2 * Copyright (c) 2006 Oracle. All rights reserved.
4 * This software is available to you under a choice of one of two
5 * licenses. You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the
8 * OpenIB.org BSD license below:
10 * Redistribution and use in source and binary forms, with or
11 * without modification, are permitted provided that the following
14 * - Redistributions of source code must retain the above
15 * copyright notice, this list of conditions and the following
18 * - Redistributions in binary form must reproduce the above
19 * copyright notice, this list of conditions and the following
20 * disclaimer in the documentation and/or other materials
21 * provided with the distribution.
23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
33 #include <linux/kernel.h>
34 #include <linux/slab.h>
35 #include <linux/pci.h>
36 #include <linux/dma-mapping.h>
37 #include <rdma/rdma_cm.h>
39 #include "rds_single_path.h"
43 static struct kmem_cache
*rds_ib_incoming_slab
;
44 static struct kmem_cache
*rds_ib_frag_slab
;
45 static atomic_t rds_ib_allocation
= ATOMIC_INIT(0);
47 void rds_ib_recv_init_ring(struct rds_ib_connection
*ic
)
49 struct rds_ib_recv_work
*recv
;
52 for (i
= 0, recv
= ic
->i_recvs
; i
< ic
->i_recv_ring
.w_nr
; i
++, recv
++) {
58 recv
->r_wr
.next
= NULL
;
60 recv
->r_wr
.sg_list
= recv
->r_sge
;
61 recv
->r_wr
.num_sge
= RDS_IB_RECV_SGE
;
63 sge
= &recv
->r_sge
[0];
64 sge
->addr
= ic
->i_recv_hdrs_dma
+ (i
* sizeof(struct rds_header
));
65 sge
->length
= sizeof(struct rds_header
);
66 sge
->lkey
= ic
->i_pd
->local_dma_lkey
;
68 sge
= &recv
->r_sge
[1];
70 sge
->length
= RDS_FRAG_SIZE
;
71 sge
->lkey
= ic
->i_pd
->local_dma_lkey
;
76 * The entire 'from' list, including the from element itself, is put on
77 * to the tail of the 'to' list.
79 static void list_splice_entire_tail(struct list_head
*from
,
82 struct list_head
*from_last
= from
->prev
;
84 list_splice_tail(from_last
, to
);
85 list_add_tail(from_last
, to
);
88 static void rds_ib_cache_xfer_to_ready(struct rds_ib_refill_cache
*cache
)
90 struct list_head
*tmp
;
92 tmp
= xchg(&cache
->xfer
, NULL
);
95 list_splice_entire_tail(tmp
, cache
->ready
);
101 static int rds_ib_recv_alloc_cache(struct rds_ib_refill_cache
*cache
)
103 struct rds_ib_cache_head
*head
;
106 cache
->percpu
= alloc_percpu(struct rds_ib_cache_head
);
110 for_each_possible_cpu(cpu
) {
111 head
= per_cpu_ptr(cache
->percpu
, cpu
);
121 int rds_ib_recv_alloc_caches(struct rds_ib_connection
*ic
)
125 ret
= rds_ib_recv_alloc_cache(&ic
->i_cache_incs
);
127 ret
= rds_ib_recv_alloc_cache(&ic
->i_cache_frags
);
129 free_percpu(ic
->i_cache_incs
.percpu
);
135 static void rds_ib_cache_splice_all_lists(struct rds_ib_refill_cache
*cache
,
136 struct list_head
*caller_list
)
138 struct rds_ib_cache_head
*head
;
141 for_each_possible_cpu(cpu
) {
142 head
= per_cpu_ptr(cache
->percpu
, cpu
);
144 list_splice_entire_tail(head
->first
, caller_list
);
150 list_splice_entire_tail(cache
->ready
, caller_list
);
155 void rds_ib_recv_free_caches(struct rds_ib_connection
*ic
)
157 struct rds_ib_incoming
*inc
;
158 struct rds_ib_incoming
*inc_tmp
;
159 struct rds_page_frag
*frag
;
160 struct rds_page_frag
*frag_tmp
;
163 rds_ib_cache_xfer_to_ready(&ic
->i_cache_incs
);
164 rds_ib_cache_splice_all_lists(&ic
->i_cache_incs
, &list
);
165 free_percpu(ic
->i_cache_incs
.percpu
);
167 list_for_each_entry_safe(inc
, inc_tmp
, &list
, ii_cache_entry
) {
168 list_del(&inc
->ii_cache_entry
);
169 WARN_ON(!list_empty(&inc
->ii_frags
));
170 kmem_cache_free(rds_ib_incoming_slab
, inc
);
173 rds_ib_cache_xfer_to_ready(&ic
->i_cache_frags
);
174 rds_ib_cache_splice_all_lists(&ic
->i_cache_frags
, &list
);
175 free_percpu(ic
->i_cache_frags
.percpu
);
177 list_for_each_entry_safe(frag
, frag_tmp
, &list
, f_cache_entry
) {
178 list_del(&frag
->f_cache_entry
);
179 WARN_ON(!list_empty(&frag
->f_item
));
180 kmem_cache_free(rds_ib_frag_slab
, frag
);
185 static void rds_ib_recv_cache_put(struct list_head
*new_item
,
186 struct rds_ib_refill_cache
*cache
);
187 static struct list_head
*rds_ib_recv_cache_get(struct rds_ib_refill_cache
*cache
);
190 /* Recycle frag and attached recv buffer f_sg */
191 static void rds_ib_frag_free(struct rds_ib_connection
*ic
,
192 struct rds_page_frag
*frag
)
194 rdsdebug("frag %p page %p\n", frag
, sg_page(&frag
->f_sg
));
196 rds_ib_recv_cache_put(&frag
->f_cache_entry
, &ic
->i_cache_frags
);
197 atomic_add(RDS_FRAG_SIZE
/ SZ_1K
, &ic
->i_cache_allocs
);
198 rds_ib_stats_add(s_ib_recv_added_to_cache
, RDS_FRAG_SIZE
);
201 /* Recycle inc after freeing attached frags */
202 void rds_ib_inc_free(struct rds_incoming
*inc
)
204 struct rds_ib_incoming
*ibinc
;
205 struct rds_page_frag
*frag
;
206 struct rds_page_frag
*pos
;
207 struct rds_ib_connection
*ic
= inc
->i_conn
->c_transport_data
;
209 ibinc
= container_of(inc
, struct rds_ib_incoming
, ii_inc
);
211 /* Free attached frags */
212 list_for_each_entry_safe(frag
, pos
, &ibinc
->ii_frags
, f_item
) {
213 list_del_init(&frag
->f_item
);
214 rds_ib_frag_free(ic
, frag
);
216 BUG_ON(!list_empty(&ibinc
->ii_frags
));
218 rdsdebug("freeing ibinc %p inc %p\n", ibinc
, inc
);
219 rds_ib_recv_cache_put(&ibinc
->ii_cache_entry
, &ic
->i_cache_incs
);
222 static void rds_ib_recv_clear_one(struct rds_ib_connection
*ic
,
223 struct rds_ib_recv_work
*recv
)
226 rds_inc_put(&recv
->r_ibinc
->ii_inc
);
227 recv
->r_ibinc
= NULL
;
230 ib_dma_unmap_sg(ic
->i_cm_id
->device
, &recv
->r_frag
->f_sg
, 1, DMA_FROM_DEVICE
);
231 rds_ib_frag_free(ic
, recv
->r_frag
);
236 void rds_ib_recv_clear_ring(struct rds_ib_connection
*ic
)
240 for (i
= 0; i
< ic
->i_recv_ring
.w_nr
; i
++)
241 rds_ib_recv_clear_one(ic
, &ic
->i_recvs
[i
]);
244 static struct rds_ib_incoming
*rds_ib_refill_one_inc(struct rds_ib_connection
*ic
,
247 struct rds_ib_incoming
*ibinc
;
248 struct list_head
*cache_item
;
251 cache_item
= rds_ib_recv_cache_get(&ic
->i_cache_incs
);
253 ibinc
= container_of(cache_item
, struct rds_ib_incoming
, ii_cache_entry
);
255 avail_allocs
= atomic_add_unless(&rds_ib_allocation
,
256 1, rds_ib_sysctl_max_recv_allocation
);
258 rds_ib_stats_inc(s_ib_rx_alloc_limit
);
261 ibinc
= kmem_cache_alloc(rds_ib_incoming_slab
, slab_mask
);
263 atomic_dec(&rds_ib_allocation
);
266 rds_ib_stats_inc(s_ib_rx_total_incs
);
268 INIT_LIST_HEAD(&ibinc
->ii_frags
);
269 rds_inc_init(&ibinc
->ii_inc
, ic
->conn
, ic
->conn
->c_faddr
);
274 static struct rds_page_frag
*rds_ib_refill_one_frag(struct rds_ib_connection
*ic
,
275 gfp_t slab_mask
, gfp_t page_mask
)
277 struct rds_page_frag
*frag
;
278 struct list_head
*cache_item
;
281 cache_item
= rds_ib_recv_cache_get(&ic
->i_cache_frags
);
283 frag
= container_of(cache_item
, struct rds_page_frag
, f_cache_entry
);
284 atomic_sub(RDS_FRAG_SIZE
/ SZ_1K
, &ic
->i_cache_allocs
);
285 rds_ib_stats_add(s_ib_recv_added_to_cache
, RDS_FRAG_SIZE
);
287 frag
= kmem_cache_alloc(rds_ib_frag_slab
, slab_mask
);
291 sg_init_table(&frag
->f_sg
, 1);
292 ret
= rds_page_remainder_alloc(&frag
->f_sg
,
293 RDS_FRAG_SIZE
, page_mask
);
295 kmem_cache_free(rds_ib_frag_slab
, frag
);
298 rds_ib_stats_inc(s_ib_rx_total_frags
);
301 INIT_LIST_HEAD(&frag
->f_item
);
306 static int rds_ib_recv_refill_one(struct rds_connection
*conn
,
307 struct rds_ib_recv_work
*recv
, gfp_t gfp
)
309 struct rds_ib_connection
*ic
= conn
->c_transport_data
;
312 gfp_t slab_mask
= GFP_NOWAIT
;
313 gfp_t page_mask
= GFP_NOWAIT
;
315 if (gfp
& __GFP_DIRECT_RECLAIM
) {
316 slab_mask
= GFP_KERNEL
;
317 page_mask
= GFP_HIGHUSER
;
320 if (!ic
->i_cache_incs
.ready
)
321 rds_ib_cache_xfer_to_ready(&ic
->i_cache_incs
);
322 if (!ic
->i_cache_frags
.ready
)
323 rds_ib_cache_xfer_to_ready(&ic
->i_cache_frags
);
326 * ibinc was taken from recv if recv contained the start of a message.
327 * recvs that were continuations will still have this allocated.
329 if (!recv
->r_ibinc
) {
330 recv
->r_ibinc
= rds_ib_refill_one_inc(ic
, slab_mask
);
335 WARN_ON(recv
->r_frag
); /* leak! */
336 recv
->r_frag
= rds_ib_refill_one_frag(ic
, slab_mask
, page_mask
);
340 ret
= ib_dma_map_sg(ic
->i_cm_id
->device
, &recv
->r_frag
->f_sg
,
344 sge
= &recv
->r_sge
[0];
345 sge
->addr
= ic
->i_recv_hdrs_dma
+ (recv
- ic
->i_recvs
) * sizeof(struct rds_header
);
346 sge
->length
= sizeof(struct rds_header
);
348 sge
= &recv
->r_sge
[1];
349 sge
->addr
= ib_sg_dma_address(ic
->i_cm_id
->device
, &recv
->r_frag
->f_sg
);
350 sge
->length
= ib_sg_dma_len(ic
->i_cm_id
->device
, &recv
->r_frag
->f_sg
);
357 static int acquire_refill(struct rds_connection
*conn
)
359 return test_and_set_bit(RDS_RECV_REFILL
, &conn
->c_flags
) == 0;
362 static void release_refill(struct rds_connection
*conn
)
364 clear_bit(RDS_RECV_REFILL
, &conn
->c_flags
);
366 /* We don't use wait_on_bit()/wake_up_bit() because our waking is in a
367 * hot path and finding waiters is very rare. We don't want to walk
368 * the system-wide hashed waitqueue buckets in the fast path only to
369 * almost never find waiters.
371 if (waitqueue_active(&conn
->c_waitq
))
372 wake_up_all(&conn
->c_waitq
);
376 * This tries to allocate and post unused work requests after making sure that
377 * they have all the allocations they need to queue received fragments into
380 * -1 is returned if posting fails due to temporary resource exhaustion.
382 void rds_ib_recv_refill(struct rds_connection
*conn
, int prefill
, gfp_t gfp
)
384 struct rds_ib_connection
*ic
= conn
->c_transport_data
;
385 struct rds_ib_recv_work
*recv
;
386 struct ib_recv_wr
*failed_wr
;
387 unsigned int posted
= 0;
389 bool can_wait
= !!(gfp
& __GFP_DIRECT_RECLAIM
);
392 /* the goal here is to just make sure that someone, somewhere
393 * is posting buffers. If we can't get the refill lock,
394 * let them do their thing
396 if (!acquire_refill(conn
))
399 while ((prefill
|| rds_conn_up(conn
)) &&
400 rds_ib_ring_alloc(&ic
->i_recv_ring
, 1, &pos
)) {
401 if (pos
>= ic
->i_recv_ring
.w_nr
) {
402 printk(KERN_NOTICE
"Argh - ring alloc returned pos=%u\n",
407 recv
= &ic
->i_recvs
[pos
];
408 ret
= rds_ib_recv_refill_one(conn
, recv
, gfp
);
413 /* XXX when can this fail? */
414 ret
= ib_post_recv(ic
->i_cm_id
->qp
, &recv
->r_wr
, &failed_wr
);
415 rdsdebug("recv %p ibinc %p page %p addr %lu ret %d\n", recv
,
416 recv
->r_ibinc
, sg_page(&recv
->r_frag
->f_sg
),
417 (long) ib_sg_dma_address(
419 &recv
->r_frag
->f_sg
),
422 rds_ib_conn_error(conn
, "recv post on "
423 "%pI4 returned %d, disconnecting and "
424 "reconnecting\n", &conn
->c_faddr
,
432 /* We're doing flow control - update the window. */
433 if (ic
->i_flowctl
&& posted
)
434 rds_ib_advertise_credits(conn
, posted
);
437 rds_ib_ring_unalloc(&ic
->i_recv_ring
, 1);
439 release_refill(conn
);
441 /* if we're called from the softirq handler, we'll be GFP_NOWAIT.
442 * in this case the ring being low is going to lead to more interrupts
443 * and we can safely let the softirq code take care of it unless the
444 * ring is completely empty.
446 * if we're called from krdsd, we'll be GFP_KERNEL. In this case
447 * we might have raced with the softirq code while we had the refill
448 * lock held. Use rds_ib_ring_low() instead of ring_empty to decide
449 * if we should requeue.
451 if (rds_conn_up(conn
) &&
452 ((can_wait
&& rds_ib_ring_low(&ic
->i_recv_ring
)) ||
453 rds_ib_ring_empty(&ic
->i_recv_ring
))) {
454 queue_delayed_work(rds_wq
, &conn
->c_recv_w
, 1);
459 * We want to recycle several types of recv allocations, like incs and frags.
460 * To use this, the *_free() function passes in the ptr to a list_head within
461 * the recyclee, as well as the cache to put it on.
463 * First, we put the memory on a percpu list. When this reaches a certain size,
464 * We move it to an intermediate non-percpu list in a lockless manner, with some
465 * xchg/compxchg wizardry.
467 * N.B. Instead of a list_head as the anchor, we use a single pointer, which can
468 * be NULL and xchg'd. The list is actually empty when the pointer is NULL, and
469 * list_empty() will return true with one element is actually present.
471 static void rds_ib_recv_cache_put(struct list_head
*new_item
,
472 struct rds_ib_refill_cache
*cache
)
475 struct list_head
*old
, *chpfirst
;
477 local_irq_save(flags
);
479 chpfirst
= __this_cpu_read(cache
->percpu
->first
);
481 INIT_LIST_HEAD(new_item
);
482 else /* put on front */
483 list_add_tail(new_item
, chpfirst
);
485 __this_cpu_write(cache
->percpu
->first
, new_item
);
486 __this_cpu_inc(cache
->percpu
->count
);
488 if (__this_cpu_read(cache
->percpu
->count
) < RDS_IB_RECYCLE_BATCH_COUNT
)
492 * Return our per-cpu first list to the cache's xfer by atomically
493 * grabbing the current xfer list, appending it to our per-cpu list,
494 * and then atomically returning that entire list back to the
495 * cache's xfer list as long as it's still empty.
498 old
= xchg(&cache
->xfer
, NULL
);
500 list_splice_entire_tail(old
, chpfirst
);
501 old
= cmpxchg(&cache
->xfer
, NULL
, chpfirst
);
505 __this_cpu_write(cache
->percpu
->first
, NULL
);
506 __this_cpu_write(cache
->percpu
->count
, 0);
508 local_irq_restore(flags
);
511 static struct list_head
*rds_ib_recv_cache_get(struct rds_ib_refill_cache
*cache
)
513 struct list_head
*head
= cache
->ready
;
516 if (!list_empty(head
)) {
517 cache
->ready
= head
->next
;
526 int rds_ib_inc_copy_to_user(struct rds_incoming
*inc
, struct iov_iter
*to
)
528 struct rds_ib_incoming
*ibinc
;
529 struct rds_page_frag
*frag
;
530 unsigned long to_copy
;
531 unsigned long frag_off
= 0;
536 ibinc
= container_of(inc
, struct rds_ib_incoming
, ii_inc
);
537 frag
= list_entry(ibinc
->ii_frags
.next
, struct rds_page_frag
, f_item
);
538 len
= be32_to_cpu(inc
->i_hdr
.h_len
);
540 while (iov_iter_count(to
) && copied
< len
) {
541 if (frag_off
== RDS_FRAG_SIZE
) {
542 frag
= list_entry(frag
->f_item
.next
,
543 struct rds_page_frag
, f_item
);
546 to_copy
= min_t(unsigned long, iov_iter_count(to
),
547 RDS_FRAG_SIZE
- frag_off
);
548 to_copy
= min_t(unsigned long, to_copy
, len
- copied
);
550 /* XXX needs + offset for multiple recvs per page */
551 rds_stats_add(s_copy_to_user
, to_copy
);
552 ret
= copy_page_to_iter(sg_page(&frag
->f_sg
),
553 frag
->f_sg
.offset
+ frag_off
,
566 /* ic starts out kzalloc()ed */
567 void rds_ib_recv_init_ack(struct rds_ib_connection
*ic
)
569 struct ib_send_wr
*wr
= &ic
->i_ack_wr
;
570 struct ib_sge
*sge
= &ic
->i_ack_sge
;
572 sge
->addr
= ic
->i_ack_dma
;
573 sge
->length
= sizeof(struct rds_header
);
574 sge
->lkey
= ic
->i_pd
->local_dma_lkey
;
578 wr
->opcode
= IB_WR_SEND
;
579 wr
->wr_id
= RDS_IB_ACK_WR_ID
;
580 wr
->send_flags
= IB_SEND_SIGNALED
| IB_SEND_SOLICITED
;
584 * You'd think that with reliable IB connections you wouldn't need to ack
585 * messages that have been received. The problem is that IB hardware generates
586 * an ack message before it has DMAed the message into memory. This creates a
587 * potential message loss if the HCA is disabled for any reason between when it
588 * sends the ack and before the message is DMAed and processed. This is only a
589 * potential issue if another HCA is available for fail-over.
591 * When the remote host receives our ack they'll free the sent message from
592 * their send queue. To decrease the latency of this we always send an ack
593 * immediately after we've received messages.
595 * For simplicity, we only have one ack in flight at a time. This puts
596 * pressure on senders to have deep enough send queues to absorb the latency of
597 * a single ack frame being in flight. This might not be good enough.
599 * This is implemented by have a long-lived send_wr and sge which point to a
600 * statically allocated ack frame. This ack wr does not fall under the ring
601 * accounting that the tx and rx wrs do. The QP attribute specifically makes
602 * room for it beyond the ring size. Send completion notices its special
603 * wr_id and avoids working with the ring in that case.
605 #ifndef KERNEL_HAS_ATOMIC64
606 void rds_ib_set_ack(struct rds_ib_connection
*ic
, u64 seq
, int ack_required
)
610 spin_lock_irqsave(&ic
->i_ack_lock
, flags
);
611 ic
->i_ack_next
= seq
;
613 set_bit(IB_ACK_REQUESTED
, &ic
->i_ack_flags
);
614 spin_unlock_irqrestore(&ic
->i_ack_lock
, flags
);
617 static u64
rds_ib_get_ack(struct rds_ib_connection
*ic
)
622 clear_bit(IB_ACK_REQUESTED
, &ic
->i_ack_flags
);
624 spin_lock_irqsave(&ic
->i_ack_lock
, flags
);
625 seq
= ic
->i_ack_next
;
626 spin_unlock_irqrestore(&ic
->i_ack_lock
, flags
);
631 void rds_ib_set_ack(struct rds_ib_connection
*ic
, u64 seq
, int ack_required
)
633 atomic64_set(&ic
->i_ack_next
, seq
);
635 smp_mb__before_atomic();
636 set_bit(IB_ACK_REQUESTED
, &ic
->i_ack_flags
);
640 static u64
rds_ib_get_ack(struct rds_ib_connection
*ic
)
642 clear_bit(IB_ACK_REQUESTED
, &ic
->i_ack_flags
);
643 smp_mb__after_atomic();
645 return atomic64_read(&ic
->i_ack_next
);
650 static void rds_ib_send_ack(struct rds_ib_connection
*ic
, unsigned int adv_credits
)
652 struct rds_header
*hdr
= ic
->i_ack
;
653 struct ib_send_wr
*failed_wr
;
657 seq
= rds_ib_get_ack(ic
);
659 rdsdebug("send_ack: ic %p ack %llu\n", ic
, (unsigned long long) seq
);
660 rds_message_populate_header(hdr
, 0, 0, 0);
661 hdr
->h_ack
= cpu_to_be64(seq
);
662 hdr
->h_credit
= adv_credits
;
663 rds_message_make_checksum(hdr
);
664 ic
->i_ack_queued
= jiffies
;
666 ret
= ib_post_send(ic
->i_cm_id
->qp
, &ic
->i_ack_wr
, &failed_wr
);
668 /* Failed to send. Release the WR, and
671 clear_bit(IB_ACK_IN_FLIGHT
, &ic
->i_ack_flags
);
672 set_bit(IB_ACK_REQUESTED
, &ic
->i_ack_flags
);
674 rds_ib_stats_inc(s_ib_ack_send_failure
);
676 rds_ib_conn_error(ic
->conn
, "sending ack failed\n");
678 rds_ib_stats_inc(s_ib_ack_sent
);
682 * There are 3 ways of getting acknowledgements to the peer:
683 * 1. We call rds_ib_attempt_ack from the recv completion handler
684 * to send an ACK-only frame.
685 * However, there can be only one such frame in the send queue
686 * at any time, so we may have to postpone it.
687 * 2. When another (data) packet is transmitted while there's
688 * an ACK in the queue, we piggyback the ACK sequence number
689 * on the data packet.
690 * 3. If the ACK WR is done sending, we get called from the
691 * send queue completion handler, and check whether there's
692 * another ACK pending (postponed because the WR was on the
693 * queue). If so, we transmit it.
695 * We maintain 2 variables:
696 * - i_ack_flags, which keeps track of whether the ACK WR
697 * is currently in the send queue or not (IB_ACK_IN_FLIGHT)
698 * - i_ack_next, which is the last sequence number we received
700 * Potentially, send queue and receive queue handlers can run concurrently.
701 * It would be nice to not have to use a spinlock to synchronize things,
702 * but the one problem that rules this out is that 64bit updates are
703 * not atomic on all platforms. Things would be a lot simpler if
704 * we had atomic64 or maybe cmpxchg64 everywhere.
706 * Reconnecting complicates this picture just slightly. When we
707 * reconnect, we may be seeing duplicate packets. The peer
708 * is retransmitting them, because it hasn't seen an ACK for
709 * them. It is important that we ACK these.
711 * ACK mitigation adds a header flag "ACK_REQUIRED"; any packet with
712 * this flag set *MUST* be acknowledged immediately.
716 * When we get here, we're called from the recv queue handler.
717 * Check whether we ought to transmit an ACK.
719 void rds_ib_attempt_ack(struct rds_ib_connection
*ic
)
721 unsigned int adv_credits
;
723 if (!test_bit(IB_ACK_REQUESTED
, &ic
->i_ack_flags
))
726 if (test_and_set_bit(IB_ACK_IN_FLIGHT
, &ic
->i_ack_flags
)) {
727 rds_ib_stats_inc(s_ib_ack_send_delayed
);
731 /* Can we get a send credit? */
732 if (!rds_ib_send_grab_credits(ic
, 1, &adv_credits
, 0, RDS_MAX_ADV_CREDIT
)) {
733 rds_ib_stats_inc(s_ib_tx_throttle
);
734 clear_bit(IB_ACK_IN_FLIGHT
, &ic
->i_ack_flags
);
738 clear_bit(IB_ACK_REQUESTED
, &ic
->i_ack_flags
);
739 rds_ib_send_ack(ic
, adv_credits
);
743 * We get here from the send completion handler, when the
744 * adapter tells us the ACK frame was sent.
746 void rds_ib_ack_send_complete(struct rds_ib_connection
*ic
)
748 clear_bit(IB_ACK_IN_FLIGHT
, &ic
->i_ack_flags
);
749 rds_ib_attempt_ack(ic
);
753 * This is called by the regular xmit code when it wants to piggyback
754 * an ACK on an outgoing frame.
756 u64
rds_ib_piggyb_ack(struct rds_ib_connection
*ic
)
758 if (test_and_clear_bit(IB_ACK_REQUESTED
, &ic
->i_ack_flags
))
759 rds_ib_stats_inc(s_ib_ack_send_piggybacked
);
760 return rds_ib_get_ack(ic
);
764 * It's kind of lame that we're copying from the posted receive pages into
765 * long-lived bitmaps. We could have posted the bitmaps and rdma written into
766 * them. But receiving new congestion bitmaps should be a *rare* event, so
767 * hopefully we won't need to invest that complexity in making it more
768 * efficient. By copying we can share a simpler core with TCP which has to
771 static void rds_ib_cong_recv(struct rds_connection
*conn
,
772 struct rds_ib_incoming
*ibinc
)
774 struct rds_cong_map
*map
;
775 unsigned int map_off
;
776 unsigned int map_page
;
777 struct rds_page_frag
*frag
;
778 unsigned long frag_off
;
779 unsigned long to_copy
;
780 unsigned long copied
;
781 uint64_t uncongested
= 0;
784 /* catch completely corrupt packets */
785 if (be32_to_cpu(ibinc
->ii_inc
.i_hdr
.h_len
) != RDS_CONG_MAP_BYTES
)
792 frag
= list_entry(ibinc
->ii_frags
.next
, struct rds_page_frag
, f_item
);
797 while (copied
< RDS_CONG_MAP_BYTES
) {
801 to_copy
= min(RDS_FRAG_SIZE
- frag_off
, PAGE_SIZE
- map_off
);
802 BUG_ON(to_copy
& 7); /* Must be 64bit aligned. */
804 addr
= kmap_atomic(sg_page(&frag
->f_sg
));
806 src
= addr
+ frag
->f_sg
.offset
+ frag_off
;
807 dst
= (void *)map
->m_page_addrs
[map_page
] + map_off
;
808 for (k
= 0; k
< to_copy
; k
+= 8) {
809 /* Record ports that became uncongested, ie
810 * bits that changed from 0 to 1. */
811 uncongested
|= ~(*src
) & *dst
;
819 if (map_off
== PAGE_SIZE
) {
825 if (frag_off
== RDS_FRAG_SIZE
) {
826 frag
= list_entry(frag
->f_item
.next
,
827 struct rds_page_frag
, f_item
);
832 /* the congestion map is in little endian order */
833 uncongested
= le64_to_cpu(uncongested
);
835 rds_cong_map_updated(map
, uncongested
);
838 static void rds_ib_process_recv(struct rds_connection
*conn
,
839 struct rds_ib_recv_work
*recv
, u32 data_len
,
840 struct rds_ib_ack_state
*state
)
842 struct rds_ib_connection
*ic
= conn
->c_transport_data
;
843 struct rds_ib_incoming
*ibinc
= ic
->i_ibinc
;
844 struct rds_header
*ihdr
, *hdr
;
846 /* XXX shut down the connection if port 0,0 are seen? */
848 rdsdebug("ic %p ibinc %p recv %p byte len %u\n", ic
, ibinc
, recv
,
851 if (data_len
< sizeof(struct rds_header
)) {
852 rds_ib_conn_error(conn
, "incoming message "
853 "from %pI4 didn't include a "
854 "header, disconnecting and "
859 data_len
-= sizeof(struct rds_header
);
861 ihdr
= &ic
->i_recv_hdrs
[recv
- ic
->i_recvs
];
863 /* Validate the checksum. */
864 if (!rds_message_verify_checksum(ihdr
)) {
865 rds_ib_conn_error(conn
, "incoming message "
866 "from %pI4 has corrupted header - "
867 "forcing a reconnect\n",
869 rds_stats_inc(s_recv_drop_bad_checksum
);
873 /* Process the ACK sequence which comes with every packet */
874 state
->ack_recv
= be64_to_cpu(ihdr
->h_ack
);
875 state
->ack_recv_valid
= 1;
877 /* Process the credits update if there was one */
879 rds_ib_send_add_credits(conn
, ihdr
->h_credit
);
881 if (ihdr
->h_sport
== 0 && ihdr
->h_dport
== 0 && data_len
== 0) {
882 /* This is an ACK-only packet. The fact that it gets
883 * special treatment here is that historically, ACKs
884 * were rather special beasts.
886 rds_ib_stats_inc(s_ib_ack_received
);
889 * Usually the frags make their way on to incs and are then freed as
890 * the inc is freed. We don't go that route, so we have to drop the
891 * page ref ourselves. We can't just leave the page on the recv
892 * because that confuses the dma mapping of pages and each recv's use
895 * FIXME: Fold this into the code path below.
897 rds_ib_frag_free(ic
, recv
->r_frag
);
903 * If we don't already have an inc on the connection then this
904 * fragment has a header and starts a message.. copy its header
905 * into the inc and save the inc so we can hang upcoming fragments
909 ibinc
= recv
->r_ibinc
;
910 recv
->r_ibinc
= NULL
;
913 hdr
= &ibinc
->ii_inc
.i_hdr
;
914 ibinc
->ii_inc
.i_rx_lat_trace
[RDS_MSG_RX_HDR
] =
916 memcpy(hdr
, ihdr
, sizeof(*hdr
));
917 ic
->i_recv_data_rem
= be32_to_cpu(hdr
->h_len
);
918 ibinc
->ii_inc
.i_rx_lat_trace
[RDS_MSG_RX_START
] =
921 rdsdebug("ic %p ibinc %p rem %u flag 0x%x\n", ic
, ibinc
,
922 ic
->i_recv_data_rem
, hdr
->h_flags
);
924 hdr
= &ibinc
->ii_inc
.i_hdr
;
925 /* We can't just use memcmp here; fragments of a
926 * single message may carry different ACKs */
927 if (hdr
->h_sequence
!= ihdr
->h_sequence
||
928 hdr
->h_len
!= ihdr
->h_len
||
929 hdr
->h_sport
!= ihdr
->h_sport
||
930 hdr
->h_dport
!= ihdr
->h_dport
) {
931 rds_ib_conn_error(conn
,
932 "fragment header mismatch; forcing reconnect\n");
937 list_add_tail(&recv
->r_frag
->f_item
, &ibinc
->ii_frags
);
940 if (ic
->i_recv_data_rem
> RDS_FRAG_SIZE
)
941 ic
->i_recv_data_rem
-= RDS_FRAG_SIZE
;
943 ic
->i_recv_data_rem
= 0;
946 if (ibinc
->ii_inc
.i_hdr
.h_flags
== RDS_FLAG_CONG_BITMAP
)
947 rds_ib_cong_recv(conn
, ibinc
);
949 rds_recv_incoming(conn
, conn
->c_faddr
, conn
->c_laddr
,
950 &ibinc
->ii_inc
, GFP_ATOMIC
);
951 state
->ack_next
= be64_to_cpu(hdr
->h_sequence
);
952 state
->ack_next_valid
= 1;
955 /* Evaluate the ACK_REQUIRED flag *after* we received
956 * the complete frame, and after bumping the next_rx
958 if (hdr
->h_flags
& RDS_FLAG_ACK_REQUIRED
) {
959 rds_stats_inc(s_recv_ack_required
);
960 state
->ack_required
= 1;
963 rds_inc_put(&ibinc
->ii_inc
);
967 void rds_ib_recv_cqe_handler(struct rds_ib_connection
*ic
,
969 struct rds_ib_ack_state
*state
)
971 struct rds_connection
*conn
= ic
->conn
;
972 struct rds_ib_recv_work
*recv
;
974 rdsdebug("wc wr_id 0x%llx status %u (%s) byte_len %u imm_data %u\n",
975 (unsigned long long)wc
->wr_id
, wc
->status
,
976 ib_wc_status_msg(wc
->status
), wc
->byte_len
,
977 be32_to_cpu(wc
->ex
.imm_data
));
979 rds_ib_stats_inc(s_ib_rx_cq_event
);
980 recv
= &ic
->i_recvs
[rds_ib_ring_oldest(&ic
->i_recv_ring
)];
981 ib_dma_unmap_sg(ic
->i_cm_id
->device
, &recv
->r_frag
->f_sg
, 1,
984 /* Also process recvs in connecting state because it is possible
985 * to get a recv completion _before_ the rdmacm ESTABLISHED
986 * event is processed.
988 if (wc
->status
== IB_WC_SUCCESS
) {
989 rds_ib_process_recv(conn
, recv
, wc
->byte_len
, state
);
991 /* We expect errors as the qp is drained during shutdown */
992 if (rds_conn_up(conn
) || rds_conn_connecting(conn
))
993 rds_ib_conn_error(conn
, "recv completion on <%pI4,%pI4> had status %u (%s), disconnecting and reconnecting\n",
994 &conn
->c_laddr
, &conn
->c_faddr
,
996 ib_wc_status_msg(wc
->status
));
999 /* rds_ib_process_recv() doesn't always consume the frag, and
1000 * we might not have called it at all if the wc didn't indicate
1001 * success. We already unmapped the frag's pages, though, and
1002 * the following rds_ib_ring_free() call tells the refill path
1003 * that it will not find an allocated frag here. Make sure we
1004 * keep that promise by freeing a frag that's still on the ring.
1007 rds_ib_frag_free(ic
, recv
->r_frag
);
1008 recv
->r_frag
= NULL
;
1010 rds_ib_ring_free(&ic
->i_recv_ring
, 1);
1012 /* If we ever end up with a really empty receive ring, we're
1013 * in deep trouble, as the sender will definitely see RNR
1015 if (rds_ib_ring_empty(&ic
->i_recv_ring
))
1016 rds_ib_stats_inc(s_ib_rx_ring_empty
);
1018 if (rds_ib_ring_low(&ic
->i_recv_ring
)) {
1019 rds_ib_recv_refill(conn
, 0, GFP_NOWAIT
);
1020 rds_ib_stats_inc(s_ib_rx_refill_from_cq
);
1024 int rds_ib_recv_path(struct rds_conn_path
*cp
)
1026 struct rds_connection
*conn
= cp
->cp_conn
;
1027 struct rds_ib_connection
*ic
= conn
->c_transport_data
;
1030 rdsdebug("conn %p\n", conn
);
1031 if (rds_conn_up(conn
)) {
1032 rds_ib_attempt_ack(ic
);
1033 rds_ib_recv_refill(conn
, 0, GFP_KERNEL
);
1034 rds_ib_stats_inc(s_ib_rx_refill_from_thread
);
1040 int rds_ib_recv_init(void)
1045 /* Default to 30% of all available RAM for recv memory */
1047 rds_ib_sysctl_max_recv_allocation
= si
.totalram
/ 3 * PAGE_SIZE
/ RDS_FRAG_SIZE
;
1049 rds_ib_incoming_slab
= kmem_cache_create("rds_ib_incoming",
1050 sizeof(struct rds_ib_incoming
),
1051 0, SLAB_HWCACHE_ALIGN
, NULL
);
1052 if (!rds_ib_incoming_slab
)
1055 rds_ib_frag_slab
= kmem_cache_create("rds_ib_frag",
1056 sizeof(struct rds_page_frag
),
1057 0, SLAB_HWCACHE_ALIGN
, NULL
);
1058 if (!rds_ib_frag_slab
) {
1059 kmem_cache_destroy(rds_ib_incoming_slab
);
1060 rds_ib_incoming_slab
= NULL
;
1067 void rds_ib_recv_exit(void)
1069 kmem_cache_destroy(rds_ib_incoming_slab
);
1070 kmem_cache_destroy(rds_ib_frag_slab
);