2 * VMware vSockets Driver
4 * Copyright (C) 2007-2013 VMware, Inc. All rights reserved.
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License as published by the Free
8 * Software Foundation version 2 and no later version.
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
16 /* Implementation notes:
18 * - There are two kinds of sockets: those created by user action (such as
19 * calling socket(2)) and those created by incoming connection request packets.
21 * - There are two "global" tables, one for bound sockets (sockets that have
22 * specified an address that they are responsible for) and one for connected
23 * sockets (sockets that have established a connection with another socket).
24 * These tables are "global" in that all sockets on the system are placed
25 * within them. - Note, though, that the bound table contains an extra entry
26 * for a list of unbound sockets and SOCK_DGRAM sockets will always remain in
27 * that list. The bound table is used solely for lookup of sockets when packets
28 * are received and that's not necessary for SOCK_DGRAM sockets since we create
29 * a datagram handle for each and need not perform a lookup. Keeping SOCK_DGRAM
30 * sockets out of the bound hash buckets will reduce the chance of collisions
31 * when looking for SOCK_STREAM sockets and prevents us from having to check the
32 * socket type in the hash table lookups.
34 * - Sockets created by user action will either be "client" sockets that
35 * initiate a connection or "server" sockets that listen for connections; we do
36 * not support simultaneous connects (two "client" sockets connecting).
38 * - "Server" sockets are referred to as listener sockets throughout this
39 * implementation because they are in the VSOCK_SS_LISTEN state. When a
40 * connection request is received (the second kind of socket mentioned above),
41 * we create a new socket and refer to it as a pending socket. These pending
42 * sockets are placed on the pending connection list of the listener socket.
43 * When future packets are received for the address the listener socket is
44 * bound to, we check if the source of the packet is from one that has an
45 * existing pending connection. If it does, we process the packet for the
46 * pending socket. When that socket reaches the connected state, it is removed
47 * from the listener socket's pending list and enqueued in the listener
48 * socket's accept queue. Callers of accept(2) will accept connected sockets
49 * from the listener socket's accept queue. If the socket cannot be accepted
50 * for some reason then it is marked rejected. Once the connection is
51 * accepted, it is owned by the user process and the responsibility for cleanup
52 * falls with that user process.
54 * - It is possible that these pending sockets will never reach the connected
55 * state; in fact, we may never receive another packet after the connection
56 * request. Because of this, we must schedule a cleanup function to run in the
57 * future, after some amount of time passes where a connection should have been
58 * established. This function ensures that the socket is off all lists so it
59 * cannot be retrieved, then drops all references to the socket so it is cleaned
60 * up (sock_put() -> sk_free() -> our sk_destruct implementation). Note this
61 * function will also cleanup rejected sockets, those that reach the connected
62 * state but leave it before they have been accepted.
64 * - Lock ordering for pending or accept queue sockets is:
66 * lock_sock(listener);
67 * lock_sock_nested(pending, SINGLE_DEPTH_NESTING);
69 * Using explicit nested locking keeps lockdep happy since normally only one
70 * lock of a given class may be taken at a time.
72 * - Sockets created by user action will be cleaned up when the user process
73 * calls close(2), causing our release implementation to be called. Our release
74 * implementation will perform some cleanup then drop the last reference so our
75 * sk_destruct implementation is invoked. Our sk_destruct implementation will
76 * perform additional cleanup that's common for both types of sockets.
78 * - A socket's reference count is what ensures that the structure won't be
79 * freed. Each entry in a list (such as the "global" bound and connected tables
80 * and the listener socket's pending list and connected queue) ensures a
81 * reference. When we defer work until process context and pass a socket as our
82 * argument, we must ensure the reference count is increased to ensure the
83 * socket isn't freed before the function is run; the deferred function will
84 * then drop the reference.
87 #include <linux/types.h>
88 #include <linux/bitops.h>
89 #include <linux/cred.h>
90 #include <linux/init.h>
92 #include <linux/kernel.h>
93 #include <linux/sched/signal.h>
94 #include <linux/kmod.h>
95 #include <linux/list.h>
96 #include <linux/miscdevice.h>
97 #include <linux/module.h>
98 #include <linux/mutex.h>
99 #include <linux/net.h>
100 #include <linux/poll.h>
101 #include <linux/skbuff.h>
102 #include <linux/smp.h>
103 #include <linux/socket.h>
104 #include <linux/stddef.h>
105 #include <linux/unistd.h>
106 #include <linux/wait.h>
107 #include <linux/workqueue.h>
108 #include <net/sock.h>
109 #include <net/af_vsock.h>
111 static int __vsock_bind(struct sock
*sk
, struct sockaddr_vm
*addr
);
112 static void vsock_sk_destruct(struct sock
*sk
);
113 static int vsock_queue_rcv_skb(struct sock
*sk
, struct sk_buff
*skb
);
115 /* Protocol family. */
116 static struct proto vsock_proto
= {
118 .owner
= THIS_MODULE
,
119 .obj_size
= sizeof(struct vsock_sock
),
122 /* The default peer timeout indicates how long we will wait for a peer response
123 * to a control message.
125 #define VSOCK_DEFAULT_CONNECT_TIMEOUT (2 * HZ)
127 static const struct vsock_transport
*transport
;
128 static DEFINE_MUTEX(vsock_register_mutex
);
132 /* Get the ID of the local context. This is transport dependent. */
134 int vm_sockets_get_local_cid(void)
136 return transport
->get_local_cid();
138 EXPORT_SYMBOL_GPL(vm_sockets_get_local_cid
);
142 /* Each bound VSocket is stored in the bind hash table and each connected
143 * VSocket is stored in the connected hash table.
145 * Unbound sockets are all put on the same list attached to the end of the hash
146 * table (vsock_unbound_sockets). Bound sockets are added to the hash table in
147 * the bucket that their local address hashes to (vsock_bound_sockets(addr)
148 * represents the list that addr hashes to).
150 * Specifically, we initialize the vsock_bind_table array to a size of
151 * VSOCK_HASH_SIZE + 1 so that vsock_bind_table[0] through
152 * vsock_bind_table[VSOCK_HASH_SIZE - 1] are for bound sockets and
153 * vsock_bind_table[VSOCK_HASH_SIZE] is for unbound sockets. The hash function
154 * mods with VSOCK_HASH_SIZE to ensure this.
156 #define VSOCK_HASH_SIZE 251
157 #define MAX_PORT_RETRIES 24
159 #define VSOCK_HASH(addr) ((addr)->svm_port % VSOCK_HASH_SIZE)
160 #define vsock_bound_sockets(addr) (&vsock_bind_table[VSOCK_HASH(addr)])
161 #define vsock_unbound_sockets (&vsock_bind_table[VSOCK_HASH_SIZE])
163 /* XXX This can probably be implemented in a better way. */
164 #define VSOCK_CONN_HASH(src, dst) \
165 (((src)->svm_cid ^ (dst)->svm_port) % VSOCK_HASH_SIZE)
166 #define vsock_connected_sockets(src, dst) \
167 (&vsock_connected_table[VSOCK_CONN_HASH(src, dst)])
168 #define vsock_connected_sockets_vsk(vsk) \
169 vsock_connected_sockets(&(vsk)->remote_addr, &(vsk)->local_addr)
171 static struct list_head vsock_bind_table
[VSOCK_HASH_SIZE
+ 1];
172 static struct list_head vsock_connected_table
[VSOCK_HASH_SIZE
];
173 static DEFINE_SPINLOCK(vsock_table_lock
);
175 /* Autobind this socket to the local address if necessary. */
176 static int vsock_auto_bind(struct vsock_sock
*vsk
)
178 struct sock
*sk
= sk_vsock(vsk
);
179 struct sockaddr_vm local_addr
;
181 if (vsock_addr_bound(&vsk
->local_addr
))
183 vsock_addr_init(&local_addr
, VMADDR_CID_ANY
, VMADDR_PORT_ANY
);
184 return __vsock_bind(sk
, &local_addr
);
187 static void vsock_init_tables(void)
191 for (i
= 0; i
< ARRAY_SIZE(vsock_bind_table
); i
++)
192 INIT_LIST_HEAD(&vsock_bind_table
[i
]);
194 for (i
= 0; i
< ARRAY_SIZE(vsock_connected_table
); i
++)
195 INIT_LIST_HEAD(&vsock_connected_table
[i
]);
198 static void __vsock_insert_bound(struct list_head
*list
,
199 struct vsock_sock
*vsk
)
202 list_add(&vsk
->bound_table
, list
);
205 static void __vsock_insert_connected(struct list_head
*list
,
206 struct vsock_sock
*vsk
)
209 list_add(&vsk
->connected_table
, list
);
212 static void __vsock_remove_bound(struct vsock_sock
*vsk
)
214 list_del_init(&vsk
->bound_table
);
218 static void __vsock_remove_connected(struct vsock_sock
*vsk
)
220 list_del_init(&vsk
->connected_table
);
224 static struct sock
*__vsock_find_bound_socket(struct sockaddr_vm
*addr
)
226 struct vsock_sock
*vsk
;
228 list_for_each_entry(vsk
, vsock_bound_sockets(addr
), bound_table
)
229 if (addr
->svm_port
== vsk
->local_addr
.svm_port
)
230 return sk_vsock(vsk
);
235 static struct sock
*__vsock_find_connected_socket(struct sockaddr_vm
*src
,
236 struct sockaddr_vm
*dst
)
238 struct vsock_sock
*vsk
;
240 list_for_each_entry(vsk
, vsock_connected_sockets(src
, dst
),
242 if (vsock_addr_equals_addr(src
, &vsk
->remote_addr
) &&
243 dst
->svm_port
== vsk
->local_addr
.svm_port
) {
244 return sk_vsock(vsk
);
251 static bool __vsock_in_bound_table(struct vsock_sock
*vsk
)
253 return !list_empty(&vsk
->bound_table
);
256 static bool __vsock_in_connected_table(struct vsock_sock
*vsk
)
258 return !list_empty(&vsk
->connected_table
);
261 static void vsock_insert_unbound(struct vsock_sock
*vsk
)
263 spin_lock_bh(&vsock_table_lock
);
264 __vsock_insert_bound(vsock_unbound_sockets
, vsk
);
265 spin_unlock_bh(&vsock_table_lock
);
268 void vsock_insert_connected(struct vsock_sock
*vsk
)
270 struct list_head
*list
= vsock_connected_sockets(
271 &vsk
->remote_addr
, &vsk
->local_addr
);
273 spin_lock_bh(&vsock_table_lock
);
274 __vsock_insert_connected(list
, vsk
);
275 spin_unlock_bh(&vsock_table_lock
);
277 EXPORT_SYMBOL_GPL(vsock_insert_connected
);
279 void vsock_remove_bound(struct vsock_sock
*vsk
)
281 spin_lock_bh(&vsock_table_lock
);
282 __vsock_remove_bound(vsk
);
283 spin_unlock_bh(&vsock_table_lock
);
285 EXPORT_SYMBOL_GPL(vsock_remove_bound
);
287 void vsock_remove_connected(struct vsock_sock
*vsk
)
289 spin_lock_bh(&vsock_table_lock
);
290 __vsock_remove_connected(vsk
);
291 spin_unlock_bh(&vsock_table_lock
);
293 EXPORT_SYMBOL_GPL(vsock_remove_connected
);
295 struct sock
*vsock_find_bound_socket(struct sockaddr_vm
*addr
)
299 spin_lock_bh(&vsock_table_lock
);
300 sk
= __vsock_find_bound_socket(addr
);
304 spin_unlock_bh(&vsock_table_lock
);
308 EXPORT_SYMBOL_GPL(vsock_find_bound_socket
);
310 struct sock
*vsock_find_connected_socket(struct sockaddr_vm
*src
,
311 struct sockaddr_vm
*dst
)
315 spin_lock_bh(&vsock_table_lock
);
316 sk
= __vsock_find_connected_socket(src
, dst
);
320 spin_unlock_bh(&vsock_table_lock
);
324 EXPORT_SYMBOL_GPL(vsock_find_connected_socket
);
326 static bool vsock_in_bound_table(struct vsock_sock
*vsk
)
330 spin_lock_bh(&vsock_table_lock
);
331 ret
= __vsock_in_bound_table(vsk
);
332 spin_unlock_bh(&vsock_table_lock
);
337 static bool vsock_in_connected_table(struct vsock_sock
*vsk
)
341 spin_lock_bh(&vsock_table_lock
);
342 ret
= __vsock_in_connected_table(vsk
);
343 spin_unlock_bh(&vsock_table_lock
);
348 void vsock_remove_sock(struct vsock_sock
*vsk
)
350 if (vsock_in_bound_table(vsk
))
351 vsock_remove_bound(vsk
);
353 if (vsock_in_connected_table(vsk
))
354 vsock_remove_connected(vsk
);
356 EXPORT_SYMBOL_GPL(vsock_remove_sock
);
358 void vsock_for_each_connected_socket(void (*fn
)(struct sock
*sk
))
362 spin_lock_bh(&vsock_table_lock
);
364 for (i
= 0; i
< ARRAY_SIZE(vsock_connected_table
); i
++) {
365 struct vsock_sock
*vsk
;
366 list_for_each_entry(vsk
, &vsock_connected_table
[i
],
371 spin_unlock_bh(&vsock_table_lock
);
373 EXPORT_SYMBOL_GPL(vsock_for_each_connected_socket
);
375 void vsock_add_pending(struct sock
*listener
, struct sock
*pending
)
377 struct vsock_sock
*vlistener
;
378 struct vsock_sock
*vpending
;
380 vlistener
= vsock_sk(listener
);
381 vpending
= vsock_sk(pending
);
385 list_add_tail(&vpending
->pending_links
, &vlistener
->pending_links
);
387 EXPORT_SYMBOL_GPL(vsock_add_pending
);
389 void vsock_remove_pending(struct sock
*listener
, struct sock
*pending
)
391 struct vsock_sock
*vpending
= vsock_sk(pending
);
393 list_del_init(&vpending
->pending_links
);
397 EXPORT_SYMBOL_GPL(vsock_remove_pending
);
399 void vsock_enqueue_accept(struct sock
*listener
, struct sock
*connected
)
401 struct vsock_sock
*vlistener
;
402 struct vsock_sock
*vconnected
;
404 vlistener
= vsock_sk(listener
);
405 vconnected
= vsock_sk(connected
);
407 sock_hold(connected
);
409 list_add_tail(&vconnected
->accept_queue
, &vlistener
->accept_queue
);
411 EXPORT_SYMBOL_GPL(vsock_enqueue_accept
);
413 static struct sock
*vsock_dequeue_accept(struct sock
*listener
)
415 struct vsock_sock
*vlistener
;
416 struct vsock_sock
*vconnected
;
418 vlistener
= vsock_sk(listener
);
420 if (list_empty(&vlistener
->accept_queue
))
423 vconnected
= list_entry(vlistener
->accept_queue
.next
,
424 struct vsock_sock
, accept_queue
);
426 list_del_init(&vconnected
->accept_queue
);
428 /* The caller will need a reference on the connected socket so we let
429 * it call sock_put().
432 return sk_vsock(vconnected
);
435 static bool vsock_is_accept_queue_empty(struct sock
*sk
)
437 struct vsock_sock
*vsk
= vsock_sk(sk
);
438 return list_empty(&vsk
->accept_queue
);
441 static bool vsock_is_pending(struct sock
*sk
)
443 struct vsock_sock
*vsk
= vsock_sk(sk
);
444 return !list_empty(&vsk
->pending_links
);
447 static int vsock_send_shutdown(struct sock
*sk
, int mode
)
449 return transport
->shutdown(vsock_sk(sk
), mode
);
452 void vsock_pending_work(struct work_struct
*work
)
455 struct sock
*listener
;
456 struct vsock_sock
*vsk
;
459 vsk
= container_of(work
, struct vsock_sock
, dwork
.work
);
461 listener
= vsk
->listener
;
465 lock_sock_nested(sk
, SINGLE_DEPTH_NESTING
);
467 if (vsock_is_pending(sk
)) {
468 vsock_remove_pending(listener
, sk
);
470 listener
->sk_ack_backlog
--;
471 } else if (!vsk
->rejected
) {
472 /* We are not on the pending list and accept() did not reject
473 * us, so we must have been accepted by our user process. We
474 * just need to drop our references to the sockets and be on
481 /* We need to remove ourself from the global connected sockets list so
482 * incoming packets can't find this socket, and to reduce the reference
485 if (vsock_in_connected_table(vsk
))
486 vsock_remove_connected(vsk
);
488 sk
->sk_state
= SS_FREE
;
492 release_sock(listener
);
499 EXPORT_SYMBOL_GPL(vsock_pending_work
);
501 /**** SOCKET OPERATIONS ****/
503 static int __vsock_bind_stream(struct vsock_sock
*vsk
,
504 struct sockaddr_vm
*addr
)
506 static u32 port
= LAST_RESERVED_PORT
+ 1;
507 struct sockaddr_vm new_addr
;
509 vsock_addr_init(&new_addr
, addr
->svm_cid
, addr
->svm_port
);
511 if (addr
->svm_port
== VMADDR_PORT_ANY
) {
515 for (i
= 0; i
< MAX_PORT_RETRIES
; i
++) {
516 if (port
<= LAST_RESERVED_PORT
)
517 port
= LAST_RESERVED_PORT
+ 1;
519 new_addr
.svm_port
= port
++;
521 if (!__vsock_find_bound_socket(&new_addr
)) {
528 return -EADDRNOTAVAIL
;
530 /* If port is in reserved range, ensure caller
531 * has necessary privileges.
533 if (addr
->svm_port
<= LAST_RESERVED_PORT
&&
534 !capable(CAP_NET_BIND_SERVICE
)) {
538 if (__vsock_find_bound_socket(&new_addr
))
542 vsock_addr_init(&vsk
->local_addr
, new_addr
.svm_cid
, new_addr
.svm_port
);
544 /* Remove stream sockets from the unbound list and add them to the hash
545 * table for easy lookup by its address. The unbound list is simply an
546 * extra entry at the end of the hash table, a trick used by AF_UNIX.
548 __vsock_remove_bound(vsk
);
549 __vsock_insert_bound(vsock_bound_sockets(&vsk
->local_addr
), vsk
);
554 static int __vsock_bind_dgram(struct vsock_sock
*vsk
,
555 struct sockaddr_vm
*addr
)
557 return transport
->dgram_bind(vsk
, addr
);
560 static int __vsock_bind(struct sock
*sk
, struct sockaddr_vm
*addr
)
562 struct vsock_sock
*vsk
= vsock_sk(sk
);
566 /* First ensure this socket isn't already bound. */
567 if (vsock_addr_bound(&vsk
->local_addr
))
570 /* Now bind to the provided address or select appropriate values if
571 * none are provided (VMADDR_CID_ANY and VMADDR_PORT_ANY). Note that
572 * like AF_INET prevents binding to a non-local IP address (in most
573 * cases), we only allow binding to the local CID.
575 cid
= transport
->get_local_cid();
576 if (addr
->svm_cid
!= cid
&& addr
->svm_cid
!= VMADDR_CID_ANY
)
577 return -EADDRNOTAVAIL
;
579 switch (sk
->sk_socket
->type
) {
581 spin_lock_bh(&vsock_table_lock
);
582 retval
= __vsock_bind_stream(vsk
, addr
);
583 spin_unlock_bh(&vsock_table_lock
);
587 retval
= __vsock_bind_dgram(vsk
, addr
);
598 struct sock
*__vsock_create(struct net
*net
,
606 struct vsock_sock
*psk
;
607 struct vsock_sock
*vsk
;
609 sk
= sk_alloc(net
, AF_VSOCK
, priority
, &vsock_proto
, kern
);
613 sock_init_data(sock
, sk
);
615 /* sk->sk_type is normally set in sock_init_data, but only if sock is
616 * non-NULL. We make sure that our sockets always have a type by
617 * setting it here if needed.
623 vsock_addr_init(&vsk
->local_addr
, VMADDR_CID_ANY
, VMADDR_PORT_ANY
);
624 vsock_addr_init(&vsk
->remote_addr
, VMADDR_CID_ANY
, VMADDR_PORT_ANY
);
626 sk
->sk_destruct
= vsock_sk_destruct
;
627 sk
->sk_backlog_rcv
= vsock_queue_rcv_skb
;
629 sock_reset_flag(sk
, SOCK_DONE
);
631 INIT_LIST_HEAD(&vsk
->bound_table
);
632 INIT_LIST_HEAD(&vsk
->connected_table
);
633 vsk
->listener
= NULL
;
634 INIT_LIST_HEAD(&vsk
->pending_links
);
635 INIT_LIST_HEAD(&vsk
->accept_queue
);
636 vsk
->rejected
= false;
637 vsk
->sent_request
= false;
638 vsk
->ignore_connecting_rst
= false;
639 vsk
->peer_shutdown
= 0;
641 psk
= parent
? vsock_sk(parent
) : NULL
;
643 vsk
->trusted
= psk
->trusted
;
644 vsk
->owner
= get_cred(psk
->owner
);
645 vsk
->connect_timeout
= psk
->connect_timeout
;
647 vsk
->trusted
= capable(CAP_NET_ADMIN
);
648 vsk
->owner
= get_current_cred();
649 vsk
->connect_timeout
= VSOCK_DEFAULT_CONNECT_TIMEOUT
;
652 if (transport
->init(vsk
, psk
) < 0) {
658 vsock_insert_unbound(vsk
);
662 EXPORT_SYMBOL_GPL(__vsock_create
);
664 static void __vsock_release(struct sock
*sk
)
668 struct sock
*pending
;
669 struct vsock_sock
*vsk
;
672 pending
= NULL
; /* Compiler warning. */
674 transport
->release(vsk
);
678 sk
->sk_shutdown
= SHUTDOWN_MASK
;
680 while ((skb
= skb_dequeue(&sk
->sk_receive_queue
)))
683 /* Clean up any sockets that never were accepted. */
684 while ((pending
= vsock_dequeue_accept(sk
)) != NULL
) {
685 __vsock_release(pending
);
694 static void vsock_sk_destruct(struct sock
*sk
)
696 struct vsock_sock
*vsk
= vsock_sk(sk
);
698 transport
->destruct(vsk
);
700 /* When clearing these addresses, there's no need to set the family and
701 * possibly register the address family with the kernel.
703 vsock_addr_init(&vsk
->local_addr
, VMADDR_CID_ANY
, VMADDR_PORT_ANY
);
704 vsock_addr_init(&vsk
->remote_addr
, VMADDR_CID_ANY
, VMADDR_PORT_ANY
);
706 put_cred(vsk
->owner
);
709 static int vsock_queue_rcv_skb(struct sock
*sk
, struct sk_buff
*skb
)
713 err
= sock_queue_rcv_skb(sk
, skb
);
720 s64
vsock_stream_has_data(struct vsock_sock
*vsk
)
722 return transport
->stream_has_data(vsk
);
724 EXPORT_SYMBOL_GPL(vsock_stream_has_data
);
726 s64
vsock_stream_has_space(struct vsock_sock
*vsk
)
728 return transport
->stream_has_space(vsk
);
730 EXPORT_SYMBOL_GPL(vsock_stream_has_space
);
732 static int vsock_release(struct socket
*sock
)
734 __vsock_release(sock
->sk
);
736 sock
->state
= SS_FREE
;
742 vsock_bind(struct socket
*sock
, struct sockaddr
*addr
, int addr_len
)
746 struct sockaddr_vm
*vm_addr
;
750 if (vsock_addr_cast(addr
, addr_len
, &vm_addr
) != 0)
754 err
= __vsock_bind(sk
, vm_addr
);
760 static int vsock_getname(struct socket
*sock
,
761 struct sockaddr
*addr
, int *addr_len
, int peer
)
765 struct vsock_sock
*vsk
;
766 struct sockaddr_vm
*vm_addr
;
775 if (sock
->state
!= SS_CONNECTED
) {
779 vm_addr
= &vsk
->remote_addr
;
781 vm_addr
= &vsk
->local_addr
;
789 /* sys_getsockname() and sys_getpeername() pass us a
790 * MAX_SOCK_ADDR-sized buffer and don't set addr_len. Unfortunately
791 * that macro is defined in socket.c instead of .h, so we hardcode its
794 BUILD_BUG_ON(sizeof(*vm_addr
) > 128);
795 memcpy(addr
, vm_addr
, sizeof(*vm_addr
));
796 *addr_len
= sizeof(*vm_addr
);
803 static int vsock_shutdown(struct socket
*sock
, int mode
)
808 /* User level uses SHUT_RD (0) and SHUT_WR (1), but the kernel uses
809 * RCV_SHUTDOWN (1) and SEND_SHUTDOWN (2), so we must increment mode
810 * here like the other address families do. Note also that the
811 * increment makes SHUT_RDWR (2) into RCV_SHUTDOWN | SEND_SHUTDOWN (3),
812 * which is what we want.
816 if ((mode
& ~SHUTDOWN_MASK
) || !mode
)
819 /* If this is a STREAM socket and it is not connected then bail out
820 * immediately. If it is a DGRAM socket then we must first kick the
821 * socket so that it wakes up from any sleeping calls, for example
822 * recv(), and then afterwards return the error.
826 if (sock
->state
== SS_UNCONNECTED
) {
828 if (sk
->sk_type
== SOCK_STREAM
)
831 sock
->state
= SS_DISCONNECTING
;
835 /* Receive and send shutdowns are treated alike. */
836 mode
= mode
& (RCV_SHUTDOWN
| SEND_SHUTDOWN
);
839 sk
->sk_shutdown
|= mode
;
840 sk
->sk_state_change(sk
);
843 if (sk
->sk_type
== SOCK_STREAM
) {
844 sock_reset_flag(sk
, SOCK_DONE
);
845 vsock_send_shutdown(sk
, mode
);
852 static unsigned int vsock_poll(struct file
*file
, struct socket
*sock
,
857 struct vsock_sock
*vsk
;
862 poll_wait(file
, sk_sleep(sk
), wait
);
866 /* Signify that there has been an error on this socket. */
869 /* INET sockets treat local write shutdown and peer write shutdown as a
870 * case of POLLHUP set.
872 if ((sk
->sk_shutdown
== SHUTDOWN_MASK
) ||
873 ((sk
->sk_shutdown
& SEND_SHUTDOWN
) &&
874 (vsk
->peer_shutdown
& SEND_SHUTDOWN
))) {
878 if (sk
->sk_shutdown
& RCV_SHUTDOWN
||
879 vsk
->peer_shutdown
& SEND_SHUTDOWN
) {
883 if (sock
->type
== SOCK_DGRAM
) {
884 /* For datagram sockets we can read if there is something in
885 * the queue and write as long as the socket isn't shutdown for
888 if (!skb_queue_empty(&sk
->sk_receive_queue
) ||
889 (sk
->sk_shutdown
& RCV_SHUTDOWN
)) {
890 mask
|= POLLIN
| POLLRDNORM
;
893 if (!(sk
->sk_shutdown
& SEND_SHUTDOWN
))
894 mask
|= POLLOUT
| POLLWRNORM
| POLLWRBAND
;
896 } else if (sock
->type
== SOCK_STREAM
) {
899 /* Listening sockets that have connections in their accept
902 if (sk
->sk_state
== VSOCK_SS_LISTEN
903 && !vsock_is_accept_queue_empty(sk
))
904 mask
|= POLLIN
| POLLRDNORM
;
906 /* If there is something in the queue then we can read. */
907 if (transport
->stream_is_active(vsk
) &&
908 !(sk
->sk_shutdown
& RCV_SHUTDOWN
)) {
909 bool data_ready_now
= false;
910 int ret
= transport
->notify_poll_in(
911 vsk
, 1, &data_ready_now
);
916 mask
|= POLLIN
| POLLRDNORM
;
921 /* Sockets whose connections have been closed, reset, or
922 * terminated should also be considered read, and we check the
923 * shutdown flag for that.
925 if (sk
->sk_shutdown
& RCV_SHUTDOWN
||
926 vsk
->peer_shutdown
& SEND_SHUTDOWN
) {
927 mask
|= POLLIN
| POLLRDNORM
;
930 /* Connected sockets that can produce data can be written. */
931 if (sk
->sk_state
== SS_CONNECTED
) {
932 if (!(sk
->sk_shutdown
& SEND_SHUTDOWN
)) {
933 bool space_avail_now
= false;
934 int ret
= transport
->notify_poll_out(
935 vsk
, 1, &space_avail_now
);
940 /* Remove POLLWRBAND since INET
941 * sockets are not setting it.
943 mask
|= POLLOUT
| POLLWRNORM
;
949 /* Simulate INET socket poll behaviors, which sets
950 * POLLOUT|POLLWRNORM when peer is closed and nothing to read,
951 * but local send is not shutdown.
953 if (sk
->sk_state
== SS_UNCONNECTED
) {
954 if (!(sk
->sk_shutdown
& SEND_SHUTDOWN
))
955 mask
|= POLLOUT
| POLLWRNORM
;
965 static int vsock_dgram_sendmsg(struct socket
*sock
, struct msghdr
*msg
,
970 struct vsock_sock
*vsk
;
971 struct sockaddr_vm
*remote_addr
;
973 if (msg
->msg_flags
& MSG_OOB
)
976 /* For now, MSG_DONTWAIT is always assumed... */
983 err
= vsock_auto_bind(vsk
);
988 /* If the provided message contains an address, use that. Otherwise
989 * fall back on the socket's remote handle (if it has been connected).
992 vsock_addr_cast(msg
->msg_name
, msg
->msg_namelen
,
993 &remote_addr
) == 0) {
994 /* Ensure this address is of the right type and is a valid
998 if (remote_addr
->svm_cid
== VMADDR_CID_ANY
)
999 remote_addr
->svm_cid
= transport
->get_local_cid();
1001 if (!vsock_addr_bound(remote_addr
)) {
1005 } else if (sock
->state
== SS_CONNECTED
) {
1006 remote_addr
= &vsk
->remote_addr
;
1008 if (remote_addr
->svm_cid
== VMADDR_CID_ANY
)
1009 remote_addr
->svm_cid
= transport
->get_local_cid();
1011 /* XXX Should connect() or this function ensure remote_addr is
1014 if (!vsock_addr_bound(&vsk
->remote_addr
)) {
1023 if (!transport
->dgram_allow(remote_addr
->svm_cid
,
1024 remote_addr
->svm_port
)) {
1029 err
= transport
->dgram_enqueue(vsk
, remote_addr
, msg
, len
);
1036 static int vsock_dgram_connect(struct socket
*sock
,
1037 struct sockaddr
*addr
, int addr_len
, int flags
)
1041 struct vsock_sock
*vsk
;
1042 struct sockaddr_vm
*remote_addr
;
1047 err
= vsock_addr_cast(addr
, addr_len
, &remote_addr
);
1048 if (err
== -EAFNOSUPPORT
&& remote_addr
->svm_family
== AF_UNSPEC
) {
1050 vsock_addr_init(&vsk
->remote_addr
, VMADDR_CID_ANY
,
1052 sock
->state
= SS_UNCONNECTED
;
1055 } else if (err
!= 0)
1060 err
= vsock_auto_bind(vsk
);
1064 if (!transport
->dgram_allow(remote_addr
->svm_cid
,
1065 remote_addr
->svm_port
)) {
1070 memcpy(&vsk
->remote_addr
, remote_addr
, sizeof(vsk
->remote_addr
));
1071 sock
->state
= SS_CONNECTED
;
1078 static int vsock_dgram_recvmsg(struct socket
*sock
, struct msghdr
*msg
,
1079 size_t len
, int flags
)
1081 return transport
->dgram_dequeue(vsock_sk(sock
->sk
), msg
, len
, flags
);
1084 static const struct proto_ops vsock_dgram_ops
= {
1086 .owner
= THIS_MODULE
,
1087 .release
= vsock_release
,
1089 .connect
= vsock_dgram_connect
,
1090 .socketpair
= sock_no_socketpair
,
1091 .accept
= sock_no_accept
,
1092 .getname
= vsock_getname
,
1094 .ioctl
= sock_no_ioctl
,
1095 .listen
= sock_no_listen
,
1096 .shutdown
= vsock_shutdown
,
1097 .setsockopt
= sock_no_setsockopt
,
1098 .getsockopt
= sock_no_getsockopt
,
1099 .sendmsg
= vsock_dgram_sendmsg
,
1100 .recvmsg
= vsock_dgram_recvmsg
,
1101 .mmap
= sock_no_mmap
,
1102 .sendpage
= sock_no_sendpage
,
1105 static int vsock_transport_cancel_pkt(struct vsock_sock
*vsk
)
1107 if (!transport
->cancel_pkt
)
1110 return transport
->cancel_pkt(vsk
);
1113 static void vsock_connect_timeout(struct work_struct
*work
)
1116 struct vsock_sock
*vsk
;
1119 vsk
= container_of(work
, struct vsock_sock
, dwork
.work
);
1123 if (sk
->sk_state
== SS_CONNECTING
&&
1124 (sk
->sk_shutdown
!= SHUTDOWN_MASK
)) {
1125 sk
->sk_state
= SS_UNCONNECTED
;
1126 sk
->sk_err
= ETIMEDOUT
;
1127 sk
->sk_error_report(sk
);
1132 vsock_transport_cancel_pkt(vsk
);
1137 static int vsock_stream_connect(struct socket
*sock
, struct sockaddr
*addr
,
1138 int addr_len
, int flags
)
1142 struct vsock_sock
*vsk
;
1143 struct sockaddr_vm
*remote_addr
;
1153 /* XXX AF_UNSPEC should make us disconnect like AF_INET. */
1154 switch (sock
->state
) {
1158 case SS_DISCONNECTING
:
1162 /* This continues on so we can move sock into the SS_CONNECTED
1163 * state once the connection has completed (at which point err
1164 * will be set to zero also). Otherwise, we will either wait
1165 * for the connection or return -EALREADY should this be a
1166 * non-blocking call.
1171 if ((sk
->sk_state
== VSOCK_SS_LISTEN
) ||
1172 vsock_addr_cast(addr
, addr_len
, &remote_addr
) != 0) {
1177 /* The hypervisor and well-known contexts do not have socket
1180 if (!transport
->stream_allow(remote_addr
->svm_cid
,
1181 remote_addr
->svm_port
)) {
1186 /* Set the remote address that we are connecting to. */
1187 memcpy(&vsk
->remote_addr
, remote_addr
,
1188 sizeof(vsk
->remote_addr
));
1190 err
= vsock_auto_bind(vsk
);
1194 sk
->sk_state
= SS_CONNECTING
;
1196 err
= transport
->connect(vsk
);
1200 /* Mark sock as connecting and set the error code to in
1201 * progress in case this is a non-blocking connect.
1203 sock
->state
= SS_CONNECTING
;
1207 /* The receive path will handle all communication until we are able to
1208 * enter the connected state. Here we wait for the connection to be
1209 * completed or a notification of an error.
1211 timeout
= vsk
->connect_timeout
;
1212 prepare_to_wait(sk_sleep(sk
), &wait
, TASK_INTERRUPTIBLE
);
1214 while (sk
->sk_state
!= SS_CONNECTED
&& sk
->sk_err
== 0) {
1215 if (flags
& O_NONBLOCK
) {
1216 /* If we're not going to block, we schedule a timeout
1217 * function to generate a timeout on the connection
1218 * attempt, in case the peer doesn't respond in a
1219 * timely manner. We hold on to the socket until the
1223 INIT_DELAYED_WORK(&vsk
->dwork
,
1224 vsock_connect_timeout
);
1225 schedule_delayed_work(&vsk
->dwork
, timeout
);
1227 /* Skip ahead to preserve error code set above. */
1232 timeout
= schedule_timeout(timeout
);
1235 if (signal_pending(current
)) {
1236 err
= sock_intr_errno(timeout
);
1237 sk
->sk_state
= SS_UNCONNECTED
;
1238 sock
->state
= SS_UNCONNECTED
;
1239 vsock_transport_cancel_pkt(vsk
);
1241 } else if (timeout
== 0) {
1243 sk
->sk_state
= SS_UNCONNECTED
;
1244 sock
->state
= SS_UNCONNECTED
;
1245 vsock_transport_cancel_pkt(vsk
);
1249 prepare_to_wait(sk_sleep(sk
), &wait
, TASK_INTERRUPTIBLE
);
1254 sk
->sk_state
= SS_UNCONNECTED
;
1255 sock
->state
= SS_UNCONNECTED
;
1261 finish_wait(sk_sleep(sk
), &wait
);
1267 static int vsock_accept(struct socket
*sock
, struct socket
*newsock
, int flags
,
1270 struct sock
*listener
;
1272 struct sock
*connected
;
1273 struct vsock_sock
*vconnected
;
1278 listener
= sock
->sk
;
1280 lock_sock(listener
);
1282 if (sock
->type
!= SOCK_STREAM
) {
1287 if (listener
->sk_state
!= VSOCK_SS_LISTEN
) {
1292 /* Wait for children sockets to appear; these are the new sockets
1293 * created upon connection establishment.
1295 timeout
= sock_sndtimeo(listener
, flags
& O_NONBLOCK
);
1296 prepare_to_wait(sk_sleep(listener
), &wait
, TASK_INTERRUPTIBLE
);
1298 while ((connected
= vsock_dequeue_accept(listener
)) == NULL
&&
1299 listener
->sk_err
== 0) {
1300 release_sock(listener
);
1301 timeout
= schedule_timeout(timeout
);
1302 finish_wait(sk_sleep(listener
), &wait
);
1303 lock_sock(listener
);
1305 if (signal_pending(current
)) {
1306 err
= sock_intr_errno(timeout
);
1308 } else if (timeout
== 0) {
1313 prepare_to_wait(sk_sleep(listener
), &wait
, TASK_INTERRUPTIBLE
);
1315 finish_wait(sk_sleep(listener
), &wait
);
1317 if (listener
->sk_err
)
1318 err
= -listener
->sk_err
;
1321 listener
->sk_ack_backlog
--;
1323 lock_sock_nested(connected
, SINGLE_DEPTH_NESTING
);
1324 vconnected
= vsock_sk(connected
);
1326 /* If the listener socket has received an error, then we should
1327 * reject this socket and return. Note that we simply mark the
1328 * socket rejected, drop our reference, and let the cleanup
1329 * function handle the cleanup; the fact that we found it in
1330 * the listener's accept queue guarantees that the cleanup
1331 * function hasn't run yet.
1334 vconnected
->rejected
= true;
1336 newsock
->state
= SS_CONNECTED
;
1337 sock_graft(connected
, newsock
);
1340 release_sock(connected
);
1341 sock_put(connected
);
1345 release_sock(listener
);
1349 static int vsock_listen(struct socket
*sock
, int backlog
)
1353 struct vsock_sock
*vsk
;
1359 if (sock
->type
!= SOCK_STREAM
) {
1364 if (sock
->state
!= SS_UNCONNECTED
) {
1371 if (!vsock_addr_bound(&vsk
->local_addr
)) {
1376 sk
->sk_max_ack_backlog
= backlog
;
1377 sk
->sk_state
= VSOCK_SS_LISTEN
;
1386 static int vsock_stream_setsockopt(struct socket
*sock
,
1389 char __user
*optval
,
1390 unsigned int optlen
)
1394 struct vsock_sock
*vsk
;
1397 if (level
!= AF_VSOCK
)
1398 return -ENOPROTOOPT
;
1400 #define COPY_IN(_v) \
1402 if (optlen < sizeof(_v)) { \
1406 if (copy_from_user(&_v, optval, sizeof(_v)) != 0) { \
1419 case SO_VM_SOCKETS_BUFFER_SIZE
:
1421 transport
->set_buffer_size(vsk
, val
);
1424 case SO_VM_SOCKETS_BUFFER_MAX_SIZE
:
1426 transport
->set_max_buffer_size(vsk
, val
);
1429 case SO_VM_SOCKETS_BUFFER_MIN_SIZE
:
1431 transport
->set_min_buffer_size(vsk
, val
);
1434 case SO_VM_SOCKETS_CONNECT_TIMEOUT
: {
1437 if (tv
.tv_sec
>= 0 && tv
.tv_usec
< USEC_PER_SEC
&&
1438 tv
.tv_sec
< (MAX_SCHEDULE_TIMEOUT
/ HZ
- 1)) {
1439 vsk
->connect_timeout
= tv
.tv_sec
* HZ
+
1440 DIV_ROUND_UP(tv
.tv_usec
, (1000000 / HZ
));
1441 if (vsk
->connect_timeout
== 0)
1442 vsk
->connect_timeout
=
1443 VSOCK_DEFAULT_CONNECT_TIMEOUT
;
1463 static int vsock_stream_getsockopt(struct socket
*sock
,
1464 int level
, int optname
,
1465 char __user
*optval
,
1471 struct vsock_sock
*vsk
;
1474 if (level
!= AF_VSOCK
)
1475 return -ENOPROTOOPT
;
1477 err
= get_user(len
, optlen
);
1481 #define COPY_OUT(_v) \
1483 if (len < sizeof(_v)) \
1487 if (copy_to_user(optval, &_v, len) != 0) \
1497 case SO_VM_SOCKETS_BUFFER_SIZE
:
1498 val
= transport
->get_buffer_size(vsk
);
1502 case SO_VM_SOCKETS_BUFFER_MAX_SIZE
:
1503 val
= transport
->get_max_buffer_size(vsk
);
1507 case SO_VM_SOCKETS_BUFFER_MIN_SIZE
:
1508 val
= transport
->get_min_buffer_size(vsk
);
1512 case SO_VM_SOCKETS_CONNECT_TIMEOUT
: {
1514 tv
.tv_sec
= vsk
->connect_timeout
/ HZ
;
1516 (vsk
->connect_timeout
-
1517 tv
.tv_sec
* HZ
) * (1000000 / HZ
);
1522 return -ENOPROTOOPT
;
1525 err
= put_user(len
, optlen
);
1534 static int vsock_stream_sendmsg(struct socket
*sock
, struct msghdr
*msg
,
1538 struct vsock_sock
*vsk
;
1539 ssize_t total_written
;
1542 struct vsock_transport_send_notify_data send_data
;
1543 DEFINE_WAIT_FUNC(wait
, woken_wake_function
);
1550 if (msg
->msg_flags
& MSG_OOB
)
1555 /* Callers should not provide a destination with stream sockets. */
1556 if (msg
->msg_namelen
) {
1557 err
= sk
->sk_state
== SS_CONNECTED
? -EISCONN
: -EOPNOTSUPP
;
1561 /* Send data only if both sides are not shutdown in the direction. */
1562 if (sk
->sk_shutdown
& SEND_SHUTDOWN
||
1563 vsk
->peer_shutdown
& RCV_SHUTDOWN
) {
1568 if (sk
->sk_state
!= SS_CONNECTED
||
1569 !vsock_addr_bound(&vsk
->local_addr
)) {
1574 if (!vsock_addr_bound(&vsk
->remote_addr
)) {
1575 err
= -EDESTADDRREQ
;
1579 /* Wait for room in the produce queue to enqueue our user's data. */
1580 timeout
= sock_sndtimeo(sk
, msg
->msg_flags
& MSG_DONTWAIT
);
1582 err
= transport
->notify_send_init(vsk
, &send_data
);
1586 while (total_written
< len
) {
1589 add_wait_queue(sk_sleep(sk
), &wait
);
1590 while (vsock_stream_has_space(vsk
) == 0 &&
1592 !(sk
->sk_shutdown
& SEND_SHUTDOWN
) &&
1593 !(vsk
->peer_shutdown
& RCV_SHUTDOWN
)) {
1595 /* Don't wait for non-blocking sockets. */
1598 remove_wait_queue(sk_sleep(sk
), &wait
);
1602 err
= transport
->notify_send_pre_block(vsk
, &send_data
);
1604 remove_wait_queue(sk_sleep(sk
), &wait
);
1609 timeout
= wait_woken(&wait
, TASK_INTERRUPTIBLE
, timeout
);
1611 if (signal_pending(current
)) {
1612 err
= sock_intr_errno(timeout
);
1613 remove_wait_queue(sk_sleep(sk
), &wait
);
1615 } else if (timeout
== 0) {
1617 remove_wait_queue(sk_sleep(sk
), &wait
);
1621 remove_wait_queue(sk_sleep(sk
), &wait
);
1623 /* These checks occur both as part of and after the loop
1624 * conditional since we need to check before and after
1630 } else if ((sk
->sk_shutdown
& SEND_SHUTDOWN
) ||
1631 (vsk
->peer_shutdown
& RCV_SHUTDOWN
)) {
1636 err
= transport
->notify_send_pre_enqueue(vsk
, &send_data
);
1640 /* Note that enqueue will only write as many bytes as are free
1641 * in the produce queue, so we don't need to ensure len is
1642 * smaller than the queue size. It is the caller's
1643 * responsibility to check how many bytes we were able to send.
1646 written
= transport
->stream_enqueue(
1648 len
- total_written
);
1654 total_written
+= written
;
1656 err
= transport
->notify_send_post_enqueue(
1657 vsk
, written
, &send_data
);
1664 if (total_written
> 0)
1665 err
= total_written
;
1673 vsock_stream_recvmsg(struct socket
*sock
, struct msghdr
*msg
, size_t len
,
1677 struct vsock_sock
*vsk
;
1682 struct vsock_transport_recv_notify_data recv_data
;
1692 if (sk
->sk_state
!= SS_CONNECTED
) {
1693 /* Recvmsg is supposed to return 0 if a peer performs an
1694 * orderly shutdown. Differentiate between that case and when a
1695 * peer has not connected or a local shutdown occured with the
1698 if (sock_flag(sk
, SOCK_DONE
))
1706 if (flags
& MSG_OOB
) {
1711 /* We don't check peer_shutdown flag here since peer may actually shut
1712 * down, but there can be data in the queue that a local socket can
1715 if (sk
->sk_shutdown
& RCV_SHUTDOWN
) {
1720 /* It is valid on Linux to pass in a zero-length receive buffer. This
1721 * is not an error. We may as well bail out now.
1728 /* We must not copy less than target bytes into the user's buffer
1729 * before returning successfully, so we wait for the consume queue to
1730 * have that much data to consume before dequeueing. Note that this
1731 * makes it impossible to handle cases where target is greater than the
1734 target
= sock_rcvlowat(sk
, flags
& MSG_WAITALL
, len
);
1735 if (target
>= transport
->stream_rcvhiwat(vsk
)) {
1739 timeout
= sock_rcvtimeo(sk
, flags
& MSG_DONTWAIT
);
1742 err
= transport
->notify_recv_init(vsk
, target
, &recv_data
);
1750 prepare_to_wait(sk_sleep(sk
), &wait
, TASK_INTERRUPTIBLE
);
1751 ready
= vsock_stream_has_data(vsk
);
1754 if (sk
->sk_err
!= 0 ||
1755 (sk
->sk_shutdown
& RCV_SHUTDOWN
) ||
1756 (vsk
->peer_shutdown
& SEND_SHUTDOWN
)) {
1757 finish_wait(sk_sleep(sk
), &wait
);
1760 /* Don't wait for non-blocking sockets. */
1763 finish_wait(sk_sleep(sk
), &wait
);
1767 err
= transport
->notify_recv_pre_block(
1768 vsk
, target
, &recv_data
);
1770 finish_wait(sk_sleep(sk
), &wait
);
1774 timeout
= schedule_timeout(timeout
);
1777 if (signal_pending(current
)) {
1778 err
= sock_intr_errno(timeout
);
1779 finish_wait(sk_sleep(sk
), &wait
);
1781 } else if (timeout
== 0) {
1783 finish_wait(sk_sleep(sk
), &wait
);
1789 finish_wait(sk_sleep(sk
), &wait
);
1792 /* Invalid queue pair content. XXX This should
1793 * be changed to a connection reset in a later
1801 err
= transport
->notify_recv_pre_dequeue(
1802 vsk
, target
, &recv_data
);
1806 read
= transport
->stream_dequeue(
1808 len
- copied
, flags
);
1816 err
= transport
->notify_recv_post_dequeue(
1818 !(flags
& MSG_PEEK
), &recv_data
);
1822 if (read
>= target
|| flags
& MSG_PEEK
)
1831 else if (sk
->sk_shutdown
& RCV_SHUTDOWN
)
1842 static const struct proto_ops vsock_stream_ops
= {
1844 .owner
= THIS_MODULE
,
1845 .release
= vsock_release
,
1847 .connect
= vsock_stream_connect
,
1848 .socketpair
= sock_no_socketpair
,
1849 .accept
= vsock_accept
,
1850 .getname
= vsock_getname
,
1852 .ioctl
= sock_no_ioctl
,
1853 .listen
= vsock_listen
,
1854 .shutdown
= vsock_shutdown
,
1855 .setsockopt
= vsock_stream_setsockopt
,
1856 .getsockopt
= vsock_stream_getsockopt
,
1857 .sendmsg
= vsock_stream_sendmsg
,
1858 .recvmsg
= vsock_stream_recvmsg
,
1859 .mmap
= sock_no_mmap
,
1860 .sendpage
= sock_no_sendpage
,
1863 static int vsock_create(struct net
*net
, struct socket
*sock
,
1864 int protocol
, int kern
)
1869 if (protocol
&& protocol
!= PF_VSOCK
)
1870 return -EPROTONOSUPPORT
;
1872 switch (sock
->type
) {
1874 sock
->ops
= &vsock_dgram_ops
;
1877 sock
->ops
= &vsock_stream_ops
;
1880 return -ESOCKTNOSUPPORT
;
1883 sock
->state
= SS_UNCONNECTED
;
1885 return __vsock_create(net
, sock
, NULL
, GFP_KERNEL
, 0, kern
) ? 0 : -ENOMEM
;
1888 static const struct net_proto_family vsock_family_ops
= {
1890 .create
= vsock_create
,
1891 .owner
= THIS_MODULE
,
1894 static long vsock_dev_do_ioctl(struct file
*filp
,
1895 unsigned int cmd
, void __user
*ptr
)
1897 u32 __user
*p
= ptr
;
1901 case IOCTL_VM_SOCKETS_GET_LOCAL_CID
:
1902 if (put_user(transport
->get_local_cid(), p
) != 0)
1907 pr_err("Unknown ioctl %d\n", cmd
);
1914 static long vsock_dev_ioctl(struct file
*filp
,
1915 unsigned int cmd
, unsigned long arg
)
1917 return vsock_dev_do_ioctl(filp
, cmd
, (void __user
*)arg
);
1920 #ifdef CONFIG_COMPAT
1921 static long vsock_dev_compat_ioctl(struct file
*filp
,
1922 unsigned int cmd
, unsigned long arg
)
1924 return vsock_dev_do_ioctl(filp
, cmd
, compat_ptr(arg
));
1928 static const struct file_operations vsock_device_ops
= {
1929 .owner
= THIS_MODULE
,
1930 .unlocked_ioctl
= vsock_dev_ioctl
,
1931 #ifdef CONFIG_COMPAT
1932 .compat_ioctl
= vsock_dev_compat_ioctl
,
1934 .open
= nonseekable_open
,
1937 static struct miscdevice vsock_device
= {
1939 .fops
= &vsock_device_ops
,
1942 int __vsock_core_init(const struct vsock_transport
*t
, struct module
*owner
)
1944 int err
= mutex_lock_interruptible(&vsock_register_mutex
);
1954 /* Transport must be the owner of the protocol so that it can't
1955 * unload while there are open sockets.
1957 vsock_proto
.owner
= owner
;
1960 vsock_init_tables();
1962 vsock_device
.minor
= MISC_DYNAMIC_MINOR
;
1963 err
= misc_register(&vsock_device
);
1965 pr_err("Failed to register misc device\n");
1966 goto err_reset_transport
;
1969 err
= proto_register(&vsock_proto
, 1); /* we want our slab */
1971 pr_err("Cannot register vsock protocol\n");
1972 goto err_deregister_misc
;
1975 err
= sock_register(&vsock_family_ops
);
1977 pr_err("could not register af_vsock (%d) address family: %d\n",
1979 goto err_unregister_proto
;
1982 mutex_unlock(&vsock_register_mutex
);
1985 err_unregister_proto
:
1986 proto_unregister(&vsock_proto
);
1987 err_deregister_misc
:
1988 misc_deregister(&vsock_device
);
1989 err_reset_transport
:
1992 mutex_unlock(&vsock_register_mutex
);
1995 EXPORT_SYMBOL_GPL(__vsock_core_init
);
1997 void vsock_core_exit(void)
1999 mutex_lock(&vsock_register_mutex
);
2001 misc_deregister(&vsock_device
);
2002 sock_unregister(AF_VSOCK
);
2003 proto_unregister(&vsock_proto
);
2005 /* We do not want the assignment below re-ordered. */
2009 mutex_unlock(&vsock_register_mutex
);
2011 EXPORT_SYMBOL_GPL(vsock_core_exit
);
2013 const struct vsock_transport
*vsock_core_get_transport(void)
2015 /* vsock_register_mutex not taken since only the transport uses this
2016 * function and only while registered.
2020 EXPORT_SYMBOL_GPL(vsock_core_get_transport
);
2022 MODULE_AUTHOR("VMware, Inc.");
2023 MODULE_DESCRIPTION("VMware Virtual Socket Family");
2024 MODULE_VERSION("1.0.2.0-k");
2025 MODULE_LICENSE("GPL v2");