1 /* $Id: sungem.c,v 1.44.2.22 2002/03/13 01:18:12 davem Exp $
2 * sungem.c: Sun GEM ethernet driver.
4 * Copyright (C) 2000, 2001, 2002, 2003 David S. Miller (davem@redhat.com)
6 * Support for Apple GMAC and assorted PHYs, WOL, Power Management
7 * (C) 2001,2002,2003 Benjamin Herrenscmidt (benh@kernel.crashing.org)
8 * (C) 2004,2005 Benjamin Herrenscmidt, IBM Corp.
10 * NAPI and NETPOLL support
11 * (C) 2004 by Eric Lemoine (eric.lemoine@gmail.com)
14 * - Now that the driver was significantly simplified, I need to rework
15 * the locking. I'm sure we don't need _2_ spinlocks, and we probably
16 * can avoid taking most of them for so long period of time (and schedule
17 * instead). The main issues at this point are caused by the netdev layer
20 * gem_change_mtu() and gem_set_multicast() are called with a read_lock()
21 * help by net/core/dev.c, thus they can't schedule. That means they can't
22 * call netif_poll_disable() neither, thus force gem_poll() to keep a spinlock
23 * where it could have been dropped. change_mtu especially would love also to
24 * be able to msleep instead of horrid locked delays when resetting the HW,
25 * but that read_lock() makes it impossible, unless I defer it's action to
26 * the reset task, which means it'll be asynchronous (won't take effect until
27 * the system schedules a bit).
29 * Also, it would probably be possible to also remove most of the long-life
30 * locking in open/resume code path (gem_reinit_chip) by beeing more careful
31 * about when we can start taking interrupts or get xmit() called...
34 #include <linux/module.h>
35 #include <linux/kernel.h>
36 #include <linux/types.h>
37 #include <linux/fcntl.h>
38 #include <linux/interrupt.h>
39 #include <linux/ioport.h>
41 #include <linux/slab.h>
42 #include <linux/string.h>
43 #include <linux/delay.h>
44 #include <linux/init.h>
45 #include <linux/errno.h>
46 #include <linux/pci.h>
47 #include <linux/dma-mapping.h>
48 #include <linux/netdevice.h>
49 #include <linux/etherdevice.h>
50 #include <linux/skbuff.h>
51 #include <linux/mii.h>
52 #include <linux/ethtool.h>
53 #include <linux/crc32.h>
54 #include <linux/random.h>
55 #include <linux/workqueue.h>
56 #include <linux/if_vlan.h>
57 #include <linux/bitops.h>
58 #include <linux/mutex.h>
61 #include <asm/system.h>
63 #include <asm/byteorder.h>
64 #include <asm/uaccess.h>
68 #include <asm/idprom.h>
69 #include <asm/openprom.h>
70 #include <asm/oplib.h>
74 #ifdef CONFIG_PPC_PMAC
75 #include <asm/pci-bridge.h>
77 #include <asm/machdep.h>
78 #include <asm/pmac_feature.h>
81 #include "sungem_phy.h"
84 /* Stripping FCS is causing problems, disabled for now */
87 #define DEFAULT_MSG (NETIF_MSG_DRV | \
91 #define ADVERTISE_MASK (SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full | \
92 SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full | \
93 SUPPORTED_1000baseT_Half | SUPPORTED_1000baseT_Full | \
94 SUPPORTED_Pause | SUPPORTED_Autoneg)
96 #define DRV_NAME "sungem"
97 #define DRV_VERSION "0.98"
98 #define DRV_RELDATE "8/24/03"
99 #define DRV_AUTHOR "David S. Miller (davem@redhat.com)"
101 static char version
[] __devinitdata
=
102 DRV_NAME
".c:v" DRV_VERSION
" " DRV_RELDATE
" " DRV_AUTHOR
"\n";
104 MODULE_AUTHOR(DRV_AUTHOR
);
105 MODULE_DESCRIPTION("Sun GEM Gbit ethernet driver");
106 MODULE_LICENSE("GPL");
108 #define GEM_MODULE_NAME "gem"
109 #define PFX GEM_MODULE_NAME ": "
111 static struct pci_device_id gem_pci_tbl
[] = {
112 { PCI_VENDOR_ID_SUN
, PCI_DEVICE_ID_SUN_GEM
,
113 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, 0UL },
115 /* These models only differ from the original GEM in
116 * that their tx/rx fifos are of a different size and
117 * they only support 10/100 speeds. -DaveM
119 * Apple's GMAC does support gigabit on machines with
120 * the BCM54xx PHYs. -BenH
122 { PCI_VENDOR_ID_SUN
, PCI_DEVICE_ID_SUN_RIO_GEM
,
123 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, 0UL },
124 { PCI_VENDOR_ID_APPLE
, PCI_DEVICE_ID_APPLE_UNI_N_GMAC
,
125 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, 0UL },
126 { PCI_VENDOR_ID_APPLE
, PCI_DEVICE_ID_APPLE_UNI_N_GMACP
,
127 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, 0UL },
128 { PCI_VENDOR_ID_APPLE
, PCI_DEVICE_ID_APPLE_UNI_N_GMAC2
,
129 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, 0UL },
130 { PCI_VENDOR_ID_APPLE
, PCI_DEVICE_ID_APPLE_K2_GMAC
,
131 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, 0UL },
132 { PCI_VENDOR_ID_APPLE
, PCI_DEVICE_ID_APPLE_SH_SUNGEM
,
133 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, 0UL },
134 { PCI_VENDOR_ID_APPLE
, PCI_DEVICE_ID_APPLE_IPID2_GMAC
,
135 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, 0UL },
139 MODULE_DEVICE_TABLE(pci
, gem_pci_tbl
);
141 static u16
__phy_read(struct gem
*gp
, int phy_addr
, int reg
)
148 cmd
|= (phy_addr
<< 23) & MIF_FRAME_PHYAD
;
149 cmd
|= (reg
<< 18) & MIF_FRAME_REGAD
;
150 cmd
|= (MIF_FRAME_TAMSB
);
151 writel(cmd
, gp
->regs
+ MIF_FRAME
);
154 cmd
= readl(gp
->regs
+ MIF_FRAME
);
155 if (cmd
& MIF_FRAME_TALSB
)
164 return cmd
& MIF_FRAME_DATA
;
167 static inline int _phy_read(struct net_device
*dev
, int mii_id
, int reg
)
169 struct gem
*gp
= dev
->priv
;
170 return __phy_read(gp
, mii_id
, reg
);
173 static inline u16
phy_read(struct gem
*gp
, int reg
)
175 return __phy_read(gp
, gp
->mii_phy_addr
, reg
);
178 static void __phy_write(struct gem
*gp
, int phy_addr
, int reg
, u16 val
)
185 cmd
|= (phy_addr
<< 23) & MIF_FRAME_PHYAD
;
186 cmd
|= (reg
<< 18) & MIF_FRAME_REGAD
;
187 cmd
|= (MIF_FRAME_TAMSB
);
188 cmd
|= (val
& MIF_FRAME_DATA
);
189 writel(cmd
, gp
->regs
+ MIF_FRAME
);
192 cmd
= readl(gp
->regs
+ MIF_FRAME
);
193 if (cmd
& MIF_FRAME_TALSB
)
200 static inline void _phy_write(struct net_device
*dev
, int mii_id
, int reg
, int val
)
202 struct gem
*gp
= dev
->priv
;
203 __phy_write(gp
, mii_id
, reg
, val
& 0xffff);
206 static inline void phy_write(struct gem
*gp
, int reg
, u16 val
)
208 __phy_write(gp
, gp
->mii_phy_addr
, reg
, val
);
211 static inline void gem_enable_ints(struct gem
*gp
)
213 /* Enable all interrupts but TXDONE */
214 writel(GREG_STAT_TXDONE
, gp
->regs
+ GREG_IMASK
);
217 static inline void gem_disable_ints(struct gem
*gp
)
219 /* Disable all interrupts, including TXDONE */
220 writel(GREG_STAT_NAPI
| GREG_STAT_TXDONE
, gp
->regs
+ GREG_IMASK
);
223 static void gem_get_cell(struct gem
*gp
)
225 BUG_ON(gp
->cell_enabled
< 0);
227 #ifdef CONFIG_PPC_PMAC
228 if (gp
->cell_enabled
== 1) {
230 pmac_call_feature(PMAC_FTR_GMAC_ENABLE
, gp
->of_node
, 0, 1);
233 #endif /* CONFIG_PPC_PMAC */
236 /* Turn off the chip's clock */
237 static void gem_put_cell(struct gem
*gp
)
239 BUG_ON(gp
->cell_enabled
<= 0);
241 #ifdef CONFIG_PPC_PMAC
242 if (gp
->cell_enabled
== 0) {
244 pmac_call_feature(PMAC_FTR_GMAC_ENABLE
, gp
->of_node
, 0, 0);
247 #endif /* CONFIG_PPC_PMAC */
250 static void gem_handle_mif_event(struct gem
*gp
, u32 reg_val
, u32 changed_bits
)
252 if (netif_msg_intr(gp
))
253 printk(KERN_DEBUG
"%s: mif interrupt\n", gp
->dev
->name
);
256 static int gem_pcs_interrupt(struct net_device
*dev
, struct gem
*gp
, u32 gem_status
)
258 u32 pcs_istat
= readl(gp
->regs
+ PCS_ISTAT
);
261 if (netif_msg_intr(gp
))
262 printk(KERN_DEBUG
"%s: pcs interrupt, pcs_istat: 0x%x\n",
263 gp
->dev
->name
, pcs_istat
);
265 if (!(pcs_istat
& PCS_ISTAT_LSC
)) {
266 printk(KERN_ERR
"%s: PCS irq but no link status change???\n",
271 /* The link status bit latches on zero, so you must
272 * read it twice in such a case to see a transition
273 * to the link being up.
275 pcs_miistat
= readl(gp
->regs
+ PCS_MIISTAT
);
276 if (!(pcs_miistat
& PCS_MIISTAT_LS
))
278 (readl(gp
->regs
+ PCS_MIISTAT
) &
281 if (pcs_miistat
& PCS_MIISTAT_ANC
) {
282 /* The remote-fault indication is only valid
283 * when autoneg has completed.
285 if (pcs_miistat
& PCS_MIISTAT_RF
)
286 printk(KERN_INFO
"%s: PCS AutoNEG complete, "
287 "RemoteFault\n", dev
->name
);
289 printk(KERN_INFO
"%s: PCS AutoNEG complete.\n",
293 if (pcs_miistat
& PCS_MIISTAT_LS
) {
294 printk(KERN_INFO
"%s: PCS link is now up.\n",
296 netif_carrier_on(gp
->dev
);
298 printk(KERN_INFO
"%s: PCS link is now down.\n",
300 netif_carrier_off(gp
->dev
);
301 /* If this happens and the link timer is not running,
302 * reset so we re-negotiate.
304 if (!timer_pending(&gp
->link_timer
))
311 static int gem_txmac_interrupt(struct net_device
*dev
, struct gem
*gp
, u32 gem_status
)
313 u32 txmac_stat
= readl(gp
->regs
+ MAC_TXSTAT
);
315 if (netif_msg_intr(gp
))
316 printk(KERN_DEBUG
"%s: txmac interrupt, txmac_stat: 0x%x\n",
317 gp
->dev
->name
, txmac_stat
);
319 /* Defer timer expiration is quite normal,
320 * don't even log the event.
322 if ((txmac_stat
& MAC_TXSTAT_DTE
) &&
323 !(txmac_stat
& ~MAC_TXSTAT_DTE
))
326 if (txmac_stat
& MAC_TXSTAT_URUN
) {
327 printk(KERN_ERR
"%s: TX MAC xmit underrun.\n",
329 gp
->net_stats
.tx_fifo_errors
++;
332 if (txmac_stat
& MAC_TXSTAT_MPE
) {
333 printk(KERN_ERR
"%s: TX MAC max packet size error.\n",
335 gp
->net_stats
.tx_errors
++;
338 /* The rest are all cases of one of the 16-bit TX
341 if (txmac_stat
& MAC_TXSTAT_NCE
)
342 gp
->net_stats
.collisions
+= 0x10000;
344 if (txmac_stat
& MAC_TXSTAT_ECE
) {
345 gp
->net_stats
.tx_aborted_errors
+= 0x10000;
346 gp
->net_stats
.collisions
+= 0x10000;
349 if (txmac_stat
& MAC_TXSTAT_LCE
) {
350 gp
->net_stats
.tx_aborted_errors
+= 0x10000;
351 gp
->net_stats
.collisions
+= 0x10000;
354 /* We do not keep track of MAC_TXSTAT_FCE and
355 * MAC_TXSTAT_PCE events.
360 /* When we get a RX fifo overflow, the RX unit in GEM is probably hung
361 * so we do the following.
363 * If any part of the reset goes wrong, we return 1 and that causes the
364 * whole chip to be reset.
366 static int gem_rxmac_reset(struct gem
*gp
)
368 struct net_device
*dev
= gp
->dev
;
373 /* First, reset & disable MAC RX. */
374 writel(MAC_RXRST_CMD
, gp
->regs
+ MAC_RXRST
);
375 for (limit
= 0; limit
< 5000; limit
++) {
376 if (!(readl(gp
->regs
+ MAC_RXRST
) & MAC_RXRST_CMD
))
381 printk(KERN_ERR
"%s: RX MAC will not reset, resetting whole "
382 "chip.\n", dev
->name
);
386 writel(gp
->mac_rx_cfg
& ~MAC_RXCFG_ENAB
,
387 gp
->regs
+ MAC_RXCFG
);
388 for (limit
= 0; limit
< 5000; limit
++) {
389 if (!(readl(gp
->regs
+ MAC_RXCFG
) & MAC_RXCFG_ENAB
))
394 printk(KERN_ERR
"%s: RX MAC will not disable, resetting whole "
395 "chip.\n", dev
->name
);
399 /* Second, disable RX DMA. */
400 writel(0, gp
->regs
+ RXDMA_CFG
);
401 for (limit
= 0; limit
< 5000; limit
++) {
402 if (!(readl(gp
->regs
+ RXDMA_CFG
) & RXDMA_CFG_ENABLE
))
407 printk(KERN_ERR
"%s: RX DMA will not disable, resetting whole "
408 "chip.\n", dev
->name
);
414 /* Execute RX reset command. */
415 writel(gp
->swrst_base
| GREG_SWRST_RXRST
,
416 gp
->regs
+ GREG_SWRST
);
417 for (limit
= 0; limit
< 5000; limit
++) {
418 if (!(readl(gp
->regs
+ GREG_SWRST
) & GREG_SWRST_RXRST
))
423 printk(KERN_ERR
"%s: RX reset command will not execute, resetting "
424 "whole chip.\n", dev
->name
);
428 /* Refresh the RX ring. */
429 for (i
= 0; i
< RX_RING_SIZE
; i
++) {
430 struct gem_rxd
*rxd
= &gp
->init_block
->rxd
[i
];
432 if (gp
->rx_skbs
[i
] == NULL
) {
433 printk(KERN_ERR
"%s: Parts of RX ring empty, resetting "
434 "whole chip.\n", dev
->name
);
438 rxd
->status_word
= cpu_to_le64(RXDCTRL_FRESH(gp
));
440 gp
->rx_new
= gp
->rx_old
= 0;
442 /* Now we must reprogram the rest of RX unit. */
443 desc_dma
= (u64
) gp
->gblock_dvma
;
444 desc_dma
+= (INIT_BLOCK_TX_RING_SIZE
* sizeof(struct gem_txd
));
445 writel(desc_dma
>> 32, gp
->regs
+ RXDMA_DBHI
);
446 writel(desc_dma
& 0xffffffff, gp
->regs
+ RXDMA_DBLOW
);
447 writel(RX_RING_SIZE
- 4, gp
->regs
+ RXDMA_KICK
);
448 val
= (RXDMA_CFG_BASE
| (RX_OFFSET
<< 10) |
449 ((14 / 2) << 13) | RXDMA_CFG_FTHRESH_128
);
450 writel(val
, gp
->regs
+ RXDMA_CFG
);
451 if (readl(gp
->regs
+ GREG_BIFCFG
) & GREG_BIFCFG_M66EN
)
452 writel(((5 & RXDMA_BLANK_IPKTS
) |
453 ((8 << 12) & RXDMA_BLANK_ITIME
)),
454 gp
->regs
+ RXDMA_BLANK
);
456 writel(((5 & RXDMA_BLANK_IPKTS
) |
457 ((4 << 12) & RXDMA_BLANK_ITIME
)),
458 gp
->regs
+ RXDMA_BLANK
);
459 val
= (((gp
->rx_pause_off
/ 64) << 0) & RXDMA_PTHRESH_OFF
);
460 val
|= (((gp
->rx_pause_on
/ 64) << 12) & RXDMA_PTHRESH_ON
);
461 writel(val
, gp
->regs
+ RXDMA_PTHRESH
);
462 val
= readl(gp
->regs
+ RXDMA_CFG
);
463 writel(val
| RXDMA_CFG_ENABLE
, gp
->regs
+ RXDMA_CFG
);
464 writel(MAC_RXSTAT_RCV
, gp
->regs
+ MAC_RXMASK
);
465 val
= readl(gp
->regs
+ MAC_RXCFG
);
466 writel(val
| MAC_RXCFG_ENAB
, gp
->regs
+ MAC_RXCFG
);
471 static int gem_rxmac_interrupt(struct net_device
*dev
, struct gem
*gp
, u32 gem_status
)
473 u32 rxmac_stat
= readl(gp
->regs
+ MAC_RXSTAT
);
476 if (netif_msg_intr(gp
))
477 printk(KERN_DEBUG
"%s: rxmac interrupt, rxmac_stat: 0x%x\n",
478 gp
->dev
->name
, rxmac_stat
);
480 if (rxmac_stat
& MAC_RXSTAT_OFLW
) {
481 u32 smac
= readl(gp
->regs
+ MAC_SMACHINE
);
483 printk(KERN_ERR
"%s: RX MAC fifo overflow smac[%08x].\n",
485 gp
->net_stats
.rx_over_errors
++;
486 gp
->net_stats
.rx_fifo_errors
++;
488 ret
= gem_rxmac_reset(gp
);
491 if (rxmac_stat
& MAC_RXSTAT_ACE
)
492 gp
->net_stats
.rx_frame_errors
+= 0x10000;
494 if (rxmac_stat
& MAC_RXSTAT_CCE
)
495 gp
->net_stats
.rx_crc_errors
+= 0x10000;
497 if (rxmac_stat
& MAC_RXSTAT_LCE
)
498 gp
->net_stats
.rx_length_errors
+= 0x10000;
500 /* We do not track MAC_RXSTAT_FCE and MAC_RXSTAT_VCE
506 static int gem_mac_interrupt(struct net_device
*dev
, struct gem
*gp
, u32 gem_status
)
508 u32 mac_cstat
= readl(gp
->regs
+ MAC_CSTAT
);
510 if (netif_msg_intr(gp
))
511 printk(KERN_DEBUG
"%s: mac interrupt, mac_cstat: 0x%x\n",
512 gp
->dev
->name
, mac_cstat
);
514 /* This interrupt is just for pause frame and pause
515 * tracking. It is useful for diagnostics and debug
516 * but probably by default we will mask these events.
518 if (mac_cstat
& MAC_CSTAT_PS
)
521 if (mac_cstat
& MAC_CSTAT_PRCV
)
522 gp
->pause_last_time_recvd
= (mac_cstat
>> 16);
527 static int gem_mif_interrupt(struct net_device
*dev
, struct gem
*gp
, u32 gem_status
)
529 u32 mif_status
= readl(gp
->regs
+ MIF_STATUS
);
530 u32 reg_val
, changed_bits
;
532 reg_val
= (mif_status
& MIF_STATUS_DATA
) >> 16;
533 changed_bits
= (mif_status
& MIF_STATUS_STAT
);
535 gem_handle_mif_event(gp
, reg_val
, changed_bits
);
540 static int gem_pci_interrupt(struct net_device
*dev
, struct gem
*gp
, u32 gem_status
)
542 u32 pci_estat
= readl(gp
->regs
+ GREG_PCIESTAT
);
544 if (gp
->pdev
->vendor
== PCI_VENDOR_ID_SUN
&&
545 gp
->pdev
->device
== PCI_DEVICE_ID_SUN_GEM
) {
546 printk(KERN_ERR
"%s: PCI error [%04x] ",
547 dev
->name
, pci_estat
);
549 if (pci_estat
& GREG_PCIESTAT_BADACK
)
550 printk("<No ACK64# during ABS64 cycle> ");
551 if (pci_estat
& GREG_PCIESTAT_DTRTO
)
552 printk("<Delayed transaction timeout> ");
553 if (pci_estat
& GREG_PCIESTAT_OTHER
)
557 pci_estat
|= GREG_PCIESTAT_OTHER
;
558 printk(KERN_ERR
"%s: PCI error\n", dev
->name
);
561 if (pci_estat
& GREG_PCIESTAT_OTHER
) {
564 /* Interrogate PCI config space for the
567 pci_read_config_word(gp
->pdev
, PCI_STATUS
,
569 printk(KERN_ERR
"%s: Read PCI cfg space status [%04x]\n",
570 dev
->name
, pci_cfg_stat
);
571 if (pci_cfg_stat
& PCI_STATUS_PARITY
)
572 printk(KERN_ERR
"%s: PCI parity error detected.\n",
574 if (pci_cfg_stat
& PCI_STATUS_SIG_TARGET_ABORT
)
575 printk(KERN_ERR
"%s: PCI target abort.\n",
577 if (pci_cfg_stat
& PCI_STATUS_REC_TARGET_ABORT
)
578 printk(KERN_ERR
"%s: PCI master acks target abort.\n",
580 if (pci_cfg_stat
& PCI_STATUS_REC_MASTER_ABORT
)
581 printk(KERN_ERR
"%s: PCI master abort.\n",
583 if (pci_cfg_stat
& PCI_STATUS_SIG_SYSTEM_ERROR
)
584 printk(KERN_ERR
"%s: PCI system error SERR#.\n",
586 if (pci_cfg_stat
& PCI_STATUS_DETECTED_PARITY
)
587 printk(KERN_ERR
"%s: PCI parity error.\n",
590 /* Write the error bits back to clear them. */
591 pci_cfg_stat
&= (PCI_STATUS_PARITY
|
592 PCI_STATUS_SIG_TARGET_ABORT
|
593 PCI_STATUS_REC_TARGET_ABORT
|
594 PCI_STATUS_REC_MASTER_ABORT
|
595 PCI_STATUS_SIG_SYSTEM_ERROR
|
596 PCI_STATUS_DETECTED_PARITY
);
597 pci_write_config_word(gp
->pdev
,
598 PCI_STATUS
, pci_cfg_stat
);
601 /* For all PCI errors, we should reset the chip. */
605 /* All non-normal interrupt conditions get serviced here.
606 * Returns non-zero if we should just exit the interrupt
607 * handler right now (ie. if we reset the card which invalidates
608 * all of the other original irq status bits).
610 static int gem_abnormal_irq(struct net_device
*dev
, struct gem
*gp
, u32 gem_status
)
612 if (gem_status
& GREG_STAT_RXNOBUF
) {
613 /* Frame arrived, no free RX buffers available. */
614 if (netif_msg_rx_err(gp
))
615 printk(KERN_DEBUG
"%s: no buffer for rx frame\n",
617 gp
->net_stats
.rx_dropped
++;
620 if (gem_status
& GREG_STAT_RXTAGERR
) {
621 /* corrupt RX tag framing */
622 if (netif_msg_rx_err(gp
))
623 printk(KERN_DEBUG
"%s: corrupt rx tag framing\n",
625 gp
->net_stats
.rx_errors
++;
630 if (gem_status
& GREG_STAT_PCS
) {
631 if (gem_pcs_interrupt(dev
, gp
, gem_status
))
635 if (gem_status
& GREG_STAT_TXMAC
) {
636 if (gem_txmac_interrupt(dev
, gp
, gem_status
))
640 if (gem_status
& GREG_STAT_RXMAC
) {
641 if (gem_rxmac_interrupt(dev
, gp
, gem_status
))
645 if (gem_status
& GREG_STAT_MAC
) {
646 if (gem_mac_interrupt(dev
, gp
, gem_status
))
650 if (gem_status
& GREG_STAT_MIF
) {
651 if (gem_mif_interrupt(dev
, gp
, gem_status
))
655 if (gem_status
& GREG_STAT_PCIERR
) {
656 if (gem_pci_interrupt(dev
, gp
, gem_status
))
663 gp
->reset_task_pending
= 1;
664 schedule_work(&gp
->reset_task
);
669 static __inline__
void gem_tx(struct net_device
*dev
, struct gem
*gp
, u32 gem_status
)
673 if (netif_msg_intr(gp
))
674 printk(KERN_DEBUG
"%s: tx interrupt, gem_status: 0x%x\n",
675 gp
->dev
->name
, gem_status
);
678 limit
= ((gem_status
& GREG_STAT_TXNR
) >> GREG_STAT_TXNR_SHIFT
);
679 while (entry
!= limit
) {
686 if (netif_msg_tx_done(gp
))
687 printk(KERN_DEBUG
"%s: tx done, slot %d\n",
688 gp
->dev
->name
, entry
);
689 skb
= gp
->tx_skbs
[entry
];
690 if (skb_shinfo(skb
)->nr_frags
) {
691 int last
= entry
+ skb_shinfo(skb
)->nr_frags
;
695 last
&= (TX_RING_SIZE
- 1);
697 walk
= NEXT_TX(walk
);
706 gp
->tx_skbs
[entry
] = NULL
;
707 gp
->net_stats
.tx_bytes
+= skb
->len
;
709 for (frag
= 0; frag
<= skb_shinfo(skb
)->nr_frags
; frag
++) {
710 txd
= &gp
->init_block
->txd
[entry
];
712 dma_addr
= le64_to_cpu(txd
->buffer
);
713 dma_len
= le64_to_cpu(txd
->control_word
) & TXDCTRL_BUFSZ
;
715 pci_unmap_page(gp
->pdev
, dma_addr
, dma_len
, PCI_DMA_TODEVICE
);
716 entry
= NEXT_TX(entry
);
719 gp
->net_stats
.tx_packets
++;
720 dev_kfree_skb_irq(skb
);
724 if (netif_queue_stopped(dev
) &&
725 TX_BUFFS_AVAIL(gp
) > (MAX_SKB_FRAGS
+ 1))
726 netif_wake_queue(dev
);
729 static __inline__
void gem_post_rxds(struct gem
*gp
, int limit
)
731 int cluster_start
, curr
, count
, kick
;
733 cluster_start
= curr
= (gp
->rx_new
& ~(4 - 1));
737 while (curr
!= limit
) {
738 curr
= NEXT_RX(curr
);
740 struct gem_rxd
*rxd
=
741 &gp
->init_block
->rxd
[cluster_start
];
743 rxd
->status_word
= cpu_to_le64(RXDCTRL_FRESH(gp
));
745 cluster_start
= NEXT_RX(cluster_start
);
746 if (cluster_start
== curr
)
755 writel(kick
, gp
->regs
+ RXDMA_KICK
);
759 static int gem_rx(struct gem
*gp
, int work_to_do
)
761 int entry
, drops
, work_done
= 0;
764 if (netif_msg_rx_status(gp
))
765 printk(KERN_DEBUG
"%s: rx interrupt, done: %d, rx_new: %d\n",
766 gp
->dev
->name
, readl(gp
->regs
+ RXDMA_DONE
), gp
->rx_new
);
770 done
= readl(gp
->regs
+ RXDMA_DONE
);
772 struct gem_rxd
*rxd
= &gp
->init_block
->rxd
[entry
];
774 u64 status
= cpu_to_le64(rxd
->status_word
);
778 if ((status
& RXDCTRL_OWN
) != 0)
781 if (work_done
>= RX_RING_SIZE
|| work_done
>= work_to_do
)
784 /* When writing back RX descriptor, GEM writes status
785 * then buffer address, possibly in seperate transactions.
786 * If we don't wait for the chip to write both, we could
787 * post a new buffer to this descriptor then have GEM spam
788 * on the buffer address. We sync on the RX completion
789 * register to prevent this from happening.
792 done
= readl(gp
->regs
+ RXDMA_DONE
);
797 /* We can now account for the work we're about to do */
800 skb
= gp
->rx_skbs
[entry
];
802 len
= (status
& RXDCTRL_BUFSZ
) >> 16;
803 if ((len
< ETH_ZLEN
) || (status
& RXDCTRL_BAD
)) {
804 gp
->net_stats
.rx_errors
++;
806 gp
->net_stats
.rx_length_errors
++;
807 if (len
& RXDCTRL_BAD
)
808 gp
->net_stats
.rx_crc_errors
++;
810 /* We'll just return it to GEM. */
812 gp
->net_stats
.rx_dropped
++;
816 dma_addr
= cpu_to_le64(rxd
->buffer
);
817 if (len
> RX_COPY_THRESHOLD
) {
818 struct sk_buff
*new_skb
;
820 new_skb
= gem_alloc_skb(RX_BUF_ALLOC_SIZE(gp
), GFP_ATOMIC
);
821 if (new_skb
== NULL
) {
825 pci_unmap_page(gp
->pdev
, dma_addr
,
826 RX_BUF_ALLOC_SIZE(gp
),
828 gp
->rx_skbs
[entry
] = new_skb
;
829 new_skb
->dev
= gp
->dev
;
830 skb_put(new_skb
, (gp
->rx_buf_sz
+ RX_OFFSET
));
831 rxd
->buffer
= cpu_to_le64(pci_map_page(gp
->pdev
,
832 virt_to_page(new_skb
->data
),
833 offset_in_page(new_skb
->data
),
834 RX_BUF_ALLOC_SIZE(gp
),
835 PCI_DMA_FROMDEVICE
));
836 skb_reserve(new_skb
, RX_OFFSET
);
838 /* Trim the original skb for the netif. */
841 struct sk_buff
*copy_skb
= dev_alloc_skb(len
+ 2);
843 if (copy_skb
== NULL
) {
848 copy_skb
->dev
= gp
->dev
;
849 skb_reserve(copy_skb
, 2);
850 skb_put(copy_skb
, len
);
851 pci_dma_sync_single_for_cpu(gp
->pdev
, dma_addr
, len
, PCI_DMA_FROMDEVICE
);
852 memcpy(copy_skb
->data
, skb
->data
, len
);
853 pci_dma_sync_single_for_device(gp
->pdev
, dma_addr
, len
, PCI_DMA_FROMDEVICE
);
855 /* We'll reuse the original ring buffer. */
859 skb
->csum
= ntohs((status
& RXDCTRL_TCPCSUM
) ^ 0xffff);
860 skb
->ip_summed
= CHECKSUM_COMPLETE
;
861 skb
->protocol
= eth_type_trans(skb
, gp
->dev
);
863 netif_receive_skb(skb
);
865 gp
->net_stats
.rx_packets
++;
866 gp
->net_stats
.rx_bytes
+= len
;
867 gp
->dev
->last_rx
= jiffies
;
870 entry
= NEXT_RX(entry
);
873 gem_post_rxds(gp
, entry
);
878 printk(KERN_INFO
"%s: Memory squeeze, deferring packet.\n",
884 static int gem_poll(struct net_device
*dev
, int *budget
)
886 struct gem
*gp
= dev
->priv
;
890 * NAPI locking nightmare: See comment at head of driver
892 spin_lock_irqsave(&gp
->lock
, flags
);
895 int work_to_do
, work_done
;
897 /* Handle anomalies */
898 if (gp
->status
& GREG_STAT_ABNORMAL
) {
899 if (gem_abnormal_irq(dev
, gp
, gp
->status
))
903 /* Run TX completion thread */
904 spin_lock(&gp
->tx_lock
);
905 gem_tx(dev
, gp
, gp
->status
);
906 spin_unlock(&gp
->tx_lock
);
908 spin_unlock_irqrestore(&gp
->lock
, flags
);
910 /* Run RX thread. We don't use any locking here,
911 * code willing to do bad things - like cleaning the
912 * rx ring - must call netif_poll_disable(), which
913 * schedule_timeout()'s if polling is already disabled.
915 work_to_do
= min(*budget
, dev
->quota
);
917 work_done
= gem_rx(gp
, work_to_do
);
919 *budget
-= work_done
;
920 dev
->quota
-= work_done
;
922 if (work_done
>= work_to_do
)
925 spin_lock_irqsave(&gp
->lock
, flags
);
927 gp
->status
= readl(gp
->regs
+ GREG_STAT
);
928 } while (gp
->status
& GREG_STAT_NAPI
);
930 __netif_rx_complete(dev
);
933 spin_unlock_irqrestore(&gp
->lock
, flags
);
937 static irqreturn_t
gem_interrupt(int irq
, void *dev_id
)
939 struct net_device
*dev
= dev_id
;
940 struct gem
*gp
= dev
->priv
;
943 /* Swallow interrupts when shutting the chip down, though
944 * that shouldn't happen, we should have done free_irq() at
950 spin_lock_irqsave(&gp
->lock
, flags
);
952 if (netif_rx_schedule_prep(dev
)) {
953 u32 gem_status
= readl(gp
->regs
+ GREG_STAT
);
955 if (gem_status
== 0) {
956 netif_poll_enable(dev
);
957 spin_unlock_irqrestore(&gp
->lock
, flags
);
960 gp
->status
= gem_status
;
961 gem_disable_ints(gp
);
962 __netif_rx_schedule(dev
);
965 spin_unlock_irqrestore(&gp
->lock
, flags
);
967 /* If polling was disabled at the time we received that
968 * interrupt, we may return IRQ_HANDLED here while we
969 * should return IRQ_NONE. No big deal...
974 #ifdef CONFIG_NET_POLL_CONTROLLER
975 static void gem_poll_controller(struct net_device
*dev
)
977 /* gem_interrupt is safe to reentrance so no need
978 * to disable_irq here.
980 gem_interrupt(dev
->irq
, dev
);
984 static void gem_tx_timeout(struct net_device
*dev
)
986 struct gem
*gp
= dev
->priv
;
988 printk(KERN_ERR
"%s: transmit timed out, resetting\n", dev
->name
);
990 printk("%s: hrm.. hw not running !\n", dev
->name
);
993 printk(KERN_ERR
"%s: TX_STATE[%08x:%08x:%08x]\n",
995 readl(gp
->regs
+ TXDMA_CFG
),
996 readl(gp
->regs
+ MAC_TXSTAT
),
997 readl(gp
->regs
+ MAC_TXCFG
));
998 printk(KERN_ERR
"%s: RX_STATE[%08x:%08x:%08x]\n",
1000 readl(gp
->regs
+ RXDMA_CFG
),
1001 readl(gp
->regs
+ MAC_RXSTAT
),
1002 readl(gp
->regs
+ MAC_RXCFG
));
1004 spin_lock_irq(&gp
->lock
);
1005 spin_lock(&gp
->tx_lock
);
1007 gp
->reset_task_pending
= 1;
1008 schedule_work(&gp
->reset_task
);
1010 spin_unlock(&gp
->tx_lock
);
1011 spin_unlock_irq(&gp
->lock
);
1014 static __inline__
int gem_intme(int entry
)
1016 /* Algorithm: IRQ every 1/2 of descriptors. */
1017 if (!(entry
& ((TX_RING_SIZE
>>1)-1)))
1023 static int gem_start_xmit(struct sk_buff
*skb
, struct net_device
*dev
)
1025 struct gem
*gp
= dev
->priv
;
1028 unsigned long flags
;
1031 if (skb
->ip_summed
== CHECKSUM_PARTIAL
) {
1032 u64 csum_start_off
, csum_stuff_off
;
1034 csum_start_off
= (u64
) (skb
->h
.raw
- skb
->data
);
1035 csum_stuff_off
= csum_start_off
+ skb
->csum_offset
;
1037 ctrl
= (TXDCTRL_CENAB
|
1038 (csum_start_off
<< 15) |
1039 (csum_stuff_off
<< 21));
1042 local_irq_save(flags
);
1043 if (!spin_trylock(&gp
->tx_lock
)) {
1044 /* Tell upper layer to requeue */
1045 local_irq_restore(flags
);
1046 return NETDEV_TX_LOCKED
;
1048 /* We raced with gem_do_stop() */
1050 spin_unlock_irqrestore(&gp
->tx_lock
, flags
);
1051 return NETDEV_TX_BUSY
;
1054 /* This is a hard error, log it. */
1055 if (TX_BUFFS_AVAIL(gp
) <= (skb_shinfo(skb
)->nr_frags
+ 1)) {
1056 netif_stop_queue(dev
);
1057 spin_unlock_irqrestore(&gp
->tx_lock
, flags
);
1058 printk(KERN_ERR PFX
"%s: BUG! Tx Ring full when queue awake!\n",
1060 return NETDEV_TX_BUSY
;
1064 gp
->tx_skbs
[entry
] = skb
;
1066 if (skb_shinfo(skb
)->nr_frags
== 0) {
1067 struct gem_txd
*txd
= &gp
->init_block
->txd
[entry
];
1072 mapping
= pci_map_page(gp
->pdev
,
1073 virt_to_page(skb
->data
),
1074 offset_in_page(skb
->data
),
1075 len
, PCI_DMA_TODEVICE
);
1076 ctrl
|= TXDCTRL_SOF
| TXDCTRL_EOF
| len
;
1077 if (gem_intme(entry
))
1078 ctrl
|= TXDCTRL_INTME
;
1079 txd
->buffer
= cpu_to_le64(mapping
);
1081 txd
->control_word
= cpu_to_le64(ctrl
);
1082 entry
= NEXT_TX(entry
);
1084 struct gem_txd
*txd
;
1087 dma_addr_t first_mapping
;
1088 int frag
, first_entry
= entry
;
1091 if (gem_intme(entry
))
1092 intme
|= TXDCTRL_INTME
;
1094 /* We must give this initial chunk to the device last.
1095 * Otherwise we could race with the device.
1097 first_len
= skb_headlen(skb
);
1098 first_mapping
= pci_map_page(gp
->pdev
, virt_to_page(skb
->data
),
1099 offset_in_page(skb
->data
),
1100 first_len
, PCI_DMA_TODEVICE
);
1101 entry
= NEXT_TX(entry
);
1103 for (frag
= 0; frag
< skb_shinfo(skb
)->nr_frags
; frag
++) {
1104 skb_frag_t
*this_frag
= &skb_shinfo(skb
)->frags
[frag
];
1109 len
= this_frag
->size
;
1110 mapping
= pci_map_page(gp
->pdev
,
1112 this_frag
->page_offset
,
1113 len
, PCI_DMA_TODEVICE
);
1115 if (frag
== skb_shinfo(skb
)->nr_frags
- 1)
1116 this_ctrl
|= TXDCTRL_EOF
;
1118 txd
= &gp
->init_block
->txd
[entry
];
1119 txd
->buffer
= cpu_to_le64(mapping
);
1121 txd
->control_word
= cpu_to_le64(this_ctrl
| len
);
1123 if (gem_intme(entry
))
1124 intme
|= TXDCTRL_INTME
;
1126 entry
= NEXT_TX(entry
);
1128 txd
= &gp
->init_block
->txd
[first_entry
];
1129 txd
->buffer
= cpu_to_le64(first_mapping
);
1132 cpu_to_le64(ctrl
| TXDCTRL_SOF
| intme
| first_len
);
1136 if (TX_BUFFS_AVAIL(gp
) <= (MAX_SKB_FRAGS
+ 1))
1137 netif_stop_queue(dev
);
1139 if (netif_msg_tx_queued(gp
))
1140 printk(KERN_DEBUG
"%s: tx queued, slot %d, skblen %d\n",
1141 dev
->name
, entry
, skb
->len
);
1143 writel(gp
->tx_new
, gp
->regs
+ TXDMA_KICK
);
1144 spin_unlock_irqrestore(&gp
->tx_lock
, flags
);
1146 dev
->trans_start
= jiffies
;
1148 return NETDEV_TX_OK
;
1151 #define STOP_TRIES 32
1153 /* Must be invoked under gp->lock and gp->tx_lock. */
1154 static void gem_reset(struct gem
*gp
)
1159 /* Make sure we won't get any more interrupts */
1160 writel(0xffffffff, gp
->regs
+ GREG_IMASK
);
1162 /* Reset the chip */
1163 writel(gp
->swrst_base
| GREG_SWRST_TXRST
| GREG_SWRST_RXRST
,
1164 gp
->regs
+ GREG_SWRST
);
1170 val
= readl(gp
->regs
+ GREG_SWRST
);
1173 } while (val
& (GREG_SWRST_TXRST
| GREG_SWRST_RXRST
));
1176 printk(KERN_ERR
"%s: SW reset is ghetto.\n", gp
->dev
->name
);
1179 /* Must be invoked under gp->lock and gp->tx_lock. */
1180 static void gem_start_dma(struct gem
*gp
)
1184 /* We are ready to rock, turn everything on. */
1185 val
= readl(gp
->regs
+ TXDMA_CFG
);
1186 writel(val
| TXDMA_CFG_ENABLE
, gp
->regs
+ TXDMA_CFG
);
1187 val
= readl(gp
->regs
+ RXDMA_CFG
);
1188 writel(val
| RXDMA_CFG_ENABLE
, gp
->regs
+ RXDMA_CFG
);
1189 val
= readl(gp
->regs
+ MAC_TXCFG
);
1190 writel(val
| MAC_TXCFG_ENAB
, gp
->regs
+ MAC_TXCFG
);
1191 val
= readl(gp
->regs
+ MAC_RXCFG
);
1192 writel(val
| MAC_RXCFG_ENAB
, gp
->regs
+ MAC_RXCFG
);
1194 (void) readl(gp
->regs
+ MAC_RXCFG
);
1197 gem_enable_ints(gp
);
1199 writel(RX_RING_SIZE
- 4, gp
->regs
+ RXDMA_KICK
);
1202 /* Must be invoked under gp->lock and gp->tx_lock. DMA won't be
1203 * actually stopped before about 4ms tho ...
1205 static void gem_stop_dma(struct gem
*gp
)
1209 /* We are done rocking, turn everything off. */
1210 val
= readl(gp
->regs
+ TXDMA_CFG
);
1211 writel(val
& ~TXDMA_CFG_ENABLE
, gp
->regs
+ TXDMA_CFG
);
1212 val
= readl(gp
->regs
+ RXDMA_CFG
);
1213 writel(val
& ~RXDMA_CFG_ENABLE
, gp
->regs
+ RXDMA_CFG
);
1214 val
= readl(gp
->regs
+ MAC_TXCFG
);
1215 writel(val
& ~MAC_TXCFG_ENAB
, gp
->regs
+ MAC_TXCFG
);
1216 val
= readl(gp
->regs
+ MAC_RXCFG
);
1217 writel(val
& ~MAC_RXCFG_ENAB
, gp
->regs
+ MAC_RXCFG
);
1219 (void) readl(gp
->regs
+ MAC_RXCFG
);
1221 /* Need to wait a bit ... done by the caller */
1225 /* Must be invoked under gp->lock and gp->tx_lock. */
1226 // XXX dbl check what that function should do when called on PCS PHY
1227 static void gem_begin_auto_negotiation(struct gem
*gp
, struct ethtool_cmd
*ep
)
1229 u32 advertise
, features
;
1234 if (gp
->phy_type
!= phy_mii_mdio0
&&
1235 gp
->phy_type
!= phy_mii_mdio1
)
1238 /* Setup advertise */
1239 if (found_mii_phy(gp
))
1240 features
= gp
->phy_mii
.def
->features
;
1244 advertise
= features
& ADVERTISE_MASK
;
1245 if (gp
->phy_mii
.advertising
!= 0)
1246 advertise
&= gp
->phy_mii
.advertising
;
1248 autoneg
= gp
->want_autoneg
;
1249 speed
= gp
->phy_mii
.speed
;
1250 duplex
= gp
->phy_mii
.duplex
;
1252 /* Setup link parameters */
1255 if (ep
->autoneg
== AUTONEG_ENABLE
) {
1256 advertise
= ep
->advertising
;
1261 duplex
= ep
->duplex
;
1265 /* Sanitize settings based on PHY capabilities */
1266 if ((features
& SUPPORTED_Autoneg
) == 0)
1268 if (speed
== SPEED_1000
&&
1269 !(features
& (SUPPORTED_1000baseT_Half
| SUPPORTED_1000baseT_Full
)))
1271 if (speed
== SPEED_100
&&
1272 !(features
& (SUPPORTED_100baseT_Half
| SUPPORTED_100baseT_Full
)))
1274 if (duplex
== DUPLEX_FULL
&&
1275 !(features
& (SUPPORTED_1000baseT_Full
|
1276 SUPPORTED_100baseT_Full
|
1277 SUPPORTED_10baseT_Full
)))
1278 duplex
= DUPLEX_HALF
;
1282 /* If we are asleep, we don't try to actually setup the PHY, we
1283 * just store the settings
1286 gp
->phy_mii
.autoneg
= gp
->want_autoneg
= autoneg
;
1287 gp
->phy_mii
.speed
= speed
;
1288 gp
->phy_mii
.duplex
= duplex
;
1292 /* Configure PHY & start aneg */
1293 gp
->want_autoneg
= autoneg
;
1295 if (found_mii_phy(gp
))
1296 gp
->phy_mii
.def
->ops
->setup_aneg(&gp
->phy_mii
, advertise
);
1297 gp
->lstate
= link_aneg
;
1299 if (found_mii_phy(gp
))
1300 gp
->phy_mii
.def
->ops
->setup_forced(&gp
->phy_mii
, speed
, duplex
);
1301 gp
->lstate
= link_force_ok
;
1305 gp
->timer_ticks
= 0;
1306 mod_timer(&gp
->link_timer
, jiffies
+ ((12 * HZ
) / 10));
1309 /* A link-up condition has occurred, initialize and enable the
1312 * Must be invoked under gp->lock and gp->tx_lock.
1314 static int gem_set_link_modes(struct gem
*gp
)
1317 int full_duplex
, speed
, pause
;
1323 if (found_mii_phy(gp
)) {
1324 if (gp
->phy_mii
.def
->ops
->read_link(&gp
->phy_mii
))
1326 full_duplex
= (gp
->phy_mii
.duplex
== DUPLEX_FULL
);
1327 speed
= gp
->phy_mii
.speed
;
1328 pause
= gp
->phy_mii
.pause
;
1329 } else if (gp
->phy_type
== phy_serialink
||
1330 gp
->phy_type
== phy_serdes
) {
1331 u32 pcs_lpa
= readl(gp
->regs
+ PCS_MIILP
);
1333 if (pcs_lpa
& PCS_MIIADV_FD
)
1338 if (netif_msg_link(gp
))
1339 printk(KERN_INFO
"%s: Link is up at %d Mbps, %s-duplex.\n",
1340 gp
->dev
->name
, speed
, (full_duplex
? "full" : "half"));
1345 val
= (MAC_TXCFG_EIPG0
| MAC_TXCFG_NGU
);
1347 val
|= (MAC_TXCFG_ICS
| MAC_TXCFG_ICOLL
);
1349 /* MAC_TXCFG_NBO must be zero. */
1351 writel(val
, gp
->regs
+ MAC_TXCFG
);
1353 val
= (MAC_XIFCFG_OE
| MAC_XIFCFG_LLED
);
1355 (gp
->phy_type
== phy_mii_mdio0
||
1356 gp
->phy_type
== phy_mii_mdio1
)) {
1357 val
|= MAC_XIFCFG_DISE
;
1358 } else if (full_duplex
) {
1359 val
|= MAC_XIFCFG_FLED
;
1362 if (speed
== SPEED_1000
)
1363 val
|= (MAC_XIFCFG_GMII
);
1365 writel(val
, gp
->regs
+ MAC_XIFCFG
);
1367 /* If gigabit and half-duplex, enable carrier extension
1368 * mode. Else, disable it.
1370 if (speed
== SPEED_1000
&& !full_duplex
) {
1371 val
= readl(gp
->regs
+ MAC_TXCFG
);
1372 writel(val
| MAC_TXCFG_TCE
, gp
->regs
+ MAC_TXCFG
);
1374 val
= readl(gp
->regs
+ MAC_RXCFG
);
1375 writel(val
| MAC_RXCFG_RCE
, gp
->regs
+ MAC_RXCFG
);
1377 val
= readl(gp
->regs
+ MAC_TXCFG
);
1378 writel(val
& ~MAC_TXCFG_TCE
, gp
->regs
+ MAC_TXCFG
);
1380 val
= readl(gp
->regs
+ MAC_RXCFG
);
1381 writel(val
& ~MAC_RXCFG_RCE
, gp
->regs
+ MAC_RXCFG
);
1384 if (gp
->phy_type
== phy_serialink
||
1385 gp
->phy_type
== phy_serdes
) {
1386 u32 pcs_lpa
= readl(gp
->regs
+ PCS_MIILP
);
1388 if (pcs_lpa
& (PCS_MIIADV_SP
| PCS_MIIADV_AP
))
1392 if (netif_msg_link(gp
)) {
1394 printk(KERN_INFO
"%s: Pause is enabled "
1395 "(rxfifo: %d off: %d on: %d)\n",
1401 printk(KERN_INFO
"%s: Pause is disabled\n",
1407 writel(512, gp
->regs
+ MAC_STIME
);
1409 writel(64, gp
->regs
+ MAC_STIME
);
1410 val
= readl(gp
->regs
+ MAC_MCCFG
);
1412 val
|= (MAC_MCCFG_SPE
| MAC_MCCFG_RPE
);
1414 val
&= ~(MAC_MCCFG_SPE
| MAC_MCCFG_RPE
);
1415 writel(val
, gp
->regs
+ MAC_MCCFG
);
1422 /* Must be invoked under gp->lock and gp->tx_lock. */
1423 static int gem_mdio_link_not_up(struct gem
*gp
)
1425 switch (gp
->lstate
) {
1426 case link_force_ret
:
1427 if (netif_msg_link(gp
))
1428 printk(KERN_INFO
"%s: Autoneg failed again, keeping"
1429 " forced mode\n", gp
->dev
->name
);
1430 gp
->phy_mii
.def
->ops
->setup_forced(&gp
->phy_mii
,
1431 gp
->last_forced_speed
, DUPLEX_HALF
);
1432 gp
->timer_ticks
= 5;
1433 gp
->lstate
= link_force_ok
;
1436 /* We try forced modes after a failed aneg only on PHYs that don't
1437 * have "magic_aneg" bit set, which means they internally do the
1438 * while forced-mode thingy. On these, we just restart aneg
1440 if (gp
->phy_mii
.def
->magic_aneg
)
1442 if (netif_msg_link(gp
))
1443 printk(KERN_INFO
"%s: switching to forced 100bt\n",
1445 /* Try forced modes. */
1446 gp
->phy_mii
.def
->ops
->setup_forced(&gp
->phy_mii
, SPEED_100
,
1448 gp
->timer_ticks
= 5;
1449 gp
->lstate
= link_force_try
;
1451 case link_force_try
:
1452 /* Downgrade from 100 to 10 Mbps if necessary.
1453 * If already at 10Mbps, warn user about the
1454 * situation every 10 ticks.
1456 if (gp
->phy_mii
.speed
== SPEED_100
) {
1457 gp
->phy_mii
.def
->ops
->setup_forced(&gp
->phy_mii
, SPEED_10
,
1459 gp
->timer_ticks
= 5;
1460 if (netif_msg_link(gp
))
1461 printk(KERN_INFO
"%s: switching to forced 10bt\n",
1471 static void gem_link_timer(unsigned long data
)
1473 struct gem
*gp
= (struct gem
*) data
;
1474 int restart_aneg
= 0;
1479 spin_lock_irq(&gp
->lock
);
1480 spin_lock(&gp
->tx_lock
);
1483 /* If the reset task is still pending, we just
1484 * reschedule the link timer
1486 if (gp
->reset_task_pending
)
1489 if (gp
->phy_type
== phy_serialink
||
1490 gp
->phy_type
== phy_serdes
) {
1491 u32 val
= readl(gp
->regs
+ PCS_MIISTAT
);
1493 if (!(val
& PCS_MIISTAT_LS
))
1494 val
= readl(gp
->regs
+ PCS_MIISTAT
);
1496 if ((val
& PCS_MIISTAT_LS
) != 0) {
1497 gp
->lstate
= link_up
;
1498 netif_carrier_on(gp
->dev
);
1499 (void)gem_set_link_modes(gp
);
1503 if (found_mii_phy(gp
) && gp
->phy_mii
.def
->ops
->poll_link(&gp
->phy_mii
)) {
1504 /* Ok, here we got a link. If we had it due to a forced
1505 * fallback, and we were configured for autoneg, we do
1506 * retry a short autoneg pass. If you know your hub is
1507 * broken, use ethtool ;)
1509 if (gp
->lstate
== link_force_try
&& gp
->want_autoneg
) {
1510 gp
->lstate
= link_force_ret
;
1511 gp
->last_forced_speed
= gp
->phy_mii
.speed
;
1512 gp
->timer_ticks
= 5;
1513 if (netif_msg_link(gp
))
1514 printk(KERN_INFO
"%s: Got link after fallback, retrying"
1515 " autoneg once...\n", gp
->dev
->name
);
1516 gp
->phy_mii
.def
->ops
->setup_aneg(&gp
->phy_mii
, gp
->phy_mii
.advertising
);
1517 } else if (gp
->lstate
!= link_up
) {
1518 gp
->lstate
= link_up
;
1519 netif_carrier_on(gp
->dev
);
1520 if (gem_set_link_modes(gp
))
1524 /* If the link was previously up, we restart the
1527 if (gp
->lstate
== link_up
) {
1528 gp
->lstate
= link_down
;
1529 if (netif_msg_link(gp
))
1530 printk(KERN_INFO
"%s: Link down\n",
1532 netif_carrier_off(gp
->dev
);
1533 gp
->reset_task_pending
= 1;
1534 schedule_work(&gp
->reset_task
);
1536 } else if (++gp
->timer_ticks
> 10) {
1537 if (found_mii_phy(gp
))
1538 restart_aneg
= gem_mdio_link_not_up(gp
);
1544 gem_begin_auto_negotiation(gp
, NULL
);
1548 mod_timer(&gp
->link_timer
, jiffies
+ ((12 * HZ
) / 10));
1551 spin_unlock(&gp
->tx_lock
);
1552 spin_unlock_irq(&gp
->lock
);
1555 /* Must be invoked under gp->lock and gp->tx_lock. */
1556 static void gem_clean_rings(struct gem
*gp
)
1558 struct gem_init_block
*gb
= gp
->init_block
;
1559 struct sk_buff
*skb
;
1561 dma_addr_t dma_addr
;
1563 for (i
= 0; i
< RX_RING_SIZE
; i
++) {
1564 struct gem_rxd
*rxd
;
1567 if (gp
->rx_skbs
[i
] != NULL
) {
1568 skb
= gp
->rx_skbs
[i
];
1569 dma_addr
= le64_to_cpu(rxd
->buffer
);
1570 pci_unmap_page(gp
->pdev
, dma_addr
,
1571 RX_BUF_ALLOC_SIZE(gp
),
1572 PCI_DMA_FROMDEVICE
);
1573 dev_kfree_skb_any(skb
);
1574 gp
->rx_skbs
[i
] = NULL
;
1576 rxd
->status_word
= 0;
1581 for (i
= 0; i
< TX_RING_SIZE
; i
++) {
1582 if (gp
->tx_skbs
[i
] != NULL
) {
1583 struct gem_txd
*txd
;
1586 skb
= gp
->tx_skbs
[i
];
1587 gp
->tx_skbs
[i
] = NULL
;
1589 for (frag
= 0; frag
<= skb_shinfo(skb
)->nr_frags
; frag
++) {
1590 int ent
= i
& (TX_RING_SIZE
- 1);
1592 txd
= &gb
->txd
[ent
];
1593 dma_addr
= le64_to_cpu(txd
->buffer
);
1594 pci_unmap_page(gp
->pdev
, dma_addr
,
1595 le64_to_cpu(txd
->control_word
) &
1596 TXDCTRL_BUFSZ
, PCI_DMA_TODEVICE
);
1598 if (frag
!= skb_shinfo(skb
)->nr_frags
)
1601 dev_kfree_skb_any(skb
);
1606 /* Must be invoked under gp->lock and gp->tx_lock. */
1607 static void gem_init_rings(struct gem
*gp
)
1609 struct gem_init_block
*gb
= gp
->init_block
;
1610 struct net_device
*dev
= gp
->dev
;
1612 dma_addr_t dma_addr
;
1614 gp
->rx_new
= gp
->rx_old
= gp
->tx_new
= gp
->tx_old
= 0;
1616 gem_clean_rings(gp
);
1618 gp
->rx_buf_sz
= max(dev
->mtu
+ ETH_HLEN
+ VLAN_HLEN
,
1619 (unsigned)VLAN_ETH_FRAME_LEN
);
1621 for (i
= 0; i
< RX_RING_SIZE
; i
++) {
1622 struct sk_buff
*skb
;
1623 struct gem_rxd
*rxd
= &gb
->rxd
[i
];
1625 skb
= gem_alloc_skb(RX_BUF_ALLOC_SIZE(gp
), GFP_ATOMIC
);
1628 rxd
->status_word
= 0;
1632 gp
->rx_skbs
[i
] = skb
;
1634 skb_put(skb
, (gp
->rx_buf_sz
+ RX_OFFSET
));
1635 dma_addr
= pci_map_page(gp
->pdev
,
1636 virt_to_page(skb
->data
),
1637 offset_in_page(skb
->data
),
1638 RX_BUF_ALLOC_SIZE(gp
),
1639 PCI_DMA_FROMDEVICE
);
1640 rxd
->buffer
= cpu_to_le64(dma_addr
);
1642 rxd
->status_word
= cpu_to_le64(RXDCTRL_FRESH(gp
));
1643 skb_reserve(skb
, RX_OFFSET
);
1646 for (i
= 0; i
< TX_RING_SIZE
; i
++) {
1647 struct gem_txd
*txd
= &gb
->txd
[i
];
1649 txd
->control_word
= 0;
1656 /* Init PHY interface and start link poll state machine */
1657 static void gem_init_phy(struct gem
*gp
)
1661 /* Revert MIF CFG setting done on stop_phy */
1662 mifcfg
= readl(gp
->regs
+ MIF_CFG
);
1663 mifcfg
&= ~MIF_CFG_BBMODE
;
1664 writel(mifcfg
, gp
->regs
+ MIF_CFG
);
1666 if (gp
->pdev
->vendor
== PCI_VENDOR_ID_APPLE
) {
1669 /* Those delay sucks, the HW seem to love them though, I'll
1670 * serisouly consider breaking some locks here to be able
1671 * to schedule instead
1673 for (i
= 0; i
< 3; i
++) {
1674 #ifdef CONFIG_PPC_PMAC
1675 pmac_call_feature(PMAC_FTR_GMAC_PHY_RESET
, gp
->of_node
, 0, 0);
1678 /* Some PHYs used by apple have problem getting back to us,
1679 * we do an additional reset here
1681 phy_write(gp
, MII_BMCR
, BMCR_RESET
);
1683 if (phy_read(gp
, MII_BMCR
) != 0xffff)
1686 printk(KERN_WARNING
"%s: GMAC PHY not responding !\n",
1691 if (gp
->pdev
->vendor
== PCI_VENDOR_ID_SUN
&&
1692 gp
->pdev
->device
== PCI_DEVICE_ID_SUN_GEM
) {
1695 /* Init datapath mode register. */
1696 if (gp
->phy_type
== phy_mii_mdio0
||
1697 gp
->phy_type
== phy_mii_mdio1
) {
1698 val
= PCS_DMODE_MGM
;
1699 } else if (gp
->phy_type
== phy_serialink
) {
1700 val
= PCS_DMODE_SM
| PCS_DMODE_GMOE
;
1702 val
= PCS_DMODE_ESM
;
1705 writel(val
, gp
->regs
+ PCS_DMODE
);
1708 if (gp
->phy_type
== phy_mii_mdio0
||
1709 gp
->phy_type
== phy_mii_mdio1
) {
1710 // XXX check for errors
1711 mii_phy_probe(&gp
->phy_mii
, gp
->mii_phy_addr
);
1714 if (gp
->phy_mii
.def
&& gp
->phy_mii
.def
->ops
->init
)
1715 gp
->phy_mii
.def
->ops
->init(&gp
->phy_mii
);
1720 /* Reset PCS unit. */
1721 val
= readl(gp
->regs
+ PCS_MIICTRL
);
1722 val
|= PCS_MIICTRL_RST
;
1723 writeb(val
, gp
->regs
+ PCS_MIICTRL
);
1726 while (readl(gp
->regs
+ PCS_MIICTRL
) & PCS_MIICTRL_RST
) {
1732 printk(KERN_WARNING
"%s: PCS reset bit would not clear.\n",
1735 /* Make sure PCS is disabled while changing advertisement
1738 val
= readl(gp
->regs
+ PCS_CFG
);
1739 val
&= ~(PCS_CFG_ENABLE
| PCS_CFG_TO
);
1740 writel(val
, gp
->regs
+ PCS_CFG
);
1742 /* Advertise all capabilities except assymetric
1745 val
= readl(gp
->regs
+ PCS_MIIADV
);
1746 val
|= (PCS_MIIADV_FD
| PCS_MIIADV_HD
|
1747 PCS_MIIADV_SP
| PCS_MIIADV_AP
);
1748 writel(val
, gp
->regs
+ PCS_MIIADV
);
1750 /* Enable and restart auto-negotiation, disable wrapback/loopback,
1751 * and re-enable PCS.
1753 val
= readl(gp
->regs
+ PCS_MIICTRL
);
1754 val
|= (PCS_MIICTRL_RAN
| PCS_MIICTRL_ANE
);
1755 val
&= ~PCS_MIICTRL_WB
;
1756 writel(val
, gp
->regs
+ PCS_MIICTRL
);
1758 val
= readl(gp
->regs
+ PCS_CFG
);
1759 val
|= PCS_CFG_ENABLE
;
1760 writel(val
, gp
->regs
+ PCS_CFG
);
1762 /* Make sure serialink loopback is off. The meaning
1763 * of this bit is logically inverted based upon whether
1764 * you are in Serialink or SERDES mode.
1766 val
= readl(gp
->regs
+ PCS_SCTRL
);
1767 if (gp
->phy_type
== phy_serialink
)
1768 val
&= ~PCS_SCTRL_LOOP
;
1770 val
|= PCS_SCTRL_LOOP
;
1771 writel(val
, gp
->regs
+ PCS_SCTRL
);
1774 /* Default aneg parameters */
1775 gp
->timer_ticks
= 0;
1776 gp
->lstate
= link_down
;
1777 netif_carrier_off(gp
->dev
);
1779 /* Can I advertise gigabit here ? I'd need BCM PHY docs... */
1780 spin_lock_irq(&gp
->lock
);
1781 gem_begin_auto_negotiation(gp
, NULL
);
1782 spin_unlock_irq(&gp
->lock
);
1785 /* Must be invoked under gp->lock and gp->tx_lock. */
1786 static void gem_init_dma(struct gem
*gp
)
1788 u64 desc_dma
= (u64
) gp
->gblock_dvma
;
1791 val
= (TXDMA_CFG_BASE
| (0x7ff << 10) | TXDMA_CFG_PMODE
);
1792 writel(val
, gp
->regs
+ TXDMA_CFG
);
1794 writel(desc_dma
>> 32, gp
->regs
+ TXDMA_DBHI
);
1795 writel(desc_dma
& 0xffffffff, gp
->regs
+ TXDMA_DBLOW
);
1796 desc_dma
+= (INIT_BLOCK_TX_RING_SIZE
* sizeof(struct gem_txd
));
1798 writel(0, gp
->regs
+ TXDMA_KICK
);
1800 val
= (RXDMA_CFG_BASE
| (RX_OFFSET
<< 10) |
1801 ((14 / 2) << 13) | RXDMA_CFG_FTHRESH_128
);
1802 writel(val
, gp
->regs
+ RXDMA_CFG
);
1804 writel(desc_dma
>> 32, gp
->regs
+ RXDMA_DBHI
);
1805 writel(desc_dma
& 0xffffffff, gp
->regs
+ RXDMA_DBLOW
);
1807 writel(RX_RING_SIZE
- 4, gp
->regs
+ RXDMA_KICK
);
1809 val
= (((gp
->rx_pause_off
/ 64) << 0) & RXDMA_PTHRESH_OFF
);
1810 val
|= (((gp
->rx_pause_on
/ 64) << 12) & RXDMA_PTHRESH_ON
);
1811 writel(val
, gp
->regs
+ RXDMA_PTHRESH
);
1813 if (readl(gp
->regs
+ GREG_BIFCFG
) & GREG_BIFCFG_M66EN
)
1814 writel(((5 & RXDMA_BLANK_IPKTS
) |
1815 ((8 << 12) & RXDMA_BLANK_ITIME
)),
1816 gp
->regs
+ RXDMA_BLANK
);
1818 writel(((5 & RXDMA_BLANK_IPKTS
) |
1819 ((4 << 12) & RXDMA_BLANK_ITIME
)),
1820 gp
->regs
+ RXDMA_BLANK
);
1823 /* Must be invoked under gp->lock and gp->tx_lock. */
1824 static u32
gem_setup_multicast(struct gem
*gp
)
1829 if ((gp
->dev
->flags
& IFF_ALLMULTI
) ||
1830 (gp
->dev
->mc_count
> 256)) {
1831 for (i
=0; i
<16; i
++)
1832 writel(0xffff, gp
->regs
+ MAC_HASH0
+ (i
<< 2));
1833 rxcfg
|= MAC_RXCFG_HFE
;
1834 } else if (gp
->dev
->flags
& IFF_PROMISC
) {
1835 rxcfg
|= MAC_RXCFG_PROM
;
1839 struct dev_mc_list
*dmi
= gp
->dev
->mc_list
;
1842 for (i
= 0; i
< 16; i
++)
1845 for (i
= 0; i
< gp
->dev
->mc_count
; i
++) {
1846 char *addrs
= dmi
->dmi_addr
;
1853 crc
= ether_crc_le(6, addrs
);
1855 hash_table
[crc
>> 4] |= 1 << (15 - (crc
& 0xf));
1857 for (i
=0; i
<16; i
++)
1858 writel(hash_table
[i
], gp
->regs
+ MAC_HASH0
+ (i
<< 2));
1859 rxcfg
|= MAC_RXCFG_HFE
;
1865 /* Must be invoked under gp->lock and gp->tx_lock. */
1866 static void gem_init_mac(struct gem
*gp
)
1868 unsigned char *e
= &gp
->dev
->dev_addr
[0];
1870 writel(0x1bf0, gp
->regs
+ MAC_SNDPAUSE
);
1872 writel(0x00, gp
->regs
+ MAC_IPG0
);
1873 writel(0x08, gp
->regs
+ MAC_IPG1
);
1874 writel(0x04, gp
->regs
+ MAC_IPG2
);
1875 writel(0x40, gp
->regs
+ MAC_STIME
);
1876 writel(0x40, gp
->regs
+ MAC_MINFSZ
);
1878 /* Ethernet payload + header + FCS + optional VLAN tag. */
1879 writel(0x20000000 | (gp
->rx_buf_sz
+ 4), gp
->regs
+ MAC_MAXFSZ
);
1881 writel(0x07, gp
->regs
+ MAC_PASIZE
);
1882 writel(0x04, gp
->regs
+ MAC_JAMSIZE
);
1883 writel(0x10, gp
->regs
+ MAC_ATTLIM
);
1884 writel(0x8808, gp
->regs
+ MAC_MCTYPE
);
1886 writel((e
[5] | (e
[4] << 8)) & 0x3ff, gp
->regs
+ MAC_RANDSEED
);
1888 writel((e
[4] << 8) | e
[5], gp
->regs
+ MAC_ADDR0
);
1889 writel((e
[2] << 8) | e
[3], gp
->regs
+ MAC_ADDR1
);
1890 writel((e
[0] << 8) | e
[1], gp
->regs
+ MAC_ADDR2
);
1892 writel(0, gp
->regs
+ MAC_ADDR3
);
1893 writel(0, gp
->regs
+ MAC_ADDR4
);
1894 writel(0, gp
->regs
+ MAC_ADDR5
);
1896 writel(0x0001, gp
->regs
+ MAC_ADDR6
);
1897 writel(0xc200, gp
->regs
+ MAC_ADDR7
);
1898 writel(0x0180, gp
->regs
+ MAC_ADDR8
);
1900 writel(0, gp
->regs
+ MAC_AFILT0
);
1901 writel(0, gp
->regs
+ MAC_AFILT1
);
1902 writel(0, gp
->regs
+ MAC_AFILT2
);
1903 writel(0, gp
->regs
+ MAC_AF21MSK
);
1904 writel(0, gp
->regs
+ MAC_AF0MSK
);
1906 gp
->mac_rx_cfg
= gem_setup_multicast(gp
);
1908 gp
->mac_rx_cfg
|= MAC_RXCFG_SFCS
;
1910 writel(0, gp
->regs
+ MAC_NCOLL
);
1911 writel(0, gp
->regs
+ MAC_FASUCC
);
1912 writel(0, gp
->regs
+ MAC_ECOLL
);
1913 writel(0, gp
->regs
+ MAC_LCOLL
);
1914 writel(0, gp
->regs
+ MAC_DTIMER
);
1915 writel(0, gp
->regs
+ MAC_PATMPS
);
1916 writel(0, gp
->regs
+ MAC_RFCTR
);
1917 writel(0, gp
->regs
+ MAC_LERR
);
1918 writel(0, gp
->regs
+ MAC_AERR
);
1919 writel(0, gp
->regs
+ MAC_FCSERR
);
1920 writel(0, gp
->regs
+ MAC_RXCVERR
);
1922 /* Clear RX/TX/MAC/XIF config, we will set these up and enable
1923 * them once a link is established.
1925 writel(0, gp
->regs
+ MAC_TXCFG
);
1926 writel(gp
->mac_rx_cfg
, gp
->regs
+ MAC_RXCFG
);
1927 writel(0, gp
->regs
+ MAC_MCCFG
);
1928 writel(0, gp
->regs
+ MAC_XIFCFG
);
1930 /* Setup MAC interrupts. We want to get all of the interesting
1931 * counter expiration events, but we do not want to hear about
1932 * normal rx/tx as the DMA engine tells us that.
1934 writel(MAC_TXSTAT_XMIT
, gp
->regs
+ MAC_TXMASK
);
1935 writel(MAC_RXSTAT_RCV
, gp
->regs
+ MAC_RXMASK
);
1937 /* Don't enable even the PAUSE interrupts for now, we
1938 * make no use of those events other than to record them.
1940 writel(0xffffffff, gp
->regs
+ MAC_MCMASK
);
1942 /* Don't enable GEM's WOL in normal operations
1945 writel(0, gp
->regs
+ WOL_WAKECSR
);
1948 /* Must be invoked under gp->lock and gp->tx_lock. */
1949 static void gem_init_pause_thresholds(struct gem
*gp
)
1953 /* Calculate pause thresholds. Setting the OFF threshold to the
1954 * full RX fifo size effectively disables PAUSE generation which
1955 * is what we do for 10/100 only GEMs which have FIFOs too small
1956 * to make real gains from PAUSE.
1958 if (gp
->rx_fifo_sz
<= (2 * 1024)) {
1959 gp
->rx_pause_off
= gp
->rx_pause_on
= gp
->rx_fifo_sz
;
1961 int max_frame
= (gp
->rx_buf_sz
+ 4 + 64) & ~63;
1962 int off
= (gp
->rx_fifo_sz
- (max_frame
* 2));
1963 int on
= off
- max_frame
;
1965 gp
->rx_pause_off
= off
;
1966 gp
->rx_pause_on
= on
;
1970 /* Configure the chip "burst" DMA mode & enable some
1971 * HW bug fixes on Apple version
1974 if (gp
->pdev
->vendor
== PCI_VENDOR_ID_APPLE
)
1975 cfg
|= GREG_CFG_RONPAULBIT
| GREG_CFG_ENBUG2FIX
;
1976 #if !defined(CONFIG_SPARC64) && !defined(CONFIG_ALPHA)
1977 cfg
|= GREG_CFG_IBURST
;
1979 cfg
|= ((31 << 1) & GREG_CFG_TXDMALIM
);
1980 cfg
|= ((31 << 6) & GREG_CFG_RXDMALIM
);
1981 writel(cfg
, gp
->regs
+ GREG_CFG
);
1983 /* If Infinite Burst didn't stick, then use different
1984 * thresholds (and Apple bug fixes don't exist)
1986 if (!(readl(gp
->regs
+ GREG_CFG
) & GREG_CFG_IBURST
)) {
1987 cfg
= ((2 << 1) & GREG_CFG_TXDMALIM
);
1988 cfg
|= ((8 << 6) & GREG_CFG_RXDMALIM
);
1989 writel(cfg
, gp
->regs
+ GREG_CFG
);
1993 static int gem_check_invariants(struct gem
*gp
)
1995 struct pci_dev
*pdev
= gp
->pdev
;
1998 /* On Apple's sungem, we can't rely on registers as the chip
1999 * was been powered down by the firmware. The PHY is looked
2002 if (pdev
->vendor
== PCI_VENDOR_ID_APPLE
) {
2003 gp
->phy_type
= phy_mii_mdio0
;
2004 gp
->tx_fifo_sz
= readl(gp
->regs
+ TXDMA_FSZ
) * 64;
2005 gp
->rx_fifo_sz
= readl(gp
->regs
+ RXDMA_FSZ
) * 64;
2008 mif_cfg
= readl(gp
->regs
+ MIF_CFG
);
2009 mif_cfg
&= ~(MIF_CFG_PSELECT
|MIF_CFG_POLL
|MIF_CFG_BBMODE
|MIF_CFG_MDI1
);
2010 mif_cfg
|= MIF_CFG_MDI0
;
2011 writel(mif_cfg
, gp
->regs
+ MIF_CFG
);
2012 writel(PCS_DMODE_MGM
, gp
->regs
+ PCS_DMODE
);
2013 writel(MAC_XIFCFG_OE
, gp
->regs
+ MAC_XIFCFG
);
2015 /* We hard-code the PHY address so we can properly bring it out of
2016 * reset later on, we can't really probe it at this point, though
2017 * that isn't an issue.
2019 if (gp
->pdev
->device
== PCI_DEVICE_ID_APPLE_K2_GMAC
)
2020 gp
->mii_phy_addr
= 1;
2022 gp
->mii_phy_addr
= 0;
2027 mif_cfg
= readl(gp
->regs
+ MIF_CFG
);
2029 if (pdev
->vendor
== PCI_VENDOR_ID_SUN
&&
2030 pdev
->device
== PCI_DEVICE_ID_SUN_RIO_GEM
) {
2031 /* One of the MII PHYs _must_ be present
2032 * as this chip has no gigabit PHY.
2034 if ((mif_cfg
& (MIF_CFG_MDI0
| MIF_CFG_MDI1
)) == 0) {
2035 printk(KERN_ERR PFX
"RIO GEM lacks MII phy, mif_cfg[%08x]\n",
2041 /* Determine initial PHY interface type guess. MDIO1 is the
2042 * external PHY and thus takes precedence over MDIO0.
2045 if (mif_cfg
& MIF_CFG_MDI1
) {
2046 gp
->phy_type
= phy_mii_mdio1
;
2047 mif_cfg
|= MIF_CFG_PSELECT
;
2048 writel(mif_cfg
, gp
->regs
+ MIF_CFG
);
2049 } else if (mif_cfg
& MIF_CFG_MDI0
) {
2050 gp
->phy_type
= phy_mii_mdio0
;
2051 mif_cfg
&= ~MIF_CFG_PSELECT
;
2052 writel(mif_cfg
, gp
->regs
+ MIF_CFG
);
2054 gp
->phy_type
= phy_serialink
;
2056 if (gp
->phy_type
== phy_mii_mdio1
||
2057 gp
->phy_type
== phy_mii_mdio0
) {
2060 for (i
= 0; i
< 32; i
++) {
2061 gp
->mii_phy_addr
= i
;
2062 if (phy_read(gp
, MII_BMCR
) != 0xffff)
2066 if (pdev
->device
!= PCI_DEVICE_ID_SUN_GEM
) {
2067 printk(KERN_ERR PFX
"RIO MII phy will not respond.\n");
2070 gp
->phy_type
= phy_serdes
;
2074 /* Fetch the FIFO configurations now too. */
2075 gp
->tx_fifo_sz
= readl(gp
->regs
+ TXDMA_FSZ
) * 64;
2076 gp
->rx_fifo_sz
= readl(gp
->regs
+ RXDMA_FSZ
) * 64;
2078 if (pdev
->vendor
== PCI_VENDOR_ID_SUN
) {
2079 if (pdev
->device
== PCI_DEVICE_ID_SUN_GEM
) {
2080 if (gp
->tx_fifo_sz
!= (9 * 1024) ||
2081 gp
->rx_fifo_sz
!= (20 * 1024)) {
2082 printk(KERN_ERR PFX
"GEM has bogus fifo sizes tx(%d) rx(%d)\n",
2083 gp
->tx_fifo_sz
, gp
->rx_fifo_sz
);
2088 if (gp
->tx_fifo_sz
!= (2 * 1024) ||
2089 gp
->rx_fifo_sz
!= (2 * 1024)) {
2090 printk(KERN_ERR PFX
"RIO GEM has bogus fifo sizes tx(%d) rx(%d)\n",
2091 gp
->tx_fifo_sz
, gp
->rx_fifo_sz
);
2094 gp
->swrst_base
= (64 / 4) << GREG_SWRST_CACHE_SHIFT
;
2101 /* Must be invoked under gp->lock and gp->tx_lock. */
2102 static void gem_reinit_chip(struct gem
*gp
)
2104 /* Reset the chip */
2107 /* Make sure ints are disabled */
2108 gem_disable_ints(gp
);
2110 /* Allocate & setup ring buffers */
2113 /* Configure pause thresholds */
2114 gem_init_pause_thresholds(gp
);
2116 /* Init DMA & MAC engines */
2122 /* Must be invoked with no lock held. */
2123 static void gem_stop_phy(struct gem
*gp
, int wol
)
2126 unsigned long flags
;
2128 /* Let the chip settle down a bit, it seems that helps
2129 * for sleep mode on some models
2133 /* Make sure we aren't polling PHY status change. We
2134 * don't currently use that feature though
2136 mifcfg
= readl(gp
->regs
+ MIF_CFG
);
2137 mifcfg
&= ~MIF_CFG_POLL
;
2138 writel(mifcfg
, gp
->regs
+ MIF_CFG
);
2140 if (wol
&& gp
->has_wol
) {
2141 unsigned char *e
= &gp
->dev
->dev_addr
[0];
2144 /* Setup wake-on-lan for MAGIC packet */
2145 writel(MAC_RXCFG_HFE
| MAC_RXCFG_SFCS
| MAC_RXCFG_ENAB
,
2146 gp
->regs
+ MAC_RXCFG
);
2147 writel((e
[4] << 8) | e
[5], gp
->regs
+ WOL_MATCH0
);
2148 writel((e
[2] << 8) | e
[3], gp
->regs
+ WOL_MATCH1
);
2149 writel((e
[0] << 8) | e
[1], gp
->regs
+ WOL_MATCH2
);
2151 writel(WOL_MCOUNT_N
| WOL_MCOUNT_M
, gp
->regs
+ WOL_MCOUNT
);
2152 csr
= WOL_WAKECSR_ENABLE
;
2153 if ((readl(gp
->regs
+ MAC_XIFCFG
) & MAC_XIFCFG_GMII
) == 0)
2154 csr
|= WOL_WAKECSR_MII
;
2155 writel(csr
, gp
->regs
+ WOL_WAKECSR
);
2157 writel(0, gp
->regs
+ MAC_RXCFG
);
2158 (void)readl(gp
->regs
+ MAC_RXCFG
);
2159 /* Machine sleep will die in strange ways if we
2160 * dont wait a bit here, looks like the chip takes
2161 * some time to really shut down
2166 writel(0, gp
->regs
+ MAC_TXCFG
);
2167 writel(0, gp
->regs
+ MAC_XIFCFG
);
2168 writel(0, gp
->regs
+ TXDMA_CFG
);
2169 writel(0, gp
->regs
+ RXDMA_CFG
);
2172 spin_lock_irqsave(&gp
->lock
, flags
);
2173 spin_lock(&gp
->tx_lock
);
2175 writel(MAC_TXRST_CMD
, gp
->regs
+ MAC_TXRST
);
2176 writel(MAC_RXRST_CMD
, gp
->regs
+ MAC_RXRST
);
2177 spin_unlock(&gp
->tx_lock
);
2178 spin_unlock_irqrestore(&gp
->lock
, flags
);
2180 /* No need to take the lock here */
2182 if (found_mii_phy(gp
) && gp
->phy_mii
.def
->ops
->suspend
)
2183 gp
->phy_mii
.def
->ops
->suspend(&gp
->phy_mii
);
2185 /* According to Apple, we must set the MDIO pins to this begnign
2186 * state or we may 1) eat more current, 2) damage some PHYs
2188 writel(mifcfg
| MIF_CFG_BBMODE
, gp
->regs
+ MIF_CFG
);
2189 writel(0, gp
->regs
+ MIF_BBCLK
);
2190 writel(0, gp
->regs
+ MIF_BBDATA
);
2191 writel(0, gp
->regs
+ MIF_BBOENAB
);
2192 writel(MAC_XIFCFG_GMII
| MAC_XIFCFG_LBCK
, gp
->regs
+ MAC_XIFCFG
);
2193 (void) readl(gp
->regs
+ MAC_XIFCFG
);
2198 static int gem_do_start(struct net_device
*dev
)
2200 struct gem
*gp
= dev
->priv
;
2201 unsigned long flags
;
2203 spin_lock_irqsave(&gp
->lock
, flags
);
2204 spin_lock(&gp
->tx_lock
);
2206 /* Enable the cell */
2209 /* Init & setup chip hardware */
2210 gem_reinit_chip(gp
);
2214 if (gp
->lstate
== link_up
) {
2215 netif_carrier_on(gp
->dev
);
2216 gem_set_link_modes(gp
);
2219 netif_wake_queue(gp
->dev
);
2221 spin_unlock(&gp
->tx_lock
);
2222 spin_unlock_irqrestore(&gp
->lock
, flags
);
2224 if (request_irq(gp
->pdev
->irq
, gem_interrupt
,
2225 IRQF_SHARED
, dev
->name
, (void *)dev
)) {
2226 printk(KERN_ERR
"%s: failed to request irq !\n", gp
->dev
->name
);
2228 spin_lock_irqsave(&gp
->lock
, flags
);
2229 spin_lock(&gp
->tx_lock
);
2233 gem_clean_rings(gp
);
2236 spin_unlock(&gp
->tx_lock
);
2237 spin_unlock_irqrestore(&gp
->lock
, flags
);
2245 static void gem_do_stop(struct net_device
*dev
, int wol
)
2247 struct gem
*gp
= dev
->priv
;
2248 unsigned long flags
;
2250 spin_lock_irqsave(&gp
->lock
, flags
);
2251 spin_lock(&gp
->tx_lock
);
2255 /* Stop netif queue */
2256 netif_stop_queue(dev
);
2258 /* Make sure ints are disabled */
2259 gem_disable_ints(gp
);
2261 /* We can drop the lock now */
2262 spin_unlock(&gp
->tx_lock
);
2263 spin_unlock_irqrestore(&gp
->lock
, flags
);
2265 /* If we are going to sleep with WOL */
2272 /* Get rid of rings */
2273 gem_clean_rings(gp
);
2275 /* No irq needed anymore */
2276 free_irq(gp
->pdev
->irq
, (void *) dev
);
2278 /* Cell not needed neither if no WOL */
2280 spin_lock_irqsave(&gp
->lock
, flags
);
2282 spin_unlock_irqrestore(&gp
->lock
, flags
);
2286 static void gem_reset_task(struct work_struct
*work
)
2288 struct gem
*gp
= container_of(work
, struct gem
, reset_task
);
2290 mutex_lock(&gp
->pm_mutex
);
2292 netif_poll_disable(gp
->dev
);
2294 spin_lock_irq(&gp
->lock
);
2295 spin_lock(&gp
->tx_lock
);
2297 if (gp
->running
== 0)
2301 netif_stop_queue(gp
->dev
);
2303 /* Reset the chip & rings */
2304 gem_reinit_chip(gp
);
2305 if (gp
->lstate
== link_up
)
2306 gem_set_link_modes(gp
);
2307 netif_wake_queue(gp
->dev
);
2310 gp
->reset_task_pending
= 0;
2312 spin_unlock(&gp
->tx_lock
);
2313 spin_unlock_irq(&gp
->lock
);
2315 netif_poll_enable(gp
->dev
);
2317 mutex_unlock(&gp
->pm_mutex
);
2321 static int gem_open(struct net_device
*dev
)
2323 struct gem
*gp
= dev
->priv
;
2326 mutex_lock(&gp
->pm_mutex
);
2328 /* We need the cell enabled */
2330 rc
= gem_do_start(dev
);
2331 gp
->opened
= (rc
== 0);
2333 mutex_unlock(&gp
->pm_mutex
);
2338 static int gem_close(struct net_device
*dev
)
2340 struct gem
*gp
= dev
->priv
;
2342 /* Note: we don't need to call netif_poll_disable() here because
2343 * our caller (dev_close) already did it for us
2346 mutex_lock(&gp
->pm_mutex
);
2350 gem_do_stop(dev
, 0);
2352 mutex_unlock(&gp
->pm_mutex
);
2358 static int gem_suspend(struct pci_dev
*pdev
, pm_message_t state
)
2360 struct net_device
*dev
= pci_get_drvdata(pdev
);
2361 struct gem
*gp
= dev
->priv
;
2362 unsigned long flags
;
2364 mutex_lock(&gp
->pm_mutex
);
2366 netif_poll_disable(dev
);
2368 printk(KERN_INFO
"%s: suspending, WakeOnLan %s\n",
2370 (gp
->wake_on_lan
&& gp
->opened
) ? "enabled" : "disabled");
2372 /* Keep the cell enabled during the entire operation */
2373 spin_lock_irqsave(&gp
->lock
, flags
);
2374 spin_lock(&gp
->tx_lock
);
2376 spin_unlock(&gp
->tx_lock
);
2377 spin_unlock_irqrestore(&gp
->lock
, flags
);
2379 /* If the driver is opened, we stop the MAC */
2381 /* Stop traffic, mark us closed */
2382 netif_device_detach(dev
);
2384 /* Switch off MAC, remember WOL setting */
2385 gp
->asleep_wol
= gp
->wake_on_lan
;
2386 gem_do_stop(dev
, gp
->asleep_wol
);
2390 /* Mark us asleep */
2394 /* Stop the link timer */
2395 del_timer_sync(&gp
->link_timer
);
2397 /* Now we release the mutex to not block the reset task who
2398 * can take it too. We are marked asleep, so there will be no
2401 mutex_unlock(&gp
->pm_mutex
);
2403 /* Wait for a pending reset task to complete */
2404 while (gp
->reset_task_pending
)
2406 flush_scheduled_work();
2408 /* Shut the PHY down eventually and setup WOL */
2409 gem_stop_phy(gp
, gp
->asleep_wol
);
2411 /* Make sure bus master is disabled */
2412 pci_disable_device(gp
->pdev
);
2414 /* Release the cell, no need to take a lock at this point since
2415 * nothing else can happen now
2422 static int gem_resume(struct pci_dev
*pdev
)
2424 struct net_device
*dev
= pci_get_drvdata(pdev
);
2425 struct gem
*gp
= dev
->priv
;
2426 unsigned long flags
;
2428 printk(KERN_INFO
"%s: resuming\n", dev
->name
);
2430 mutex_lock(&gp
->pm_mutex
);
2432 /* Keep the cell enabled during the entire operation, no need to
2433 * take a lock here tho since nothing else can happen while we are
2438 /* Make sure PCI access and bus master are enabled */
2439 if (pci_enable_device(gp
->pdev
)) {
2440 printk(KERN_ERR
"%s: Can't re-enable chip !\n",
2442 /* Put cell and forget it for now, it will be considered as
2443 * still asleep, a new sleep cycle may bring it back
2446 mutex_unlock(&gp
->pm_mutex
);
2449 pci_set_master(gp
->pdev
);
2451 /* Reset everything */
2454 /* Mark us woken up */
2458 /* Bring the PHY back. Again, lock is useless at this point as
2459 * nothing can be happening until we restart the whole thing
2463 /* If we were opened, bring everything back */
2468 /* Re-attach net device */
2469 netif_device_attach(dev
);
2473 spin_lock_irqsave(&gp
->lock
, flags
);
2474 spin_lock(&gp
->tx_lock
);
2476 /* If we had WOL enabled, the cell clock was never turned off during
2477 * sleep, so we end up beeing unbalanced. Fix that here
2482 /* This function doesn't need to hold the cell, it will be held if the
2483 * driver is open by gem_do_start().
2487 spin_unlock(&gp
->tx_lock
);
2488 spin_unlock_irqrestore(&gp
->lock
, flags
);
2490 netif_poll_enable(dev
);
2492 mutex_unlock(&gp
->pm_mutex
);
2496 #endif /* CONFIG_PM */
2498 static struct net_device_stats
*gem_get_stats(struct net_device
*dev
)
2500 struct gem
*gp
= dev
->priv
;
2501 struct net_device_stats
*stats
= &gp
->net_stats
;
2503 spin_lock_irq(&gp
->lock
);
2504 spin_lock(&gp
->tx_lock
);
2506 /* I have seen this being called while the PM was in progress,
2507 * so we shield against this
2510 stats
->rx_crc_errors
+= readl(gp
->regs
+ MAC_FCSERR
);
2511 writel(0, gp
->regs
+ MAC_FCSERR
);
2513 stats
->rx_frame_errors
+= readl(gp
->regs
+ MAC_AERR
);
2514 writel(0, gp
->regs
+ MAC_AERR
);
2516 stats
->rx_length_errors
+= readl(gp
->regs
+ MAC_LERR
);
2517 writel(0, gp
->regs
+ MAC_LERR
);
2519 stats
->tx_aborted_errors
+= readl(gp
->regs
+ MAC_ECOLL
);
2520 stats
->collisions
+=
2521 (readl(gp
->regs
+ MAC_ECOLL
) +
2522 readl(gp
->regs
+ MAC_LCOLL
));
2523 writel(0, gp
->regs
+ MAC_ECOLL
);
2524 writel(0, gp
->regs
+ MAC_LCOLL
);
2527 spin_unlock(&gp
->tx_lock
);
2528 spin_unlock_irq(&gp
->lock
);
2530 return &gp
->net_stats
;
2533 static int gem_set_mac_address(struct net_device
*dev
, void *addr
)
2535 struct sockaddr
*macaddr
= (struct sockaddr
*) addr
;
2536 struct gem
*gp
= dev
->priv
;
2537 unsigned char *e
= &dev
->dev_addr
[0];
2539 if (!is_valid_ether_addr(macaddr
->sa_data
))
2540 return -EADDRNOTAVAIL
;
2542 if (!netif_running(dev
) || !netif_device_present(dev
)) {
2543 /* We'll just catch it later when the
2544 * device is up'd or resumed.
2546 memcpy(dev
->dev_addr
, macaddr
->sa_data
, dev
->addr_len
);
2550 mutex_lock(&gp
->pm_mutex
);
2551 memcpy(dev
->dev_addr
, macaddr
->sa_data
, dev
->addr_len
);
2553 writel((e
[4] << 8) | e
[5], gp
->regs
+ MAC_ADDR0
);
2554 writel((e
[2] << 8) | e
[3], gp
->regs
+ MAC_ADDR1
);
2555 writel((e
[0] << 8) | e
[1], gp
->regs
+ MAC_ADDR2
);
2557 mutex_unlock(&gp
->pm_mutex
);
2562 static void gem_set_multicast(struct net_device
*dev
)
2564 struct gem
*gp
= dev
->priv
;
2565 u32 rxcfg
, rxcfg_new
;
2569 spin_lock_irq(&gp
->lock
);
2570 spin_lock(&gp
->tx_lock
);
2575 netif_stop_queue(dev
);
2577 rxcfg
= readl(gp
->regs
+ MAC_RXCFG
);
2578 rxcfg_new
= gem_setup_multicast(gp
);
2580 rxcfg_new
|= MAC_RXCFG_SFCS
;
2582 gp
->mac_rx_cfg
= rxcfg_new
;
2584 writel(rxcfg
& ~MAC_RXCFG_ENAB
, gp
->regs
+ MAC_RXCFG
);
2585 while (readl(gp
->regs
+ MAC_RXCFG
) & MAC_RXCFG_ENAB
) {
2591 rxcfg
&= ~(MAC_RXCFG_PROM
| MAC_RXCFG_HFE
);
2594 writel(rxcfg
, gp
->regs
+ MAC_RXCFG
);
2596 netif_wake_queue(dev
);
2599 spin_unlock(&gp
->tx_lock
);
2600 spin_unlock_irq(&gp
->lock
);
2603 /* Jumbo-grams don't seem to work :-( */
2604 #define GEM_MIN_MTU 68
2606 #define GEM_MAX_MTU 1500
2608 #define GEM_MAX_MTU 9000
2611 static int gem_change_mtu(struct net_device
*dev
, int new_mtu
)
2613 struct gem
*gp
= dev
->priv
;
2615 if (new_mtu
< GEM_MIN_MTU
|| new_mtu
> GEM_MAX_MTU
)
2618 if (!netif_running(dev
) || !netif_device_present(dev
)) {
2619 /* We'll just catch it later when the
2620 * device is up'd or resumed.
2626 mutex_lock(&gp
->pm_mutex
);
2627 spin_lock_irq(&gp
->lock
);
2628 spin_lock(&gp
->tx_lock
);
2631 gem_reinit_chip(gp
);
2632 if (gp
->lstate
== link_up
)
2633 gem_set_link_modes(gp
);
2635 spin_unlock(&gp
->tx_lock
);
2636 spin_unlock_irq(&gp
->lock
);
2637 mutex_unlock(&gp
->pm_mutex
);
2642 static void gem_get_drvinfo(struct net_device
*dev
, struct ethtool_drvinfo
*info
)
2644 struct gem
*gp
= dev
->priv
;
2646 strcpy(info
->driver
, DRV_NAME
);
2647 strcpy(info
->version
, DRV_VERSION
);
2648 strcpy(info
->bus_info
, pci_name(gp
->pdev
));
2651 static int gem_get_settings(struct net_device
*dev
, struct ethtool_cmd
*cmd
)
2653 struct gem
*gp
= dev
->priv
;
2655 if (gp
->phy_type
== phy_mii_mdio0
||
2656 gp
->phy_type
== phy_mii_mdio1
) {
2657 if (gp
->phy_mii
.def
)
2658 cmd
->supported
= gp
->phy_mii
.def
->features
;
2660 cmd
->supported
= (SUPPORTED_10baseT_Half
|
2661 SUPPORTED_10baseT_Full
);
2663 /* XXX hardcoded stuff for now */
2664 cmd
->port
= PORT_MII
;
2665 cmd
->transceiver
= XCVR_EXTERNAL
;
2666 cmd
->phy_address
= 0; /* XXX fixed PHYAD */
2668 /* Return current PHY settings */
2669 spin_lock_irq(&gp
->lock
);
2670 cmd
->autoneg
= gp
->want_autoneg
;
2671 cmd
->speed
= gp
->phy_mii
.speed
;
2672 cmd
->duplex
= gp
->phy_mii
.duplex
;
2673 cmd
->advertising
= gp
->phy_mii
.advertising
;
2675 /* If we started with a forced mode, we don't have a default
2676 * advertise set, we need to return something sensible so
2677 * userland can re-enable autoneg properly.
2679 if (cmd
->advertising
== 0)
2680 cmd
->advertising
= cmd
->supported
;
2681 spin_unlock_irq(&gp
->lock
);
2682 } else { // XXX PCS ?
2684 (SUPPORTED_10baseT_Half
| SUPPORTED_10baseT_Full
|
2685 SUPPORTED_100baseT_Half
| SUPPORTED_100baseT_Full
|
2687 cmd
->advertising
= cmd
->supported
;
2689 cmd
->duplex
= cmd
->port
= cmd
->phy_address
=
2690 cmd
->transceiver
= cmd
->autoneg
= 0;
2692 cmd
->maxtxpkt
= cmd
->maxrxpkt
= 0;
2697 static int gem_set_settings(struct net_device
*dev
, struct ethtool_cmd
*cmd
)
2699 struct gem
*gp
= dev
->priv
;
2701 /* Verify the settings we care about. */
2702 if (cmd
->autoneg
!= AUTONEG_ENABLE
&&
2703 cmd
->autoneg
!= AUTONEG_DISABLE
)
2706 if (cmd
->autoneg
== AUTONEG_ENABLE
&&
2707 cmd
->advertising
== 0)
2710 if (cmd
->autoneg
== AUTONEG_DISABLE
&&
2711 ((cmd
->speed
!= SPEED_1000
&&
2712 cmd
->speed
!= SPEED_100
&&
2713 cmd
->speed
!= SPEED_10
) ||
2714 (cmd
->duplex
!= DUPLEX_HALF
&&
2715 cmd
->duplex
!= DUPLEX_FULL
)))
2718 /* Apply settings and restart link process. */
2719 spin_lock_irq(&gp
->lock
);
2721 gem_begin_auto_negotiation(gp
, cmd
);
2723 spin_unlock_irq(&gp
->lock
);
2728 static int gem_nway_reset(struct net_device
*dev
)
2730 struct gem
*gp
= dev
->priv
;
2732 if (!gp
->want_autoneg
)
2735 /* Restart link process. */
2736 spin_lock_irq(&gp
->lock
);
2738 gem_begin_auto_negotiation(gp
, NULL
);
2740 spin_unlock_irq(&gp
->lock
);
2745 static u32
gem_get_msglevel(struct net_device
*dev
)
2747 struct gem
*gp
= dev
->priv
;
2748 return gp
->msg_enable
;
2751 static void gem_set_msglevel(struct net_device
*dev
, u32 value
)
2753 struct gem
*gp
= dev
->priv
;
2754 gp
->msg_enable
= value
;
2758 /* Add more when I understand how to program the chip */
2759 /* like WAKE_UCAST | WAKE_MCAST | WAKE_BCAST */
2761 #define WOL_SUPPORTED_MASK (WAKE_MAGIC)
2763 static void gem_get_wol(struct net_device
*dev
, struct ethtool_wolinfo
*wol
)
2765 struct gem
*gp
= dev
->priv
;
2767 /* Add more when I understand how to program the chip */
2769 wol
->supported
= WOL_SUPPORTED_MASK
;
2770 wol
->wolopts
= gp
->wake_on_lan
;
2777 static int gem_set_wol(struct net_device
*dev
, struct ethtool_wolinfo
*wol
)
2779 struct gem
*gp
= dev
->priv
;
2783 gp
->wake_on_lan
= wol
->wolopts
& WOL_SUPPORTED_MASK
;
2787 static const struct ethtool_ops gem_ethtool_ops
= {
2788 .get_drvinfo
= gem_get_drvinfo
,
2789 .get_link
= ethtool_op_get_link
,
2790 .get_settings
= gem_get_settings
,
2791 .set_settings
= gem_set_settings
,
2792 .nway_reset
= gem_nway_reset
,
2793 .get_msglevel
= gem_get_msglevel
,
2794 .set_msglevel
= gem_set_msglevel
,
2795 .get_wol
= gem_get_wol
,
2796 .set_wol
= gem_set_wol
,
2799 static int gem_ioctl(struct net_device
*dev
, struct ifreq
*ifr
, int cmd
)
2801 struct gem
*gp
= dev
->priv
;
2802 struct mii_ioctl_data
*data
= if_mii(ifr
);
2803 int rc
= -EOPNOTSUPP
;
2804 unsigned long flags
;
2806 /* Hold the PM mutex while doing ioctl's or we may collide
2807 * with power management.
2809 mutex_lock(&gp
->pm_mutex
);
2811 spin_lock_irqsave(&gp
->lock
, flags
);
2813 spin_unlock_irqrestore(&gp
->lock
, flags
);
2816 case SIOCGMIIPHY
: /* Get address of MII PHY in use. */
2817 data
->phy_id
= gp
->mii_phy_addr
;
2818 /* Fallthrough... */
2820 case SIOCGMIIREG
: /* Read MII PHY register. */
2824 data
->val_out
= __phy_read(gp
, data
->phy_id
& 0x1f,
2825 data
->reg_num
& 0x1f);
2830 case SIOCSMIIREG
: /* Write MII PHY register. */
2831 if (!capable(CAP_NET_ADMIN
))
2833 else if (!gp
->running
)
2836 __phy_write(gp
, data
->phy_id
& 0x1f, data
->reg_num
& 0x1f,
2843 spin_lock_irqsave(&gp
->lock
, flags
);
2845 spin_unlock_irqrestore(&gp
->lock
, flags
);
2847 mutex_unlock(&gp
->pm_mutex
);
2852 #if (!defined(__sparc__) && !defined(CONFIG_PPC_PMAC))
2853 /* Fetch MAC address from vital product data of PCI ROM. */
2854 static int find_eth_addr_in_vpd(void __iomem
*rom_base
, int len
, unsigned char *dev_addr
)
2858 for (this_offset
= 0x20; this_offset
< len
; this_offset
++) {
2859 void __iomem
*p
= rom_base
+ this_offset
;
2862 if (readb(p
+ 0) != 0x90 ||
2863 readb(p
+ 1) != 0x00 ||
2864 readb(p
+ 2) != 0x09 ||
2865 readb(p
+ 3) != 0x4e ||
2866 readb(p
+ 4) != 0x41 ||
2867 readb(p
+ 5) != 0x06)
2873 for (i
= 0; i
< 6; i
++)
2874 dev_addr
[i
] = readb(p
+ i
);
2880 static void get_gem_mac_nonobp(struct pci_dev
*pdev
, unsigned char *dev_addr
)
2883 void __iomem
*p
= pci_map_rom(pdev
, &size
);
2888 found
= readb(p
) == 0x55 &&
2889 readb(p
+ 1) == 0xaa &&
2890 find_eth_addr_in_vpd(p
, (64 * 1024), dev_addr
);
2891 pci_unmap_rom(pdev
, p
);
2896 /* Sun MAC prefix then 3 random bytes. */
2900 get_random_bytes(dev_addr
+ 3, 3);
2903 #endif /* not Sparc and not PPC */
2905 static int __devinit
gem_get_device_address(struct gem
*gp
)
2907 #if defined(__sparc__) || defined(CONFIG_PPC_PMAC)
2908 struct net_device
*dev
= gp
->dev
;
2911 #if defined(__sparc__)
2912 struct pci_dev
*pdev
= gp
->pdev
;
2913 struct pcidev_cookie
*pcp
= pdev
->sysdata
;
2917 unsigned char *addr
;
2920 addr
= of_get_property(pcp
->prom_node
, "local-mac-address",
2922 if (addr
&& len
== 6) {
2924 memcpy(dev
->dev_addr
, addr
, 6);
2928 memcpy(dev
->dev_addr
, idprom
->id_ethaddr
, 6);
2929 #elif defined(CONFIG_PPC_PMAC)
2930 const unsigned char *addr
;
2932 addr
= get_property(gp
->of_node
, "local-mac-address", NULL
);
2935 printk(KERN_ERR
"%s: can't get mac-address\n", dev
->name
);
2938 memcpy(dev
->dev_addr
, addr
, 6);
2940 get_gem_mac_nonobp(gp
->pdev
, gp
->dev
->dev_addr
);
2945 static void gem_remove_one(struct pci_dev
*pdev
)
2947 struct net_device
*dev
= pci_get_drvdata(pdev
);
2950 struct gem
*gp
= dev
->priv
;
2952 unregister_netdev(dev
);
2954 /* Stop the link timer */
2955 del_timer_sync(&gp
->link_timer
);
2957 /* We shouldn't need any locking here */
2960 /* Wait for a pending reset task to complete */
2961 while (gp
->reset_task_pending
)
2963 flush_scheduled_work();
2965 /* Shut the PHY down */
2966 gem_stop_phy(gp
, 0);
2970 /* Make sure bus master is disabled */
2971 pci_disable_device(gp
->pdev
);
2973 /* Free resources */
2974 pci_free_consistent(pdev
,
2975 sizeof(struct gem_init_block
),
2979 pci_release_regions(pdev
);
2982 pci_set_drvdata(pdev
, NULL
);
2986 static int __devinit
gem_init_one(struct pci_dev
*pdev
,
2987 const struct pci_device_id
*ent
)
2989 static int gem_version_printed
= 0;
2990 unsigned long gemreg_base
, gemreg_len
;
2991 struct net_device
*dev
;
2993 int i
, err
, pci_using_dac
;
2995 if (gem_version_printed
++ == 0)
2996 printk(KERN_INFO
"%s", version
);
2998 /* Apple gmac note: during probe, the chip is powered up by
2999 * the arch code to allow the code below to work (and to let
3000 * the chip be probed on the config space. It won't stay powered
3001 * up until the interface is brought up however, so we can't rely
3002 * on register configuration done at this point.
3004 err
= pci_enable_device(pdev
);
3006 printk(KERN_ERR PFX
"Cannot enable MMIO operation, "
3010 pci_set_master(pdev
);
3012 /* Configure DMA attributes. */
3014 /* All of the GEM documentation states that 64-bit DMA addressing
3015 * is fully supported and should work just fine. However the
3016 * front end for RIO based GEMs is different and only supports
3017 * 32-bit addressing.
3019 * For now we assume the various PPC GEMs are 32-bit only as well.
3021 if (pdev
->vendor
== PCI_VENDOR_ID_SUN
&&
3022 pdev
->device
== PCI_DEVICE_ID_SUN_GEM
&&
3023 !pci_set_dma_mask(pdev
, DMA_64BIT_MASK
)) {
3026 err
= pci_set_dma_mask(pdev
, DMA_32BIT_MASK
);
3028 printk(KERN_ERR PFX
"No usable DMA configuration, "
3030 goto err_disable_device
;
3035 gemreg_base
= pci_resource_start(pdev
, 0);
3036 gemreg_len
= pci_resource_len(pdev
, 0);
3038 if ((pci_resource_flags(pdev
, 0) & IORESOURCE_IO
) != 0) {
3039 printk(KERN_ERR PFX
"Cannot find proper PCI device "
3040 "base address, aborting.\n");
3042 goto err_disable_device
;
3045 dev
= alloc_etherdev(sizeof(*gp
));
3047 printk(KERN_ERR PFX
"Etherdev alloc failed, aborting.\n");
3049 goto err_disable_device
;
3051 SET_MODULE_OWNER(dev
);
3052 SET_NETDEV_DEV(dev
, &pdev
->dev
);
3056 err
= pci_request_regions(pdev
, DRV_NAME
);
3058 printk(KERN_ERR PFX
"Cannot obtain PCI resources, "
3060 goto err_out_free_netdev
;
3064 dev
->base_addr
= (long) pdev
;
3067 gp
->msg_enable
= DEFAULT_MSG
;
3069 spin_lock_init(&gp
->lock
);
3070 spin_lock_init(&gp
->tx_lock
);
3071 mutex_init(&gp
->pm_mutex
);
3073 init_timer(&gp
->link_timer
);
3074 gp
->link_timer
.function
= gem_link_timer
;
3075 gp
->link_timer
.data
= (unsigned long) gp
;
3077 INIT_WORK(&gp
->reset_task
, gem_reset_task
);
3079 gp
->lstate
= link_down
;
3080 gp
->timer_ticks
= 0;
3081 netif_carrier_off(dev
);
3083 gp
->regs
= ioremap(gemreg_base
, gemreg_len
);
3084 if (gp
->regs
== 0UL) {
3085 printk(KERN_ERR PFX
"Cannot map device registers, "
3088 goto err_out_free_res
;
3091 /* On Apple, we want a reference to the Open Firmware device-tree
3092 * node. We use it for clock control.
3094 #ifdef CONFIG_PPC_PMAC
3095 gp
->of_node
= pci_device_to_OF_node(pdev
);
3098 /* Only Apple version supports WOL afaik */
3099 if (pdev
->vendor
== PCI_VENDOR_ID_APPLE
)
3102 /* Make sure cell is enabled */
3105 /* Make sure everything is stopped and in init state */
3108 /* Fill up the mii_phy structure (even if we won't use it) */
3109 gp
->phy_mii
.dev
= dev
;
3110 gp
->phy_mii
.mdio_read
= _phy_read
;
3111 gp
->phy_mii
.mdio_write
= _phy_write
;
3112 #ifdef CONFIG_PPC_PMAC
3113 gp
->phy_mii
.platform_data
= gp
->of_node
;
3115 /* By default, we start with autoneg */
3116 gp
->want_autoneg
= 1;
3118 /* Check fifo sizes, PHY type, etc... */
3119 if (gem_check_invariants(gp
)) {
3121 goto err_out_iounmap
;
3124 /* It is guaranteed that the returned buffer will be at least
3125 * PAGE_SIZE aligned.
3127 gp
->init_block
= (struct gem_init_block
*)
3128 pci_alloc_consistent(pdev
, sizeof(struct gem_init_block
),
3130 if (!gp
->init_block
) {
3131 printk(KERN_ERR PFX
"Cannot allocate init block, "
3134 goto err_out_iounmap
;
3137 if (gem_get_device_address(gp
))
3138 goto err_out_free_consistent
;
3140 dev
->open
= gem_open
;
3141 dev
->stop
= gem_close
;
3142 dev
->hard_start_xmit
= gem_start_xmit
;
3143 dev
->get_stats
= gem_get_stats
;
3144 dev
->set_multicast_list
= gem_set_multicast
;
3145 dev
->do_ioctl
= gem_ioctl
;
3146 dev
->poll
= gem_poll
;
3148 dev
->ethtool_ops
= &gem_ethtool_ops
;
3149 dev
->tx_timeout
= gem_tx_timeout
;
3150 dev
->watchdog_timeo
= 5 * HZ
;
3151 dev
->change_mtu
= gem_change_mtu
;
3152 dev
->irq
= pdev
->irq
;
3154 dev
->set_mac_address
= gem_set_mac_address
;
3155 #ifdef CONFIG_NET_POLL_CONTROLLER
3156 dev
->poll_controller
= gem_poll_controller
;
3159 /* Set that now, in case PM kicks in now */
3160 pci_set_drvdata(pdev
, dev
);
3162 /* Detect & init PHY, start autoneg, we release the cell now
3163 * too, it will be managed by whoever needs it
3167 spin_lock_irq(&gp
->lock
);
3169 spin_unlock_irq(&gp
->lock
);
3171 /* Register with kernel */
3172 if (register_netdev(dev
)) {
3173 printk(KERN_ERR PFX
"Cannot register net device, "
3176 goto err_out_free_consistent
;
3179 printk(KERN_INFO
"%s: Sun GEM (PCI) 10/100/1000BaseT Ethernet ",
3181 for (i
= 0; i
< 6; i
++)
3182 printk("%2.2x%c", dev
->dev_addr
[i
],
3183 i
== 5 ? ' ' : ':');
3186 if (gp
->phy_type
== phy_mii_mdio0
||
3187 gp
->phy_type
== phy_mii_mdio1
)
3188 printk(KERN_INFO
"%s: Found %s PHY\n", dev
->name
,
3189 gp
->phy_mii
.def
? gp
->phy_mii
.def
->name
: "no");
3191 /* GEM can do it all... */
3192 dev
->features
|= NETIF_F_SG
| NETIF_F_HW_CSUM
| NETIF_F_LLTX
;
3194 dev
->features
|= NETIF_F_HIGHDMA
;
3198 err_out_free_consistent
:
3199 gem_remove_one(pdev
);
3205 pci_release_regions(pdev
);
3207 err_out_free_netdev
:
3210 pci_disable_device(pdev
);
3216 static struct pci_driver gem_driver
= {
3217 .name
= GEM_MODULE_NAME
,
3218 .id_table
= gem_pci_tbl
,
3219 .probe
= gem_init_one
,
3220 .remove
= gem_remove_one
,
3222 .suspend
= gem_suspend
,
3223 .resume
= gem_resume
,
3224 #endif /* CONFIG_PM */
3227 static int __init
gem_init(void)
3229 return pci_register_driver(&gem_driver
);
3232 static void __exit
gem_cleanup(void)
3234 pci_unregister_driver(&gem_driver
);
3237 module_init(gem_init
);
3238 module_exit(gem_cleanup
);