2 * TCP CUBIC: Binary Increase Congestion control for TCP v2.0
4 * This is from the implementation of CUBIC TCP in
5 * Injong Rhee, Lisong Xu.
6 * "CUBIC: A New TCP-Friendly High-Speed TCP Variant
9 * http://www.csc.ncsu.edu/faculty/rhee/export/bitcp/cubic-paper.pdf
11 * Unless CUBIC is enabled and congestion window is large
12 * this behaves the same as the original Reno.
16 #include <linux/module.h>
18 #include <asm/div64.h>
20 #define BICTCP_BETA_SCALE 1024 /* Scale factor beta calculation
21 * max_cwnd = snd_cwnd * beta
25 * go to point (max+min)/N
27 #define BICTCP_HZ 10 /* BIC HZ 2^10 = 1024 */
29 static int fast_convergence __read_mostly
= 1;
30 static int max_increment __read_mostly
= 16;
31 static int beta __read_mostly
= 819; /* = 819/1024 (BICTCP_BETA_SCALE) */
32 static int initial_ssthresh __read_mostly
= 100;
33 static int bic_scale __read_mostly
= 41;
34 static int tcp_friendliness __read_mostly
= 1;
36 static u32 cube_rtt_scale __read_mostly
;
37 static u32 beta_scale __read_mostly
;
38 static u64 cube_factor __read_mostly
;
40 /* Note parameters that are used for precomputing scale factors are read-only */
41 module_param(fast_convergence
, int, 0644);
42 MODULE_PARM_DESC(fast_convergence
, "turn on/off fast convergence");
43 module_param(max_increment
, int, 0644);
44 MODULE_PARM_DESC(max_increment
, "Limit on increment allowed during binary search");
45 module_param(beta
, int, 0444);
46 MODULE_PARM_DESC(beta
, "beta for multiplicative increase");
47 module_param(initial_ssthresh
, int, 0644);
48 MODULE_PARM_DESC(initial_ssthresh
, "initial value of slow start threshold");
49 module_param(bic_scale
, int, 0444);
50 MODULE_PARM_DESC(bic_scale
, "scale (scaled by 1024) value for bic function (bic_scale/1024)");
51 module_param(tcp_friendliness
, int, 0644);
52 MODULE_PARM_DESC(tcp_friendliness
, "turn on/off tcp friendliness");
54 #include <asm/div64.h>
56 /* BIC TCP Parameters */
58 u32 cnt
; /* increase cwnd by 1 after ACKs */
59 u32 last_max_cwnd
; /* last maximum snd_cwnd */
60 u32 loss_cwnd
; /* congestion window at last loss */
61 u32 last_cwnd
; /* the last snd_cwnd */
62 u32 last_time
; /* time when updated last_cwnd */
63 u32 bic_origin_point
;/* origin point of bic function */
64 u32 bic_K
; /* time to origin point from the beginning of the current epoch */
65 u32 delay_min
; /* min delay */
66 u32 epoch_start
; /* beginning of an epoch */
67 u32 ack_cnt
; /* number of acks */
68 u32 tcp_cwnd
; /* estimated tcp cwnd */
69 #define ACK_RATIO_SHIFT 4
70 u32 delayed_ack
; /* estimate the ratio of Packets/ACKs << 4 */
73 static inline void bictcp_reset(struct bictcp
*ca
)
76 ca
->last_max_cwnd
= 0;
80 ca
->bic_origin_point
= 0;
84 ca
->delayed_ack
= 2 << ACK_RATIO_SHIFT
;
89 static void bictcp_init(struct sock
*sk
)
91 bictcp_reset(inet_csk_ca(sk
));
93 tcp_sk(sk
)->snd_ssthresh
= initial_ssthresh
;
96 /* 64bit divisor, dividend and result. dynamic precision */
97 static inline u_int64_t
div64_64(u_int64_t dividend
, u_int64_t divisor
)
99 u_int32_t d
= divisor
;
101 if (divisor
> 0xffffffffULL
) {
102 unsigned int shift
= fls(divisor
>> 32);
104 d
= divisor
>> shift
;
108 /* avoid 64 bit division if possible */
112 dividend
= (uint32_t) dividend
/ d
;
118 * calculate the cubic root of x using Newton-Raphson
120 static u32
cubic_root(u64 a
)
124 /* Initial estimate is based on:
125 * cbrt(x) = exp(log(x) / 3)
127 x
= 1u << (fls64(a
)/3);
130 * Iteration based on:
132 * x = ( 2 * x + a / x ) / 3
137 x
= (2 * x
+ (uint32_t) div64_64(a
, x
*x
)) / 3;
138 } while (abs(x1
- x
) > 1);
144 * Compute congestion window to use.
146 static inline void bictcp_update(struct bictcp
*ca
, u32 cwnd
)
149 u32 delta
, t
, bic_target
, min_cnt
, max_cnt
;
151 ca
->ack_cnt
++; /* count the number of ACKs */
153 if (ca
->last_cwnd
== cwnd
&&
154 (s32
)(tcp_time_stamp
- ca
->last_time
) <= HZ
/ 32)
157 ca
->last_cwnd
= cwnd
;
158 ca
->last_time
= tcp_time_stamp
;
160 if (ca
->epoch_start
== 0) {
161 ca
->epoch_start
= tcp_time_stamp
; /* record the beginning of an epoch */
162 ca
->ack_cnt
= 1; /* start counting */
163 ca
->tcp_cwnd
= cwnd
; /* syn with cubic */
165 if (ca
->last_max_cwnd
<= cwnd
) {
167 ca
->bic_origin_point
= cwnd
;
169 /* Compute new K based on
170 * (wmax-cwnd) * (srtt>>3 / HZ) / c * 2^(3*bictcp_HZ)
172 ca
->bic_K
= cubic_root(cube_factor
173 * (ca
->last_max_cwnd
- cwnd
));
174 ca
->bic_origin_point
= ca
->last_max_cwnd
;
178 /* cubic function - calc*/
179 /* calculate c * time^3 / rtt,
180 * while considering overflow in calculation of time^3
181 * (so time^3 is done by using 64 bit)
182 * and without the support of division of 64bit numbers
183 * (so all divisions are done by using 32 bit)
184 * also NOTE the unit of those veriables
185 * time = (t - K) / 2^bictcp_HZ
186 * c = bic_scale >> 10
187 * rtt = (srtt >> 3) / HZ
188 * !!! The following code does not have overflow problems,
189 * if the cwnd < 1 million packets !!!
192 /* change the unit from HZ to bictcp_HZ */
193 t
= ((tcp_time_stamp
+ (ca
->delay_min
>>3) - ca
->epoch_start
)
196 if (t
< ca
->bic_K
) /* t - K */
197 offs
= ca
->bic_K
- t
;
199 offs
= t
- ca
->bic_K
;
201 /* c/rtt * (t-K)^3 */
202 delta
= (cube_rtt_scale
* offs
* offs
* offs
) >> (10+3*BICTCP_HZ
);
203 if (t
< ca
->bic_K
) /* below origin*/
204 bic_target
= ca
->bic_origin_point
- delta
;
205 else /* above origin*/
206 bic_target
= ca
->bic_origin_point
+ delta
;
208 /* cubic function - calc bictcp_cnt*/
209 if (bic_target
> cwnd
) {
210 ca
->cnt
= cwnd
/ (bic_target
- cwnd
);
212 ca
->cnt
= 100 * cwnd
; /* very small increment*/
215 if (ca
->delay_min
> 0) {
216 /* max increment = Smax * rtt / 0.1 */
217 min_cnt
= (cwnd
* HZ
* 8)/(10 * max_increment
* ca
->delay_min
);
218 if (ca
->cnt
< min_cnt
)
222 /* slow start and low utilization */
223 if (ca
->loss_cwnd
== 0) /* could be aggressive in slow start */
227 if (tcp_friendliness
) {
228 u32 scale
= beta_scale
;
229 delta
= (cwnd
* scale
) >> 3;
230 while (ca
->ack_cnt
> delta
) { /* update tcp cwnd */
231 ca
->ack_cnt
-= delta
;
235 if (ca
->tcp_cwnd
> cwnd
){ /* if bic is slower than tcp */
236 delta
= ca
->tcp_cwnd
- cwnd
;
237 max_cnt
= cwnd
/ delta
;
238 if (ca
->cnt
> max_cnt
)
243 ca
->cnt
= (ca
->cnt
<< ACK_RATIO_SHIFT
) / ca
->delayed_ack
;
244 if (ca
->cnt
== 0) /* cannot be zero */
249 /* Keep track of minimum rtt */
250 static inline void measure_delay(struct sock
*sk
)
252 const struct tcp_sock
*tp
= tcp_sk(sk
);
253 struct bictcp
*ca
= inet_csk_ca(sk
);
257 if (!(tp
->rx_opt
.saw_tstamp
&& tp
->rx_opt
.rcv_tsecr
) ||
258 /* Discard delay samples right after fast recovery */
259 (s32
)(tcp_time_stamp
- ca
->epoch_start
) < HZ
)
262 delay
= (tcp_time_stamp
- tp
->rx_opt
.rcv_tsecr
)<<3;
266 /* first time call or link delay decreases */
267 if (ca
->delay_min
== 0 || ca
->delay_min
> delay
)
268 ca
->delay_min
= delay
;
271 static void bictcp_cong_avoid(struct sock
*sk
, u32 ack
,
272 u32 seq_rtt
, u32 in_flight
, int data_acked
)
274 struct tcp_sock
*tp
= tcp_sk(sk
);
275 struct bictcp
*ca
= inet_csk_ca(sk
);
280 if (!tcp_is_cwnd_limited(sk
, in_flight
))
283 if (tp
->snd_cwnd
<= tp
->snd_ssthresh
)
286 bictcp_update(ca
, tp
->snd_cwnd
);
288 /* In dangerous area, increase slowly.
289 * In theory this is tp->snd_cwnd += 1 / tp->snd_cwnd
291 if (tp
->snd_cwnd_cnt
>= ca
->cnt
) {
292 if (tp
->snd_cwnd
< tp
->snd_cwnd_clamp
)
294 tp
->snd_cwnd_cnt
= 0;
301 static u32
bictcp_recalc_ssthresh(struct sock
*sk
)
303 const struct tcp_sock
*tp
= tcp_sk(sk
);
304 struct bictcp
*ca
= inet_csk_ca(sk
);
306 ca
->epoch_start
= 0; /* end of epoch */
308 /* Wmax and fast convergence */
309 if (tp
->snd_cwnd
< ca
->last_max_cwnd
&& fast_convergence
)
310 ca
->last_max_cwnd
= (tp
->snd_cwnd
* (BICTCP_BETA_SCALE
+ beta
))
311 / (2 * BICTCP_BETA_SCALE
);
313 ca
->last_max_cwnd
= tp
->snd_cwnd
;
315 ca
->loss_cwnd
= tp
->snd_cwnd
;
317 return max((tp
->snd_cwnd
* beta
) / BICTCP_BETA_SCALE
, 2U);
320 static u32
bictcp_undo_cwnd(struct sock
*sk
)
322 struct bictcp
*ca
= inet_csk_ca(sk
);
324 return max(tcp_sk(sk
)->snd_cwnd
, ca
->last_max_cwnd
);
327 static void bictcp_state(struct sock
*sk
, u8 new_state
)
329 if (new_state
== TCP_CA_Loss
)
330 bictcp_reset(inet_csk_ca(sk
));
333 /* Track delayed acknowledgment ratio using sliding window
334 * ratio = (15*ratio + sample) / 16
336 static void bictcp_acked(struct sock
*sk
, u32 cnt
)
338 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
340 if (cnt
> 0 && icsk
->icsk_ca_state
== TCP_CA_Open
) {
341 struct bictcp
*ca
= inet_csk_ca(sk
);
342 cnt
-= ca
->delayed_ack
>> ACK_RATIO_SHIFT
;
343 ca
->delayed_ack
+= cnt
;
348 static struct tcp_congestion_ops cubictcp
= {
350 .ssthresh
= bictcp_recalc_ssthresh
,
351 .cong_avoid
= bictcp_cong_avoid
,
352 .set_state
= bictcp_state
,
353 .undo_cwnd
= bictcp_undo_cwnd
,
354 .pkts_acked
= bictcp_acked
,
355 .owner
= THIS_MODULE
,
359 static int __init
cubictcp_register(void)
361 BUILD_BUG_ON(sizeof(struct bictcp
) > ICSK_CA_PRIV_SIZE
);
363 /* Precompute a bunch of the scaling factors that are used per-packet
364 * based on SRTT of 100ms
367 beta_scale
= 8*(BICTCP_BETA_SCALE
+beta
)/ 3 / (BICTCP_BETA_SCALE
- beta
);
369 cube_rtt_scale
= (bic_scale
* 10); /* 1024*c/rtt */
371 /* calculate the "K" for (wmax-cwnd) = c/rtt * K^3
372 * so K = cubic_root( (wmax-cwnd)*rtt/c )
373 * the unit of K is bictcp_HZ=2^10, not HZ
375 * c = bic_scale >> 10
378 * the following code has been designed and tested for
379 * cwnd < 1 million packets
381 * HZ < 1,000,00 (corresponding to 10 nano-second)
384 /* 1/c * 2^2*bictcp_HZ * srtt */
385 cube_factor
= 1ull << (10+3*BICTCP_HZ
); /* 2^40 */
387 /* divide by bic_scale and by constant Srtt (100ms) */
388 do_div(cube_factor
, bic_scale
* 10);
390 return tcp_register_congestion_control(&cubictcp
);
393 static void __exit
cubictcp_unregister(void)
395 tcp_unregister_congestion_control(&cubictcp
);
398 module_init(cubictcp_register
);
399 module_exit(cubictcp_unregister
);
401 MODULE_AUTHOR("Sangtae Ha, Stephen Hemminger");
402 MODULE_LICENSE("GPL");
403 MODULE_DESCRIPTION("CUBIC TCP");
404 MODULE_VERSION("2.0");