 tmp_stats
[i
++] = le32_to_cpu(stat_info
->new_wr_req_cnt
);
5660 tmp_stats
[i
++] = le32_to_cpu(stat_info
->new_wr_req_rtry_cnt
);
5661 tmp_stats
[i
++] = le32_to_cpu(stat_info
->wr_rtry_cnt
);
5662 tmp_stats
[i
++] = le32_to_cpu(stat_info
->wr_disc_cnt
);
5663 tmp_stats
[i
++] = le32_to_cpu(stat_info
->rd_rtry_wr_ack_cnt
);
5664 tmp_stats
[i
++] = le32_to_cpu(stat_info
->txp_wr_cnt
);
5665 tmp_stats
[i
++] = le32_to_cpu(stat_info
->txd_rd_cnt
);
5666 tmp_stats
[i
++] = le32_to_cpu(stat_info
->txd_wr_cnt
);
5667 tmp_stats
[i
++] = le32_to_cpu(stat_info
->rxd_rd_cnt
);
5668 tmp_stats
[i
++] = le32_to_cpu(stat_info
->rxd_wr_cnt
);
5669 tmp_stats
[i
++] = le32_to_cpu(stat_info
->txf_rd_cnt
);
5670 tmp_stats
[i
++] = le32_to_cpu(stat_info
->rxf_wr_cnt
);
5672 /* Enhanced statistics exist only for Hercules */
5673 if(sp
->device_type
== XFRAME_II_DEVICE
) {
5675 le64_to_cpu(stat_info
->rmac_ttl_1519_4095_frms
);
5677 le64_to_cpu(stat_info
->rmac_ttl_4096_8191_frms
);
5679 le64_to_cpu(stat_info
->rmac_ttl_8192_max_frms
);
5680 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_ttl_gt_max_frms
);
5681 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_osized_alt_frms
);
5682 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_jabber_alt_frms
);
5683 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_gt_max_alt_frms
);
5684 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_vlan_frms
);
5685 tmp_stats
[i
++] = le32_to_cpu(stat_info
->rmac_len_discard
);
5686 tmp_stats
[i
++] = le32_to_cpu(stat_info
->rmac_fcs_discard
);
5687 tmp_stats
[i
++] = le32_to_cpu(stat_info
->rmac_pf_discard
);
5688 tmp_stats
[i
++] = le32_to_cpu(stat_info
->rmac_da_discard
);
5689 tmp_stats
[i
++] = le32_to_cpu(stat_info
->rmac_red_discard
);
5690 tmp_stats
[i
++] = le32_to_cpu(stat_info
->rmac_rts_discard
);
5691 tmp_stats
[i
++] = le32_to_cpu(stat_info
->rmac_ingm_full_discard
);
5692 tmp_stats
[i
++] = le32_to_cpu(stat_info
->link_fault_cnt
);
5696 tmp_stats
[i
++] = stat_info
->sw_stat
.single_ecc_errs
;
5697 tmp_stats
[i
++] = stat_info
->sw_stat
.double_ecc_errs
;
5698 tmp_stats
[i
++] = stat_info
->sw_stat
.parity_err_cnt
;
5699 tmp_stats
[i
++] = stat_info
->sw_stat
.serious_err_cnt
;
5700 tmp_stats
[i
++] = stat_info
->sw_stat
.soft_reset_cnt
;
5701 tmp_stats
[i
++] = stat_info
->sw_stat
.fifo_full_cnt
;
5702 tmp_stats
[i
++] = stat_info
->sw_stat
.ring_full_cnt
;
5703 tmp_stats
[i
++] = stat_info
->xpak_stat
.alarm_transceiver_temp_high
;
5704 tmp_stats
[i
++] = stat_info
->xpak_stat
.alarm_transceiver_temp_low
;
5705 tmp_stats
[i
++] = stat_info
->xpak_stat
.alarm_laser_bias_current_high
;
5706 tmp_stats
[i
++] = stat_info
->xpak_stat
.alarm_laser_bias_current_low
;
5707 tmp_stats
[i
++] = stat_info
->xpak_stat
.alarm_laser_output_power_high
;
5708 tmp_stats
[i
++] = stat_info
->xpak_stat
.alarm_laser_output_power_low
;
5709 tmp_stats
[i
++] = stat_info
->xpak_stat
.warn_transceiver_temp_high
;
5710 tmp_stats
[i
++] = stat_info
->xpak_stat
.warn_transceiver_temp_low
;
5711 tmp_stats
[i
++] = stat_info
->xpak_stat
.warn_laser_bias_current_high
;
5712 tmp_stats
[i
++] = stat_info
->xpak_stat
.warn_laser_bias_current_low
;
5713 tmp_stats
[i
++] = stat_info
->xpak_stat
.warn_laser_output_power_high
;
5714 tmp_stats
[i
++] = stat_info
->xpak_stat
.warn_laser_output_power_low
;
5715 tmp_stats
[i
++] = stat_info
->sw_stat
.clubbed_frms_cnt
;
5716 tmp_stats
[i
++] = stat_info
->sw_stat
.sending_both
;
5717 tmp_stats
[i
++] = stat_info
->sw_stat
.outof_sequence_pkts
;
5718 tmp_stats
[i
++] = stat_info
->sw_stat
.flush_max_pkts
;
5719 if (stat_info
->sw_stat
.num_aggregations
) {
5720 u64 tmp
= stat_info
->sw_stat
.sum_avg_pkts_aggregated
;
5723 * Since 64-bit divide does not work on all platforms,
5724 * do repeated subtraction.
5726 while (tmp
>= stat_info
->sw_stat
.num_aggregations
) {
5727 tmp
-= stat_info
->sw_stat
.num_aggregations
;
5730 tmp_stats
[i
++] = count
;
5736 static int s2io_ethtool_get_regs_len(struct net_device
*dev
)
5738 return (XENA_REG_SPACE
);
5742 static u32
s2io_ethtool_get_rx_csum(struct net_device
* dev
)
5744 struct s2io_nic
*sp
= dev
->priv
;
5746 return (sp
->rx_csum
);
5749 static int s2io_ethtool_set_rx_csum(struct net_device
*dev
, u32 data
)
5751 struct s2io_nic
*sp
= dev
->priv
;
5761 static int s2io_get_eeprom_len(struct net_device
*dev
)
5763 return (XENA_EEPROM_SPACE
);
5766 static int s2io_ethtool_self_test_count(struct net_device
*dev
)
5768 return (S2IO_TEST_LEN
);
5771 static void s2io_ethtool_get_strings(struct net_device
*dev
,
5772 u32 stringset
, u8
* data
)
5775 struct s2io_nic
*sp
= dev
->priv
;
5777 switch (stringset
) {
5779 memcpy(data
, s2io_gstrings
, S2IO_STRINGS_LEN
);
5782 stat_size
= sizeof(ethtool_xena_stats_keys
);
5783 memcpy(data
, ðtool_xena_stats_keys
,stat_size
);
5784 if(sp
->device_type
== XFRAME_II_DEVICE
) {
5785 memcpy(data
+ stat_size
,
5786 ðtool_enhanced_stats_keys
,
5787 sizeof(ethtool_enhanced_stats_keys
));
5788 stat_size
+= sizeof(ethtool_enhanced_stats_keys
);
5791 memcpy(data
+ stat_size
, ðtool_driver_stats_keys
,
5792 sizeof(ethtool_driver_stats_keys
));
5795 static int s2io_ethtool_get_stats_count(struct net_device
*dev
)
5797 struct s2io_nic
*sp
= dev
->priv
;
5799 switch(sp
->device_type
) {
5800 case XFRAME_I_DEVICE
:
5801 stat_count
= XFRAME_I_STAT_LEN
;
5804 case XFRAME_II_DEVICE
:
5805 stat_count
= XFRAME_II_STAT_LEN
;
5812 static int s2io_ethtool_op_set_tx_csum(struct net_device
*dev
, u32 data
)
5815 dev
->features
|= NETIF_F_IP_CSUM
;
5817 dev
->features
&= ~NETIF_F_IP_CSUM
;
5822 static u32
s2io_ethtool_op_get_tso(struct net_device
*dev
)
5824 return (dev
->features
& NETIF_F_TSO
) != 0;
5826 static int s2io_ethtool_op_set_tso(struct net_device
*dev
, u32 data
)
5829 dev
->features
|= (NETIF_F_TSO
| NETIF_F_TSO6
);
5831 dev
->features
&= ~(NETIF_F_TSO
| NETIF_F_TSO6
);
5836 static const struct ethtool_ops netdev_ethtool_ops
= {
5837 .get_settings
= s2io_ethtool_gset
,
5838 .set_settings
= s2io_ethtool_sset
,
5839 .get_drvinfo
= s2io_ethtool_gdrvinfo
,
5840 .get_regs_len
= s2io_ethtool_get_regs_len
,
5841 .get_regs
= s2io_ethtool_gregs
,
5842 .get_link
= ethtool_op_get_link
,
5843 .get_eeprom_len
= s2io_get_eeprom_len
,
5844 .get_eeprom
= s2io_ethtool_geeprom
,
5845 .set_eeprom
= s2io_ethtool_seeprom
,
5846 .get_pauseparam
= s2io_ethtool_getpause_data
,
5847 .set_pauseparam
= s2io_ethtool_setpause_data
,
5848 .get_rx_csum
= s2io_ethtool_get_rx_csum
,
5849 .set_rx_csum
= s2io_ethtool_set_rx_csum
,
5850 .get_tx_csum
= ethtool_op_get_tx_csum
,
5851 .set_tx_csum
= s2io_ethtool_op_set_tx_csum
,
5852 .get_sg
= ethtool_op_get_sg
,
5853 .set_sg
= ethtool_op_set_sg
,
5854 .get_tso
= s2io_ethtool_op_get_tso
,
5855 .set_tso
= s2io_ethtool_op_set_tso
,
5856 .get_ufo
= ethtool_op_get_ufo
,
5857 .set_ufo
= ethtool_op_set_ufo
,
5858 .self_test_count
= s2io_ethtool_self_test_count
,
5859 .self_test
= s2io_ethtool_test
,
5860 .get_strings
= s2io_ethtool_get_strings
,
5861 .phys_id
= s2io_ethtool_idnic
,
5862 .get_stats_count
= s2io_ethtool_get_stats_count
,
5863 .get_ethtool_stats
= s2io_get_ethtool_stats
5867 * s2io_ioctl - Entry point for the Ioctl
5868 * @dev : Device pointer.
5869 * @ifr : An IOCTL specefic structure, that can contain a pointer to
5870 * a proprietary structure used to pass information to the driver.
5871 * @cmd : This is used to distinguish between the different commands that
5872 * can be passed to the IOCTL functions.
5874 * Currently there are no special functionality supported in IOCTL, hence
5875 * function always return EOPNOTSUPPORTED
5878 static int s2io_ioctl(struct net_device
*dev
, struct ifreq
*rq
, int cmd
)
5884 * s2io_change_mtu - entry point to change MTU size for the device.
5885 * @dev : device pointer.
5886 * @new_mtu : the new MTU size for the device.
5887 * Description: A driver entry point to change MTU size for the device.
5888 * Before changing the MTU the device must be stopped.
5890 * 0 on success and an appropriate (-)ve integer as defined in errno.h
5894 static int s2io_change_mtu(struct net_device
*dev
, int new_mtu
)
5896 struct s2io_nic
*sp
= dev
->priv
;
5898 if ((new_mtu
< MIN_MTU
) || (new_mtu
> S2IO_JUMBO_SIZE
)) {
5899 DBG_PRINT(ERR_DBG
, "%s: MTU size is invalid.\n",
5905 if (netif_running(dev
)) {
5907 netif_stop_queue(dev
);
5908 if (s2io_card_up(sp
)) {
5909 DBG_PRINT(ERR_DBG
, "%s: Device bring up failed\n",
5912 if (netif_queue_stopped(dev
))
5913 netif_wake_queue(dev
);
5914 } else { /* Device is down */
5915 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
5916 u64 val64
= new_mtu
;
5918 writeq(vBIT(val64
, 2, 14), &bar0
->rmac_max_pyld_len
);
5925 * s2io_tasklet - Bottom half of the ISR.
5926 * @dev_adr : address of the device structure in dma_addr_t format.
5928 * This is the tasklet or the bottom half of the ISR. This is
5929 * an extension of the ISR which is scheduled by the scheduler to be run
5930 * when the load on the CPU is low. All low priority tasks of the ISR can
5931 * be pushed into the tasklet. For now the tasklet is used only to
5932 * replenish the Rx buffers in the Rx buffer descriptors.
5937 static void s2io_tasklet(unsigned long dev_addr
)
5939 struct net_device
*dev
= (struct net_device
*) dev_addr
;
5940 struct s2io_nic
*sp
= dev
->priv
;
5942 struct mac_info
*mac_control
;
5943 struct config_param
*config
;
5945 mac_control
= &sp
->mac_control
;
5946 config
= &sp
->config
;
5948 if (!TASKLET_IN_USE
) {
5949 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
5950 ret
= fill_rx_buffers(sp
, i
);
5951 if (ret
== -ENOMEM
) {
5952 DBG_PRINT(ERR_DBG
, "%s: Out of ",
5954 DBG_PRINT(ERR_DBG
, "memory in tasklet\n");
5956 } else if (ret
== -EFILL
) {
5958 "%s: Rx Ring %d is full\n",
5963 clear_bit(0, (&sp
->tasklet_status
));
5968 * s2io_set_link - Set the LInk status
5969 * @data: long pointer to device private structue
5970 * Description: Sets the link status for the adapter
5973 static void s2io_set_link(struct work_struct
*work
)
5975 struct s2io_nic
*nic
= container_of(work
, struct s2io_nic
, set_link_task
);
5976 struct net_device
*dev
= nic
->dev
;
5977 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
5983 if (!netif_running(dev
))
5986 if (test_and_set_bit(0, &(nic
->link_state
))) {
5987 /* The card is being reset, no point doing anything */
5991 subid
= nic
->pdev
->subsystem_device
;
5992 if (s2io_link_fault_indication(nic
) == MAC_RMAC_ERR_TIMER
) {
5994 * Allow a small delay for the NICs self initiated
5995 * cleanup to complete.
6000 val64
= readq(&bar0
->adapter_status
);
6001 if (LINK_IS_UP(val64
)) {
6002 if (!(readq(&bar0
->adapter_control
) & ADAPTER_CNTL_EN
)) {
6003 if (verify_xena_quiescence(nic
)) {
6004 val64
= readq(&bar0
->adapter_control
);
6005 val64
|= ADAPTER_CNTL_EN
;
6006 writeq(val64
, &bar0
->adapter_control
);
6007 if (CARDS_WITH_FAULTY_LINK_INDICATORS(
6008 nic
->device_type
, subid
)) {
6009 val64
= readq(&bar0
->gpio_control
);
6010 val64
|= GPIO_CTRL_GPIO_0
;
6011 writeq(val64
, &bar0
->gpio_control
);
6012 val64
= readq(&bar0
->gpio_control
);
6014 val64
|= ADAPTER_LED_ON
;
6015 writeq(val64
, &bar0
->adapter_control
);
6017 nic
->device_enabled_once
= TRUE
;
6019 DBG_PRINT(ERR_DBG
, "%s: Error: ", dev
->name
);
6020 DBG_PRINT(ERR_DBG
, "device is not Quiescent\n");
6021 netif_stop_queue(dev
);
6024 val64
= readq(&bar0
->adapter_status
);
6025 if (!LINK_IS_UP(val64
)) {
6026 DBG_PRINT(ERR_DBG
, "%s:", dev
->name
);
6027 DBG_PRINT(ERR_DBG
, " Link down after enabling ");
6028 DBG_PRINT(ERR_DBG
, "device \n");
6030 s2io_link(nic
, LINK_UP
);
6032 if (CARDS_WITH_FAULTY_LINK_INDICATORS(nic
->device_type
,
6034 val64
= readq(&bar0
->gpio_control
);
6035 val64
&= ~GPIO_CTRL_GPIO_0
;
6036 writeq(val64
, &bar0
->gpio_control
);
6037 val64
= readq(&bar0
->gpio_control
);
6039 s2io_link(nic
, LINK_DOWN
);
6041 clear_bit(0, &(nic
->link_state
));
6047 static int set_rxd_buffer_pointer(struct s2io_nic
*sp
, struct RxD_t
*rxdp
,
6049 struct sk_buff
**skb
, u64
*temp0
, u64
*temp1
,
6050 u64
*temp2
, int size
)
6052 struct net_device
*dev
= sp
->dev
;
6053 struct sk_buff
*frag_list
;
6055 if ((sp
->rxd_mode
== RXD_MODE_1
) && (rxdp
->Host_Control
== 0)) {
6058 DBG_PRINT(INFO_DBG
, "SKB is not NULL\n");
6060 * As Rx frame are not going to be processed,
6061 * using same mapped address for the Rxd
6064 ((struct RxD1
*)rxdp
)->Buffer0_ptr
= *temp0
;
6066 *skb
= dev_alloc_skb(size
);
6068 DBG_PRINT(ERR_DBG
, "%s: Out of ", dev
->name
);
6069 DBG_PRINT(ERR_DBG
, "memory to allocate SKBs\n");
6072 /* storing the mapped addr in a temp variable
6073 * such it will be used for next rxd whose
6074 * Host Control is NULL
6076 ((struct RxD1
*)rxdp
)->Buffer0_ptr
= *temp0
=
6077 pci_map_single( sp
->pdev
, (*skb
)->data
,
6078 size
- NET_IP_ALIGN
,
6079 PCI_DMA_FROMDEVICE
);
6080 rxdp
->Host_Control
= (unsigned long) (*skb
);
6082 } else if ((sp
->rxd_mode
== RXD_MODE_3B
) && (rxdp
->Host_Control
== 0)) {
6083 /* Two buffer Mode */
6085 ((struct RxD3
*)rxdp
)->Buffer2_ptr
= *temp2
;
6086 ((struct RxD3
*)rxdp
)->Buffer0_ptr
= *temp0
;
6087 ((struct RxD3
*)rxdp
)->Buffer1_ptr
= *temp1
;
6089 *skb
= dev_alloc_skb(size
);
6091 DBG_PRINT(ERR_DBG
, "%s: dev_alloc_skb failed\n",
6095 ((struct RxD3
*)rxdp
)->Buffer2_ptr
= *temp2
=
6096 pci_map_single(sp
->pdev
, (*skb
)->data
,
6098 PCI_DMA_FROMDEVICE
);
6099 ((struct RxD3
*)rxdp
)->Buffer0_ptr
= *temp0
=
6100 pci_map_single( sp
->pdev
, ba
->ba_0
, BUF0_LEN
,
6101 PCI_DMA_FROMDEVICE
);
6102 rxdp
->Host_Control
= (unsigned long) (*skb
);
6104 /* Buffer-1 will be dummy buffer not used */
6105 ((struct RxD3
*)rxdp
)->Buffer1_ptr
= *temp1
=
6106 pci_map_single(sp
->pdev
, ba
->ba_1
, BUF1_LEN
,
6107 PCI_DMA_FROMDEVICE
);
6109 } else if ((rxdp
->Host_Control
== 0)) {
6110 /* Three buffer mode */
6112 ((struct RxD3
*)rxdp
)->Buffer0_ptr
= *temp0
;
6113 ((struct RxD3
*)rxdp
)->Buffer1_ptr
= *temp1
;
6114 ((struct RxD3
*)rxdp
)->Buffer2_ptr
= *temp2
;
6116 *skb
= dev_alloc_skb(size
);
6118 DBG_PRINT(ERR_DBG
, "%s: dev_alloc_skb failed\n",
6122 ((struct RxD3
*)rxdp
)->Buffer0_ptr
= *temp0
=
6123 pci_map_single(sp
->pdev
, ba
->ba_0
, BUF0_LEN
,
6124 PCI_DMA_FROMDEVICE
);
6125 /* Buffer-1 receives L3/L4 headers */
6126 ((struct RxD3
*)rxdp
)->Buffer1_ptr
= *temp1
=
6127 pci_map_single( sp
->pdev
, (*skb
)->data
,
6129 PCI_DMA_FROMDEVICE
);
6131 * skb_shinfo(skb)->frag_list will have L4
6134 skb_shinfo(*skb
)->frag_list
= dev_alloc_skb(dev
->mtu
+
6136 if (skb_shinfo(*skb
)->frag_list
== NULL
) {
6137 DBG_PRINT(ERR_DBG
, "%s: dev_alloc_skb \
6138 failed\n ", dev
->name
);
6141 frag_list
= skb_shinfo(*skb
)->frag_list
;
6142 frag_list
->next
= NULL
;
6144 * Buffer-2 receives L4 data payload
6146 ((struct RxD3
*)rxdp
)->Buffer2_ptr
= *temp2
=
6147 pci_map_single( sp
->pdev
, frag_list
->data
,
6148 dev
->mtu
, PCI_DMA_FROMDEVICE
);
6153 static void set_rxd_buffer_size(struct s2io_nic
*sp
, struct RxD_t
*rxdp
,
6156 struct net_device
*dev
= sp
->dev
;
6157 if (sp
->rxd_mode
== RXD_MODE_1
) {
6158 rxdp
->Control_2
= SET_BUFFER0_SIZE_1( size
- NET_IP_ALIGN
);
6159 } else if (sp
->rxd_mode
== RXD_MODE_3B
) {
6160 rxdp
->Control_2
= SET_BUFFER0_SIZE_3(BUF0_LEN
);
6161 rxdp
->Control_2
|= SET_BUFFER1_SIZE_3(1);
6162 rxdp
->Control_2
|= SET_BUFFER2_SIZE_3( dev
->mtu
+ 4);
6164 rxdp
->Control_2
= SET_BUFFER0_SIZE_3(BUF0_LEN
);
6165 rxdp
->Control_2
|= SET_BUFFER1_SIZE_3(l3l4hdr_size
+ 4);
6166 rxdp
->Control_2
|= SET_BUFFER2_SIZE_3(dev
->mtu
);
6170 static int rxd_owner_bit_reset(struct s2io_nic
*sp
)
6172 int i
, j
, k
, blk_cnt
= 0, size
;
6173 struct mac_info
* mac_control
= &sp
->mac_control
;
6174 struct config_param
*config
= &sp
->config
;
6175 struct net_device
*dev
= sp
->dev
;
6176 struct RxD_t
*rxdp
= NULL
;
6177 struct sk_buff
*skb
= NULL
;
6178 struct buffAdd
*ba
= NULL
;
6179 u64 temp0_64
= 0, temp1_64
= 0, temp2_64
= 0;
6181 /* Calculate the size based on ring mode */
6182 size
= dev
->mtu
+ HEADER_ETHERNET_II_802_3_SIZE
+
6183 HEADER_802_2_SIZE
+ HEADER_SNAP_SIZE
;
6184 if (sp
->rxd_mode
== RXD_MODE_1
)
6185 size
+= NET_IP_ALIGN
;
6186 else if (sp
->rxd_mode
== RXD_MODE_3B
)
6187 size
= dev
->mtu
+ ALIGN_SIZE
+ BUF0_LEN
+ 4;
6189 size
= l3l4hdr_size
+ ALIGN_SIZE
+ BUF0_LEN
+ 4;
6191 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
6192 blk_cnt
= config
->rx_cfg
[i
].num_rxd
/
6193 (rxd_count
[sp
->rxd_mode
] +1);
6195 for (j
= 0; j
< blk_cnt
; j
++) {
6196 for (k
= 0; k
< rxd_count
[sp
->rxd_mode
]; k
++) {
6197 rxdp
= mac_control
->rings
[i
].
6198 rx_blocks
[j
].rxds
[k
].virt_addr
;
6199 if(sp
->rxd_mode
>= RXD_MODE_3A
)
6200 ba
= &mac_control
->rings
[i
].ba
[j
][k
];
6201 if (set_rxd_buffer_pointer(sp
, rxdp
, ba
,
6202 &skb
,(u64
*)&temp0_64
,
6209 set_rxd_buffer_size(sp
, rxdp
, size
);
6211 /* flip the Ownership bit to Hardware */
6212 rxdp
->Control_1
|= RXD_OWN_XENA
;
6220 static int s2io_add_isr(struct s2io_nic
* sp
)
6223 struct net_device
*dev
= sp
->dev
;
6226 if (sp
->intr_type
== MSI
)
6227 ret
= s2io_enable_msi(sp
);
6228 else if (sp
->intr_type
== MSI_X
)
6229 ret
= s2io_enable_msi_x(sp
);
6231 DBG_PRINT(ERR_DBG
, "%s: Defaulting to INTA\n", dev
->name
);
6232 sp
->intr_type
= INTA
;
6235 /* Store the values of the MSIX table in the struct s2io_nic structure */
6236 store_xmsi_data(sp
);
6238 /* After proper initialization of H/W, register ISR */
6239 if (sp
->intr_type
== MSI
) {
6240 err
= request_irq((int) sp
->pdev
->irq
, s2io_msi_handle
,
6241 IRQF_SHARED
, sp
->name
, dev
);
6243 pci_disable_msi(sp
->pdev
);
6244 DBG_PRINT(ERR_DBG
, "%s: MSI registration failed\n",
6249 if (sp
->intr_type
== MSI_X
) {
6250 int i
, msix_tx_cnt
=0,msix_rx_cnt
=0;
6252 for (i
=1; (sp
->s2io_entries
[i
].in_use
== MSIX_FLG
); i
++) {
6253 if (sp
->s2io_entries
[i
].type
== MSIX_FIFO_TYPE
) {
6254 sprintf(sp
->desc
[i
], "%s:MSI-X-%d-TX",
6256 err
= request_irq(sp
->entries
[i
].vector
,
6257 s2io_msix_fifo_handle
, 0, sp
->desc
[i
],
6258 sp
->s2io_entries
[i
].arg
);
6259 /* If either data or addr is zero print it */
6260 if(!(sp
->msix_info
[i
].addr
&&
6261 sp
->msix_info
[i
].data
)) {
6262 DBG_PRINT(ERR_DBG
, "%s @ Addr:0x%llx"
6263 "Data:0x%lx\n",sp
->desc
[i
],
6264 (unsigned long long)
6265 sp
->msix_info
[i
].addr
,
6267 ntohl(sp
->msix_info
[i
].data
));
6272 sprintf(sp
->desc
[i
], "%s:MSI-X-%d-RX",
6274 err
= request_irq(sp
->entries
[i
].vector
,
6275 s2io_msix_ring_handle
, 0, sp
->desc
[i
],
6276 sp
->s2io_entries
[i
].arg
);
6277 /* If either data or addr is zero print it */
6278 if(!(sp
->msix_info
[i
].addr
&&
6279 sp
->msix_info
[i
].data
)) {
6280 DBG_PRINT(ERR_DBG
, "%s @ Addr:0x%llx"
6281 "Data:0x%lx\n",sp
->desc
[i
],
6282 (unsigned long long)
6283 sp
->msix_info
[i
].addr
,
6285 ntohl(sp
->msix_info
[i
].data
));
6291 DBG_PRINT(ERR_DBG
,"%s:MSI-X-%d registration "
6292 "failed\n", dev
->name
, i
);
6293 DBG_PRINT(ERR_DBG
, "Returned: %d\n", err
);
6296 sp
->s2io_entries
[i
].in_use
= MSIX_REGISTERED_SUCCESS
;
6298 printk("MSI-X-TX %d entries enabled\n",msix_tx_cnt
);
6299 printk("MSI-X-RX %d entries enabled\n",msix_rx_cnt
);
6301 if (sp
->intr_type
== INTA
) {
6302 err
= request_irq((int) sp
->pdev
->irq
, s2io_isr
, IRQF_SHARED
,
6305 DBG_PRINT(ERR_DBG
, "%s: ISR registration failed\n",
6312 static void s2io_rem_isr(struct s2io_nic
* sp
)
6315 struct net_device
*dev
= sp
->dev
;
6317 if (sp
->intr_type
== MSI_X
) {
6321 for (i
=1; (sp
->s2io_entries
[i
].in_use
==
6322 MSIX_REGISTERED_SUCCESS
); i
++) {
6323 int vector
= sp
->entries
[i
].vector
;
6324 void *arg
= sp
->s2io_entries
[i
].arg
;
6326 free_irq(vector
, arg
);
6328 pci_read_config_word(sp
->pdev
, 0x42, &msi_control
);
6329 msi_control
&= 0xFFFE; /* Disable MSI */
6330 pci_write_config_word(sp
->pdev
, 0x42, msi_control
);
6332 pci_disable_msix(sp
->pdev
);
6334 free_irq(sp
->pdev
->irq
, dev
);
6335 if (sp
->intr_type
== MSI
) {
6338 pci_disable_msi(sp
->pdev
);
6339 pci_read_config_word(sp
->pdev
, 0x4c, &val
);
6341 pci_write_config_word(sp
->pdev
, 0x4c, val
);
6344 /* Waiting till all Interrupt handlers are complete */
6348 if (!atomic_read(&sp
->isr_cnt
))
6354 static void s2io_card_down(struct s2io_nic
* sp
)
6357 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
6358 unsigned long flags
;
6359 register u64 val64
= 0;
6361 del_timer_sync(&sp
->alarm_timer
);
6362 /* If s2io_set_link task is executing, wait till it completes. */
6363 while (test_and_set_bit(0, &(sp
->link_state
))) {
6366 atomic_set(&sp
->card_state
, CARD_DOWN
);
6368 /* disable Tx and Rx traffic on the NIC */
6374 tasklet_kill(&sp
->task
);
6376 /* Check if the device is Quiescent and then Reset the NIC */
6378 /* As per the HW requirement we need to replenish the
6379 * receive buffer to avoid the ring bump. Since there is
6380 * no intention of processing the Rx frame at this pointwe are
6381 * just settting the ownership bit of rxd in Each Rx
6382 * ring to HW and set the appropriate buffer size
6383 * based on the ring mode
6385 rxd_owner_bit_reset(sp
);
6387 val64
= readq(&bar0
->adapter_status
);
6388 if (verify_xena_quiescence(sp
)) {
6389 if(verify_pcc_quiescent(sp
, sp
->device_enabled_once
))
6397 "s2io_close:Device not Quiescent ");
6398 DBG_PRINT(ERR_DBG
, "adaper status reads 0x%llx\n",
6399 (unsigned long long) val64
);
6405 spin_lock_irqsave(&sp
->tx_lock
, flags
);
6406 /* Free all Tx buffers */
6407 free_tx_buffers(sp
);
6408 spin_unlock_irqrestore(&sp
->tx_lock
, flags
);
6410 /* Free all Rx buffers */
6411 spin_lock_irqsave(&sp
->rx_lock
, flags
);
6412 free_rx_buffers(sp
);
6413 spin_unlock_irqrestore(&sp
->rx_lock
, flags
);
6415 clear_bit(0, &(sp
->link_state
));
6418 static int s2io_card_up(struct s2io_nic
* sp
)
6421 struct mac_info
*mac_control
;
6422 struct config_param
*config
;
6423 struct net_device
*dev
= (struct net_device
*) sp
->dev
;
6426 /* Initialize the H/W I/O registers */
6427 if (init_nic(sp
) != 0) {
6428 DBG_PRINT(ERR_DBG
, "%s: H/W initialization failed\n",
6435 * Initializing the Rx buffers. For now we are considering only 1
6436 * Rx ring and initializing buffers into 30 Rx blocks
6438 mac_control
= &sp
->mac_control
;
6439 config
= &sp
->config
;
6441 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
6442 if ((ret
= fill_rx_buffers(sp
, i
))) {
6443 DBG_PRINT(ERR_DBG
, "%s: Out of memory in Open\n",
6446 free_rx_buffers(sp
);
6449 DBG_PRINT(INFO_DBG
, "Buf in ring:%d is %d:\n", i
,
6450 atomic_read(&sp
->rx_bufs_left
[i
]));
6452 /* Maintain the state prior to the open */
6453 if (sp
->promisc_flg
)
6454 sp
->promisc_flg
= 0;
6455 if (sp
->m_cast_flg
) {
6457 sp
->all_multi_pos
= 0;
6460 /* Setting its receive mode */
6461 s2io_set_multicast(dev
);
6464 /* Initialize max aggregatable pkts per session based on MTU */
6465 sp
->lro_max_aggr_per_sess
= ((1<<16) - 1) / dev
->mtu
;
6466 /* Check if we can use(if specified) user provided value */
6467 if (lro_max_pkts
< sp
->lro_max_aggr_per_sess
)
6468 sp
->lro_max_aggr_per_sess
= lro_max_pkts
;
6471 /* Enable Rx Traffic and interrupts on the NIC */
6472 if (start_nic(sp
)) {
6473 DBG_PRINT(ERR_DBG
, "%s: Starting NIC failed\n", dev
->name
);
6475 free_rx_buffers(sp
);
6479 /* Add interrupt service routine */
6480 if (s2io_add_isr(sp
) != 0) {
6481 if (sp
->intr_type
== MSI_X
)
6484 free_rx_buffers(sp
);
6488 S2IO_TIMER_CONF(sp
->alarm_timer
, s2io_alarm_handle
, sp
, (HZ
/2));
6490 /* Enable tasklet for the device */
6491 tasklet_init(&sp
->task
, s2io_tasklet
, (unsigned long) dev
);
6493 /* Enable select interrupts */
6494 if (sp
->intr_type
!= INTA
)
6495 en_dis_able_nic_intrs(sp
, ENA_ALL_INTRS
, DISABLE_INTRS
);
6497 interruptible
= TX_TRAFFIC_INTR
| RX_TRAFFIC_INTR
;
6498 interruptible
|= TX_PIC_INTR
| RX_PIC_INTR
;
6499 interruptible
|= TX_MAC_INTR
| RX_MAC_INTR
;
6500 en_dis_able_nic_intrs(sp
, interruptible
, ENABLE_INTRS
);
6504 atomic_set(&sp
->card_state
, CARD_UP
);
6509 * s2io_restart_nic - Resets the NIC.
6510 * @data : long pointer to the device private structure
6512 * This function is scheduled to be run by the s2io_tx_watchdog
6513 * function after 0.5 secs to reset the NIC. The idea is to reduce
6514 * the run time of the watch dog routine which is run holding a
6518 static void s2io_restart_nic(struct work_struct
*work
)
6520 struct s2io_nic
*sp
= container_of(work
, struct s2io_nic
, rst_timer_task
);
6521 struct net_device
*dev
= sp
->dev
;
6525 if (!netif_running(dev
))
6529 if (s2io_card_up(sp
)) {
6530 DBG_PRINT(ERR_DBG
, "%s: Device bring up failed\n",
6533 netif_wake_queue(dev
);
6534 DBG_PRINT(ERR_DBG
, "%s: was reset by Tx watchdog timer\n",
6541 * s2io_tx_watchdog - Watchdog for transmit side.
6542 * @dev : Pointer to net device structure
6544 * This function is triggered if the Tx Queue is stopped
6545 * for a pre-defined amount of time when the Interface is still up.
6546 * If the Interface is jammed in such a situation, the hardware is
6547 * reset (by s2io_close) and restarted again (by s2io_open) to
6548 * overcome any problem that might have been caused in the hardware.
6553 static void s2io_tx_watchdog(struct net_device
*dev
)
6555 struct s2io_nic
*sp
= dev
->priv
;
6557 if (netif_carrier_ok(dev
)) {
6558 schedule_work(&sp
->rst_timer_task
);
6559 sp
->mac_control
.stats_info
->sw_stat
.soft_reset_cnt
++;
6564 * rx_osm_handler - To perform some OS related operations on SKB.
6565 * @sp: private member of the device structure,pointer to s2io_nic structure.
6566 * @skb : the socket buffer pointer.
6567 * @len : length of the packet
6568 * @cksum : FCS checksum of the frame.
6569 * @ring_no : the ring from which this RxD was extracted.
6571 * This function is called by the Rx interrupt serivce routine to perform
6572 * some OS related operations on the SKB before passing it to the upper
6573 * layers. It mainly checks if the checksum is OK, if so adds it to the
6574 * SKBs cksum variable, increments the Rx packet count and passes the SKB
6575 * to the upper layer. If the checksum is wrong, it increments the Rx
6576 * packet error count, frees the SKB and returns error.
6578 * SUCCESS on success and -1 on failure.
6580 static int rx_osm_handler(struct ring_info
*ring_data
, struct RxD_t
* rxdp
)
6582 struct s2io_nic
*sp
= ring_data
->nic
;
6583 struct net_device
*dev
= (struct net_device
*) sp
->dev
;
6584 struct sk_buff
*skb
= (struct sk_buff
*)
6585 ((unsigned long) rxdp
->Host_Control
);
6586 int ring_no
= ring_data
->ring_no
;
6587 u16 l3_csum
, l4_csum
;
6588 unsigned long long err
= rxdp
->Control_1
& RXD_T_CODE
;
6594 /* Check for parity error */
6596 sp
->mac_control
.stats_info
->sw_stat
.parity_err_cnt
++;
6600 * Drop the packet if bad transfer code. Exception being
6601 * 0x5, which could be due to unsupported IPv6 extension header.
6602 * In this case, we let stack handle the packet.
6603 * Note that in this case, since checksum will be incorrect,
6604 * stack will validate the same.
6606 if (err
&& ((err
>> 48) != 0x5)) {
6607 DBG_PRINT(ERR_DBG
, "%s: Rx error Value: 0x%llx\n",
6609 sp
->stats
.rx_crc_errors
++;
6611 atomic_dec(&sp
->rx_bufs_left
[ring_no
]);
6612 rxdp
->Host_Control
= 0;
6617 /* Updating statistics */
6618 rxdp
->Host_Control
= 0;
6620 sp
->stats
.rx_packets
++;
6621 if (sp
->rxd_mode
== RXD_MODE_1
) {
6622 int len
= RXD_GET_BUFFER0_SIZE_1(rxdp
->Control_2
);
6624 sp
->stats
.rx_bytes
+= len
;
6627 } else if (sp
->rxd_mode
>= RXD_MODE_3A
) {
6628 int get_block
= ring_data
->rx_curr_get_info
.block_index
;
6629 int get_off
= ring_data
->rx_curr_get_info
.offset
;
6630 int buf0_len
= RXD_GET_BUFFER0_SIZE_3(rxdp
->Control_2
);
6631 int buf2_len
= RXD_GET_BUFFER2_SIZE_3(rxdp
->Control_2
);
6632 unsigned char *buff
= skb_push(skb
, buf0_len
);
6634 struct buffAdd
*ba
= &ring_data
->ba
[get_block
][get_off
];
6635 sp
->stats
.rx_bytes
+= buf0_len
+ buf2_len
;
6636 memcpy(buff
, ba
->ba_0
, buf0_len
);
6638 if (sp
->rxd_mode
== RXD_MODE_3A
) {
6639 int buf1_len
= RXD_GET_BUFFER1_SIZE_3(rxdp
->Control_2
);
6641 skb_put(skb
, buf1_len
);
6642 skb
->len
+= buf2_len
;
6643 skb
->data_len
+= buf2_len
;
6644 skb_put(skb_shinfo(skb
)->frag_list
, buf2_len
);
6645 sp
->stats
.rx_bytes
+= buf1_len
;
6648 skb_put(skb
, buf2_len
);
6651 if ((rxdp
->Control_1
& TCP_OR_UDP_FRAME
) && ((!sp
->lro
) ||
6652 (sp
->lro
&& (!(rxdp
->Control_1
& RXD_FRAME_IP_FRAG
)))) &&
6654 l3_csum
= RXD_GET_L3_CKSUM(rxdp
->Control_1
);
6655 l4_csum
= RXD_GET_L4_CKSUM(rxdp
->Control_1
);
6656 if ((l3_csum
== L3_CKSUM_OK
) && (l4_csum
== L4_CKSUM_OK
)) {
6658 * NIC verifies if the Checksum of the received
6659 * frame is Ok or not and accordingly returns
6660 * a flag in the RxD.
6662 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
6668 ret
= s2io_club_tcp_session(skb
->data
, &tcp
,
6669 &tcp_len
, &lro
, rxdp
, sp
);
6671 case 3: /* Begin anew */
6674 case 1: /* Aggregate */
6676 lro_append_pkt(sp
, lro
,
6680 case 4: /* Flush session */
6682 lro_append_pkt(sp
, lro
,
6684 queue_rx_frame(lro
->parent
);
6685 clear_lro_session(lro
);
6686 sp
->mac_control
.stats_info
->
6687 sw_stat
.flush_max_pkts
++;
6690 case 2: /* Flush both */
6691 lro
->parent
->data_len
=
6693 sp
->mac_control
.stats_info
->
6694 sw_stat
.sending_both
++;
6695 queue_rx_frame(lro
->parent
);
6696 clear_lro_session(lro
);
6698 case 0: /* sessions exceeded */
6699 case -1: /* non-TCP or not
6703 * First pkt in session not
6704 * L3/L4 aggregatable
6709 "%s: Samadhana!!\n",
6716 * Packet with erroneous checksum, let the
6717 * upper layers deal with it.
6719 skb
->ip_summed
= CHECKSUM_NONE
;
6722 skb
->ip_summed
= CHECKSUM_NONE
;
6726 skb
->protocol
= eth_type_trans(skb
, dev
);
6727 if ((sp
->vlgrp
&& RXD_GET_VLAN_TAG(rxdp
->Control_2
) &&
6729 /* Queueing the vlan frame to the upper layer */
6731 vlan_hwaccel_receive_skb(skb
, sp
->vlgrp
,
6732 RXD_GET_VLAN_TAG(rxdp
->Control_2
));
6734 vlan_hwaccel_rx(skb
, sp
->vlgrp
,
6735 RXD_GET_VLAN_TAG(rxdp
->Control_2
));
6738 netif_receive_skb(skb
);
6744 queue_rx_frame(skb
);
6746 dev
->last_rx
= jiffies
;
6748 atomic_dec(&sp
->rx_bufs_left
[ring_no
]);
6753 * s2io_link - stops/starts the Tx queue.
6754 * @sp : private member of the device structure, which is a pointer to the
6755 * s2io_nic structure.
6756 * @link : inidicates whether link is UP/DOWN.
6758 * This function stops/starts the Tx queue depending on whether the link
6759 * status of the NIC is is down or up. This is called by the Alarm
6760 * interrupt handler whenever a link change interrupt comes up.
6765 static void s2io_link(struct s2io_nic
* sp
, int link
)
6767 struct net_device
*dev
= (struct net_device
*) sp
->dev
;
6769 if (link
!= sp
->last_link_state
) {
6770 if (link
== LINK_DOWN
) {
6771 DBG_PRINT(ERR_DBG
, "%s: Link down\n", dev
->name
);
6772 netif_carrier_off(dev
);
6774 DBG_PRINT(ERR_DBG
, "%s: Link Up\n", dev
->name
);
6775 netif_carrier_on(dev
);
6778 sp
->last_link_state
= link
;
6782 * get_xena_rev_id - to identify revision ID of xena.
6783 * @pdev : PCI Dev structure
6785 * Function to identify the Revision ID of xena.
6787 * returns the revision ID of the device.
6790 static int get_xena_rev_id(struct pci_dev
*pdev
)
6794 ret
= pci_read_config_byte(pdev
, PCI_REVISION_ID
, (u8
*) & id
);
6799 * s2io_init_pci -Initialization of PCI and PCI-X configuration registers .
6800 * @sp : private member of the device structure, which is a pointer to the
6801 * s2io_nic structure.
6803 * This function initializes a few of the PCI and PCI-X configuration registers
6804 * with recommended values.
6809 static void s2io_init_pci(struct s2io_nic
* sp
)
6811 u16 pci_cmd
= 0, pcix_cmd
= 0;
6813 /* Enable Data Parity Error Recovery in PCI-X command register. */
6814 pci_read_config_word(sp
->pdev
, PCIX_COMMAND_REGISTER
,
6816 pci_write_config_word(sp
->pdev
, PCIX_COMMAND_REGISTER
,
6818 pci_read_config_word(sp
->pdev
, PCIX_COMMAND_REGISTER
,
6821 /* Set the PErr Response bit in PCI command register. */
6822 pci_read_config_word(sp
->pdev
, PCI_COMMAND
, &pci_cmd
);
6823 pci_write_config_word(sp
->pdev
, PCI_COMMAND
,
6824 (pci_cmd
| PCI_COMMAND_PARITY
));
6825 pci_read_config_word(sp
->pdev
, PCI_COMMAND
, &pci_cmd
);
6828 static int s2io_verify_parm(struct pci_dev
*pdev
, u8
*dev_intr_type
)
6830 if ( tx_fifo_num
> 8) {
6831 DBG_PRINT(ERR_DBG
, "s2io: Requested number of Tx fifos not "
6833 DBG_PRINT(ERR_DBG
, "s2io: Default to 8 Tx fifos\n");
6836 if ( rx_ring_num
> 8) {
6837 DBG_PRINT(ERR_DBG
, "s2io: Requested number of Rx rings not "
6839 DBG_PRINT(ERR_DBG
, "s2io: Default to 8 Rx rings\n");
6842 if (*dev_intr_type
!= INTA
)
6845 #ifndef CONFIG_PCI_MSI
6846 if (*dev_intr_type
!= INTA
) {
6847 DBG_PRINT(ERR_DBG
, "s2io: This kernel does not support"
6848 "MSI/MSI-X. Defaulting to INTA\n");
6849 *dev_intr_type
= INTA
;
6852 if (*dev_intr_type
> MSI_X
) {
6853 DBG_PRINT(ERR_DBG
, "s2io: Wrong intr_type requested. "
6854 "Defaulting to INTA\n");
6855 *dev_intr_type
= INTA
;
6858 if ((*dev_intr_type
== MSI_X
) &&
6859 ((pdev
->device
!= PCI_DEVICE_ID_HERC_WIN
) &&
6860 (pdev
->device
!= PCI_DEVICE_ID_HERC_UNI
))) {
6861 DBG_PRINT(ERR_DBG
, "s2io: Xframe I does not support MSI_X. "
6862 "Defaulting to INTA\n");
6863 *dev_intr_type
= INTA
;
6866 if (rx_ring_mode
> 3) {
6867 DBG_PRINT(ERR_DBG
, "s2io: Requested ring mode not supported\n");
6868 DBG_PRINT(ERR_DBG
, "s2io: Defaulting to 3-buffer mode\n");
6875 * rts_ds_steer - Receive traffic steering based on IPv4 or IPv6 TOS
6876 * or Traffic class respectively.
6877 * @nic: device peivate variable
6878 * Description: The function configures the receive steering to
6879 * desired receive ring.
6880 * Return Value: SUCCESS on success and
6881 * '-1' on failure (endian settings incorrect).
6883 static int rts_ds_steer(struct s2io_nic
*nic
, u8 ds_codepoint
, u8 ring
)
6885 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
6886 register u64 val64
= 0;
6888 if (ds_codepoint
> 63)
6891 val64
= RTS_DS_MEM_DATA(ring
);
6892 writeq(val64
, &bar0
->rts_ds_mem_data
);
6894 val64
= RTS_DS_MEM_CTRL_WE
|
6895 RTS_DS_MEM_CTRL_STROBE_NEW_CMD
|
6896 RTS_DS_MEM_CTRL_OFFSET(ds_codepoint
);
6898 writeq(val64
, &bar0
->rts_ds_mem_ctrl
);
6900 return wait_for_cmd_complete(&bar0
->rts_ds_mem_ctrl
,
6901 RTS_DS_MEM_CTRL_STROBE_CMD_BEING_EXECUTED
,
6906 * s2io_init_nic - Initialization of the adapter .
6907 * @pdev : structure containing the PCI related information of the device.
6908 * @pre: List of PCI devices supported by the driver listed in s2io_tbl.
6910 * The function initializes an adapter identified by the pci_dec structure.
6911 * All OS related initialization including memory and device structure and
6912 * initlaization of the device private variable is done. Also the swapper
6913 * control register is initialized to enable read and write into the I/O
6914 * registers of the device.
6916 * returns 0 on success and negative on failure.
6919 static int __devinit
6920 s2io_init_nic(struct pci_dev
*pdev
, const struct pci_device_id
*pre
)
6922 struct s2io_nic
*sp
;
6923 struct net_device
*dev
;
6925 int dma_flag
= FALSE
;
6926 u32 mac_up
, mac_down
;
6927 u64 val64
= 0, tmp64
= 0;
6928 struct XENA_dev_config __iomem
*bar0
= NULL
;
6930 struct mac_info
*mac_control
;
6931 struct config_param
*config
;
6933 u8 dev_intr_type
= intr_type
;
6935 if ((ret
= s2io_verify_parm(pdev
, &dev_intr_type
)))
6938 if ((ret
= pci_enable_device(pdev
))) {
6940 "s2io_init_nic: pci_enable_device failed\n");
6944 if (!pci_set_dma_mask(pdev
, DMA_64BIT_MASK
)) {
6945 DBG_PRINT(INIT_DBG
, "s2io_init_nic: Using 64bit DMA\n");
6947 if (pci_set_consistent_dma_mask
6948 (pdev
, DMA_64BIT_MASK
)) {
6950 "Unable to obtain 64bit DMA for \
6951 consistent allocations\n");
6952 pci_disable_device(pdev
);
6955 } else if (!pci_set_dma_mask(pdev
, DMA_32BIT_MASK
)) {
6956 DBG_PRINT(INIT_DBG
, "s2io_init_nic: Using 32bit DMA\n");
6958 pci_disable_device(pdev
);
6961 if (dev_intr_type
!= MSI_X
) {
6962 if (pci_request_regions(pdev
, s2io_driver_name
)) {
6963 DBG_PRINT(ERR_DBG
, "Request Regions failed\n");
6964 pci_disable_device(pdev
);
6969 if (!(request_mem_region(pci_resource_start(pdev
, 0),
6970 pci_resource_len(pdev
, 0), s2io_driver_name
))) {
6971 DBG_PRINT(ERR_DBG
, "bar0 Request Regions failed\n");
6972 pci_disable_device(pdev
);
6975 if (!(request_mem_region(pci_resource_start(pdev
, 2),
6976 pci_resource_len(pdev
, 2), s2io_driver_name
))) {
6977 DBG_PRINT(ERR_DBG
, "bar1 Request Regions failed\n");
6978 release_mem_region(pci_resource_start(pdev
, 0),
6979 pci_resource_len(pdev
, 0));
6980 pci_disable_device(pdev
);
6985 dev
= alloc_etherdev(sizeof(struct s2io_nic
));
6987 DBG_PRINT(ERR_DBG
, "Device allocation failed\n");
6988 pci_disable_device(pdev
);
6989 pci_release_regions(pdev
);
6993 pci_set_master(pdev
);
6994 pci_set_drvdata(pdev
, dev
);
6995 SET_MODULE_OWNER(dev
);
6996 SET_NETDEV_DEV(dev
, &pdev
->dev
);
6998 /* Private member variable initialized to s2io NIC structure */
7000 memset(sp
, 0, sizeof(struct s2io_nic
));
7003 sp
->high_dma_flag
= dma_flag
;
7004 sp
->device_enabled_once
= FALSE
;
7005 if (rx_ring_mode
== 1)
7006 sp
->rxd_mode
= RXD_MODE_1
;
7007 if (rx_ring_mode
== 2)
7008 sp
->rxd_mode
= RXD_MODE_3B
;
7009 if (rx_ring_mode
== 3)
7010 sp
->rxd_mode
= RXD_MODE_3A
;
7012 sp
->intr_type
= dev_intr_type
;
7014 if ((pdev
->device
== PCI_DEVICE_ID_HERC_WIN
) ||
7015 (pdev
->device
== PCI_DEVICE_ID_HERC_UNI
))
7016 sp
->device_type
= XFRAME_II_DEVICE
;
7018 sp
->device_type
= XFRAME_I_DEVICE
;
7022 /* Initialize some PCI/PCI-X fields of the NIC. */
7026 * Setting the device configuration parameters.
7027 * Most of these parameters can be specified by the user during
7028 * module insertion as they are module loadable parameters. If
7029 * these parameters are not not specified during load time, they
7030 * are initialized with default values.
7032 mac_control
= &sp
->mac_control
;
7033 config
= &sp
->config
;
7035 /* Tx side parameters. */
7036 config
->tx_fifo_num
= tx_fifo_num
;
7037 for (i
= 0; i
< MAX_TX_FIFOS
; i
++) {
7038 config
->tx_cfg
[i
].fifo_len
= tx_fifo_len
[i
];
7039 config
->tx_cfg
[i
].fifo_priority
= i
;
7042 /* mapping the QoS priority to the configured fifos */
7043 for (i
= 0; i
< MAX_TX_FIFOS
; i
++)
7044 config
->fifo_mapping
[i
] = fifo_map
[config
->tx_fifo_num
][i
];
7046 config
->tx_intr_type
= TXD_INT_TYPE_UTILZ
;
7047 for (i
= 0; i
< config
->tx_fifo_num
; i
++) {
7048 config
->tx_cfg
[i
].f_no_snoop
=
7049 (NO_SNOOP_TXD
| NO_SNOOP_TXD_BUFFER
);
7050 if (config
->tx_cfg
[i
].fifo_len
< 65) {
7051 config
->tx_intr_type
= TXD_INT_TYPE_PER_LIST
;
7055 /* + 2 because one Txd for skb->data and one Txd for UFO */
7056 config
->max_txds
= MAX_SKB_FRAGS
+ 2;
7058 /* Rx side parameters. */
7059 config
->rx_ring_num
= rx_ring_num
;
7060 for (i
= 0; i
< MAX_RX_RINGS
; i
++) {
7061 config
->rx_cfg
[i
].num_rxd
= rx_ring_sz
[i
] *
7062 (rxd_count
[sp
->rxd_mode
] + 1);
7063 config
->rx_cfg
[i
].ring_priority
= i
;
7066 for (i
= 0; i
< rx_ring_num
; i
++) {
7067 config
->rx_cfg
[i
].ring_org
= RING_ORG_BUFF1
;
7068 config
->rx_cfg
[i
].f_no_snoop
=
7069 (NO_SNOOP_RXD
| NO_SNOOP_RXD_BUFFER
);
7072 /* Setting Mac Control parameters */
7073 mac_control
->rmac_pause_time
= rmac_pause_time
;
7074 mac_control
->mc_pause_threshold_q0q3
= mc_pause_threshold_q0q3
;
7075 mac_control
->mc_pause_threshold_q4q7
= mc_pause_threshold_q4q7
;
7078 /* Initialize Ring buffer parameters. */
7079 for (i
= 0; i
< config
->rx_ring_num
; i
++)
7080 atomic_set(&sp
->rx_bufs_left
[i
], 0);
7082 /* Initialize the number of ISRs currently running */
7083 atomic_set(&sp
->isr_cnt
, 0);
7085 /* initialize the shared memory used by the NIC and the host */
7086 if (init_shared_mem(sp
)) {
7087 DBG_PRINT(ERR_DBG
, "%s: Memory allocation failed\n",
7090 goto mem_alloc_failed
;
7093 sp
->bar0
= ioremap(pci_resource_start(pdev
, 0),
7094 pci_resource_len(pdev
, 0));
7096 DBG_PRINT(ERR_DBG
, "%s: Neterion: cannot remap io mem1\n",
7099 goto bar0_remap_failed
;
7102 sp
->bar1
= ioremap(pci_resource_start(pdev
, 2),
7103 pci_resource_len(pdev
, 2));
7105 DBG_PRINT(ERR_DBG
, "%s: Neterion: cannot remap io mem2\n",
7108 goto bar1_remap_failed
;
7111 dev
->irq
= pdev
->irq
;
7112 dev
->base_addr
= (unsigned long) sp
->bar0
;
7114 /* Initializing the BAR1 address as the start of the FIFO pointer. */
7115 for (j
= 0; j
< MAX_TX_FIFOS
; j
++) {
7116 mac_control
->tx_FIFO_start
[j
] = (struct TxFIFO_element __iomem
*)
7117 (sp
->bar1
+ (j
* 0x00020000));
7120 /* Driver entry points */
7121 dev
->open
= &s2io_open
;
7122 dev
->stop
= &s2io_close
;
7123 dev
->hard_start_xmit
= &s2io_xmit
;
7124 dev
->get_stats
= &s2io_get_stats
;
7125 dev
->set_multicast_list
= &s2io_set_multicast
;
7126 dev
->do_ioctl
= &s2io_ioctl
;
7127 dev
->change_mtu
= &s2io_change_mtu
;
7128 SET_ETHTOOL_OPS(dev
, &netdev_ethtool_ops
);
7129 dev
->features
|= NETIF_F_HW_VLAN_TX
| NETIF_F_HW_VLAN_RX
;
7130 dev
->vlan_rx_register
= s2io_vlan_rx_register
;
7131 dev
->vlan_rx_kill_vid
= (void *)s2io_vlan_rx_kill_vid
;
7134 * will use eth_mac_addr() for dev->set_mac_address
7135 * mac address will be set every time dev->open() is called
7137 dev
->poll
= s2io_poll
;
7140 #ifdef CONFIG_NET_POLL_CONTROLLER
7141 dev
->poll_controller
= s2io_netpoll
;
7144 dev
->features
|= NETIF_F_SG
| NETIF_F_IP_CSUM
;
7145 if (sp
->high_dma_flag
== TRUE
)
7146 dev
->features
|= NETIF_F_HIGHDMA
;
7147 dev
->features
|= NETIF_F_TSO
;
7148 dev
->features
|= NETIF_F_TSO6
;
7149 if ((sp
->device_type
& XFRAME_II_DEVICE
) && (ufo
)) {
7150 dev
->features
|= NETIF_F_UFO
;
7151 dev
->features
|= NETIF_F_HW_CSUM
;
7154 dev
->tx_timeout
= &s2io_tx_watchdog
;
7155 dev
->watchdog_timeo
= WATCH_DOG_TIMEOUT
;
7156 INIT_WORK(&sp
->rst_timer_task
, s2io_restart_nic
);
7157 INIT_WORK(&sp
->set_link_task
, s2io_set_link
);
7159 pci_save_state(sp
->pdev
);
7161 /* Setting swapper control on the NIC, for proper reset operation */
7162 if (s2io_set_swapper(sp
)) {
7163 DBG_PRINT(ERR_DBG
, "%s:swapper settings are wrong\n",
7166 goto set_swap_failed
;
7169 /* Verify if the Herc works on the slot its placed into */
7170 if (sp
->device_type
& XFRAME_II_DEVICE
) {
7171 mode
= s2io_verify_pci_mode(sp
);
7173 DBG_PRINT(ERR_DBG
, "%s: ", __FUNCTION__
);
7174 DBG_PRINT(ERR_DBG
, " Unsupported PCI bus mode\n");
7176 goto set_swap_failed
;
7180 /* Not needed for Herc */
7181 if (sp
->device_type
& XFRAME_I_DEVICE
) {
7183 * Fix for all "FFs" MAC address problems observed on
7186 fix_mac_address(sp
);
7191 * MAC address initialization.
7192 * For now only one mac address will be read and used.
7195 val64
= RMAC_ADDR_CMD_MEM_RD
| RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD
|
7196 RMAC_ADDR_CMD_MEM_OFFSET(0 + MAC_MAC_ADDR_START_OFFSET
);
7197 writeq(val64
, &bar0
->rmac_addr_cmd_mem
);
7198 wait_for_cmd_complete(&bar0
->rmac_addr_cmd_mem
,
7199 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING
, S2IO_BIT_RESET
);
7200 tmp64
= readq(&bar0
->rmac_addr_data0_mem
);
7201 mac_down
= (u32
) tmp64
;
7202 mac_up
= (u32
) (tmp64
>> 32);
7204 sp
->def_mac_addr
[0].mac_addr
[3] = (u8
) (mac_up
);
7205 sp
->def_mac_addr
[0].mac_addr
[2] = (u8
) (mac_up
>> 8);
7206 sp
->def_mac_addr
[0].mac_addr
[1] = (u8
) (mac_up
>> 16);
7207 sp
->def_mac_addr
[0].mac_addr
[0] = (u8
) (mac_up
>> 24);
7208 sp
->def_mac_addr
[0].mac_addr
[5] = (u8
) (mac_down
>> 16);
7209 sp
->def_mac_addr
[0].mac_addr
[4] = (u8
) (mac_down
>> 24);
7211 /* Set the factory defined MAC address initially */
7212 dev
->addr_len
= ETH_ALEN
;
7213 memcpy(dev
->dev_addr
, sp
->def_mac_addr
, ETH_ALEN
);
7215 /* reset Nic and bring it to known state */
7219 * Initialize the tasklet status and link state flags
7220 * and the card state parameter
7222 atomic_set(&(sp
->card_state
), 0);
7223 sp
->tasklet_status
= 0;
7226 /* Initialize spinlocks */
7227 spin_lock_init(&sp
->tx_lock
);
7230 spin_lock_init(&sp
->put_lock
);
7231 spin_lock_init(&sp
->rx_lock
);
7234 * SXE-002: Configure link and activity LED to init state
7237 subid
= sp
->pdev
->subsystem_device
;
7238 if ((subid
& 0xFF) >= 0x07) {
7239 val64
= readq(&bar0
->gpio_control
);
7240 val64
|= 0x0000800000000000ULL
;
7241 writeq(val64
, &bar0
->gpio_control
);
7242 val64
= 0x0411040400000000ULL
;
7243 writeq(val64
, (void __iomem
*) bar0
+ 0x2700);
7244 val64
= readq(&bar0
->gpio_control
);
7247 sp
->rx_csum
= 1; /* Rx chksum verify enabled by default */
7249 if (register_netdev(dev
)) {
7250 DBG_PRINT(ERR_DBG
, "Device registration failed\n");
7252 goto register_failed
;
7255 DBG_PRINT(ERR_DBG
, "Copyright(c) 2002-2005 Neterion Inc.\n");
7256 DBG_PRINT(ERR_DBG
, "%s: Neterion %s (rev %d)\n",dev
->name
,
7257 sp
->product_name
, get_xena_rev_id(sp
->pdev
));
7258 DBG_PRINT(ERR_DBG
, "%s: Driver version %s\n", dev
->name
,
7259 s2io_driver_version
);
7260 DBG_PRINT(ERR_DBG
, "%s: MAC ADDR: "
7261 "%02x:%02x:%02x:%02x:%02x:%02x", dev
->name
,
7262 sp
->def_mac_addr
[0].mac_addr
[0],
7263 sp
->def_mac_addr
[0].mac_addr
[1],
7264 sp
->def_mac_addr
[0].mac_addr
[2],
7265 sp
->def_mac_addr
[0].mac_addr
[3],
7266 sp
->def_mac_addr
[0].mac_addr
[4],
7267 sp
->def_mac_addr
[0].mac_addr
[5]);
7268 DBG_PRINT(ERR_DBG
, "SERIAL NUMBER: %s\n", sp
->serial_num
);
7269 if (sp
->device_type
& XFRAME_II_DEVICE
) {
7270 mode
= s2io_print_pci_mode(sp
);
7272 DBG_PRINT(ERR_DBG
, " Unsupported PCI bus mode\n");
7274 unregister_netdev(dev
);
7275 goto set_swap_failed
;
7278 switch(sp
->rxd_mode
) {
7280 DBG_PRINT(ERR_DBG
, "%s: 1-Buffer receive mode enabled\n",
7284 DBG_PRINT(ERR_DBG
, "%s: 2-Buffer receive mode enabled\n",
7288 DBG_PRINT(ERR_DBG
, "%s: 3-Buffer receive mode enabled\n",
7294 DBG_PRINT(ERR_DBG
, "%s: NAPI enabled\n", dev
->name
);
7295 switch(sp
->intr_type
) {
7297 DBG_PRINT(ERR_DBG
, "%s: Interrupt type INTA\n", dev
->name
);
7300 DBG_PRINT(ERR_DBG
, "%s: Interrupt type MSI\n", dev
->name
);
7303 DBG_PRINT(ERR_DBG
, "%s: Interrupt type MSI-X\n", dev
->name
);
7307 DBG_PRINT(ERR_DBG
, "%s: Large receive offload enabled\n",
7310 DBG_PRINT(ERR_DBG
, "%s: UDP Fragmentation Offload(UFO)"
7311 " enabled\n", dev
->name
);
7312 /* Initialize device name */
7313 sprintf(sp
->name
, "%s Neterion %s", dev
->name
, sp
->product_name
);
7315 /* Initialize bimodal Interrupts */
7316 sp
->config
.bimodal
= bimodal
;
7317 if (!(sp
->device_type
& XFRAME_II_DEVICE
) && bimodal
) {
7318 sp
->config
.bimodal
= 0;
7319 DBG_PRINT(ERR_DBG
,"%s:Bimodal intr not supported by Xframe I\n",
7324 * Make Link state as off at this point, when the Link change
7325 * interrupt comes the state will be automatically changed to
7328 netif_carrier_off(dev
);
7339 free_shared_mem(sp
);
7340 pci_disable_device(pdev
);
7341 if (dev_intr_type
!= MSI_X
)
7342 pci_release_regions(pdev
);
7344 release_mem_region(pci_resource_start(pdev
, 0),
7345 pci_resource_len(pdev
, 0));
7346 release_mem_region(pci_resource_start(pdev
, 2),
7347 pci_resource_len(pdev
, 2));
7349 pci_set_drvdata(pdev
, NULL
);
7356 * s2io_rem_nic - Free the PCI device
7357 * @pdev: structure containing the PCI related information of the device.
7358 * Description: This function is called by the Pci subsystem to release a
7359 * PCI device and free up all resource held up by the device. This could
7360 * be in response to a Hot plug event or when the driver is to be removed
7364 static void __devexit
s2io_rem_nic(struct pci_dev
*pdev
)
7366 struct net_device
*dev
=
7367 (struct net_device
*) pci_get_drvdata(pdev
);
7368 struct s2io_nic
*sp
;
7371 DBG_PRINT(ERR_DBG
, "Driver Data is NULL!!\n");
7375 flush_scheduled_work();
7378 unregister_netdev(dev
);
7380 free_shared_mem(sp
);
7383 if (sp
->intr_type
!= MSI_X
)
7384 pci_release_regions(pdev
);
7386 release_mem_region(pci_resource_start(pdev
, 0),
7387 pci_resource_len(pdev
, 0));
7388 release_mem_region(pci_resource_start(pdev
, 2),
7389 pci_resource_len(pdev
, 2));
7391 pci_set_drvdata(pdev
, NULL
);
7393 pci_disable_device(pdev
);
7397 * s2io_starter - Entry point for the driver
7398 * Description: This function is the entry point for the driver. It verifies
7399 * the module loadable parameters and initializes PCI configuration space.
7402 int __init
s2io_starter(void)
7404 return pci_register_driver(&s2io_driver
);
7408 * s2io_closer - Cleanup routine for the driver
7409 * Description: This function is the cleanup routine for the driver. It unregist * ers the driver.
7412 static __exit
void s2io_closer(void)
7414 pci_unregister_driver(&s2io_driver
);
7415 DBG_PRINT(INIT_DBG
, "cleanup done\n");
7418 module_init(s2io_starter
);
7419 module_exit(s2io_closer
);
7421 static int check_L2_lro_capable(u8
*buffer
, struct iphdr
**ip
,
7422 struct tcphdr
**tcp
, struct RxD_t
*rxdp
)
7425 u8 l2_type
= (u8
)((rxdp
->Control_1
>> 37) & 0x7), ip_len
;
7427 if (!(rxdp
->Control_1
& RXD_FRAME_PROTO_TCP
)) {
7428 DBG_PRINT(INIT_DBG
,"%s: Non-TCP frames not supported for LRO\n",
7434 * By default the VLAN field in the MAC is stripped by the card, if this
7435 * feature is turned off in rx_pa_cfg register, then the ip_off field
7436 * has to be shifted by a further 2 bytes
7439 case 0: /* DIX type */
7440 case 4: /* DIX type with VLAN */
7441 ip_off
= HEADER_ETHERNET_II_802_3_SIZE
;
7443 /* LLC, SNAP etc are considered non-mergeable */
7448 *ip
= (struct iphdr
*)((u8
*)buffer
+ ip_off
);
7449 ip_len
= (u8
)((*ip
)->ihl
);
7451 *tcp
= (struct tcphdr
*)((unsigned long)*ip
+ ip_len
);
7456 static int check_for_socket_match(struct lro
*lro
, struct iphdr
*ip
,
7459 DBG_PRINT(INFO_DBG
,"%s: Been here...\n", __FUNCTION__
);
7460 if ((lro
->iph
->saddr
!= ip
->saddr
) || (lro
->iph
->daddr
!= ip
->daddr
) ||
7461 (lro
->tcph
->source
!= tcp
->source
) || (lro
->tcph
->dest
!= tcp
->dest
))
7466 static inline int get_l4_pyld_length(struct iphdr
*ip
, struct tcphdr
*tcp
)
7468 return(ntohs(ip
->tot_len
) - (ip
->ihl
<< 2) - (tcp
->doff
<< 2));
7471 static void initiate_new_session(struct lro
*lro
, u8
*l2h
,
7472 struct iphdr
*ip
, struct tcphdr
*tcp
, u32 tcp_pyld_len
)
7474 DBG_PRINT(INFO_DBG
,"%s: Been here...\n", __FUNCTION__
);
7478 lro
->tcp_next_seq
= tcp_pyld_len
+ ntohl(tcp
->seq
);
7479 lro
->tcp_ack
= ntohl(tcp
->ack_seq
);
7481 lro
->total_len
= ntohs(ip
->tot_len
);
7484 * check if we saw TCP timestamp. Other consistency checks have
7485 * already been done.
7487 if (tcp
->doff
== 8) {
7489 ptr
= (u32
*)(tcp
+1);
7491 lro
->cur_tsval
= *(ptr
+1);
7492 lro
->cur_tsecr
= *(ptr
+2);
7497 static void update_L3L4_header(struct s2io_nic
*sp
, struct lro
*lro
)
7499 struct iphdr
*ip
= lro
->iph
;
7500 struct tcphdr
*tcp
= lro
->tcph
;
7502 struct stat_block
*statinfo
= sp
->mac_control
.stats_info
;
7503 DBG_PRINT(INFO_DBG
,"%s: Been here...\n", __FUNCTION__
);
7505 /* Update L3 header */
7506 ip
->tot_len
= htons(lro
->total_len
);
7508 nchk
= ip_fast_csum((u8
*)lro
->iph
, ip
->ihl
);
7511 /* Update L4 header */
7512 tcp
->ack_seq
= lro
->tcp_ack
;
7513 tcp
->window
= lro
->window
;
7515 /* Update tsecr field if this session has timestamps enabled */
7517 u32
*ptr
= (u32
*)(tcp
+ 1);
7518 *(ptr
+2) = lro
->cur_tsecr
;
7521 /* Update counters required for calculation of
7522 * average no. of packets aggregated.
7524 statinfo
->sw_stat
.sum_avg_pkts_aggregated
+= lro
->sg_num
;
7525 statinfo
->sw_stat
.num_aggregations
++;
7528 static void aggregate_new_rx(struct lro
*lro
, struct iphdr
*ip
,
7529 struct tcphdr
*tcp
, u32 l4_pyld
)
7531 DBG_PRINT(INFO_DBG
,"%s: Been here...\n", __FUNCTION__
);
7532 lro
->total_len
+= l4_pyld
;
7533 lro
->frags_len
+= l4_pyld
;
7534 lro
->tcp_next_seq
+= l4_pyld
;
7537 /* Update ack seq no. and window ad(from this pkt) in LRO object */
7538 lro
->tcp_ack
= tcp
->ack_seq
;
7539 lro
->window
= tcp
->window
;
7543 /* Update tsecr and tsval from this packet */
7544 ptr
= (u32
*) (tcp
+ 1);
7545 lro
->cur_tsval
= *(ptr
+ 1);
7546 lro
->cur_tsecr
= *(ptr
+ 2);
7550 static int verify_l3_l4_lro_capable(struct lro
*l_lro
, struct iphdr
*ip
,
7551 struct tcphdr
*tcp
, u32 tcp_pyld_len
)
7555 DBG_PRINT(INFO_DBG
,"%s: Been here...\n", __FUNCTION__
);
7557 if (!tcp_pyld_len
) {
7558 /* Runt frame or a pure ack */
7562 if (ip
->ihl
!= 5) /* IP has options */
7565 /* If we see CE codepoint in IP header, packet is not mergeable */
7566 if (INET_ECN_is_ce(ipv4_get_dsfield(ip
)))
7569 /* If we see ECE or CWR flags in TCP header, packet is not mergeable */
7570 if (tcp
->urg
|| tcp
->psh
|| tcp
->rst
|| tcp
->syn
|| tcp
->fin
||
7571 tcp
->ece
|| tcp
->cwr
|| !tcp
->ack
) {
7573 * Currently recognize only the ack control word and
7574 * any other control field being set would result in
7575 * flushing the LRO session
7581 * Allow only one TCP timestamp option. Don't aggregate if
7582 * any other options are detected.
7584 if (tcp
->doff
!= 5 && tcp
->doff
!= 8)
7587 if (tcp
->doff
== 8) {
7588 ptr
= (u8
*)(tcp
+ 1);
7589 while (*ptr
== TCPOPT_NOP
)
7591 if (*ptr
!= TCPOPT_TIMESTAMP
|| *(ptr
+1) != TCPOLEN_TIMESTAMP
)
7594 /* Ensure timestamp value increases monotonically */
7596 if (l_lro
->cur_tsval
> *((u32
*)(ptr
+2)))
7599 /* timestamp echo reply should be non-zero */
7600 if (*((u32
*)(ptr
+6)) == 0)
7608 s2io_club_tcp_session(u8
*buffer
, u8
**tcp
, u32
*tcp_len
, struct lro
**lro
,
7609 struct RxD_t
*rxdp
, struct s2io_nic
*sp
)
7612 struct tcphdr
*tcph
;
7615 if (!(ret
= check_L2_lro_capable(buffer
, &ip
, (struct tcphdr
**)tcp
,
7617 DBG_PRINT(INFO_DBG
,"IP Saddr: %x Daddr: %x\n",
7618 ip
->saddr
, ip
->daddr
);
7623 tcph
= (struct tcphdr
*)*tcp
;
7624 *tcp_len
= get_l4_pyld_length(ip
, tcph
);
7625 for (i
=0; i
<MAX_LRO_SESSIONS
; i
++) {
7626 struct lro
*l_lro
= &sp
->lro0_n
[i
];
7627 if (l_lro
->in_use
) {
7628 if (check_for_socket_match(l_lro
, ip
, tcph
))
7630 /* Sock pair matched */
7633 if ((*lro
)->tcp_next_seq
!= ntohl(tcph
->seq
)) {
7634 DBG_PRINT(INFO_DBG
, "%s:Out of order. expected "
7635 "0x%x, actual 0x%x\n", __FUNCTION__
,
7636 (*lro
)->tcp_next_seq
,
7639 sp
->mac_control
.stats_info
->
7640 sw_stat
.outof_sequence_pkts
++;
7645 if (!verify_l3_l4_lro_capable(l_lro
, ip
, tcph
,*tcp_len
))
7646 ret
= 1; /* Aggregate */
7648 ret
= 2; /* Flush both */
7654 /* Before searching for available LRO objects,
7655 * check if the pkt is L3/L4 aggregatable. If not
7656 * don't create new LRO session. Just send this
7659 if (verify_l3_l4_lro_capable(NULL
, ip
, tcph
, *tcp_len
)) {
7663 for (i
=0; i
<MAX_LRO_SESSIONS
; i
++) {
7664 struct lro
*l_lro
= &sp
->lro0_n
[i
];
7665 if (!(l_lro
->in_use
)) {
7667 ret
= 3; /* Begin anew */
7673 if (ret
== 0) { /* sessions exceeded */
7674 DBG_PRINT(INFO_DBG
,"%s:All LRO sessions already in use\n",
7682 initiate_new_session(*lro
, buffer
, ip
, tcph
, *tcp_len
);
7685 update_L3L4_header(sp
, *lro
);
7688 aggregate_new_rx(*lro
, ip
, tcph
, *tcp_len
);
7689 if ((*lro
)->sg_num
== sp
->lro_max_aggr_per_sess
) {
7690 update_L3L4_header(sp
, *lro
);
7691 ret
= 4; /* Flush the LRO */
7695 DBG_PRINT(ERR_DBG
,"%s:Dont know, can't say!!\n",
7703 static void clear_lro_session(struct lro
*lro
)
7705 static u16 lro_struct_size
= sizeof(struct lro
);
7707 memset(lro
, 0, lro_struct_size
);
7710 static void queue_rx_frame(struct sk_buff
*skb
)
7712 struct net_device
*dev
= skb
->dev
;
7714 skb
->protocol
= eth_type_trans(skb
, dev
);
7716 netif_receive_skb(skb
);
7721 static void lro_append_pkt(struct s2io_nic
*sp
, struct lro
*lro
,
7722 struct sk_buff
*skb
,
7725 struct sk_buff
*first
= lro
->parent
;
7727 first
->len
+= tcp_len
;
7728 first
->data_len
= lro
->frags_len
;
7729 skb_pull(skb
, (skb
->len
- tcp_len
));
7730 if (skb_shinfo(first
)->frag_list
)
7731 lro
->last_frag
->next
= skb
;
7733 skb_shinfo(first
)->frag_list
= skb
;
7734 first
->truesize
+= skb
->truesize
;
7735 lro
->last_frag
= skb
;
7736 sp
->mac_control
.stats_info
->sw_stat
.clubbed_frms_cnt
++;