Linux 2.6.21.1
[linux/fpc-iii.git] / net / sunrpc / cache.c
blobf02f24ae946877516d2fd8050c40aebb8ba7f43c
1 /*
2 * net/sunrpc/cache.c
4 * Generic code for various authentication-related caches
5 * used by sunrpc clients and servers.
7 * Copyright (C) 2002 Neil Brown <neilb@cse.unsw.edu.au>
9 * Released under terms in GPL version 2. See COPYING.
13 #include <linux/types.h>
14 #include <linux/fs.h>
15 #include <linux/file.h>
16 #include <linux/slab.h>
17 #include <linux/signal.h>
18 #include <linux/sched.h>
19 #include <linux/kmod.h>
20 #include <linux/list.h>
21 #include <linux/module.h>
22 #include <linux/ctype.h>
23 #include <asm/uaccess.h>
24 #include <linux/poll.h>
25 #include <linux/seq_file.h>
26 #include <linux/proc_fs.h>
27 #include <linux/net.h>
28 #include <linux/workqueue.h>
29 #include <linux/mutex.h>
30 #include <asm/ioctls.h>
31 #include <linux/sunrpc/types.h>
32 #include <linux/sunrpc/cache.h>
33 #include <linux/sunrpc/stats.h>
35 #define RPCDBG_FACILITY RPCDBG_CACHE
37 static int cache_defer_req(struct cache_req *req, struct cache_head *item);
38 static void cache_revisit_request(struct cache_head *item);
40 static void cache_init(struct cache_head *h)
42 time_t now = get_seconds();
43 h->next = NULL;
44 h->flags = 0;
45 kref_init(&h->ref);
46 h->expiry_time = now + CACHE_NEW_EXPIRY;
47 h->last_refresh = now;
50 struct cache_head *sunrpc_cache_lookup(struct cache_detail *detail,
51 struct cache_head *key, int hash)
53 struct cache_head **head, **hp;
54 struct cache_head *new = NULL;
56 head = &detail->hash_table[hash];
58 read_lock(&detail->hash_lock);
60 for (hp=head; *hp != NULL ; hp = &(*hp)->next) {
61 struct cache_head *tmp = *hp;
62 if (detail->match(tmp, key)) {
63 cache_get(tmp);
64 read_unlock(&detail->hash_lock);
65 return tmp;
68 read_unlock(&detail->hash_lock);
69 /* Didn't find anything, insert an empty entry */
71 new = detail->alloc();
72 if (!new)
73 return NULL;
74 /* must fully initialise 'new', else
75 * we might get lose if we need to
76 * cache_put it soon.
78 cache_init(new);
79 detail->init(new, key);
81 write_lock(&detail->hash_lock);
83 /* check if entry appeared while we slept */
84 for (hp=head; *hp != NULL ; hp = &(*hp)->next) {
85 struct cache_head *tmp = *hp;
86 if (detail->match(tmp, key)) {
87 cache_get(tmp);
88 write_unlock(&detail->hash_lock);
89 cache_put(new, detail);
90 return tmp;
93 new->next = *head;
94 *head = new;
95 detail->entries++;
96 cache_get(new);
97 write_unlock(&detail->hash_lock);
99 return new;
101 EXPORT_SYMBOL(sunrpc_cache_lookup);
104 static void queue_loose(struct cache_detail *detail, struct cache_head *ch);
106 static int cache_fresh_locked(struct cache_head *head, time_t expiry)
108 head->expiry_time = expiry;
109 head->last_refresh = get_seconds();
110 return !test_and_set_bit(CACHE_VALID, &head->flags);
113 static void cache_fresh_unlocked(struct cache_head *head,
114 struct cache_detail *detail, int new)
116 if (new)
117 cache_revisit_request(head);
118 if (test_and_clear_bit(CACHE_PENDING, &head->flags)) {
119 cache_revisit_request(head);
120 queue_loose(detail, head);
124 struct cache_head *sunrpc_cache_update(struct cache_detail *detail,
125 struct cache_head *new, struct cache_head *old, int hash)
127 /* The 'old' entry is to be replaced by 'new'.
128 * If 'old' is not VALID, we update it directly,
129 * otherwise we need to replace it
131 struct cache_head **head;
132 struct cache_head *tmp;
133 int is_new;
135 if (!test_bit(CACHE_VALID, &old->flags)) {
136 write_lock(&detail->hash_lock);
137 if (!test_bit(CACHE_VALID, &old->flags)) {
138 if (test_bit(CACHE_NEGATIVE, &new->flags))
139 set_bit(CACHE_NEGATIVE, &old->flags);
140 else
141 detail->update(old, new);
142 is_new = cache_fresh_locked(old, new->expiry_time);
143 write_unlock(&detail->hash_lock);
144 cache_fresh_unlocked(old, detail, is_new);
145 return old;
147 write_unlock(&detail->hash_lock);
149 /* We need to insert a new entry */
150 tmp = detail->alloc();
151 if (!tmp) {
152 cache_put(old, detail);
153 return NULL;
155 cache_init(tmp);
156 detail->init(tmp, old);
157 head = &detail->hash_table[hash];
159 write_lock(&detail->hash_lock);
160 if (test_bit(CACHE_NEGATIVE, &new->flags))
161 set_bit(CACHE_NEGATIVE, &tmp->flags);
162 else
163 detail->update(tmp, new);
164 tmp->next = *head;
165 *head = tmp;
166 detail->entries++;
167 cache_get(tmp);
168 is_new = cache_fresh_locked(tmp, new->expiry_time);
169 cache_fresh_locked(old, 0);
170 write_unlock(&detail->hash_lock);
171 cache_fresh_unlocked(tmp, detail, is_new);
172 cache_fresh_unlocked(old, detail, 0);
173 cache_put(old, detail);
174 return tmp;
176 EXPORT_SYMBOL(sunrpc_cache_update);
178 static int cache_make_upcall(struct cache_detail *detail, struct cache_head *h);
180 * This is the generic cache management routine for all
181 * the authentication caches.
182 * It checks the currency of a cache item and will (later)
183 * initiate an upcall to fill it if needed.
186 * Returns 0 if the cache_head can be used, or cache_puts it and returns
187 * -EAGAIN if upcall is pending,
188 * -ETIMEDOUT if upcall failed and should be retried,
189 * -ENOENT if cache entry was negative
191 int cache_check(struct cache_detail *detail,
192 struct cache_head *h, struct cache_req *rqstp)
194 int rv;
195 long refresh_age, age;
197 /* First decide return status as best we can */
198 if (!test_bit(CACHE_VALID, &h->flags) ||
199 h->expiry_time < get_seconds())
200 rv = -EAGAIN;
201 else if (detail->flush_time > h->last_refresh)
202 rv = -EAGAIN;
203 else {
204 /* entry is valid */
205 if (test_bit(CACHE_NEGATIVE, &h->flags))
206 rv = -ENOENT;
207 else rv = 0;
210 /* now see if we want to start an upcall */
211 refresh_age = (h->expiry_time - h->last_refresh);
212 age = get_seconds() - h->last_refresh;
214 if (rqstp == NULL) {
215 if (rv == -EAGAIN)
216 rv = -ENOENT;
217 } else if (rv == -EAGAIN || age > refresh_age/2) {
218 dprintk("RPC: Want update, refage=%ld, age=%ld\n",
219 refresh_age, age);
220 if (!test_and_set_bit(CACHE_PENDING, &h->flags)) {
221 switch (cache_make_upcall(detail, h)) {
222 case -EINVAL:
223 clear_bit(CACHE_PENDING, &h->flags);
224 if (rv == -EAGAIN) {
225 set_bit(CACHE_NEGATIVE, &h->flags);
226 cache_fresh_unlocked(h, detail,
227 cache_fresh_locked(h, get_seconds()+CACHE_NEW_EXPIRY));
228 rv = -ENOENT;
230 break;
232 case -EAGAIN:
233 clear_bit(CACHE_PENDING, &h->flags);
234 cache_revisit_request(h);
235 break;
240 if (rv == -EAGAIN)
241 if (cache_defer_req(rqstp, h) != 0)
242 rv = -ETIMEDOUT;
244 if (rv)
245 cache_put(h, detail);
246 return rv;
250 * caches need to be periodically cleaned.
251 * For this we maintain a list of cache_detail and
252 * a current pointer into that list and into the table
253 * for that entry.
255 * Each time clean_cache is called it finds the next non-empty entry
256 * in the current table and walks the list in that entry
257 * looking for entries that can be removed.
259 * An entry gets removed if:
260 * - The expiry is before current time
261 * - The last_refresh time is before the flush_time for that cache
263 * later we might drop old entries with non-NEVER expiry if that table
264 * is getting 'full' for some definition of 'full'
266 * The question of "how often to scan a table" is an interesting one
267 * and is answered in part by the use of the "nextcheck" field in the
268 * cache_detail.
269 * When a scan of a table begins, the nextcheck field is set to a time
270 * that is well into the future.
271 * While scanning, if an expiry time is found that is earlier than the
272 * current nextcheck time, nextcheck is set to that expiry time.
273 * If the flush_time is ever set to a time earlier than the nextcheck
274 * time, the nextcheck time is then set to that flush_time.
276 * A table is then only scanned if the current time is at least
277 * the nextcheck time.
281 static LIST_HEAD(cache_list);
282 static DEFINE_SPINLOCK(cache_list_lock);
283 static struct cache_detail *current_detail;
284 static int current_index;
286 static const struct file_operations cache_file_operations;
287 static const struct file_operations content_file_operations;
288 static const struct file_operations cache_flush_operations;
290 static void do_cache_clean(struct work_struct *work);
291 static DECLARE_DELAYED_WORK(cache_cleaner, do_cache_clean);
293 void cache_register(struct cache_detail *cd)
295 cd->proc_ent = proc_mkdir(cd->name, proc_net_rpc);
296 if (cd->proc_ent) {
297 struct proc_dir_entry *p;
298 cd->proc_ent->owner = cd->owner;
299 cd->channel_ent = cd->content_ent = NULL;
301 p = create_proc_entry("flush", S_IFREG|S_IRUSR|S_IWUSR,
302 cd->proc_ent);
303 cd->flush_ent = p;
304 if (p) {
305 p->proc_fops = &cache_flush_operations;
306 p->owner = cd->owner;
307 p->data = cd;
310 if (cd->cache_request || cd->cache_parse) {
311 p = create_proc_entry("channel", S_IFREG|S_IRUSR|S_IWUSR,
312 cd->proc_ent);
313 cd->channel_ent = p;
314 if (p) {
315 p->proc_fops = &cache_file_operations;
316 p->owner = cd->owner;
317 p->data = cd;
320 if (cd->cache_show) {
321 p = create_proc_entry("content", S_IFREG|S_IRUSR|S_IWUSR,
322 cd->proc_ent);
323 cd->content_ent = p;
324 if (p) {
325 p->proc_fops = &content_file_operations;
326 p->owner = cd->owner;
327 p->data = cd;
331 rwlock_init(&cd->hash_lock);
332 INIT_LIST_HEAD(&cd->queue);
333 spin_lock(&cache_list_lock);
334 cd->nextcheck = 0;
335 cd->entries = 0;
336 atomic_set(&cd->readers, 0);
337 cd->last_close = 0;
338 cd->last_warn = -1;
339 list_add(&cd->others, &cache_list);
340 spin_unlock(&cache_list_lock);
342 /* start the cleaning process */
343 schedule_delayed_work(&cache_cleaner, 0);
346 int cache_unregister(struct cache_detail *cd)
348 cache_purge(cd);
349 spin_lock(&cache_list_lock);
350 write_lock(&cd->hash_lock);
351 if (cd->entries || atomic_read(&cd->inuse)) {
352 write_unlock(&cd->hash_lock);
353 spin_unlock(&cache_list_lock);
354 return -EBUSY;
356 if (current_detail == cd)
357 current_detail = NULL;
358 list_del_init(&cd->others);
359 write_unlock(&cd->hash_lock);
360 spin_unlock(&cache_list_lock);
361 if (cd->proc_ent) {
362 if (cd->flush_ent)
363 remove_proc_entry("flush", cd->proc_ent);
364 if (cd->channel_ent)
365 remove_proc_entry("channel", cd->proc_ent);
366 if (cd->content_ent)
367 remove_proc_entry("content", cd->proc_ent);
369 cd->proc_ent = NULL;
370 remove_proc_entry(cd->name, proc_net_rpc);
372 if (list_empty(&cache_list)) {
373 /* module must be being unloaded so its safe to kill the worker */
374 cancel_delayed_work(&cache_cleaner);
375 flush_scheduled_work();
377 return 0;
380 /* clean cache tries to find something to clean
381 * and cleans it.
382 * It returns 1 if it cleaned something,
383 * 0 if it didn't find anything this time
384 * -1 if it fell off the end of the list.
386 static int cache_clean(void)
388 int rv = 0;
389 struct list_head *next;
391 spin_lock(&cache_list_lock);
393 /* find a suitable table if we don't already have one */
394 while (current_detail == NULL ||
395 current_index >= current_detail->hash_size) {
396 if (current_detail)
397 next = current_detail->others.next;
398 else
399 next = cache_list.next;
400 if (next == &cache_list) {
401 current_detail = NULL;
402 spin_unlock(&cache_list_lock);
403 return -1;
405 current_detail = list_entry(next, struct cache_detail, others);
406 if (current_detail->nextcheck > get_seconds())
407 current_index = current_detail->hash_size;
408 else {
409 current_index = 0;
410 current_detail->nextcheck = get_seconds()+30*60;
414 /* find a non-empty bucket in the table */
415 while (current_detail &&
416 current_index < current_detail->hash_size &&
417 current_detail->hash_table[current_index] == NULL)
418 current_index++;
420 /* find a cleanable entry in the bucket and clean it, or set to next bucket */
422 if (current_detail && current_index < current_detail->hash_size) {
423 struct cache_head *ch, **cp;
424 struct cache_detail *d;
426 write_lock(&current_detail->hash_lock);
428 /* Ok, now to clean this strand */
430 cp = & current_detail->hash_table[current_index];
431 ch = *cp;
432 for (; ch; cp= & ch->next, ch= *cp) {
433 if (current_detail->nextcheck > ch->expiry_time)
434 current_detail->nextcheck = ch->expiry_time+1;
435 if (ch->expiry_time >= get_seconds()
436 && ch->last_refresh >= current_detail->flush_time
438 continue;
439 if (test_and_clear_bit(CACHE_PENDING, &ch->flags))
440 queue_loose(current_detail, ch);
442 if (atomic_read(&ch->ref.refcount) == 1)
443 break;
445 if (ch) {
446 *cp = ch->next;
447 ch->next = NULL;
448 current_detail->entries--;
449 rv = 1;
451 write_unlock(&current_detail->hash_lock);
452 d = current_detail;
453 if (!ch)
454 current_index ++;
455 spin_unlock(&cache_list_lock);
456 if (ch)
457 cache_put(ch, d);
458 } else
459 spin_unlock(&cache_list_lock);
461 return rv;
465 * We want to regularly clean the cache, so we need to schedule some work ...
467 static void do_cache_clean(struct work_struct *work)
469 int delay = 5;
470 if (cache_clean() == -1)
471 delay = 30*HZ;
473 if (list_empty(&cache_list))
474 delay = 0;
476 if (delay)
477 schedule_delayed_work(&cache_cleaner, delay);
482 * Clean all caches promptly. This just calls cache_clean
483 * repeatedly until we are sure that every cache has had a chance to
484 * be fully cleaned
486 void cache_flush(void)
488 while (cache_clean() != -1)
489 cond_resched();
490 while (cache_clean() != -1)
491 cond_resched();
494 void cache_purge(struct cache_detail *detail)
496 detail->flush_time = LONG_MAX;
497 detail->nextcheck = get_seconds();
498 cache_flush();
499 detail->flush_time = 1;
505 * Deferral and Revisiting of Requests.
507 * If a cache lookup finds a pending entry, we
508 * need to defer the request and revisit it later.
509 * All deferred requests are stored in a hash table,
510 * indexed by "struct cache_head *".
511 * As it may be wasteful to store a whole request
512 * structure, we allow the request to provide a
513 * deferred form, which must contain a
514 * 'struct cache_deferred_req'
515 * This cache_deferred_req contains a method to allow
516 * it to be revisited when cache info is available
519 #define DFR_HASHSIZE (PAGE_SIZE/sizeof(struct list_head))
520 #define DFR_HASH(item) ((((long)item)>>4 ^ (((long)item)>>13)) % DFR_HASHSIZE)
522 #define DFR_MAX 300 /* ??? */
524 static DEFINE_SPINLOCK(cache_defer_lock);
525 static LIST_HEAD(cache_defer_list);
526 static struct list_head cache_defer_hash[DFR_HASHSIZE];
527 static int cache_defer_cnt;
529 static int cache_defer_req(struct cache_req *req, struct cache_head *item)
531 struct cache_deferred_req *dreq;
532 int hash = DFR_HASH(item);
534 if (cache_defer_cnt >= DFR_MAX) {
535 /* too much in the cache, randomly drop this one,
536 * or continue and drop the oldest below
538 if (net_random()&1)
539 return -ETIMEDOUT;
541 dreq = req->defer(req);
542 if (dreq == NULL)
543 return -ETIMEDOUT;
545 dreq->item = item;
546 dreq->recv_time = get_seconds();
548 spin_lock(&cache_defer_lock);
550 list_add(&dreq->recent, &cache_defer_list);
552 if (cache_defer_hash[hash].next == NULL)
553 INIT_LIST_HEAD(&cache_defer_hash[hash]);
554 list_add(&dreq->hash, &cache_defer_hash[hash]);
556 /* it is in, now maybe clean up */
557 dreq = NULL;
558 if (++cache_defer_cnt > DFR_MAX) {
559 dreq = list_entry(cache_defer_list.prev,
560 struct cache_deferred_req, recent);
561 list_del(&dreq->recent);
562 list_del(&dreq->hash);
563 cache_defer_cnt--;
565 spin_unlock(&cache_defer_lock);
567 if (dreq) {
568 /* there was one too many */
569 dreq->revisit(dreq, 1);
571 if (!test_bit(CACHE_PENDING, &item->flags)) {
572 /* must have just been validated... */
573 cache_revisit_request(item);
575 return 0;
578 static void cache_revisit_request(struct cache_head *item)
580 struct cache_deferred_req *dreq;
581 struct list_head pending;
583 struct list_head *lp;
584 int hash = DFR_HASH(item);
586 INIT_LIST_HEAD(&pending);
587 spin_lock(&cache_defer_lock);
589 lp = cache_defer_hash[hash].next;
590 if (lp) {
591 while (lp != &cache_defer_hash[hash]) {
592 dreq = list_entry(lp, struct cache_deferred_req, hash);
593 lp = lp->next;
594 if (dreq->item == item) {
595 list_del(&dreq->hash);
596 list_move(&dreq->recent, &pending);
597 cache_defer_cnt--;
601 spin_unlock(&cache_defer_lock);
603 while (!list_empty(&pending)) {
604 dreq = list_entry(pending.next, struct cache_deferred_req, recent);
605 list_del_init(&dreq->recent);
606 dreq->revisit(dreq, 0);
610 void cache_clean_deferred(void *owner)
612 struct cache_deferred_req *dreq, *tmp;
613 struct list_head pending;
616 INIT_LIST_HEAD(&pending);
617 spin_lock(&cache_defer_lock);
619 list_for_each_entry_safe(dreq, tmp, &cache_defer_list, recent) {
620 if (dreq->owner == owner) {
621 list_del(&dreq->hash);
622 list_move(&dreq->recent, &pending);
623 cache_defer_cnt--;
626 spin_unlock(&cache_defer_lock);
628 while (!list_empty(&pending)) {
629 dreq = list_entry(pending.next, struct cache_deferred_req, recent);
630 list_del_init(&dreq->recent);
631 dreq->revisit(dreq, 1);
636 * communicate with user-space
638 * We have a magic /proc file - /proc/sunrpc/cache
639 * On read, you get a full request, or block
640 * On write, an update request is processed
641 * Poll works if anything to read, and always allows write
643 * Implemented by linked list of requests. Each open file has
644 * a ->private that also exists in this list. New request are added
645 * to the end and may wakeup and preceding readers.
646 * New readers are added to the head. If, on read, an item is found with
647 * CACHE_UPCALLING clear, we free it from the list.
651 static DEFINE_SPINLOCK(queue_lock);
652 static DEFINE_MUTEX(queue_io_mutex);
654 struct cache_queue {
655 struct list_head list;
656 int reader; /* if 0, then request */
658 struct cache_request {
659 struct cache_queue q;
660 struct cache_head *item;
661 char * buf;
662 int len;
663 int readers;
665 struct cache_reader {
666 struct cache_queue q;
667 int offset; /* if non-0, we have a refcnt on next request */
670 static ssize_t
671 cache_read(struct file *filp, char __user *buf, size_t count, loff_t *ppos)
673 struct cache_reader *rp = filp->private_data;
674 struct cache_request *rq;
675 struct cache_detail *cd = PDE(filp->f_path.dentry->d_inode)->data;
676 int err;
678 if (count == 0)
679 return 0;
681 mutex_lock(&queue_io_mutex); /* protect against multiple concurrent
682 * readers on this file */
683 again:
684 spin_lock(&queue_lock);
685 /* need to find next request */
686 while (rp->q.list.next != &cd->queue &&
687 list_entry(rp->q.list.next, struct cache_queue, list)
688 ->reader) {
689 struct list_head *next = rp->q.list.next;
690 list_move(&rp->q.list, next);
692 if (rp->q.list.next == &cd->queue) {
693 spin_unlock(&queue_lock);
694 mutex_unlock(&queue_io_mutex);
695 BUG_ON(rp->offset);
696 return 0;
698 rq = container_of(rp->q.list.next, struct cache_request, q.list);
699 BUG_ON(rq->q.reader);
700 if (rp->offset == 0)
701 rq->readers++;
702 spin_unlock(&queue_lock);
704 if (rp->offset == 0 && !test_bit(CACHE_PENDING, &rq->item->flags)) {
705 err = -EAGAIN;
706 spin_lock(&queue_lock);
707 list_move(&rp->q.list, &rq->q.list);
708 spin_unlock(&queue_lock);
709 } else {
710 if (rp->offset + count > rq->len)
711 count = rq->len - rp->offset;
712 err = -EFAULT;
713 if (copy_to_user(buf, rq->buf + rp->offset, count))
714 goto out;
715 rp->offset += count;
716 if (rp->offset >= rq->len) {
717 rp->offset = 0;
718 spin_lock(&queue_lock);
719 list_move(&rp->q.list, &rq->q.list);
720 spin_unlock(&queue_lock);
722 err = 0;
724 out:
725 if (rp->offset == 0) {
726 /* need to release rq */
727 spin_lock(&queue_lock);
728 rq->readers--;
729 if (rq->readers == 0 &&
730 !test_bit(CACHE_PENDING, &rq->item->flags)) {
731 list_del(&rq->q.list);
732 spin_unlock(&queue_lock);
733 cache_put(rq->item, cd);
734 kfree(rq->buf);
735 kfree(rq);
736 } else
737 spin_unlock(&queue_lock);
739 if (err == -EAGAIN)
740 goto again;
741 mutex_unlock(&queue_io_mutex);
742 return err ? err : count;
745 static char write_buf[8192]; /* protected by queue_io_mutex */
747 static ssize_t
748 cache_write(struct file *filp, const char __user *buf, size_t count,
749 loff_t *ppos)
751 int err;
752 struct cache_detail *cd = PDE(filp->f_path.dentry->d_inode)->data;
754 if (count == 0)
755 return 0;
756 if (count >= sizeof(write_buf))
757 return -EINVAL;
759 mutex_lock(&queue_io_mutex);
761 if (copy_from_user(write_buf, buf, count)) {
762 mutex_unlock(&queue_io_mutex);
763 return -EFAULT;
765 write_buf[count] = '\0';
766 if (cd->cache_parse)
767 err = cd->cache_parse(cd, write_buf, count);
768 else
769 err = -EINVAL;
771 mutex_unlock(&queue_io_mutex);
772 return err ? err : count;
775 static DECLARE_WAIT_QUEUE_HEAD(queue_wait);
777 static unsigned int
778 cache_poll(struct file *filp, poll_table *wait)
780 unsigned int mask;
781 struct cache_reader *rp = filp->private_data;
782 struct cache_queue *cq;
783 struct cache_detail *cd = PDE(filp->f_path.dentry->d_inode)->data;
785 poll_wait(filp, &queue_wait, wait);
787 /* alway allow write */
788 mask = POLL_OUT | POLLWRNORM;
790 if (!rp)
791 return mask;
793 spin_lock(&queue_lock);
795 for (cq= &rp->q; &cq->list != &cd->queue;
796 cq = list_entry(cq->list.next, struct cache_queue, list))
797 if (!cq->reader) {
798 mask |= POLLIN | POLLRDNORM;
799 break;
801 spin_unlock(&queue_lock);
802 return mask;
805 static int
806 cache_ioctl(struct inode *ino, struct file *filp,
807 unsigned int cmd, unsigned long arg)
809 int len = 0;
810 struct cache_reader *rp = filp->private_data;
811 struct cache_queue *cq;
812 struct cache_detail *cd = PDE(ino)->data;
814 if (cmd != FIONREAD || !rp)
815 return -EINVAL;
817 spin_lock(&queue_lock);
819 /* only find the length remaining in current request,
820 * or the length of the next request
822 for (cq= &rp->q; &cq->list != &cd->queue;
823 cq = list_entry(cq->list.next, struct cache_queue, list))
824 if (!cq->reader) {
825 struct cache_request *cr =
826 container_of(cq, struct cache_request, q);
827 len = cr->len - rp->offset;
828 break;
830 spin_unlock(&queue_lock);
832 return put_user(len, (int __user *)arg);
835 static int
836 cache_open(struct inode *inode, struct file *filp)
838 struct cache_reader *rp = NULL;
840 nonseekable_open(inode, filp);
841 if (filp->f_mode & FMODE_READ) {
842 struct cache_detail *cd = PDE(inode)->data;
844 rp = kmalloc(sizeof(*rp), GFP_KERNEL);
845 if (!rp)
846 return -ENOMEM;
847 rp->offset = 0;
848 rp->q.reader = 1;
849 atomic_inc(&cd->readers);
850 spin_lock(&queue_lock);
851 list_add(&rp->q.list, &cd->queue);
852 spin_unlock(&queue_lock);
854 filp->private_data = rp;
855 return 0;
858 static int
859 cache_release(struct inode *inode, struct file *filp)
861 struct cache_reader *rp = filp->private_data;
862 struct cache_detail *cd = PDE(inode)->data;
864 if (rp) {
865 spin_lock(&queue_lock);
866 if (rp->offset) {
867 struct cache_queue *cq;
868 for (cq= &rp->q; &cq->list != &cd->queue;
869 cq = list_entry(cq->list.next, struct cache_queue, list))
870 if (!cq->reader) {
871 container_of(cq, struct cache_request, q)
872 ->readers--;
873 break;
875 rp->offset = 0;
877 list_del(&rp->q.list);
878 spin_unlock(&queue_lock);
880 filp->private_data = NULL;
881 kfree(rp);
883 cd->last_close = get_seconds();
884 atomic_dec(&cd->readers);
886 return 0;
891 static const struct file_operations cache_file_operations = {
892 .owner = THIS_MODULE,
893 .llseek = no_llseek,
894 .read = cache_read,
895 .write = cache_write,
896 .poll = cache_poll,
897 .ioctl = cache_ioctl, /* for FIONREAD */
898 .open = cache_open,
899 .release = cache_release,
903 static void queue_loose(struct cache_detail *detail, struct cache_head *ch)
905 struct cache_queue *cq;
906 spin_lock(&queue_lock);
907 list_for_each_entry(cq, &detail->queue, list)
908 if (!cq->reader) {
909 struct cache_request *cr = container_of(cq, struct cache_request, q);
910 if (cr->item != ch)
911 continue;
912 if (cr->readers != 0)
913 continue;
914 list_del(&cr->q.list);
915 spin_unlock(&queue_lock);
916 cache_put(cr->item, detail);
917 kfree(cr->buf);
918 kfree(cr);
919 return;
921 spin_unlock(&queue_lock);
925 * Support routines for text-based upcalls.
926 * Fields are separated by spaces.
927 * Fields are either mangled to quote space tab newline slosh with slosh
928 * or a hexified with a leading \x
929 * Record is terminated with newline.
933 void qword_add(char **bpp, int *lp, char *str)
935 char *bp = *bpp;
936 int len = *lp;
937 char c;
939 if (len < 0) return;
941 while ((c=*str++) && len)
942 switch(c) {
943 case ' ':
944 case '\t':
945 case '\n':
946 case '\\':
947 if (len >= 4) {
948 *bp++ = '\\';
949 *bp++ = '0' + ((c & 0300)>>6);
950 *bp++ = '0' + ((c & 0070)>>3);
951 *bp++ = '0' + ((c & 0007)>>0);
953 len -= 4;
954 break;
955 default:
956 *bp++ = c;
957 len--;
959 if (c || len <1) len = -1;
960 else {
961 *bp++ = ' ';
962 len--;
964 *bpp = bp;
965 *lp = len;
968 void qword_addhex(char **bpp, int *lp, char *buf, int blen)
970 char *bp = *bpp;
971 int len = *lp;
973 if (len < 0) return;
975 if (len > 2) {
976 *bp++ = '\\';
977 *bp++ = 'x';
978 len -= 2;
979 while (blen && len >= 2) {
980 unsigned char c = *buf++;
981 *bp++ = '0' + ((c&0xf0)>>4) + (c>=0xa0)*('a'-'9'-1);
982 *bp++ = '0' + (c&0x0f) + ((c&0x0f)>=0x0a)*('a'-'9'-1);
983 len -= 2;
984 blen--;
987 if (blen || len<1) len = -1;
988 else {
989 *bp++ = ' ';
990 len--;
992 *bpp = bp;
993 *lp = len;
996 static void warn_no_listener(struct cache_detail *detail)
998 if (detail->last_warn != detail->last_close) {
999 detail->last_warn = detail->last_close;
1000 if (detail->warn_no_listener)
1001 detail->warn_no_listener(detail);
1006 * register an upcall request to user-space.
1007 * Each request is at most one page long.
1009 static int cache_make_upcall(struct cache_detail *detail, struct cache_head *h)
1012 char *buf;
1013 struct cache_request *crq;
1014 char *bp;
1015 int len;
1017 if (detail->cache_request == NULL)
1018 return -EINVAL;
1020 if (atomic_read(&detail->readers) == 0 &&
1021 detail->last_close < get_seconds() - 30) {
1022 warn_no_listener(detail);
1023 return -EINVAL;
1026 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1027 if (!buf)
1028 return -EAGAIN;
1030 crq = kmalloc(sizeof (*crq), GFP_KERNEL);
1031 if (!crq) {
1032 kfree(buf);
1033 return -EAGAIN;
1036 bp = buf; len = PAGE_SIZE;
1038 detail->cache_request(detail, h, &bp, &len);
1040 if (len < 0) {
1041 kfree(buf);
1042 kfree(crq);
1043 return -EAGAIN;
1045 crq->q.reader = 0;
1046 crq->item = cache_get(h);
1047 crq->buf = buf;
1048 crq->len = PAGE_SIZE - len;
1049 crq->readers = 0;
1050 spin_lock(&queue_lock);
1051 list_add_tail(&crq->q.list, &detail->queue);
1052 spin_unlock(&queue_lock);
1053 wake_up(&queue_wait);
1054 return 0;
1058 * parse a message from user-space and pass it
1059 * to an appropriate cache
1060 * Messages are, like requests, separated into fields by
1061 * spaces and dequotes as \xHEXSTRING or embedded \nnn octal
1063 * Message is
1064 * reply cachename expiry key ... content....
1066 * key and content are both parsed by cache
1069 #define isodigit(c) (isdigit(c) && c <= '7')
1070 int qword_get(char **bpp, char *dest, int bufsize)
1072 /* return bytes copied, or -1 on error */
1073 char *bp = *bpp;
1074 int len = 0;
1076 while (*bp == ' ') bp++;
1078 if (bp[0] == '\\' && bp[1] == 'x') {
1079 /* HEX STRING */
1080 bp += 2;
1081 while (isxdigit(bp[0]) && isxdigit(bp[1]) && len < bufsize) {
1082 int byte = isdigit(*bp) ? *bp-'0' : toupper(*bp)-'A'+10;
1083 bp++;
1084 byte <<= 4;
1085 byte |= isdigit(*bp) ? *bp-'0' : toupper(*bp)-'A'+10;
1086 *dest++ = byte;
1087 bp++;
1088 len++;
1090 } else {
1091 /* text with \nnn octal quoting */
1092 while (*bp != ' ' && *bp != '\n' && *bp && len < bufsize-1) {
1093 if (*bp == '\\' &&
1094 isodigit(bp[1]) && (bp[1] <= '3') &&
1095 isodigit(bp[2]) &&
1096 isodigit(bp[3])) {
1097 int byte = (*++bp -'0');
1098 bp++;
1099 byte = (byte << 3) | (*bp++ - '0');
1100 byte = (byte << 3) | (*bp++ - '0');
1101 *dest++ = byte;
1102 len++;
1103 } else {
1104 *dest++ = *bp++;
1105 len++;
1110 if (*bp != ' ' && *bp != '\n' && *bp != '\0')
1111 return -1;
1112 while (*bp == ' ') bp++;
1113 *bpp = bp;
1114 *dest = '\0';
1115 return len;
1120 * support /proc/sunrpc/cache/$CACHENAME/content
1121 * as a seqfile.
1122 * We call ->cache_show passing NULL for the item to
1123 * get a header, then pass each real item in the cache
1126 struct handle {
1127 struct cache_detail *cd;
1130 static void *c_start(struct seq_file *m, loff_t *pos)
1132 loff_t n = *pos;
1133 unsigned hash, entry;
1134 struct cache_head *ch;
1135 struct cache_detail *cd = ((struct handle*)m->private)->cd;
1138 read_lock(&cd->hash_lock);
1139 if (!n--)
1140 return SEQ_START_TOKEN;
1141 hash = n >> 32;
1142 entry = n & ((1LL<<32) - 1);
1144 for (ch=cd->hash_table[hash]; ch; ch=ch->next)
1145 if (!entry--)
1146 return ch;
1147 n &= ~((1LL<<32) - 1);
1148 do {
1149 hash++;
1150 n += 1LL<<32;
1151 } while(hash < cd->hash_size &&
1152 cd->hash_table[hash]==NULL);
1153 if (hash >= cd->hash_size)
1154 return NULL;
1155 *pos = n+1;
1156 return cd->hash_table[hash];
1159 static void *c_next(struct seq_file *m, void *p, loff_t *pos)
1161 struct cache_head *ch = p;
1162 int hash = (*pos >> 32);
1163 struct cache_detail *cd = ((struct handle*)m->private)->cd;
1165 if (p == SEQ_START_TOKEN)
1166 hash = 0;
1167 else if (ch->next == NULL) {
1168 hash++;
1169 *pos += 1LL<<32;
1170 } else {
1171 ++*pos;
1172 return ch->next;
1174 *pos &= ~((1LL<<32) - 1);
1175 while (hash < cd->hash_size &&
1176 cd->hash_table[hash] == NULL) {
1177 hash++;
1178 *pos += 1LL<<32;
1180 if (hash >= cd->hash_size)
1181 return NULL;
1182 ++*pos;
1183 return cd->hash_table[hash];
1186 static void c_stop(struct seq_file *m, void *p)
1188 struct cache_detail *cd = ((struct handle*)m->private)->cd;
1189 read_unlock(&cd->hash_lock);
1192 static int c_show(struct seq_file *m, void *p)
1194 struct cache_head *cp = p;
1195 struct cache_detail *cd = ((struct handle*)m->private)->cd;
1197 if (p == SEQ_START_TOKEN)
1198 return cd->cache_show(m, cd, NULL);
1200 ifdebug(CACHE)
1201 seq_printf(m, "# expiry=%ld refcnt=%d flags=%lx\n",
1202 cp->expiry_time, atomic_read(&cp->ref.refcount), cp->flags);
1203 cache_get(cp);
1204 if (cache_check(cd, cp, NULL))
1205 /* cache_check does a cache_put on failure */
1206 seq_printf(m, "# ");
1207 else
1208 cache_put(cp, cd);
1210 return cd->cache_show(m, cd, cp);
1213 static struct seq_operations cache_content_op = {
1214 .start = c_start,
1215 .next = c_next,
1216 .stop = c_stop,
1217 .show = c_show,
1220 static int content_open(struct inode *inode, struct file *file)
1222 int res;
1223 struct handle *han;
1224 struct cache_detail *cd = PDE(inode)->data;
1226 han = kmalloc(sizeof(*han), GFP_KERNEL);
1227 if (han == NULL)
1228 return -ENOMEM;
1230 han->cd = cd;
1232 res = seq_open(file, &cache_content_op);
1233 if (res)
1234 kfree(han);
1235 else
1236 ((struct seq_file *)file->private_data)->private = han;
1238 return res;
1240 static int content_release(struct inode *inode, struct file *file)
1242 struct seq_file *m = (struct seq_file *)file->private_data;
1243 struct handle *han = m->private;
1244 kfree(han);
1245 m->private = NULL;
1246 return seq_release(inode, file);
1249 static const struct file_operations content_file_operations = {
1250 .open = content_open,
1251 .read = seq_read,
1252 .llseek = seq_lseek,
1253 .release = content_release,
1256 static ssize_t read_flush(struct file *file, char __user *buf,
1257 size_t count, loff_t *ppos)
1259 struct cache_detail *cd = PDE(file->f_path.dentry->d_inode)->data;
1260 char tbuf[20];
1261 unsigned long p = *ppos;
1262 int len;
1264 sprintf(tbuf, "%lu\n", cd->flush_time);
1265 len = strlen(tbuf);
1266 if (p >= len)
1267 return 0;
1268 len -= p;
1269 if (len > count) len = count;
1270 if (copy_to_user(buf, (void*)(tbuf+p), len))
1271 len = -EFAULT;
1272 else
1273 *ppos += len;
1274 return len;
1277 static ssize_t write_flush(struct file * file, const char __user * buf,
1278 size_t count, loff_t *ppos)
1280 struct cache_detail *cd = PDE(file->f_path.dentry->d_inode)->data;
1281 char tbuf[20];
1282 char *ep;
1283 long flushtime;
1284 if (*ppos || count > sizeof(tbuf)-1)
1285 return -EINVAL;
1286 if (copy_from_user(tbuf, buf, count))
1287 return -EFAULT;
1288 tbuf[count] = 0;
1289 flushtime = simple_strtoul(tbuf, &ep, 0);
1290 if (*ep && *ep != '\n')
1291 return -EINVAL;
1293 cd->flush_time = flushtime;
1294 cd->nextcheck = get_seconds();
1295 cache_flush();
1297 *ppos += count;
1298 return count;
1301 static const struct file_operations cache_flush_operations = {
1302 .open = nonseekable_open,
1303 .read = read_flush,
1304 .write = write_flush,