KVM: PPC: Book3S HV: Don't rely on host's page size information
[linux/fpc-iii.git] / net / rds / send.c
blobb52cdc8ae428819a5853509a06852ec2ebc43a5a
1 /*
2 * Copyright (c) 2006 Oracle. All rights reserved.
4 * This software is available to you under a choice of one of two
5 * licenses. You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the
8 * OpenIB.org BSD license below:
10 * Redistribution and use in source and binary forms, with or
11 * without modification, are permitted provided that the following
12 * conditions are met:
14 * - Redistributions of source code must retain the above
15 * copyright notice, this list of conditions and the following
16 * disclaimer.
18 * - Redistributions in binary form must reproduce the above
19 * copyright notice, this list of conditions and the following
20 * disclaimer in the documentation and/or other materials
21 * provided with the distribution.
23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30 * SOFTWARE.
33 #include <linux/kernel.h>
34 #include <linux/moduleparam.h>
35 #include <linux/gfp.h>
36 #include <net/sock.h>
37 #include <linux/in.h>
38 #include <linux/list.h>
39 #include <linux/ratelimit.h>
40 #include <linux/export.h>
41 #include <linux/sizes.h>
43 #include "rds.h"
45 /* When transmitting messages in rds_send_xmit, we need to emerge from
46 * time to time and briefly release the CPU. Otherwise the softlock watchdog
47 * will kick our shin.
48 * Also, it seems fairer to not let one busy connection stall all the
49 * others.
51 * send_batch_count is the number of times we'll loop in send_xmit. Setting
52 * it to 0 will restore the old behavior (where we looped until we had
53 * drained the queue).
55 static int send_batch_count = SZ_1K;
56 module_param(send_batch_count, int, 0444);
57 MODULE_PARM_DESC(send_batch_count, " batch factor when working the send queue");
59 static void rds_send_remove_from_sock(struct list_head *messages, int status);
62 * Reset the send state. Callers must ensure that this doesn't race with
63 * rds_send_xmit().
65 void rds_send_path_reset(struct rds_conn_path *cp)
67 struct rds_message *rm, *tmp;
68 unsigned long flags;
70 if (cp->cp_xmit_rm) {
71 rm = cp->cp_xmit_rm;
72 cp->cp_xmit_rm = NULL;
73 /* Tell the user the RDMA op is no longer mapped by the
74 * transport. This isn't entirely true (it's flushed out
75 * independently) but as the connection is down, there's
76 * no ongoing RDMA to/from that memory */
77 rds_message_unmapped(rm);
78 rds_message_put(rm);
81 cp->cp_xmit_sg = 0;
82 cp->cp_xmit_hdr_off = 0;
83 cp->cp_xmit_data_off = 0;
84 cp->cp_xmit_atomic_sent = 0;
85 cp->cp_xmit_rdma_sent = 0;
86 cp->cp_xmit_data_sent = 0;
88 cp->cp_conn->c_map_queued = 0;
90 cp->cp_unacked_packets = rds_sysctl_max_unacked_packets;
91 cp->cp_unacked_bytes = rds_sysctl_max_unacked_bytes;
93 /* Mark messages as retransmissions, and move them to the send q */
94 spin_lock_irqsave(&cp->cp_lock, flags);
95 list_for_each_entry_safe(rm, tmp, &cp->cp_retrans, m_conn_item) {
96 set_bit(RDS_MSG_ACK_REQUIRED, &rm->m_flags);
97 set_bit(RDS_MSG_RETRANSMITTED, &rm->m_flags);
99 list_splice_init(&cp->cp_retrans, &cp->cp_send_queue);
100 spin_unlock_irqrestore(&cp->cp_lock, flags);
102 EXPORT_SYMBOL_GPL(rds_send_path_reset);
104 static int acquire_in_xmit(struct rds_conn_path *cp)
106 return test_and_set_bit(RDS_IN_XMIT, &cp->cp_flags) == 0;
109 static void release_in_xmit(struct rds_conn_path *cp)
111 clear_bit(RDS_IN_XMIT, &cp->cp_flags);
112 smp_mb__after_atomic();
114 * We don't use wait_on_bit()/wake_up_bit() because our waking is in a
115 * hot path and finding waiters is very rare. We don't want to walk
116 * the system-wide hashed waitqueue buckets in the fast path only to
117 * almost never find waiters.
119 if (waitqueue_active(&cp->cp_waitq))
120 wake_up_all(&cp->cp_waitq);
124 * We're making the conscious trade-off here to only send one message
125 * down the connection at a time.
126 * Pro:
127 * - tx queueing is a simple fifo list
128 * - reassembly is optional and easily done by transports per conn
129 * - no per flow rx lookup at all, straight to the socket
130 * - less per-frag memory and wire overhead
131 * Con:
132 * - queued acks can be delayed behind large messages
133 * Depends:
134 * - small message latency is higher behind queued large messages
135 * - large message latency isn't starved by intervening small sends
137 int rds_send_xmit(struct rds_conn_path *cp)
139 struct rds_connection *conn = cp->cp_conn;
140 struct rds_message *rm;
141 unsigned long flags;
142 unsigned int tmp;
143 struct scatterlist *sg;
144 int ret = 0;
145 LIST_HEAD(to_be_dropped);
146 int batch_count;
147 unsigned long send_gen = 0;
149 restart:
150 batch_count = 0;
153 * sendmsg calls here after having queued its message on the send
154 * queue. We only have one task feeding the connection at a time. If
155 * another thread is already feeding the queue then we back off. This
156 * avoids blocking the caller and trading per-connection data between
157 * caches per message.
159 if (!acquire_in_xmit(cp)) {
160 rds_stats_inc(s_send_lock_contention);
161 ret = -ENOMEM;
162 goto out;
166 * we record the send generation after doing the xmit acquire.
167 * if someone else manages to jump in and do some work, we'll use
168 * this to avoid a goto restart farther down.
170 * The acquire_in_xmit() check above ensures that only one
171 * caller can increment c_send_gen at any time.
173 send_gen = READ_ONCE(cp->cp_send_gen) + 1;
174 WRITE_ONCE(cp->cp_send_gen, send_gen);
177 * rds_conn_shutdown() sets the conn state and then tests RDS_IN_XMIT,
178 * we do the opposite to avoid races.
180 if (!rds_conn_path_up(cp)) {
181 release_in_xmit(cp);
182 ret = 0;
183 goto out;
186 if (conn->c_trans->xmit_path_prepare)
187 conn->c_trans->xmit_path_prepare(cp);
190 * spin trying to push headers and data down the connection until
191 * the connection doesn't make forward progress.
193 while (1) {
195 rm = cp->cp_xmit_rm;
198 * If between sending messages, we can send a pending congestion
199 * map update.
201 if (!rm && test_and_clear_bit(0, &conn->c_map_queued)) {
202 rm = rds_cong_update_alloc(conn);
203 if (IS_ERR(rm)) {
204 ret = PTR_ERR(rm);
205 break;
207 rm->data.op_active = 1;
208 rm->m_inc.i_conn_path = cp;
209 rm->m_inc.i_conn = cp->cp_conn;
211 cp->cp_xmit_rm = rm;
215 * If not already working on one, grab the next message.
217 * cp_xmit_rm holds a ref while we're sending this message down
218 * the connction. We can use this ref while holding the
219 * send_sem.. rds_send_reset() is serialized with it.
221 if (!rm) {
222 unsigned int len;
224 batch_count++;
226 /* we want to process as big a batch as we can, but
227 * we also want to avoid softlockups. If we've been
228 * through a lot of messages, lets back off and see
229 * if anyone else jumps in
231 if (batch_count >= send_batch_count)
232 goto over_batch;
234 spin_lock_irqsave(&cp->cp_lock, flags);
236 if (!list_empty(&cp->cp_send_queue)) {
237 rm = list_entry(cp->cp_send_queue.next,
238 struct rds_message,
239 m_conn_item);
240 rds_message_addref(rm);
243 * Move the message from the send queue to the retransmit
244 * list right away.
246 list_move_tail(&rm->m_conn_item,
247 &cp->cp_retrans);
250 spin_unlock_irqrestore(&cp->cp_lock, flags);
252 if (!rm)
253 break;
255 /* Unfortunately, the way Infiniband deals with
256 * RDMA to a bad MR key is by moving the entire
257 * queue pair to error state. We cold possibly
258 * recover from that, but right now we drop the
259 * connection.
260 * Therefore, we never retransmit messages with RDMA ops.
262 if (test_bit(RDS_MSG_FLUSH, &rm->m_flags) ||
263 (rm->rdma.op_active &&
264 test_bit(RDS_MSG_RETRANSMITTED, &rm->m_flags))) {
265 spin_lock_irqsave(&cp->cp_lock, flags);
266 if (test_and_clear_bit(RDS_MSG_ON_CONN, &rm->m_flags))
267 list_move(&rm->m_conn_item, &to_be_dropped);
268 spin_unlock_irqrestore(&cp->cp_lock, flags);
269 continue;
272 /* Require an ACK every once in a while */
273 len = ntohl(rm->m_inc.i_hdr.h_len);
274 if (cp->cp_unacked_packets == 0 ||
275 cp->cp_unacked_bytes < len) {
276 set_bit(RDS_MSG_ACK_REQUIRED, &rm->m_flags);
278 cp->cp_unacked_packets =
279 rds_sysctl_max_unacked_packets;
280 cp->cp_unacked_bytes =
281 rds_sysctl_max_unacked_bytes;
282 rds_stats_inc(s_send_ack_required);
283 } else {
284 cp->cp_unacked_bytes -= len;
285 cp->cp_unacked_packets--;
288 cp->cp_xmit_rm = rm;
291 /* The transport either sends the whole rdma or none of it */
292 if (rm->rdma.op_active && !cp->cp_xmit_rdma_sent) {
293 rm->m_final_op = &rm->rdma;
294 /* The transport owns the mapped memory for now.
295 * You can't unmap it while it's on the send queue
297 set_bit(RDS_MSG_MAPPED, &rm->m_flags);
298 ret = conn->c_trans->xmit_rdma(conn, &rm->rdma);
299 if (ret) {
300 clear_bit(RDS_MSG_MAPPED, &rm->m_flags);
301 wake_up_interruptible(&rm->m_flush_wait);
302 break;
304 cp->cp_xmit_rdma_sent = 1;
308 if (rm->atomic.op_active && !cp->cp_xmit_atomic_sent) {
309 rm->m_final_op = &rm->atomic;
310 /* The transport owns the mapped memory for now.
311 * You can't unmap it while it's on the send queue
313 set_bit(RDS_MSG_MAPPED, &rm->m_flags);
314 ret = conn->c_trans->xmit_atomic(conn, &rm->atomic);
315 if (ret) {
316 clear_bit(RDS_MSG_MAPPED, &rm->m_flags);
317 wake_up_interruptible(&rm->m_flush_wait);
318 break;
320 cp->cp_xmit_atomic_sent = 1;
325 * A number of cases require an RDS header to be sent
326 * even if there is no data.
327 * We permit 0-byte sends; rds-ping depends on this.
328 * However, if there are exclusively attached silent ops,
329 * we skip the hdr/data send, to enable silent operation.
331 if (rm->data.op_nents == 0) {
332 int ops_present;
333 int all_ops_are_silent = 1;
335 ops_present = (rm->atomic.op_active || rm->rdma.op_active);
336 if (rm->atomic.op_active && !rm->atomic.op_silent)
337 all_ops_are_silent = 0;
338 if (rm->rdma.op_active && !rm->rdma.op_silent)
339 all_ops_are_silent = 0;
341 if (ops_present && all_ops_are_silent
342 && !rm->m_rdma_cookie)
343 rm->data.op_active = 0;
346 if (rm->data.op_active && !cp->cp_xmit_data_sent) {
347 rm->m_final_op = &rm->data;
349 ret = conn->c_trans->xmit(conn, rm,
350 cp->cp_xmit_hdr_off,
351 cp->cp_xmit_sg,
352 cp->cp_xmit_data_off);
353 if (ret <= 0)
354 break;
356 if (cp->cp_xmit_hdr_off < sizeof(struct rds_header)) {
357 tmp = min_t(int, ret,
358 sizeof(struct rds_header) -
359 cp->cp_xmit_hdr_off);
360 cp->cp_xmit_hdr_off += tmp;
361 ret -= tmp;
364 sg = &rm->data.op_sg[cp->cp_xmit_sg];
365 while (ret) {
366 tmp = min_t(int, ret, sg->length -
367 cp->cp_xmit_data_off);
368 cp->cp_xmit_data_off += tmp;
369 ret -= tmp;
370 if (cp->cp_xmit_data_off == sg->length) {
371 cp->cp_xmit_data_off = 0;
372 sg++;
373 cp->cp_xmit_sg++;
374 BUG_ON(ret != 0 && cp->cp_xmit_sg ==
375 rm->data.op_nents);
379 if (cp->cp_xmit_hdr_off == sizeof(struct rds_header) &&
380 (cp->cp_xmit_sg == rm->data.op_nents))
381 cp->cp_xmit_data_sent = 1;
385 * A rm will only take multiple times through this loop
386 * if there is a data op. Thus, if the data is sent (or there was
387 * none), then we're done with the rm.
389 if (!rm->data.op_active || cp->cp_xmit_data_sent) {
390 cp->cp_xmit_rm = NULL;
391 cp->cp_xmit_sg = 0;
392 cp->cp_xmit_hdr_off = 0;
393 cp->cp_xmit_data_off = 0;
394 cp->cp_xmit_rdma_sent = 0;
395 cp->cp_xmit_atomic_sent = 0;
396 cp->cp_xmit_data_sent = 0;
398 rds_message_put(rm);
402 over_batch:
403 if (conn->c_trans->xmit_path_complete)
404 conn->c_trans->xmit_path_complete(cp);
405 release_in_xmit(cp);
407 /* Nuke any messages we decided not to retransmit. */
408 if (!list_empty(&to_be_dropped)) {
409 /* irqs on here, so we can put(), unlike above */
410 list_for_each_entry(rm, &to_be_dropped, m_conn_item)
411 rds_message_put(rm);
412 rds_send_remove_from_sock(&to_be_dropped, RDS_RDMA_DROPPED);
416 * Other senders can queue a message after we last test the send queue
417 * but before we clear RDS_IN_XMIT. In that case they'd back off and
418 * not try and send their newly queued message. We need to check the
419 * send queue after having cleared RDS_IN_XMIT so that their message
420 * doesn't get stuck on the send queue.
422 * If the transport cannot continue (i.e ret != 0), then it must
423 * call us when more room is available, such as from the tx
424 * completion handler.
426 * We have an extra generation check here so that if someone manages
427 * to jump in after our release_in_xmit, we'll see that they have done
428 * some work and we will skip our goto
430 if (ret == 0) {
431 bool raced;
433 smp_mb();
434 raced = send_gen != READ_ONCE(cp->cp_send_gen);
436 if ((test_bit(0, &conn->c_map_queued) ||
437 !list_empty(&cp->cp_send_queue)) && !raced) {
438 if (batch_count < send_batch_count)
439 goto restart;
440 queue_delayed_work(rds_wq, &cp->cp_send_w, 1);
441 } else if (raced) {
442 rds_stats_inc(s_send_lock_queue_raced);
445 out:
446 return ret;
448 EXPORT_SYMBOL_GPL(rds_send_xmit);
450 static void rds_send_sndbuf_remove(struct rds_sock *rs, struct rds_message *rm)
452 u32 len = be32_to_cpu(rm->m_inc.i_hdr.h_len);
454 assert_spin_locked(&rs->rs_lock);
456 BUG_ON(rs->rs_snd_bytes < len);
457 rs->rs_snd_bytes -= len;
459 if (rs->rs_snd_bytes == 0)
460 rds_stats_inc(s_send_queue_empty);
463 static inline int rds_send_is_acked(struct rds_message *rm, u64 ack,
464 is_acked_func is_acked)
466 if (is_acked)
467 return is_acked(rm, ack);
468 return be64_to_cpu(rm->m_inc.i_hdr.h_sequence) <= ack;
472 * This is pretty similar to what happens below in the ACK
473 * handling code - except that we call here as soon as we get
474 * the IB send completion on the RDMA op and the accompanying
475 * message.
477 void rds_rdma_send_complete(struct rds_message *rm, int status)
479 struct rds_sock *rs = NULL;
480 struct rm_rdma_op *ro;
481 struct rds_notifier *notifier;
482 unsigned long flags;
483 unsigned int notify = 0;
485 spin_lock_irqsave(&rm->m_rs_lock, flags);
487 notify = rm->rdma.op_notify | rm->data.op_notify;
488 ro = &rm->rdma;
489 if (test_bit(RDS_MSG_ON_SOCK, &rm->m_flags) &&
490 ro->op_active && notify && ro->op_notifier) {
491 notifier = ro->op_notifier;
492 rs = rm->m_rs;
493 sock_hold(rds_rs_to_sk(rs));
495 notifier->n_status = status;
496 spin_lock(&rs->rs_lock);
497 list_add_tail(&notifier->n_list, &rs->rs_notify_queue);
498 spin_unlock(&rs->rs_lock);
500 ro->op_notifier = NULL;
503 spin_unlock_irqrestore(&rm->m_rs_lock, flags);
505 if (rs) {
506 rds_wake_sk_sleep(rs);
507 sock_put(rds_rs_to_sk(rs));
510 EXPORT_SYMBOL_GPL(rds_rdma_send_complete);
513 * Just like above, except looks at atomic op
515 void rds_atomic_send_complete(struct rds_message *rm, int status)
517 struct rds_sock *rs = NULL;
518 struct rm_atomic_op *ao;
519 struct rds_notifier *notifier;
520 unsigned long flags;
522 spin_lock_irqsave(&rm->m_rs_lock, flags);
524 ao = &rm->atomic;
525 if (test_bit(RDS_MSG_ON_SOCK, &rm->m_flags)
526 && ao->op_active && ao->op_notify && ao->op_notifier) {
527 notifier = ao->op_notifier;
528 rs = rm->m_rs;
529 sock_hold(rds_rs_to_sk(rs));
531 notifier->n_status = status;
532 spin_lock(&rs->rs_lock);
533 list_add_tail(&notifier->n_list, &rs->rs_notify_queue);
534 spin_unlock(&rs->rs_lock);
536 ao->op_notifier = NULL;
539 spin_unlock_irqrestore(&rm->m_rs_lock, flags);
541 if (rs) {
542 rds_wake_sk_sleep(rs);
543 sock_put(rds_rs_to_sk(rs));
546 EXPORT_SYMBOL_GPL(rds_atomic_send_complete);
549 * This is the same as rds_rdma_send_complete except we
550 * don't do any locking - we have all the ingredients (message,
551 * socket, socket lock) and can just move the notifier.
553 static inline void
554 __rds_send_complete(struct rds_sock *rs, struct rds_message *rm, int status)
556 struct rm_rdma_op *ro;
557 struct rm_atomic_op *ao;
559 ro = &rm->rdma;
560 if (ro->op_active && ro->op_notify && ro->op_notifier) {
561 ro->op_notifier->n_status = status;
562 list_add_tail(&ro->op_notifier->n_list, &rs->rs_notify_queue);
563 ro->op_notifier = NULL;
566 ao = &rm->atomic;
567 if (ao->op_active && ao->op_notify && ao->op_notifier) {
568 ao->op_notifier->n_status = status;
569 list_add_tail(&ao->op_notifier->n_list, &rs->rs_notify_queue);
570 ao->op_notifier = NULL;
573 /* No need to wake the app - caller does this */
577 * This removes messages from the socket's list if they're on it. The list
578 * argument must be private to the caller, we must be able to modify it
579 * without locks. The messages must have a reference held for their
580 * position on the list. This function will drop that reference after
581 * removing the messages from the 'messages' list regardless of if it found
582 * the messages on the socket list or not.
584 static void rds_send_remove_from_sock(struct list_head *messages, int status)
586 unsigned long flags;
587 struct rds_sock *rs = NULL;
588 struct rds_message *rm;
590 while (!list_empty(messages)) {
591 int was_on_sock = 0;
593 rm = list_entry(messages->next, struct rds_message,
594 m_conn_item);
595 list_del_init(&rm->m_conn_item);
598 * If we see this flag cleared then we're *sure* that someone
599 * else beat us to removing it from the sock. If we race
600 * with their flag update we'll get the lock and then really
601 * see that the flag has been cleared.
603 * The message spinlock makes sure nobody clears rm->m_rs
604 * while we're messing with it. It does not prevent the
605 * message from being removed from the socket, though.
607 spin_lock_irqsave(&rm->m_rs_lock, flags);
608 if (!test_bit(RDS_MSG_ON_SOCK, &rm->m_flags))
609 goto unlock_and_drop;
611 if (rs != rm->m_rs) {
612 if (rs) {
613 rds_wake_sk_sleep(rs);
614 sock_put(rds_rs_to_sk(rs));
616 rs = rm->m_rs;
617 if (rs)
618 sock_hold(rds_rs_to_sk(rs));
620 if (!rs)
621 goto unlock_and_drop;
622 spin_lock(&rs->rs_lock);
624 if (test_and_clear_bit(RDS_MSG_ON_SOCK, &rm->m_flags)) {
625 struct rm_rdma_op *ro = &rm->rdma;
626 struct rds_notifier *notifier;
628 list_del_init(&rm->m_sock_item);
629 rds_send_sndbuf_remove(rs, rm);
631 if (ro->op_active && ro->op_notifier &&
632 (ro->op_notify || (ro->op_recverr && status))) {
633 notifier = ro->op_notifier;
634 list_add_tail(&notifier->n_list,
635 &rs->rs_notify_queue);
636 if (!notifier->n_status)
637 notifier->n_status = status;
638 rm->rdma.op_notifier = NULL;
640 was_on_sock = 1;
641 rm->m_rs = NULL;
643 spin_unlock(&rs->rs_lock);
645 unlock_and_drop:
646 spin_unlock_irqrestore(&rm->m_rs_lock, flags);
647 rds_message_put(rm);
648 if (was_on_sock)
649 rds_message_put(rm);
652 if (rs) {
653 rds_wake_sk_sleep(rs);
654 sock_put(rds_rs_to_sk(rs));
659 * Transports call here when they've determined that the receiver queued
660 * messages up to, and including, the given sequence number. Messages are
661 * moved to the retrans queue when rds_send_xmit picks them off the send
662 * queue. This means that in the TCP case, the message may not have been
663 * assigned the m_ack_seq yet - but that's fine as long as tcp_is_acked
664 * checks the RDS_MSG_HAS_ACK_SEQ bit.
666 void rds_send_path_drop_acked(struct rds_conn_path *cp, u64 ack,
667 is_acked_func is_acked)
669 struct rds_message *rm, *tmp;
670 unsigned long flags;
671 LIST_HEAD(list);
673 spin_lock_irqsave(&cp->cp_lock, flags);
675 list_for_each_entry_safe(rm, tmp, &cp->cp_retrans, m_conn_item) {
676 if (!rds_send_is_acked(rm, ack, is_acked))
677 break;
679 list_move(&rm->m_conn_item, &list);
680 clear_bit(RDS_MSG_ON_CONN, &rm->m_flags);
683 /* order flag updates with spin locks */
684 if (!list_empty(&list))
685 smp_mb__after_atomic();
687 spin_unlock_irqrestore(&cp->cp_lock, flags);
689 /* now remove the messages from the sock list as needed */
690 rds_send_remove_from_sock(&list, RDS_RDMA_SUCCESS);
692 EXPORT_SYMBOL_GPL(rds_send_path_drop_acked);
694 void rds_send_drop_acked(struct rds_connection *conn, u64 ack,
695 is_acked_func is_acked)
697 WARN_ON(conn->c_trans->t_mp_capable);
698 rds_send_path_drop_acked(&conn->c_path[0], ack, is_acked);
700 EXPORT_SYMBOL_GPL(rds_send_drop_acked);
702 void rds_send_drop_to(struct rds_sock *rs, struct sockaddr_in *dest)
704 struct rds_message *rm, *tmp;
705 struct rds_connection *conn;
706 struct rds_conn_path *cp;
707 unsigned long flags;
708 LIST_HEAD(list);
710 /* get all the messages we're dropping under the rs lock */
711 spin_lock_irqsave(&rs->rs_lock, flags);
713 list_for_each_entry_safe(rm, tmp, &rs->rs_send_queue, m_sock_item) {
714 if (dest && (dest->sin_addr.s_addr != rm->m_daddr ||
715 dest->sin_port != rm->m_inc.i_hdr.h_dport))
716 continue;
718 list_move(&rm->m_sock_item, &list);
719 rds_send_sndbuf_remove(rs, rm);
720 clear_bit(RDS_MSG_ON_SOCK, &rm->m_flags);
723 /* order flag updates with the rs lock */
724 smp_mb__after_atomic();
726 spin_unlock_irqrestore(&rs->rs_lock, flags);
728 if (list_empty(&list))
729 return;
731 /* Remove the messages from the conn */
732 list_for_each_entry(rm, &list, m_sock_item) {
734 conn = rm->m_inc.i_conn;
735 if (conn->c_trans->t_mp_capable)
736 cp = rm->m_inc.i_conn_path;
737 else
738 cp = &conn->c_path[0];
740 spin_lock_irqsave(&cp->cp_lock, flags);
742 * Maybe someone else beat us to removing rm from the conn.
743 * If we race with their flag update we'll get the lock and
744 * then really see that the flag has been cleared.
746 if (!test_and_clear_bit(RDS_MSG_ON_CONN, &rm->m_flags)) {
747 spin_unlock_irqrestore(&cp->cp_lock, flags);
748 spin_lock_irqsave(&rm->m_rs_lock, flags);
749 rm->m_rs = NULL;
750 spin_unlock_irqrestore(&rm->m_rs_lock, flags);
751 continue;
753 list_del_init(&rm->m_conn_item);
754 spin_unlock_irqrestore(&cp->cp_lock, flags);
757 * Couldn't grab m_rs_lock in top loop (lock ordering),
758 * but we can now.
760 spin_lock_irqsave(&rm->m_rs_lock, flags);
762 spin_lock(&rs->rs_lock);
763 __rds_send_complete(rs, rm, RDS_RDMA_CANCELED);
764 spin_unlock(&rs->rs_lock);
766 rm->m_rs = NULL;
767 spin_unlock_irqrestore(&rm->m_rs_lock, flags);
769 rds_message_put(rm);
772 rds_wake_sk_sleep(rs);
774 while (!list_empty(&list)) {
775 rm = list_entry(list.next, struct rds_message, m_sock_item);
776 list_del_init(&rm->m_sock_item);
777 rds_message_wait(rm);
779 /* just in case the code above skipped this message
780 * because RDS_MSG_ON_CONN wasn't set, run it again here
781 * taking m_rs_lock is the only thing that keeps us
782 * from racing with ack processing.
784 spin_lock_irqsave(&rm->m_rs_lock, flags);
786 spin_lock(&rs->rs_lock);
787 __rds_send_complete(rs, rm, RDS_RDMA_CANCELED);
788 spin_unlock(&rs->rs_lock);
790 rm->m_rs = NULL;
791 spin_unlock_irqrestore(&rm->m_rs_lock, flags);
793 rds_message_put(rm);
798 * we only want this to fire once so we use the callers 'queued'. It's
799 * possible that another thread can race with us and remove the
800 * message from the flow with RDS_CANCEL_SENT_TO.
802 static int rds_send_queue_rm(struct rds_sock *rs, struct rds_connection *conn,
803 struct rds_conn_path *cp,
804 struct rds_message *rm, __be16 sport,
805 __be16 dport, int *queued)
807 unsigned long flags;
808 u32 len;
810 if (*queued)
811 goto out;
813 len = be32_to_cpu(rm->m_inc.i_hdr.h_len);
815 /* this is the only place which holds both the socket's rs_lock
816 * and the connection's c_lock */
817 spin_lock_irqsave(&rs->rs_lock, flags);
820 * If there is a little space in sndbuf, we don't queue anything,
821 * and userspace gets -EAGAIN. But poll() indicates there's send
822 * room. This can lead to bad behavior (spinning) if snd_bytes isn't
823 * freed up by incoming acks. So we check the *old* value of
824 * rs_snd_bytes here to allow the last msg to exceed the buffer,
825 * and poll() now knows no more data can be sent.
827 if (rs->rs_snd_bytes < rds_sk_sndbuf(rs)) {
828 rs->rs_snd_bytes += len;
830 /* let recv side know we are close to send space exhaustion.
831 * This is probably not the optimal way to do it, as this
832 * means we set the flag on *all* messages as soon as our
833 * throughput hits a certain threshold.
835 if (rs->rs_snd_bytes >= rds_sk_sndbuf(rs) / 2)
836 set_bit(RDS_MSG_ACK_REQUIRED, &rm->m_flags);
838 list_add_tail(&rm->m_sock_item, &rs->rs_send_queue);
839 set_bit(RDS_MSG_ON_SOCK, &rm->m_flags);
840 rds_message_addref(rm);
841 rm->m_rs = rs;
843 /* The code ordering is a little weird, but we're
844 trying to minimize the time we hold c_lock */
845 rds_message_populate_header(&rm->m_inc.i_hdr, sport, dport, 0);
846 rm->m_inc.i_conn = conn;
847 rm->m_inc.i_conn_path = cp;
848 rds_message_addref(rm);
850 spin_lock(&cp->cp_lock);
851 rm->m_inc.i_hdr.h_sequence = cpu_to_be64(cp->cp_next_tx_seq++);
852 list_add_tail(&rm->m_conn_item, &cp->cp_send_queue);
853 set_bit(RDS_MSG_ON_CONN, &rm->m_flags);
854 spin_unlock(&cp->cp_lock);
856 rdsdebug("queued msg %p len %d, rs %p bytes %d seq %llu\n",
857 rm, len, rs, rs->rs_snd_bytes,
858 (unsigned long long)be64_to_cpu(rm->m_inc.i_hdr.h_sequence));
860 *queued = 1;
863 spin_unlock_irqrestore(&rs->rs_lock, flags);
864 out:
865 return *queued;
869 * rds_message is getting to be quite complicated, and we'd like to allocate
870 * it all in one go. This figures out how big it needs to be up front.
872 static int rds_rm_size(struct msghdr *msg, int data_len)
874 struct cmsghdr *cmsg;
875 int size = 0;
876 int cmsg_groups = 0;
877 int retval;
879 for_each_cmsghdr(cmsg, msg) {
880 if (!CMSG_OK(msg, cmsg))
881 return -EINVAL;
883 if (cmsg->cmsg_level != SOL_RDS)
884 continue;
886 switch (cmsg->cmsg_type) {
887 case RDS_CMSG_RDMA_ARGS:
888 cmsg_groups |= 1;
889 retval = rds_rdma_extra_size(CMSG_DATA(cmsg));
890 if (retval < 0)
891 return retval;
892 size += retval;
894 break;
896 case RDS_CMSG_RDMA_DEST:
897 case RDS_CMSG_RDMA_MAP:
898 cmsg_groups |= 2;
899 /* these are valid but do no add any size */
900 break;
902 case RDS_CMSG_ATOMIC_CSWP:
903 case RDS_CMSG_ATOMIC_FADD:
904 case RDS_CMSG_MASKED_ATOMIC_CSWP:
905 case RDS_CMSG_MASKED_ATOMIC_FADD:
906 cmsg_groups |= 1;
907 size += sizeof(struct scatterlist);
908 break;
910 default:
911 return -EINVAL;
916 size += ceil(data_len, PAGE_SIZE) * sizeof(struct scatterlist);
918 /* Ensure (DEST, MAP) are never used with (ARGS, ATOMIC) */
919 if (cmsg_groups == 3)
920 return -EINVAL;
922 return size;
925 static int rds_cmsg_send(struct rds_sock *rs, struct rds_message *rm,
926 struct msghdr *msg, int *allocated_mr)
928 struct cmsghdr *cmsg;
929 int ret = 0;
931 for_each_cmsghdr(cmsg, msg) {
932 if (!CMSG_OK(msg, cmsg))
933 return -EINVAL;
935 if (cmsg->cmsg_level != SOL_RDS)
936 continue;
938 /* As a side effect, RDMA_DEST and RDMA_MAP will set
939 * rm->rdma.m_rdma_cookie and rm->rdma.m_rdma_mr.
941 switch (cmsg->cmsg_type) {
942 case RDS_CMSG_RDMA_ARGS:
943 ret = rds_cmsg_rdma_args(rs, rm, cmsg);
944 break;
946 case RDS_CMSG_RDMA_DEST:
947 ret = rds_cmsg_rdma_dest(rs, rm, cmsg);
948 break;
950 case RDS_CMSG_RDMA_MAP:
951 ret = rds_cmsg_rdma_map(rs, rm, cmsg);
952 if (!ret)
953 *allocated_mr = 1;
954 else if (ret == -ENODEV)
955 /* Accommodate the get_mr() case which can fail
956 * if connection isn't established yet.
958 ret = -EAGAIN;
959 break;
960 case RDS_CMSG_ATOMIC_CSWP:
961 case RDS_CMSG_ATOMIC_FADD:
962 case RDS_CMSG_MASKED_ATOMIC_CSWP:
963 case RDS_CMSG_MASKED_ATOMIC_FADD:
964 ret = rds_cmsg_atomic(rs, rm, cmsg);
965 break;
967 default:
968 return -EINVAL;
971 if (ret)
972 break;
975 return ret;
978 static int rds_send_mprds_hash(struct rds_sock *rs, struct rds_connection *conn)
980 int hash;
982 if (conn->c_npaths == 0)
983 hash = RDS_MPATH_HASH(rs, RDS_MPATH_WORKERS);
984 else
985 hash = RDS_MPATH_HASH(rs, conn->c_npaths);
986 if (conn->c_npaths == 0 && hash != 0) {
987 rds_send_ping(conn, 0);
989 if (conn->c_npaths == 0) {
990 wait_event_interruptible(conn->c_hs_waitq,
991 (conn->c_npaths != 0));
993 if (conn->c_npaths == 1)
994 hash = 0;
996 return hash;
999 static int rds_rdma_bytes(struct msghdr *msg, size_t *rdma_bytes)
1001 struct rds_rdma_args *args;
1002 struct cmsghdr *cmsg;
1004 for_each_cmsghdr(cmsg, msg) {
1005 if (!CMSG_OK(msg, cmsg))
1006 return -EINVAL;
1008 if (cmsg->cmsg_level != SOL_RDS)
1009 continue;
1011 if (cmsg->cmsg_type == RDS_CMSG_RDMA_ARGS) {
1012 args = CMSG_DATA(cmsg);
1013 *rdma_bytes += args->remote_vec.bytes;
1016 return 0;
1019 int rds_sendmsg(struct socket *sock, struct msghdr *msg, size_t payload_len)
1021 struct sock *sk = sock->sk;
1022 struct rds_sock *rs = rds_sk_to_rs(sk);
1023 DECLARE_SOCKADDR(struct sockaddr_in *, usin, msg->msg_name);
1024 __be32 daddr;
1025 __be16 dport;
1026 struct rds_message *rm = NULL;
1027 struct rds_connection *conn;
1028 int ret = 0;
1029 int queued = 0, allocated_mr = 0;
1030 int nonblock = msg->msg_flags & MSG_DONTWAIT;
1031 long timeo = sock_sndtimeo(sk, nonblock);
1032 struct rds_conn_path *cpath;
1033 size_t total_payload_len = payload_len, rdma_payload_len = 0;
1035 /* Mirror Linux UDP mirror of BSD error message compatibility */
1036 /* XXX: Perhaps MSG_MORE someday */
1037 if (msg->msg_flags & ~(MSG_DONTWAIT | MSG_CMSG_COMPAT)) {
1038 ret = -EOPNOTSUPP;
1039 goto out;
1042 if (msg->msg_namelen) {
1043 /* XXX fail non-unicast destination IPs? */
1044 if (msg->msg_namelen < sizeof(*usin) || usin->sin_family != AF_INET) {
1045 ret = -EINVAL;
1046 goto out;
1048 daddr = usin->sin_addr.s_addr;
1049 dport = usin->sin_port;
1050 } else {
1051 /* We only care about consistency with ->connect() */
1052 lock_sock(sk);
1053 daddr = rs->rs_conn_addr;
1054 dport = rs->rs_conn_port;
1055 release_sock(sk);
1058 lock_sock(sk);
1059 if (daddr == 0 || rs->rs_bound_addr == 0) {
1060 release_sock(sk);
1061 ret = -ENOTCONN; /* XXX not a great errno */
1062 goto out;
1064 release_sock(sk);
1066 ret = rds_rdma_bytes(msg, &rdma_payload_len);
1067 if (ret)
1068 goto out;
1070 total_payload_len += rdma_payload_len;
1071 if (max_t(size_t, payload_len, rdma_payload_len) > RDS_MAX_MSG_SIZE) {
1072 ret = -EMSGSIZE;
1073 goto out;
1076 if (payload_len > rds_sk_sndbuf(rs)) {
1077 ret = -EMSGSIZE;
1078 goto out;
1081 /* size of rm including all sgs */
1082 ret = rds_rm_size(msg, payload_len);
1083 if (ret < 0)
1084 goto out;
1086 rm = rds_message_alloc(ret, GFP_KERNEL);
1087 if (!rm) {
1088 ret = -ENOMEM;
1089 goto out;
1092 /* Attach data to the rm */
1093 if (payload_len) {
1094 rm->data.op_sg = rds_message_alloc_sgs(rm, ceil(payload_len, PAGE_SIZE));
1095 if (!rm->data.op_sg) {
1096 ret = -ENOMEM;
1097 goto out;
1099 ret = rds_message_copy_from_user(rm, &msg->msg_iter);
1100 if (ret)
1101 goto out;
1103 rm->data.op_active = 1;
1105 rm->m_daddr = daddr;
1107 /* rds_conn_create has a spinlock that runs with IRQ off.
1108 * Caching the conn in the socket helps a lot. */
1109 if (rs->rs_conn && rs->rs_conn->c_faddr == daddr)
1110 conn = rs->rs_conn;
1111 else {
1112 conn = rds_conn_create_outgoing(sock_net(sock->sk),
1113 rs->rs_bound_addr, daddr,
1114 rs->rs_transport,
1115 sock->sk->sk_allocation);
1116 if (IS_ERR(conn)) {
1117 ret = PTR_ERR(conn);
1118 goto out;
1120 rs->rs_conn = conn;
1123 /* Parse any control messages the user may have included. */
1124 ret = rds_cmsg_send(rs, rm, msg, &allocated_mr);
1125 if (ret) {
1126 /* Trigger connection so that its ready for the next retry */
1127 if (ret == -EAGAIN)
1128 rds_conn_connect_if_down(conn);
1129 goto out;
1132 if (rm->rdma.op_active && !conn->c_trans->xmit_rdma) {
1133 printk_ratelimited(KERN_NOTICE "rdma_op %p conn xmit_rdma %p\n",
1134 &rm->rdma, conn->c_trans->xmit_rdma);
1135 ret = -EOPNOTSUPP;
1136 goto out;
1139 if (rm->atomic.op_active && !conn->c_trans->xmit_atomic) {
1140 printk_ratelimited(KERN_NOTICE "atomic_op %p conn xmit_atomic %p\n",
1141 &rm->atomic, conn->c_trans->xmit_atomic);
1142 ret = -EOPNOTSUPP;
1143 goto out;
1146 if (conn->c_trans->t_mp_capable)
1147 cpath = &conn->c_path[rds_send_mprds_hash(rs, conn)];
1148 else
1149 cpath = &conn->c_path[0];
1151 rds_conn_path_connect_if_down(cpath);
1153 ret = rds_cong_wait(conn->c_fcong, dport, nonblock, rs);
1154 if (ret) {
1155 rs->rs_seen_congestion = 1;
1156 goto out;
1158 while (!rds_send_queue_rm(rs, conn, cpath, rm, rs->rs_bound_port,
1159 dport, &queued)) {
1160 rds_stats_inc(s_send_queue_full);
1162 if (nonblock) {
1163 ret = -EAGAIN;
1164 goto out;
1167 timeo = wait_event_interruptible_timeout(*sk_sleep(sk),
1168 rds_send_queue_rm(rs, conn, cpath, rm,
1169 rs->rs_bound_port,
1170 dport,
1171 &queued),
1172 timeo);
1173 rdsdebug("sendmsg woke queued %d timeo %ld\n", queued, timeo);
1174 if (timeo > 0 || timeo == MAX_SCHEDULE_TIMEOUT)
1175 continue;
1177 ret = timeo;
1178 if (ret == 0)
1179 ret = -ETIMEDOUT;
1180 goto out;
1184 * By now we've committed to the send. We reuse rds_send_worker()
1185 * to retry sends in the rds thread if the transport asks us to.
1187 rds_stats_inc(s_send_queued);
1189 ret = rds_send_xmit(cpath);
1190 if (ret == -ENOMEM || ret == -EAGAIN)
1191 queue_delayed_work(rds_wq, &cpath->cp_send_w, 1);
1193 rds_message_put(rm);
1194 return payload_len;
1196 out:
1197 /* If the user included a RDMA_MAP cmsg, we allocated a MR on the fly.
1198 * If the sendmsg goes through, we keep the MR. If it fails with EAGAIN
1199 * or in any other way, we need to destroy the MR again */
1200 if (allocated_mr)
1201 rds_rdma_unuse(rs, rds_rdma_cookie_key(rm->m_rdma_cookie), 1);
1203 if (rm)
1204 rds_message_put(rm);
1205 return ret;
1209 * send out a probe. Can be shared by rds_send_ping,
1210 * rds_send_pong, rds_send_hb.
1211 * rds_send_hb should use h_flags
1212 * RDS_FLAG_HB_PING|RDS_FLAG_ACK_REQUIRED
1213 * or
1214 * RDS_FLAG_HB_PONG|RDS_FLAG_ACK_REQUIRED
1216 static int
1217 rds_send_probe(struct rds_conn_path *cp, __be16 sport,
1218 __be16 dport, u8 h_flags)
1220 struct rds_message *rm;
1221 unsigned long flags;
1222 int ret = 0;
1224 rm = rds_message_alloc(0, GFP_ATOMIC);
1225 if (!rm) {
1226 ret = -ENOMEM;
1227 goto out;
1230 rm->m_daddr = cp->cp_conn->c_faddr;
1231 rm->data.op_active = 1;
1233 rds_conn_path_connect_if_down(cp);
1235 ret = rds_cong_wait(cp->cp_conn->c_fcong, dport, 1, NULL);
1236 if (ret)
1237 goto out;
1239 spin_lock_irqsave(&cp->cp_lock, flags);
1240 list_add_tail(&rm->m_conn_item, &cp->cp_send_queue);
1241 set_bit(RDS_MSG_ON_CONN, &rm->m_flags);
1242 rds_message_addref(rm);
1243 rm->m_inc.i_conn = cp->cp_conn;
1244 rm->m_inc.i_conn_path = cp;
1246 rds_message_populate_header(&rm->m_inc.i_hdr, sport, dport,
1247 cp->cp_next_tx_seq);
1248 rm->m_inc.i_hdr.h_flags |= h_flags;
1249 cp->cp_next_tx_seq++;
1251 if (RDS_HS_PROBE(be16_to_cpu(sport), be16_to_cpu(dport)) &&
1252 cp->cp_conn->c_trans->t_mp_capable) {
1253 u16 npaths = cpu_to_be16(RDS_MPATH_WORKERS);
1254 u32 my_gen_num = cpu_to_be32(cp->cp_conn->c_my_gen_num);
1256 rds_message_add_extension(&rm->m_inc.i_hdr,
1257 RDS_EXTHDR_NPATHS, &npaths,
1258 sizeof(npaths));
1259 rds_message_add_extension(&rm->m_inc.i_hdr,
1260 RDS_EXTHDR_GEN_NUM,
1261 &my_gen_num,
1262 sizeof(u32));
1264 spin_unlock_irqrestore(&cp->cp_lock, flags);
1266 rds_stats_inc(s_send_queued);
1267 rds_stats_inc(s_send_pong);
1269 /* schedule the send work on rds_wq */
1270 queue_delayed_work(rds_wq, &cp->cp_send_w, 1);
1272 rds_message_put(rm);
1273 return 0;
1275 out:
1276 if (rm)
1277 rds_message_put(rm);
1278 return ret;
1282 rds_send_pong(struct rds_conn_path *cp, __be16 dport)
1284 return rds_send_probe(cp, 0, dport, 0);
1287 void
1288 rds_send_ping(struct rds_connection *conn, int cp_index)
1290 unsigned long flags;
1291 struct rds_conn_path *cp = &conn->c_path[cp_index];
1293 spin_lock_irqsave(&cp->cp_lock, flags);
1294 if (conn->c_ping_triggered) {
1295 spin_unlock_irqrestore(&cp->cp_lock, flags);
1296 return;
1298 conn->c_ping_triggered = 1;
1299 spin_unlock_irqrestore(&cp->cp_lock, flags);
1300 rds_send_probe(cp, cpu_to_be16(RDS_FLAG_PROBE_PORT), 0, 0);
1302 EXPORT_SYMBOL_GPL(rds_send_ping);