Linux 2.6.21.1
[linux/fpc-iii.git] / net / sunrpc / svcsock.c
blob2772fee93881f1fc85d5e8a56b7a31fa3e1c5cca
1 /*
2 * linux/net/sunrpc/svcsock.c
4 * These are the RPC server socket internals.
6 * The server scheduling algorithm does not always distribute the load
7 * evenly when servicing a single client. May need to modify the
8 * svc_sock_enqueue procedure...
10 * TCP support is largely untested and may be a little slow. The problem
11 * is that we currently do two separate recvfrom's, one for the 4-byte
12 * record length, and the second for the actual record. This could possibly
13 * be improved by always reading a minimum size of around 100 bytes and
14 * tucking any superfluous bytes away in a temporary store. Still, that
15 * leaves write requests out in the rain. An alternative may be to peek at
16 * the first skb in the queue, and if it matches the next TCP sequence
17 * number, to extract the record marker. Yuck.
19 * Copyright (C) 1995, 1996 Olaf Kirch <okir@monad.swb.de>
22 #include <linux/sched.h>
23 #include <linux/errno.h>
24 #include <linux/fcntl.h>
25 #include <linux/net.h>
26 #include <linux/in.h>
27 #include <linux/inet.h>
28 #include <linux/udp.h>
29 #include <linux/tcp.h>
30 #include <linux/unistd.h>
31 #include <linux/slab.h>
32 #include <linux/netdevice.h>
33 #include <linux/skbuff.h>
34 #include <linux/file.h>
35 #include <linux/freezer.h>
36 #include <net/sock.h>
37 #include <net/checksum.h>
38 #include <net/ip.h>
39 #include <net/ipv6.h>
40 #include <net/tcp_states.h>
41 #include <asm/uaccess.h>
42 #include <asm/ioctls.h>
44 #include <linux/sunrpc/types.h>
45 #include <linux/sunrpc/clnt.h>
46 #include <linux/sunrpc/xdr.h>
47 #include <linux/sunrpc/svcsock.h>
48 #include <linux/sunrpc/stats.h>
50 /* SMP locking strategy:
52 * svc_pool->sp_lock protects most of the fields of that pool.
53 * svc_serv->sv_lock protects sv_tempsocks, sv_permsocks, sv_tmpcnt.
54 * when both need to be taken (rare), svc_serv->sv_lock is first.
55 * BKL protects svc_serv->sv_nrthread.
56 * svc_sock->sk_defer_lock protects the svc_sock->sk_deferred list
57 * svc_sock->sk_flags.SK_BUSY prevents a svc_sock being enqueued multiply.
59 * Some flags can be set to certain values at any time
60 * providing that certain rules are followed:
62 * SK_CONN, SK_DATA, can be set or cleared at any time.
63 * after a set, svc_sock_enqueue must be called.
64 * after a clear, the socket must be read/accepted
65 * if this succeeds, it must be set again.
66 * SK_CLOSE can set at any time. It is never cleared.
67 * sk_inuse contains a bias of '1' until SK_DEAD is set.
68 * so when sk_inuse hits zero, we know the socket is dead
69 * and no-one is using it.
70 * SK_DEAD can only be set while SK_BUSY is held which ensures
71 * no other thread will be using the socket or will try to
72 * set SK_DEAD.
76 #define RPCDBG_FACILITY RPCDBG_SVCSOCK
79 static struct svc_sock *svc_setup_socket(struct svc_serv *, struct socket *,
80 int *errp, int flags);
81 static void svc_delete_socket(struct svc_sock *svsk);
82 static void svc_udp_data_ready(struct sock *, int);
83 static int svc_udp_recvfrom(struct svc_rqst *);
84 static int svc_udp_sendto(struct svc_rqst *);
85 static void svc_close_socket(struct svc_sock *svsk);
87 static struct svc_deferred_req *svc_deferred_dequeue(struct svc_sock *svsk);
88 static int svc_deferred_recv(struct svc_rqst *rqstp);
89 static struct cache_deferred_req *svc_defer(struct cache_req *req);
91 /* apparently the "standard" is that clients close
92 * idle connections after 5 minutes, servers after
93 * 6 minutes
94 * http://www.connectathon.org/talks96/nfstcp.pdf
96 static int svc_conn_age_period = 6*60;
98 #ifdef CONFIG_DEBUG_LOCK_ALLOC
99 static struct lock_class_key svc_key[2];
100 static struct lock_class_key svc_slock_key[2];
102 static inline void svc_reclassify_socket(struct socket *sock)
104 struct sock *sk = sock->sk;
105 BUG_ON(sk->sk_lock.owner != NULL);
106 switch (sk->sk_family) {
107 case AF_INET:
108 sock_lock_init_class_and_name(sk, "slock-AF_INET-NFSD",
109 &svc_slock_key[0], "sk_lock-AF_INET-NFSD", &svc_key[0]);
110 break;
112 case AF_INET6:
113 sock_lock_init_class_and_name(sk, "slock-AF_INET6-NFSD",
114 &svc_slock_key[1], "sk_lock-AF_INET6-NFSD", &svc_key[1]);
115 break;
117 default:
118 BUG();
121 #else
122 static inline void svc_reclassify_socket(struct socket *sock)
125 #endif
127 static char *__svc_print_addr(struct sockaddr *addr, char *buf, size_t len)
129 switch (addr->sa_family) {
130 case AF_INET:
131 snprintf(buf, len, "%u.%u.%u.%u, port=%u",
132 NIPQUAD(((struct sockaddr_in *) addr)->sin_addr),
133 htons(((struct sockaddr_in *) addr)->sin_port));
134 break;
136 case AF_INET6:
137 snprintf(buf, len, "%x:%x:%x:%x:%x:%x:%x:%x, port=%u",
138 NIP6(((struct sockaddr_in6 *) addr)->sin6_addr),
139 htons(((struct sockaddr_in6 *) addr)->sin6_port));
140 break;
142 default:
143 snprintf(buf, len, "unknown address type: %d", addr->sa_family);
144 break;
146 return buf;
150 * svc_print_addr - Format rq_addr field for printing
151 * @rqstp: svc_rqst struct containing address to print
152 * @buf: target buffer for formatted address
153 * @len: length of target buffer
156 char *svc_print_addr(struct svc_rqst *rqstp, char *buf, size_t len)
158 return __svc_print_addr(svc_addr(rqstp), buf, len);
160 EXPORT_SYMBOL_GPL(svc_print_addr);
163 * Queue up an idle server thread. Must have pool->sp_lock held.
164 * Note: this is really a stack rather than a queue, so that we only
165 * use as many different threads as we need, and the rest don't pollute
166 * the cache.
168 static inline void
169 svc_thread_enqueue(struct svc_pool *pool, struct svc_rqst *rqstp)
171 list_add(&rqstp->rq_list, &pool->sp_threads);
175 * Dequeue an nfsd thread. Must have pool->sp_lock held.
177 static inline void
178 svc_thread_dequeue(struct svc_pool *pool, struct svc_rqst *rqstp)
180 list_del(&rqstp->rq_list);
184 * Release an skbuff after use
186 static inline void
187 svc_release_skb(struct svc_rqst *rqstp)
189 struct sk_buff *skb = rqstp->rq_skbuff;
190 struct svc_deferred_req *dr = rqstp->rq_deferred;
192 if (skb) {
193 rqstp->rq_skbuff = NULL;
195 dprintk("svc: service %p, releasing skb %p\n", rqstp, skb);
196 skb_free_datagram(rqstp->rq_sock->sk_sk, skb);
198 if (dr) {
199 rqstp->rq_deferred = NULL;
200 kfree(dr);
205 * Any space to write?
207 static inline unsigned long
208 svc_sock_wspace(struct svc_sock *svsk)
210 int wspace;
212 if (svsk->sk_sock->type == SOCK_STREAM)
213 wspace = sk_stream_wspace(svsk->sk_sk);
214 else
215 wspace = sock_wspace(svsk->sk_sk);
217 return wspace;
221 * Queue up a socket with data pending. If there are idle nfsd
222 * processes, wake 'em up.
225 static void
226 svc_sock_enqueue(struct svc_sock *svsk)
228 struct svc_serv *serv = svsk->sk_server;
229 struct svc_pool *pool;
230 struct svc_rqst *rqstp;
231 int cpu;
233 if (!(svsk->sk_flags &
234 ( (1<<SK_CONN)|(1<<SK_DATA)|(1<<SK_CLOSE)|(1<<SK_DEFERRED)) ))
235 return;
236 if (test_bit(SK_DEAD, &svsk->sk_flags))
237 return;
239 cpu = get_cpu();
240 pool = svc_pool_for_cpu(svsk->sk_server, cpu);
241 put_cpu();
243 spin_lock_bh(&pool->sp_lock);
245 if (!list_empty(&pool->sp_threads) &&
246 !list_empty(&pool->sp_sockets))
247 printk(KERN_ERR
248 "svc_sock_enqueue: threads and sockets both waiting??\n");
250 if (test_bit(SK_DEAD, &svsk->sk_flags)) {
251 /* Don't enqueue dead sockets */
252 dprintk("svc: socket %p is dead, not enqueued\n", svsk->sk_sk);
253 goto out_unlock;
256 /* Mark socket as busy. It will remain in this state until the
257 * server has processed all pending data and put the socket back
258 * on the idle list. We update SK_BUSY atomically because
259 * it also guards against trying to enqueue the svc_sock twice.
261 if (test_and_set_bit(SK_BUSY, &svsk->sk_flags)) {
262 /* Don't enqueue socket while already enqueued */
263 dprintk("svc: socket %p busy, not enqueued\n", svsk->sk_sk);
264 goto out_unlock;
266 BUG_ON(svsk->sk_pool != NULL);
267 svsk->sk_pool = pool;
269 set_bit(SOCK_NOSPACE, &svsk->sk_sock->flags);
270 if (((atomic_read(&svsk->sk_reserved) + serv->sv_max_mesg)*2
271 > svc_sock_wspace(svsk))
272 && !test_bit(SK_CLOSE, &svsk->sk_flags)
273 && !test_bit(SK_CONN, &svsk->sk_flags)) {
274 /* Don't enqueue while not enough space for reply */
275 dprintk("svc: socket %p no space, %d*2 > %ld, not enqueued\n",
276 svsk->sk_sk, atomic_read(&svsk->sk_reserved)+serv->sv_max_mesg,
277 svc_sock_wspace(svsk));
278 svsk->sk_pool = NULL;
279 clear_bit(SK_BUSY, &svsk->sk_flags);
280 goto out_unlock;
282 clear_bit(SOCK_NOSPACE, &svsk->sk_sock->flags);
285 if (!list_empty(&pool->sp_threads)) {
286 rqstp = list_entry(pool->sp_threads.next,
287 struct svc_rqst,
288 rq_list);
289 dprintk("svc: socket %p served by daemon %p\n",
290 svsk->sk_sk, rqstp);
291 svc_thread_dequeue(pool, rqstp);
292 if (rqstp->rq_sock)
293 printk(KERN_ERR
294 "svc_sock_enqueue: server %p, rq_sock=%p!\n",
295 rqstp, rqstp->rq_sock);
296 rqstp->rq_sock = svsk;
297 atomic_inc(&svsk->sk_inuse);
298 rqstp->rq_reserved = serv->sv_max_mesg;
299 atomic_add(rqstp->rq_reserved, &svsk->sk_reserved);
300 BUG_ON(svsk->sk_pool != pool);
301 wake_up(&rqstp->rq_wait);
302 } else {
303 dprintk("svc: socket %p put into queue\n", svsk->sk_sk);
304 list_add_tail(&svsk->sk_ready, &pool->sp_sockets);
305 BUG_ON(svsk->sk_pool != pool);
308 out_unlock:
309 spin_unlock_bh(&pool->sp_lock);
313 * Dequeue the first socket. Must be called with the pool->sp_lock held.
315 static inline struct svc_sock *
316 svc_sock_dequeue(struct svc_pool *pool)
318 struct svc_sock *svsk;
320 if (list_empty(&pool->sp_sockets))
321 return NULL;
323 svsk = list_entry(pool->sp_sockets.next,
324 struct svc_sock, sk_ready);
325 list_del_init(&svsk->sk_ready);
327 dprintk("svc: socket %p dequeued, inuse=%d\n",
328 svsk->sk_sk, atomic_read(&svsk->sk_inuse));
330 return svsk;
334 * Having read something from a socket, check whether it
335 * needs to be re-enqueued.
336 * Note: SK_DATA only gets cleared when a read-attempt finds
337 * no (or insufficient) data.
339 static inline void
340 svc_sock_received(struct svc_sock *svsk)
342 svsk->sk_pool = NULL;
343 clear_bit(SK_BUSY, &svsk->sk_flags);
344 svc_sock_enqueue(svsk);
349 * svc_reserve - change the space reserved for the reply to a request.
350 * @rqstp: The request in question
351 * @space: new max space to reserve
353 * Each request reserves some space on the output queue of the socket
354 * to make sure the reply fits. This function reduces that reserved
355 * space to be the amount of space used already, plus @space.
358 void svc_reserve(struct svc_rqst *rqstp, int space)
360 space += rqstp->rq_res.head[0].iov_len;
362 if (space < rqstp->rq_reserved) {
363 struct svc_sock *svsk = rqstp->rq_sock;
364 atomic_sub((rqstp->rq_reserved - space), &svsk->sk_reserved);
365 rqstp->rq_reserved = space;
367 svc_sock_enqueue(svsk);
372 * Release a socket after use.
374 static inline void
375 svc_sock_put(struct svc_sock *svsk)
377 if (atomic_dec_and_test(&svsk->sk_inuse)) {
378 BUG_ON(! test_bit(SK_DEAD, &svsk->sk_flags));
380 dprintk("svc: releasing dead socket\n");
381 if (svsk->sk_sock->file)
382 sockfd_put(svsk->sk_sock);
383 else
384 sock_release(svsk->sk_sock);
385 if (svsk->sk_info_authunix != NULL)
386 svcauth_unix_info_release(svsk->sk_info_authunix);
387 kfree(svsk);
391 static void
392 svc_sock_release(struct svc_rqst *rqstp)
394 struct svc_sock *svsk = rqstp->rq_sock;
396 svc_release_skb(rqstp);
398 svc_free_res_pages(rqstp);
399 rqstp->rq_res.page_len = 0;
400 rqstp->rq_res.page_base = 0;
403 /* Reset response buffer and release
404 * the reservation.
405 * But first, check that enough space was reserved
406 * for the reply, otherwise we have a bug!
408 if ((rqstp->rq_res.len) > rqstp->rq_reserved)
409 printk(KERN_ERR "RPC request reserved %d but used %d\n",
410 rqstp->rq_reserved,
411 rqstp->rq_res.len);
413 rqstp->rq_res.head[0].iov_len = 0;
414 svc_reserve(rqstp, 0);
415 rqstp->rq_sock = NULL;
417 svc_sock_put(svsk);
421 * External function to wake up a server waiting for data
422 * This really only makes sense for services like lockd
423 * which have exactly one thread anyway.
425 void
426 svc_wake_up(struct svc_serv *serv)
428 struct svc_rqst *rqstp;
429 unsigned int i;
430 struct svc_pool *pool;
432 for (i = 0; i < serv->sv_nrpools; i++) {
433 pool = &serv->sv_pools[i];
435 spin_lock_bh(&pool->sp_lock);
436 if (!list_empty(&pool->sp_threads)) {
437 rqstp = list_entry(pool->sp_threads.next,
438 struct svc_rqst,
439 rq_list);
440 dprintk("svc: daemon %p woken up.\n", rqstp);
442 svc_thread_dequeue(pool, rqstp);
443 rqstp->rq_sock = NULL;
445 wake_up(&rqstp->rq_wait);
447 spin_unlock_bh(&pool->sp_lock);
451 union svc_pktinfo_u {
452 struct in_pktinfo pkti;
453 struct in6_pktinfo pkti6;
455 #define SVC_PKTINFO_SPACE \
456 CMSG_SPACE(sizeof(union svc_pktinfo_u))
458 static void svc_set_cmsg_data(struct svc_rqst *rqstp, struct cmsghdr *cmh)
460 switch (rqstp->rq_sock->sk_sk->sk_family) {
461 case AF_INET: {
462 struct in_pktinfo *pki = CMSG_DATA(cmh);
464 cmh->cmsg_level = SOL_IP;
465 cmh->cmsg_type = IP_PKTINFO;
466 pki->ipi_ifindex = 0;
467 pki->ipi_spec_dst.s_addr = rqstp->rq_daddr.addr.s_addr;
468 cmh->cmsg_len = CMSG_LEN(sizeof(*pki));
470 break;
472 case AF_INET6: {
473 struct in6_pktinfo *pki = CMSG_DATA(cmh);
475 cmh->cmsg_level = SOL_IPV6;
476 cmh->cmsg_type = IPV6_PKTINFO;
477 pki->ipi6_ifindex = 0;
478 ipv6_addr_copy(&pki->ipi6_addr,
479 &rqstp->rq_daddr.addr6);
480 cmh->cmsg_len = CMSG_LEN(sizeof(*pki));
482 break;
484 return;
488 * Generic sendto routine
490 static int
491 svc_sendto(struct svc_rqst *rqstp, struct xdr_buf *xdr)
493 struct svc_sock *svsk = rqstp->rq_sock;
494 struct socket *sock = svsk->sk_sock;
495 int slen;
496 union {
497 struct cmsghdr hdr;
498 long all[SVC_PKTINFO_SPACE / sizeof(long)];
499 } buffer;
500 struct cmsghdr *cmh = &buffer.hdr;
501 int len = 0;
502 int result;
503 int size;
504 struct page **ppage = xdr->pages;
505 size_t base = xdr->page_base;
506 unsigned int pglen = xdr->page_len;
507 unsigned int flags = MSG_MORE;
508 char buf[RPC_MAX_ADDRBUFLEN];
510 slen = xdr->len;
512 if (rqstp->rq_prot == IPPROTO_UDP) {
513 struct msghdr msg = {
514 .msg_name = &rqstp->rq_addr,
515 .msg_namelen = rqstp->rq_addrlen,
516 .msg_control = cmh,
517 .msg_controllen = sizeof(buffer),
518 .msg_flags = MSG_MORE,
521 svc_set_cmsg_data(rqstp, cmh);
523 if (sock_sendmsg(sock, &msg, 0) < 0)
524 goto out;
527 /* send head */
528 if (slen == xdr->head[0].iov_len)
529 flags = 0;
530 len = kernel_sendpage(sock, rqstp->rq_respages[0], 0,
531 xdr->head[0].iov_len, flags);
532 if (len != xdr->head[0].iov_len)
533 goto out;
534 slen -= xdr->head[0].iov_len;
535 if (slen == 0)
536 goto out;
538 /* send page data */
539 size = PAGE_SIZE - base < pglen ? PAGE_SIZE - base : pglen;
540 while (pglen > 0) {
541 if (slen == size)
542 flags = 0;
543 result = kernel_sendpage(sock, *ppage, base, size, flags);
544 if (result > 0)
545 len += result;
546 if (result != size)
547 goto out;
548 slen -= size;
549 pglen -= size;
550 size = PAGE_SIZE < pglen ? PAGE_SIZE : pglen;
551 base = 0;
552 ppage++;
554 /* send tail */
555 if (xdr->tail[0].iov_len) {
556 result = kernel_sendpage(sock, rqstp->rq_respages[0],
557 ((unsigned long)xdr->tail[0].iov_base)
558 & (PAGE_SIZE-1),
559 xdr->tail[0].iov_len, 0);
561 if (result > 0)
562 len += result;
564 out:
565 dprintk("svc: socket %p sendto([%p %Zu... ], %d) = %d (addr %s)\n",
566 rqstp->rq_sock, xdr->head[0].iov_base, xdr->head[0].iov_len,
567 xdr->len, len, svc_print_addr(rqstp, buf, sizeof(buf)));
569 return len;
573 * Report socket names for nfsdfs
575 static int one_sock_name(char *buf, struct svc_sock *svsk)
577 int len;
579 switch(svsk->sk_sk->sk_family) {
580 case AF_INET:
581 len = sprintf(buf, "ipv4 %s %u.%u.%u.%u %d\n",
582 svsk->sk_sk->sk_protocol==IPPROTO_UDP?
583 "udp" : "tcp",
584 NIPQUAD(inet_sk(svsk->sk_sk)->rcv_saddr),
585 inet_sk(svsk->sk_sk)->num);
586 break;
587 default:
588 len = sprintf(buf, "*unknown-%d*\n",
589 svsk->sk_sk->sk_family);
591 return len;
595 svc_sock_names(char *buf, struct svc_serv *serv, char *toclose)
597 struct svc_sock *svsk, *closesk = NULL;
598 int len = 0;
600 if (!serv)
601 return 0;
602 spin_lock_bh(&serv->sv_lock);
603 list_for_each_entry(svsk, &serv->sv_permsocks, sk_list) {
604 int onelen = one_sock_name(buf+len, svsk);
605 if (toclose && strcmp(toclose, buf+len) == 0)
606 closesk = svsk;
607 else
608 len += onelen;
610 spin_unlock_bh(&serv->sv_lock);
611 if (closesk)
612 /* Should unregister with portmap, but you cannot
613 * unregister just one protocol...
615 svc_close_socket(closesk);
616 else if (toclose)
617 return -ENOENT;
618 return len;
620 EXPORT_SYMBOL(svc_sock_names);
623 * Check input queue length
625 static int
626 svc_recv_available(struct svc_sock *svsk)
628 struct socket *sock = svsk->sk_sock;
629 int avail, err;
631 err = kernel_sock_ioctl(sock, TIOCINQ, (unsigned long) &avail);
633 return (err >= 0)? avail : err;
637 * Generic recvfrom routine.
639 static int
640 svc_recvfrom(struct svc_rqst *rqstp, struct kvec *iov, int nr, int buflen)
642 struct svc_sock *svsk = rqstp->rq_sock;
643 struct msghdr msg = {
644 .msg_flags = MSG_DONTWAIT,
646 int len;
648 len = kernel_recvmsg(svsk->sk_sock, &msg, iov, nr, buflen,
649 msg.msg_flags);
651 /* sock_recvmsg doesn't fill in the name/namelen, so we must..
653 memcpy(&rqstp->rq_addr, &svsk->sk_remote, svsk->sk_remotelen);
654 rqstp->rq_addrlen = svsk->sk_remotelen;
656 dprintk("svc: socket %p recvfrom(%p, %Zu) = %d\n",
657 svsk, iov[0].iov_base, iov[0].iov_len, len);
659 return len;
663 * Set socket snd and rcv buffer lengths
665 static inline void
666 svc_sock_setbufsize(struct socket *sock, unsigned int snd, unsigned int rcv)
668 #if 0
669 mm_segment_t oldfs;
670 oldfs = get_fs(); set_fs(KERNEL_DS);
671 sock_setsockopt(sock, SOL_SOCKET, SO_SNDBUF,
672 (char*)&snd, sizeof(snd));
673 sock_setsockopt(sock, SOL_SOCKET, SO_RCVBUF,
674 (char*)&rcv, sizeof(rcv));
675 #else
676 /* sock_setsockopt limits use to sysctl_?mem_max,
677 * which isn't acceptable. Until that is made conditional
678 * on not having CAP_SYS_RESOURCE or similar, we go direct...
679 * DaveM said I could!
681 lock_sock(sock->sk);
682 sock->sk->sk_sndbuf = snd * 2;
683 sock->sk->sk_rcvbuf = rcv * 2;
684 sock->sk->sk_userlocks |= SOCK_SNDBUF_LOCK|SOCK_RCVBUF_LOCK;
685 release_sock(sock->sk);
686 #endif
689 * INET callback when data has been received on the socket.
691 static void
692 svc_udp_data_ready(struct sock *sk, int count)
694 struct svc_sock *svsk = (struct svc_sock *)sk->sk_user_data;
696 if (svsk) {
697 dprintk("svc: socket %p(inet %p), count=%d, busy=%d\n",
698 svsk, sk, count, test_bit(SK_BUSY, &svsk->sk_flags));
699 set_bit(SK_DATA, &svsk->sk_flags);
700 svc_sock_enqueue(svsk);
702 if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
703 wake_up_interruptible(sk->sk_sleep);
707 * INET callback when space is newly available on the socket.
709 static void
710 svc_write_space(struct sock *sk)
712 struct svc_sock *svsk = (struct svc_sock *)(sk->sk_user_data);
714 if (svsk) {
715 dprintk("svc: socket %p(inet %p), write_space busy=%d\n",
716 svsk, sk, test_bit(SK_BUSY, &svsk->sk_flags));
717 svc_sock_enqueue(svsk);
720 if (sk->sk_sleep && waitqueue_active(sk->sk_sleep)) {
721 dprintk("RPC svc_write_space: someone sleeping on %p\n",
722 svsk);
723 wake_up_interruptible(sk->sk_sleep);
727 static inline void svc_udp_get_dest_address(struct svc_rqst *rqstp,
728 struct cmsghdr *cmh)
730 switch (rqstp->rq_sock->sk_sk->sk_family) {
731 case AF_INET: {
732 struct in_pktinfo *pki = CMSG_DATA(cmh);
733 rqstp->rq_daddr.addr.s_addr = pki->ipi_spec_dst.s_addr;
734 break;
736 case AF_INET6: {
737 struct in6_pktinfo *pki = CMSG_DATA(cmh);
738 ipv6_addr_copy(&rqstp->rq_daddr.addr6, &pki->ipi6_addr);
739 break;
745 * Receive a datagram from a UDP socket.
747 static int
748 svc_udp_recvfrom(struct svc_rqst *rqstp)
750 struct svc_sock *svsk = rqstp->rq_sock;
751 struct svc_serv *serv = svsk->sk_server;
752 struct sk_buff *skb;
753 union {
754 struct cmsghdr hdr;
755 long all[SVC_PKTINFO_SPACE / sizeof(long)];
756 } buffer;
757 struct cmsghdr *cmh = &buffer.hdr;
758 int err, len;
759 struct msghdr msg = {
760 .msg_name = svc_addr(rqstp),
761 .msg_control = cmh,
762 .msg_controllen = sizeof(buffer),
763 .msg_flags = MSG_DONTWAIT,
766 if (test_and_clear_bit(SK_CHNGBUF, &svsk->sk_flags))
767 /* udp sockets need large rcvbuf as all pending
768 * requests are still in that buffer. sndbuf must
769 * also be large enough that there is enough space
770 * for one reply per thread. We count all threads
771 * rather than threads in a particular pool, which
772 * provides an upper bound on the number of threads
773 * which will access the socket.
775 svc_sock_setbufsize(svsk->sk_sock,
776 (serv->sv_nrthreads+3) * serv->sv_max_mesg,
777 (serv->sv_nrthreads+3) * serv->sv_max_mesg);
779 if ((rqstp->rq_deferred = svc_deferred_dequeue(svsk))) {
780 svc_sock_received(svsk);
781 return svc_deferred_recv(rqstp);
784 if (test_bit(SK_CLOSE, &svsk->sk_flags)) {
785 svc_delete_socket(svsk);
786 return 0;
789 clear_bit(SK_DATA, &svsk->sk_flags);
790 while ((err = kernel_recvmsg(svsk->sk_sock, &msg, NULL,
791 0, 0, MSG_PEEK | MSG_DONTWAIT)) < 0 ||
792 (skb = skb_recv_datagram(svsk->sk_sk, 0, 1, &err)) == NULL) {
793 if (err == -EAGAIN) {
794 svc_sock_received(svsk);
795 return err;
797 /* possibly an icmp error */
798 dprintk("svc: recvfrom returned error %d\n", -err);
800 rqstp->rq_addrlen = sizeof(rqstp->rq_addr);
801 if (skb->tstamp.off_sec == 0) {
802 struct timeval tv;
804 tv.tv_sec = xtime.tv_sec;
805 tv.tv_usec = xtime.tv_nsec / NSEC_PER_USEC;
806 skb_set_timestamp(skb, &tv);
807 /* Don't enable netstamp, sunrpc doesn't
808 need that much accuracy */
810 skb_get_timestamp(skb, &svsk->sk_sk->sk_stamp);
811 set_bit(SK_DATA, &svsk->sk_flags); /* there may be more data... */
814 * Maybe more packets - kick another thread ASAP.
816 svc_sock_received(svsk);
818 len = skb->len - sizeof(struct udphdr);
819 rqstp->rq_arg.len = len;
821 rqstp->rq_prot = IPPROTO_UDP;
823 if (cmh->cmsg_level != IPPROTO_IP ||
824 cmh->cmsg_type != IP_PKTINFO) {
825 if (net_ratelimit())
826 printk("rpcsvc: received unknown control message:"
827 "%d/%d\n",
828 cmh->cmsg_level, cmh->cmsg_type);
829 skb_free_datagram(svsk->sk_sk, skb);
830 return 0;
832 svc_udp_get_dest_address(rqstp, cmh);
834 if (skb_is_nonlinear(skb)) {
835 /* we have to copy */
836 local_bh_disable();
837 if (csum_partial_copy_to_xdr(&rqstp->rq_arg, skb)) {
838 local_bh_enable();
839 /* checksum error */
840 skb_free_datagram(svsk->sk_sk, skb);
841 return 0;
843 local_bh_enable();
844 skb_free_datagram(svsk->sk_sk, skb);
845 } else {
846 /* we can use it in-place */
847 rqstp->rq_arg.head[0].iov_base = skb->data + sizeof(struct udphdr);
848 rqstp->rq_arg.head[0].iov_len = len;
849 if (skb_checksum_complete(skb)) {
850 skb_free_datagram(svsk->sk_sk, skb);
851 return 0;
853 rqstp->rq_skbuff = skb;
856 rqstp->rq_arg.page_base = 0;
857 if (len <= rqstp->rq_arg.head[0].iov_len) {
858 rqstp->rq_arg.head[0].iov_len = len;
859 rqstp->rq_arg.page_len = 0;
860 rqstp->rq_respages = rqstp->rq_pages+1;
861 } else {
862 rqstp->rq_arg.page_len = len - rqstp->rq_arg.head[0].iov_len;
863 rqstp->rq_respages = rqstp->rq_pages + 1 +
864 (rqstp->rq_arg.page_len + PAGE_SIZE - 1)/ PAGE_SIZE;
867 if (serv->sv_stats)
868 serv->sv_stats->netudpcnt++;
870 return len;
873 static int
874 svc_udp_sendto(struct svc_rqst *rqstp)
876 int error;
878 error = svc_sendto(rqstp, &rqstp->rq_res);
879 if (error == -ECONNREFUSED)
880 /* ICMP error on earlier request. */
881 error = svc_sendto(rqstp, &rqstp->rq_res);
883 return error;
886 static void
887 svc_udp_init(struct svc_sock *svsk)
889 int one = 1;
890 mm_segment_t oldfs;
892 svsk->sk_sk->sk_data_ready = svc_udp_data_ready;
893 svsk->sk_sk->sk_write_space = svc_write_space;
894 svsk->sk_recvfrom = svc_udp_recvfrom;
895 svsk->sk_sendto = svc_udp_sendto;
897 /* initialise setting must have enough space to
898 * receive and respond to one request.
899 * svc_udp_recvfrom will re-adjust if necessary
901 svc_sock_setbufsize(svsk->sk_sock,
902 3 * svsk->sk_server->sv_max_mesg,
903 3 * svsk->sk_server->sv_max_mesg);
905 set_bit(SK_DATA, &svsk->sk_flags); /* might have come in before data_ready set up */
906 set_bit(SK_CHNGBUF, &svsk->sk_flags);
908 oldfs = get_fs();
909 set_fs(KERNEL_DS);
910 /* make sure we get destination address info */
911 svsk->sk_sock->ops->setsockopt(svsk->sk_sock, IPPROTO_IP, IP_PKTINFO,
912 (char __user *)&one, sizeof(one));
913 set_fs(oldfs);
917 * A data_ready event on a listening socket means there's a connection
918 * pending. Do not use state_change as a substitute for it.
920 static void
921 svc_tcp_listen_data_ready(struct sock *sk, int count_unused)
923 struct svc_sock *svsk = (struct svc_sock *)sk->sk_user_data;
925 dprintk("svc: socket %p TCP (listen) state change %d\n",
926 sk, sk->sk_state);
929 * This callback may called twice when a new connection
930 * is established as a child socket inherits everything
931 * from a parent LISTEN socket.
932 * 1) data_ready method of the parent socket will be called
933 * when one of child sockets become ESTABLISHED.
934 * 2) data_ready method of the child socket may be called
935 * when it receives data before the socket is accepted.
936 * In case of 2, we should ignore it silently.
938 if (sk->sk_state == TCP_LISTEN) {
939 if (svsk) {
940 set_bit(SK_CONN, &svsk->sk_flags);
941 svc_sock_enqueue(svsk);
942 } else
943 printk("svc: socket %p: no user data\n", sk);
946 if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
947 wake_up_interruptible_all(sk->sk_sleep);
951 * A state change on a connected socket means it's dying or dead.
953 static void
954 svc_tcp_state_change(struct sock *sk)
956 struct svc_sock *svsk = (struct svc_sock *)sk->sk_user_data;
958 dprintk("svc: socket %p TCP (connected) state change %d (svsk %p)\n",
959 sk, sk->sk_state, sk->sk_user_data);
961 if (!svsk)
962 printk("svc: socket %p: no user data\n", sk);
963 else {
964 set_bit(SK_CLOSE, &svsk->sk_flags);
965 svc_sock_enqueue(svsk);
967 if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
968 wake_up_interruptible_all(sk->sk_sleep);
971 static void
972 svc_tcp_data_ready(struct sock *sk, int count)
974 struct svc_sock *svsk = (struct svc_sock *)sk->sk_user_data;
976 dprintk("svc: socket %p TCP data ready (svsk %p)\n",
977 sk, sk->sk_user_data);
978 if (svsk) {
979 set_bit(SK_DATA, &svsk->sk_flags);
980 svc_sock_enqueue(svsk);
982 if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
983 wake_up_interruptible(sk->sk_sleep);
986 static inline int svc_port_is_privileged(struct sockaddr *sin)
988 switch (sin->sa_family) {
989 case AF_INET:
990 return ntohs(((struct sockaddr_in *)sin)->sin_port)
991 < PROT_SOCK;
992 case AF_INET6:
993 return ntohs(((struct sockaddr_in6 *)sin)->sin6_port)
994 < PROT_SOCK;
995 default:
996 return 0;
1001 * Accept a TCP connection
1003 static void
1004 svc_tcp_accept(struct svc_sock *svsk)
1006 struct sockaddr_storage addr;
1007 struct sockaddr *sin = (struct sockaddr *) &addr;
1008 struct svc_serv *serv = svsk->sk_server;
1009 struct socket *sock = svsk->sk_sock;
1010 struct socket *newsock;
1011 struct svc_sock *newsvsk;
1012 int err, slen;
1013 char buf[RPC_MAX_ADDRBUFLEN];
1015 dprintk("svc: tcp_accept %p sock %p\n", svsk, sock);
1016 if (!sock)
1017 return;
1019 clear_bit(SK_CONN, &svsk->sk_flags);
1020 err = kernel_accept(sock, &newsock, O_NONBLOCK);
1021 if (err < 0) {
1022 if (err == -ENOMEM)
1023 printk(KERN_WARNING "%s: no more sockets!\n",
1024 serv->sv_name);
1025 else if (err != -EAGAIN && net_ratelimit())
1026 printk(KERN_WARNING "%s: accept failed (err %d)!\n",
1027 serv->sv_name, -err);
1028 return;
1031 set_bit(SK_CONN, &svsk->sk_flags);
1032 svc_sock_enqueue(svsk);
1034 err = kernel_getpeername(newsock, sin, &slen);
1035 if (err < 0) {
1036 if (net_ratelimit())
1037 printk(KERN_WARNING "%s: peername failed (err %d)!\n",
1038 serv->sv_name, -err);
1039 goto failed; /* aborted connection or whatever */
1042 /* Ideally, we would want to reject connections from unauthorized
1043 * hosts here, but when we get encryption, the IP of the host won't
1044 * tell us anything. For now just warn about unpriv connections.
1046 if (!svc_port_is_privileged(sin)) {
1047 dprintk(KERN_WARNING
1048 "%s: connect from unprivileged port: %s\n",
1049 serv->sv_name,
1050 __svc_print_addr(sin, buf, sizeof(buf)));
1052 dprintk("%s: connect from %s\n", serv->sv_name,
1053 __svc_print_addr(sin, buf, sizeof(buf)));
1055 /* make sure that a write doesn't block forever when
1056 * low on memory
1058 newsock->sk->sk_sndtimeo = HZ*30;
1060 if (!(newsvsk = svc_setup_socket(serv, newsock, &err,
1061 (SVC_SOCK_ANONYMOUS | SVC_SOCK_TEMPORARY))))
1062 goto failed;
1063 memcpy(&newsvsk->sk_remote, sin, slen);
1064 newsvsk->sk_remotelen = slen;
1066 svc_sock_received(newsvsk);
1068 /* make sure that we don't have too many active connections.
1069 * If we have, something must be dropped.
1071 * There's no point in trying to do random drop here for
1072 * DoS prevention. The NFS clients does 1 reconnect in 15
1073 * seconds. An attacker can easily beat that.
1075 * The only somewhat efficient mechanism would be if drop
1076 * old connections from the same IP first. But right now
1077 * we don't even record the client IP in svc_sock.
1079 if (serv->sv_tmpcnt > (serv->sv_nrthreads+3)*20) {
1080 struct svc_sock *svsk = NULL;
1081 spin_lock_bh(&serv->sv_lock);
1082 if (!list_empty(&serv->sv_tempsocks)) {
1083 if (net_ratelimit()) {
1084 /* Try to help the admin */
1085 printk(KERN_NOTICE "%s: too many open TCP "
1086 "sockets, consider increasing the "
1087 "number of nfsd threads\n",
1088 serv->sv_name);
1089 printk(KERN_NOTICE
1090 "%s: last TCP connect from %s\n",
1091 serv->sv_name, buf);
1094 * Always select the oldest socket. It's not fair,
1095 * but so is life
1097 svsk = list_entry(serv->sv_tempsocks.prev,
1098 struct svc_sock,
1099 sk_list);
1100 set_bit(SK_CLOSE, &svsk->sk_flags);
1101 atomic_inc(&svsk->sk_inuse);
1103 spin_unlock_bh(&serv->sv_lock);
1105 if (svsk) {
1106 svc_sock_enqueue(svsk);
1107 svc_sock_put(svsk);
1112 if (serv->sv_stats)
1113 serv->sv_stats->nettcpconn++;
1115 return;
1117 failed:
1118 sock_release(newsock);
1119 return;
1123 * Receive data from a TCP socket.
1125 static int
1126 svc_tcp_recvfrom(struct svc_rqst *rqstp)
1128 struct svc_sock *svsk = rqstp->rq_sock;
1129 struct svc_serv *serv = svsk->sk_server;
1130 int len;
1131 struct kvec *vec;
1132 int pnum, vlen;
1134 dprintk("svc: tcp_recv %p data %d conn %d close %d\n",
1135 svsk, test_bit(SK_DATA, &svsk->sk_flags),
1136 test_bit(SK_CONN, &svsk->sk_flags),
1137 test_bit(SK_CLOSE, &svsk->sk_flags));
1139 if ((rqstp->rq_deferred = svc_deferred_dequeue(svsk))) {
1140 svc_sock_received(svsk);
1141 return svc_deferred_recv(rqstp);
1144 if (test_bit(SK_CLOSE, &svsk->sk_flags)) {
1145 svc_delete_socket(svsk);
1146 return 0;
1149 if (svsk->sk_sk->sk_state == TCP_LISTEN) {
1150 svc_tcp_accept(svsk);
1151 svc_sock_received(svsk);
1152 return 0;
1155 if (test_and_clear_bit(SK_CHNGBUF, &svsk->sk_flags))
1156 /* sndbuf needs to have room for one request
1157 * per thread, otherwise we can stall even when the
1158 * network isn't a bottleneck.
1160 * We count all threads rather than threads in a
1161 * particular pool, which provides an upper bound
1162 * on the number of threads which will access the socket.
1164 * rcvbuf just needs to be able to hold a few requests.
1165 * Normally they will be removed from the queue
1166 * as soon a a complete request arrives.
1168 svc_sock_setbufsize(svsk->sk_sock,
1169 (serv->sv_nrthreads+3) * serv->sv_max_mesg,
1170 3 * serv->sv_max_mesg);
1172 clear_bit(SK_DATA, &svsk->sk_flags);
1174 /* Receive data. If we haven't got the record length yet, get
1175 * the next four bytes. Otherwise try to gobble up as much as
1176 * possible up to the complete record length.
1178 if (svsk->sk_tcplen < 4) {
1179 unsigned long want = 4 - svsk->sk_tcplen;
1180 struct kvec iov;
1182 iov.iov_base = ((char *) &svsk->sk_reclen) + svsk->sk_tcplen;
1183 iov.iov_len = want;
1184 if ((len = svc_recvfrom(rqstp, &iov, 1, want)) < 0)
1185 goto error;
1186 svsk->sk_tcplen += len;
1188 if (len < want) {
1189 dprintk("svc: short recvfrom while reading record length (%d of %lu)\n",
1190 len, want);
1191 svc_sock_received(svsk);
1192 return -EAGAIN; /* record header not complete */
1195 svsk->sk_reclen = ntohl(svsk->sk_reclen);
1196 if (!(svsk->sk_reclen & 0x80000000)) {
1197 /* FIXME: technically, a record can be fragmented,
1198 * and non-terminal fragments will not have the top
1199 * bit set in the fragment length header.
1200 * But apparently no known nfs clients send fragmented
1201 * records. */
1202 if (net_ratelimit())
1203 printk(KERN_NOTICE "RPC: bad TCP reclen 0x%08lx"
1204 " (non-terminal)\n",
1205 (unsigned long) svsk->sk_reclen);
1206 goto err_delete;
1208 svsk->sk_reclen &= 0x7fffffff;
1209 dprintk("svc: TCP record, %d bytes\n", svsk->sk_reclen);
1210 if (svsk->sk_reclen > serv->sv_max_mesg) {
1211 if (net_ratelimit())
1212 printk(KERN_NOTICE "RPC: bad TCP reclen 0x%08lx"
1213 " (large)\n",
1214 (unsigned long) svsk->sk_reclen);
1215 goto err_delete;
1219 /* Check whether enough data is available */
1220 len = svc_recv_available(svsk);
1221 if (len < 0)
1222 goto error;
1224 if (len < svsk->sk_reclen) {
1225 dprintk("svc: incomplete TCP record (%d of %d)\n",
1226 len, svsk->sk_reclen);
1227 svc_sock_received(svsk);
1228 return -EAGAIN; /* record not complete */
1230 len = svsk->sk_reclen;
1231 set_bit(SK_DATA, &svsk->sk_flags);
1233 vec = rqstp->rq_vec;
1234 vec[0] = rqstp->rq_arg.head[0];
1235 vlen = PAGE_SIZE;
1236 pnum = 1;
1237 while (vlen < len) {
1238 vec[pnum].iov_base = page_address(rqstp->rq_pages[pnum]);
1239 vec[pnum].iov_len = PAGE_SIZE;
1240 pnum++;
1241 vlen += PAGE_SIZE;
1243 rqstp->rq_respages = &rqstp->rq_pages[pnum];
1245 /* Now receive data */
1246 len = svc_recvfrom(rqstp, vec, pnum, len);
1247 if (len < 0)
1248 goto error;
1250 dprintk("svc: TCP complete record (%d bytes)\n", len);
1251 rqstp->rq_arg.len = len;
1252 rqstp->rq_arg.page_base = 0;
1253 if (len <= rqstp->rq_arg.head[0].iov_len) {
1254 rqstp->rq_arg.head[0].iov_len = len;
1255 rqstp->rq_arg.page_len = 0;
1256 } else {
1257 rqstp->rq_arg.page_len = len - rqstp->rq_arg.head[0].iov_len;
1260 rqstp->rq_skbuff = NULL;
1261 rqstp->rq_prot = IPPROTO_TCP;
1263 /* Reset TCP read info */
1264 svsk->sk_reclen = 0;
1265 svsk->sk_tcplen = 0;
1267 svc_sock_received(svsk);
1268 if (serv->sv_stats)
1269 serv->sv_stats->nettcpcnt++;
1271 return len;
1273 err_delete:
1274 svc_delete_socket(svsk);
1275 return -EAGAIN;
1277 error:
1278 if (len == -EAGAIN) {
1279 dprintk("RPC: TCP recvfrom got EAGAIN\n");
1280 svc_sock_received(svsk);
1281 } else {
1282 printk(KERN_NOTICE "%s: recvfrom returned errno %d\n",
1283 svsk->sk_server->sv_name, -len);
1284 goto err_delete;
1287 return len;
1291 * Send out data on TCP socket.
1293 static int
1294 svc_tcp_sendto(struct svc_rqst *rqstp)
1296 struct xdr_buf *xbufp = &rqstp->rq_res;
1297 int sent;
1298 __be32 reclen;
1300 /* Set up the first element of the reply kvec.
1301 * Any other kvecs that may be in use have been taken
1302 * care of by the server implementation itself.
1304 reclen = htonl(0x80000000|((xbufp->len ) - 4));
1305 memcpy(xbufp->head[0].iov_base, &reclen, 4);
1307 if (test_bit(SK_DEAD, &rqstp->rq_sock->sk_flags))
1308 return -ENOTCONN;
1310 sent = svc_sendto(rqstp, &rqstp->rq_res);
1311 if (sent != xbufp->len) {
1312 printk(KERN_NOTICE "rpc-srv/tcp: %s: %s %d when sending %d bytes - shutting down socket\n",
1313 rqstp->rq_sock->sk_server->sv_name,
1314 (sent<0)?"got error":"sent only",
1315 sent, xbufp->len);
1316 set_bit(SK_CLOSE, &rqstp->rq_sock->sk_flags);
1317 svc_sock_enqueue(rqstp->rq_sock);
1318 sent = -EAGAIN;
1320 return sent;
1323 static void
1324 svc_tcp_init(struct svc_sock *svsk)
1326 struct sock *sk = svsk->sk_sk;
1327 struct tcp_sock *tp = tcp_sk(sk);
1329 svsk->sk_recvfrom = svc_tcp_recvfrom;
1330 svsk->sk_sendto = svc_tcp_sendto;
1332 if (sk->sk_state == TCP_LISTEN) {
1333 dprintk("setting up TCP socket for listening\n");
1334 sk->sk_data_ready = svc_tcp_listen_data_ready;
1335 set_bit(SK_CONN, &svsk->sk_flags);
1336 } else {
1337 dprintk("setting up TCP socket for reading\n");
1338 sk->sk_state_change = svc_tcp_state_change;
1339 sk->sk_data_ready = svc_tcp_data_ready;
1340 sk->sk_write_space = svc_write_space;
1342 svsk->sk_reclen = 0;
1343 svsk->sk_tcplen = 0;
1345 tp->nonagle = 1; /* disable Nagle's algorithm */
1347 /* initialise setting must have enough space to
1348 * receive and respond to one request.
1349 * svc_tcp_recvfrom will re-adjust if necessary
1351 svc_sock_setbufsize(svsk->sk_sock,
1352 3 * svsk->sk_server->sv_max_mesg,
1353 3 * svsk->sk_server->sv_max_mesg);
1355 set_bit(SK_CHNGBUF, &svsk->sk_flags);
1356 set_bit(SK_DATA, &svsk->sk_flags);
1357 if (sk->sk_state != TCP_ESTABLISHED)
1358 set_bit(SK_CLOSE, &svsk->sk_flags);
1362 void
1363 svc_sock_update_bufs(struct svc_serv *serv)
1366 * The number of server threads has changed. Update
1367 * rcvbuf and sndbuf accordingly on all sockets
1369 struct list_head *le;
1371 spin_lock_bh(&serv->sv_lock);
1372 list_for_each(le, &serv->sv_permsocks) {
1373 struct svc_sock *svsk =
1374 list_entry(le, struct svc_sock, sk_list);
1375 set_bit(SK_CHNGBUF, &svsk->sk_flags);
1377 list_for_each(le, &serv->sv_tempsocks) {
1378 struct svc_sock *svsk =
1379 list_entry(le, struct svc_sock, sk_list);
1380 set_bit(SK_CHNGBUF, &svsk->sk_flags);
1382 spin_unlock_bh(&serv->sv_lock);
1386 * Receive the next request on any socket. This code is carefully
1387 * organised not to touch any cachelines in the shared svc_serv
1388 * structure, only cachelines in the local svc_pool.
1391 svc_recv(struct svc_rqst *rqstp, long timeout)
1393 struct svc_sock *svsk = NULL;
1394 struct svc_serv *serv = rqstp->rq_server;
1395 struct svc_pool *pool = rqstp->rq_pool;
1396 int len, i;
1397 int pages;
1398 struct xdr_buf *arg;
1399 DECLARE_WAITQUEUE(wait, current);
1401 dprintk("svc: server %p waiting for data (to = %ld)\n",
1402 rqstp, timeout);
1404 if (rqstp->rq_sock)
1405 printk(KERN_ERR
1406 "svc_recv: service %p, socket not NULL!\n",
1407 rqstp);
1408 if (waitqueue_active(&rqstp->rq_wait))
1409 printk(KERN_ERR
1410 "svc_recv: service %p, wait queue active!\n",
1411 rqstp);
1414 /* now allocate needed pages. If we get a failure, sleep briefly */
1415 pages = (serv->sv_max_mesg + PAGE_SIZE) / PAGE_SIZE;
1416 for (i=0; i < pages ; i++)
1417 while (rqstp->rq_pages[i] == NULL) {
1418 struct page *p = alloc_page(GFP_KERNEL);
1419 if (!p)
1420 schedule_timeout_uninterruptible(msecs_to_jiffies(500));
1421 rqstp->rq_pages[i] = p;
1423 rqstp->rq_pages[i++] = NULL; /* this might be seen in nfs_read_actor */
1424 BUG_ON(pages >= RPCSVC_MAXPAGES);
1426 /* Make arg->head point to first page and arg->pages point to rest */
1427 arg = &rqstp->rq_arg;
1428 arg->head[0].iov_base = page_address(rqstp->rq_pages[0]);
1429 arg->head[0].iov_len = PAGE_SIZE;
1430 arg->pages = rqstp->rq_pages + 1;
1431 arg->page_base = 0;
1432 /* save at least one page for response */
1433 arg->page_len = (pages-2)*PAGE_SIZE;
1434 arg->len = (pages-1)*PAGE_SIZE;
1435 arg->tail[0].iov_len = 0;
1437 try_to_freeze();
1438 cond_resched();
1439 if (signalled())
1440 return -EINTR;
1442 spin_lock_bh(&pool->sp_lock);
1443 if ((svsk = svc_sock_dequeue(pool)) != NULL) {
1444 rqstp->rq_sock = svsk;
1445 atomic_inc(&svsk->sk_inuse);
1446 rqstp->rq_reserved = serv->sv_max_mesg;
1447 atomic_add(rqstp->rq_reserved, &svsk->sk_reserved);
1448 } else {
1449 /* No data pending. Go to sleep */
1450 svc_thread_enqueue(pool, rqstp);
1453 * We have to be able to interrupt this wait
1454 * to bring down the daemons ...
1456 set_current_state(TASK_INTERRUPTIBLE);
1457 add_wait_queue(&rqstp->rq_wait, &wait);
1458 spin_unlock_bh(&pool->sp_lock);
1460 schedule_timeout(timeout);
1462 try_to_freeze();
1464 spin_lock_bh(&pool->sp_lock);
1465 remove_wait_queue(&rqstp->rq_wait, &wait);
1467 if (!(svsk = rqstp->rq_sock)) {
1468 svc_thread_dequeue(pool, rqstp);
1469 spin_unlock_bh(&pool->sp_lock);
1470 dprintk("svc: server %p, no data yet\n", rqstp);
1471 return signalled()? -EINTR : -EAGAIN;
1474 spin_unlock_bh(&pool->sp_lock);
1476 dprintk("svc: server %p, pool %u, socket %p, inuse=%d\n",
1477 rqstp, pool->sp_id, svsk, atomic_read(&svsk->sk_inuse));
1478 len = svsk->sk_recvfrom(rqstp);
1479 dprintk("svc: got len=%d\n", len);
1481 /* No data, incomplete (TCP) read, or accept() */
1482 if (len == 0 || len == -EAGAIN) {
1483 rqstp->rq_res.len = 0;
1484 svc_sock_release(rqstp);
1485 return -EAGAIN;
1487 svsk->sk_lastrecv = get_seconds();
1488 clear_bit(SK_OLD, &svsk->sk_flags);
1490 rqstp->rq_secure = svc_port_is_privileged(svc_addr(rqstp));
1491 rqstp->rq_chandle.defer = svc_defer;
1493 if (serv->sv_stats)
1494 serv->sv_stats->netcnt++;
1495 return len;
1499 * Drop request
1501 void
1502 svc_drop(struct svc_rqst *rqstp)
1504 dprintk("svc: socket %p dropped request\n", rqstp->rq_sock);
1505 svc_sock_release(rqstp);
1509 * Return reply to client.
1512 svc_send(struct svc_rqst *rqstp)
1514 struct svc_sock *svsk;
1515 int len;
1516 struct xdr_buf *xb;
1518 if ((svsk = rqstp->rq_sock) == NULL) {
1519 printk(KERN_WARNING "NULL socket pointer in %s:%d\n",
1520 __FILE__, __LINE__);
1521 return -EFAULT;
1524 /* release the receive skb before sending the reply */
1525 svc_release_skb(rqstp);
1527 /* calculate over-all length */
1528 xb = & rqstp->rq_res;
1529 xb->len = xb->head[0].iov_len +
1530 xb->page_len +
1531 xb->tail[0].iov_len;
1533 /* Grab svsk->sk_mutex to serialize outgoing data. */
1534 mutex_lock(&svsk->sk_mutex);
1535 if (test_bit(SK_DEAD, &svsk->sk_flags))
1536 len = -ENOTCONN;
1537 else
1538 len = svsk->sk_sendto(rqstp);
1539 mutex_unlock(&svsk->sk_mutex);
1540 svc_sock_release(rqstp);
1542 if (len == -ECONNREFUSED || len == -ENOTCONN || len == -EAGAIN)
1543 return 0;
1544 return len;
1548 * Timer function to close old temporary sockets, using
1549 * a mark-and-sweep algorithm.
1551 static void
1552 svc_age_temp_sockets(unsigned long closure)
1554 struct svc_serv *serv = (struct svc_serv *)closure;
1555 struct svc_sock *svsk;
1556 struct list_head *le, *next;
1557 LIST_HEAD(to_be_aged);
1559 dprintk("svc_age_temp_sockets\n");
1561 if (!spin_trylock_bh(&serv->sv_lock)) {
1562 /* busy, try again 1 sec later */
1563 dprintk("svc_age_temp_sockets: busy\n");
1564 mod_timer(&serv->sv_temptimer, jiffies + HZ);
1565 return;
1568 list_for_each_safe(le, next, &serv->sv_tempsocks) {
1569 svsk = list_entry(le, struct svc_sock, sk_list);
1571 if (!test_and_set_bit(SK_OLD, &svsk->sk_flags))
1572 continue;
1573 if (atomic_read(&svsk->sk_inuse) || test_bit(SK_BUSY, &svsk->sk_flags))
1574 continue;
1575 atomic_inc(&svsk->sk_inuse);
1576 list_move(le, &to_be_aged);
1577 set_bit(SK_CLOSE, &svsk->sk_flags);
1578 set_bit(SK_DETACHED, &svsk->sk_flags);
1580 spin_unlock_bh(&serv->sv_lock);
1582 while (!list_empty(&to_be_aged)) {
1583 le = to_be_aged.next;
1584 /* fiddling the sk_list node is safe 'cos we're SK_DETACHED */
1585 list_del_init(le);
1586 svsk = list_entry(le, struct svc_sock, sk_list);
1588 dprintk("queuing svsk %p for closing, %lu seconds old\n",
1589 svsk, get_seconds() - svsk->sk_lastrecv);
1591 /* a thread will dequeue and close it soon */
1592 svc_sock_enqueue(svsk);
1593 svc_sock_put(svsk);
1596 mod_timer(&serv->sv_temptimer, jiffies + svc_conn_age_period * HZ);
1600 * Initialize socket for RPC use and create svc_sock struct
1601 * XXX: May want to setsockopt SO_SNDBUF and SO_RCVBUF.
1603 static struct svc_sock *svc_setup_socket(struct svc_serv *serv,
1604 struct socket *sock,
1605 int *errp, int flags)
1607 struct svc_sock *svsk;
1608 struct sock *inet;
1609 int pmap_register = !(flags & SVC_SOCK_ANONYMOUS);
1610 int is_temporary = flags & SVC_SOCK_TEMPORARY;
1612 dprintk("svc: svc_setup_socket %p\n", sock);
1613 if (!(svsk = kzalloc(sizeof(*svsk), GFP_KERNEL))) {
1614 *errp = -ENOMEM;
1615 return NULL;
1618 inet = sock->sk;
1620 /* Register socket with portmapper */
1621 if (*errp >= 0 && pmap_register)
1622 *errp = svc_register(serv, inet->sk_protocol,
1623 ntohs(inet_sk(inet)->sport));
1625 if (*errp < 0) {
1626 kfree(svsk);
1627 return NULL;
1630 set_bit(SK_BUSY, &svsk->sk_flags);
1631 inet->sk_user_data = svsk;
1632 svsk->sk_sock = sock;
1633 svsk->sk_sk = inet;
1634 svsk->sk_ostate = inet->sk_state_change;
1635 svsk->sk_odata = inet->sk_data_ready;
1636 svsk->sk_owspace = inet->sk_write_space;
1637 svsk->sk_server = serv;
1638 atomic_set(&svsk->sk_inuse, 1);
1639 svsk->sk_lastrecv = get_seconds();
1640 spin_lock_init(&svsk->sk_defer_lock);
1641 INIT_LIST_HEAD(&svsk->sk_deferred);
1642 INIT_LIST_HEAD(&svsk->sk_ready);
1643 mutex_init(&svsk->sk_mutex);
1645 /* Initialize the socket */
1646 if (sock->type == SOCK_DGRAM)
1647 svc_udp_init(svsk);
1648 else
1649 svc_tcp_init(svsk);
1651 spin_lock_bh(&serv->sv_lock);
1652 if (is_temporary) {
1653 set_bit(SK_TEMP, &svsk->sk_flags);
1654 list_add(&svsk->sk_list, &serv->sv_tempsocks);
1655 serv->sv_tmpcnt++;
1656 if (serv->sv_temptimer.function == NULL) {
1657 /* setup timer to age temp sockets */
1658 setup_timer(&serv->sv_temptimer, svc_age_temp_sockets,
1659 (unsigned long)serv);
1660 mod_timer(&serv->sv_temptimer,
1661 jiffies + svc_conn_age_period * HZ);
1663 } else {
1664 clear_bit(SK_TEMP, &svsk->sk_flags);
1665 list_add(&svsk->sk_list, &serv->sv_permsocks);
1667 spin_unlock_bh(&serv->sv_lock);
1669 dprintk("svc: svc_setup_socket created %p (inet %p)\n",
1670 svsk, svsk->sk_sk);
1672 return svsk;
1675 int svc_addsock(struct svc_serv *serv,
1676 int fd,
1677 char *name_return,
1678 int *proto)
1680 int err = 0;
1681 struct socket *so = sockfd_lookup(fd, &err);
1682 struct svc_sock *svsk = NULL;
1684 if (!so)
1685 return err;
1686 if (so->sk->sk_family != AF_INET)
1687 err = -EAFNOSUPPORT;
1688 else if (so->sk->sk_protocol != IPPROTO_TCP &&
1689 so->sk->sk_protocol != IPPROTO_UDP)
1690 err = -EPROTONOSUPPORT;
1691 else if (so->state > SS_UNCONNECTED)
1692 err = -EISCONN;
1693 else {
1694 svsk = svc_setup_socket(serv, so, &err, SVC_SOCK_DEFAULTS);
1695 if (svsk) {
1696 svc_sock_received(svsk);
1697 err = 0;
1700 if (err) {
1701 sockfd_put(so);
1702 return err;
1704 if (proto) *proto = so->sk->sk_protocol;
1705 return one_sock_name(name_return, svsk);
1707 EXPORT_SYMBOL_GPL(svc_addsock);
1710 * Create socket for RPC service.
1712 static int svc_create_socket(struct svc_serv *serv, int protocol,
1713 struct sockaddr *sin, int len, int flags)
1715 struct svc_sock *svsk;
1716 struct socket *sock;
1717 int error;
1718 int type;
1719 char buf[RPC_MAX_ADDRBUFLEN];
1721 dprintk("svc: svc_create_socket(%s, %d, %s)\n",
1722 serv->sv_program->pg_name, protocol,
1723 __svc_print_addr(sin, buf, sizeof(buf)));
1725 if (protocol != IPPROTO_UDP && protocol != IPPROTO_TCP) {
1726 printk(KERN_WARNING "svc: only UDP and TCP "
1727 "sockets supported\n");
1728 return -EINVAL;
1730 type = (protocol == IPPROTO_UDP)? SOCK_DGRAM : SOCK_STREAM;
1732 error = sock_create_kern(sin->sa_family, type, protocol, &sock);
1733 if (error < 0)
1734 return error;
1736 svc_reclassify_socket(sock);
1738 if (type == SOCK_STREAM)
1739 sock->sk->sk_reuse = 1; /* allow address reuse */
1740 error = kernel_bind(sock, sin, len);
1741 if (error < 0)
1742 goto bummer;
1744 if (protocol == IPPROTO_TCP) {
1745 if ((error = kernel_listen(sock, 64)) < 0)
1746 goto bummer;
1749 if ((svsk = svc_setup_socket(serv, sock, &error, flags)) != NULL) {
1750 svc_sock_received(svsk);
1751 return ntohs(inet_sk(svsk->sk_sk)->sport);
1754 bummer:
1755 dprintk("svc: svc_create_socket error = %d\n", -error);
1756 sock_release(sock);
1757 return error;
1761 * Remove a dead socket
1763 static void
1764 svc_delete_socket(struct svc_sock *svsk)
1766 struct svc_serv *serv;
1767 struct sock *sk;
1769 dprintk("svc: svc_delete_socket(%p)\n", svsk);
1771 serv = svsk->sk_server;
1772 sk = svsk->sk_sk;
1774 sk->sk_state_change = svsk->sk_ostate;
1775 sk->sk_data_ready = svsk->sk_odata;
1776 sk->sk_write_space = svsk->sk_owspace;
1778 spin_lock_bh(&serv->sv_lock);
1780 if (!test_and_set_bit(SK_DETACHED, &svsk->sk_flags))
1781 list_del_init(&svsk->sk_list);
1783 * We used to delete the svc_sock from whichever list
1784 * it's sk_ready node was on, but we don't actually
1785 * need to. This is because the only time we're called
1786 * while still attached to a queue, the queue itself
1787 * is about to be destroyed (in svc_destroy).
1789 if (!test_and_set_bit(SK_DEAD, &svsk->sk_flags)) {
1790 BUG_ON(atomic_read(&svsk->sk_inuse)<2);
1791 atomic_dec(&svsk->sk_inuse);
1792 if (test_bit(SK_TEMP, &svsk->sk_flags))
1793 serv->sv_tmpcnt--;
1796 spin_unlock_bh(&serv->sv_lock);
1799 static void svc_close_socket(struct svc_sock *svsk)
1801 set_bit(SK_CLOSE, &svsk->sk_flags);
1802 if (test_and_set_bit(SK_BUSY, &svsk->sk_flags))
1803 /* someone else will have to effect the close */
1804 return;
1806 atomic_inc(&svsk->sk_inuse);
1807 svc_delete_socket(svsk);
1808 clear_bit(SK_BUSY, &svsk->sk_flags);
1809 svc_sock_put(svsk);
1812 void svc_force_close_socket(struct svc_sock *svsk)
1814 set_bit(SK_CLOSE, &svsk->sk_flags);
1815 if (test_bit(SK_BUSY, &svsk->sk_flags)) {
1816 /* Waiting to be processed, but no threads left,
1817 * So just remove it from the waiting list
1819 list_del_init(&svsk->sk_ready);
1820 clear_bit(SK_BUSY, &svsk->sk_flags);
1822 svc_close_socket(svsk);
1826 * svc_makesock - Make a socket for nfsd and lockd
1827 * @serv: RPC server structure
1828 * @protocol: transport protocol to use
1829 * @port: port to use
1830 * @flags: requested socket characteristics
1833 int svc_makesock(struct svc_serv *serv, int protocol, unsigned short port,
1834 int flags)
1836 struct sockaddr_in sin = {
1837 .sin_family = AF_INET,
1838 .sin_addr.s_addr = INADDR_ANY,
1839 .sin_port = htons(port),
1842 dprintk("svc: creating socket proto = %d\n", protocol);
1843 return svc_create_socket(serv, protocol, (struct sockaddr *) &sin,
1844 sizeof(sin), flags);
1848 * Handle defer and revisit of requests
1851 static void svc_revisit(struct cache_deferred_req *dreq, int too_many)
1853 struct svc_deferred_req *dr = container_of(dreq, struct svc_deferred_req, handle);
1854 struct svc_sock *svsk;
1856 if (too_many) {
1857 svc_sock_put(dr->svsk);
1858 kfree(dr);
1859 return;
1861 dprintk("revisit queued\n");
1862 svsk = dr->svsk;
1863 dr->svsk = NULL;
1864 spin_lock_bh(&svsk->sk_defer_lock);
1865 list_add(&dr->handle.recent, &svsk->sk_deferred);
1866 spin_unlock_bh(&svsk->sk_defer_lock);
1867 set_bit(SK_DEFERRED, &svsk->sk_flags);
1868 svc_sock_enqueue(svsk);
1869 svc_sock_put(svsk);
1872 static struct cache_deferred_req *
1873 svc_defer(struct cache_req *req)
1875 struct svc_rqst *rqstp = container_of(req, struct svc_rqst, rq_chandle);
1876 int size = sizeof(struct svc_deferred_req) + (rqstp->rq_arg.len);
1877 struct svc_deferred_req *dr;
1879 if (rqstp->rq_arg.page_len)
1880 return NULL; /* if more than a page, give up FIXME */
1881 if (rqstp->rq_deferred) {
1882 dr = rqstp->rq_deferred;
1883 rqstp->rq_deferred = NULL;
1884 } else {
1885 int skip = rqstp->rq_arg.len - rqstp->rq_arg.head[0].iov_len;
1886 /* FIXME maybe discard if size too large */
1887 dr = kmalloc(size, GFP_KERNEL);
1888 if (dr == NULL)
1889 return NULL;
1891 dr->handle.owner = rqstp->rq_server;
1892 dr->prot = rqstp->rq_prot;
1893 memcpy(&dr->addr, &rqstp->rq_addr, rqstp->rq_addrlen);
1894 dr->addrlen = rqstp->rq_addrlen;
1895 dr->daddr = rqstp->rq_daddr;
1896 dr->argslen = rqstp->rq_arg.len >> 2;
1897 memcpy(dr->args, rqstp->rq_arg.head[0].iov_base-skip, dr->argslen<<2);
1899 atomic_inc(&rqstp->rq_sock->sk_inuse);
1900 dr->svsk = rqstp->rq_sock;
1902 dr->handle.revisit = svc_revisit;
1903 return &dr->handle;
1907 * recv data from a deferred request into an active one
1909 static int svc_deferred_recv(struct svc_rqst *rqstp)
1911 struct svc_deferred_req *dr = rqstp->rq_deferred;
1913 rqstp->rq_arg.head[0].iov_base = dr->args;
1914 rqstp->rq_arg.head[0].iov_len = dr->argslen<<2;
1915 rqstp->rq_arg.page_len = 0;
1916 rqstp->rq_arg.len = dr->argslen<<2;
1917 rqstp->rq_prot = dr->prot;
1918 memcpy(&rqstp->rq_addr, &dr->addr, dr->addrlen);
1919 rqstp->rq_addrlen = dr->addrlen;
1920 rqstp->rq_daddr = dr->daddr;
1921 rqstp->rq_respages = rqstp->rq_pages;
1922 return dr->argslen<<2;
1926 static struct svc_deferred_req *svc_deferred_dequeue(struct svc_sock *svsk)
1928 struct svc_deferred_req *dr = NULL;
1930 if (!test_bit(SK_DEFERRED, &svsk->sk_flags))
1931 return NULL;
1932 spin_lock_bh(&svsk->sk_defer_lock);
1933 clear_bit(SK_DEFERRED, &svsk->sk_flags);
1934 if (!list_empty(&svsk->sk_deferred)) {
1935 dr = list_entry(svsk->sk_deferred.next,
1936 struct svc_deferred_req,
1937 handle.recent);
1938 list_del_init(&dr->handle.recent);
1939 set_bit(SK_DEFERRED, &svsk->sk_flags);
1941 spin_unlock_bh(&svsk->sk_defer_lock);
1942 return dr;