Linux 2.6.21.1
[linux/fpc-iii.git] / net / ipv4 / fib_trie.c
blob214c34732e84caa9ad6a7f44c3ede03ad769d977
1 /*
2 * This program is free software; you can redistribute it and/or
3 * modify it under the terms of the GNU General Public License
4 * as published by the Free Software Foundation; either version
5 * 2 of the License, or (at your option) any later version.
7 * Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet
8 * & Swedish University of Agricultural Sciences.
10 * Jens Laas <jens.laas@data.slu.se> Swedish University of
11 * Agricultural Sciences.
13 * Hans Liss <hans.liss@its.uu.se> Uppsala Universitet
15 * This work is based on the LPC-trie which is originally descibed in:
17 * An experimental study of compression methods for dynamic tries
18 * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002.
19 * http://www.nada.kth.se/~snilsson/public/papers/dyntrie2/
22 * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson
23 * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999
25 * Version: $Id: fib_trie.c,v 1.3 2005/06/08 14:20:01 robert Exp $
28 * Code from fib_hash has been reused which includes the following header:
31 * INET An implementation of the TCP/IP protocol suite for the LINUX
32 * operating system. INET is implemented using the BSD Socket
33 * interface as the means of communication with the user level.
35 * IPv4 FIB: lookup engine and maintenance routines.
38 * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
40 * This program is free software; you can redistribute it and/or
41 * modify it under the terms of the GNU General Public License
42 * as published by the Free Software Foundation; either version
43 * 2 of the License, or (at your option) any later version.
45 * Substantial contributions to this work comes from:
47 * David S. Miller, <davem@davemloft.net>
48 * Stephen Hemminger <shemminger@osdl.org>
49 * Paul E. McKenney <paulmck@us.ibm.com>
50 * Patrick McHardy <kaber@trash.net>
53 #define VERSION "0.407"
55 #include <asm/uaccess.h>
56 #include <asm/system.h>
57 #include <asm/bitops.h>
58 #include <linux/types.h>
59 #include <linux/kernel.h>
60 #include <linux/mm.h>
61 #include <linux/string.h>
62 #include <linux/socket.h>
63 #include <linux/sockios.h>
64 #include <linux/errno.h>
65 #include <linux/in.h>
66 #include <linux/inet.h>
67 #include <linux/inetdevice.h>
68 #include <linux/netdevice.h>
69 #include <linux/if_arp.h>
70 #include <linux/proc_fs.h>
71 #include <linux/rcupdate.h>
72 #include <linux/skbuff.h>
73 #include <linux/netlink.h>
74 #include <linux/init.h>
75 #include <linux/list.h>
76 #include <net/ip.h>
77 #include <net/protocol.h>
78 #include <net/route.h>
79 #include <net/tcp.h>
80 #include <net/sock.h>
81 #include <net/ip_fib.h>
82 #include "fib_lookup.h"
84 #undef CONFIG_IP_FIB_TRIE_STATS
85 #define MAX_STAT_DEPTH 32
87 #define KEYLENGTH (8*sizeof(t_key))
88 #define MASK_PFX(k, l) (((l)==0)?0:(k >> (KEYLENGTH-l)) << (KEYLENGTH-l))
89 #define TKEY_GET_MASK(offset, bits) (((bits)==0)?0:((t_key)(-1) << (KEYLENGTH - bits) >> offset))
91 typedef unsigned int t_key;
93 #define T_TNODE 0
94 #define T_LEAF 1
95 #define NODE_TYPE_MASK 0x1UL
96 #define NODE_PARENT(node) \
97 ((struct tnode *)rcu_dereference(((node)->parent & ~NODE_TYPE_MASK)))
99 #define NODE_TYPE(node) ((node)->parent & NODE_TYPE_MASK)
101 #define NODE_SET_PARENT(node, ptr) \
102 rcu_assign_pointer((node)->parent, \
103 ((unsigned long)(ptr)) | NODE_TYPE(node))
105 #define IS_TNODE(n) (!(n->parent & T_LEAF))
106 #define IS_LEAF(n) (n->parent & T_LEAF)
108 struct node {
109 t_key key;
110 unsigned long parent;
113 struct leaf {
114 t_key key;
115 unsigned long parent;
116 struct hlist_head list;
117 struct rcu_head rcu;
120 struct leaf_info {
121 struct hlist_node hlist;
122 struct rcu_head rcu;
123 int plen;
124 struct list_head falh;
127 struct tnode {
128 t_key key;
129 unsigned long parent;
130 unsigned short pos:5; /* 2log(KEYLENGTH) bits needed */
131 unsigned short bits:5; /* 2log(KEYLENGTH) bits needed */
132 unsigned short full_children; /* KEYLENGTH bits needed */
133 unsigned short empty_children; /* KEYLENGTH bits needed */
134 struct rcu_head rcu;
135 struct node *child[0];
138 #ifdef CONFIG_IP_FIB_TRIE_STATS
139 struct trie_use_stats {
140 unsigned int gets;
141 unsigned int backtrack;
142 unsigned int semantic_match_passed;
143 unsigned int semantic_match_miss;
144 unsigned int null_node_hit;
145 unsigned int resize_node_skipped;
147 #endif
149 struct trie_stat {
150 unsigned int totdepth;
151 unsigned int maxdepth;
152 unsigned int tnodes;
153 unsigned int leaves;
154 unsigned int nullpointers;
155 unsigned int nodesizes[MAX_STAT_DEPTH];
158 struct trie {
159 struct node *trie;
160 #ifdef CONFIG_IP_FIB_TRIE_STATS
161 struct trie_use_stats stats;
162 #endif
163 int size;
164 unsigned int revision;
167 static void put_child(struct trie *t, struct tnode *tn, int i, struct node *n);
168 static void tnode_put_child_reorg(struct tnode *tn, int i, struct node *n, int wasfull);
169 static struct node *resize(struct trie *t, struct tnode *tn);
170 static struct tnode *inflate(struct trie *t, struct tnode *tn);
171 static struct tnode *halve(struct trie *t, struct tnode *tn);
172 static void tnode_free(struct tnode *tn);
174 static struct kmem_cache *fn_alias_kmem __read_mostly;
175 static struct trie *trie_local = NULL, *trie_main = NULL;
178 /* rcu_read_lock needs to be hold by caller from readside */
180 static inline struct node *tnode_get_child(struct tnode *tn, int i)
182 BUG_ON(i >= 1 << tn->bits);
184 return rcu_dereference(tn->child[i]);
187 static inline int tnode_child_length(const struct tnode *tn)
189 return 1 << tn->bits;
192 static inline t_key tkey_extract_bits(t_key a, int offset, int bits)
194 if (offset < KEYLENGTH)
195 return ((t_key)(a << offset)) >> (KEYLENGTH - bits);
196 else
197 return 0;
200 static inline int tkey_equals(t_key a, t_key b)
202 return a == b;
205 static inline int tkey_sub_equals(t_key a, int offset, int bits, t_key b)
207 if (bits == 0 || offset >= KEYLENGTH)
208 return 1;
209 bits = bits > KEYLENGTH ? KEYLENGTH : bits;
210 return ((a ^ b) << offset) >> (KEYLENGTH - bits) == 0;
213 static inline int tkey_mismatch(t_key a, int offset, t_key b)
215 t_key diff = a ^ b;
216 int i = offset;
218 if (!diff)
219 return 0;
220 while ((diff << i) >> (KEYLENGTH-1) == 0)
221 i++;
222 return i;
226 To understand this stuff, an understanding of keys and all their bits is
227 necessary. Every node in the trie has a key associated with it, but not
228 all of the bits in that key are significant.
230 Consider a node 'n' and its parent 'tp'.
232 If n is a leaf, every bit in its key is significant. Its presence is
233 necessitated by path compression, since during a tree traversal (when
234 searching for a leaf - unless we are doing an insertion) we will completely
235 ignore all skipped bits we encounter. Thus we need to verify, at the end of
236 a potentially successful search, that we have indeed been walking the
237 correct key path.
239 Note that we can never "miss" the correct key in the tree if present by
240 following the wrong path. Path compression ensures that segments of the key
241 that are the same for all keys with a given prefix are skipped, but the
242 skipped part *is* identical for each node in the subtrie below the skipped
243 bit! trie_insert() in this implementation takes care of that - note the
244 call to tkey_sub_equals() in trie_insert().
246 if n is an internal node - a 'tnode' here, the various parts of its key
247 have many different meanings.
249 Example:
250 _________________________________________________________________
251 | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C |
252 -----------------------------------------------------------------
253 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
255 _________________________________________________________________
256 | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u |
257 -----------------------------------------------------------------
258 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
260 tp->pos = 7
261 tp->bits = 3
262 n->pos = 15
263 n->bits = 4
265 First, let's just ignore the bits that come before the parent tp, that is
266 the bits from 0 to (tp->pos-1). They are *known* but at this point we do
267 not use them for anything.
269 The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the
270 index into the parent's child array. That is, they will be used to find
271 'n' among tp's children.
273 The bits from (tp->pos + tp->bits) to (n->pos - 1) - "S" - are skipped bits
274 for the node n.
276 All the bits we have seen so far are significant to the node n. The rest
277 of the bits are really not needed or indeed known in n->key.
279 The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into
280 n's child array, and will of course be different for each child.
283 The rest of the bits, from (n->pos + n->bits) onward, are completely unknown
284 at this point.
288 static inline void check_tnode(const struct tnode *tn)
290 WARN_ON(tn && tn->pos+tn->bits > 32);
293 static int halve_threshold = 25;
294 static int inflate_threshold = 50;
295 static int halve_threshold_root = 15;
296 static int inflate_threshold_root = 25;
299 static void __alias_free_mem(struct rcu_head *head)
301 struct fib_alias *fa = container_of(head, struct fib_alias, rcu);
302 kmem_cache_free(fn_alias_kmem, fa);
305 static inline void alias_free_mem_rcu(struct fib_alias *fa)
307 call_rcu(&fa->rcu, __alias_free_mem);
310 static void __leaf_free_rcu(struct rcu_head *head)
312 kfree(container_of(head, struct leaf, rcu));
315 static void __leaf_info_free_rcu(struct rcu_head *head)
317 kfree(container_of(head, struct leaf_info, rcu));
320 static inline void free_leaf_info(struct leaf_info *leaf)
322 call_rcu(&leaf->rcu, __leaf_info_free_rcu);
325 static struct tnode *tnode_alloc(unsigned int size)
327 struct page *pages;
329 if (size <= PAGE_SIZE)
330 return kcalloc(size, 1, GFP_KERNEL);
332 pages = alloc_pages(GFP_KERNEL|__GFP_ZERO, get_order(size));
333 if (!pages)
334 return NULL;
336 return page_address(pages);
339 static void __tnode_free_rcu(struct rcu_head *head)
341 struct tnode *tn = container_of(head, struct tnode, rcu);
342 unsigned int size = sizeof(struct tnode) +
343 (1 << tn->bits) * sizeof(struct node *);
345 if (size <= PAGE_SIZE)
346 kfree(tn);
347 else
348 free_pages((unsigned long)tn, get_order(size));
351 static inline void tnode_free(struct tnode *tn)
353 if(IS_LEAF(tn)) {
354 struct leaf *l = (struct leaf *) tn;
355 call_rcu_bh(&l->rcu, __leaf_free_rcu);
357 else
358 call_rcu(&tn->rcu, __tnode_free_rcu);
361 static struct leaf *leaf_new(void)
363 struct leaf *l = kmalloc(sizeof(struct leaf), GFP_KERNEL);
364 if (l) {
365 l->parent = T_LEAF;
366 INIT_HLIST_HEAD(&l->list);
368 return l;
371 static struct leaf_info *leaf_info_new(int plen)
373 struct leaf_info *li = kmalloc(sizeof(struct leaf_info), GFP_KERNEL);
374 if (li) {
375 li->plen = plen;
376 INIT_LIST_HEAD(&li->falh);
378 return li;
381 static struct tnode* tnode_new(t_key key, int pos, int bits)
383 int nchildren = 1<<bits;
384 int sz = sizeof(struct tnode) + nchildren * sizeof(struct node *);
385 struct tnode *tn = tnode_alloc(sz);
387 if (tn) {
388 memset(tn, 0, sz);
389 tn->parent = T_TNODE;
390 tn->pos = pos;
391 tn->bits = bits;
392 tn->key = key;
393 tn->full_children = 0;
394 tn->empty_children = 1<<bits;
397 pr_debug("AT %p s=%u %u\n", tn, (unsigned int) sizeof(struct tnode),
398 (unsigned int) (sizeof(struct node) * 1<<bits));
399 return tn;
403 * Check whether a tnode 'n' is "full", i.e. it is an internal node
404 * and no bits are skipped. See discussion in dyntree paper p. 6
407 static inline int tnode_full(const struct tnode *tn, const struct node *n)
409 if (n == NULL || IS_LEAF(n))
410 return 0;
412 return ((struct tnode *) n)->pos == tn->pos + tn->bits;
415 static inline void put_child(struct trie *t, struct tnode *tn, int i, struct node *n)
417 tnode_put_child_reorg(tn, i, n, -1);
421 * Add a child at position i overwriting the old value.
422 * Update the value of full_children and empty_children.
425 static void tnode_put_child_reorg(struct tnode *tn, int i, struct node *n, int wasfull)
427 struct node *chi = tn->child[i];
428 int isfull;
430 BUG_ON(i >= 1<<tn->bits);
433 /* update emptyChildren */
434 if (n == NULL && chi != NULL)
435 tn->empty_children++;
436 else if (n != NULL && chi == NULL)
437 tn->empty_children--;
439 /* update fullChildren */
440 if (wasfull == -1)
441 wasfull = tnode_full(tn, chi);
443 isfull = tnode_full(tn, n);
444 if (wasfull && !isfull)
445 tn->full_children--;
446 else if (!wasfull && isfull)
447 tn->full_children++;
449 if (n)
450 NODE_SET_PARENT(n, tn);
452 rcu_assign_pointer(tn->child[i], n);
455 static struct node *resize(struct trie *t, struct tnode *tn)
457 int i;
458 int err = 0;
459 struct tnode *old_tn;
460 int inflate_threshold_use;
461 int halve_threshold_use;
463 if (!tn)
464 return NULL;
466 pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n",
467 tn, inflate_threshold, halve_threshold);
469 /* No children */
470 if (tn->empty_children == tnode_child_length(tn)) {
471 tnode_free(tn);
472 return NULL;
474 /* One child */
475 if (tn->empty_children == tnode_child_length(tn) - 1)
476 for (i = 0; i < tnode_child_length(tn); i++) {
477 struct node *n;
479 n = tn->child[i];
480 if (!n)
481 continue;
483 /* compress one level */
484 NODE_SET_PARENT(n, NULL);
485 tnode_free(tn);
486 return n;
489 * Double as long as the resulting node has a number of
490 * nonempty nodes that are above the threshold.
494 * From "Implementing a dynamic compressed trie" by Stefan Nilsson of
495 * the Helsinki University of Technology and Matti Tikkanen of Nokia
496 * Telecommunications, page 6:
497 * "A node is doubled if the ratio of non-empty children to all
498 * children in the *doubled* node is at least 'high'."
500 * 'high' in this instance is the variable 'inflate_threshold'. It
501 * is expressed as a percentage, so we multiply it with
502 * tnode_child_length() and instead of multiplying by 2 (since the
503 * child array will be doubled by inflate()) and multiplying
504 * the left-hand side by 100 (to handle the percentage thing) we
505 * multiply the left-hand side by 50.
507 * The left-hand side may look a bit weird: tnode_child_length(tn)
508 * - tn->empty_children is of course the number of non-null children
509 * in the current node. tn->full_children is the number of "full"
510 * children, that is non-null tnodes with a skip value of 0.
511 * All of those will be doubled in the resulting inflated tnode, so
512 * we just count them one extra time here.
514 * A clearer way to write this would be:
516 * to_be_doubled = tn->full_children;
517 * not_to_be_doubled = tnode_child_length(tn) - tn->empty_children -
518 * tn->full_children;
520 * new_child_length = tnode_child_length(tn) * 2;
522 * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) /
523 * new_child_length;
524 * if (new_fill_factor >= inflate_threshold)
526 * ...and so on, tho it would mess up the while () loop.
528 * anyway,
529 * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >=
530 * inflate_threshold
532 * avoid a division:
533 * 100 * (not_to_be_doubled + 2*to_be_doubled) >=
534 * inflate_threshold * new_child_length
536 * expand not_to_be_doubled and to_be_doubled, and shorten:
537 * 100 * (tnode_child_length(tn) - tn->empty_children +
538 * tn->full_children) >= inflate_threshold * new_child_length
540 * expand new_child_length:
541 * 100 * (tnode_child_length(tn) - tn->empty_children +
542 * tn->full_children) >=
543 * inflate_threshold * tnode_child_length(tn) * 2
545 * shorten again:
546 * 50 * (tn->full_children + tnode_child_length(tn) -
547 * tn->empty_children) >= inflate_threshold *
548 * tnode_child_length(tn)
552 check_tnode(tn);
554 /* Keep root node larger */
556 if(!tn->parent)
557 inflate_threshold_use = inflate_threshold_root;
558 else
559 inflate_threshold_use = inflate_threshold;
561 err = 0;
562 while ((tn->full_children > 0 &&
563 50 * (tn->full_children + tnode_child_length(tn) - tn->empty_children) >=
564 inflate_threshold_use * tnode_child_length(tn))) {
566 old_tn = tn;
567 tn = inflate(t, tn);
568 if (IS_ERR(tn)) {
569 tn = old_tn;
570 #ifdef CONFIG_IP_FIB_TRIE_STATS
571 t->stats.resize_node_skipped++;
572 #endif
573 break;
577 check_tnode(tn);
580 * Halve as long as the number of empty children in this
581 * node is above threshold.
585 /* Keep root node larger */
587 if(!tn->parent)
588 halve_threshold_use = halve_threshold_root;
589 else
590 halve_threshold_use = halve_threshold;
592 err = 0;
593 while (tn->bits > 1 &&
594 100 * (tnode_child_length(tn) - tn->empty_children) <
595 halve_threshold_use * tnode_child_length(tn)) {
597 old_tn = tn;
598 tn = halve(t, tn);
599 if (IS_ERR(tn)) {
600 tn = old_tn;
601 #ifdef CONFIG_IP_FIB_TRIE_STATS
602 t->stats.resize_node_skipped++;
603 #endif
604 break;
609 /* Only one child remains */
610 if (tn->empty_children == tnode_child_length(tn) - 1)
611 for (i = 0; i < tnode_child_length(tn); i++) {
612 struct node *n;
614 n = tn->child[i];
615 if (!n)
616 continue;
618 /* compress one level */
620 NODE_SET_PARENT(n, NULL);
621 tnode_free(tn);
622 return n;
625 return (struct node *) tn;
628 static struct tnode *inflate(struct trie *t, struct tnode *tn)
630 struct tnode *inode;
631 struct tnode *oldtnode = tn;
632 int olen = tnode_child_length(tn);
633 int i;
635 pr_debug("In inflate\n");
637 tn = tnode_new(oldtnode->key, oldtnode->pos, oldtnode->bits + 1);
639 if (!tn)
640 return ERR_PTR(-ENOMEM);
643 * Preallocate and store tnodes before the actual work so we
644 * don't get into an inconsistent state if memory allocation
645 * fails. In case of failure we return the oldnode and inflate
646 * of tnode is ignored.
649 for (i = 0; i < olen; i++) {
650 struct tnode *inode = (struct tnode *) tnode_get_child(oldtnode, i);
652 if (inode &&
653 IS_TNODE(inode) &&
654 inode->pos == oldtnode->pos + oldtnode->bits &&
655 inode->bits > 1) {
656 struct tnode *left, *right;
657 t_key m = TKEY_GET_MASK(inode->pos, 1);
659 left = tnode_new(inode->key&(~m), inode->pos + 1,
660 inode->bits - 1);
661 if (!left)
662 goto nomem;
664 right = tnode_new(inode->key|m, inode->pos + 1,
665 inode->bits - 1);
667 if (!right) {
668 tnode_free(left);
669 goto nomem;
672 put_child(t, tn, 2*i, (struct node *) left);
673 put_child(t, tn, 2*i+1, (struct node *) right);
677 for (i = 0; i < olen; i++) {
678 struct node *node = tnode_get_child(oldtnode, i);
679 struct tnode *left, *right;
680 int size, j;
682 /* An empty child */
683 if (node == NULL)
684 continue;
686 /* A leaf or an internal node with skipped bits */
688 if (IS_LEAF(node) || ((struct tnode *) node)->pos >
689 tn->pos + tn->bits - 1) {
690 if (tkey_extract_bits(node->key, oldtnode->pos + oldtnode->bits,
691 1) == 0)
692 put_child(t, tn, 2*i, node);
693 else
694 put_child(t, tn, 2*i+1, node);
695 continue;
698 /* An internal node with two children */
699 inode = (struct tnode *) node;
701 if (inode->bits == 1) {
702 put_child(t, tn, 2*i, inode->child[0]);
703 put_child(t, tn, 2*i+1, inode->child[1]);
705 tnode_free(inode);
706 continue;
709 /* An internal node with more than two children */
711 /* We will replace this node 'inode' with two new
712 * ones, 'left' and 'right', each with half of the
713 * original children. The two new nodes will have
714 * a position one bit further down the key and this
715 * means that the "significant" part of their keys
716 * (see the discussion near the top of this file)
717 * will differ by one bit, which will be "0" in
718 * left's key and "1" in right's key. Since we are
719 * moving the key position by one step, the bit that
720 * we are moving away from - the bit at position
721 * (inode->pos) - is the one that will differ between
722 * left and right. So... we synthesize that bit in the
723 * two new keys.
724 * The mask 'm' below will be a single "one" bit at
725 * the position (inode->pos)
728 /* Use the old key, but set the new significant
729 * bit to zero.
732 left = (struct tnode *) tnode_get_child(tn, 2*i);
733 put_child(t, tn, 2*i, NULL);
735 BUG_ON(!left);
737 right = (struct tnode *) tnode_get_child(tn, 2*i+1);
738 put_child(t, tn, 2*i+1, NULL);
740 BUG_ON(!right);
742 size = tnode_child_length(left);
743 for (j = 0; j < size; j++) {
744 put_child(t, left, j, inode->child[j]);
745 put_child(t, right, j, inode->child[j + size]);
747 put_child(t, tn, 2*i, resize(t, left));
748 put_child(t, tn, 2*i+1, resize(t, right));
750 tnode_free(inode);
752 tnode_free(oldtnode);
753 return tn;
754 nomem:
756 int size = tnode_child_length(tn);
757 int j;
759 for (j = 0; j < size; j++)
760 if (tn->child[j])
761 tnode_free((struct tnode *)tn->child[j]);
763 tnode_free(tn);
765 return ERR_PTR(-ENOMEM);
769 static struct tnode *halve(struct trie *t, struct tnode *tn)
771 struct tnode *oldtnode = tn;
772 struct node *left, *right;
773 int i;
774 int olen = tnode_child_length(tn);
776 pr_debug("In halve\n");
778 tn = tnode_new(oldtnode->key, oldtnode->pos, oldtnode->bits - 1);
780 if (!tn)
781 return ERR_PTR(-ENOMEM);
784 * Preallocate and store tnodes before the actual work so we
785 * don't get into an inconsistent state if memory allocation
786 * fails. In case of failure we return the oldnode and halve
787 * of tnode is ignored.
790 for (i = 0; i < olen; i += 2) {
791 left = tnode_get_child(oldtnode, i);
792 right = tnode_get_child(oldtnode, i+1);
794 /* Two nonempty children */
795 if (left && right) {
796 struct tnode *newn;
798 newn = tnode_new(left->key, tn->pos + tn->bits, 1);
800 if (!newn)
801 goto nomem;
803 put_child(t, tn, i/2, (struct node *)newn);
808 for (i = 0; i < olen; i += 2) {
809 struct tnode *newBinNode;
811 left = tnode_get_child(oldtnode, i);
812 right = tnode_get_child(oldtnode, i+1);
814 /* At least one of the children is empty */
815 if (left == NULL) {
816 if (right == NULL) /* Both are empty */
817 continue;
818 put_child(t, tn, i/2, right);
819 continue;
822 if (right == NULL) {
823 put_child(t, tn, i/2, left);
824 continue;
827 /* Two nonempty children */
828 newBinNode = (struct tnode *) tnode_get_child(tn, i/2);
829 put_child(t, tn, i/2, NULL);
830 put_child(t, newBinNode, 0, left);
831 put_child(t, newBinNode, 1, right);
832 put_child(t, tn, i/2, resize(t, newBinNode));
834 tnode_free(oldtnode);
835 return tn;
836 nomem:
838 int size = tnode_child_length(tn);
839 int j;
841 for (j = 0; j < size; j++)
842 if (tn->child[j])
843 tnode_free((struct tnode *)tn->child[j]);
845 tnode_free(tn);
847 return ERR_PTR(-ENOMEM);
851 static void trie_init(struct trie *t)
853 if (!t)
854 return;
856 t->size = 0;
857 rcu_assign_pointer(t->trie, NULL);
858 t->revision = 0;
859 #ifdef CONFIG_IP_FIB_TRIE_STATS
860 memset(&t->stats, 0, sizeof(struct trie_use_stats));
861 #endif
864 /* readside must use rcu_read_lock currently dump routines
865 via get_fa_head and dump */
867 static struct leaf_info *find_leaf_info(struct leaf *l, int plen)
869 struct hlist_head *head = &l->list;
870 struct hlist_node *node;
871 struct leaf_info *li;
873 hlist_for_each_entry_rcu(li, node, head, hlist)
874 if (li->plen == plen)
875 return li;
877 return NULL;
880 static inline struct list_head * get_fa_head(struct leaf *l, int plen)
882 struct leaf_info *li = find_leaf_info(l, plen);
884 if (!li)
885 return NULL;
887 return &li->falh;
890 static void insert_leaf_info(struct hlist_head *head, struct leaf_info *new)
892 struct leaf_info *li = NULL, *last = NULL;
893 struct hlist_node *node;
895 if (hlist_empty(head)) {
896 hlist_add_head_rcu(&new->hlist, head);
897 } else {
898 hlist_for_each_entry(li, node, head, hlist) {
899 if (new->plen > li->plen)
900 break;
902 last = li;
904 if (last)
905 hlist_add_after_rcu(&last->hlist, &new->hlist);
906 else
907 hlist_add_before_rcu(&new->hlist, &li->hlist);
911 /* rcu_read_lock needs to be hold by caller from readside */
913 static struct leaf *
914 fib_find_node(struct trie *t, u32 key)
916 int pos;
917 struct tnode *tn;
918 struct node *n;
920 pos = 0;
921 n = rcu_dereference(t->trie);
923 while (n != NULL && NODE_TYPE(n) == T_TNODE) {
924 tn = (struct tnode *) n;
926 check_tnode(tn);
928 if (tkey_sub_equals(tn->key, pos, tn->pos-pos, key)) {
929 pos = tn->pos + tn->bits;
930 n = tnode_get_child(tn, tkey_extract_bits(key, tn->pos, tn->bits));
931 } else
932 break;
934 /* Case we have found a leaf. Compare prefixes */
936 if (n != NULL && IS_LEAF(n) && tkey_equals(key, n->key))
937 return (struct leaf *)n;
939 return NULL;
942 static struct node *trie_rebalance(struct trie *t, struct tnode *tn)
944 int wasfull;
945 t_key cindex, key;
946 struct tnode *tp = NULL;
948 key = tn->key;
950 while (tn != NULL && NODE_PARENT(tn) != NULL) {
952 tp = NODE_PARENT(tn);
953 cindex = tkey_extract_bits(key, tp->pos, tp->bits);
954 wasfull = tnode_full(tp, tnode_get_child(tp, cindex));
955 tn = (struct tnode *) resize (t, (struct tnode *)tn);
956 tnode_put_child_reorg((struct tnode *)tp, cindex,(struct node*)tn, wasfull);
958 if (!NODE_PARENT(tn))
959 break;
961 tn = NODE_PARENT(tn);
963 /* Handle last (top) tnode */
964 if (IS_TNODE(tn))
965 tn = (struct tnode*) resize(t, (struct tnode *)tn);
967 return (struct node*) tn;
970 /* only used from updater-side */
972 static struct list_head *
973 fib_insert_node(struct trie *t, int *err, u32 key, int plen)
975 int pos, newpos;
976 struct tnode *tp = NULL, *tn = NULL;
977 struct node *n;
978 struct leaf *l;
979 int missbit;
980 struct list_head *fa_head = NULL;
981 struct leaf_info *li;
982 t_key cindex;
984 pos = 0;
985 n = t->trie;
987 /* If we point to NULL, stop. Either the tree is empty and we should
988 * just put a new leaf in if, or we have reached an empty child slot,
989 * and we should just put our new leaf in that.
990 * If we point to a T_TNODE, check if it matches our key. Note that
991 * a T_TNODE might be skipping any number of bits - its 'pos' need
992 * not be the parent's 'pos'+'bits'!
994 * If it does match the current key, get pos/bits from it, extract
995 * the index from our key, push the T_TNODE and walk the tree.
997 * If it doesn't, we have to replace it with a new T_TNODE.
999 * If we point to a T_LEAF, it might or might not have the same key
1000 * as we do. If it does, just change the value, update the T_LEAF's
1001 * value, and return it.
1002 * If it doesn't, we need to replace it with a T_TNODE.
1005 while (n != NULL && NODE_TYPE(n) == T_TNODE) {
1006 tn = (struct tnode *) n;
1008 check_tnode(tn);
1010 if (tkey_sub_equals(tn->key, pos, tn->pos-pos, key)) {
1011 tp = tn;
1012 pos = tn->pos + tn->bits;
1013 n = tnode_get_child(tn, tkey_extract_bits(key, tn->pos, tn->bits));
1015 BUG_ON(n && NODE_PARENT(n) != tn);
1016 } else
1017 break;
1021 * n ----> NULL, LEAF or TNODE
1023 * tp is n's (parent) ----> NULL or TNODE
1026 BUG_ON(tp && IS_LEAF(tp));
1028 /* Case 1: n is a leaf. Compare prefixes */
1030 if (n != NULL && IS_LEAF(n) && tkey_equals(key, n->key)) {
1031 struct leaf *l = (struct leaf *) n;
1033 li = leaf_info_new(plen);
1035 if (!li) {
1036 *err = -ENOMEM;
1037 goto err;
1040 fa_head = &li->falh;
1041 insert_leaf_info(&l->list, li);
1042 goto done;
1044 t->size++;
1045 l = leaf_new();
1047 if (!l) {
1048 *err = -ENOMEM;
1049 goto err;
1052 l->key = key;
1053 li = leaf_info_new(plen);
1055 if (!li) {
1056 tnode_free((struct tnode *) l);
1057 *err = -ENOMEM;
1058 goto err;
1061 fa_head = &li->falh;
1062 insert_leaf_info(&l->list, li);
1064 if (t->trie && n == NULL) {
1065 /* Case 2: n is NULL, and will just insert a new leaf */
1067 NODE_SET_PARENT(l, tp);
1069 cindex = tkey_extract_bits(key, tp->pos, tp->bits);
1070 put_child(t, (struct tnode *)tp, cindex, (struct node *)l);
1071 } else {
1072 /* Case 3: n is a LEAF or a TNODE and the key doesn't match. */
1074 * Add a new tnode here
1075 * first tnode need some special handling
1078 if (tp)
1079 pos = tp->pos+tp->bits;
1080 else
1081 pos = 0;
1083 if (n) {
1084 newpos = tkey_mismatch(key, pos, n->key);
1085 tn = tnode_new(n->key, newpos, 1);
1086 } else {
1087 newpos = 0;
1088 tn = tnode_new(key, newpos, 1); /* First tnode */
1091 if (!tn) {
1092 free_leaf_info(li);
1093 tnode_free((struct tnode *) l);
1094 *err = -ENOMEM;
1095 goto err;
1098 NODE_SET_PARENT(tn, tp);
1100 missbit = tkey_extract_bits(key, newpos, 1);
1101 put_child(t, tn, missbit, (struct node *)l);
1102 put_child(t, tn, 1-missbit, n);
1104 if (tp) {
1105 cindex = tkey_extract_bits(key, tp->pos, tp->bits);
1106 put_child(t, (struct tnode *)tp, cindex, (struct node *)tn);
1107 } else {
1108 rcu_assign_pointer(t->trie, (struct node *)tn); /* First tnode */
1109 tp = tn;
1113 if (tp && tp->pos + tp->bits > 32)
1114 printk(KERN_WARNING "fib_trie tp=%p pos=%d, bits=%d, key=%0x plen=%d\n",
1115 tp, tp->pos, tp->bits, key, plen);
1117 /* Rebalance the trie */
1119 rcu_assign_pointer(t->trie, trie_rebalance(t, tp));
1120 done:
1121 t->revision++;
1122 err:
1123 return fa_head;
1127 * Caller must hold RTNL.
1129 static int fn_trie_insert(struct fib_table *tb, struct fib_config *cfg)
1131 struct trie *t = (struct trie *) tb->tb_data;
1132 struct fib_alias *fa, *new_fa;
1133 struct list_head *fa_head = NULL;
1134 struct fib_info *fi;
1135 int plen = cfg->fc_dst_len;
1136 u8 tos = cfg->fc_tos;
1137 u32 key, mask;
1138 int err;
1139 struct leaf *l;
1141 if (plen > 32)
1142 return -EINVAL;
1144 key = ntohl(cfg->fc_dst);
1146 pr_debug("Insert table=%u %08x/%d\n", tb->tb_id, key, plen);
1148 mask = ntohl(inet_make_mask(plen));
1150 if (key & ~mask)
1151 return -EINVAL;
1153 key = key & mask;
1155 fi = fib_create_info(cfg);
1156 if (IS_ERR(fi)) {
1157 err = PTR_ERR(fi);
1158 goto err;
1161 l = fib_find_node(t, key);
1162 fa = NULL;
1164 if (l) {
1165 fa_head = get_fa_head(l, plen);
1166 fa = fib_find_alias(fa_head, tos, fi->fib_priority);
1169 /* Now fa, if non-NULL, points to the first fib alias
1170 * with the same keys [prefix,tos,priority], if such key already
1171 * exists or to the node before which we will insert new one.
1173 * If fa is NULL, we will need to allocate a new one and
1174 * insert to the head of f.
1176 * If f is NULL, no fib node matched the destination key
1177 * and we need to allocate a new one of those as well.
1180 if (fa && fa->fa_info->fib_priority == fi->fib_priority) {
1181 struct fib_alias *fa_orig;
1183 err = -EEXIST;
1184 if (cfg->fc_nlflags & NLM_F_EXCL)
1185 goto out;
1187 if (cfg->fc_nlflags & NLM_F_REPLACE) {
1188 struct fib_info *fi_drop;
1189 u8 state;
1191 err = -ENOBUFS;
1192 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1193 if (new_fa == NULL)
1194 goto out;
1196 fi_drop = fa->fa_info;
1197 new_fa->fa_tos = fa->fa_tos;
1198 new_fa->fa_info = fi;
1199 new_fa->fa_type = cfg->fc_type;
1200 new_fa->fa_scope = cfg->fc_scope;
1201 state = fa->fa_state;
1202 new_fa->fa_state &= ~FA_S_ACCESSED;
1204 list_replace_rcu(&fa->fa_list, &new_fa->fa_list);
1205 alias_free_mem_rcu(fa);
1207 fib_release_info(fi_drop);
1208 if (state & FA_S_ACCESSED)
1209 rt_cache_flush(-1);
1211 goto succeeded;
1213 /* Error if we find a perfect match which
1214 * uses the same scope, type, and nexthop
1215 * information.
1217 fa_orig = fa;
1218 list_for_each_entry(fa, fa_orig->fa_list.prev, fa_list) {
1219 if (fa->fa_tos != tos)
1220 break;
1221 if (fa->fa_info->fib_priority != fi->fib_priority)
1222 break;
1223 if (fa->fa_type == cfg->fc_type &&
1224 fa->fa_scope == cfg->fc_scope &&
1225 fa->fa_info == fi) {
1226 goto out;
1229 if (!(cfg->fc_nlflags & NLM_F_APPEND))
1230 fa = fa_orig;
1232 err = -ENOENT;
1233 if (!(cfg->fc_nlflags & NLM_F_CREATE))
1234 goto out;
1236 err = -ENOBUFS;
1237 new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1238 if (new_fa == NULL)
1239 goto out;
1241 new_fa->fa_info = fi;
1242 new_fa->fa_tos = tos;
1243 new_fa->fa_type = cfg->fc_type;
1244 new_fa->fa_scope = cfg->fc_scope;
1245 new_fa->fa_state = 0;
1247 * Insert new entry to the list.
1250 if (!fa_head) {
1251 err = 0;
1252 fa_head = fib_insert_node(t, &err, key, plen);
1253 if (err)
1254 goto out_free_new_fa;
1257 list_add_tail_rcu(&new_fa->fa_list,
1258 (fa ? &fa->fa_list : fa_head));
1260 rt_cache_flush(-1);
1261 rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, tb->tb_id,
1262 &cfg->fc_nlinfo);
1263 succeeded:
1264 return 0;
1266 out_free_new_fa:
1267 kmem_cache_free(fn_alias_kmem, new_fa);
1268 out:
1269 fib_release_info(fi);
1270 err:
1271 return err;
1275 /* should be called with rcu_read_lock */
1276 static inline int check_leaf(struct trie *t, struct leaf *l,
1277 t_key key, int *plen, const struct flowi *flp,
1278 struct fib_result *res)
1280 int err, i;
1281 __be32 mask;
1282 struct leaf_info *li;
1283 struct hlist_head *hhead = &l->list;
1284 struct hlist_node *node;
1286 hlist_for_each_entry_rcu(li, node, hhead, hlist) {
1287 i = li->plen;
1288 mask = inet_make_mask(i);
1289 if (l->key != (key & ntohl(mask)))
1290 continue;
1292 if ((err = fib_semantic_match(&li->falh, flp, res, htonl(l->key), mask, i)) <= 0) {
1293 *plen = i;
1294 #ifdef CONFIG_IP_FIB_TRIE_STATS
1295 t->stats.semantic_match_passed++;
1296 #endif
1297 return err;
1299 #ifdef CONFIG_IP_FIB_TRIE_STATS
1300 t->stats.semantic_match_miss++;
1301 #endif
1303 return 1;
1306 static int
1307 fn_trie_lookup(struct fib_table *tb, const struct flowi *flp, struct fib_result *res)
1309 struct trie *t = (struct trie *) tb->tb_data;
1310 int plen, ret = 0;
1311 struct node *n;
1312 struct tnode *pn;
1313 int pos, bits;
1314 t_key key = ntohl(flp->fl4_dst);
1315 int chopped_off;
1316 t_key cindex = 0;
1317 int current_prefix_length = KEYLENGTH;
1318 struct tnode *cn;
1319 t_key node_prefix, key_prefix, pref_mismatch;
1320 int mp;
1322 rcu_read_lock();
1324 n = rcu_dereference(t->trie);
1325 if (!n)
1326 goto failed;
1328 #ifdef CONFIG_IP_FIB_TRIE_STATS
1329 t->stats.gets++;
1330 #endif
1332 /* Just a leaf? */
1333 if (IS_LEAF(n)) {
1334 if ((ret = check_leaf(t, (struct leaf *)n, key, &plen, flp, res)) <= 0)
1335 goto found;
1336 goto failed;
1338 pn = (struct tnode *) n;
1339 chopped_off = 0;
1341 while (pn) {
1342 pos = pn->pos;
1343 bits = pn->bits;
1345 if (!chopped_off)
1346 cindex = tkey_extract_bits(MASK_PFX(key, current_prefix_length), pos, bits);
1348 n = tnode_get_child(pn, cindex);
1350 if (n == NULL) {
1351 #ifdef CONFIG_IP_FIB_TRIE_STATS
1352 t->stats.null_node_hit++;
1353 #endif
1354 goto backtrace;
1357 if (IS_LEAF(n)) {
1358 if ((ret = check_leaf(t, (struct leaf *)n, key, &plen, flp, res)) <= 0)
1359 goto found;
1360 else
1361 goto backtrace;
1364 #define HL_OPTIMIZE
1365 #ifdef HL_OPTIMIZE
1366 cn = (struct tnode *)n;
1369 * It's a tnode, and we can do some extra checks here if we
1370 * like, to avoid descending into a dead-end branch.
1371 * This tnode is in the parent's child array at index
1372 * key[p_pos..p_pos+p_bits] but potentially with some bits
1373 * chopped off, so in reality the index may be just a
1374 * subprefix, padded with zero at the end.
1375 * We can also take a look at any skipped bits in this
1376 * tnode - everything up to p_pos is supposed to be ok,
1377 * and the non-chopped bits of the index (se previous
1378 * paragraph) are also guaranteed ok, but the rest is
1379 * considered unknown.
1381 * The skipped bits are key[pos+bits..cn->pos].
1384 /* If current_prefix_length < pos+bits, we are already doing
1385 * actual prefix matching, which means everything from
1386 * pos+(bits-chopped_off) onward must be zero along some
1387 * branch of this subtree - otherwise there is *no* valid
1388 * prefix present. Here we can only check the skipped
1389 * bits. Remember, since we have already indexed into the
1390 * parent's child array, we know that the bits we chopped of
1391 * *are* zero.
1394 /* NOTA BENE: CHECKING ONLY SKIPPED BITS FOR THE NEW NODE HERE */
1396 if (current_prefix_length < pos+bits) {
1397 if (tkey_extract_bits(cn->key, current_prefix_length,
1398 cn->pos - current_prefix_length) != 0 ||
1399 !(cn->child[0]))
1400 goto backtrace;
1404 * If chopped_off=0, the index is fully validated and we
1405 * only need to look at the skipped bits for this, the new,
1406 * tnode. What we actually want to do is to find out if
1407 * these skipped bits match our key perfectly, or if we will
1408 * have to count on finding a matching prefix further down,
1409 * because if we do, we would like to have some way of
1410 * verifying the existence of such a prefix at this point.
1413 /* The only thing we can do at this point is to verify that
1414 * any such matching prefix can indeed be a prefix to our
1415 * key, and if the bits in the node we are inspecting that
1416 * do not match our key are not ZERO, this cannot be true.
1417 * Thus, find out where there is a mismatch (before cn->pos)
1418 * and verify that all the mismatching bits are zero in the
1419 * new tnode's key.
1422 /* Note: We aren't very concerned about the piece of the key
1423 * that precede pn->pos+pn->bits, since these have already been
1424 * checked. The bits after cn->pos aren't checked since these are
1425 * by definition "unknown" at this point. Thus, what we want to
1426 * see is if we are about to enter the "prefix matching" state,
1427 * and in that case verify that the skipped bits that will prevail
1428 * throughout this subtree are zero, as they have to be if we are
1429 * to find a matching prefix.
1432 node_prefix = MASK_PFX(cn->key, cn->pos);
1433 key_prefix = MASK_PFX(key, cn->pos);
1434 pref_mismatch = key_prefix^node_prefix;
1435 mp = 0;
1437 /* In short: If skipped bits in this node do not match the search
1438 * key, enter the "prefix matching" state.directly.
1440 if (pref_mismatch) {
1441 while (!(pref_mismatch & (1<<(KEYLENGTH-1)))) {
1442 mp++;
1443 pref_mismatch = pref_mismatch <<1;
1445 key_prefix = tkey_extract_bits(cn->key, mp, cn->pos-mp);
1447 if (key_prefix != 0)
1448 goto backtrace;
1450 if (current_prefix_length >= cn->pos)
1451 current_prefix_length = mp;
1453 #endif
1454 pn = (struct tnode *)n; /* Descend */
1455 chopped_off = 0;
1456 continue;
1458 backtrace:
1459 chopped_off++;
1461 /* As zero don't change the child key (cindex) */
1462 while ((chopped_off <= pn->bits) && !(cindex & (1<<(chopped_off-1))))
1463 chopped_off++;
1465 /* Decrease current_... with bits chopped off */
1466 if (current_prefix_length > pn->pos + pn->bits - chopped_off)
1467 current_prefix_length = pn->pos + pn->bits - chopped_off;
1470 * Either we do the actual chop off according or if we have
1471 * chopped off all bits in this tnode walk up to our parent.
1474 if (chopped_off <= pn->bits) {
1475 cindex &= ~(1 << (chopped_off-1));
1476 } else {
1477 if (NODE_PARENT(pn) == NULL)
1478 goto failed;
1480 /* Get Child's index */
1481 cindex = tkey_extract_bits(pn->key, NODE_PARENT(pn)->pos, NODE_PARENT(pn)->bits);
1482 pn = NODE_PARENT(pn);
1483 chopped_off = 0;
1485 #ifdef CONFIG_IP_FIB_TRIE_STATS
1486 t->stats.backtrack++;
1487 #endif
1488 goto backtrace;
1491 failed:
1492 ret = 1;
1493 found:
1494 rcu_read_unlock();
1495 return ret;
1498 /* only called from updater side */
1499 static int trie_leaf_remove(struct trie *t, t_key key)
1501 t_key cindex;
1502 struct tnode *tp = NULL;
1503 struct node *n = t->trie;
1504 struct leaf *l;
1506 pr_debug("entering trie_leaf_remove(%p)\n", n);
1508 /* Note that in the case skipped bits, those bits are *not* checked!
1509 * When we finish this, we will have NULL or a T_LEAF, and the
1510 * T_LEAF may or may not match our key.
1513 while (n != NULL && IS_TNODE(n)) {
1514 struct tnode *tn = (struct tnode *) n;
1515 check_tnode(tn);
1516 n = tnode_get_child(tn ,tkey_extract_bits(key, tn->pos, tn->bits));
1518 BUG_ON(n && NODE_PARENT(n) != tn);
1520 l = (struct leaf *) n;
1522 if (!n || !tkey_equals(l->key, key))
1523 return 0;
1526 * Key found.
1527 * Remove the leaf and rebalance the tree
1530 t->revision++;
1531 t->size--;
1533 tp = NODE_PARENT(n);
1534 tnode_free((struct tnode *) n);
1536 if (tp) {
1537 cindex = tkey_extract_bits(key, tp->pos, tp->bits);
1538 put_child(t, (struct tnode *)tp, cindex, NULL);
1539 rcu_assign_pointer(t->trie, trie_rebalance(t, tp));
1540 } else
1541 rcu_assign_pointer(t->trie, NULL);
1543 return 1;
1547 * Caller must hold RTNL.
1549 static int fn_trie_delete(struct fib_table *tb, struct fib_config *cfg)
1551 struct trie *t = (struct trie *) tb->tb_data;
1552 u32 key, mask;
1553 int plen = cfg->fc_dst_len;
1554 u8 tos = cfg->fc_tos;
1555 struct fib_alias *fa, *fa_to_delete;
1556 struct list_head *fa_head;
1557 struct leaf *l;
1558 struct leaf_info *li;
1560 if (plen > 32)
1561 return -EINVAL;
1563 key = ntohl(cfg->fc_dst);
1564 mask = ntohl(inet_make_mask(plen));
1566 if (key & ~mask)
1567 return -EINVAL;
1569 key = key & mask;
1570 l = fib_find_node(t, key);
1572 if (!l)
1573 return -ESRCH;
1575 fa_head = get_fa_head(l, plen);
1576 fa = fib_find_alias(fa_head, tos, 0);
1578 if (!fa)
1579 return -ESRCH;
1581 pr_debug("Deleting %08x/%d tos=%d t=%p\n", key, plen, tos, t);
1583 fa_to_delete = NULL;
1584 fa_head = fa->fa_list.prev;
1586 list_for_each_entry(fa, fa_head, fa_list) {
1587 struct fib_info *fi = fa->fa_info;
1589 if (fa->fa_tos != tos)
1590 break;
1592 if ((!cfg->fc_type || fa->fa_type == cfg->fc_type) &&
1593 (cfg->fc_scope == RT_SCOPE_NOWHERE ||
1594 fa->fa_scope == cfg->fc_scope) &&
1595 (!cfg->fc_protocol ||
1596 fi->fib_protocol == cfg->fc_protocol) &&
1597 fib_nh_match(cfg, fi) == 0) {
1598 fa_to_delete = fa;
1599 break;
1603 if (!fa_to_delete)
1604 return -ESRCH;
1606 fa = fa_to_delete;
1607 rtmsg_fib(RTM_DELROUTE, htonl(key), fa, plen, tb->tb_id,
1608 &cfg->fc_nlinfo);
1610 l = fib_find_node(t, key);
1611 li = find_leaf_info(l, plen);
1613 list_del_rcu(&fa->fa_list);
1615 if (list_empty(fa_head)) {
1616 hlist_del_rcu(&li->hlist);
1617 free_leaf_info(li);
1620 if (hlist_empty(&l->list))
1621 trie_leaf_remove(t, key);
1623 if (fa->fa_state & FA_S_ACCESSED)
1624 rt_cache_flush(-1);
1626 fib_release_info(fa->fa_info);
1627 alias_free_mem_rcu(fa);
1628 return 0;
1631 static int trie_flush_list(struct trie *t, struct list_head *head)
1633 struct fib_alias *fa, *fa_node;
1634 int found = 0;
1636 list_for_each_entry_safe(fa, fa_node, head, fa_list) {
1637 struct fib_info *fi = fa->fa_info;
1639 if (fi && (fi->fib_flags & RTNH_F_DEAD)) {
1640 list_del_rcu(&fa->fa_list);
1641 fib_release_info(fa->fa_info);
1642 alias_free_mem_rcu(fa);
1643 found++;
1646 return found;
1649 static int trie_flush_leaf(struct trie *t, struct leaf *l)
1651 int found = 0;
1652 struct hlist_head *lih = &l->list;
1653 struct hlist_node *node, *tmp;
1654 struct leaf_info *li = NULL;
1656 hlist_for_each_entry_safe(li, node, tmp, lih, hlist) {
1657 found += trie_flush_list(t, &li->falh);
1659 if (list_empty(&li->falh)) {
1660 hlist_del_rcu(&li->hlist);
1661 free_leaf_info(li);
1664 return found;
1667 /* rcu_read_lock needs to be hold by caller from readside */
1669 static struct leaf *nextleaf(struct trie *t, struct leaf *thisleaf)
1671 struct node *c = (struct node *) thisleaf;
1672 struct tnode *p;
1673 int idx;
1674 struct node *trie = rcu_dereference(t->trie);
1676 if (c == NULL) {
1677 if (trie == NULL)
1678 return NULL;
1680 if (IS_LEAF(trie)) /* trie w. just a leaf */
1681 return (struct leaf *) trie;
1683 p = (struct tnode*) trie; /* Start */
1684 } else
1685 p = (struct tnode *) NODE_PARENT(c);
1687 while (p) {
1688 int pos, last;
1690 /* Find the next child of the parent */
1691 if (c)
1692 pos = 1 + tkey_extract_bits(c->key, p->pos, p->bits);
1693 else
1694 pos = 0;
1696 last = 1 << p->bits;
1697 for (idx = pos; idx < last ; idx++) {
1698 c = rcu_dereference(p->child[idx]);
1700 if (!c)
1701 continue;
1703 /* Decend if tnode */
1704 while (IS_TNODE(c)) {
1705 p = (struct tnode *) c;
1706 idx = 0;
1708 /* Rightmost non-NULL branch */
1709 if (p && IS_TNODE(p))
1710 while (!(c = rcu_dereference(p->child[idx]))
1711 && idx < (1<<p->bits)) idx++;
1713 /* Done with this tnode? */
1714 if (idx >= (1 << p->bits) || !c)
1715 goto up;
1717 return (struct leaf *) c;
1720 /* No more children go up one step */
1721 c = (struct node *) p;
1722 p = (struct tnode *) NODE_PARENT(p);
1724 return NULL; /* Ready. Root of trie */
1728 * Caller must hold RTNL.
1730 static int fn_trie_flush(struct fib_table *tb)
1732 struct trie *t = (struct trie *) tb->tb_data;
1733 struct leaf *ll = NULL, *l = NULL;
1734 int found = 0, h;
1736 t->revision++;
1738 for (h = 0; (l = nextleaf(t, l)) != NULL; h++) {
1739 found += trie_flush_leaf(t, l);
1741 if (ll && hlist_empty(&ll->list))
1742 trie_leaf_remove(t, ll->key);
1743 ll = l;
1746 if (ll && hlist_empty(&ll->list))
1747 trie_leaf_remove(t, ll->key);
1749 pr_debug("trie_flush found=%d\n", found);
1750 return found;
1753 static int trie_last_dflt = -1;
1755 static void
1756 fn_trie_select_default(struct fib_table *tb, const struct flowi *flp, struct fib_result *res)
1758 struct trie *t = (struct trie *) tb->tb_data;
1759 int order, last_idx;
1760 struct fib_info *fi = NULL;
1761 struct fib_info *last_resort;
1762 struct fib_alias *fa = NULL;
1763 struct list_head *fa_head;
1764 struct leaf *l;
1766 last_idx = -1;
1767 last_resort = NULL;
1768 order = -1;
1770 rcu_read_lock();
1772 l = fib_find_node(t, 0);
1773 if (!l)
1774 goto out;
1776 fa_head = get_fa_head(l, 0);
1777 if (!fa_head)
1778 goto out;
1780 if (list_empty(fa_head))
1781 goto out;
1783 list_for_each_entry_rcu(fa, fa_head, fa_list) {
1784 struct fib_info *next_fi = fa->fa_info;
1786 if (fa->fa_scope != res->scope ||
1787 fa->fa_type != RTN_UNICAST)
1788 continue;
1790 if (next_fi->fib_priority > res->fi->fib_priority)
1791 break;
1792 if (!next_fi->fib_nh[0].nh_gw ||
1793 next_fi->fib_nh[0].nh_scope != RT_SCOPE_LINK)
1794 continue;
1795 fa->fa_state |= FA_S_ACCESSED;
1797 if (fi == NULL) {
1798 if (next_fi != res->fi)
1799 break;
1800 } else if (!fib_detect_death(fi, order, &last_resort,
1801 &last_idx, &trie_last_dflt)) {
1802 if (res->fi)
1803 fib_info_put(res->fi);
1804 res->fi = fi;
1805 atomic_inc(&fi->fib_clntref);
1806 trie_last_dflt = order;
1807 goto out;
1809 fi = next_fi;
1810 order++;
1812 if (order <= 0 || fi == NULL) {
1813 trie_last_dflt = -1;
1814 goto out;
1817 if (!fib_detect_death(fi, order, &last_resort, &last_idx, &trie_last_dflt)) {
1818 if (res->fi)
1819 fib_info_put(res->fi);
1820 res->fi = fi;
1821 atomic_inc(&fi->fib_clntref);
1822 trie_last_dflt = order;
1823 goto out;
1825 if (last_idx >= 0) {
1826 if (res->fi)
1827 fib_info_put(res->fi);
1828 res->fi = last_resort;
1829 if (last_resort)
1830 atomic_inc(&last_resort->fib_clntref);
1832 trie_last_dflt = last_idx;
1833 out:;
1834 rcu_read_unlock();
1837 static int fn_trie_dump_fa(t_key key, int plen, struct list_head *fah, struct fib_table *tb,
1838 struct sk_buff *skb, struct netlink_callback *cb)
1840 int i, s_i;
1841 struct fib_alias *fa;
1843 __be32 xkey = htonl(key);
1845 s_i = cb->args[4];
1846 i = 0;
1848 /* rcu_read_lock is hold by caller */
1850 list_for_each_entry_rcu(fa, fah, fa_list) {
1851 if (i < s_i) {
1852 i++;
1853 continue;
1855 BUG_ON(!fa->fa_info);
1857 if (fib_dump_info(skb, NETLINK_CB(cb->skb).pid,
1858 cb->nlh->nlmsg_seq,
1859 RTM_NEWROUTE,
1860 tb->tb_id,
1861 fa->fa_type,
1862 fa->fa_scope,
1863 xkey,
1864 plen,
1865 fa->fa_tos,
1866 fa->fa_info, 0) < 0) {
1867 cb->args[4] = i;
1868 return -1;
1870 i++;
1872 cb->args[4] = i;
1873 return skb->len;
1876 static int fn_trie_dump_plen(struct trie *t, int plen, struct fib_table *tb, struct sk_buff *skb,
1877 struct netlink_callback *cb)
1879 int h, s_h;
1880 struct list_head *fa_head;
1881 struct leaf *l = NULL;
1883 s_h = cb->args[3];
1885 for (h = 0; (l = nextleaf(t, l)) != NULL; h++) {
1886 if (h < s_h)
1887 continue;
1888 if (h > s_h)
1889 memset(&cb->args[4], 0,
1890 sizeof(cb->args) - 4*sizeof(cb->args[0]));
1892 fa_head = get_fa_head(l, plen);
1894 if (!fa_head)
1895 continue;
1897 if (list_empty(fa_head))
1898 continue;
1900 if (fn_trie_dump_fa(l->key, plen, fa_head, tb, skb, cb)<0) {
1901 cb->args[3] = h;
1902 return -1;
1905 cb->args[3] = h;
1906 return skb->len;
1909 static int fn_trie_dump(struct fib_table *tb, struct sk_buff *skb, struct netlink_callback *cb)
1911 int m, s_m;
1912 struct trie *t = (struct trie *) tb->tb_data;
1914 s_m = cb->args[2];
1916 rcu_read_lock();
1917 for (m = 0; m <= 32; m++) {
1918 if (m < s_m)
1919 continue;
1920 if (m > s_m)
1921 memset(&cb->args[3], 0,
1922 sizeof(cb->args) - 3*sizeof(cb->args[0]));
1924 if (fn_trie_dump_plen(t, 32-m, tb, skb, cb)<0) {
1925 cb->args[2] = m;
1926 goto out;
1929 rcu_read_unlock();
1930 cb->args[2] = m;
1931 return skb->len;
1932 out:
1933 rcu_read_unlock();
1934 return -1;
1937 /* Fix more generic FIB names for init later */
1939 #ifdef CONFIG_IP_MULTIPLE_TABLES
1940 struct fib_table * fib_hash_init(u32 id)
1941 #else
1942 struct fib_table * __init fib_hash_init(u32 id)
1943 #endif
1945 struct fib_table *tb;
1946 struct trie *t;
1948 if (fn_alias_kmem == NULL)
1949 fn_alias_kmem = kmem_cache_create("ip_fib_alias",
1950 sizeof(struct fib_alias),
1951 0, SLAB_HWCACHE_ALIGN,
1952 NULL, NULL);
1954 tb = kmalloc(sizeof(struct fib_table) + sizeof(struct trie),
1955 GFP_KERNEL);
1956 if (tb == NULL)
1957 return NULL;
1959 tb->tb_id = id;
1960 tb->tb_lookup = fn_trie_lookup;
1961 tb->tb_insert = fn_trie_insert;
1962 tb->tb_delete = fn_trie_delete;
1963 tb->tb_flush = fn_trie_flush;
1964 tb->tb_select_default = fn_trie_select_default;
1965 tb->tb_dump = fn_trie_dump;
1966 memset(tb->tb_data, 0, sizeof(struct trie));
1968 t = (struct trie *) tb->tb_data;
1970 trie_init(t);
1972 if (id == RT_TABLE_LOCAL)
1973 trie_local = t;
1974 else if (id == RT_TABLE_MAIN)
1975 trie_main = t;
1977 if (id == RT_TABLE_LOCAL)
1978 printk(KERN_INFO "IPv4 FIB: Using LC-trie version %s\n", VERSION);
1980 return tb;
1983 #ifdef CONFIG_PROC_FS
1984 /* Depth first Trie walk iterator */
1985 struct fib_trie_iter {
1986 struct tnode *tnode;
1987 struct trie *trie;
1988 unsigned index;
1989 unsigned depth;
1992 static struct node *fib_trie_get_next(struct fib_trie_iter *iter)
1994 struct tnode *tn = iter->tnode;
1995 unsigned cindex = iter->index;
1996 struct tnode *p;
1998 /* A single entry routing table */
1999 if (!tn)
2000 return NULL;
2002 pr_debug("get_next iter={node=%p index=%d depth=%d}\n",
2003 iter->tnode, iter->index, iter->depth);
2004 rescan:
2005 while (cindex < (1<<tn->bits)) {
2006 struct node *n = tnode_get_child(tn, cindex);
2008 if (n) {
2009 if (IS_LEAF(n)) {
2010 iter->tnode = tn;
2011 iter->index = cindex + 1;
2012 } else {
2013 /* push down one level */
2014 iter->tnode = (struct tnode *) n;
2015 iter->index = 0;
2016 ++iter->depth;
2018 return n;
2021 ++cindex;
2024 /* Current node exhausted, pop back up */
2025 p = NODE_PARENT(tn);
2026 if (p) {
2027 cindex = tkey_extract_bits(tn->key, p->pos, p->bits)+1;
2028 tn = p;
2029 --iter->depth;
2030 goto rescan;
2033 /* got root? */
2034 return NULL;
2037 static struct node *fib_trie_get_first(struct fib_trie_iter *iter,
2038 struct trie *t)
2040 struct node *n ;
2042 if(!t)
2043 return NULL;
2045 n = rcu_dereference(t->trie);
2047 if(!iter)
2048 return NULL;
2050 if (n) {
2051 if (IS_TNODE(n)) {
2052 iter->tnode = (struct tnode *) n;
2053 iter->trie = t;
2054 iter->index = 0;
2055 iter->depth = 1;
2056 } else {
2057 iter->tnode = NULL;
2058 iter->trie = t;
2059 iter->index = 0;
2060 iter->depth = 0;
2062 return n;
2064 return NULL;
2067 static void trie_collect_stats(struct trie *t, struct trie_stat *s)
2069 struct node *n;
2070 struct fib_trie_iter iter;
2072 memset(s, 0, sizeof(*s));
2074 rcu_read_lock();
2075 for (n = fib_trie_get_first(&iter, t); n;
2076 n = fib_trie_get_next(&iter)) {
2077 if (IS_LEAF(n)) {
2078 s->leaves++;
2079 s->totdepth += iter.depth;
2080 if (iter.depth > s->maxdepth)
2081 s->maxdepth = iter.depth;
2082 } else {
2083 const struct tnode *tn = (const struct tnode *) n;
2084 int i;
2086 s->tnodes++;
2087 if(tn->bits < MAX_STAT_DEPTH)
2088 s->nodesizes[tn->bits]++;
2090 for (i = 0; i < (1<<tn->bits); i++)
2091 if (!tn->child[i])
2092 s->nullpointers++;
2095 rcu_read_unlock();
2099 * This outputs /proc/net/fib_triestats
2101 static void trie_show_stats(struct seq_file *seq, struct trie_stat *stat)
2103 unsigned i, max, pointers, bytes, avdepth;
2105 if (stat->leaves)
2106 avdepth = stat->totdepth*100 / stat->leaves;
2107 else
2108 avdepth = 0;
2110 seq_printf(seq, "\tAver depth: %d.%02d\n", avdepth / 100, avdepth % 100 );
2111 seq_printf(seq, "\tMax depth: %u\n", stat->maxdepth);
2113 seq_printf(seq, "\tLeaves: %u\n", stat->leaves);
2115 bytes = sizeof(struct leaf) * stat->leaves;
2116 seq_printf(seq, "\tInternal nodes: %d\n\t", stat->tnodes);
2117 bytes += sizeof(struct tnode) * stat->tnodes;
2119 max = MAX_STAT_DEPTH;
2120 while (max > 0 && stat->nodesizes[max-1] == 0)
2121 max--;
2123 pointers = 0;
2124 for (i = 1; i <= max; i++)
2125 if (stat->nodesizes[i] != 0) {
2126 seq_printf(seq, " %d: %d", i, stat->nodesizes[i]);
2127 pointers += (1<<i) * stat->nodesizes[i];
2129 seq_putc(seq, '\n');
2130 seq_printf(seq, "\tPointers: %d\n", pointers);
2132 bytes += sizeof(struct node *) * pointers;
2133 seq_printf(seq, "Null ptrs: %d\n", stat->nullpointers);
2134 seq_printf(seq, "Total size: %d kB\n", (bytes + 1023) / 1024);
2136 #ifdef CONFIG_IP_FIB_TRIE_STATS
2137 seq_printf(seq, "Counters:\n---------\n");
2138 seq_printf(seq,"gets = %d\n", t->stats.gets);
2139 seq_printf(seq,"backtracks = %d\n", t->stats.backtrack);
2140 seq_printf(seq,"semantic match passed = %d\n", t->stats.semantic_match_passed);
2141 seq_printf(seq,"semantic match miss = %d\n", t->stats.semantic_match_miss);
2142 seq_printf(seq,"null node hit= %d\n", t->stats.null_node_hit);
2143 seq_printf(seq,"skipped node resize = %d\n", t->stats.resize_node_skipped);
2144 #ifdef CLEAR_STATS
2145 memset(&(t->stats), 0, sizeof(t->stats));
2146 #endif
2147 #endif /* CONFIG_IP_FIB_TRIE_STATS */
2150 static int fib_triestat_seq_show(struct seq_file *seq, void *v)
2152 struct trie_stat *stat;
2154 stat = kmalloc(sizeof(*stat), GFP_KERNEL);
2155 if (!stat)
2156 return -ENOMEM;
2158 seq_printf(seq, "Basic info: size of leaf: %Zd bytes, size of tnode: %Zd bytes.\n",
2159 sizeof(struct leaf), sizeof(struct tnode));
2161 if (trie_local) {
2162 seq_printf(seq, "Local:\n");
2163 trie_collect_stats(trie_local, stat);
2164 trie_show_stats(seq, stat);
2167 if (trie_main) {
2168 seq_printf(seq, "Main:\n");
2169 trie_collect_stats(trie_main, stat);
2170 trie_show_stats(seq, stat);
2172 kfree(stat);
2174 return 0;
2177 static int fib_triestat_seq_open(struct inode *inode, struct file *file)
2179 return single_open(file, fib_triestat_seq_show, NULL);
2182 static const struct file_operations fib_triestat_fops = {
2183 .owner = THIS_MODULE,
2184 .open = fib_triestat_seq_open,
2185 .read = seq_read,
2186 .llseek = seq_lseek,
2187 .release = single_release,
2190 static struct node *fib_trie_get_idx(struct fib_trie_iter *iter,
2191 loff_t pos)
2193 loff_t idx = 0;
2194 struct node *n;
2196 for (n = fib_trie_get_first(iter, trie_local);
2197 n; ++idx, n = fib_trie_get_next(iter)) {
2198 if (pos == idx)
2199 return n;
2202 for (n = fib_trie_get_first(iter, trie_main);
2203 n; ++idx, n = fib_trie_get_next(iter)) {
2204 if (pos == idx)
2205 return n;
2207 return NULL;
2210 static void *fib_trie_seq_start(struct seq_file *seq, loff_t *pos)
2212 rcu_read_lock();
2213 if (*pos == 0)
2214 return SEQ_START_TOKEN;
2215 return fib_trie_get_idx(seq->private, *pos - 1);
2218 static void *fib_trie_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2220 struct fib_trie_iter *iter = seq->private;
2221 void *l = v;
2223 ++*pos;
2224 if (v == SEQ_START_TOKEN)
2225 return fib_trie_get_idx(iter, 0);
2227 v = fib_trie_get_next(iter);
2228 BUG_ON(v == l);
2229 if (v)
2230 return v;
2232 /* continue scan in next trie */
2233 if (iter->trie == trie_local)
2234 return fib_trie_get_first(iter, trie_main);
2236 return NULL;
2239 static void fib_trie_seq_stop(struct seq_file *seq, void *v)
2241 rcu_read_unlock();
2244 static void seq_indent(struct seq_file *seq, int n)
2246 while (n-- > 0) seq_puts(seq, " ");
2249 static inline const char *rtn_scope(enum rt_scope_t s)
2251 static char buf[32];
2253 switch(s) {
2254 case RT_SCOPE_UNIVERSE: return "universe";
2255 case RT_SCOPE_SITE: return "site";
2256 case RT_SCOPE_LINK: return "link";
2257 case RT_SCOPE_HOST: return "host";
2258 case RT_SCOPE_NOWHERE: return "nowhere";
2259 default:
2260 snprintf(buf, sizeof(buf), "scope=%d", s);
2261 return buf;
2265 static const char *rtn_type_names[__RTN_MAX] = {
2266 [RTN_UNSPEC] = "UNSPEC",
2267 [RTN_UNICAST] = "UNICAST",
2268 [RTN_LOCAL] = "LOCAL",
2269 [RTN_BROADCAST] = "BROADCAST",
2270 [RTN_ANYCAST] = "ANYCAST",
2271 [RTN_MULTICAST] = "MULTICAST",
2272 [RTN_BLACKHOLE] = "BLACKHOLE",
2273 [RTN_UNREACHABLE] = "UNREACHABLE",
2274 [RTN_PROHIBIT] = "PROHIBIT",
2275 [RTN_THROW] = "THROW",
2276 [RTN_NAT] = "NAT",
2277 [RTN_XRESOLVE] = "XRESOLVE",
2280 static inline const char *rtn_type(unsigned t)
2282 static char buf[32];
2284 if (t < __RTN_MAX && rtn_type_names[t])
2285 return rtn_type_names[t];
2286 snprintf(buf, sizeof(buf), "type %d", t);
2287 return buf;
2290 /* Pretty print the trie */
2291 static int fib_trie_seq_show(struct seq_file *seq, void *v)
2293 const struct fib_trie_iter *iter = seq->private;
2294 struct node *n = v;
2296 if (v == SEQ_START_TOKEN)
2297 return 0;
2299 if (!NODE_PARENT(n)) {
2300 if (iter->trie == trie_local)
2301 seq_puts(seq, "<local>:\n");
2302 else
2303 seq_puts(seq, "<main>:\n");
2306 if (IS_TNODE(n)) {
2307 struct tnode *tn = (struct tnode *) n;
2308 __be32 prf = htonl(MASK_PFX(tn->key, tn->pos));
2310 seq_indent(seq, iter->depth-1);
2311 seq_printf(seq, " +-- %d.%d.%d.%d/%d %d %d %d\n",
2312 NIPQUAD(prf), tn->pos, tn->bits, tn->full_children,
2313 tn->empty_children);
2315 } else {
2316 struct leaf *l = (struct leaf *) n;
2317 int i;
2318 __be32 val = htonl(l->key);
2320 seq_indent(seq, iter->depth);
2321 seq_printf(seq, " |-- %d.%d.%d.%d\n", NIPQUAD(val));
2322 for (i = 32; i >= 0; i--) {
2323 struct leaf_info *li = find_leaf_info(l, i);
2324 if (li) {
2325 struct fib_alias *fa;
2326 list_for_each_entry_rcu(fa, &li->falh, fa_list) {
2327 seq_indent(seq, iter->depth+1);
2328 seq_printf(seq, " /%d %s %s", i,
2329 rtn_scope(fa->fa_scope),
2330 rtn_type(fa->fa_type));
2331 if (fa->fa_tos)
2332 seq_printf(seq, "tos =%d\n",
2333 fa->fa_tos);
2334 seq_putc(seq, '\n');
2340 return 0;
2343 static struct seq_operations fib_trie_seq_ops = {
2344 .start = fib_trie_seq_start,
2345 .next = fib_trie_seq_next,
2346 .stop = fib_trie_seq_stop,
2347 .show = fib_trie_seq_show,
2350 static int fib_trie_seq_open(struct inode *inode, struct file *file)
2352 struct seq_file *seq;
2353 int rc = -ENOMEM;
2354 struct fib_trie_iter *s = kmalloc(sizeof(*s), GFP_KERNEL);
2356 if (!s)
2357 goto out;
2359 rc = seq_open(file, &fib_trie_seq_ops);
2360 if (rc)
2361 goto out_kfree;
2363 seq = file->private_data;
2364 seq->private = s;
2365 memset(s, 0, sizeof(*s));
2366 out:
2367 return rc;
2368 out_kfree:
2369 kfree(s);
2370 goto out;
2373 static const struct file_operations fib_trie_fops = {
2374 .owner = THIS_MODULE,
2375 .open = fib_trie_seq_open,
2376 .read = seq_read,
2377 .llseek = seq_lseek,
2378 .release = seq_release_private,
2381 static unsigned fib_flag_trans(int type, __be32 mask, const struct fib_info *fi)
2383 static unsigned type2flags[RTN_MAX + 1] = {
2384 [7] = RTF_REJECT, [8] = RTF_REJECT,
2386 unsigned flags = type2flags[type];
2388 if (fi && fi->fib_nh->nh_gw)
2389 flags |= RTF_GATEWAY;
2390 if (mask == htonl(0xFFFFFFFF))
2391 flags |= RTF_HOST;
2392 flags |= RTF_UP;
2393 return flags;
2397 * This outputs /proc/net/route.
2398 * The format of the file is not supposed to be changed
2399 * and needs to be same as fib_hash output to avoid breaking
2400 * legacy utilities
2402 static int fib_route_seq_show(struct seq_file *seq, void *v)
2404 const struct fib_trie_iter *iter = seq->private;
2405 struct leaf *l = v;
2406 int i;
2407 char bf[128];
2409 if (v == SEQ_START_TOKEN) {
2410 seq_printf(seq, "%-127s\n", "Iface\tDestination\tGateway "
2411 "\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU"
2412 "\tWindow\tIRTT");
2413 return 0;
2416 if (iter->trie == trie_local)
2417 return 0;
2418 if (IS_TNODE(l))
2419 return 0;
2421 for (i=32; i>=0; i--) {
2422 struct leaf_info *li = find_leaf_info(l, i);
2423 struct fib_alias *fa;
2424 __be32 mask, prefix;
2426 if (!li)
2427 continue;
2429 mask = inet_make_mask(li->plen);
2430 prefix = htonl(l->key);
2432 list_for_each_entry_rcu(fa, &li->falh, fa_list) {
2433 const struct fib_info *fi = fa->fa_info;
2434 unsigned flags = fib_flag_trans(fa->fa_type, mask, fi);
2436 if (fa->fa_type == RTN_BROADCAST
2437 || fa->fa_type == RTN_MULTICAST)
2438 continue;
2440 if (fi)
2441 snprintf(bf, sizeof(bf),
2442 "%s\t%08X\t%08X\t%04X\t%d\t%u\t%d\t%08X\t%d\t%u\t%u",
2443 fi->fib_dev ? fi->fib_dev->name : "*",
2444 prefix,
2445 fi->fib_nh->nh_gw, flags, 0, 0,
2446 fi->fib_priority,
2447 mask,
2448 (fi->fib_advmss ? fi->fib_advmss + 40 : 0),
2449 fi->fib_window,
2450 fi->fib_rtt >> 3);
2451 else
2452 snprintf(bf, sizeof(bf),
2453 "*\t%08X\t%08X\t%04X\t%d\t%u\t%d\t%08X\t%d\t%u\t%u",
2454 prefix, 0, flags, 0, 0, 0,
2455 mask, 0, 0, 0);
2457 seq_printf(seq, "%-127s\n", bf);
2461 return 0;
2464 static struct seq_operations fib_route_seq_ops = {
2465 .start = fib_trie_seq_start,
2466 .next = fib_trie_seq_next,
2467 .stop = fib_trie_seq_stop,
2468 .show = fib_route_seq_show,
2471 static int fib_route_seq_open(struct inode *inode, struct file *file)
2473 struct seq_file *seq;
2474 int rc = -ENOMEM;
2475 struct fib_trie_iter *s = kmalloc(sizeof(*s), GFP_KERNEL);
2477 if (!s)
2478 goto out;
2480 rc = seq_open(file, &fib_route_seq_ops);
2481 if (rc)
2482 goto out_kfree;
2484 seq = file->private_data;
2485 seq->private = s;
2486 memset(s, 0, sizeof(*s));
2487 out:
2488 return rc;
2489 out_kfree:
2490 kfree(s);
2491 goto out;
2494 static const struct file_operations fib_route_fops = {
2495 .owner = THIS_MODULE,
2496 .open = fib_route_seq_open,
2497 .read = seq_read,
2498 .llseek = seq_lseek,
2499 .release = seq_release_private,
2502 int __init fib_proc_init(void)
2504 if (!proc_net_fops_create("fib_trie", S_IRUGO, &fib_trie_fops))
2505 goto out1;
2507 if (!proc_net_fops_create("fib_triestat", S_IRUGO, &fib_triestat_fops))
2508 goto out2;
2510 if (!proc_net_fops_create("route", S_IRUGO, &fib_route_fops))
2511 goto out3;
2513 return 0;
2515 out3:
2516 proc_net_remove("fib_triestat");
2517 out2:
2518 proc_net_remove("fib_trie");
2519 out1:
2520 return -ENOMEM;
2523 void __init fib_proc_exit(void)
2525 proc_net_remove("fib_trie");
2526 proc_net_remove("fib_triestat");
2527 proc_net_remove("route");
2530 #endif /* CONFIG_PROC_FS */