Linux 2.6.21.1
[linux/fpc-iii.git] / kernel / time / timer_stats.c
blob1bc4882e28e03ac4150a467efe3afa6410ea3a61
1 /*
2 * kernel/time/timer_stats.c
4 * Collect timer usage statistics.
6 * Copyright(C) 2006, Red Hat, Inc., Ingo Molnar
7 * Copyright(C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
9 * timer_stats is based on timer_top, a similar functionality which was part of
10 * Con Kolivas dyntick patch set. It was developed by Daniel Petrini at the
11 * Instituto Nokia de Tecnologia - INdT - Manaus. timer_top's design was based
12 * on dynamic allocation of the statistics entries and linear search based
13 * lookup combined with a global lock, rather than the static array, hash
14 * and per-CPU locking which is used by timer_stats. It was written for the
15 * pre hrtimer kernel code and therefore did not take hrtimers into account.
16 * Nevertheless it provided the base for the timer_stats implementation and
17 * was a helpful source of inspiration. Kudos to Daniel and the Nokia folks
18 * for this effort.
20 * timer_top.c is
21 * Copyright (C) 2005 Instituto Nokia de Tecnologia - INdT - Manaus
22 * Written by Daniel Petrini <d.pensator@gmail.com>
23 * timer_top.c was released under the GNU General Public License version 2
25 * We export the addresses and counting of timer functions being called,
26 * the pid and cmdline from the owner process if applicable.
28 * Start/stop data collection:
29 * # echo 1[0] >/proc/timer_stats
31 * Display the information collected so far:
32 * # cat /proc/timer_stats
34 * This program is free software; you can redistribute it and/or modify
35 * it under the terms of the GNU General Public License version 2 as
36 * published by the Free Software Foundation.
39 #include <linux/proc_fs.h>
40 #include <linux/module.h>
41 #include <linux/spinlock.h>
42 #include <linux/sched.h>
43 #include <linux/seq_file.h>
44 #include <linux/kallsyms.h>
46 #include <asm/uaccess.h>
49 * This is our basic unit of interest: a timer expiry event identified
50 * by the timer, its start/expire functions and the PID of the task that
51 * started the timer. We count the number of times an event happens:
53 struct entry {
55 * Hash list:
57 struct entry *next;
60 * Hash keys:
62 void *timer;
63 void *start_func;
64 void *expire_func;
65 pid_t pid;
68 * Number of timeout events:
70 unsigned long count;
73 * We save the command-line string to preserve
74 * this information past task exit:
76 char comm[TASK_COMM_LEN + 1];
78 } ____cacheline_aligned_in_smp;
81 * Spinlock protecting the tables - not taken during lookup:
83 static DEFINE_SPINLOCK(table_lock);
86 * Per-CPU lookup locks for fast hash lookup:
88 static DEFINE_PER_CPU(spinlock_t, lookup_lock);
91 * Mutex to serialize state changes with show-stats activities:
93 static DEFINE_MUTEX(show_mutex);
96 * Collection status, active/inactive:
98 static int __read_mostly active;
101 * Beginning/end timestamps of measurement:
103 static ktime_t time_start, time_stop;
106 * tstat entry structs only get allocated while collection is
107 * active and never freed during that time - this simplifies
108 * things quite a bit.
110 * They get freed when a new collection period is started.
112 #define MAX_ENTRIES_BITS 10
113 #define MAX_ENTRIES (1UL << MAX_ENTRIES_BITS)
115 static unsigned long nr_entries;
116 static struct entry entries[MAX_ENTRIES];
118 static atomic_t overflow_count;
120 static void reset_entries(void)
122 nr_entries = 0;
123 memset(entries, 0, sizeof(entries));
124 atomic_set(&overflow_count, 0);
127 static struct entry *alloc_entry(void)
129 if (nr_entries >= MAX_ENTRIES)
130 return NULL;
132 return entries + nr_entries++;
136 * The entries are in a hash-table, for fast lookup:
138 #define TSTAT_HASH_BITS (MAX_ENTRIES_BITS - 1)
139 #define TSTAT_HASH_SIZE (1UL << TSTAT_HASH_BITS)
140 #define TSTAT_HASH_MASK (TSTAT_HASH_SIZE - 1)
142 #define __tstat_hashfn(entry) \
143 (((unsigned long)(entry)->timer ^ \
144 (unsigned long)(entry)->start_func ^ \
145 (unsigned long)(entry)->expire_func ^ \
146 (unsigned long)(entry)->pid ) & TSTAT_HASH_MASK)
148 #define tstat_hashentry(entry) (tstat_hash_table + __tstat_hashfn(entry))
150 static struct entry *tstat_hash_table[TSTAT_HASH_SIZE] __read_mostly;
152 static int match_entries(struct entry *entry1, struct entry *entry2)
154 return entry1->timer == entry2->timer &&
155 entry1->start_func == entry2->start_func &&
156 entry1->expire_func == entry2->expire_func &&
157 entry1->pid == entry2->pid;
161 * Look up whether an entry matching this item is present
162 * in the hash already. Must be called with irqs off and the
163 * lookup lock held:
165 static struct entry *tstat_lookup(struct entry *entry, char *comm)
167 struct entry **head, *curr, *prev;
169 head = tstat_hashentry(entry);
170 curr = *head;
173 * The fastpath is when the entry is already hashed,
174 * we do this with the lookup lock held, but with the
175 * table lock not held:
177 while (curr) {
178 if (match_entries(curr, entry))
179 return curr;
181 curr = curr->next;
184 * Slowpath: allocate, set up and link a new hash entry:
186 prev = NULL;
187 curr = *head;
189 spin_lock(&table_lock);
191 * Make sure we have not raced with another CPU:
193 while (curr) {
194 if (match_entries(curr, entry))
195 goto out_unlock;
197 prev = curr;
198 curr = curr->next;
201 curr = alloc_entry();
202 if (curr) {
203 *curr = *entry;
204 curr->count = 0;
205 memcpy(curr->comm, comm, TASK_COMM_LEN);
206 if (prev)
207 prev->next = curr;
208 else
209 *head = curr;
210 curr->next = NULL;
212 out_unlock:
213 spin_unlock(&table_lock);
215 return curr;
219 * timer_stats_update_stats - Update the statistics for a timer.
220 * @timer: pointer to either a timer_list or a hrtimer
221 * @pid: the pid of the task which set up the timer
222 * @startf: pointer to the function which did the timer setup
223 * @timerf: pointer to the timer callback function of the timer
224 * @comm: name of the process which set up the timer
226 * When the timer is already registered, then the event counter is
227 * incremented. Otherwise the timer is registered in a free slot.
229 void timer_stats_update_stats(void *timer, pid_t pid, void *startf,
230 void *timerf, char * comm)
233 * It doesnt matter which lock we take:
235 spinlock_t *lock = &per_cpu(lookup_lock, raw_smp_processor_id());
236 struct entry *entry, input;
237 unsigned long flags;
239 input.timer = timer;
240 input.start_func = startf;
241 input.expire_func = timerf;
242 input.pid = pid;
244 spin_lock_irqsave(lock, flags);
245 if (!active)
246 goto out_unlock;
248 entry = tstat_lookup(&input, comm);
249 if (likely(entry))
250 entry->count++;
251 else
252 atomic_inc(&overflow_count);
254 out_unlock:
255 spin_unlock_irqrestore(lock, flags);
258 static void print_name_offset(struct seq_file *m, unsigned long addr)
260 char namebuf[KSYM_NAME_LEN+1];
261 unsigned long size, offset;
262 const char *sym_name;
263 char *modname;
265 sym_name = kallsyms_lookup(addr, &size, &offset, &modname, namebuf);
266 if (sym_name)
267 seq_printf(m, "%s", sym_name);
268 else
269 seq_printf(m, "<%p>", (void *)addr);
272 static int tstats_show(struct seq_file *m, void *v)
274 struct timespec period;
275 struct entry *entry;
276 unsigned long ms;
277 long events = 0;
278 ktime_t time;
279 int i;
281 mutex_lock(&show_mutex);
283 * If still active then calculate up to now:
285 if (active)
286 time_stop = ktime_get();
288 time = ktime_sub(time_stop, time_start);
290 period = ktime_to_timespec(time);
291 ms = period.tv_nsec / 1000000;
293 seq_puts(m, "Timer Stats Version: v0.1\n");
294 seq_printf(m, "Sample period: %ld.%03ld s\n", period.tv_sec, ms);
295 if (atomic_read(&overflow_count))
296 seq_printf(m, "Overflow: %d entries\n",
297 atomic_read(&overflow_count));
299 for (i = 0; i < nr_entries; i++) {
300 entry = entries + i;
301 seq_printf(m, "%4lu, %5d %-16s ",
302 entry->count, entry->pid, entry->comm);
304 print_name_offset(m, (unsigned long)entry->start_func);
305 seq_puts(m, " (");
306 print_name_offset(m, (unsigned long)entry->expire_func);
307 seq_puts(m, ")\n");
309 events += entry->count;
312 ms += period.tv_sec * 1000;
313 if (!ms)
314 ms = 1;
316 if (events && period.tv_sec)
317 seq_printf(m, "%ld total events, %ld.%ld events/sec\n", events,
318 events / period.tv_sec, events * 1000 / ms);
319 else
320 seq_printf(m, "%ld total events\n", events);
322 mutex_unlock(&show_mutex);
324 return 0;
328 * After a state change, make sure all concurrent lookup/update
329 * activities have stopped:
331 static void sync_access(void)
333 unsigned long flags;
334 int cpu;
336 for_each_online_cpu(cpu) {
337 spin_lock_irqsave(&per_cpu(lookup_lock, cpu), flags);
338 /* nothing */
339 spin_unlock_irqrestore(&per_cpu(lookup_lock, cpu), flags);
343 static ssize_t tstats_write(struct file *file, const char __user *buf,
344 size_t count, loff_t *offs)
346 char ctl[2];
348 if (count != 2 || *offs)
349 return -EINVAL;
351 if (copy_from_user(ctl, buf, count))
352 return -EFAULT;
354 mutex_lock(&show_mutex);
355 switch (ctl[0]) {
356 case '0':
357 if (active) {
358 active = 0;
359 time_stop = ktime_get();
360 sync_access();
362 break;
363 case '1':
364 if (!active) {
365 reset_entries();
366 time_start = ktime_get();
367 active = 1;
369 break;
370 default:
371 count = -EINVAL;
373 mutex_unlock(&show_mutex);
375 return count;
378 static int tstats_open(struct inode *inode, struct file *filp)
380 return single_open(filp, tstats_show, NULL);
383 static struct file_operations tstats_fops = {
384 .open = tstats_open,
385 .read = seq_read,
386 .write = tstats_write,
387 .llseek = seq_lseek,
388 .release = seq_release,
391 void __init init_timer_stats(void)
393 int cpu;
395 for_each_possible_cpu(cpu)
396 spin_lock_init(&per_cpu(lookup_lock, cpu));
399 static int __init init_tstats_procfs(void)
401 struct proc_dir_entry *pe;
403 pe = create_proc_entry("timer_stats", 0644, NULL);
404 if (!pe)
405 return -ENOMEM;
407 pe->proc_fops = &tstats_fops;
409 return 0;
411 __initcall(init_tstats_procfs);