2 * libata-sff.c - helper library for PCI IDE BMDMA
4 * Maintained by: Tejun Heo <tj@kernel.org>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
8 * Copyright 2003-2006 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2006 Jeff Garzik
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
35 #include <linux/kernel.h>
36 #include <linux/gfp.h>
37 #include <linux/pci.h>
38 #include <linux/module.h>
39 #include <linux/libata.h>
40 #include <linux/highmem.h>
44 static struct workqueue_struct
*ata_sff_wq
;
46 const struct ata_port_operations ata_sff_port_ops
= {
47 .inherits
= &ata_base_port_ops
,
49 .qc_prep
= ata_noop_qc_prep
,
50 .qc_issue
= ata_sff_qc_issue
,
51 .qc_fill_rtf
= ata_sff_qc_fill_rtf
,
53 .freeze
= ata_sff_freeze
,
55 .prereset
= ata_sff_prereset
,
56 .softreset
= ata_sff_softreset
,
57 .hardreset
= sata_sff_hardreset
,
58 .postreset
= ata_sff_postreset
,
59 .error_handler
= ata_sff_error_handler
,
61 .sff_dev_select
= ata_sff_dev_select
,
62 .sff_check_status
= ata_sff_check_status
,
63 .sff_tf_load
= ata_sff_tf_load
,
64 .sff_tf_read
= ata_sff_tf_read
,
65 .sff_exec_command
= ata_sff_exec_command
,
66 .sff_data_xfer
= ata_sff_data_xfer
,
67 .sff_drain_fifo
= ata_sff_drain_fifo
,
69 .lost_interrupt
= ata_sff_lost_interrupt
,
71 EXPORT_SYMBOL_GPL(ata_sff_port_ops
);
74 * ata_sff_check_status - Read device status reg & clear interrupt
75 * @ap: port where the device is
77 * Reads ATA taskfile status register for currently-selected device
78 * and return its value. This also clears pending interrupts
82 * Inherited from caller.
84 u8
ata_sff_check_status(struct ata_port
*ap
)
86 return ioread8(ap
->ioaddr
.status_addr
);
88 EXPORT_SYMBOL_GPL(ata_sff_check_status
);
91 * ata_sff_altstatus - Read device alternate status reg
92 * @ap: port where the device is
94 * Reads ATA taskfile alternate status register for
95 * currently-selected device and return its value.
97 * Note: may NOT be used as the check_altstatus() entry in
98 * ata_port_operations.
101 * Inherited from caller.
103 static u8
ata_sff_altstatus(struct ata_port
*ap
)
105 if (ap
->ops
->sff_check_altstatus
)
106 return ap
->ops
->sff_check_altstatus(ap
);
108 return ioread8(ap
->ioaddr
.altstatus_addr
);
112 * ata_sff_irq_status - Check if the device is busy
113 * @ap: port where the device is
115 * Determine if the port is currently busy. Uses altstatus
116 * if available in order to avoid clearing shared IRQ status
117 * when finding an IRQ source. Non ctl capable devices don't
118 * share interrupt lines fortunately for us.
121 * Inherited from caller.
123 static u8
ata_sff_irq_status(struct ata_port
*ap
)
127 if (ap
->ops
->sff_check_altstatus
|| ap
->ioaddr
.altstatus_addr
) {
128 status
= ata_sff_altstatus(ap
);
129 /* Not us: We are busy */
130 if (status
& ATA_BUSY
)
133 /* Clear INTRQ latch */
134 status
= ap
->ops
->sff_check_status(ap
);
139 * ata_sff_sync - Flush writes
140 * @ap: Port to wait for.
143 * If we have an mmio device with no ctl and no altstatus
144 * method this will fail. No such devices are known to exist.
147 * Inherited from caller.
150 static void ata_sff_sync(struct ata_port
*ap
)
152 if (ap
->ops
->sff_check_altstatus
)
153 ap
->ops
->sff_check_altstatus(ap
);
154 else if (ap
->ioaddr
.altstatus_addr
)
155 ioread8(ap
->ioaddr
.altstatus_addr
);
159 * ata_sff_pause - Flush writes and wait 400nS
160 * @ap: Port to pause for.
163 * If we have an mmio device with no ctl and no altstatus
164 * method this will fail. No such devices are known to exist.
167 * Inherited from caller.
170 void ata_sff_pause(struct ata_port
*ap
)
175 EXPORT_SYMBOL_GPL(ata_sff_pause
);
178 * ata_sff_dma_pause - Pause before commencing DMA
179 * @ap: Port to pause for.
181 * Perform I/O fencing and ensure sufficient cycle delays occur
182 * for the HDMA1:0 transition
185 void ata_sff_dma_pause(struct ata_port
*ap
)
187 if (ap
->ops
->sff_check_altstatus
|| ap
->ioaddr
.altstatus_addr
) {
188 /* An altstatus read will cause the needed delay without
189 messing up the IRQ status */
190 ata_sff_altstatus(ap
);
193 /* There are no DMA controllers without ctl. BUG here to ensure
194 we never violate the HDMA1:0 transition timing and risk
198 EXPORT_SYMBOL_GPL(ata_sff_dma_pause
);
201 * ata_sff_busy_sleep - sleep until BSY clears, or timeout
202 * @ap: port containing status register to be polled
203 * @tmout_pat: impatience timeout in msecs
204 * @tmout: overall timeout in msecs
206 * Sleep until ATA Status register bit BSY clears,
207 * or a timeout occurs.
210 * Kernel thread context (may sleep).
213 * 0 on success, -errno otherwise.
215 int ata_sff_busy_sleep(struct ata_port
*ap
,
216 unsigned long tmout_pat
, unsigned long tmout
)
218 unsigned long timer_start
, timeout
;
221 status
= ata_sff_busy_wait(ap
, ATA_BUSY
, 300);
222 timer_start
= jiffies
;
223 timeout
= ata_deadline(timer_start
, tmout_pat
);
224 while (status
!= 0xff && (status
& ATA_BUSY
) &&
225 time_before(jiffies
, timeout
)) {
227 status
= ata_sff_busy_wait(ap
, ATA_BUSY
, 3);
230 if (status
!= 0xff && (status
& ATA_BUSY
))
232 "port is slow to respond, please be patient (Status 0x%x)\n",
235 timeout
= ata_deadline(timer_start
, tmout
);
236 while (status
!= 0xff && (status
& ATA_BUSY
) &&
237 time_before(jiffies
, timeout
)) {
239 status
= ap
->ops
->sff_check_status(ap
);
245 if (status
& ATA_BUSY
) {
247 "port failed to respond (%lu secs, Status 0x%x)\n",
248 DIV_ROUND_UP(tmout
, 1000), status
);
254 EXPORT_SYMBOL_GPL(ata_sff_busy_sleep
);
256 static int ata_sff_check_ready(struct ata_link
*link
)
258 u8 status
= link
->ap
->ops
->sff_check_status(link
->ap
);
260 return ata_check_ready(status
);
264 * ata_sff_wait_ready - sleep until BSY clears, or timeout
265 * @link: SFF link to wait ready status for
266 * @deadline: deadline jiffies for the operation
268 * Sleep until ATA Status register bit BSY clears, or timeout
272 * Kernel thread context (may sleep).
275 * 0 on success, -errno otherwise.
277 int ata_sff_wait_ready(struct ata_link
*link
, unsigned long deadline
)
279 return ata_wait_ready(link
, deadline
, ata_sff_check_ready
);
281 EXPORT_SYMBOL_GPL(ata_sff_wait_ready
);
284 * ata_sff_set_devctl - Write device control reg
285 * @ap: port where the device is
286 * @ctl: value to write
288 * Writes ATA taskfile device control register.
290 * Note: may NOT be used as the sff_set_devctl() entry in
291 * ata_port_operations.
294 * Inherited from caller.
296 static void ata_sff_set_devctl(struct ata_port
*ap
, u8 ctl
)
298 if (ap
->ops
->sff_set_devctl
)
299 ap
->ops
->sff_set_devctl(ap
, ctl
);
301 iowrite8(ctl
, ap
->ioaddr
.ctl_addr
);
305 * ata_sff_dev_select - Select device 0/1 on ATA bus
306 * @ap: ATA channel to manipulate
307 * @device: ATA device (numbered from zero) to select
309 * Use the method defined in the ATA specification to
310 * make either device 0, or device 1, active on the
311 * ATA channel. Works with both PIO and MMIO.
313 * May be used as the dev_select() entry in ata_port_operations.
318 void ata_sff_dev_select(struct ata_port
*ap
, unsigned int device
)
323 tmp
= ATA_DEVICE_OBS
;
325 tmp
= ATA_DEVICE_OBS
| ATA_DEV1
;
327 iowrite8(tmp
, ap
->ioaddr
.device_addr
);
328 ata_sff_pause(ap
); /* needed; also flushes, for mmio */
330 EXPORT_SYMBOL_GPL(ata_sff_dev_select
);
333 * ata_dev_select - Select device 0/1 on ATA bus
334 * @ap: ATA channel to manipulate
335 * @device: ATA device (numbered from zero) to select
336 * @wait: non-zero to wait for Status register BSY bit to clear
337 * @can_sleep: non-zero if context allows sleeping
339 * Use the method defined in the ATA specification to
340 * make either device 0, or device 1, active on the
343 * This is a high-level version of ata_sff_dev_select(), which
344 * additionally provides the services of inserting the proper
345 * pauses and status polling, where needed.
350 static void ata_dev_select(struct ata_port
*ap
, unsigned int device
,
351 unsigned int wait
, unsigned int can_sleep
)
353 if (ata_msg_probe(ap
))
354 ata_port_info(ap
, "ata_dev_select: ENTER, device %u, wait %u\n",
360 ap
->ops
->sff_dev_select(ap
, device
);
363 if (can_sleep
&& ap
->link
.device
[device
].class == ATA_DEV_ATAPI
)
370 * ata_sff_irq_on - Enable interrupts on a port.
371 * @ap: Port on which interrupts are enabled.
373 * Enable interrupts on a legacy IDE device using MMIO or PIO,
374 * wait for idle, clear any pending interrupts.
376 * Note: may NOT be used as the sff_irq_on() entry in
377 * ata_port_operations.
380 * Inherited from caller.
382 void ata_sff_irq_on(struct ata_port
*ap
)
384 struct ata_ioports
*ioaddr
= &ap
->ioaddr
;
386 if (ap
->ops
->sff_irq_on
) {
387 ap
->ops
->sff_irq_on(ap
);
391 ap
->ctl
&= ~ATA_NIEN
;
392 ap
->last_ctl
= ap
->ctl
;
394 if (ap
->ops
->sff_set_devctl
|| ioaddr
->ctl_addr
)
395 ata_sff_set_devctl(ap
, ap
->ctl
);
398 if (ap
->ops
->sff_irq_clear
)
399 ap
->ops
->sff_irq_clear(ap
);
401 EXPORT_SYMBOL_GPL(ata_sff_irq_on
);
404 * ata_sff_tf_load - send taskfile registers to host controller
405 * @ap: Port to which output is sent
406 * @tf: ATA taskfile register set
408 * Outputs ATA taskfile to standard ATA host controller.
411 * Inherited from caller.
413 void ata_sff_tf_load(struct ata_port
*ap
, const struct ata_taskfile
*tf
)
415 struct ata_ioports
*ioaddr
= &ap
->ioaddr
;
416 unsigned int is_addr
= tf
->flags
& ATA_TFLAG_ISADDR
;
418 if (tf
->ctl
!= ap
->last_ctl
) {
419 if (ioaddr
->ctl_addr
)
420 iowrite8(tf
->ctl
, ioaddr
->ctl_addr
);
421 ap
->last_ctl
= tf
->ctl
;
425 if (is_addr
&& (tf
->flags
& ATA_TFLAG_LBA48
)) {
426 WARN_ON_ONCE(!ioaddr
->ctl_addr
);
427 iowrite8(tf
->hob_feature
, ioaddr
->feature_addr
);
428 iowrite8(tf
->hob_nsect
, ioaddr
->nsect_addr
);
429 iowrite8(tf
->hob_lbal
, ioaddr
->lbal_addr
);
430 iowrite8(tf
->hob_lbam
, ioaddr
->lbam_addr
);
431 iowrite8(tf
->hob_lbah
, ioaddr
->lbah_addr
);
432 VPRINTK("hob: feat 0x%X nsect 0x%X, lba 0x%X 0x%X 0x%X\n",
441 iowrite8(tf
->feature
, ioaddr
->feature_addr
);
442 iowrite8(tf
->nsect
, ioaddr
->nsect_addr
);
443 iowrite8(tf
->lbal
, ioaddr
->lbal_addr
);
444 iowrite8(tf
->lbam
, ioaddr
->lbam_addr
);
445 iowrite8(tf
->lbah
, ioaddr
->lbah_addr
);
446 VPRINTK("feat 0x%X nsect 0x%X lba 0x%X 0x%X 0x%X\n",
454 if (tf
->flags
& ATA_TFLAG_DEVICE
) {
455 iowrite8(tf
->device
, ioaddr
->device_addr
);
456 VPRINTK("device 0x%X\n", tf
->device
);
461 EXPORT_SYMBOL_GPL(ata_sff_tf_load
);
464 * ata_sff_tf_read - input device's ATA taskfile shadow registers
465 * @ap: Port from which input is read
466 * @tf: ATA taskfile register set for storing input
468 * Reads ATA taskfile registers for currently-selected device
469 * into @tf. Assumes the device has a fully SFF compliant task file
470 * layout and behaviour. If you device does not (eg has a different
471 * status method) then you will need to provide a replacement tf_read
474 * Inherited from caller.
476 void ata_sff_tf_read(struct ata_port
*ap
, struct ata_taskfile
*tf
)
478 struct ata_ioports
*ioaddr
= &ap
->ioaddr
;
480 tf
->command
= ata_sff_check_status(ap
);
481 tf
->feature
= ioread8(ioaddr
->error_addr
);
482 tf
->nsect
= ioread8(ioaddr
->nsect_addr
);
483 tf
->lbal
= ioread8(ioaddr
->lbal_addr
);
484 tf
->lbam
= ioread8(ioaddr
->lbam_addr
);
485 tf
->lbah
= ioread8(ioaddr
->lbah_addr
);
486 tf
->device
= ioread8(ioaddr
->device_addr
);
488 if (tf
->flags
& ATA_TFLAG_LBA48
) {
489 if (likely(ioaddr
->ctl_addr
)) {
490 iowrite8(tf
->ctl
| ATA_HOB
, ioaddr
->ctl_addr
);
491 tf
->hob_feature
= ioread8(ioaddr
->error_addr
);
492 tf
->hob_nsect
= ioread8(ioaddr
->nsect_addr
);
493 tf
->hob_lbal
= ioread8(ioaddr
->lbal_addr
);
494 tf
->hob_lbam
= ioread8(ioaddr
->lbam_addr
);
495 tf
->hob_lbah
= ioread8(ioaddr
->lbah_addr
);
496 iowrite8(tf
->ctl
, ioaddr
->ctl_addr
);
497 ap
->last_ctl
= tf
->ctl
;
502 EXPORT_SYMBOL_GPL(ata_sff_tf_read
);
505 * ata_sff_exec_command - issue ATA command to host controller
506 * @ap: port to which command is being issued
507 * @tf: ATA taskfile register set
509 * Issues ATA command, with proper synchronization with interrupt
510 * handler / other threads.
513 * spin_lock_irqsave(host lock)
515 void ata_sff_exec_command(struct ata_port
*ap
, const struct ata_taskfile
*tf
)
517 DPRINTK("ata%u: cmd 0x%X\n", ap
->print_id
, tf
->command
);
519 iowrite8(tf
->command
, ap
->ioaddr
.command_addr
);
522 EXPORT_SYMBOL_GPL(ata_sff_exec_command
);
525 * ata_tf_to_host - issue ATA taskfile to host controller
526 * @ap: port to which command is being issued
527 * @tf: ATA taskfile register set
529 * Issues ATA taskfile register set to ATA host controller,
530 * with proper synchronization with interrupt handler and
534 * spin_lock_irqsave(host lock)
536 static inline void ata_tf_to_host(struct ata_port
*ap
,
537 const struct ata_taskfile
*tf
)
539 ap
->ops
->sff_tf_load(ap
, tf
);
540 ap
->ops
->sff_exec_command(ap
, tf
);
544 * ata_sff_data_xfer - Transfer data by PIO
545 * @dev: device to target
547 * @buflen: buffer length
550 * Transfer data from/to the device data register by PIO.
553 * Inherited from caller.
558 unsigned int ata_sff_data_xfer(struct ata_device
*dev
, unsigned char *buf
,
559 unsigned int buflen
, int rw
)
561 struct ata_port
*ap
= dev
->link
->ap
;
562 void __iomem
*data_addr
= ap
->ioaddr
.data_addr
;
563 unsigned int words
= buflen
>> 1;
565 /* Transfer multiple of 2 bytes */
567 ioread16_rep(data_addr
, buf
, words
);
569 iowrite16_rep(data_addr
, buf
, words
);
571 /* Transfer trailing byte, if any. */
572 if (unlikely(buflen
& 0x01)) {
573 unsigned char pad
[2] = { };
575 /* Point buf to the tail of buffer */
579 * Use io*16_rep() accessors here as well to avoid pointlessly
580 * swapping bytes to and from on the big endian machines...
583 ioread16_rep(data_addr
, pad
, 1);
587 iowrite16_rep(data_addr
, pad
, 1);
594 EXPORT_SYMBOL_GPL(ata_sff_data_xfer
);
597 * ata_sff_data_xfer32 - Transfer data by PIO
598 * @dev: device to target
600 * @buflen: buffer length
603 * Transfer data from/to the device data register by PIO using 32bit
607 * Inherited from caller.
613 unsigned int ata_sff_data_xfer32(struct ata_device
*dev
, unsigned char *buf
,
614 unsigned int buflen
, int rw
)
616 struct ata_port
*ap
= dev
->link
->ap
;
617 void __iomem
*data_addr
= ap
->ioaddr
.data_addr
;
618 unsigned int words
= buflen
>> 2;
619 int slop
= buflen
& 3;
621 if (!(ap
->pflags
& ATA_PFLAG_PIO32
))
622 return ata_sff_data_xfer(dev
, buf
, buflen
, rw
);
624 /* Transfer multiple of 4 bytes */
626 ioread32_rep(data_addr
, buf
, words
);
628 iowrite32_rep(data_addr
, buf
, words
);
630 /* Transfer trailing bytes, if any */
631 if (unlikely(slop
)) {
632 unsigned char pad
[4] = { };
634 /* Point buf to the tail of buffer */
635 buf
+= buflen
- slop
;
638 * Use io*_rep() accessors here as well to avoid pointlessly
639 * swapping bytes to and from on the big endian machines...
643 ioread16_rep(data_addr
, pad
, 1);
645 ioread32_rep(data_addr
, pad
, 1);
646 memcpy(buf
, pad
, slop
);
648 memcpy(pad
, buf
, slop
);
650 iowrite16_rep(data_addr
, pad
, 1);
652 iowrite32_rep(data_addr
, pad
, 1);
655 return (buflen
+ 1) & ~1;
657 EXPORT_SYMBOL_GPL(ata_sff_data_xfer32
);
660 * ata_sff_data_xfer_noirq - Transfer data by PIO
661 * @dev: device to target
663 * @buflen: buffer length
666 * Transfer data from/to the device data register by PIO. Do the
667 * transfer with interrupts disabled.
670 * Inherited from caller.
675 unsigned int ata_sff_data_xfer_noirq(struct ata_device
*dev
, unsigned char *buf
,
676 unsigned int buflen
, int rw
)
679 unsigned int consumed
;
681 local_irq_save(flags
);
682 consumed
= ata_sff_data_xfer32(dev
, buf
, buflen
, rw
);
683 local_irq_restore(flags
);
687 EXPORT_SYMBOL_GPL(ata_sff_data_xfer_noirq
);
690 * ata_pio_sector - Transfer a sector of data.
691 * @qc: Command on going
693 * Transfer qc->sect_size bytes of data from/to the ATA device.
696 * Inherited from caller.
698 static void ata_pio_sector(struct ata_queued_cmd
*qc
)
700 int do_write
= (qc
->tf
.flags
& ATA_TFLAG_WRITE
);
701 struct ata_port
*ap
= qc
->ap
;
707 qc
->curbytes
= qc
->nbytes
;
710 if (qc
->curbytes
== qc
->nbytes
- qc
->sect_size
)
711 ap
->hsm_task_state
= HSM_ST_LAST
;
713 page
= sg_page(qc
->cursg
);
714 offset
= qc
->cursg
->offset
+ qc
->cursg_ofs
;
716 /* get the current page and offset */
717 page
= nth_page(page
, (offset
>> PAGE_SHIFT
));
720 DPRINTK("data %s\n", qc
->tf
.flags
& ATA_TFLAG_WRITE
? "write" : "read");
722 if (PageHighMem(page
)) {
725 /* FIXME: use a bounce buffer */
726 local_irq_save(flags
);
727 buf
= kmap_atomic(page
);
729 /* do the actual data transfer */
730 ap
->ops
->sff_data_xfer(qc
->dev
, buf
+ offset
, qc
->sect_size
,
734 local_irq_restore(flags
);
736 buf
= page_address(page
);
737 ap
->ops
->sff_data_xfer(qc
->dev
, buf
+ offset
, qc
->sect_size
,
741 if (!do_write
&& !PageSlab(page
))
742 flush_dcache_page(page
);
744 qc
->curbytes
+= qc
->sect_size
;
745 qc
->cursg_ofs
+= qc
->sect_size
;
747 if (qc
->cursg_ofs
== qc
->cursg
->length
) {
748 qc
->cursg
= sg_next(qc
->cursg
);
750 ap
->hsm_task_state
= HSM_ST_LAST
;
756 * ata_pio_sectors - Transfer one or many sectors.
757 * @qc: Command on going
759 * Transfer one or many sectors of data from/to the
760 * ATA device for the DRQ request.
763 * Inherited from caller.
765 static void ata_pio_sectors(struct ata_queued_cmd
*qc
)
767 if (is_multi_taskfile(&qc
->tf
)) {
768 /* READ/WRITE MULTIPLE */
771 WARN_ON_ONCE(qc
->dev
->multi_count
== 0);
773 nsect
= min((qc
->nbytes
- qc
->curbytes
) / qc
->sect_size
,
774 qc
->dev
->multi_count
);
780 ata_sff_sync(qc
->ap
); /* flush */
784 * atapi_send_cdb - Write CDB bytes to hardware
785 * @ap: Port to which ATAPI device is attached.
786 * @qc: Taskfile currently active
788 * When device has indicated its readiness to accept
789 * a CDB, this function is called. Send the CDB.
794 static void atapi_send_cdb(struct ata_port
*ap
, struct ata_queued_cmd
*qc
)
797 DPRINTK("send cdb\n");
798 WARN_ON_ONCE(qc
->dev
->cdb_len
< 12);
800 ap
->ops
->sff_data_xfer(qc
->dev
, qc
->cdb
, qc
->dev
->cdb_len
, 1);
802 /* FIXME: If the CDB is for DMA do we need to do the transition delay
803 or is bmdma_start guaranteed to do it ? */
804 switch (qc
->tf
.protocol
) {
806 ap
->hsm_task_state
= HSM_ST
;
808 case ATAPI_PROT_NODATA
:
809 ap
->hsm_task_state
= HSM_ST_LAST
;
811 #ifdef CONFIG_ATA_BMDMA
813 ap
->hsm_task_state
= HSM_ST_LAST
;
815 ap
->ops
->bmdma_start(qc
);
817 #endif /* CONFIG_ATA_BMDMA */
824 * __atapi_pio_bytes - Transfer data from/to the ATAPI device.
825 * @qc: Command on going
826 * @bytes: number of bytes
828 * Transfer Transfer data from/to the ATAPI device.
831 * Inherited from caller.
834 static int __atapi_pio_bytes(struct ata_queued_cmd
*qc
, unsigned int bytes
)
836 int rw
= (qc
->tf
.flags
& ATA_TFLAG_WRITE
) ? WRITE
: READ
;
837 struct ata_port
*ap
= qc
->ap
;
838 struct ata_device
*dev
= qc
->dev
;
839 struct ata_eh_info
*ehi
= &dev
->link
->eh_info
;
840 struct scatterlist
*sg
;
843 unsigned int offset
, count
, consumed
;
848 ata_ehi_push_desc(ehi
, "unexpected or too much trailing data "
849 "buf=%u cur=%u bytes=%u",
850 qc
->nbytes
, qc
->curbytes
, bytes
);
855 offset
= sg
->offset
+ qc
->cursg_ofs
;
857 /* get the current page and offset */
858 page
= nth_page(page
, (offset
>> PAGE_SHIFT
));
861 /* don't overrun current sg */
862 count
= min(sg
->length
- qc
->cursg_ofs
, bytes
);
864 /* don't cross page boundaries */
865 count
= min(count
, (unsigned int)PAGE_SIZE
- offset
);
867 DPRINTK("data %s\n", qc
->tf
.flags
& ATA_TFLAG_WRITE
? "write" : "read");
869 if (PageHighMem(page
)) {
872 /* FIXME: use bounce buffer */
873 local_irq_save(flags
);
874 buf
= kmap_atomic(page
);
876 /* do the actual data transfer */
877 consumed
= ap
->ops
->sff_data_xfer(dev
, buf
+ offset
,
881 local_irq_restore(flags
);
883 buf
= page_address(page
);
884 consumed
= ap
->ops
->sff_data_xfer(dev
, buf
+ offset
,
888 bytes
-= min(bytes
, consumed
);
889 qc
->curbytes
+= count
;
890 qc
->cursg_ofs
+= count
;
892 if (qc
->cursg_ofs
== sg
->length
) {
893 qc
->cursg
= sg_next(qc
->cursg
);
898 * There used to be a WARN_ON_ONCE(qc->cursg && count != consumed);
899 * Unfortunately __atapi_pio_bytes doesn't know enough to do the WARN
900 * check correctly as it doesn't know if it is the last request being
901 * made. Somebody should implement a proper sanity check.
909 * atapi_pio_bytes - Transfer data from/to the ATAPI device.
910 * @qc: Command on going
912 * Transfer Transfer data from/to the ATAPI device.
915 * Inherited from caller.
917 static void atapi_pio_bytes(struct ata_queued_cmd
*qc
)
919 struct ata_port
*ap
= qc
->ap
;
920 struct ata_device
*dev
= qc
->dev
;
921 struct ata_eh_info
*ehi
= &dev
->link
->eh_info
;
922 unsigned int ireason
, bc_lo
, bc_hi
, bytes
;
923 int i_write
, do_write
= (qc
->tf
.flags
& ATA_TFLAG_WRITE
) ? 1 : 0;
925 /* Abuse qc->result_tf for temp storage of intermediate TF
926 * here to save some kernel stack usage.
927 * For normal completion, qc->result_tf is not relevant. For
928 * error, qc->result_tf is later overwritten by ata_qc_complete().
929 * So, the correctness of qc->result_tf is not affected.
931 ap
->ops
->sff_tf_read(ap
, &qc
->result_tf
);
932 ireason
= qc
->result_tf
.nsect
;
933 bc_lo
= qc
->result_tf
.lbam
;
934 bc_hi
= qc
->result_tf
.lbah
;
935 bytes
= (bc_hi
<< 8) | bc_lo
;
937 /* shall be cleared to zero, indicating xfer of data */
938 if (unlikely(ireason
& ATAPI_COD
))
941 /* make sure transfer direction matches expected */
942 i_write
= ((ireason
& ATAPI_IO
) == 0) ? 1 : 0;
943 if (unlikely(do_write
!= i_write
))
946 if (unlikely(!bytes
))
949 VPRINTK("ata%u: xfering %d bytes\n", ap
->print_id
, bytes
);
951 if (unlikely(__atapi_pio_bytes(qc
, bytes
)))
953 ata_sff_sync(ap
); /* flush */
958 ata_ehi_push_desc(ehi
, "ATAPI check failed (ireason=0x%x bytes=%u)",
961 qc
->err_mask
|= AC_ERR_HSM
;
962 ap
->hsm_task_state
= HSM_ST_ERR
;
966 * ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue.
967 * @ap: the target ata_port
971 * 1 if ok in workqueue, 0 otherwise.
973 static inline int ata_hsm_ok_in_wq(struct ata_port
*ap
,
974 struct ata_queued_cmd
*qc
)
976 if (qc
->tf
.flags
& ATA_TFLAG_POLLING
)
979 if (ap
->hsm_task_state
== HSM_ST_FIRST
) {
980 if (qc
->tf
.protocol
== ATA_PROT_PIO
&&
981 (qc
->tf
.flags
& ATA_TFLAG_WRITE
))
984 if (ata_is_atapi(qc
->tf
.protocol
) &&
985 !(qc
->dev
->flags
& ATA_DFLAG_CDB_INTR
))
993 * ata_hsm_qc_complete - finish a qc running on standard HSM
994 * @qc: Command to complete
995 * @in_wq: 1 if called from workqueue, 0 otherwise
997 * Finish @qc which is running on standard HSM.
1000 * If @in_wq is zero, spin_lock_irqsave(host lock).
1001 * Otherwise, none on entry and grabs host lock.
1003 static void ata_hsm_qc_complete(struct ata_queued_cmd
*qc
, int in_wq
)
1005 struct ata_port
*ap
= qc
->ap
;
1007 if (ap
->ops
->error_handler
) {
1009 /* EH might have kicked in while host lock is
1012 qc
= ata_qc_from_tag(ap
, qc
->tag
);
1014 if (likely(!(qc
->err_mask
& AC_ERR_HSM
))) {
1016 ata_qc_complete(qc
);
1018 ata_port_freeze(ap
);
1021 if (likely(!(qc
->err_mask
& AC_ERR_HSM
)))
1022 ata_qc_complete(qc
);
1024 ata_port_freeze(ap
);
1029 ata_qc_complete(qc
);
1031 ata_qc_complete(qc
);
1036 * ata_sff_hsm_move - move the HSM to the next state.
1037 * @ap: the target ata_port
1039 * @status: current device status
1040 * @in_wq: 1 if called from workqueue, 0 otherwise
1043 * 1 when poll next status needed, 0 otherwise.
1045 int ata_sff_hsm_move(struct ata_port
*ap
, struct ata_queued_cmd
*qc
,
1046 u8 status
, int in_wq
)
1048 struct ata_link
*link
= qc
->dev
->link
;
1049 struct ata_eh_info
*ehi
= &link
->eh_info
;
1052 lockdep_assert_held(ap
->lock
);
1054 WARN_ON_ONCE((qc
->flags
& ATA_QCFLAG_ACTIVE
) == 0);
1056 /* Make sure ata_sff_qc_issue() does not throw things
1057 * like DMA polling into the workqueue. Notice that
1058 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING).
1060 WARN_ON_ONCE(in_wq
!= ata_hsm_ok_in_wq(ap
, qc
));
1063 DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n",
1064 ap
->print_id
, qc
->tf
.protocol
, ap
->hsm_task_state
, status
);
1066 switch (ap
->hsm_task_state
) {
1068 /* Send first data block or PACKET CDB */
1070 /* If polling, we will stay in the work queue after
1071 * sending the data. Otherwise, interrupt handler
1072 * takes over after sending the data.
1074 poll_next
= (qc
->tf
.flags
& ATA_TFLAG_POLLING
);
1076 /* check device status */
1077 if (unlikely((status
& ATA_DRQ
) == 0)) {
1078 /* handle BSY=0, DRQ=0 as error */
1079 if (likely(status
& (ATA_ERR
| ATA_DF
)))
1080 /* device stops HSM for abort/error */
1081 qc
->err_mask
|= AC_ERR_DEV
;
1083 /* HSM violation. Let EH handle this */
1084 ata_ehi_push_desc(ehi
,
1085 "ST_FIRST: !(DRQ|ERR|DF)");
1086 qc
->err_mask
|= AC_ERR_HSM
;
1089 ap
->hsm_task_state
= HSM_ST_ERR
;
1093 /* Device should not ask for data transfer (DRQ=1)
1094 * when it finds something wrong.
1095 * We ignore DRQ here and stop the HSM by
1096 * changing hsm_task_state to HSM_ST_ERR and
1097 * let the EH abort the command or reset the device.
1099 if (unlikely(status
& (ATA_ERR
| ATA_DF
))) {
1100 /* Some ATAPI tape drives forget to clear the ERR bit
1101 * when doing the next command (mostly request sense).
1102 * We ignore ERR here to workaround and proceed sending
1105 if (!(qc
->dev
->horkage
& ATA_HORKAGE_STUCK_ERR
)) {
1106 ata_ehi_push_desc(ehi
, "ST_FIRST: "
1107 "DRQ=1 with device error, "
1108 "dev_stat 0x%X", status
);
1109 qc
->err_mask
|= AC_ERR_HSM
;
1110 ap
->hsm_task_state
= HSM_ST_ERR
;
1115 if (qc
->tf
.protocol
== ATA_PROT_PIO
) {
1116 /* PIO data out protocol.
1117 * send first data block.
1120 /* ata_pio_sectors() might change the state
1121 * to HSM_ST_LAST. so, the state is changed here
1122 * before ata_pio_sectors().
1124 ap
->hsm_task_state
= HSM_ST
;
1125 ata_pio_sectors(qc
);
1128 atapi_send_cdb(ap
, qc
);
1130 /* if polling, ata_sff_pio_task() handles the rest.
1131 * otherwise, interrupt handler takes over from here.
1136 /* complete command or read/write the data register */
1137 if (qc
->tf
.protocol
== ATAPI_PROT_PIO
) {
1138 /* ATAPI PIO protocol */
1139 if ((status
& ATA_DRQ
) == 0) {
1140 /* No more data to transfer or device error.
1141 * Device error will be tagged in HSM_ST_LAST.
1143 ap
->hsm_task_state
= HSM_ST_LAST
;
1147 /* Device should not ask for data transfer (DRQ=1)
1148 * when it finds something wrong.
1149 * We ignore DRQ here and stop the HSM by
1150 * changing hsm_task_state to HSM_ST_ERR and
1151 * let the EH abort the command or reset the device.
1153 if (unlikely(status
& (ATA_ERR
| ATA_DF
))) {
1154 ata_ehi_push_desc(ehi
, "ST-ATAPI: "
1155 "DRQ=1 with device error, "
1156 "dev_stat 0x%X", status
);
1157 qc
->err_mask
|= AC_ERR_HSM
;
1158 ap
->hsm_task_state
= HSM_ST_ERR
;
1162 atapi_pio_bytes(qc
);
1164 if (unlikely(ap
->hsm_task_state
== HSM_ST_ERR
))
1165 /* bad ireason reported by device */
1169 /* ATA PIO protocol */
1170 if (unlikely((status
& ATA_DRQ
) == 0)) {
1171 /* handle BSY=0, DRQ=0 as error */
1172 if (likely(status
& (ATA_ERR
| ATA_DF
))) {
1173 /* device stops HSM for abort/error */
1174 qc
->err_mask
|= AC_ERR_DEV
;
1176 /* If diagnostic failed and this is
1177 * IDENTIFY, it's likely a phantom
1178 * device. Mark hint.
1180 if (qc
->dev
->horkage
&
1181 ATA_HORKAGE_DIAGNOSTIC
)
1185 /* HSM violation. Let EH handle this.
1186 * Phantom devices also trigger this
1187 * condition. Mark hint.
1189 ata_ehi_push_desc(ehi
, "ST-ATA: "
1190 "DRQ=0 without device error, "
1191 "dev_stat 0x%X", status
);
1192 qc
->err_mask
|= AC_ERR_HSM
|
1196 ap
->hsm_task_state
= HSM_ST_ERR
;
1200 /* For PIO reads, some devices may ask for
1201 * data transfer (DRQ=1) alone with ERR=1.
1202 * We respect DRQ here and transfer one
1203 * block of junk data before changing the
1204 * hsm_task_state to HSM_ST_ERR.
1206 * For PIO writes, ERR=1 DRQ=1 doesn't make
1207 * sense since the data block has been
1208 * transferred to the device.
1210 if (unlikely(status
& (ATA_ERR
| ATA_DF
))) {
1211 /* data might be corrputed */
1212 qc
->err_mask
|= AC_ERR_DEV
;
1214 if (!(qc
->tf
.flags
& ATA_TFLAG_WRITE
)) {
1215 ata_pio_sectors(qc
);
1216 status
= ata_wait_idle(ap
);
1219 if (status
& (ATA_BUSY
| ATA_DRQ
)) {
1220 ata_ehi_push_desc(ehi
, "ST-ATA: "
1221 "BUSY|DRQ persists on ERR|DF, "
1222 "dev_stat 0x%X", status
);
1223 qc
->err_mask
|= AC_ERR_HSM
;
1226 /* There are oddball controllers with
1227 * status register stuck at 0x7f and
1228 * lbal/m/h at zero which makes it
1229 * pass all other presence detection
1230 * mechanisms we have. Set NODEV_HINT
1231 * for it. Kernel bz#7241.
1234 qc
->err_mask
|= AC_ERR_NODEV_HINT
;
1236 /* ata_pio_sectors() might change the
1237 * state to HSM_ST_LAST. so, the state
1238 * is changed after ata_pio_sectors().
1240 ap
->hsm_task_state
= HSM_ST_ERR
;
1244 ata_pio_sectors(qc
);
1246 if (ap
->hsm_task_state
== HSM_ST_LAST
&&
1247 (!(qc
->tf
.flags
& ATA_TFLAG_WRITE
))) {
1249 status
= ata_wait_idle(ap
);
1258 if (unlikely(!ata_ok(status
))) {
1259 qc
->err_mask
|= __ac_err_mask(status
);
1260 ap
->hsm_task_state
= HSM_ST_ERR
;
1264 /* no more data to transfer */
1265 DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n",
1266 ap
->print_id
, qc
->dev
->devno
, status
);
1268 WARN_ON_ONCE(qc
->err_mask
& (AC_ERR_DEV
| AC_ERR_HSM
));
1270 ap
->hsm_task_state
= HSM_ST_IDLE
;
1272 /* complete taskfile transaction */
1273 ata_hsm_qc_complete(qc
, in_wq
);
1279 ap
->hsm_task_state
= HSM_ST_IDLE
;
1281 /* complete taskfile transaction */
1282 ata_hsm_qc_complete(qc
, in_wq
);
1293 EXPORT_SYMBOL_GPL(ata_sff_hsm_move
);
1295 void ata_sff_queue_work(struct work_struct
*work
)
1297 queue_work(ata_sff_wq
, work
);
1299 EXPORT_SYMBOL_GPL(ata_sff_queue_work
);
1301 void ata_sff_queue_delayed_work(struct delayed_work
*dwork
, unsigned long delay
)
1303 queue_delayed_work(ata_sff_wq
, dwork
, delay
);
1305 EXPORT_SYMBOL_GPL(ata_sff_queue_delayed_work
);
1307 void ata_sff_queue_pio_task(struct ata_link
*link
, unsigned long delay
)
1309 struct ata_port
*ap
= link
->ap
;
1311 WARN_ON((ap
->sff_pio_task_link
!= NULL
) &&
1312 (ap
->sff_pio_task_link
!= link
));
1313 ap
->sff_pio_task_link
= link
;
1315 /* may fail if ata_sff_flush_pio_task() in progress */
1316 ata_sff_queue_delayed_work(&ap
->sff_pio_task
, msecs_to_jiffies(delay
));
1318 EXPORT_SYMBOL_GPL(ata_sff_queue_pio_task
);
1320 void ata_sff_flush_pio_task(struct ata_port
*ap
)
1324 cancel_delayed_work_sync(&ap
->sff_pio_task
);
1327 * We wanna reset the HSM state to IDLE. If we do so without
1328 * grabbing the port lock, critical sections protected by it which
1329 * expect the HSM state to stay stable may get surprised. For
1330 * example, we may set IDLE in between the time
1331 * __ata_sff_port_intr() checks for HSM_ST_IDLE and before it calls
1332 * ata_sff_hsm_move() causing ata_sff_hsm_move() to BUG().
1334 spin_lock_irq(ap
->lock
);
1335 ap
->hsm_task_state
= HSM_ST_IDLE
;
1336 spin_unlock_irq(ap
->lock
);
1338 ap
->sff_pio_task_link
= NULL
;
1340 if (ata_msg_ctl(ap
))
1341 ata_port_dbg(ap
, "%s: EXIT\n", __func__
);
1344 static void ata_sff_pio_task(struct work_struct
*work
)
1346 struct ata_port
*ap
=
1347 container_of(work
, struct ata_port
, sff_pio_task
.work
);
1348 struct ata_link
*link
= ap
->sff_pio_task_link
;
1349 struct ata_queued_cmd
*qc
;
1353 spin_lock_irq(ap
->lock
);
1355 BUG_ON(ap
->sff_pio_task_link
== NULL
);
1356 /* qc can be NULL if timeout occurred */
1357 qc
= ata_qc_from_tag(ap
, link
->active_tag
);
1359 ap
->sff_pio_task_link
= NULL
;
1364 WARN_ON_ONCE(ap
->hsm_task_state
== HSM_ST_IDLE
);
1367 * This is purely heuristic. This is a fast path.
1368 * Sometimes when we enter, BSY will be cleared in
1369 * a chk-status or two. If not, the drive is probably seeking
1370 * or something. Snooze for a couple msecs, then
1371 * chk-status again. If still busy, queue delayed work.
1373 status
= ata_sff_busy_wait(ap
, ATA_BUSY
, 5);
1374 if (status
& ATA_BUSY
) {
1375 spin_unlock_irq(ap
->lock
);
1377 spin_lock_irq(ap
->lock
);
1379 status
= ata_sff_busy_wait(ap
, ATA_BUSY
, 10);
1380 if (status
& ATA_BUSY
) {
1381 ata_sff_queue_pio_task(link
, ATA_SHORT_PAUSE
);
1387 * hsm_move() may trigger another command to be processed.
1388 * clean the link beforehand.
1390 ap
->sff_pio_task_link
= NULL
;
1392 poll_next
= ata_sff_hsm_move(ap
, qc
, status
, 1);
1394 /* another command or interrupt handler
1395 * may be running at this point.
1400 spin_unlock_irq(ap
->lock
);
1404 * ata_sff_qc_issue - issue taskfile to a SFF controller
1405 * @qc: command to issue to device
1407 * This function issues a PIO or NODATA command to a SFF
1411 * spin_lock_irqsave(host lock)
1414 * Zero on success, AC_ERR_* mask on failure
1416 unsigned int ata_sff_qc_issue(struct ata_queued_cmd
*qc
)
1418 struct ata_port
*ap
= qc
->ap
;
1419 struct ata_link
*link
= qc
->dev
->link
;
1421 /* Use polling pio if the LLD doesn't handle
1422 * interrupt driven pio and atapi CDB interrupt.
1424 if (ap
->flags
& ATA_FLAG_PIO_POLLING
)
1425 qc
->tf
.flags
|= ATA_TFLAG_POLLING
;
1427 /* select the device */
1428 ata_dev_select(ap
, qc
->dev
->devno
, 1, 0);
1430 /* start the command */
1431 switch (qc
->tf
.protocol
) {
1432 case ATA_PROT_NODATA
:
1433 if (qc
->tf
.flags
& ATA_TFLAG_POLLING
)
1434 ata_qc_set_polling(qc
);
1436 ata_tf_to_host(ap
, &qc
->tf
);
1437 ap
->hsm_task_state
= HSM_ST_LAST
;
1439 if (qc
->tf
.flags
& ATA_TFLAG_POLLING
)
1440 ata_sff_queue_pio_task(link
, 0);
1445 if (qc
->tf
.flags
& ATA_TFLAG_POLLING
)
1446 ata_qc_set_polling(qc
);
1448 ata_tf_to_host(ap
, &qc
->tf
);
1450 if (qc
->tf
.flags
& ATA_TFLAG_WRITE
) {
1451 /* PIO data out protocol */
1452 ap
->hsm_task_state
= HSM_ST_FIRST
;
1453 ata_sff_queue_pio_task(link
, 0);
1455 /* always send first data block using the
1456 * ata_sff_pio_task() codepath.
1459 /* PIO data in protocol */
1460 ap
->hsm_task_state
= HSM_ST
;
1462 if (qc
->tf
.flags
& ATA_TFLAG_POLLING
)
1463 ata_sff_queue_pio_task(link
, 0);
1465 /* if polling, ata_sff_pio_task() handles the
1466 * rest. otherwise, interrupt handler takes
1473 case ATAPI_PROT_PIO
:
1474 case ATAPI_PROT_NODATA
:
1475 if (qc
->tf
.flags
& ATA_TFLAG_POLLING
)
1476 ata_qc_set_polling(qc
);
1478 ata_tf_to_host(ap
, &qc
->tf
);
1480 ap
->hsm_task_state
= HSM_ST_FIRST
;
1482 /* send cdb by polling if no cdb interrupt */
1483 if ((!(qc
->dev
->flags
& ATA_DFLAG_CDB_INTR
)) ||
1484 (qc
->tf
.flags
& ATA_TFLAG_POLLING
))
1485 ata_sff_queue_pio_task(link
, 0);
1489 return AC_ERR_SYSTEM
;
1494 EXPORT_SYMBOL_GPL(ata_sff_qc_issue
);
1497 * ata_sff_qc_fill_rtf - fill result TF using ->sff_tf_read
1498 * @qc: qc to fill result TF for
1500 * @qc is finished and result TF needs to be filled. Fill it
1501 * using ->sff_tf_read.
1504 * spin_lock_irqsave(host lock)
1507 * true indicating that result TF is successfully filled.
1509 bool ata_sff_qc_fill_rtf(struct ata_queued_cmd
*qc
)
1511 qc
->ap
->ops
->sff_tf_read(qc
->ap
, &qc
->result_tf
);
1514 EXPORT_SYMBOL_GPL(ata_sff_qc_fill_rtf
);
1516 static unsigned int ata_sff_idle_irq(struct ata_port
*ap
)
1518 ap
->stats
.idle_irq
++;
1521 if ((ap
->stats
.idle_irq
% 1000) == 0) {
1522 ap
->ops
->sff_check_status(ap
);
1523 if (ap
->ops
->sff_irq_clear
)
1524 ap
->ops
->sff_irq_clear(ap
);
1525 ata_port_warn(ap
, "irq trap\n");
1529 return 0; /* irq not handled */
1532 static unsigned int __ata_sff_port_intr(struct ata_port
*ap
,
1533 struct ata_queued_cmd
*qc
,
1538 VPRINTK("ata%u: protocol %d task_state %d\n",
1539 ap
->print_id
, qc
->tf
.protocol
, ap
->hsm_task_state
);
1541 /* Check whether we are expecting interrupt in this state */
1542 switch (ap
->hsm_task_state
) {
1544 /* Some pre-ATAPI-4 devices assert INTRQ
1545 * at this state when ready to receive CDB.
1548 /* Check the ATA_DFLAG_CDB_INTR flag is enough here.
1549 * The flag was turned on only for atapi devices. No
1550 * need to check ata_is_atapi(qc->tf.protocol) again.
1552 if (!(qc
->dev
->flags
& ATA_DFLAG_CDB_INTR
))
1553 return ata_sff_idle_irq(ap
);
1556 return ata_sff_idle_irq(ap
);
1561 /* check main status, clearing INTRQ if needed */
1562 status
= ata_sff_irq_status(ap
);
1563 if (status
& ATA_BUSY
) {
1565 /* BMDMA engine is already stopped, we're screwed */
1566 qc
->err_mask
|= AC_ERR_HSM
;
1567 ap
->hsm_task_state
= HSM_ST_ERR
;
1569 return ata_sff_idle_irq(ap
);
1572 /* clear irq events */
1573 if (ap
->ops
->sff_irq_clear
)
1574 ap
->ops
->sff_irq_clear(ap
);
1576 ata_sff_hsm_move(ap
, qc
, status
, 0);
1578 return 1; /* irq handled */
1582 * ata_sff_port_intr - Handle SFF port interrupt
1583 * @ap: Port on which interrupt arrived (possibly...)
1584 * @qc: Taskfile currently active in engine
1586 * Handle port interrupt for given queued command.
1589 * spin_lock_irqsave(host lock)
1592 * One if interrupt was handled, zero if not (shared irq).
1594 unsigned int ata_sff_port_intr(struct ata_port
*ap
, struct ata_queued_cmd
*qc
)
1596 return __ata_sff_port_intr(ap
, qc
, false);
1598 EXPORT_SYMBOL_GPL(ata_sff_port_intr
);
1600 static inline irqreturn_t
__ata_sff_interrupt(int irq
, void *dev_instance
,
1601 unsigned int (*port_intr
)(struct ata_port
*, struct ata_queued_cmd
*))
1603 struct ata_host
*host
= dev_instance
;
1604 bool retried
= false;
1606 unsigned int handled
, idle
, polling
;
1607 unsigned long flags
;
1609 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
1610 spin_lock_irqsave(&host
->lock
, flags
);
1613 handled
= idle
= polling
= 0;
1614 for (i
= 0; i
< host
->n_ports
; i
++) {
1615 struct ata_port
*ap
= host
->ports
[i
];
1616 struct ata_queued_cmd
*qc
;
1618 qc
= ata_qc_from_tag(ap
, ap
->link
.active_tag
);
1620 if (!(qc
->tf
.flags
& ATA_TFLAG_POLLING
))
1621 handled
|= port_intr(ap
, qc
);
1629 * If no port was expecting IRQ but the controller is actually
1630 * asserting IRQ line, nobody cared will ensue. Check IRQ
1631 * pending status if available and clear spurious IRQ.
1633 if (!handled
&& !retried
) {
1636 for (i
= 0; i
< host
->n_ports
; i
++) {
1637 struct ata_port
*ap
= host
->ports
[i
];
1639 if (polling
& (1 << i
))
1642 if (!ap
->ops
->sff_irq_check
||
1643 !ap
->ops
->sff_irq_check(ap
))
1646 if (idle
& (1 << i
)) {
1647 ap
->ops
->sff_check_status(ap
);
1648 if (ap
->ops
->sff_irq_clear
)
1649 ap
->ops
->sff_irq_clear(ap
);
1651 /* clear INTRQ and check if BUSY cleared */
1652 if (!(ap
->ops
->sff_check_status(ap
) & ATA_BUSY
))
1655 * With command in flight, we can't do
1656 * sff_irq_clear() w/o racing with completion.
1667 spin_unlock_irqrestore(&host
->lock
, flags
);
1669 return IRQ_RETVAL(handled
);
1673 * ata_sff_interrupt - Default SFF ATA host interrupt handler
1674 * @irq: irq line (unused)
1675 * @dev_instance: pointer to our ata_host information structure
1677 * Default interrupt handler for PCI IDE devices. Calls
1678 * ata_sff_port_intr() for each port that is not disabled.
1681 * Obtains host lock during operation.
1684 * IRQ_NONE or IRQ_HANDLED.
1686 irqreturn_t
ata_sff_interrupt(int irq
, void *dev_instance
)
1688 return __ata_sff_interrupt(irq
, dev_instance
, ata_sff_port_intr
);
1690 EXPORT_SYMBOL_GPL(ata_sff_interrupt
);
1693 * ata_sff_lost_interrupt - Check for an apparent lost interrupt
1694 * @ap: port that appears to have timed out
1696 * Called from the libata error handlers when the core code suspects
1697 * an interrupt has been lost. If it has complete anything we can and
1698 * then return. Interface must support altstatus for this faster
1699 * recovery to occur.
1702 * Caller holds host lock
1705 void ata_sff_lost_interrupt(struct ata_port
*ap
)
1708 struct ata_queued_cmd
*qc
;
1710 /* Only one outstanding command per SFF channel */
1711 qc
= ata_qc_from_tag(ap
, ap
->link
.active_tag
);
1712 /* We cannot lose an interrupt on a non-existent or polled command */
1713 if (!qc
|| qc
->tf
.flags
& ATA_TFLAG_POLLING
)
1715 /* See if the controller thinks it is still busy - if so the command
1716 isn't a lost IRQ but is still in progress */
1717 status
= ata_sff_altstatus(ap
);
1718 if (status
& ATA_BUSY
)
1721 /* There was a command running, we are no longer busy and we have
1723 ata_port_warn(ap
, "lost interrupt (Status 0x%x)\n",
1725 /* Run the host interrupt logic as if the interrupt had not been
1727 ata_sff_port_intr(ap
, qc
);
1729 EXPORT_SYMBOL_GPL(ata_sff_lost_interrupt
);
1732 * ata_sff_freeze - Freeze SFF controller port
1733 * @ap: port to freeze
1735 * Freeze SFF controller port.
1738 * Inherited from caller.
1740 void ata_sff_freeze(struct ata_port
*ap
)
1742 ap
->ctl
|= ATA_NIEN
;
1743 ap
->last_ctl
= ap
->ctl
;
1745 if (ap
->ops
->sff_set_devctl
|| ap
->ioaddr
.ctl_addr
)
1746 ata_sff_set_devctl(ap
, ap
->ctl
);
1748 /* Under certain circumstances, some controllers raise IRQ on
1749 * ATA_NIEN manipulation. Also, many controllers fail to mask
1750 * previously pending IRQ on ATA_NIEN assertion. Clear it.
1752 ap
->ops
->sff_check_status(ap
);
1754 if (ap
->ops
->sff_irq_clear
)
1755 ap
->ops
->sff_irq_clear(ap
);
1757 EXPORT_SYMBOL_GPL(ata_sff_freeze
);
1760 * ata_sff_thaw - Thaw SFF controller port
1763 * Thaw SFF controller port.
1766 * Inherited from caller.
1768 void ata_sff_thaw(struct ata_port
*ap
)
1770 /* clear & re-enable interrupts */
1771 ap
->ops
->sff_check_status(ap
);
1772 if (ap
->ops
->sff_irq_clear
)
1773 ap
->ops
->sff_irq_clear(ap
);
1776 EXPORT_SYMBOL_GPL(ata_sff_thaw
);
1779 * ata_sff_prereset - prepare SFF link for reset
1780 * @link: SFF link to be reset
1781 * @deadline: deadline jiffies for the operation
1783 * SFF link @link is about to be reset. Initialize it. It first
1784 * calls ata_std_prereset() and wait for !BSY if the port is
1788 * Kernel thread context (may sleep)
1791 * 0 on success, -errno otherwise.
1793 int ata_sff_prereset(struct ata_link
*link
, unsigned long deadline
)
1795 struct ata_eh_context
*ehc
= &link
->eh_context
;
1798 rc
= ata_std_prereset(link
, deadline
);
1802 /* if we're about to do hardreset, nothing more to do */
1803 if (ehc
->i
.action
& ATA_EH_HARDRESET
)
1806 /* wait for !BSY if we don't know that no device is attached */
1807 if (!ata_link_offline(link
)) {
1808 rc
= ata_sff_wait_ready(link
, deadline
);
1809 if (rc
&& rc
!= -ENODEV
) {
1811 "device not ready (errno=%d), forcing hardreset\n",
1813 ehc
->i
.action
|= ATA_EH_HARDRESET
;
1819 EXPORT_SYMBOL_GPL(ata_sff_prereset
);
1822 * ata_devchk - PATA device presence detection
1823 * @ap: ATA channel to examine
1824 * @device: Device to examine (starting at zero)
1826 * This technique was originally described in
1827 * Hale Landis's ATADRVR (www.ata-atapi.com), and
1828 * later found its way into the ATA/ATAPI spec.
1830 * Write a pattern to the ATA shadow registers,
1831 * and if a device is present, it will respond by
1832 * correctly storing and echoing back the
1833 * ATA shadow register contents.
1838 static unsigned int ata_devchk(struct ata_port
*ap
, unsigned int device
)
1840 struct ata_ioports
*ioaddr
= &ap
->ioaddr
;
1843 ap
->ops
->sff_dev_select(ap
, device
);
1845 iowrite8(0x55, ioaddr
->nsect_addr
);
1846 iowrite8(0xaa, ioaddr
->lbal_addr
);
1848 iowrite8(0xaa, ioaddr
->nsect_addr
);
1849 iowrite8(0x55, ioaddr
->lbal_addr
);
1851 iowrite8(0x55, ioaddr
->nsect_addr
);
1852 iowrite8(0xaa, ioaddr
->lbal_addr
);
1854 nsect
= ioread8(ioaddr
->nsect_addr
);
1855 lbal
= ioread8(ioaddr
->lbal_addr
);
1857 if ((nsect
== 0x55) && (lbal
== 0xaa))
1858 return 1; /* we found a device */
1860 return 0; /* nothing found */
1864 * ata_sff_dev_classify - Parse returned ATA device signature
1865 * @dev: ATA device to classify (starting at zero)
1866 * @present: device seems present
1867 * @r_err: Value of error register on completion
1869 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
1870 * an ATA/ATAPI-defined set of values is placed in the ATA
1871 * shadow registers, indicating the results of device detection
1874 * Select the ATA device, and read the values from the ATA shadow
1875 * registers. Then parse according to the Error register value,
1876 * and the spec-defined values examined by ata_dev_classify().
1882 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
1884 unsigned int ata_sff_dev_classify(struct ata_device
*dev
, int present
,
1887 struct ata_port
*ap
= dev
->link
->ap
;
1888 struct ata_taskfile tf
;
1892 ap
->ops
->sff_dev_select(ap
, dev
->devno
);
1894 memset(&tf
, 0, sizeof(tf
));
1896 ap
->ops
->sff_tf_read(ap
, &tf
);
1901 /* see if device passed diags: continue and warn later */
1903 /* diagnostic fail : do nothing _YET_ */
1904 dev
->horkage
|= ATA_HORKAGE_DIAGNOSTIC
;
1907 else if ((dev
->devno
== 0) && (err
== 0x81))
1910 return ATA_DEV_NONE
;
1912 /* determine if device is ATA or ATAPI */
1913 class = ata_dev_classify(&tf
);
1915 if (class == ATA_DEV_UNKNOWN
) {
1916 /* If the device failed diagnostic, it's likely to
1917 * have reported incorrect device signature too.
1918 * Assume ATA device if the device seems present but
1919 * device signature is invalid with diagnostic
1922 if (present
&& (dev
->horkage
& ATA_HORKAGE_DIAGNOSTIC
))
1923 class = ATA_DEV_ATA
;
1925 class = ATA_DEV_NONE
;
1926 } else if ((class == ATA_DEV_ATA
) &&
1927 (ap
->ops
->sff_check_status(ap
) == 0))
1928 class = ATA_DEV_NONE
;
1932 EXPORT_SYMBOL_GPL(ata_sff_dev_classify
);
1935 * ata_sff_wait_after_reset - wait for devices to become ready after reset
1936 * @link: SFF link which is just reset
1937 * @devmask: mask of present devices
1938 * @deadline: deadline jiffies for the operation
1940 * Wait devices attached to SFF @link to become ready after
1941 * reset. It contains preceding 150ms wait to avoid accessing TF
1942 * status register too early.
1945 * Kernel thread context (may sleep).
1948 * 0 on success, -ENODEV if some or all of devices in @devmask
1949 * don't seem to exist. -errno on other errors.
1951 int ata_sff_wait_after_reset(struct ata_link
*link
, unsigned int devmask
,
1952 unsigned long deadline
)
1954 struct ata_port
*ap
= link
->ap
;
1955 struct ata_ioports
*ioaddr
= &ap
->ioaddr
;
1956 unsigned int dev0
= devmask
& (1 << 0);
1957 unsigned int dev1
= devmask
& (1 << 1);
1960 ata_msleep(ap
, ATA_WAIT_AFTER_RESET
);
1962 /* always check readiness of the master device */
1963 rc
= ata_sff_wait_ready(link
, deadline
);
1964 /* -ENODEV means the odd clown forgot the D7 pulldown resistor
1965 * and TF status is 0xff, bail out on it too.
1970 /* if device 1 was found in ata_devchk, wait for register
1971 * access briefly, then wait for BSY to clear.
1976 ap
->ops
->sff_dev_select(ap
, 1);
1978 /* Wait for register access. Some ATAPI devices fail
1979 * to set nsect/lbal after reset, so don't waste too
1980 * much time on it. We're gonna wait for !BSY anyway.
1982 for (i
= 0; i
< 2; i
++) {
1985 nsect
= ioread8(ioaddr
->nsect_addr
);
1986 lbal
= ioread8(ioaddr
->lbal_addr
);
1987 if ((nsect
== 1) && (lbal
== 1))
1989 ata_msleep(ap
, 50); /* give drive a breather */
1992 rc
= ata_sff_wait_ready(link
, deadline
);
2000 /* is all this really necessary? */
2001 ap
->ops
->sff_dev_select(ap
, 0);
2003 ap
->ops
->sff_dev_select(ap
, 1);
2005 ap
->ops
->sff_dev_select(ap
, 0);
2009 EXPORT_SYMBOL_GPL(ata_sff_wait_after_reset
);
2011 static int ata_bus_softreset(struct ata_port
*ap
, unsigned int devmask
,
2012 unsigned long deadline
)
2014 struct ata_ioports
*ioaddr
= &ap
->ioaddr
;
2016 DPRINTK("ata%u: bus reset via SRST\n", ap
->print_id
);
2018 if (ap
->ioaddr
.ctl_addr
) {
2019 /* software reset. causes dev0 to be selected */
2020 iowrite8(ap
->ctl
, ioaddr
->ctl_addr
);
2021 udelay(20); /* FIXME: flush */
2022 iowrite8(ap
->ctl
| ATA_SRST
, ioaddr
->ctl_addr
);
2023 udelay(20); /* FIXME: flush */
2024 iowrite8(ap
->ctl
, ioaddr
->ctl_addr
);
2025 ap
->last_ctl
= ap
->ctl
;
2028 /* wait the port to become ready */
2029 return ata_sff_wait_after_reset(&ap
->link
, devmask
, deadline
);
2033 * ata_sff_softreset - reset host port via ATA SRST
2034 * @link: ATA link to reset
2035 * @classes: resulting classes of attached devices
2036 * @deadline: deadline jiffies for the operation
2038 * Reset host port using ATA SRST.
2041 * Kernel thread context (may sleep)
2044 * 0 on success, -errno otherwise.
2046 int ata_sff_softreset(struct ata_link
*link
, unsigned int *classes
,
2047 unsigned long deadline
)
2049 struct ata_port
*ap
= link
->ap
;
2050 unsigned int slave_possible
= ap
->flags
& ATA_FLAG_SLAVE_POSS
;
2051 unsigned int devmask
= 0;
2057 /* determine if device 0/1 are present */
2058 if (ata_devchk(ap
, 0))
2059 devmask
|= (1 << 0);
2060 if (slave_possible
&& ata_devchk(ap
, 1))
2061 devmask
|= (1 << 1);
2063 /* select device 0 again */
2064 ap
->ops
->sff_dev_select(ap
, 0);
2066 /* issue bus reset */
2067 DPRINTK("about to softreset, devmask=%x\n", devmask
);
2068 rc
= ata_bus_softreset(ap
, devmask
, deadline
);
2069 /* if link is occupied, -ENODEV too is an error */
2070 if (rc
&& (rc
!= -ENODEV
|| sata_scr_valid(link
))) {
2071 ata_link_err(link
, "SRST failed (errno=%d)\n", rc
);
2075 /* determine by signature whether we have ATA or ATAPI devices */
2076 classes
[0] = ata_sff_dev_classify(&link
->device
[0],
2077 devmask
& (1 << 0), &err
);
2078 if (slave_possible
&& err
!= 0x81)
2079 classes
[1] = ata_sff_dev_classify(&link
->device
[1],
2080 devmask
& (1 << 1), &err
);
2082 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes
[0], classes
[1]);
2085 EXPORT_SYMBOL_GPL(ata_sff_softreset
);
2088 * sata_sff_hardreset - reset host port via SATA phy reset
2089 * @link: link to reset
2090 * @class: resulting class of attached device
2091 * @deadline: deadline jiffies for the operation
2093 * SATA phy-reset host port using DET bits of SControl register,
2094 * wait for !BSY and classify the attached device.
2097 * Kernel thread context (may sleep)
2100 * 0 on success, -errno otherwise.
2102 int sata_sff_hardreset(struct ata_link
*link
, unsigned int *class,
2103 unsigned long deadline
)
2105 struct ata_eh_context
*ehc
= &link
->eh_context
;
2106 const unsigned long *timing
= sata_ehc_deb_timing(ehc
);
2110 rc
= sata_link_hardreset(link
, timing
, deadline
, &online
,
2111 ata_sff_check_ready
);
2113 *class = ata_sff_dev_classify(link
->device
, 1, NULL
);
2115 DPRINTK("EXIT, class=%u\n", *class);
2118 EXPORT_SYMBOL_GPL(sata_sff_hardreset
);
2121 * ata_sff_postreset - SFF postreset callback
2122 * @link: the target SFF ata_link
2123 * @classes: classes of attached devices
2125 * This function is invoked after a successful reset. It first
2126 * calls ata_std_postreset() and performs SFF specific postreset
2130 * Kernel thread context (may sleep)
2132 void ata_sff_postreset(struct ata_link
*link
, unsigned int *classes
)
2134 struct ata_port
*ap
= link
->ap
;
2136 ata_std_postreset(link
, classes
);
2138 /* is double-select really necessary? */
2139 if (classes
[0] != ATA_DEV_NONE
)
2140 ap
->ops
->sff_dev_select(ap
, 1);
2141 if (classes
[1] != ATA_DEV_NONE
)
2142 ap
->ops
->sff_dev_select(ap
, 0);
2144 /* bail out if no device is present */
2145 if (classes
[0] == ATA_DEV_NONE
&& classes
[1] == ATA_DEV_NONE
) {
2146 DPRINTK("EXIT, no device\n");
2150 /* set up device control */
2151 if (ap
->ops
->sff_set_devctl
|| ap
->ioaddr
.ctl_addr
) {
2152 ata_sff_set_devctl(ap
, ap
->ctl
);
2153 ap
->last_ctl
= ap
->ctl
;
2156 EXPORT_SYMBOL_GPL(ata_sff_postreset
);
2159 * ata_sff_drain_fifo - Stock FIFO drain logic for SFF controllers
2162 * Drain the FIFO and device of any stuck data following a command
2163 * failing to complete. In some cases this is necessary before a
2164 * reset will recover the device.
2168 void ata_sff_drain_fifo(struct ata_queued_cmd
*qc
)
2171 struct ata_port
*ap
;
2173 /* We only need to flush incoming data when a command was running */
2174 if (qc
== NULL
|| qc
->dma_dir
== DMA_TO_DEVICE
)
2178 /* Drain up to 64K of data before we give up this recovery method */
2179 for (count
= 0; (ap
->ops
->sff_check_status(ap
) & ATA_DRQ
)
2180 && count
< 65536; count
+= 2)
2181 ioread16(ap
->ioaddr
.data_addr
);
2183 /* Can become DEBUG later */
2185 ata_port_dbg(ap
, "drained %d bytes to clear DRQ\n", count
);
2188 EXPORT_SYMBOL_GPL(ata_sff_drain_fifo
);
2191 * ata_sff_error_handler - Stock error handler for SFF controller
2192 * @ap: port to handle error for
2194 * Stock error handler for SFF controller. It can handle both
2195 * PATA and SATA controllers. Many controllers should be able to
2196 * use this EH as-is or with some added handling before and
2200 * Kernel thread context (may sleep)
2202 void ata_sff_error_handler(struct ata_port
*ap
)
2204 ata_reset_fn_t softreset
= ap
->ops
->softreset
;
2205 ata_reset_fn_t hardreset
= ap
->ops
->hardreset
;
2206 struct ata_queued_cmd
*qc
;
2207 unsigned long flags
;
2209 qc
= __ata_qc_from_tag(ap
, ap
->link
.active_tag
);
2210 if (qc
&& !(qc
->flags
& ATA_QCFLAG_FAILED
))
2213 spin_lock_irqsave(ap
->lock
, flags
);
2216 * We *MUST* do FIFO draining before we issue a reset as
2217 * several devices helpfully clear their internal state and
2218 * will lock solid if we touch the data port post reset. Pass
2219 * qc in case anyone wants to do different PIO/DMA recovery or
2220 * has per command fixups
2222 if (ap
->ops
->sff_drain_fifo
)
2223 ap
->ops
->sff_drain_fifo(qc
);
2225 spin_unlock_irqrestore(ap
->lock
, flags
);
2227 /* ignore built-in hardresets if SCR access is not available */
2228 if ((hardreset
== sata_std_hardreset
||
2229 hardreset
== sata_sff_hardreset
) && !sata_scr_valid(&ap
->link
))
2232 ata_do_eh(ap
, ap
->ops
->prereset
, softreset
, hardreset
,
2233 ap
->ops
->postreset
);
2235 EXPORT_SYMBOL_GPL(ata_sff_error_handler
);
2238 * ata_sff_std_ports - initialize ioaddr with standard port offsets.
2239 * @ioaddr: IO address structure to be initialized
2241 * Utility function which initializes data_addr, error_addr,
2242 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
2243 * device_addr, status_addr, and command_addr to standard offsets
2244 * relative to cmd_addr.
2246 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
2248 void ata_sff_std_ports(struct ata_ioports
*ioaddr
)
2250 ioaddr
->data_addr
= ioaddr
->cmd_addr
+ ATA_REG_DATA
;
2251 ioaddr
->error_addr
= ioaddr
->cmd_addr
+ ATA_REG_ERR
;
2252 ioaddr
->feature_addr
= ioaddr
->cmd_addr
+ ATA_REG_FEATURE
;
2253 ioaddr
->nsect_addr
= ioaddr
->cmd_addr
+ ATA_REG_NSECT
;
2254 ioaddr
->lbal_addr
= ioaddr
->cmd_addr
+ ATA_REG_LBAL
;
2255 ioaddr
->lbam_addr
= ioaddr
->cmd_addr
+ ATA_REG_LBAM
;
2256 ioaddr
->lbah_addr
= ioaddr
->cmd_addr
+ ATA_REG_LBAH
;
2257 ioaddr
->device_addr
= ioaddr
->cmd_addr
+ ATA_REG_DEVICE
;
2258 ioaddr
->status_addr
= ioaddr
->cmd_addr
+ ATA_REG_STATUS
;
2259 ioaddr
->command_addr
= ioaddr
->cmd_addr
+ ATA_REG_CMD
;
2261 EXPORT_SYMBOL_GPL(ata_sff_std_ports
);
2265 static int ata_resources_present(struct pci_dev
*pdev
, int port
)
2269 /* Check the PCI resources for this channel are enabled */
2271 for (i
= 0; i
< 2; i
++) {
2272 if (pci_resource_start(pdev
, port
+ i
) == 0 ||
2273 pci_resource_len(pdev
, port
+ i
) == 0)
2280 * ata_pci_sff_init_host - acquire native PCI ATA resources and init host
2281 * @host: target ATA host
2283 * Acquire native PCI ATA resources for @host and initialize the
2284 * first two ports of @host accordingly. Ports marked dummy are
2285 * skipped and allocation failure makes the port dummy.
2287 * Note that native PCI resources are valid even for legacy hosts
2288 * as we fix up pdev resources array early in boot, so this
2289 * function can be used for both native and legacy SFF hosts.
2292 * Inherited from calling layer (may sleep).
2295 * 0 if at least one port is initialized, -ENODEV if no port is
2298 int ata_pci_sff_init_host(struct ata_host
*host
)
2300 struct device
*gdev
= host
->dev
;
2301 struct pci_dev
*pdev
= to_pci_dev(gdev
);
2302 unsigned int mask
= 0;
2305 /* request, iomap BARs and init port addresses accordingly */
2306 for (i
= 0; i
< 2; i
++) {
2307 struct ata_port
*ap
= host
->ports
[i
];
2309 void __iomem
* const *iomap
;
2311 if (ata_port_is_dummy(ap
))
2314 /* Discard disabled ports. Some controllers show
2315 * their unused channels this way. Disabled ports are
2318 if (!ata_resources_present(pdev
, i
)) {
2319 ap
->ops
= &ata_dummy_port_ops
;
2323 rc
= pcim_iomap_regions(pdev
, 0x3 << base
,
2324 dev_driver_string(gdev
));
2327 "failed to request/iomap BARs for port %d (errno=%d)\n",
2330 pcim_pin_device(pdev
);
2331 ap
->ops
= &ata_dummy_port_ops
;
2334 host
->iomap
= iomap
= pcim_iomap_table(pdev
);
2336 ap
->ioaddr
.cmd_addr
= iomap
[base
];
2337 ap
->ioaddr
.altstatus_addr
=
2338 ap
->ioaddr
.ctl_addr
= (void __iomem
*)
2339 ((unsigned long)iomap
[base
+ 1] | ATA_PCI_CTL_OFS
);
2340 ata_sff_std_ports(&ap
->ioaddr
);
2342 ata_port_desc(ap
, "cmd 0x%llx ctl 0x%llx",
2343 (unsigned long long)pci_resource_start(pdev
, base
),
2344 (unsigned long long)pci_resource_start(pdev
, base
+ 1));
2350 dev_err(gdev
, "no available native port\n");
2356 EXPORT_SYMBOL_GPL(ata_pci_sff_init_host
);
2359 * ata_pci_sff_prepare_host - helper to prepare PCI PIO-only SFF ATA host
2360 * @pdev: target PCI device
2361 * @ppi: array of port_info, must be enough for two ports
2362 * @r_host: out argument for the initialized ATA host
2364 * Helper to allocate PIO-only SFF ATA host for @pdev, acquire
2365 * all PCI resources and initialize it accordingly in one go.
2368 * Inherited from calling layer (may sleep).
2371 * 0 on success, -errno otherwise.
2373 int ata_pci_sff_prepare_host(struct pci_dev
*pdev
,
2374 const struct ata_port_info
* const *ppi
,
2375 struct ata_host
**r_host
)
2377 struct ata_host
*host
;
2380 if (!devres_open_group(&pdev
->dev
, NULL
, GFP_KERNEL
))
2383 host
= ata_host_alloc_pinfo(&pdev
->dev
, ppi
, 2);
2385 dev_err(&pdev
->dev
, "failed to allocate ATA host\n");
2390 rc
= ata_pci_sff_init_host(host
);
2394 devres_remove_group(&pdev
->dev
, NULL
);
2399 devres_release_group(&pdev
->dev
, NULL
);
2402 EXPORT_SYMBOL_GPL(ata_pci_sff_prepare_host
);
2405 * ata_pci_sff_activate_host - start SFF host, request IRQ and register it
2406 * @host: target SFF ATA host
2407 * @irq_handler: irq_handler used when requesting IRQ(s)
2408 * @sht: scsi_host_template to use when registering the host
2410 * This is the counterpart of ata_host_activate() for SFF ATA
2411 * hosts. This separate helper is necessary because SFF hosts
2412 * use two separate interrupts in legacy mode.
2415 * Inherited from calling layer (may sleep).
2418 * 0 on success, -errno otherwise.
2420 int ata_pci_sff_activate_host(struct ata_host
*host
,
2421 irq_handler_t irq_handler
,
2422 struct scsi_host_template
*sht
)
2424 struct device
*dev
= host
->dev
;
2425 struct pci_dev
*pdev
= to_pci_dev(dev
);
2426 const char *drv_name
= dev_driver_string(host
->dev
);
2427 int legacy_mode
= 0, rc
;
2429 rc
= ata_host_start(host
);
2433 if ((pdev
->class >> 8) == PCI_CLASS_STORAGE_IDE
) {
2436 /* TODO: What if one channel is in native mode ... */
2437 pci_read_config_byte(pdev
, PCI_CLASS_PROG
, &tmp8
);
2438 mask
= (1 << 2) | (1 << 0);
2439 if ((tmp8
& mask
) != mask
)
2443 if (!devres_open_group(dev
, NULL
, GFP_KERNEL
))
2446 if (!legacy_mode
&& pdev
->irq
) {
2449 rc
= devm_request_irq(dev
, pdev
->irq
, irq_handler
,
2450 IRQF_SHARED
, drv_name
, host
);
2454 for (i
= 0; i
< 2; i
++) {
2455 if (ata_port_is_dummy(host
->ports
[i
]))
2457 ata_port_desc(host
->ports
[i
], "irq %d", pdev
->irq
);
2459 } else if (legacy_mode
) {
2460 if (!ata_port_is_dummy(host
->ports
[0])) {
2461 rc
= devm_request_irq(dev
, ATA_PRIMARY_IRQ(pdev
),
2462 irq_handler
, IRQF_SHARED
,
2467 ata_port_desc(host
->ports
[0], "irq %d",
2468 ATA_PRIMARY_IRQ(pdev
));
2471 if (!ata_port_is_dummy(host
->ports
[1])) {
2472 rc
= devm_request_irq(dev
, ATA_SECONDARY_IRQ(pdev
),
2473 irq_handler
, IRQF_SHARED
,
2478 ata_port_desc(host
->ports
[1], "irq %d",
2479 ATA_SECONDARY_IRQ(pdev
));
2483 rc
= ata_host_register(host
, sht
);
2486 devres_remove_group(dev
, NULL
);
2488 devres_release_group(dev
, NULL
);
2492 EXPORT_SYMBOL_GPL(ata_pci_sff_activate_host
);
2494 static const struct ata_port_info
*ata_sff_find_valid_pi(
2495 const struct ata_port_info
* const *ppi
)
2499 /* look up the first valid port_info */
2500 for (i
= 0; i
< 2 && ppi
[i
]; i
++)
2501 if (ppi
[i
]->port_ops
!= &ata_dummy_port_ops
)
2507 static int ata_pci_init_one(struct pci_dev
*pdev
,
2508 const struct ata_port_info
* const *ppi
,
2509 struct scsi_host_template
*sht
, void *host_priv
,
2510 int hflags
, bool bmdma
)
2512 struct device
*dev
= &pdev
->dev
;
2513 const struct ata_port_info
*pi
;
2514 struct ata_host
*host
= NULL
;
2519 pi
= ata_sff_find_valid_pi(ppi
);
2521 dev_err(&pdev
->dev
, "no valid port_info specified\n");
2525 if (!devres_open_group(dev
, NULL
, GFP_KERNEL
))
2528 rc
= pcim_enable_device(pdev
);
2532 #ifdef CONFIG_ATA_BMDMA
2534 /* prepare and activate BMDMA host */
2535 rc
= ata_pci_bmdma_prepare_host(pdev
, ppi
, &host
);
2538 /* prepare and activate SFF host */
2539 rc
= ata_pci_sff_prepare_host(pdev
, ppi
, &host
);
2542 host
->private_data
= host_priv
;
2543 host
->flags
|= hflags
;
2545 #ifdef CONFIG_ATA_BMDMA
2547 pci_set_master(pdev
);
2548 rc
= ata_pci_sff_activate_host(host
, ata_bmdma_interrupt
, sht
);
2551 rc
= ata_pci_sff_activate_host(host
, ata_sff_interrupt
, sht
);
2554 devres_remove_group(&pdev
->dev
, NULL
);
2556 devres_release_group(&pdev
->dev
, NULL
);
2562 * ata_pci_sff_init_one - Initialize/register PIO-only PCI IDE controller
2563 * @pdev: Controller to be initialized
2564 * @ppi: array of port_info, must be enough for two ports
2565 * @sht: scsi_host_template to use when registering the host
2566 * @host_priv: host private_data
2567 * @hflag: host flags
2569 * This is a helper function which can be called from a driver's
2570 * xxx_init_one() probe function if the hardware uses traditional
2571 * IDE taskfile registers and is PIO only.
2574 * Nobody makes a single channel controller that appears solely as
2575 * the secondary legacy port on PCI.
2578 * Inherited from PCI layer (may sleep).
2581 * Zero on success, negative on errno-based value on error.
2583 int ata_pci_sff_init_one(struct pci_dev
*pdev
,
2584 const struct ata_port_info
* const *ppi
,
2585 struct scsi_host_template
*sht
, void *host_priv
, int hflag
)
2587 return ata_pci_init_one(pdev
, ppi
, sht
, host_priv
, hflag
, 0);
2589 EXPORT_SYMBOL_GPL(ata_pci_sff_init_one
);
2591 #endif /* CONFIG_PCI */
2597 #ifdef CONFIG_ATA_BMDMA
2599 const struct ata_port_operations ata_bmdma_port_ops
= {
2600 .inherits
= &ata_sff_port_ops
,
2602 .error_handler
= ata_bmdma_error_handler
,
2603 .post_internal_cmd
= ata_bmdma_post_internal_cmd
,
2605 .qc_prep
= ata_bmdma_qc_prep
,
2606 .qc_issue
= ata_bmdma_qc_issue
,
2608 .sff_irq_clear
= ata_bmdma_irq_clear
,
2609 .bmdma_setup
= ata_bmdma_setup
,
2610 .bmdma_start
= ata_bmdma_start
,
2611 .bmdma_stop
= ata_bmdma_stop
,
2612 .bmdma_status
= ata_bmdma_status
,
2614 .port_start
= ata_bmdma_port_start
,
2616 EXPORT_SYMBOL_GPL(ata_bmdma_port_ops
);
2618 const struct ata_port_operations ata_bmdma32_port_ops
= {
2619 .inherits
= &ata_bmdma_port_ops
,
2621 .sff_data_xfer
= ata_sff_data_xfer32
,
2622 .port_start
= ata_bmdma_port_start32
,
2624 EXPORT_SYMBOL_GPL(ata_bmdma32_port_ops
);
2627 * ata_bmdma_fill_sg - Fill PCI IDE PRD table
2628 * @qc: Metadata associated with taskfile to be transferred
2630 * Fill PCI IDE PRD (scatter-gather) table with segments
2631 * associated with the current disk command.
2634 * spin_lock_irqsave(host lock)
2637 static void ata_bmdma_fill_sg(struct ata_queued_cmd
*qc
)
2639 struct ata_port
*ap
= qc
->ap
;
2640 struct ata_bmdma_prd
*prd
= ap
->bmdma_prd
;
2641 struct scatterlist
*sg
;
2642 unsigned int si
, pi
;
2645 for_each_sg(qc
->sg
, sg
, qc
->n_elem
, si
) {
2649 /* determine if physical DMA addr spans 64K boundary.
2650 * Note h/w doesn't support 64-bit, so we unconditionally
2651 * truncate dma_addr_t to u32.
2653 addr
= (u32
) sg_dma_address(sg
);
2654 sg_len
= sg_dma_len(sg
);
2657 offset
= addr
& 0xffff;
2659 if ((offset
+ sg_len
) > 0x10000)
2660 len
= 0x10000 - offset
;
2662 prd
[pi
].addr
= cpu_to_le32(addr
);
2663 prd
[pi
].flags_len
= cpu_to_le32(len
& 0xffff);
2664 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", pi
, addr
, len
);
2672 prd
[pi
- 1].flags_len
|= cpu_to_le32(ATA_PRD_EOT
);
2676 * ata_bmdma_fill_sg_dumb - Fill PCI IDE PRD table
2677 * @qc: Metadata associated with taskfile to be transferred
2679 * Fill PCI IDE PRD (scatter-gather) table with segments
2680 * associated with the current disk command. Perform the fill
2681 * so that we avoid writing any length 64K records for
2682 * controllers that don't follow the spec.
2685 * spin_lock_irqsave(host lock)
2688 static void ata_bmdma_fill_sg_dumb(struct ata_queued_cmd
*qc
)
2690 struct ata_port
*ap
= qc
->ap
;
2691 struct ata_bmdma_prd
*prd
= ap
->bmdma_prd
;
2692 struct scatterlist
*sg
;
2693 unsigned int si
, pi
;
2696 for_each_sg(qc
->sg
, sg
, qc
->n_elem
, si
) {
2698 u32 sg_len
, len
, blen
;
2700 /* determine if physical DMA addr spans 64K boundary.
2701 * Note h/w doesn't support 64-bit, so we unconditionally
2702 * truncate dma_addr_t to u32.
2704 addr
= (u32
) sg_dma_address(sg
);
2705 sg_len
= sg_dma_len(sg
);
2708 offset
= addr
& 0xffff;
2710 if ((offset
+ sg_len
) > 0x10000)
2711 len
= 0x10000 - offset
;
2713 blen
= len
& 0xffff;
2714 prd
[pi
].addr
= cpu_to_le32(addr
);
2716 /* Some PATA chipsets like the CS5530 can't
2717 cope with 0x0000 meaning 64K as the spec
2719 prd
[pi
].flags_len
= cpu_to_le32(0x8000);
2721 prd
[++pi
].addr
= cpu_to_le32(addr
+ 0x8000);
2723 prd
[pi
].flags_len
= cpu_to_le32(blen
);
2724 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", pi
, addr
, len
);
2732 prd
[pi
- 1].flags_len
|= cpu_to_le32(ATA_PRD_EOT
);
2736 * ata_bmdma_qc_prep - Prepare taskfile for submission
2737 * @qc: Metadata associated with taskfile to be prepared
2739 * Prepare ATA taskfile for submission.
2742 * spin_lock_irqsave(host lock)
2744 void ata_bmdma_qc_prep(struct ata_queued_cmd
*qc
)
2746 if (!(qc
->flags
& ATA_QCFLAG_DMAMAP
))
2749 ata_bmdma_fill_sg(qc
);
2751 EXPORT_SYMBOL_GPL(ata_bmdma_qc_prep
);
2754 * ata_bmdma_dumb_qc_prep - Prepare taskfile for submission
2755 * @qc: Metadata associated with taskfile to be prepared
2757 * Prepare ATA taskfile for submission.
2760 * spin_lock_irqsave(host lock)
2762 void ata_bmdma_dumb_qc_prep(struct ata_queued_cmd
*qc
)
2764 if (!(qc
->flags
& ATA_QCFLAG_DMAMAP
))
2767 ata_bmdma_fill_sg_dumb(qc
);
2769 EXPORT_SYMBOL_GPL(ata_bmdma_dumb_qc_prep
);
2772 * ata_bmdma_qc_issue - issue taskfile to a BMDMA controller
2773 * @qc: command to issue to device
2775 * This function issues a PIO, NODATA or DMA command to a
2776 * SFF/BMDMA controller. PIO and NODATA are handled by
2777 * ata_sff_qc_issue().
2780 * spin_lock_irqsave(host lock)
2783 * Zero on success, AC_ERR_* mask on failure
2785 unsigned int ata_bmdma_qc_issue(struct ata_queued_cmd
*qc
)
2787 struct ata_port
*ap
= qc
->ap
;
2788 struct ata_link
*link
= qc
->dev
->link
;
2790 /* defer PIO handling to sff_qc_issue */
2791 if (!ata_is_dma(qc
->tf
.protocol
))
2792 return ata_sff_qc_issue(qc
);
2794 /* select the device */
2795 ata_dev_select(ap
, qc
->dev
->devno
, 1, 0);
2797 /* start the command */
2798 switch (qc
->tf
.protocol
) {
2800 WARN_ON_ONCE(qc
->tf
.flags
& ATA_TFLAG_POLLING
);
2802 ap
->ops
->sff_tf_load(ap
, &qc
->tf
); /* load tf registers */
2803 ap
->ops
->bmdma_setup(qc
); /* set up bmdma */
2804 ap
->ops
->bmdma_start(qc
); /* initiate bmdma */
2805 ap
->hsm_task_state
= HSM_ST_LAST
;
2808 case ATAPI_PROT_DMA
:
2809 WARN_ON_ONCE(qc
->tf
.flags
& ATA_TFLAG_POLLING
);
2811 ap
->ops
->sff_tf_load(ap
, &qc
->tf
); /* load tf registers */
2812 ap
->ops
->bmdma_setup(qc
); /* set up bmdma */
2813 ap
->hsm_task_state
= HSM_ST_FIRST
;
2815 /* send cdb by polling if no cdb interrupt */
2816 if (!(qc
->dev
->flags
& ATA_DFLAG_CDB_INTR
))
2817 ata_sff_queue_pio_task(link
, 0);
2822 return AC_ERR_SYSTEM
;
2827 EXPORT_SYMBOL_GPL(ata_bmdma_qc_issue
);
2830 * ata_bmdma_port_intr - Handle BMDMA port interrupt
2831 * @ap: Port on which interrupt arrived (possibly...)
2832 * @qc: Taskfile currently active in engine
2834 * Handle port interrupt for given queued command.
2837 * spin_lock_irqsave(host lock)
2840 * One if interrupt was handled, zero if not (shared irq).
2842 unsigned int ata_bmdma_port_intr(struct ata_port
*ap
, struct ata_queued_cmd
*qc
)
2844 struct ata_eh_info
*ehi
= &ap
->link
.eh_info
;
2846 bool bmdma_stopped
= false;
2847 unsigned int handled
;
2849 if (ap
->hsm_task_state
== HSM_ST_LAST
&& ata_is_dma(qc
->tf
.protocol
)) {
2850 /* check status of DMA engine */
2851 host_stat
= ap
->ops
->bmdma_status(ap
);
2852 VPRINTK("ata%u: host_stat 0x%X\n", ap
->print_id
, host_stat
);
2854 /* if it's not our irq... */
2855 if (!(host_stat
& ATA_DMA_INTR
))
2856 return ata_sff_idle_irq(ap
);
2858 /* before we do anything else, clear DMA-Start bit */
2859 ap
->ops
->bmdma_stop(qc
);
2860 bmdma_stopped
= true;
2862 if (unlikely(host_stat
& ATA_DMA_ERR
)) {
2863 /* error when transferring data to/from memory */
2864 qc
->err_mask
|= AC_ERR_HOST_BUS
;
2865 ap
->hsm_task_state
= HSM_ST_ERR
;
2869 handled
= __ata_sff_port_intr(ap
, qc
, bmdma_stopped
);
2871 if (unlikely(qc
->err_mask
) && ata_is_dma(qc
->tf
.protocol
))
2872 ata_ehi_push_desc(ehi
, "BMDMA stat 0x%x", host_stat
);
2876 EXPORT_SYMBOL_GPL(ata_bmdma_port_intr
);
2879 * ata_bmdma_interrupt - Default BMDMA ATA host interrupt handler
2880 * @irq: irq line (unused)
2881 * @dev_instance: pointer to our ata_host information structure
2883 * Default interrupt handler for PCI IDE devices. Calls
2884 * ata_bmdma_port_intr() for each port that is not disabled.
2887 * Obtains host lock during operation.
2890 * IRQ_NONE or IRQ_HANDLED.
2892 irqreturn_t
ata_bmdma_interrupt(int irq
, void *dev_instance
)
2894 return __ata_sff_interrupt(irq
, dev_instance
, ata_bmdma_port_intr
);
2896 EXPORT_SYMBOL_GPL(ata_bmdma_interrupt
);
2899 * ata_bmdma_error_handler - Stock error handler for BMDMA controller
2900 * @ap: port to handle error for
2902 * Stock error handler for BMDMA controller. It can handle both
2903 * PATA and SATA controllers. Most BMDMA controllers should be
2904 * able to use this EH as-is or with some added handling before
2908 * Kernel thread context (may sleep)
2910 void ata_bmdma_error_handler(struct ata_port
*ap
)
2912 struct ata_queued_cmd
*qc
;
2913 unsigned long flags
;
2916 qc
= __ata_qc_from_tag(ap
, ap
->link
.active_tag
);
2917 if (qc
&& !(qc
->flags
& ATA_QCFLAG_FAILED
))
2920 /* reset PIO HSM and stop DMA engine */
2921 spin_lock_irqsave(ap
->lock
, flags
);
2923 if (qc
&& ata_is_dma(qc
->tf
.protocol
)) {
2926 host_stat
= ap
->ops
->bmdma_status(ap
);
2928 /* BMDMA controllers indicate host bus error by
2929 * setting DMA_ERR bit and timing out. As it wasn't
2930 * really a timeout event, adjust error mask and
2931 * cancel frozen state.
2933 if (qc
->err_mask
== AC_ERR_TIMEOUT
&& (host_stat
& ATA_DMA_ERR
)) {
2934 qc
->err_mask
= AC_ERR_HOST_BUS
;
2938 ap
->ops
->bmdma_stop(qc
);
2940 /* if we're gonna thaw, make sure IRQ is clear */
2942 ap
->ops
->sff_check_status(ap
);
2943 if (ap
->ops
->sff_irq_clear
)
2944 ap
->ops
->sff_irq_clear(ap
);
2948 spin_unlock_irqrestore(ap
->lock
, flags
);
2951 ata_eh_thaw_port(ap
);
2953 ata_sff_error_handler(ap
);
2955 EXPORT_SYMBOL_GPL(ata_bmdma_error_handler
);
2958 * ata_bmdma_post_internal_cmd - Stock post_internal_cmd for BMDMA
2959 * @qc: internal command to clean up
2962 * Kernel thread context (may sleep)
2964 void ata_bmdma_post_internal_cmd(struct ata_queued_cmd
*qc
)
2966 struct ata_port
*ap
= qc
->ap
;
2967 unsigned long flags
;
2969 if (ata_is_dma(qc
->tf
.protocol
)) {
2970 spin_lock_irqsave(ap
->lock
, flags
);
2971 ap
->ops
->bmdma_stop(qc
);
2972 spin_unlock_irqrestore(ap
->lock
, flags
);
2975 EXPORT_SYMBOL_GPL(ata_bmdma_post_internal_cmd
);
2978 * ata_bmdma_irq_clear - Clear PCI IDE BMDMA interrupt.
2979 * @ap: Port associated with this ATA transaction.
2981 * Clear interrupt and error flags in DMA status register.
2983 * May be used as the irq_clear() entry in ata_port_operations.
2986 * spin_lock_irqsave(host lock)
2988 void ata_bmdma_irq_clear(struct ata_port
*ap
)
2990 void __iomem
*mmio
= ap
->ioaddr
.bmdma_addr
;
2995 iowrite8(ioread8(mmio
+ ATA_DMA_STATUS
), mmio
+ ATA_DMA_STATUS
);
2997 EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear
);
3000 * ata_bmdma_setup - Set up PCI IDE BMDMA transaction
3001 * @qc: Info associated with this ATA transaction.
3004 * spin_lock_irqsave(host lock)
3006 void ata_bmdma_setup(struct ata_queued_cmd
*qc
)
3008 struct ata_port
*ap
= qc
->ap
;
3009 unsigned int rw
= (qc
->tf
.flags
& ATA_TFLAG_WRITE
);
3012 /* load PRD table addr. */
3013 mb(); /* make sure PRD table writes are visible to controller */
3014 iowrite32(ap
->bmdma_prd_dma
, ap
->ioaddr
.bmdma_addr
+ ATA_DMA_TABLE_OFS
);
3016 /* specify data direction, triple-check start bit is clear */
3017 dmactl
= ioread8(ap
->ioaddr
.bmdma_addr
+ ATA_DMA_CMD
);
3018 dmactl
&= ~(ATA_DMA_WR
| ATA_DMA_START
);
3020 dmactl
|= ATA_DMA_WR
;
3021 iowrite8(dmactl
, ap
->ioaddr
.bmdma_addr
+ ATA_DMA_CMD
);
3023 /* issue r/w command */
3024 ap
->ops
->sff_exec_command(ap
, &qc
->tf
);
3026 EXPORT_SYMBOL_GPL(ata_bmdma_setup
);
3029 * ata_bmdma_start - Start a PCI IDE BMDMA transaction
3030 * @qc: Info associated with this ATA transaction.
3033 * spin_lock_irqsave(host lock)
3035 void ata_bmdma_start(struct ata_queued_cmd
*qc
)
3037 struct ata_port
*ap
= qc
->ap
;
3040 /* start host DMA transaction */
3041 dmactl
= ioread8(ap
->ioaddr
.bmdma_addr
+ ATA_DMA_CMD
);
3042 iowrite8(dmactl
| ATA_DMA_START
, ap
->ioaddr
.bmdma_addr
+ ATA_DMA_CMD
);
3044 /* Strictly, one may wish to issue an ioread8() here, to
3045 * flush the mmio write. However, control also passes
3046 * to the hardware at this point, and it will interrupt
3047 * us when we are to resume control. So, in effect,
3048 * we don't care when the mmio write flushes.
3049 * Further, a read of the DMA status register _immediately_
3050 * following the write may not be what certain flaky hardware
3051 * is expected, so I think it is best to not add a readb()
3052 * without first all the MMIO ATA cards/mobos.
3053 * Or maybe I'm just being paranoid.
3055 * FIXME: The posting of this write means I/O starts are
3056 * unnecessarily delayed for MMIO
3059 EXPORT_SYMBOL_GPL(ata_bmdma_start
);
3062 * ata_bmdma_stop - Stop PCI IDE BMDMA transfer
3063 * @qc: Command we are ending DMA for
3065 * Clears the ATA_DMA_START flag in the dma control register
3067 * May be used as the bmdma_stop() entry in ata_port_operations.
3070 * spin_lock_irqsave(host lock)
3072 void ata_bmdma_stop(struct ata_queued_cmd
*qc
)
3074 struct ata_port
*ap
= qc
->ap
;
3075 void __iomem
*mmio
= ap
->ioaddr
.bmdma_addr
;
3077 /* clear start/stop bit */
3078 iowrite8(ioread8(mmio
+ ATA_DMA_CMD
) & ~ATA_DMA_START
,
3079 mmio
+ ATA_DMA_CMD
);
3081 /* one-PIO-cycle guaranteed wait, per spec, for HDMA1:0 transition */
3082 ata_sff_dma_pause(ap
);
3084 EXPORT_SYMBOL_GPL(ata_bmdma_stop
);
3087 * ata_bmdma_status - Read PCI IDE BMDMA status
3088 * @ap: Port associated with this ATA transaction.
3090 * Read and return BMDMA status register.
3092 * May be used as the bmdma_status() entry in ata_port_operations.
3095 * spin_lock_irqsave(host lock)
3097 u8
ata_bmdma_status(struct ata_port
*ap
)
3099 return ioread8(ap
->ioaddr
.bmdma_addr
+ ATA_DMA_STATUS
);
3101 EXPORT_SYMBOL_GPL(ata_bmdma_status
);
3105 * ata_bmdma_port_start - Set port up for bmdma.
3106 * @ap: Port to initialize
3108 * Called just after data structures for each port are
3109 * initialized. Allocates space for PRD table.
3111 * May be used as the port_start() entry in ata_port_operations.
3114 * Inherited from caller.
3116 int ata_bmdma_port_start(struct ata_port
*ap
)
3118 if (ap
->mwdma_mask
|| ap
->udma_mask
) {
3120 dmam_alloc_coherent(ap
->host
->dev
, ATA_PRD_TBL_SZ
,
3121 &ap
->bmdma_prd_dma
, GFP_KERNEL
);
3128 EXPORT_SYMBOL_GPL(ata_bmdma_port_start
);
3131 * ata_bmdma_port_start32 - Set port up for dma.
3132 * @ap: Port to initialize
3134 * Called just after data structures for each port are
3135 * initialized. Enables 32bit PIO and allocates space for PRD
3138 * May be used as the port_start() entry in ata_port_operations for
3139 * devices that are capable of 32bit PIO.
3142 * Inherited from caller.
3144 int ata_bmdma_port_start32(struct ata_port
*ap
)
3146 ap
->pflags
|= ATA_PFLAG_PIO32
| ATA_PFLAG_PIO32CHANGE
;
3147 return ata_bmdma_port_start(ap
);
3149 EXPORT_SYMBOL_GPL(ata_bmdma_port_start32
);
3154 * ata_pci_bmdma_clear_simplex - attempt to kick device out of simplex
3157 * Some PCI ATA devices report simplex mode but in fact can be told to
3158 * enter non simplex mode. This implements the necessary logic to
3159 * perform the task on such devices. Calling it on other devices will
3160 * have -undefined- behaviour.
3162 int ata_pci_bmdma_clear_simplex(struct pci_dev
*pdev
)
3164 unsigned long bmdma
= pci_resource_start(pdev
, 4);
3170 simplex
= inb(bmdma
+ 0x02);
3171 outb(simplex
& 0x60, bmdma
+ 0x02);
3172 simplex
= inb(bmdma
+ 0x02);
3177 EXPORT_SYMBOL_GPL(ata_pci_bmdma_clear_simplex
);
3179 static void ata_bmdma_nodma(struct ata_host
*host
, const char *reason
)
3183 dev_err(host
->dev
, "BMDMA: %s, falling back to PIO\n", reason
);
3185 for (i
= 0; i
< 2; i
++) {
3186 host
->ports
[i
]->mwdma_mask
= 0;
3187 host
->ports
[i
]->udma_mask
= 0;
3192 * ata_pci_bmdma_init - acquire PCI BMDMA resources and init ATA host
3193 * @host: target ATA host
3195 * Acquire PCI BMDMA resources and initialize @host accordingly.
3198 * Inherited from calling layer (may sleep).
3200 void ata_pci_bmdma_init(struct ata_host
*host
)
3202 struct device
*gdev
= host
->dev
;
3203 struct pci_dev
*pdev
= to_pci_dev(gdev
);
3206 /* No BAR4 allocation: No DMA */
3207 if (pci_resource_start(pdev
, 4) == 0) {
3208 ata_bmdma_nodma(host
, "BAR4 is zero");
3213 * Some controllers require BMDMA region to be initialized
3214 * even if DMA is not in use to clear IRQ status via
3215 * ->sff_irq_clear method. Try to initialize bmdma_addr
3216 * regardless of dma masks.
3218 rc
= dma_set_mask(&pdev
->dev
, ATA_DMA_MASK
);
3220 ata_bmdma_nodma(host
, "failed to set dma mask");
3222 rc
= dma_set_coherent_mask(&pdev
->dev
, ATA_DMA_MASK
);
3224 ata_bmdma_nodma(host
,
3225 "failed to set consistent dma mask");
3228 /* request and iomap DMA region */
3229 rc
= pcim_iomap_regions(pdev
, 1 << 4, dev_driver_string(gdev
));
3231 ata_bmdma_nodma(host
, "failed to request/iomap BAR4");
3234 host
->iomap
= pcim_iomap_table(pdev
);
3236 for (i
= 0; i
< 2; i
++) {
3237 struct ata_port
*ap
= host
->ports
[i
];
3238 void __iomem
*bmdma
= host
->iomap
[4] + 8 * i
;
3240 if (ata_port_is_dummy(ap
))
3243 ap
->ioaddr
.bmdma_addr
= bmdma
;
3244 if ((!(ap
->flags
& ATA_FLAG_IGN_SIMPLEX
)) &&
3245 (ioread8(bmdma
+ 2) & 0x80))
3246 host
->flags
|= ATA_HOST_SIMPLEX
;
3248 ata_port_desc(ap
, "bmdma 0x%llx",
3249 (unsigned long long)pci_resource_start(pdev
, 4) + 8 * i
);
3252 EXPORT_SYMBOL_GPL(ata_pci_bmdma_init
);
3255 * ata_pci_bmdma_prepare_host - helper to prepare PCI BMDMA ATA host
3256 * @pdev: target PCI device
3257 * @ppi: array of port_info, must be enough for two ports
3258 * @r_host: out argument for the initialized ATA host
3260 * Helper to allocate BMDMA ATA host for @pdev, acquire all PCI
3261 * resources and initialize it accordingly in one go.
3264 * Inherited from calling layer (may sleep).
3267 * 0 on success, -errno otherwise.
3269 int ata_pci_bmdma_prepare_host(struct pci_dev
*pdev
,
3270 const struct ata_port_info
* const * ppi
,
3271 struct ata_host
**r_host
)
3275 rc
= ata_pci_sff_prepare_host(pdev
, ppi
, r_host
);
3279 ata_pci_bmdma_init(*r_host
);
3282 EXPORT_SYMBOL_GPL(ata_pci_bmdma_prepare_host
);
3285 * ata_pci_bmdma_init_one - Initialize/register BMDMA PCI IDE controller
3286 * @pdev: Controller to be initialized
3287 * @ppi: array of port_info, must be enough for two ports
3288 * @sht: scsi_host_template to use when registering the host
3289 * @host_priv: host private_data
3290 * @hflags: host flags
3292 * This function is similar to ata_pci_sff_init_one() but also
3293 * takes care of BMDMA initialization.
3296 * Inherited from PCI layer (may sleep).
3299 * Zero on success, negative on errno-based value on error.
3301 int ata_pci_bmdma_init_one(struct pci_dev
*pdev
,
3302 const struct ata_port_info
* const * ppi
,
3303 struct scsi_host_template
*sht
, void *host_priv
,
3306 return ata_pci_init_one(pdev
, ppi
, sht
, host_priv
, hflags
, 1);
3308 EXPORT_SYMBOL_GPL(ata_pci_bmdma_init_one
);
3310 #endif /* CONFIG_PCI */
3311 #endif /* CONFIG_ATA_BMDMA */
3314 * ata_sff_port_init - Initialize SFF/BMDMA ATA port
3315 * @ap: Port to initialize
3317 * Called on port allocation to initialize SFF/BMDMA specific
3323 void ata_sff_port_init(struct ata_port
*ap
)
3325 INIT_DELAYED_WORK(&ap
->sff_pio_task
, ata_sff_pio_task
);
3326 ap
->ctl
= ATA_DEVCTL_OBS
;
3327 ap
->last_ctl
= 0xFF;
3330 int __init
ata_sff_init(void)
3332 ata_sff_wq
= alloc_workqueue("ata_sff", WQ_MEM_RECLAIM
, WQ_MAX_ACTIVE
);
3339 void ata_sff_exit(void)
3341 destroy_workqueue(ata_sff_wq
);