2 * linux/net/sunrpc/svcsock.c
4 * These are the RPC server socket internals.
6 * The server scheduling algorithm does not always distribute the load
7 * evenly when servicing a single client. May need to modify the
8 * svc_sock_enqueue procedure...
10 * TCP support is largely untested and may be a little slow. The problem
11 * is that we currently do two separate recvfrom's, one for the 4-byte
12 * record length, and the second for the actual record. This could possibly
13 * be improved by always reading a minimum size of around 100 bytes and
14 * tucking any superfluous bytes away in a temporary store. Still, that
15 * leaves write requests out in the rain. An alternative may be to peek at
16 * the first skb in the queue, and if it matches the next TCP sequence
17 * number, to extract the record marker. Yuck.
19 * Copyright (C) 1995, 1996 Olaf Kirch <okir@monad.swb.de>
22 #include <linux/sched.h>
23 #include <linux/errno.h>
24 #include <linux/fcntl.h>
25 #include <linux/net.h>
27 #include <linux/inet.h>
28 #include <linux/udp.h>
29 #include <linux/tcp.h>
30 #include <linux/unistd.h>
31 #include <linux/slab.h>
32 #include <linux/netdevice.h>
33 #include <linux/skbuff.h>
34 #include <linux/file.h>
35 #include <linux/freezer.h>
37 #include <net/checksum.h>
40 #include <net/tcp_states.h>
41 #include <asm/uaccess.h>
42 #include <asm/ioctls.h>
44 #include <linux/sunrpc/types.h>
45 #include <linux/sunrpc/clnt.h>
46 #include <linux/sunrpc/xdr.h>
47 #include <linux/sunrpc/svcsock.h>
48 #include <linux/sunrpc/stats.h>
50 /* SMP locking strategy:
52 * svc_pool->sp_lock protects most of the fields of that pool.
53 * svc_serv->sv_lock protects sv_tempsocks, sv_permsocks, sv_tmpcnt.
54 * when both need to be taken (rare), svc_serv->sv_lock is first.
55 * BKL protects svc_serv->sv_nrthread.
56 * svc_sock->sk_defer_lock protects the svc_sock->sk_deferred list
57 * svc_sock->sk_flags.SK_BUSY prevents a svc_sock being enqueued multiply.
59 * Some flags can be set to certain values at any time
60 * providing that certain rules are followed:
62 * SK_CONN, SK_DATA, can be set or cleared at any time.
63 * after a set, svc_sock_enqueue must be called.
64 * after a clear, the socket must be read/accepted
65 * if this succeeds, it must be set again.
66 * SK_CLOSE can set at any time. It is never cleared.
67 * sk_inuse contains a bias of '1' until SK_DEAD is set.
68 * so when sk_inuse hits zero, we know the socket is dead
69 * and no-one is using it.
70 * SK_DEAD can only be set while SK_BUSY is held which ensures
71 * no other thread will be using the socket or will try to
76 #define RPCDBG_FACILITY RPCDBG_SVCSOCK
79 static struct svc_sock
*svc_setup_socket(struct svc_serv
*, struct socket
*,
80 int *errp
, int flags
);
81 static void svc_delete_socket(struct svc_sock
*svsk
);
82 static void svc_udp_data_ready(struct sock
*, int);
83 static int svc_udp_recvfrom(struct svc_rqst
*);
84 static int svc_udp_sendto(struct svc_rqst
*);
85 static void svc_close_socket(struct svc_sock
*svsk
);
87 static struct svc_deferred_req
*svc_deferred_dequeue(struct svc_sock
*svsk
);
88 static int svc_deferred_recv(struct svc_rqst
*rqstp
);
89 static struct cache_deferred_req
*svc_defer(struct cache_req
*req
);
91 /* apparently the "standard" is that clients close
92 * idle connections after 5 minutes, servers after
94 * http://www.connectathon.org/talks96/nfstcp.pdf
96 static int svc_conn_age_period
= 6*60;
98 #ifdef CONFIG_DEBUG_LOCK_ALLOC
99 static struct lock_class_key svc_key
[2];
100 static struct lock_class_key svc_slock_key
[2];
102 static inline void svc_reclassify_socket(struct socket
*sock
)
104 struct sock
*sk
= sock
->sk
;
105 BUG_ON(sk
->sk_lock
.owner
!= NULL
);
106 switch (sk
->sk_family
) {
108 sock_lock_init_class_and_name(sk
, "slock-AF_INET-NFSD",
109 &svc_slock_key
[0], "sk_lock-AF_INET-NFSD", &svc_key
[0]);
113 sock_lock_init_class_and_name(sk
, "slock-AF_INET6-NFSD",
114 &svc_slock_key
[1], "sk_lock-AF_INET6-NFSD", &svc_key
[1]);
122 static inline void svc_reclassify_socket(struct socket
*sock
)
127 static char *__svc_print_addr(struct sockaddr
*addr
, char *buf
, size_t len
)
129 switch (addr
->sa_family
) {
131 snprintf(buf
, len
, "%u.%u.%u.%u, port=%u",
132 NIPQUAD(((struct sockaddr_in
*) addr
)->sin_addr
),
133 htons(((struct sockaddr_in
*) addr
)->sin_port
));
137 snprintf(buf
, len
, "%x:%x:%x:%x:%x:%x:%x:%x, port=%u",
138 NIP6(((struct sockaddr_in6
*) addr
)->sin6_addr
),
139 htons(((struct sockaddr_in6
*) addr
)->sin6_port
));
143 snprintf(buf
, len
, "unknown address type: %d", addr
->sa_family
);
150 * svc_print_addr - Format rq_addr field for printing
151 * @rqstp: svc_rqst struct containing address to print
152 * @buf: target buffer for formatted address
153 * @len: length of target buffer
156 char *svc_print_addr(struct svc_rqst
*rqstp
, char *buf
, size_t len
)
158 return __svc_print_addr(svc_addr(rqstp
), buf
, len
);
160 EXPORT_SYMBOL_GPL(svc_print_addr
);
163 * Queue up an idle server thread. Must have pool->sp_lock held.
164 * Note: this is really a stack rather than a queue, so that we only
165 * use as many different threads as we need, and the rest don't pollute
169 svc_thread_enqueue(struct svc_pool
*pool
, struct svc_rqst
*rqstp
)
171 list_add(&rqstp
->rq_list
, &pool
->sp_threads
);
175 * Dequeue an nfsd thread. Must have pool->sp_lock held.
178 svc_thread_dequeue(struct svc_pool
*pool
, struct svc_rqst
*rqstp
)
180 list_del(&rqstp
->rq_list
);
184 * Release an skbuff after use
187 svc_release_skb(struct svc_rqst
*rqstp
)
189 struct sk_buff
*skb
= rqstp
->rq_skbuff
;
190 struct svc_deferred_req
*dr
= rqstp
->rq_deferred
;
193 rqstp
->rq_skbuff
= NULL
;
195 dprintk("svc: service %p, releasing skb %p\n", rqstp
, skb
);
196 skb_free_datagram(rqstp
->rq_sock
->sk_sk
, skb
);
199 rqstp
->rq_deferred
= NULL
;
205 * Any space to write?
207 static inline unsigned long
208 svc_sock_wspace(struct svc_sock
*svsk
)
212 if (svsk
->sk_sock
->type
== SOCK_STREAM
)
213 wspace
= sk_stream_wspace(svsk
->sk_sk
);
215 wspace
= sock_wspace(svsk
->sk_sk
);
221 * Queue up a socket with data pending. If there are idle nfsd
222 * processes, wake 'em up.
226 svc_sock_enqueue(struct svc_sock
*svsk
)
228 struct svc_serv
*serv
= svsk
->sk_server
;
229 struct svc_pool
*pool
;
230 struct svc_rqst
*rqstp
;
233 if (!(svsk
->sk_flags
&
234 ( (1<<SK_CONN
)|(1<<SK_DATA
)|(1<<SK_CLOSE
)|(1<<SK_DEFERRED
)) ))
236 if (test_bit(SK_DEAD
, &svsk
->sk_flags
))
240 pool
= svc_pool_for_cpu(svsk
->sk_server
, cpu
);
243 spin_lock_bh(&pool
->sp_lock
);
245 if (!list_empty(&pool
->sp_threads
) &&
246 !list_empty(&pool
->sp_sockets
))
248 "svc_sock_enqueue: threads and sockets both waiting??\n");
250 if (test_bit(SK_DEAD
, &svsk
->sk_flags
)) {
251 /* Don't enqueue dead sockets */
252 dprintk("svc: socket %p is dead, not enqueued\n", svsk
->sk_sk
);
256 /* Mark socket as busy. It will remain in this state until the
257 * server has processed all pending data and put the socket back
258 * on the idle list. We update SK_BUSY atomically because
259 * it also guards against trying to enqueue the svc_sock twice.
261 if (test_and_set_bit(SK_BUSY
, &svsk
->sk_flags
)) {
262 /* Don't enqueue socket while already enqueued */
263 dprintk("svc: socket %p busy, not enqueued\n", svsk
->sk_sk
);
266 BUG_ON(svsk
->sk_pool
!= NULL
);
267 svsk
->sk_pool
= pool
;
269 set_bit(SOCK_NOSPACE
, &svsk
->sk_sock
->flags
);
270 if (((atomic_read(&svsk
->sk_reserved
) + serv
->sv_max_mesg
)*2
271 > svc_sock_wspace(svsk
))
272 && !test_bit(SK_CLOSE
, &svsk
->sk_flags
)
273 && !test_bit(SK_CONN
, &svsk
->sk_flags
)) {
274 /* Don't enqueue while not enough space for reply */
275 dprintk("svc: socket %p no space, %d*2 > %ld, not enqueued\n",
276 svsk
->sk_sk
, atomic_read(&svsk
->sk_reserved
)+serv
->sv_max_mesg
,
277 svc_sock_wspace(svsk
));
278 svsk
->sk_pool
= NULL
;
279 clear_bit(SK_BUSY
, &svsk
->sk_flags
);
282 clear_bit(SOCK_NOSPACE
, &svsk
->sk_sock
->flags
);
285 if (!list_empty(&pool
->sp_threads
)) {
286 rqstp
= list_entry(pool
->sp_threads
.next
,
289 dprintk("svc: socket %p served by daemon %p\n",
291 svc_thread_dequeue(pool
, rqstp
);
294 "svc_sock_enqueue: server %p, rq_sock=%p!\n",
295 rqstp
, rqstp
->rq_sock
);
296 rqstp
->rq_sock
= svsk
;
297 atomic_inc(&svsk
->sk_inuse
);
298 rqstp
->rq_reserved
= serv
->sv_max_mesg
;
299 atomic_add(rqstp
->rq_reserved
, &svsk
->sk_reserved
);
300 BUG_ON(svsk
->sk_pool
!= pool
);
301 wake_up(&rqstp
->rq_wait
);
303 dprintk("svc: socket %p put into queue\n", svsk
->sk_sk
);
304 list_add_tail(&svsk
->sk_ready
, &pool
->sp_sockets
);
305 BUG_ON(svsk
->sk_pool
!= pool
);
309 spin_unlock_bh(&pool
->sp_lock
);
313 * Dequeue the first socket. Must be called with the pool->sp_lock held.
315 static inline struct svc_sock
*
316 svc_sock_dequeue(struct svc_pool
*pool
)
318 struct svc_sock
*svsk
;
320 if (list_empty(&pool
->sp_sockets
))
323 svsk
= list_entry(pool
->sp_sockets
.next
,
324 struct svc_sock
, sk_ready
);
325 list_del_init(&svsk
->sk_ready
);
327 dprintk("svc: socket %p dequeued, inuse=%d\n",
328 svsk
->sk_sk
, atomic_read(&svsk
->sk_inuse
));
334 * Having read something from a socket, check whether it
335 * needs to be re-enqueued.
336 * Note: SK_DATA only gets cleared when a read-attempt finds
337 * no (or insufficient) data.
340 svc_sock_received(struct svc_sock
*svsk
)
342 svsk
->sk_pool
= NULL
;
343 clear_bit(SK_BUSY
, &svsk
->sk_flags
);
344 svc_sock_enqueue(svsk
);
349 * svc_reserve - change the space reserved for the reply to a request.
350 * @rqstp: The request in question
351 * @space: new max space to reserve
353 * Each request reserves some space on the output queue of the socket
354 * to make sure the reply fits. This function reduces that reserved
355 * space to be the amount of space used already, plus @space.
358 void svc_reserve(struct svc_rqst
*rqstp
, int space
)
360 space
+= rqstp
->rq_res
.head
[0].iov_len
;
362 if (space
< rqstp
->rq_reserved
) {
363 struct svc_sock
*svsk
= rqstp
->rq_sock
;
364 atomic_sub((rqstp
->rq_reserved
- space
), &svsk
->sk_reserved
);
365 rqstp
->rq_reserved
= space
;
367 svc_sock_enqueue(svsk
);
372 * Release a socket after use.
375 svc_sock_put(struct svc_sock
*svsk
)
377 if (atomic_dec_and_test(&svsk
->sk_inuse
)) {
378 BUG_ON(! test_bit(SK_DEAD
, &svsk
->sk_flags
));
380 dprintk("svc: releasing dead socket\n");
381 if (svsk
->sk_sock
->file
)
382 sockfd_put(svsk
->sk_sock
);
384 sock_release(svsk
->sk_sock
);
385 if (svsk
->sk_info_authunix
!= NULL
)
386 svcauth_unix_info_release(svsk
->sk_info_authunix
);
392 svc_sock_release(struct svc_rqst
*rqstp
)
394 struct svc_sock
*svsk
= rqstp
->rq_sock
;
396 svc_release_skb(rqstp
);
398 svc_free_res_pages(rqstp
);
399 rqstp
->rq_res
.page_len
= 0;
400 rqstp
->rq_res
.page_base
= 0;
403 /* Reset response buffer and release
405 * But first, check that enough space was reserved
406 * for the reply, otherwise we have a bug!
408 if ((rqstp
->rq_res
.len
) > rqstp
->rq_reserved
)
409 printk(KERN_ERR
"RPC request reserved %d but used %d\n",
413 rqstp
->rq_res
.head
[0].iov_len
= 0;
414 svc_reserve(rqstp
, 0);
415 rqstp
->rq_sock
= NULL
;
421 * External function to wake up a server waiting for data
422 * This really only makes sense for services like lockd
423 * which have exactly one thread anyway.
426 svc_wake_up(struct svc_serv
*serv
)
428 struct svc_rqst
*rqstp
;
430 struct svc_pool
*pool
;
432 for (i
= 0; i
< serv
->sv_nrpools
; i
++) {
433 pool
= &serv
->sv_pools
[i
];
435 spin_lock_bh(&pool
->sp_lock
);
436 if (!list_empty(&pool
->sp_threads
)) {
437 rqstp
= list_entry(pool
->sp_threads
.next
,
440 dprintk("svc: daemon %p woken up.\n", rqstp
);
442 svc_thread_dequeue(pool, rqstp);
443 rqstp->rq_sock = NULL;
445 wake_up(&rqstp
->rq_wait
);
447 spin_unlock_bh(&pool
->sp_lock
);
451 union svc_pktinfo_u
{
452 struct in_pktinfo pkti
;
453 struct in6_pktinfo pkti6
;
455 #define SVC_PKTINFO_SPACE \
456 CMSG_SPACE(sizeof(union svc_pktinfo_u))
458 static void svc_set_cmsg_data(struct svc_rqst
*rqstp
, struct cmsghdr
*cmh
)
460 switch (rqstp
->rq_sock
->sk_sk
->sk_family
) {
462 struct in_pktinfo
*pki
= CMSG_DATA(cmh
);
464 cmh
->cmsg_level
= SOL_IP
;
465 cmh
->cmsg_type
= IP_PKTINFO
;
466 pki
->ipi_ifindex
= 0;
467 pki
->ipi_spec_dst
.s_addr
= rqstp
->rq_daddr
.addr
.s_addr
;
468 cmh
->cmsg_len
= CMSG_LEN(sizeof(*pki
));
473 struct in6_pktinfo
*pki
= CMSG_DATA(cmh
);
475 cmh
->cmsg_level
= SOL_IPV6
;
476 cmh
->cmsg_type
= IPV6_PKTINFO
;
477 pki
->ipi6_ifindex
= 0;
478 ipv6_addr_copy(&pki
->ipi6_addr
,
479 &rqstp
->rq_daddr
.addr6
);
480 cmh
->cmsg_len
= CMSG_LEN(sizeof(*pki
));
488 * Generic sendto routine
491 svc_sendto(struct svc_rqst
*rqstp
, struct xdr_buf
*xdr
)
493 struct svc_sock
*svsk
= rqstp
->rq_sock
;
494 struct socket
*sock
= svsk
->sk_sock
;
498 long all
[SVC_PKTINFO_SPACE
/ sizeof(long)];
500 struct cmsghdr
*cmh
= &buffer
.hdr
;
504 struct page
**ppage
= xdr
->pages
;
505 size_t base
= xdr
->page_base
;
506 unsigned int pglen
= xdr
->page_len
;
507 unsigned int flags
= MSG_MORE
;
508 char buf
[RPC_MAX_ADDRBUFLEN
];
512 if (rqstp
->rq_prot
== IPPROTO_UDP
) {
513 struct msghdr msg
= {
514 .msg_name
= &rqstp
->rq_addr
,
515 .msg_namelen
= rqstp
->rq_addrlen
,
517 .msg_controllen
= sizeof(buffer
),
518 .msg_flags
= MSG_MORE
,
521 svc_set_cmsg_data(rqstp
, cmh
);
523 if (sock_sendmsg(sock
, &msg
, 0) < 0)
528 if (slen
== xdr
->head
[0].iov_len
)
530 len
= kernel_sendpage(sock
, rqstp
->rq_respages
[0], 0,
531 xdr
->head
[0].iov_len
, flags
);
532 if (len
!= xdr
->head
[0].iov_len
)
534 slen
-= xdr
->head
[0].iov_len
;
539 size
= PAGE_SIZE
- base
< pglen
? PAGE_SIZE
- base
: pglen
;
543 result
= kernel_sendpage(sock
, *ppage
, base
, size
, flags
);
550 size
= PAGE_SIZE
< pglen
? PAGE_SIZE
: pglen
;
555 if (xdr
->tail
[0].iov_len
) {
556 result
= kernel_sendpage(sock
, rqstp
->rq_respages
[0],
557 ((unsigned long)xdr
->tail
[0].iov_base
)
559 xdr
->tail
[0].iov_len
, 0);
565 dprintk("svc: socket %p sendto([%p %Zu... ], %d) = %d (addr %s)\n",
566 rqstp
->rq_sock
, xdr
->head
[0].iov_base
, xdr
->head
[0].iov_len
,
567 xdr
->len
, len
, svc_print_addr(rqstp
, buf
, sizeof(buf
)));
573 * Report socket names for nfsdfs
575 static int one_sock_name(char *buf
, struct svc_sock
*svsk
)
579 switch(svsk
->sk_sk
->sk_family
) {
581 len
= sprintf(buf
, "ipv4 %s %u.%u.%u.%u %d\n",
582 svsk
->sk_sk
->sk_protocol
==IPPROTO_UDP
?
584 NIPQUAD(inet_sk(svsk
->sk_sk
)->rcv_saddr
),
585 inet_sk(svsk
->sk_sk
)->num
);
588 len
= sprintf(buf
, "*unknown-%d*\n",
589 svsk
->sk_sk
->sk_family
);
595 svc_sock_names(char *buf
, struct svc_serv
*serv
, char *toclose
)
597 struct svc_sock
*svsk
, *closesk
= NULL
;
602 spin_lock_bh(&serv
->sv_lock
);
603 list_for_each_entry(svsk
, &serv
->sv_permsocks
, sk_list
) {
604 int onelen
= one_sock_name(buf
+len
, svsk
);
605 if (toclose
&& strcmp(toclose
, buf
+len
) == 0)
610 spin_unlock_bh(&serv
->sv_lock
);
612 /* Should unregister with portmap, but you cannot
613 * unregister just one protocol...
615 svc_close_socket(closesk
);
620 EXPORT_SYMBOL(svc_sock_names
);
623 * Check input queue length
626 svc_recv_available(struct svc_sock
*svsk
)
628 struct socket
*sock
= svsk
->sk_sock
;
631 err
= kernel_sock_ioctl(sock
, TIOCINQ
, (unsigned long) &avail
);
633 return (err
>= 0)? avail
: err
;
637 * Generic recvfrom routine.
640 svc_recvfrom(struct svc_rqst
*rqstp
, struct kvec
*iov
, int nr
, int buflen
)
642 struct svc_sock
*svsk
= rqstp
->rq_sock
;
643 struct msghdr msg
= {
644 .msg_flags
= MSG_DONTWAIT
,
648 len
= kernel_recvmsg(svsk
->sk_sock
, &msg
, iov
, nr
, buflen
,
651 /* sock_recvmsg doesn't fill in the name/namelen, so we must..
653 memcpy(&rqstp
->rq_addr
, &svsk
->sk_remote
, svsk
->sk_remotelen
);
654 rqstp
->rq_addrlen
= svsk
->sk_remotelen
;
656 dprintk("svc: socket %p recvfrom(%p, %Zu) = %d\n",
657 svsk
, iov
[0].iov_base
, iov
[0].iov_len
, len
);
663 * Set socket snd and rcv buffer lengths
666 svc_sock_setbufsize(struct socket
*sock
, unsigned int snd
, unsigned int rcv
)
670 oldfs
= get_fs(); set_fs(KERNEL_DS
);
671 sock_setsockopt(sock
, SOL_SOCKET
, SO_SNDBUF
,
672 (char*)&snd
, sizeof(snd
));
673 sock_setsockopt(sock
, SOL_SOCKET
, SO_RCVBUF
,
674 (char*)&rcv
, sizeof(rcv
));
676 /* sock_setsockopt limits use to sysctl_?mem_max,
677 * which isn't acceptable. Until that is made conditional
678 * on not having CAP_SYS_RESOURCE or similar, we go direct...
679 * DaveM said I could!
682 sock
->sk
->sk_sndbuf
= snd
* 2;
683 sock
->sk
->sk_rcvbuf
= rcv
* 2;
684 sock
->sk
->sk_userlocks
|= SOCK_SNDBUF_LOCK
|SOCK_RCVBUF_LOCK
;
685 release_sock(sock
->sk
);
689 * INET callback when data has been received on the socket.
692 svc_udp_data_ready(struct sock
*sk
, int count
)
694 struct svc_sock
*svsk
= (struct svc_sock
*)sk
->sk_user_data
;
697 dprintk("svc: socket %p(inet %p), count=%d, busy=%d\n",
698 svsk
, sk
, count
, test_bit(SK_BUSY
, &svsk
->sk_flags
));
699 set_bit(SK_DATA
, &svsk
->sk_flags
);
700 svc_sock_enqueue(svsk
);
702 if (sk
->sk_sleep
&& waitqueue_active(sk
->sk_sleep
))
703 wake_up_interruptible(sk
->sk_sleep
);
707 * INET callback when space is newly available on the socket.
710 svc_write_space(struct sock
*sk
)
712 struct svc_sock
*svsk
= (struct svc_sock
*)(sk
->sk_user_data
);
715 dprintk("svc: socket %p(inet %p), write_space busy=%d\n",
716 svsk
, sk
, test_bit(SK_BUSY
, &svsk
->sk_flags
));
717 svc_sock_enqueue(svsk
);
720 if (sk
->sk_sleep
&& waitqueue_active(sk
->sk_sleep
)) {
721 dprintk("RPC svc_write_space: someone sleeping on %p\n",
723 wake_up_interruptible(sk
->sk_sleep
);
727 static inline void svc_udp_get_dest_address(struct svc_rqst
*rqstp
,
730 switch (rqstp
->rq_sock
->sk_sk
->sk_family
) {
732 struct in_pktinfo
*pki
= CMSG_DATA(cmh
);
733 rqstp
->rq_daddr
.addr
.s_addr
= pki
->ipi_spec_dst
.s_addr
;
737 struct in6_pktinfo
*pki
= CMSG_DATA(cmh
);
738 ipv6_addr_copy(&rqstp
->rq_daddr
.addr6
, &pki
->ipi6_addr
);
745 * Receive a datagram from a UDP socket.
748 svc_udp_recvfrom(struct svc_rqst
*rqstp
)
750 struct svc_sock
*svsk
= rqstp
->rq_sock
;
751 struct svc_serv
*serv
= svsk
->sk_server
;
755 long all
[SVC_PKTINFO_SPACE
/ sizeof(long)];
757 struct cmsghdr
*cmh
= &buffer
.hdr
;
759 struct msghdr msg
= {
760 .msg_name
= svc_addr(rqstp
),
762 .msg_controllen
= sizeof(buffer
),
763 .msg_flags
= MSG_DONTWAIT
,
766 if (test_and_clear_bit(SK_CHNGBUF
, &svsk
->sk_flags
))
767 /* udp sockets need large rcvbuf as all pending
768 * requests are still in that buffer. sndbuf must
769 * also be large enough that there is enough space
770 * for one reply per thread. We count all threads
771 * rather than threads in a particular pool, which
772 * provides an upper bound on the number of threads
773 * which will access the socket.
775 svc_sock_setbufsize(svsk
->sk_sock
,
776 (serv
->sv_nrthreads
+3) * serv
->sv_max_mesg
,
777 (serv
->sv_nrthreads
+3) * serv
->sv_max_mesg
);
779 if ((rqstp
->rq_deferred
= svc_deferred_dequeue(svsk
))) {
780 svc_sock_received(svsk
);
781 return svc_deferred_recv(rqstp
);
784 if (test_bit(SK_CLOSE
, &svsk
->sk_flags
)) {
785 svc_delete_socket(svsk
);
789 clear_bit(SK_DATA
, &svsk
->sk_flags
);
790 while ((err
= kernel_recvmsg(svsk
->sk_sock
, &msg
, NULL
,
791 0, 0, MSG_PEEK
| MSG_DONTWAIT
)) < 0 ||
792 (skb
= skb_recv_datagram(svsk
->sk_sk
, 0, 1, &err
)) == NULL
) {
793 if (err
== -EAGAIN
) {
794 svc_sock_received(svsk
);
797 /* possibly an icmp error */
798 dprintk("svc: recvfrom returned error %d\n", -err
);
800 rqstp
->rq_addrlen
= sizeof(rqstp
->rq_addr
);
801 if (skb
->tstamp
.off_sec
== 0) {
804 tv
.tv_sec
= xtime
.tv_sec
;
805 tv
.tv_usec
= xtime
.tv_nsec
/ NSEC_PER_USEC
;
806 skb_set_timestamp(skb
, &tv
);
807 /* Don't enable netstamp, sunrpc doesn't
808 need that much accuracy */
810 skb_get_timestamp(skb
, &svsk
->sk_sk
->sk_stamp
);
811 set_bit(SK_DATA
, &svsk
->sk_flags
); /* there may be more data... */
814 * Maybe more packets - kick another thread ASAP.
816 svc_sock_received(svsk
);
818 len
= skb
->len
- sizeof(struct udphdr
);
819 rqstp
->rq_arg
.len
= len
;
821 rqstp
->rq_prot
= IPPROTO_UDP
;
823 if (cmh
->cmsg_level
!= IPPROTO_IP
||
824 cmh
->cmsg_type
!= IP_PKTINFO
) {
826 printk("rpcsvc: received unknown control message:"
828 cmh
->cmsg_level
, cmh
->cmsg_type
);
829 skb_free_datagram(svsk
->sk_sk
, skb
);
832 svc_udp_get_dest_address(rqstp
, cmh
);
834 if (skb_is_nonlinear(skb
)) {
835 /* we have to copy */
837 if (csum_partial_copy_to_xdr(&rqstp
->rq_arg
, skb
)) {
840 skb_free_datagram(svsk
->sk_sk
, skb
);
844 skb_free_datagram(svsk
->sk_sk
, skb
);
846 /* we can use it in-place */
847 rqstp
->rq_arg
.head
[0].iov_base
= skb
->data
+ sizeof(struct udphdr
);
848 rqstp
->rq_arg
.head
[0].iov_len
= len
;
849 if (skb_checksum_complete(skb
)) {
850 skb_free_datagram(svsk
->sk_sk
, skb
);
853 rqstp
->rq_skbuff
= skb
;
856 rqstp
->rq_arg
.page_base
= 0;
857 if (len
<= rqstp
->rq_arg
.head
[0].iov_len
) {
858 rqstp
->rq_arg
.head
[0].iov_len
= len
;
859 rqstp
->rq_arg
.page_len
= 0;
860 rqstp
->rq_respages
= rqstp
->rq_pages
+1;
862 rqstp
->rq_arg
.page_len
= len
- rqstp
->rq_arg
.head
[0].iov_len
;
863 rqstp
->rq_respages
= rqstp
->rq_pages
+ 1 +
864 (rqstp
->rq_arg
.page_len
+ PAGE_SIZE
- 1)/ PAGE_SIZE
;
868 serv
->sv_stats
->netudpcnt
++;
874 svc_udp_sendto(struct svc_rqst
*rqstp
)
878 error
= svc_sendto(rqstp
, &rqstp
->rq_res
);
879 if (error
== -ECONNREFUSED
)
880 /* ICMP error on earlier request. */
881 error
= svc_sendto(rqstp
, &rqstp
->rq_res
);
887 svc_udp_init(struct svc_sock
*svsk
)
892 svsk
->sk_sk
->sk_data_ready
= svc_udp_data_ready
;
893 svsk
->sk_sk
->sk_write_space
= svc_write_space
;
894 svsk
->sk_recvfrom
= svc_udp_recvfrom
;
895 svsk
->sk_sendto
= svc_udp_sendto
;
897 /* initialise setting must have enough space to
898 * receive and respond to one request.
899 * svc_udp_recvfrom will re-adjust if necessary
901 svc_sock_setbufsize(svsk
->sk_sock
,
902 3 * svsk
->sk_server
->sv_max_mesg
,
903 3 * svsk
->sk_server
->sv_max_mesg
);
905 set_bit(SK_DATA
, &svsk
->sk_flags
); /* might have come in before data_ready set up */
906 set_bit(SK_CHNGBUF
, &svsk
->sk_flags
);
910 /* make sure we get destination address info */
911 svsk
->sk_sock
->ops
->setsockopt(svsk
->sk_sock
, IPPROTO_IP
, IP_PKTINFO
,
912 (char __user
*)&one
, sizeof(one
));
917 * A data_ready event on a listening socket means there's a connection
918 * pending. Do not use state_change as a substitute for it.
921 svc_tcp_listen_data_ready(struct sock
*sk
, int count_unused
)
923 struct svc_sock
*svsk
= (struct svc_sock
*)sk
->sk_user_data
;
925 dprintk("svc: socket %p TCP (listen) state change %d\n",
929 * This callback may called twice when a new connection
930 * is established as a child socket inherits everything
931 * from a parent LISTEN socket.
932 * 1) data_ready method of the parent socket will be called
933 * when one of child sockets become ESTABLISHED.
934 * 2) data_ready method of the child socket may be called
935 * when it receives data before the socket is accepted.
936 * In case of 2, we should ignore it silently.
938 if (sk
->sk_state
== TCP_LISTEN
) {
940 set_bit(SK_CONN
, &svsk
->sk_flags
);
941 svc_sock_enqueue(svsk
);
943 printk("svc: socket %p: no user data\n", sk
);
946 if (sk
->sk_sleep
&& waitqueue_active(sk
->sk_sleep
))
947 wake_up_interruptible_all(sk
->sk_sleep
);
951 * A state change on a connected socket means it's dying or dead.
954 svc_tcp_state_change(struct sock
*sk
)
956 struct svc_sock
*svsk
= (struct svc_sock
*)sk
->sk_user_data
;
958 dprintk("svc: socket %p TCP (connected) state change %d (svsk %p)\n",
959 sk
, sk
->sk_state
, sk
->sk_user_data
);
962 printk("svc: socket %p: no user data\n", sk
);
964 set_bit(SK_CLOSE
, &svsk
->sk_flags
);
965 svc_sock_enqueue(svsk
);
967 if (sk
->sk_sleep
&& waitqueue_active(sk
->sk_sleep
))
968 wake_up_interruptible_all(sk
->sk_sleep
);
972 svc_tcp_data_ready(struct sock
*sk
, int count
)
974 struct svc_sock
*svsk
= (struct svc_sock
*)sk
->sk_user_data
;
976 dprintk("svc: socket %p TCP data ready (svsk %p)\n",
977 sk
, sk
->sk_user_data
);
979 set_bit(SK_DATA
, &svsk
->sk_flags
);
980 svc_sock_enqueue(svsk
);
982 if (sk
->sk_sleep
&& waitqueue_active(sk
->sk_sleep
))
983 wake_up_interruptible(sk
->sk_sleep
);
986 static inline int svc_port_is_privileged(struct sockaddr
*sin
)
988 switch (sin
->sa_family
) {
990 return ntohs(((struct sockaddr_in
*)sin
)->sin_port
)
993 return ntohs(((struct sockaddr_in6
*)sin
)->sin6_port
)
1001 * Accept a TCP connection
1004 svc_tcp_accept(struct svc_sock
*svsk
)
1006 struct sockaddr_storage addr
;
1007 struct sockaddr
*sin
= (struct sockaddr
*) &addr
;
1008 struct svc_serv
*serv
= svsk
->sk_server
;
1009 struct socket
*sock
= svsk
->sk_sock
;
1010 struct socket
*newsock
;
1011 struct svc_sock
*newsvsk
;
1013 char buf
[RPC_MAX_ADDRBUFLEN
];
1015 dprintk("svc: tcp_accept %p sock %p\n", svsk
, sock
);
1019 clear_bit(SK_CONN
, &svsk
->sk_flags
);
1020 err
= kernel_accept(sock
, &newsock
, O_NONBLOCK
);
1023 printk(KERN_WARNING
"%s: no more sockets!\n",
1025 else if (err
!= -EAGAIN
&& net_ratelimit())
1026 printk(KERN_WARNING
"%s: accept failed (err %d)!\n",
1027 serv
->sv_name
, -err
);
1031 set_bit(SK_CONN
, &svsk
->sk_flags
);
1032 svc_sock_enqueue(svsk
);
1034 err
= kernel_getpeername(newsock
, sin
, &slen
);
1036 if (net_ratelimit())
1037 printk(KERN_WARNING
"%s: peername failed (err %d)!\n",
1038 serv
->sv_name
, -err
);
1039 goto failed
; /* aborted connection or whatever */
1042 /* Ideally, we would want to reject connections from unauthorized
1043 * hosts here, but when we get encryption, the IP of the host won't
1044 * tell us anything. For now just warn about unpriv connections.
1046 if (!svc_port_is_privileged(sin
)) {
1047 dprintk(KERN_WARNING
1048 "%s: connect from unprivileged port: %s\n",
1050 __svc_print_addr(sin
, buf
, sizeof(buf
)));
1052 dprintk("%s: connect from %s\n", serv
->sv_name
,
1053 __svc_print_addr(sin
, buf
, sizeof(buf
)));
1055 /* make sure that a write doesn't block forever when
1058 newsock
->sk
->sk_sndtimeo
= HZ
*30;
1060 if (!(newsvsk
= svc_setup_socket(serv
, newsock
, &err
,
1061 (SVC_SOCK_ANONYMOUS
| SVC_SOCK_TEMPORARY
))))
1063 memcpy(&newsvsk
->sk_remote
, sin
, slen
);
1064 newsvsk
->sk_remotelen
= slen
;
1066 svc_sock_received(newsvsk
);
1068 /* make sure that we don't have too many active connections.
1069 * If we have, something must be dropped.
1071 * There's no point in trying to do random drop here for
1072 * DoS prevention. The NFS clients does 1 reconnect in 15
1073 * seconds. An attacker can easily beat that.
1075 * The only somewhat efficient mechanism would be if drop
1076 * old connections from the same IP first. But right now
1077 * we don't even record the client IP in svc_sock.
1079 if (serv
->sv_tmpcnt
> (serv
->sv_nrthreads
+3)*20) {
1080 struct svc_sock
*svsk
= NULL
;
1081 spin_lock_bh(&serv
->sv_lock
);
1082 if (!list_empty(&serv
->sv_tempsocks
)) {
1083 if (net_ratelimit()) {
1084 /* Try to help the admin */
1085 printk(KERN_NOTICE
"%s: too many open TCP "
1086 "sockets, consider increasing the "
1087 "number of nfsd threads\n",
1090 "%s: last TCP connect from %s\n",
1091 serv
->sv_name
, buf
);
1094 * Always select the oldest socket. It's not fair,
1097 svsk
= list_entry(serv
->sv_tempsocks
.prev
,
1100 set_bit(SK_CLOSE
, &svsk
->sk_flags
);
1101 atomic_inc(&svsk
->sk_inuse
);
1103 spin_unlock_bh(&serv
->sv_lock
);
1106 svc_sock_enqueue(svsk
);
1113 serv
->sv_stats
->nettcpconn
++;
1118 sock_release(newsock
);
1123 * Receive data from a TCP socket.
1126 svc_tcp_recvfrom(struct svc_rqst
*rqstp
)
1128 struct svc_sock
*svsk
= rqstp
->rq_sock
;
1129 struct svc_serv
*serv
= svsk
->sk_server
;
1134 dprintk("svc: tcp_recv %p data %d conn %d close %d\n",
1135 svsk
, test_bit(SK_DATA
, &svsk
->sk_flags
),
1136 test_bit(SK_CONN
, &svsk
->sk_flags
),
1137 test_bit(SK_CLOSE
, &svsk
->sk_flags
));
1139 if ((rqstp
->rq_deferred
= svc_deferred_dequeue(svsk
))) {
1140 svc_sock_received(svsk
);
1141 return svc_deferred_recv(rqstp
);
1144 if (test_bit(SK_CLOSE
, &svsk
->sk_flags
)) {
1145 svc_delete_socket(svsk
);
1149 if (svsk
->sk_sk
->sk_state
== TCP_LISTEN
) {
1150 svc_tcp_accept(svsk
);
1151 svc_sock_received(svsk
);
1155 if (test_and_clear_bit(SK_CHNGBUF
, &svsk
->sk_flags
))
1156 /* sndbuf needs to have room for one request
1157 * per thread, otherwise we can stall even when the
1158 * network isn't a bottleneck.
1160 * We count all threads rather than threads in a
1161 * particular pool, which provides an upper bound
1162 * on the number of threads which will access the socket.
1164 * rcvbuf just needs to be able to hold a few requests.
1165 * Normally they will be removed from the queue
1166 * as soon a a complete request arrives.
1168 svc_sock_setbufsize(svsk
->sk_sock
,
1169 (serv
->sv_nrthreads
+3) * serv
->sv_max_mesg
,
1170 3 * serv
->sv_max_mesg
);
1172 clear_bit(SK_DATA
, &svsk
->sk_flags
);
1174 /* Receive data. If we haven't got the record length yet, get
1175 * the next four bytes. Otherwise try to gobble up as much as
1176 * possible up to the complete record length.
1178 if (svsk
->sk_tcplen
< 4) {
1179 unsigned long want
= 4 - svsk
->sk_tcplen
;
1182 iov
.iov_base
= ((char *) &svsk
->sk_reclen
) + svsk
->sk_tcplen
;
1184 if ((len
= svc_recvfrom(rqstp
, &iov
, 1, want
)) < 0)
1186 svsk
->sk_tcplen
+= len
;
1189 dprintk("svc: short recvfrom while reading record length (%d of %lu)\n",
1191 svc_sock_received(svsk
);
1192 return -EAGAIN
; /* record header not complete */
1195 svsk
->sk_reclen
= ntohl(svsk
->sk_reclen
);
1196 if (!(svsk
->sk_reclen
& 0x80000000)) {
1197 /* FIXME: technically, a record can be fragmented,
1198 * and non-terminal fragments will not have the top
1199 * bit set in the fragment length header.
1200 * But apparently no known nfs clients send fragmented
1202 if (net_ratelimit())
1203 printk(KERN_NOTICE
"RPC: bad TCP reclen 0x%08lx"
1204 " (non-terminal)\n",
1205 (unsigned long) svsk
->sk_reclen
);
1208 svsk
->sk_reclen
&= 0x7fffffff;
1209 dprintk("svc: TCP record, %d bytes\n", svsk
->sk_reclen
);
1210 if (svsk
->sk_reclen
> serv
->sv_max_mesg
) {
1211 if (net_ratelimit())
1212 printk(KERN_NOTICE
"RPC: bad TCP reclen 0x%08lx"
1214 (unsigned long) svsk
->sk_reclen
);
1219 /* Check whether enough data is available */
1220 len
= svc_recv_available(svsk
);
1224 if (len
< svsk
->sk_reclen
) {
1225 dprintk("svc: incomplete TCP record (%d of %d)\n",
1226 len
, svsk
->sk_reclen
);
1227 svc_sock_received(svsk
);
1228 return -EAGAIN
; /* record not complete */
1230 len
= svsk
->sk_reclen
;
1231 set_bit(SK_DATA
, &svsk
->sk_flags
);
1233 vec
= rqstp
->rq_vec
;
1234 vec
[0] = rqstp
->rq_arg
.head
[0];
1237 while (vlen
< len
) {
1238 vec
[pnum
].iov_base
= page_address(rqstp
->rq_pages
[pnum
]);
1239 vec
[pnum
].iov_len
= PAGE_SIZE
;
1243 rqstp
->rq_respages
= &rqstp
->rq_pages
[pnum
];
1245 /* Now receive data */
1246 len
= svc_recvfrom(rqstp
, vec
, pnum
, len
);
1250 dprintk("svc: TCP complete record (%d bytes)\n", len
);
1251 rqstp
->rq_arg
.len
= len
;
1252 rqstp
->rq_arg
.page_base
= 0;
1253 if (len
<= rqstp
->rq_arg
.head
[0].iov_len
) {
1254 rqstp
->rq_arg
.head
[0].iov_len
= len
;
1255 rqstp
->rq_arg
.page_len
= 0;
1257 rqstp
->rq_arg
.page_len
= len
- rqstp
->rq_arg
.head
[0].iov_len
;
1260 rqstp
->rq_skbuff
= NULL
;
1261 rqstp
->rq_prot
= IPPROTO_TCP
;
1263 /* Reset TCP read info */
1264 svsk
->sk_reclen
= 0;
1265 svsk
->sk_tcplen
= 0;
1267 svc_sock_received(svsk
);
1269 serv
->sv_stats
->nettcpcnt
++;
1274 svc_delete_socket(svsk
);
1278 if (len
== -EAGAIN
) {
1279 dprintk("RPC: TCP recvfrom got EAGAIN\n");
1280 svc_sock_received(svsk
);
1282 printk(KERN_NOTICE
"%s: recvfrom returned errno %d\n",
1283 svsk
->sk_server
->sv_name
, -len
);
1291 * Send out data on TCP socket.
1294 svc_tcp_sendto(struct svc_rqst
*rqstp
)
1296 struct xdr_buf
*xbufp
= &rqstp
->rq_res
;
1300 /* Set up the first element of the reply kvec.
1301 * Any other kvecs that may be in use have been taken
1302 * care of by the server implementation itself.
1304 reclen
= htonl(0x80000000|((xbufp
->len
) - 4));
1305 memcpy(xbufp
->head
[0].iov_base
, &reclen
, 4);
1307 if (test_bit(SK_DEAD
, &rqstp
->rq_sock
->sk_flags
))
1310 sent
= svc_sendto(rqstp
, &rqstp
->rq_res
);
1311 if (sent
!= xbufp
->len
) {
1312 printk(KERN_NOTICE
"rpc-srv/tcp: %s: %s %d when sending %d bytes - shutting down socket\n",
1313 rqstp
->rq_sock
->sk_server
->sv_name
,
1314 (sent
<0)?"got error":"sent only",
1316 set_bit(SK_CLOSE
, &rqstp
->rq_sock
->sk_flags
);
1317 svc_sock_enqueue(rqstp
->rq_sock
);
1324 svc_tcp_init(struct svc_sock
*svsk
)
1326 struct sock
*sk
= svsk
->sk_sk
;
1327 struct tcp_sock
*tp
= tcp_sk(sk
);
1329 svsk
->sk_recvfrom
= svc_tcp_recvfrom
;
1330 svsk
->sk_sendto
= svc_tcp_sendto
;
1332 if (sk
->sk_state
== TCP_LISTEN
) {
1333 dprintk("setting up TCP socket for listening\n");
1334 sk
->sk_data_ready
= svc_tcp_listen_data_ready
;
1335 set_bit(SK_CONN
, &svsk
->sk_flags
);
1337 dprintk("setting up TCP socket for reading\n");
1338 sk
->sk_state_change
= svc_tcp_state_change
;
1339 sk
->sk_data_ready
= svc_tcp_data_ready
;
1340 sk
->sk_write_space
= svc_write_space
;
1342 svsk
->sk_reclen
= 0;
1343 svsk
->sk_tcplen
= 0;
1345 tp
->nonagle
= 1; /* disable Nagle's algorithm */
1347 /* initialise setting must have enough space to
1348 * receive and respond to one request.
1349 * svc_tcp_recvfrom will re-adjust if necessary
1351 svc_sock_setbufsize(svsk
->sk_sock
,
1352 3 * svsk
->sk_server
->sv_max_mesg
,
1353 3 * svsk
->sk_server
->sv_max_mesg
);
1355 set_bit(SK_CHNGBUF
, &svsk
->sk_flags
);
1356 set_bit(SK_DATA
, &svsk
->sk_flags
);
1357 if (sk
->sk_state
!= TCP_ESTABLISHED
)
1358 set_bit(SK_CLOSE
, &svsk
->sk_flags
);
1363 svc_sock_update_bufs(struct svc_serv
*serv
)
1366 * The number of server threads has changed. Update
1367 * rcvbuf and sndbuf accordingly on all sockets
1369 struct list_head
*le
;
1371 spin_lock_bh(&serv
->sv_lock
);
1372 list_for_each(le
, &serv
->sv_permsocks
) {
1373 struct svc_sock
*svsk
=
1374 list_entry(le
, struct svc_sock
, sk_list
);
1375 set_bit(SK_CHNGBUF
, &svsk
->sk_flags
);
1377 list_for_each(le
, &serv
->sv_tempsocks
) {
1378 struct svc_sock
*svsk
=
1379 list_entry(le
, struct svc_sock
, sk_list
);
1380 set_bit(SK_CHNGBUF
, &svsk
->sk_flags
);
1382 spin_unlock_bh(&serv
->sv_lock
);
1386 * Receive the next request on any socket. This code is carefully
1387 * organised not to touch any cachelines in the shared svc_serv
1388 * structure, only cachelines in the local svc_pool.
1391 svc_recv(struct svc_rqst
*rqstp
, long timeout
)
1393 struct svc_sock
*svsk
= NULL
;
1394 struct svc_serv
*serv
= rqstp
->rq_server
;
1395 struct svc_pool
*pool
= rqstp
->rq_pool
;
1398 struct xdr_buf
*arg
;
1399 DECLARE_WAITQUEUE(wait
, current
);
1401 dprintk("svc: server %p waiting for data (to = %ld)\n",
1406 "svc_recv: service %p, socket not NULL!\n",
1408 if (waitqueue_active(&rqstp
->rq_wait
))
1410 "svc_recv: service %p, wait queue active!\n",
1414 /* now allocate needed pages. If we get a failure, sleep briefly */
1415 pages
= (serv
->sv_max_mesg
+ PAGE_SIZE
) / PAGE_SIZE
;
1416 for (i
=0; i
< pages
; i
++)
1417 while (rqstp
->rq_pages
[i
] == NULL
) {
1418 struct page
*p
= alloc_page(GFP_KERNEL
);
1420 schedule_timeout_uninterruptible(msecs_to_jiffies(500));
1421 rqstp
->rq_pages
[i
] = p
;
1423 rqstp
->rq_pages
[i
++] = NULL
; /* this might be seen in nfs_read_actor */
1424 BUG_ON(pages
>= RPCSVC_MAXPAGES
);
1426 /* Make arg->head point to first page and arg->pages point to rest */
1427 arg
= &rqstp
->rq_arg
;
1428 arg
->head
[0].iov_base
= page_address(rqstp
->rq_pages
[0]);
1429 arg
->head
[0].iov_len
= PAGE_SIZE
;
1430 arg
->pages
= rqstp
->rq_pages
+ 1;
1432 /* save at least one page for response */
1433 arg
->page_len
= (pages
-2)*PAGE_SIZE
;
1434 arg
->len
= (pages
-1)*PAGE_SIZE
;
1435 arg
->tail
[0].iov_len
= 0;
1442 spin_lock_bh(&pool
->sp_lock
);
1443 if ((svsk
= svc_sock_dequeue(pool
)) != NULL
) {
1444 rqstp
->rq_sock
= svsk
;
1445 atomic_inc(&svsk
->sk_inuse
);
1446 rqstp
->rq_reserved
= serv
->sv_max_mesg
;
1447 atomic_add(rqstp
->rq_reserved
, &svsk
->sk_reserved
);
1449 /* No data pending. Go to sleep */
1450 svc_thread_enqueue(pool
, rqstp
);
1453 * We have to be able to interrupt this wait
1454 * to bring down the daemons ...
1456 set_current_state(TASK_INTERRUPTIBLE
);
1457 add_wait_queue(&rqstp
->rq_wait
, &wait
);
1458 spin_unlock_bh(&pool
->sp_lock
);
1460 schedule_timeout(timeout
);
1464 spin_lock_bh(&pool
->sp_lock
);
1465 remove_wait_queue(&rqstp
->rq_wait
, &wait
);
1467 if (!(svsk
= rqstp
->rq_sock
)) {
1468 svc_thread_dequeue(pool
, rqstp
);
1469 spin_unlock_bh(&pool
->sp_lock
);
1470 dprintk("svc: server %p, no data yet\n", rqstp
);
1471 return signalled()? -EINTR
: -EAGAIN
;
1474 spin_unlock_bh(&pool
->sp_lock
);
1476 dprintk("svc: server %p, pool %u, socket %p, inuse=%d\n",
1477 rqstp
, pool
->sp_id
, svsk
, atomic_read(&svsk
->sk_inuse
));
1478 len
= svsk
->sk_recvfrom(rqstp
);
1479 dprintk("svc: got len=%d\n", len
);
1481 /* No data, incomplete (TCP) read, or accept() */
1482 if (len
== 0 || len
== -EAGAIN
) {
1483 rqstp
->rq_res
.len
= 0;
1484 svc_sock_release(rqstp
);
1487 svsk
->sk_lastrecv
= get_seconds();
1488 clear_bit(SK_OLD
, &svsk
->sk_flags
);
1490 rqstp
->rq_secure
= svc_port_is_privileged(svc_addr(rqstp
));
1491 rqstp
->rq_chandle
.defer
= svc_defer
;
1494 serv
->sv_stats
->netcnt
++;
1502 svc_drop(struct svc_rqst
*rqstp
)
1504 dprintk("svc: socket %p dropped request\n", rqstp
->rq_sock
);
1505 svc_sock_release(rqstp
);
1509 * Return reply to client.
1512 svc_send(struct svc_rqst
*rqstp
)
1514 struct svc_sock
*svsk
;
1518 if ((svsk
= rqstp
->rq_sock
) == NULL
) {
1519 printk(KERN_WARNING
"NULL socket pointer in %s:%d\n",
1520 __FILE__
, __LINE__
);
1524 /* release the receive skb before sending the reply */
1525 svc_release_skb(rqstp
);
1527 /* calculate over-all length */
1528 xb
= & rqstp
->rq_res
;
1529 xb
->len
= xb
->head
[0].iov_len
+
1531 xb
->tail
[0].iov_len
;
1533 /* Grab svsk->sk_mutex to serialize outgoing data. */
1534 mutex_lock(&svsk
->sk_mutex
);
1535 if (test_bit(SK_DEAD
, &svsk
->sk_flags
))
1538 len
= svsk
->sk_sendto(rqstp
);
1539 mutex_unlock(&svsk
->sk_mutex
);
1540 svc_sock_release(rqstp
);
1542 if (len
== -ECONNREFUSED
|| len
== -ENOTCONN
|| len
== -EAGAIN
)
1548 * Timer function to close old temporary sockets, using
1549 * a mark-and-sweep algorithm.
1552 svc_age_temp_sockets(unsigned long closure
)
1554 struct svc_serv
*serv
= (struct svc_serv
*)closure
;
1555 struct svc_sock
*svsk
;
1556 struct list_head
*le
, *next
;
1557 LIST_HEAD(to_be_aged
);
1559 dprintk("svc_age_temp_sockets\n");
1561 if (!spin_trylock_bh(&serv
->sv_lock
)) {
1562 /* busy, try again 1 sec later */
1563 dprintk("svc_age_temp_sockets: busy\n");
1564 mod_timer(&serv
->sv_temptimer
, jiffies
+ HZ
);
1568 list_for_each_safe(le
, next
, &serv
->sv_tempsocks
) {
1569 svsk
= list_entry(le
, struct svc_sock
, sk_list
);
1571 if (!test_and_set_bit(SK_OLD
, &svsk
->sk_flags
))
1573 if (atomic_read(&svsk
->sk_inuse
) || test_bit(SK_BUSY
, &svsk
->sk_flags
))
1575 atomic_inc(&svsk
->sk_inuse
);
1576 list_move(le
, &to_be_aged
);
1577 set_bit(SK_CLOSE
, &svsk
->sk_flags
);
1578 set_bit(SK_DETACHED
, &svsk
->sk_flags
);
1580 spin_unlock_bh(&serv
->sv_lock
);
1582 while (!list_empty(&to_be_aged
)) {
1583 le
= to_be_aged
.next
;
1584 /* fiddling the sk_list node is safe 'cos we're SK_DETACHED */
1586 svsk
= list_entry(le
, struct svc_sock
, sk_list
);
1588 dprintk("queuing svsk %p for closing, %lu seconds old\n",
1589 svsk
, get_seconds() - svsk
->sk_lastrecv
);
1591 /* a thread will dequeue and close it soon */
1592 svc_sock_enqueue(svsk
);
1596 mod_timer(&serv
->sv_temptimer
, jiffies
+ svc_conn_age_period
* HZ
);
1600 * Initialize socket for RPC use and create svc_sock struct
1601 * XXX: May want to setsockopt SO_SNDBUF and SO_RCVBUF.
1603 static struct svc_sock
*svc_setup_socket(struct svc_serv
*serv
,
1604 struct socket
*sock
,
1605 int *errp
, int flags
)
1607 struct svc_sock
*svsk
;
1609 int pmap_register
= !(flags
& SVC_SOCK_ANONYMOUS
);
1610 int is_temporary
= flags
& SVC_SOCK_TEMPORARY
;
1612 dprintk("svc: svc_setup_socket %p\n", sock
);
1613 if (!(svsk
= kzalloc(sizeof(*svsk
), GFP_KERNEL
))) {
1620 /* Register socket with portmapper */
1621 if (*errp
>= 0 && pmap_register
)
1622 *errp
= svc_register(serv
, inet
->sk_protocol
,
1623 ntohs(inet_sk(inet
)->sport
));
1630 set_bit(SK_BUSY
, &svsk
->sk_flags
);
1631 inet
->sk_user_data
= svsk
;
1632 svsk
->sk_sock
= sock
;
1634 svsk
->sk_ostate
= inet
->sk_state_change
;
1635 svsk
->sk_odata
= inet
->sk_data_ready
;
1636 svsk
->sk_owspace
= inet
->sk_write_space
;
1637 svsk
->sk_server
= serv
;
1638 atomic_set(&svsk
->sk_inuse
, 1);
1639 svsk
->sk_lastrecv
= get_seconds();
1640 spin_lock_init(&svsk
->sk_defer_lock
);
1641 INIT_LIST_HEAD(&svsk
->sk_deferred
);
1642 INIT_LIST_HEAD(&svsk
->sk_ready
);
1643 mutex_init(&svsk
->sk_mutex
);
1645 /* Initialize the socket */
1646 if (sock
->type
== SOCK_DGRAM
)
1651 spin_lock_bh(&serv
->sv_lock
);
1653 set_bit(SK_TEMP
, &svsk
->sk_flags
);
1654 list_add(&svsk
->sk_list
, &serv
->sv_tempsocks
);
1656 if (serv
->sv_temptimer
.function
== NULL
) {
1657 /* setup timer to age temp sockets */
1658 setup_timer(&serv
->sv_temptimer
, svc_age_temp_sockets
,
1659 (unsigned long)serv
);
1660 mod_timer(&serv
->sv_temptimer
,
1661 jiffies
+ svc_conn_age_period
* HZ
);
1664 clear_bit(SK_TEMP
, &svsk
->sk_flags
);
1665 list_add(&svsk
->sk_list
, &serv
->sv_permsocks
);
1667 spin_unlock_bh(&serv
->sv_lock
);
1669 dprintk("svc: svc_setup_socket created %p (inet %p)\n",
1675 int svc_addsock(struct svc_serv
*serv
,
1681 struct socket
*so
= sockfd_lookup(fd
, &err
);
1682 struct svc_sock
*svsk
= NULL
;
1686 if (so
->sk
->sk_family
!= AF_INET
)
1687 err
= -EAFNOSUPPORT
;
1688 else if (so
->sk
->sk_protocol
!= IPPROTO_TCP
&&
1689 so
->sk
->sk_protocol
!= IPPROTO_UDP
)
1690 err
= -EPROTONOSUPPORT
;
1691 else if (so
->state
> SS_UNCONNECTED
)
1694 svsk
= svc_setup_socket(serv
, so
, &err
, SVC_SOCK_DEFAULTS
);
1696 svc_sock_received(svsk
);
1704 if (proto
) *proto
= so
->sk
->sk_protocol
;
1705 return one_sock_name(name_return
, svsk
);
1707 EXPORT_SYMBOL_GPL(svc_addsock
);
1710 * Create socket for RPC service.
1712 static int svc_create_socket(struct svc_serv
*serv
, int protocol
,
1713 struct sockaddr
*sin
, int len
, int flags
)
1715 struct svc_sock
*svsk
;
1716 struct socket
*sock
;
1719 char buf
[RPC_MAX_ADDRBUFLEN
];
1721 dprintk("svc: svc_create_socket(%s, %d, %s)\n",
1722 serv
->sv_program
->pg_name
, protocol
,
1723 __svc_print_addr(sin
, buf
, sizeof(buf
)));
1725 if (protocol
!= IPPROTO_UDP
&& protocol
!= IPPROTO_TCP
) {
1726 printk(KERN_WARNING
"svc: only UDP and TCP "
1727 "sockets supported\n");
1730 type
= (protocol
== IPPROTO_UDP
)? SOCK_DGRAM
: SOCK_STREAM
;
1732 error
= sock_create_kern(sin
->sa_family
, type
, protocol
, &sock
);
1736 svc_reclassify_socket(sock
);
1738 if (type
== SOCK_STREAM
)
1739 sock
->sk
->sk_reuse
= 1; /* allow address reuse */
1740 error
= kernel_bind(sock
, sin
, len
);
1744 if (protocol
== IPPROTO_TCP
) {
1745 if ((error
= kernel_listen(sock
, 64)) < 0)
1749 if ((svsk
= svc_setup_socket(serv
, sock
, &error
, flags
)) != NULL
) {
1750 svc_sock_received(svsk
);
1751 return ntohs(inet_sk(svsk
->sk_sk
)->sport
);
1755 dprintk("svc: svc_create_socket error = %d\n", -error
);
1761 * Remove a dead socket
1764 svc_delete_socket(struct svc_sock
*svsk
)
1766 struct svc_serv
*serv
;
1769 dprintk("svc: svc_delete_socket(%p)\n", svsk
);
1771 serv
= svsk
->sk_server
;
1774 sk
->sk_state_change
= svsk
->sk_ostate
;
1775 sk
->sk_data_ready
= svsk
->sk_odata
;
1776 sk
->sk_write_space
= svsk
->sk_owspace
;
1778 spin_lock_bh(&serv
->sv_lock
);
1780 if (!test_and_set_bit(SK_DETACHED
, &svsk
->sk_flags
))
1781 list_del_init(&svsk
->sk_list
);
1783 * We used to delete the svc_sock from whichever list
1784 * it's sk_ready node was on, but we don't actually
1785 * need to. This is because the only time we're called
1786 * while still attached to a queue, the queue itself
1787 * is about to be destroyed (in svc_destroy).
1789 if (!test_and_set_bit(SK_DEAD
, &svsk
->sk_flags
)) {
1790 BUG_ON(atomic_read(&svsk
->sk_inuse
)<2);
1791 atomic_dec(&svsk
->sk_inuse
);
1792 if (test_bit(SK_TEMP
, &svsk
->sk_flags
))
1796 spin_unlock_bh(&serv
->sv_lock
);
1799 static void svc_close_socket(struct svc_sock
*svsk
)
1801 set_bit(SK_CLOSE
, &svsk
->sk_flags
);
1802 if (test_and_set_bit(SK_BUSY
, &svsk
->sk_flags
))
1803 /* someone else will have to effect the close */
1806 atomic_inc(&svsk
->sk_inuse
);
1807 svc_delete_socket(svsk
);
1808 clear_bit(SK_BUSY
, &svsk
->sk_flags
);
1812 void svc_force_close_socket(struct svc_sock
*svsk
)
1814 set_bit(SK_CLOSE
, &svsk
->sk_flags
);
1815 if (test_bit(SK_BUSY
, &svsk
->sk_flags
)) {
1816 /* Waiting to be processed, but no threads left,
1817 * So just remove it from the waiting list
1819 list_del_init(&svsk
->sk_ready
);
1820 clear_bit(SK_BUSY
, &svsk
->sk_flags
);
1822 svc_close_socket(svsk
);
1826 * svc_makesock - Make a socket for nfsd and lockd
1827 * @serv: RPC server structure
1828 * @protocol: transport protocol to use
1829 * @port: port to use
1830 * @flags: requested socket characteristics
1833 int svc_makesock(struct svc_serv
*serv
, int protocol
, unsigned short port
,
1836 struct sockaddr_in sin
= {
1837 .sin_family
= AF_INET
,
1838 .sin_addr
.s_addr
= INADDR_ANY
,
1839 .sin_port
= htons(port
),
1842 dprintk("svc: creating socket proto = %d\n", protocol
);
1843 return svc_create_socket(serv
, protocol
, (struct sockaddr
*) &sin
,
1844 sizeof(sin
), flags
);
1848 * Handle defer and revisit of requests
1851 static void svc_revisit(struct cache_deferred_req
*dreq
, int too_many
)
1853 struct svc_deferred_req
*dr
= container_of(dreq
, struct svc_deferred_req
, handle
);
1854 struct svc_sock
*svsk
;
1857 svc_sock_put(dr
->svsk
);
1861 dprintk("revisit queued\n");
1864 spin_lock_bh(&svsk
->sk_defer_lock
);
1865 list_add(&dr
->handle
.recent
, &svsk
->sk_deferred
);
1866 spin_unlock_bh(&svsk
->sk_defer_lock
);
1867 set_bit(SK_DEFERRED
, &svsk
->sk_flags
);
1868 svc_sock_enqueue(svsk
);
1872 static struct cache_deferred_req
*
1873 svc_defer(struct cache_req
*req
)
1875 struct svc_rqst
*rqstp
= container_of(req
, struct svc_rqst
, rq_chandle
);
1876 int size
= sizeof(struct svc_deferred_req
) + (rqstp
->rq_arg
.len
);
1877 struct svc_deferred_req
*dr
;
1879 if (rqstp
->rq_arg
.page_len
)
1880 return NULL
; /* if more than a page, give up FIXME */
1881 if (rqstp
->rq_deferred
) {
1882 dr
= rqstp
->rq_deferred
;
1883 rqstp
->rq_deferred
= NULL
;
1885 int skip
= rqstp
->rq_arg
.len
- rqstp
->rq_arg
.head
[0].iov_len
;
1886 /* FIXME maybe discard if size too large */
1887 dr
= kmalloc(size
, GFP_KERNEL
);
1891 dr
->handle
.owner
= rqstp
->rq_server
;
1892 dr
->prot
= rqstp
->rq_prot
;
1893 memcpy(&dr
->addr
, &rqstp
->rq_addr
, rqstp
->rq_addrlen
);
1894 dr
->addrlen
= rqstp
->rq_addrlen
;
1895 dr
->daddr
= rqstp
->rq_daddr
;
1896 dr
->argslen
= rqstp
->rq_arg
.len
>> 2;
1897 memcpy(dr
->args
, rqstp
->rq_arg
.head
[0].iov_base
-skip
, dr
->argslen
<<2);
1899 atomic_inc(&rqstp
->rq_sock
->sk_inuse
);
1900 dr
->svsk
= rqstp
->rq_sock
;
1902 dr
->handle
.revisit
= svc_revisit
;
1907 * recv data from a deferred request into an active one
1909 static int svc_deferred_recv(struct svc_rqst
*rqstp
)
1911 struct svc_deferred_req
*dr
= rqstp
->rq_deferred
;
1913 rqstp
->rq_arg
.head
[0].iov_base
= dr
->args
;
1914 rqstp
->rq_arg
.head
[0].iov_len
= dr
->argslen
<<2;
1915 rqstp
->rq_arg
.page_len
= 0;
1916 rqstp
->rq_arg
.len
= dr
->argslen
<<2;
1917 rqstp
->rq_prot
= dr
->prot
;
1918 memcpy(&rqstp
->rq_addr
, &dr
->addr
, dr
->addrlen
);
1919 rqstp
->rq_addrlen
= dr
->addrlen
;
1920 rqstp
->rq_daddr
= dr
->daddr
;
1921 rqstp
->rq_respages
= rqstp
->rq_pages
;
1922 return dr
->argslen
<<2;
1926 static struct svc_deferred_req
*svc_deferred_dequeue(struct svc_sock
*svsk
)
1928 struct svc_deferred_req
*dr
= NULL
;
1930 if (!test_bit(SK_DEFERRED
, &svsk
->sk_flags
))
1932 spin_lock_bh(&svsk
->sk_defer_lock
);
1933 clear_bit(SK_DEFERRED
, &svsk
->sk_flags
);
1934 if (!list_empty(&svsk
->sk_deferred
)) {
1935 dr
= list_entry(svsk
->sk_deferred
.next
,
1936 struct svc_deferred_req
,
1938 list_del_init(&dr
->handle
.recent
);
1939 set_bit(SK_DEFERRED
, &svsk
->sk_flags
);
1941 spin_unlock_bh(&svsk
->sk_defer_lock
);