2 * Linux INET6 implementation
3 * Forwarding Information Database
6 * Pedro Roque <roque@di.fc.ul.pt>
8 * $Id: ip6_fib.c,v 1.25 2001/10/31 21:55:55 davem Exp $
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public License
12 * as published by the Free Software Foundation; either version
13 * 2 of the License, or (at your option) any later version.
18 * Yuji SEKIYA @USAGI: Support default route on router node;
19 * remove ip6_null_entry from the top of
21 * Ville Nuorvala: Fixed routing subtrees.
23 #include <linux/errno.h>
24 #include <linux/types.h>
25 #include <linux/net.h>
26 #include <linux/route.h>
27 #include <linux/netdevice.h>
28 #include <linux/in6.h>
29 #include <linux/init.h>
30 #include <linux/list.h>
33 #include <linux/proc_fs.h>
37 #include <net/ndisc.h>
38 #include <net/addrconf.h>
40 #include <net/ip6_fib.h>
41 #include <net/ip6_route.h>
46 #define RT6_TRACE(x...) printk(KERN_DEBUG x)
48 #define RT6_TRACE(x...) do { ; } while (0)
51 struct rt6_statistics rt6_stats
;
53 static struct kmem_cache
* fib6_node_kmem __read_mostly
;
57 #ifdef CONFIG_IPV6_SUBTREES
68 struct fib6_walker_t w
;
69 int (*func
)(struct rt6_info
*, void *arg
);
73 static DEFINE_RWLOCK(fib6_walker_lock
);
75 #ifdef CONFIG_IPV6_SUBTREES
76 #define FWS_INIT FWS_S
78 #define FWS_INIT FWS_L
81 static void fib6_prune_clones(struct fib6_node
*fn
, struct rt6_info
*rt
);
82 static struct rt6_info
* fib6_find_prefix(struct fib6_node
*fn
);
83 static struct fib6_node
* fib6_repair_tree(struct fib6_node
*fn
);
84 static int fib6_walk(struct fib6_walker_t
*w
);
85 static int fib6_walk_continue(struct fib6_walker_t
*w
);
88 * A routing update causes an increase of the serial number on the
89 * affected subtree. This allows for cached routes to be asynchronously
90 * tested when modifications are made to the destination cache as a
91 * result of redirects, path MTU changes, etc.
94 static __u32 rt_sernum
;
96 static DEFINE_TIMER(ip6_fib_timer
, fib6_run_gc
, 0, 0);
98 static struct fib6_walker_t fib6_walker_list
= {
99 .prev
= &fib6_walker_list
,
100 .next
= &fib6_walker_list
,
103 #define FOR_WALKERS(w) for ((w)=fib6_walker_list.next; (w) != &fib6_walker_list; (w)=(w)->next)
105 static inline void fib6_walker_link(struct fib6_walker_t
*w
)
107 write_lock_bh(&fib6_walker_lock
);
108 w
->next
= fib6_walker_list
.next
;
109 w
->prev
= &fib6_walker_list
;
112 write_unlock_bh(&fib6_walker_lock
);
115 static inline void fib6_walker_unlink(struct fib6_walker_t
*w
)
117 write_lock_bh(&fib6_walker_lock
);
118 w
->next
->prev
= w
->prev
;
119 w
->prev
->next
= w
->next
;
120 w
->prev
= w
->next
= w
;
121 write_unlock_bh(&fib6_walker_lock
);
123 static __inline__ u32
fib6_new_sernum(void)
132 * Auxiliary address test functions for the radix tree.
134 * These assume a 32bit processor (although it will work on
142 static __inline__ __be32
addr_bit_set(void *token
, int fn_bit
)
144 __be32
*addr
= token
;
146 return htonl(1 << ((~fn_bit
)&0x1F)) & addr
[fn_bit
>>5];
149 static __inline__
struct fib6_node
* node_alloc(void)
151 struct fib6_node
*fn
;
153 fn
= kmem_cache_zalloc(fib6_node_kmem
, GFP_ATOMIC
);
158 static __inline__
void node_free(struct fib6_node
* fn
)
160 kmem_cache_free(fib6_node_kmem
, fn
);
163 static __inline__
void rt6_release(struct rt6_info
*rt
)
165 if (atomic_dec_and_test(&rt
->rt6i_ref
))
166 dst_free(&rt
->u
.dst
);
169 static struct fib6_table fib6_main_tbl
= {
170 .tb6_id
= RT6_TABLE_MAIN
,
172 .leaf
= &ip6_null_entry
,
173 .fn_flags
= RTN_ROOT
| RTN_TL_ROOT
| RTN_RTINFO
,
177 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
178 #define FIB_TABLE_HASHSZ 256
180 #define FIB_TABLE_HASHSZ 1
182 static struct hlist_head fib_table_hash
[FIB_TABLE_HASHSZ
];
184 static void fib6_link_table(struct fib6_table
*tb
)
189 * Initialize table lock at a single place to give lockdep a key,
190 * tables aren't visible prior to being linked to the list.
192 rwlock_init(&tb
->tb6_lock
);
194 h
= tb
->tb6_id
& (FIB_TABLE_HASHSZ
- 1);
197 * No protection necessary, this is the only list mutatation
198 * operation, tables never disappear once they exist.
200 hlist_add_head_rcu(&tb
->tb6_hlist
, &fib_table_hash
[h
]);
203 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
204 static struct fib6_table fib6_local_tbl
= {
205 .tb6_id
= RT6_TABLE_LOCAL
,
207 .leaf
= &ip6_null_entry
,
208 .fn_flags
= RTN_ROOT
| RTN_TL_ROOT
| RTN_RTINFO
,
212 static struct fib6_table
*fib6_alloc_table(u32 id
)
214 struct fib6_table
*table
;
216 table
= kzalloc(sizeof(*table
), GFP_ATOMIC
);
219 table
->tb6_root
.leaf
= &ip6_null_entry
;
220 table
->tb6_root
.fn_flags
= RTN_ROOT
| RTN_TL_ROOT
| RTN_RTINFO
;
226 struct fib6_table
*fib6_new_table(u32 id
)
228 struct fib6_table
*tb
;
232 tb
= fib6_get_table(id
);
236 tb
= fib6_alloc_table(id
);
243 struct fib6_table
*fib6_get_table(u32 id
)
245 struct fib6_table
*tb
;
246 struct hlist_node
*node
;
251 h
= id
& (FIB_TABLE_HASHSZ
- 1);
253 hlist_for_each_entry_rcu(tb
, node
, &fib_table_hash
[h
], tb6_hlist
) {
254 if (tb
->tb6_id
== id
) {
264 static void __init
fib6_tables_init(void)
266 fib6_link_table(&fib6_main_tbl
);
267 fib6_link_table(&fib6_local_tbl
);
272 struct fib6_table
*fib6_new_table(u32 id
)
274 return fib6_get_table(id
);
277 struct fib6_table
*fib6_get_table(u32 id
)
279 return &fib6_main_tbl
;
282 struct dst_entry
*fib6_rule_lookup(struct flowi
*fl
, int flags
,
285 return (struct dst_entry
*) lookup(&fib6_main_tbl
, fl
, flags
);
288 static void __init
fib6_tables_init(void)
290 fib6_link_table(&fib6_main_tbl
);
295 static int fib6_dump_node(struct fib6_walker_t
*w
)
300 for (rt
= w
->leaf
; rt
; rt
= rt
->u
.dst
.rt6_next
) {
301 res
= rt6_dump_route(rt
, w
->args
);
303 /* Frame is full, suspend walking */
313 static void fib6_dump_end(struct netlink_callback
*cb
)
315 struct fib6_walker_t
*w
= (void*)cb
->args
[2];
321 cb
->done
= (void*)cb
->args
[3];
325 static int fib6_dump_done(struct netlink_callback
*cb
)
328 return cb
->done
? cb
->done(cb
) : 0;
331 static int fib6_dump_table(struct fib6_table
*table
, struct sk_buff
*skb
,
332 struct netlink_callback
*cb
)
334 struct fib6_walker_t
*w
;
337 w
= (void *)cb
->args
[2];
338 w
->root
= &table
->tb6_root
;
340 if (cb
->args
[4] == 0) {
341 read_lock_bh(&table
->tb6_lock
);
343 read_unlock_bh(&table
->tb6_lock
);
347 read_lock_bh(&table
->tb6_lock
);
348 res
= fib6_walk_continue(w
);
349 read_unlock_bh(&table
->tb6_lock
);
352 fib6_walker_unlink(w
);
355 fib6_walker_unlink(w
);
362 int inet6_dump_fib(struct sk_buff
*skb
, struct netlink_callback
*cb
)
365 unsigned int e
= 0, s_e
;
366 struct rt6_rtnl_dump_arg arg
;
367 struct fib6_walker_t
*w
;
368 struct fib6_table
*tb
;
369 struct hlist_node
*node
;
375 w
= (void *)cb
->args
[2];
379 * 1. hook callback destructor.
381 cb
->args
[3] = (long)cb
->done
;
382 cb
->done
= fib6_dump_done
;
385 * 2. allocate and initialize walker.
387 w
= kzalloc(sizeof(*w
), GFP_ATOMIC
);
390 w
->func
= fib6_dump_node
;
391 cb
->args
[2] = (long)w
;
398 for (h
= s_h
; h
< FIB_TABLE_HASHSZ
; h
++, s_e
= 0) {
400 hlist_for_each_entry(tb
, node
, &fib_table_hash
[h
], tb6_hlist
) {
403 res
= fib6_dump_table(tb
, skb
, cb
);
414 res
= res
< 0 ? res
: skb
->len
;
423 * return the appropriate node for a routing tree "add" operation
424 * by either creating and inserting or by returning an existing
428 static struct fib6_node
* fib6_add_1(struct fib6_node
*root
, void *addr
,
429 int addrlen
, int plen
,
432 struct fib6_node
*fn
, *in
, *ln
;
433 struct fib6_node
*pn
= NULL
;
437 __u32 sernum
= fib6_new_sernum();
439 RT6_TRACE("fib6_add_1\n");
441 /* insert node in tree */
446 key
= (struct rt6key
*)((u8
*)fn
->leaf
+ offset
);
451 if (plen
< fn
->fn_bit
||
452 !ipv6_prefix_equal(&key
->addr
, addr
, fn
->fn_bit
))
459 if (plen
== fn
->fn_bit
) {
460 /* clean up an intermediate node */
461 if ((fn
->fn_flags
& RTN_RTINFO
) == 0) {
462 rt6_release(fn
->leaf
);
466 fn
->fn_sernum
= sernum
;
472 * We have more bits to go
475 /* Try to walk down on tree. */
476 fn
->fn_sernum
= sernum
;
477 dir
= addr_bit_set(addr
, fn
->fn_bit
);
479 fn
= dir
? fn
->right
: fn
->left
;
483 * We walked to the bottom of tree.
484 * Create new leaf node without children.
494 ln
->fn_sernum
= sernum
;
506 * split since we don't have a common prefix anymore or
507 * we have a less significant route.
508 * we've to insert an intermediate node on the list
509 * this new node will point to the one we need to create
515 /* find 1st bit in difference between the 2 addrs.
517 See comment in __ipv6_addr_diff: bit may be an invalid value,
518 but if it is >= plen, the value is ignored in any case.
521 bit
= __ipv6_addr_diff(addr
, &key
->addr
, addrlen
);
526 * (new leaf node)[ln] (old node)[fn]
532 if (in
== NULL
|| ln
== NULL
) {
541 * new intermediate node.
543 * be off since that an address that chooses one of
544 * the branches would not match less specific routes
545 * in the other branch
552 atomic_inc(&in
->leaf
->rt6i_ref
);
554 in
->fn_sernum
= sernum
;
556 /* update parent pointer */
567 ln
->fn_sernum
= sernum
;
569 if (addr_bit_set(addr
, bit
)) {
576 } else { /* plen <= bit */
579 * (new leaf node)[ln]
581 * (old node)[fn] NULL
593 ln
->fn_sernum
= sernum
;
600 if (addr_bit_set(&key
->addr
, plen
))
611 * Insert routing information in a node.
614 static int fib6_add_rt2node(struct fib6_node
*fn
, struct rt6_info
*rt
,
615 struct nl_info
*info
)
617 struct rt6_info
*iter
= NULL
;
618 struct rt6_info
**ins
;
622 if (fn
->fn_flags
&RTN_TL_ROOT
&&
623 fn
->leaf
== &ip6_null_entry
&&
624 !(rt
->rt6i_flags
& (RTF_DEFAULT
| RTF_ADDRCONF
)) ){
626 rt
->u
.dst
.rt6_next
= NULL
;
630 for (iter
= fn
->leaf
; iter
; iter
=iter
->u
.dst
.rt6_next
) {
632 * Search for duplicates
635 if (iter
->rt6i_metric
== rt
->rt6i_metric
) {
637 * Same priority level
640 if (iter
->rt6i_dev
== rt
->rt6i_dev
&&
641 iter
->rt6i_idev
== rt
->rt6i_idev
&&
642 ipv6_addr_equal(&iter
->rt6i_gateway
,
643 &rt
->rt6i_gateway
)) {
644 if (!(iter
->rt6i_flags
&RTF_EXPIRES
))
646 iter
->rt6i_expires
= rt
->rt6i_expires
;
647 if (!(rt
->rt6i_flags
&RTF_EXPIRES
)) {
648 iter
->rt6i_flags
&= ~RTF_EXPIRES
;
649 iter
->rt6i_expires
= 0;
655 if (iter
->rt6i_metric
> rt
->rt6i_metric
)
658 ins
= &iter
->u
.dst
.rt6_next
;
661 /* Reset round-robin state, if necessary */
662 if (ins
== &fn
->leaf
)
670 rt
->u
.dst
.rt6_next
= iter
;
673 atomic_inc(&rt
->rt6i_ref
);
674 inet6_rt_notify(RTM_NEWROUTE
, rt
, info
);
675 rt6_stats
.fib_rt_entries
++;
677 if ((fn
->fn_flags
& RTN_RTINFO
) == 0) {
678 rt6_stats
.fib_route_nodes
++;
679 fn
->fn_flags
|= RTN_RTINFO
;
685 static __inline__
void fib6_start_gc(struct rt6_info
*rt
)
687 if (ip6_fib_timer
.expires
== 0 &&
688 (rt
->rt6i_flags
& (RTF_EXPIRES
|RTF_CACHE
)))
689 mod_timer(&ip6_fib_timer
, jiffies
+ ip6_rt_gc_interval
);
692 void fib6_force_start_gc(void)
694 if (ip6_fib_timer
.expires
== 0)
695 mod_timer(&ip6_fib_timer
, jiffies
+ ip6_rt_gc_interval
);
699 * Add routing information to the routing tree.
700 * <destination addr>/<source addr>
701 * with source addr info in sub-trees
704 int fib6_add(struct fib6_node
*root
, struct rt6_info
*rt
, struct nl_info
*info
)
706 struct fib6_node
*fn
, *pn
= NULL
;
709 fn
= fib6_add_1(root
, &rt
->rt6i_dst
.addr
, sizeof(struct in6_addr
),
710 rt
->rt6i_dst
.plen
, offsetof(struct rt6_info
, rt6i_dst
));
717 #ifdef CONFIG_IPV6_SUBTREES
718 if (rt
->rt6i_src
.plen
) {
719 struct fib6_node
*sn
;
721 if (fn
->subtree
== NULL
) {
722 struct fib6_node
*sfn
;
734 /* Create subtree root node */
739 sfn
->leaf
= &ip6_null_entry
;
740 atomic_inc(&ip6_null_entry
.rt6i_ref
);
741 sfn
->fn_flags
= RTN_ROOT
;
742 sfn
->fn_sernum
= fib6_new_sernum();
744 /* Now add the first leaf node to new subtree */
746 sn
= fib6_add_1(sfn
, &rt
->rt6i_src
.addr
,
747 sizeof(struct in6_addr
), rt
->rt6i_src
.plen
,
748 offsetof(struct rt6_info
, rt6i_src
));
751 /* If it is failed, discard just allocated
752 root, and then (in st_failure) stale node
759 /* Now link new subtree to main tree */
763 sn
= fib6_add_1(fn
->subtree
, &rt
->rt6i_src
.addr
,
764 sizeof(struct in6_addr
), rt
->rt6i_src
.plen
,
765 offsetof(struct rt6_info
, rt6i_src
));
771 if (fn
->leaf
== NULL
) {
773 atomic_inc(&rt
->rt6i_ref
);
779 err
= fib6_add_rt2node(fn
, rt
, info
);
783 if (!(rt
->rt6i_flags
&RTF_CACHE
))
784 fib6_prune_clones(pn
, rt
);
789 #ifdef CONFIG_IPV6_SUBTREES
791 * If fib6_add_1 has cleared the old leaf pointer in the
792 * super-tree leaf node we have to find a new one for it.
794 if (pn
!= fn
&& !pn
->leaf
&& !(pn
->fn_flags
& RTN_RTINFO
)) {
795 pn
->leaf
= fib6_find_prefix(pn
);
798 BUG_TRAP(pn
->leaf
!= NULL
);
799 pn
->leaf
= &ip6_null_entry
;
802 atomic_inc(&pn
->leaf
->rt6i_ref
);
805 dst_free(&rt
->u
.dst
);
809 #ifdef CONFIG_IPV6_SUBTREES
810 /* Subtree creation failed, probably main tree node
811 is orphan. If it is, shoot it.
814 if (fn
&& !(fn
->fn_flags
& (RTN_RTINFO
|RTN_ROOT
)))
815 fib6_repair_tree(fn
);
816 dst_free(&rt
->u
.dst
);
822 * Routing tree lookup
827 int offset
; /* key offset on rt6_info */
828 struct in6_addr
*addr
; /* search key */
831 static struct fib6_node
* fib6_lookup_1(struct fib6_node
*root
,
832 struct lookup_args
*args
)
834 struct fib6_node
*fn
;
837 if (unlikely(args
->offset
== 0))
847 struct fib6_node
*next
;
849 dir
= addr_bit_set(args
->addr
, fn
->fn_bit
);
851 next
= dir
? fn
->right
: fn
->left
;
862 if (FIB6_SUBTREE(fn
) || fn
->fn_flags
& RTN_RTINFO
) {
865 key
= (struct rt6key
*) ((u8
*) fn
->leaf
+
868 if (ipv6_prefix_equal(&key
->addr
, args
->addr
, key
->plen
)) {
869 #ifdef CONFIG_IPV6_SUBTREES
871 fn
= fib6_lookup_1(fn
->subtree
, args
+ 1);
873 if (!fn
|| fn
->fn_flags
& RTN_RTINFO
)
878 if (fn
->fn_flags
& RTN_ROOT
)
887 struct fib6_node
* fib6_lookup(struct fib6_node
*root
, struct in6_addr
*daddr
,
888 struct in6_addr
*saddr
)
890 struct fib6_node
*fn
;
891 struct lookup_args args
[] = {
893 .offset
= offsetof(struct rt6_info
, rt6i_dst
),
896 #ifdef CONFIG_IPV6_SUBTREES
898 .offset
= offsetof(struct rt6_info
, rt6i_src
),
903 .offset
= 0, /* sentinel */
907 fn
= fib6_lookup_1(root
, daddr
? args
: args
+ 1);
909 if (fn
== NULL
|| fn
->fn_flags
& RTN_TL_ROOT
)
916 * Get node with specified destination prefix (and source prefix,
917 * if subtrees are used)
921 static struct fib6_node
* fib6_locate_1(struct fib6_node
*root
,
922 struct in6_addr
*addr
,
923 int plen
, int offset
)
925 struct fib6_node
*fn
;
927 for (fn
= root
; fn
; ) {
928 struct rt6key
*key
= (struct rt6key
*)((u8
*)fn
->leaf
+ offset
);
933 if (plen
< fn
->fn_bit
||
934 !ipv6_prefix_equal(&key
->addr
, addr
, fn
->fn_bit
))
937 if (plen
== fn
->fn_bit
)
941 * We have more bits to go
943 if (addr_bit_set(addr
, fn
->fn_bit
))
951 struct fib6_node
* fib6_locate(struct fib6_node
*root
,
952 struct in6_addr
*daddr
, int dst_len
,
953 struct in6_addr
*saddr
, int src_len
)
955 struct fib6_node
*fn
;
957 fn
= fib6_locate_1(root
, daddr
, dst_len
,
958 offsetof(struct rt6_info
, rt6i_dst
));
960 #ifdef CONFIG_IPV6_SUBTREES
962 BUG_TRAP(saddr
!=NULL
);
963 if (fn
&& fn
->subtree
)
964 fn
= fib6_locate_1(fn
->subtree
, saddr
, src_len
,
965 offsetof(struct rt6_info
, rt6i_src
));
969 if (fn
&& fn
->fn_flags
&RTN_RTINFO
)
981 static struct rt6_info
* fib6_find_prefix(struct fib6_node
*fn
)
983 if (fn
->fn_flags
&RTN_ROOT
)
984 return &ip6_null_entry
;
988 return fn
->left
->leaf
;
991 return fn
->right
->leaf
;
993 fn
= FIB6_SUBTREE(fn
);
999 * Called to trim the tree of intermediate nodes when possible. "fn"
1000 * is the node we want to try and remove.
1003 static struct fib6_node
* fib6_repair_tree(struct fib6_node
*fn
)
1007 struct fib6_node
*child
, *pn
;
1008 struct fib6_walker_t
*w
;
1012 RT6_TRACE("fixing tree: plen=%d iter=%d\n", fn
->fn_bit
, iter
);
1015 BUG_TRAP(!(fn
->fn_flags
&RTN_RTINFO
));
1016 BUG_TRAP(!(fn
->fn_flags
&RTN_TL_ROOT
));
1017 BUG_TRAP(fn
->leaf
==NULL
);
1021 if (fn
->right
) child
= fn
->right
, children
|= 1;
1022 if (fn
->left
) child
= fn
->left
, children
|= 2;
1024 if (children
== 3 || FIB6_SUBTREE(fn
)
1025 #ifdef CONFIG_IPV6_SUBTREES
1026 /* Subtree root (i.e. fn) may have one child */
1027 || (children
&& fn
->fn_flags
&RTN_ROOT
)
1030 fn
->leaf
= fib6_find_prefix(fn
);
1032 if (fn
->leaf
==NULL
) {
1034 fn
->leaf
= &ip6_null_entry
;
1037 atomic_inc(&fn
->leaf
->rt6i_ref
);
1042 #ifdef CONFIG_IPV6_SUBTREES
1043 if (FIB6_SUBTREE(pn
) == fn
) {
1044 BUG_TRAP(fn
->fn_flags
&RTN_ROOT
);
1045 FIB6_SUBTREE(pn
) = NULL
;
1048 BUG_TRAP(!(fn
->fn_flags
&RTN_ROOT
));
1050 if (pn
->right
== fn
) pn
->right
= child
;
1051 else if (pn
->left
== fn
) pn
->left
= child
;
1058 #ifdef CONFIG_IPV6_SUBTREES
1062 read_lock(&fib6_walker_lock
);
1064 if (child
== NULL
) {
1065 if (w
->root
== fn
) {
1066 w
->root
= w
->node
= NULL
;
1067 RT6_TRACE("W %p adjusted by delroot 1\n", w
);
1068 } else if (w
->node
== fn
) {
1069 RT6_TRACE("W %p adjusted by delnode 1, s=%d/%d\n", w
, w
->state
, nstate
);
1074 if (w
->root
== fn
) {
1076 RT6_TRACE("W %p adjusted by delroot 2\n", w
);
1078 if (w
->node
== fn
) {
1081 RT6_TRACE("W %p adjusted by delnode 2, s=%d\n", w
, w
->state
);
1082 w
->state
= w
->state
>=FWS_R
? FWS_U
: FWS_INIT
;
1084 RT6_TRACE("W %p adjusted by delnode 2, s=%d\n", w
, w
->state
);
1085 w
->state
= w
->state
>=FWS_C
? FWS_U
: FWS_INIT
;
1090 read_unlock(&fib6_walker_lock
);
1093 if (pn
->fn_flags
&RTN_RTINFO
|| FIB6_SUBTREE(pn
))
1096 rt6_release(pn
->leaf
);
1102 static void fib6_del_route(struct fib6_node
*fn
, struct rt6_info
**rtp
,
1103 struct nl_info
*info
)
1105 struct fib6_walker_t
*w
;
1106 struct rt6_info
*rt
= *rtp
;
1108 RT6_TRACE("fib6_del_route\n");
1111 *rtp
= rt
->u
.dst
.rt6_next
;
1112 rt
->rt6i_node
= NULL
;
1113 rt6_stats
.fib_rt_entries
--;
1114 rt6_stats
.fib_discarded_routes
++;
1116 /* Reset round-robin state, if necessary */
1117 if (fn
->rr_ptr
== rt
)
1120 /* Adjust walkers */
1121 read_lock(&fib6_walker_lock
);
1123 if (w
->state
== FWS_C
&& w
->leaf
== rt
) {
1124 RT6_TRACE("walker %p adjusted by delroute\n", w
);
1125 w
->leaf
= rt
->u
.dst
.rt6_next
;
1126 if (w
->leaf
== NULL
)
1130 read_unlock(&fib6_walker_lock
);
1132 rt
->u
.dst
.rt6_next
= NULL
;
1134 if (fn
->leaf
== NULL
&& fn
->fn_flags
&RTN_TL_ROOT
)
1135 fn
->leaf
= &ip6_null_entry
;
1137 /* If it was last route, expunge its radix tree node */
1138 if (fn
->leaf
== NULL
) {
1139 fn
->fn_flags
&= ~RTN_RTINFO
;
1140 rt6_stats
.fib_route_nodes
--;
1141 fn
= fib6_repair_tree(fn
);
1144 if (atomic_read(&rt
->rt6i_ref
) != 1) {
1145 /* This route is used as dummy address holder in some split
1146 * nodes. It is not leaked, but it still holds other resources,
1147 * which must be released in time. So, scan ascendant nodes
1148 * and replace dummy references to this route with references
1149 * to still alive ones.
1152 if (!(fn
->fn_flags
&RTN_RTINFO
) && fn
->leaf
== rt
) {
1153 fn
->leaf
= fib6_find_prefix(fn
);
1154 atomic_inc(&fn
->leaf
->rt6i_ref
);
1159 /* No more references are possible at this point. */
1160 if (atomic_read(&rt
->rt6i_ref
) != 1) BUG();
1163 inet6_rt_notify(RTM_DELROUTE
, rt
, info
);
1167 int fib6_del(struct rt6_info
*rt
, struct nl_info
*info
)
1169 struct fib6_node
*fn
= rt
->rt6i_node
;
1170 struct rt6_info
**rtp
;
1173 if (rt
->u
.dst
.obsolete
>0) {
1178 if (fn
== NULL
|| rt
== &ip6_null_entry
)
1181 BUG_TRAP(fn
->fn_flags
&RTN_RTINFO
);
1183 if (!(rt
->rt6i_flags
&RTF_CACHE
)) {
1184 struct fib6_node
*pn
= fn
;
1185 #ifdef CONFIG_IPV6_SUBTREES
1186 /* clones of this route might be in another subtree */
1187 if (rt
->rt6i_src
.plen
) {
1188 while (!(pn
->fn_flags
&RTN_ROOT
))
1193 fib6_prune_clones(pn
, rt
);
1197 * Walk the leaf entries looking for ourself
1200 for (rtp
= &fn
->leaf
; *rtp
; rtp
= &(*rtp
)->u
.dst
.rt6_next
) {
1202 fib6_del_route(fn
, rtp
, info
);
1210 * Tree traversal function.
1212 * Certainly, it is not interrupt safe.
1213 * However, it is internally reenterable wrt itself and fib6_add/fib6_del.
1214 * It means, that we can modify tree during walking
1215 * and use this function for garbage collection, clone pruning,
1216 * cleaning tree when a device goes down etc. etc.
1218 * It guarantees that every node will be traversed,
1219 * and that it will be traversed only once.
1221 * Callback function w->func may return:
1222 * 0 -> continue walking.
1223 * positive value -> walking is suspended (used by tree dumps,
1224 * and probably by gc, if it will be split to several slices)
1225 * negative value -> terminate walking.
1227 * The function itself returns:
1228 * 0 -> walk is complete.
1229 * >0 -> walk is incomplete (i.e. suspended)
1230 * <0 -> walk is terminated by an error.
1233 static int fib6_walk_continue(struct fib6_walker_t
*w
)
1235 struct fib6_node
*fn
, *pn
;
1242 if (w
->prune
&& fn
!= w
->root
&&
1243 fn
->fn_flags
&RTN_RTINFO
&& w
->state
< FWS_C
) {
1248 #ifdef CONFIG_IPV6_SUBTREES
1250 if (FIB6_SUBTREE(fn
)) {
1251 w
->node
= FIB6_SUBTREE(fn
);
1259 w
->state
= FWS_INIT
;
1265 w
->node
= fn
->right
;
1266 w
->state
= FWS_INIT
;
1272 if (w
->leaf
&& fn
->fn_flags
&RTN_RTINFO
) {
1273 int err
= w
->func(w
);
1284 #ifdef CONFIG_IPV6_SUBTREES
1285 if (FIB6_SUBTREE(pn
) == fn
) {
1286 BUG_TRAP(fn
->fn_flags
&RTN_ROOT
);
1291 if (pn
->left
== fn
) {
1295 if (pn
->right
== fn
) {
1297 w
->leaf
= w
->node
->leaf
;
1307 static int fib6_walk(struct fib6_walker_t
*w
)
1311 w
->state
= FWS_INIT
;
1314 fib6_walker_link(w
);
1315 res
= fib6_walk_continue(w
);
1317 fib6_walker_unlink(w
);
1321 static int fib6_clean_node(struct fib6_walker_t
*w
)
1324 struct rt6_info
*rt
;
1325 struct fib6_cleaner_t
*c
= (struct fib6_cleaner_t
*)w
;
1327 for (rt
= w
->leaf
; rt
; rt
= rt
->u
.dst
.rt6_next
) {
1328 res
= c
->func(rt
, c
->arg
);
1331 res
= fib6_del(rt
, NULL
);
1334 printk(KERN_DEBUG
"fib6_clean_node: del failed: rt=%p@%p err=%d\n", rt
, rt
->rt6i_node
, res
);
1347 * Convenient frontend to tree walker.
1349 * func is called on each route.
1350 * It may return -1 -> delete this route.
1351 * 0 -> continue walking
1353 * prune==1 -> only immediate children of node (certainly,
1354 * ignoring pure split nodes) will be scanned.
1357 static void fib6_clean_tree(struct fib6_node
*root
,
1358 int (*func
)(struct rt6_info
*, void *arg
),
1359 int prune
, void *arg
)
1361 struct fib6_cleaner_t c
;
1364 c
.w
.func
= fib6_clean_node
;
1372 void fib6_clean_all(int (*func
)(struct rt6_info
*, void *arg
),
1373 int prune
, void *arg
)
1375 struct fib6_table
*table
;
1376 struct hlist_node
*node
;
1380 for (h
= 0; h
< FIB_TABLE_HASHSZ
; h
++) {
1381 hlist_for_each_entry_rcu(table
, node
, &fib_table_hash
[h
],
1383 write_lock_bh(&table
->tb6_lock
);
1384 fib6_clean_tree(&table
->tb6_root
, func
, prune
, arg
);
1385 write_unlock_bh(&table
->tb6_lock
);
1391 static int fib6_prune_clone(struct rt6_info
*rt
, void *arg
)
1393 if (rt
->rt6i_flags
& RTF_CACHE
) {
1394 RT6_TRACE("pruning clone %p\n", rt
);
1401 static void fib6_prune_clones(struct fib6_node
*fn
, struct rt6_info
*rt
)
1403 fib6_clean_tree(fn
, fib6_prune_clone
, 1, rt
);
1407 * Garbage collection
1410 static struct fib6_gc_args
1416 static int fib6_age(struct rt6_info
*rt
, void *arg
)
1418 unsigned long now
= jiffies
;
1421 * check addrconf expiration here.
1422 * Routes are expired even if they are in use.
1424 * Also age clones. Note, that clones are aged out
1425 * only if they are not in use now.
1428 if (rt
->rt6i_flags
&RTF_EXPIRES
&& rt
->rt6i_expires
) {
1429 if (time_after(now
, rt
->rt6i_expires
)) {
1430 RT6_TRACE("expiring %p\n", rt
);
1434 } else if (rt
->rt6i_flags
& RTF_CACHE
) {
1435 if (atomic_read(&rt
->u
.dst
.__refcnt
) == 0 &&
1436 time_after_eq(now
, rt
->u
.dst
.lastuse
+ gc_args
.timeout
)) {
1437 RT6_TRACE("aging clone %p\n", rt
);
1439 } else if ((rt
->rt6i_flags
& RTF_GATEWAY
) &&
1440 (!(rt
->rt6i_nexthop
->flags
& NTF_ROUTER
))) {
1441 RT6_TRACE("purging route %p via non-router but gateway\n",
1451 static DEFINE_SPINLOCK(fib6_gc_lock
);
1453 void fib6_run_gc(unsigned long dummy
)
1455 if (dummy
!= ~0UL) {
1456 spin_lock_bh(&fib6_gc_lock
);
1457 gc_args
.timeout
= dummy
? (int)dummy
: ip6_rt_gc_interval
;
1460 if (!spin_trylock(&fib6_gc_lock
)) {
1461 mod_timer(&ip6_fib_timer
, jiffies
+ HZ
);
1465 gc_args
.timeout
= ip6_rt_gc_interval
;
1469 ndisc_dst_gc(&gc_args
.more
);
1470 fib6_clean_all(fib6_age
, 0, NULL
);
1473 mod_timer(&ip6_fib_timer
, jiffies
+ ip6_rt_gc_interval
);
1475 del_timer(&ip6_fib_timer
);
1476 ip6_fib_timer
.expires
= 0;
1478 spin_unlock_bh(&fib6_gc_lock
);
1481 void __init
fib6_init(void)
1483 fib6_node_kmem
= kmem_cache_create("fib6_nodes",
1484 sizeof(struct fib6_node
),
1485 0, SLAB_HWCACHE_ALIGN
|SLAB_PANIC
,
1491 void fib6_gc_cleanup(void)
1493 del_timer(&ip6_fib_timer
);
1494 kmem_cache_destroy(fib6_node_kmem
);