ceph: choose readdir frag based on previous readdir reply
[linux/fpc-iii.git] / drivers / dma / ep93xx_dma.c
blobec240592f5c8e7a450e2c26c20feece9d12dafad
1 /*
2 * Driver for the Cirrus Logic EP93xx DMA Controller
4 * Copyright (C) 2011 Mika Westerberg
6 * DMA M2P implementation is based on the original
7 * arch/arm/mach-ep93xx/dma-m2p.c which has following copyrights:
9 * Copyright (C) 2006 Lennert Buytenhek <buytenh@wantstofly.org>
10 * Copyright (C) 2006 Applied Data Systems
11 * Copyright (C) 2009 Ryan Mallon <rmallon@gmail.com>
13 * This driver is based on dw_dmac and amba-pl08x drivers.
15 * This program is free software; you can redistribute it and/or modify
16 * it under the terms of the GNU General Public License as published by
17 * the Free Software Foundation; either version 2 of the License, or
18 * (at your option) any later version.
21 #include <linux/clk.h>
22 #include <linux/init.h>
23 #include <linux/interrupt.h>
24 #include <linux/dmaengine.h>
25 #include <linux/module.h>
26 #include <linux/platform_device.h>
27 #include <linux/slab.h>
29 #include <linux/platform_data/dma-ep93xx.h>
31 #include "dmaengine.h"
33 /* M2P registers */
34 #define M2P_CONTROL 0x0000
35 #define M2P_CONTROL_STALLINT BIT(0)
36 #define M2P_CONTROL_NFBINT BIT(1)
37 #define M2P_CONTROL_CH_ERROR_INT BIT(3)
38 #define M2P_CONTROL_ENABLE BIT(4)
39 #define M2P_CONTROL_ICE BIT(6)
41 #define M2P_INTERRUPT 0x0004
42 #define M2P_INTERRUPT_STALL BIT(0)
43 #define M2P_INTERRUPT_NFB BIT(1)
44 #define M2P_INTERRUPT_ERROR BIT(3)
46 #define M2P_PPALLOC 0x0008
47 #define M2P_STATUS 0x000c
49 #define M2P_MAXCNT0 0x0020
50 #define M2P_BASE0 0x0024
51 #define M2P_MAXCNT1 0x0030
52 #define M2P_BASE1 0x0034
54 #define M2P_STATE_IDLE 0
55 #define M2P_STATE_STALL 1
56 #define M2P_STATE_ON 2
57 #define M2P_STATE_NEXT 3
59 /* M2M registers */
60 #define M2M_CONTROL 0x0000
61 #define M2M_CONTROL_DONEINT BIT(2)
62 #define M2M_CONTROL_ENABLE BIT(3)
63 #define M2M_CONTROL_START BIT(4)
64 #define M2M_CONTROL_DAH BIT(11)
65 #define M2M_CONTROL_SAH BIT(12)
66 #define M2M_CONTROL_PW_SHIFT 9
67 #define M2M_CONTROL_PW_8 (0 << M2M_CONTROL_PW_SHIFT)
68 #define M2M_CONTROL_PW_16 (1 << M2M_CONTROL_PW_SHIFT)
69 #define M2M_CONTROL_PW_32 (2 << M2M_CONTROL_PW_SHIFT)
70 #define M2M_CONTROL_PW_MASK (3 << M2M_CONTROL_PW_SHIFT)
71 #define M2M_CONTROL_TM_SHIFT 13
72 #define M2M_CONTROL_TM_TX (1 << M2M_CONTROL_TM_SHIFT)
73 #define M2M_CONTROL_TM_RX (2 << M2M_CONTROL_TM_SHIFT)
74 #define M2M_CONTROL_NFBINT BIT(21)
75 #define M2M_CONTROL_RSS_SHIFT 22
76 #define M2M_CONTROL_RSS_SSPRX (1 << M2M_CONTROL_RSS_SHIFT)
77 #define M2M_CONTROL_RSS_SSPTX (2 << M2M_CONTROL_RSS_SHIFT)
78 #define M2M_CONTROL_RSS_IDE (3 << M2M_CONTROL_RSS_SHIFT)
79 #define M2M_CONTROL_NO_HDSK BIT(24)
80 #define M2M_CONTROL_PWSC_SHIFT 25
82 #define M2M_INTERRUPT 0x0004
83 #define M2M_INTERRUPT_MASK 6
85 #define M2M_STATUS 0x000c
86 #define M2M_STATUS_CTL_SHIFT 1
87 #define M2M_STATUS_CTL_IDLE (0 << M2M_STATUS_CTL_SHIFT)
88 #define M2M_STATUS_CTL_STALL (1 << M2M_STATUS_CTL_SHIFT)
89 #define M2M_STATUS_CTL_MEMRD (2 << M2M_STATUS_CTL_SHIFT)
90 #define M2M_STATUS_CTL_MEMWR (3 << M2M_STATUS_CTL_SHIFT)
91 #define M2M_STATUS_CTL_BWCWAIT (4 << M2M_STATUS_CTL_SHIFT)
92 #define M2M_STATUS_CTL_MASK (7 << M2M_STATUS_CTL_SHIFT)
93 #define M2M_STATUS_BUF_SHIFT 4
94 #define M2M_STATUS_BUF_NO (0 << M2M_STATUS_BUF_SHIFT)
95 #define M2M_STATUS_BUF_ON (1 << M2M_STATUS_BUF_SHIFT)
96 #define M2M_STATUS_BUF_NEXT (2 << M2M_STATUS_BUF_SHIFT)
97 #define M2M_STATUS_BUF_MASK (3 << M2M_STATUS_BUF_SHIFT)
98 #define M2M_STATUS_DONE BIT(6)
100 #define M2M_BCR0 0x0010
101 #define M2M_BCR1 0x0014
102 #define M2M_SAR_BASE0 0x0018
103 #define M2M_SAR_BASE1 0x001c
104 #define M2M_DAR_BASE0 0x002c
105 #define M2M_DAR_BASE1 0x0030
107 #define DMA_MAX_CHAN_BYTES 0xffff
108 #define DMA_MAX_CHAN_DESCRIPTORS 32
110 struct ep93xx_dma_engine;
113 * struct ep93xx_dma_desc - EP93xx specific transaction descriptor
114 * @src_addr: source address of the transaction
115 * @dst_addr: destination address of the transaction
116 * @size: size of the transaction (in bytes)
117 * @complete: this descriptor is completed
118 * @txd: dmaengine API descriptor
119 * @tx_list: list of linked descriptors
120 * @node: link used for putting this into a channel queue
122 struct ep93xx_dma_desc {
123 u32 src_addr;
124 u32 dst_addr;
125 size_t size;
126 bool complete;
127 struct dma_async_tx_descriptor txd;
128 struct list_head tx_list;
129 struct list_head node;
133 * struct ep93xx_dma_chan - an EP93xx DMA M2P/M2M channel
134 * @chan: dmaengine API channel
135 * @edma: pointer to to the engine device
136 * @regs: memory mapped registers
137 * @irq: interrupt number of the channel
138 * @clk: clock used by this channel
139 * @tasklet: channel specific tasklet used for callbacks
140 * @lock: lock protecting the fields following
141 * @flags: flags for the channel
142 * @buffer: which buffer to use next (0/1)
143 * @active: flattened chain of descriptors currently being processed
144 * @queue: pending descriptors which are handled next
145 * @free_list: list of free descriptors which can be used
146 * @runtime_addr: physical address currently used as dest/src (M2M only). This
147 * is set via .device_config before slave operation is
148 * prepared
149 * @runtime_ctrl: M2M runtime values for the control register.
151 * As EP93xx DMA controller doesn't support real chained DMA descriptors we
152 * will have slightly different scheme here: @active points to a head of
153 * flattened DMA descriptor chain.
155 * @queue holds pending transactions. These are linked through the first
156 * descriptor in the chain. When a descriptor is moved to the @active queue,
157 * the first and chained descriptors are flattened into a single list.
159 * @chan.private holds pointer to &struct ep93xx_dma_data which contains
160 * necessary channel configuration information. For memcpy channels this must
161 * be %NULL.
163 struct ep93xx_dma_chan {
164 struct dma_chan chan;
165 const struct ep93xx_dma_engine *edma;
166 void __iomem *regs;
167 int irq;
168 struct clk *clk;
169 struct tasklet_struct tasklet;
170 /* protects the fields following */
171 spinlock_t lock;
172 unsigned long flags;
173 /* Channel is configured for cyclic transfers */
174 #define EP93XX_DMA_IS_CYCLIC 0
176 int buffer;
177 struct list_head active;
178 struct list_head queue;
179 struct list_head free_list;
180 u32 runtime_addr;
181 u32 runtime_ctrl;
185 * struct ep93xx_dma_engine - the EP93xx DMA engine instance
186 * @dma_dev: holds the dmaengine device
187 * @m2m: is this an M2M or M2P device
188 * @hw_setup: method which sets the channel up for operation
189 * @hw_shutdown: shuts the channel down and flushes whatever is left
190 * @hw_submit: pushes active descriptor(s) to the hardware
191 * @hw_interrupt: handle the interrupt
192 * @num_channels: number of channels for this instance
193 * @channels: array of channels
195 * There is one instance of this struct for the M2P channels and one for the
196 * M2M channels. hw_xxx() methods are used to perform operations which are
197 * different on M2M and M2P channels. These methods are called with channel
198 * lock held and interrupts disabled so they cannot sleep.
200 struct ep93xx_dma_engine {
201 struct dma_device dma_dev;
202 bool m2m;
203 int (*hw_setup)(struct ep93xx_dma_chan *);
204 void (*hw_synchronize)(struct ep93xx_dma_chan *);
205 void (*hw_shutdown)(struct ep93xx_dma_chan *);
206 void (*hw_submit)(struct ep93xx_dma_chan *);
207 int (*hw_interrupt)(struct ep93xx_dma_chan *);
208 #define INTERRUPT_UNKNOWN 0
209 #define INTERRUPT_DONE 1
210 #define INTERRUPT_NEXT_BUFFER 2
212 size_t num_channels;
213 struct ep93xx_dma_chan channels[];
216 static inline struct device *chan2dev(struct ep93xx_dma_chan *edmac)
218 return &edmac->chan.dev->device;
221 static struct ep93xx_dma_chan *to_ep93xx_dma_chan(struct dma_chan *chan)
223 return container_of(chan, struct ep93xx_dma_chan, chan);
227 * ep93xx_dma_set_active - set new active descriptor chain
228 * @edmac: channel
229 * @desc: head of the new active descriptor chain
231 * Sets @desc to be the head of the new active descriptor chain. This is the
232 * chain which is processed next. The active list must be empty before calling
233 * this function.
235 * Called with @edmac->lock held and interrupts disabled.
237 static void ep93xx_dma_set_active(struct ep93xx_dma_chan *edmac,
238 struct ep93xx_dma_desc *desc)
240 BUG_ON(!list_empty(&edmac->active));
242 list_add_tail(&desc->node, &edmac->active);
244 /* Flatten the @desc->tx_list chain into @edmac->active list */
245 while (!list_empty(&desc->tx_list)) {
246 struct ep93xx_dma_desc *d = list_first_entry(&desc->tx_list,
247 struct ep93xx_dma_desc, node);
250 * We copy the callback parameters from the first descriptor
251 * to all the chained descriptors. This way we can call the
252 * callback without having to find out the first descriptor in
253 * the chain. Useful for cyclic transfers.
255 d->txd.callback = desc->txd.callback;
256 d->txd.callback_param = desc->txd.callback_param;
258 list_move_tail(&d->node, &edmac->active);
262 /* Called with @edmac->lock held and interrupts disabled */
263 static struct ep93xx_dma_desc *
264 ep93xx_dma_get_active(struct ep93xx_dma_chan *edmac)
266 return list_first_entry_or_null(&edmac->active,
267 struct ep93xx_dma_desc, node);
271 * ep93xx_dma_advance_active - advances to the next active descriptor
272 * @edmac: channel
274 * Function advances active descriptor to the next in the @edmac->active and
275 * returns %true if we still have descriptors in the chain to process.
276 * Otherwise returns %false.
278 * When the channel is in cyclic mode always returns %true.
280 * Called with @edmac->lock held and interrupts disabled.
282 static bool ep93xx_dma_advance_active(struct ep93xx_dma_chan *edmac)
284 struct ep93xx_dma_desc *desc;
286 list_rotate_left(&edmac->active);
288 if (test_bit(EP93XX_DMA_IS_CYCLIC, &edmac->flags))
289 return true;
291 desc = ep93xx_dma_get_active(edmac);
292 if (!desc)
293 return false;
296 * If txd.cookie is set it means that we are back in the first
297 * descriptor in the chain and hence done with it.
299 return !desc->txd.cookie;
303 * M2P DMA implementation
306 static void m2p_set_control(struct ep93xx_dma_chan *edmac, u32 control)
308 writel(control, edmac->regs + M2P_CONTROL);
310 * EP93xx User's Guide states that we must perform a dummy read after
311 * write to the control register.
313 readl(edmac->regs + M2P_CONTROL);
316 static int m2p_hw_setup(struct ep93xx_dma_chan *edmac)
318 struct ep93xx_dma_data *data = edmac->chan.private;
319 u32 control;
321 writel(data->port & 0xf, edmac->regs + M2P_PPALLOC);
323 control = M2P_CONTROL_CH_ERROR_INT | M2P_CONTROL_ICE
324 | M2P_CONTROL_ENABLE;
325 m2p_set_control(edmac, control);
327 edmac->buffer = 0;
329 return 0;
332 static inline u32 m2p_channel_state(struct ep93xx_dma_chan *edmac)
334 return (readl(edmac->regs + M2P_STATUS) >> 4) & 0x3;
337 static void m2p_hw_synchronize(struct ep93xx_dma_chan *edmac)
339 unsigned long flags;
340 u32 control;
342 spin_lock_irqsave(&edmac->lock, flags);
343 control = readl(edmac->regs + M2P_CONTROL);
344 control &= ~(M2P_CONTROL_STALLINT | M2P_CONTROL_NFBINT);
345 m2p_set_control(edmac, control);
346 spin_unlock_irqrestore(&edmac->lock, flags);
348 while (m2p_channel_state(edmac) >= M2P_STATE_ON)
349 schedule();
352 static void m2p_hw_shutdown(struct ep93xx_dma_chan *edmac)
354 m2p_set_control(edmac, 0);
356 while (m2p_channel_state(edmac) != M2P_STATE_IDLE)
357 dev_warn(chan2dev(edmac), "M2P: Not yet IDLE\n");
360 static void m2p_fill_desc(struct ep93xx_dma_chan *edmac)
362 struct ep93xx_dma_desc *desc;
363 u32 bus_addr;
365 desc = ep93xx_dma_get_active(edmac);
366 if (!desc) {
367 dev_warn(chan2dev(edmac), "M2P: empty descriptor list\n");
368 return;
371 if (ep93xx_dma_chan_direction(&edmac->chan) == DMA_MEM_TO_DEV)
372 bus_addr = desc->src_addr;
373 else
374 bus_addr = desc->dst_addr;
376 if (edmac->buffer == 0) {
377 writel(desc->size, edmac->regs + M2P_MAXCNT0);
378 writel(bus_addr, edmac->regs + M2P_BASE0);
379 } else {
380 writel(desc->size, edmac->regs + M2P_MAXCNT1);
381 writel(bus_addr, edmac->regs + M2P_BASE1);
384 edmac->buffer ^= 1;
387 static void m2p_hw_submit(struct ep93xx_dma_chan *edmac)
389 u32 control = readl(edmac->regs + M2P_CONTROL);
391 m2p_fill_desc(edmac);
392 control |= M2P_CONTROL_STALLINT;
394 if (ep93xx_dma_advance_active(edmac)) {
395 m2p_fill_desc(edmac);
396 control |= M2P_CONTROL_NFBINT;
399 m2p_set_control(edmac, control);
402 static int m2p_hw_interrupt(struct ep93xx_dma_chan *edmac)
404 u32 irq_status = readl(edmac->regs + M2P_INTERRUPT);
405 u32 control;
407 if (irq_status & M2P_INTERRUPT_ERROR) {
408 struct ep93xx_dma_desc *desc = ep93xx_dma_get_active(edmac);
410 /* Clear the error interrupt */
411 writel(1, edmac->regs + M2P_INTERRUPT);
414 * It seems that there is no easy way of reporting errors back
415 * to client so we just report the error here and continue as
416 * usual.
418 * Revisit this when there is a mechanism to report back the
419 * errors.
421 dev_err(chan2dev(edmac),
422 "DMA transfer failed! Details:\n"
423 "\tcookie : %d\n"
424 "\tsrc_addr : 0x%08x\n"
425 "\tdst_addr : 0x%08x\n"
426 "\tsize : %zu\n",
427 desc->txd.cookie, desc->src_addr, desc->dst_addr,
428 desc->size);
432 * Even latest E2 silicon revision sometimes assert STALL interrupt
433 * instead of NFB. Therefore we treat them equally, basing on the
434 * amount of data we still have to transfer.
436 if (!(irq_status & (M2P_INTERRUPT_STALL | M2P_INTERRUPT_NFB)))
437 return INTERRUPT_UNKNOWN;
439 if (ep93xx_dma_advance_active(edmac)) {
440 m2p_fill_desc(edmac);
441 return INTERRUPT_NEXT_BUFFER;
444 /* Disable interrupts */
445 control = readl(edmac->regs + M2P_CONTROL);
446 control &= ~(M2P_CONTROL_STALLINT | M2P_CONTROL_NFBINT);
447 m2p_set_control(edmac, control);
449 return INTERRUPT_DONE;
453 * M2M DMA implementation
456 static int m2m_hw_setup(struct ep93xx_dma_chan *edmac)
458 const struct ep93xx_dma_data *data = edmac->chan.private;
459 u32 control = 0;
461 if (!data) {
462 /* This is memcpy channel, nothing to configure */
463 writel(control, edmac->regs + M2M_CONTROL);
464 return 0;
467 switch (data->port) {
468 case EP93XX_DMA_SSP:
470 * This was found via experimenting - anything less than 5
471 * causes the channel to perform only a partial transfer which
472 * leads to problems since we don't get DONE interrupt then.
474 control = (5 << M2M_CONTROL_PWSC_SHIFT);
475 control |= M2M_CONTROL_NO_HDSK;
477 if (data->direction == DMA_MEM_TO_DEV) {
478 control |= M2M_CONTROL_DAH;
479 control |= M2M_CONTROL_TM_TX;
480 control |= M2M_CONTROL_RSS_SSPTX;
481 } else {
482 control |= M2M_CONTROL_SAH;
483 control |= M2M_CONTROL_TM_RX;
484 control |= M2M_CONTROL_RSS_SSPRX;
486 break;
488 case EP93XX_DMA_IDE:
490 * This IDE part is totally untested. Values below are taken
491 * from the EP93xx Users's Guide and might not be correct.
493 if (data->direction == DMA_MEM_TO_DEV) {
494 /* Worst case from the UG */
495 control = (3 << M2M_CONTROL_PWSC_SHIFT);
496 control |= M2M_CONTROL_DAH;
497 control |= M2M_CONTROL_TM_TX;
498 } else {
499 control = (2 << M2M_CONTROL_PWSC_SHIFT);
500 control |= M2M_CONTROL_SAH;
501 control |= M2M_CONTROL_TM_RX;
504 control |= M2M_CONTROL_NO_HDSK;
505 control |= M2M_CONTROL_RSS_IDE;
506 control |= M2M_CONTROL_PW_16;
507 break;
509 default:
510 return -EINVAL;
513 writel(control, edmac->regs + M2M_CONTROL);
514 return 0;
517 static void m2m_hw_shutdown(struct ep93xx_dma_chan *edmac)
519 /* Just disable the channel */
520 writel(0, edmac->regs + M2M_CONTROL);
523 static void m2m_fill_desc(struct ep93xx_dma_chan *edmac)
525 struct ep93xx_dma_desc *desc;
527 desc = ep93xx_dma_get_active(edmac);
528 if (!desc) {
529 dev_warn(chan2dev(edmac), "M2M: empty descriptor list\n");
530 return;
533 if (edmac->buffer == 0) {
534 writel(desc->src_addr, edmac->regs + M2M_SAR_BASE0);
535 writel(desc->dst_addr, edmac->regs + M2M_DAR_BASE0);
536 writel(desc->size, edmac->regs + M2M_BCR0);
537 } else {
538 writel(desc->src_addr, edmac->regs + M2M_SAR_BASE1);
539 writel(desc->dst_addr, edmac->regs + M2M_DAR_BASE1);
540 writel(desc->size, edmac->regs + M2M_BCR1);
543 edmac->buffer ^= 1;
546 static void m2m_hw_submit(struct ep93xx_dma_chan *edmac)
548 struct ep93xx_dma_data *data = edmac->chan.private;
549 u32 control = readl(edmac->regs + M2M_CONTROL);
552 * Since we allow clients to configure PW (peripheral width) we always
553 * clear PW bits here and then set them according what is given in
554 * the runtime configuration.
556 control &= ~M2M_CONTROL_PW_MASK;
557 control |= edmac->runtime_ctrl;
559 m2m_fill_desc(edmac);
560 control |= M2M_CONTROL_DONEINT;
562 if (ep93xx_dma_advance_active(edmac)) {
563 m2m_fill_desc(edmac);
564 control |= M2M_CONTROL_NFBINT;
568 * Now we can finally enable the channel. For M2M channel this must be
569 * done _after_ the BCRx registers are programmed.
571 control |= M2M_CONTROL_ENABLE;
572 writel(control, edmac->regs + M2M_CONTROL);
574 if (!data) {
576 * For memcpy channels the software trigger must be asserted
577 * in order to start the memcpy operation.
579 control |= M2M_CONTROL_START;
580 writel(control, edmac->regs + M2M_CONTROL);
585 * According to EP93xx User's Guide, we should receive DONE interrupt when all
586 * M2M DMA controller transactions complete normally. This is not always the
587 * case - sometimes EP93xx M2M DMA asserts DONE interrupt when the DMA channel
588 * is still running (channel Buffer FSM in DMA_BUF_ON state, and channel
589 * Control FSM in DMA_MEM_RD state, observed at least in IDE-DMA operation).
590 * In effect, disabling the channel when only DONE bit is set could stop
591 * currently running DMA transfer. To avoid this, we use Buffer FSM and
592 * Control FSM to check current state of DMA channel.
594 static int m2m_hw_interrupt(struct ep93xx_dma_chan *edmac)
596 u32 status = readl(edmac->regs + M2M_STATUS);
597 u32 ctl_fsm = status & M2M_STATUS_CTL_MASK;
598 u32 buf_fsm = status & M2M_STATUS_BUF_MASK;
599 bool done = status & M2M_STATUS_DONE;
600 bool last_done;
601 u32 control;
602 struct ep93xx_dma_desc *desc;
604 /* Accept only DONE and NFB interrupts */
605 if (!(readl(edmac->regs + M2M_INTERRUPT) & M2M_INTERRUPT_MASK))
606 return INTERRUPT_UNKNOWN;
608 if (done) {
609 /* Clear the DONE bit */
610 writel(0, edmac->regs + M2M_INTERRUPT);
614 * Check whether we are done with descriptors or not. This, together
615 * with DMA channel state, determines action to take in interrupt.
617 desc = ep93xx_dma_get_active(edmac);
618 last_done = !desc || desc->txd.cookie;
621 * Use M2M DMA Buffer FSM and Control FSM to check current state of
622 * DMA channel. Using DONE and NFB bits from channel status register
623 * or bits from channel interrupt register is not reliable.
625 if (!last_done &&
626 (buf_fsm == M2M_STATUS_BUF_NO ||
627 buf_fsm == M2M_STATUS_BUF_ON)) {
629 * Two buffers are ready for update when Buffer FSM is in
630 * DMA_NO_BUF state. Only one buffer can be prepared without
631 * disabling the channel or polling the DONE bit.
632 * To simplify things, always prepare only one buffer.
634 if (ep93xx_dma_advance_active(edmac)) {
635 m2m_fill_desc(edmac);
636 if (done && !edmac->chan.private) {
637 /* Software trigger for memcpy channel */
638 control = readl(edmac->regs + M2M_CONTROL);
639 control |= M2M_CONTROL_START;
640 writel(control, edmac->regs + M2M_CONTROL);
642 return INTERRUPT_NEXT_BUFFER;
643 } else {
644 last_done = true;
649 * Disable the channel only when Buffer FSM is in DMA_NO_BUF state
650 * and Control FSM is in DMA_STALL state.
652 if (last_done &&
653 buf_fsm == M2M_STATUS_BUF_NO &&
654 ctl_fsm == M2M_STATUS_CTL_STALL) {
655 /* Disable interrupts and the channel */
656 control = readl(edmac->regs + M2M_CONTROL);
657 control &= ~(M2M_CONTROL_DONEINT | M2M_CONTROL_NFBINT
658 | M2M_CONTROL_ENABLE);
659 writel(control, edmac->regs + M2M_CONTROL);
660 return INTERRUPT_DONE;
664 * Nothing to do this time.
666 return INTERRUPT_NEXT_BUFFER;
670 * DMA engine API implementation
673 static struct ep93xx_dma_desc *
674 ep93xx_dma_desc_get(struct ep93xx_dma_chan *edmac)
676 struct ep93xx_dma_desc *desc, *_desc;
677 struct ep93xx_dma_desc *ret = NULL;
678 unsigned long flags;
680 spin_lock_irqsave(&edmac->lock, flags);
681 list_for_each_entry_safe(desc, _desc, &edmac->free_list, node) {
682 if (async_tx_test_ack(&desc->txd)) {
683 list_del_init(&desc->node);
685 /* Re-initialize the descriptor */
686 desc->src_addr = 0;
687 desc->dst_addr = 0;
688 desc->size = 0;
689 desc->complete = false;
690 desc->txd.cookie = 0;
691 desc->txd.callback = NULL;
692 desc->txd.callback_param = NULL;
694 ret = desc;
695 break;
698 spin_unlock_irqrestore(&edmac->lock, flags);
699 return ret;
702 static void ep93xx_dma_desc_put(struct ep93xx_dma_chan *edmac,
703 struct ep93xx_dma_desc *desc)
705 if (desc) {
706 unsigned long flags;
708 spin_lock_irqsave(&edmac->lock, flags);
709 list_splice_init(&desc->tx_list, &edmac->free_list);
710 list_add(&desc->node, &edmac->free_list);
711 spin_unlock_irqrestore(&edmac->lock, flags);
716 * ep93xx_dma_advance_work - start processing the next pending transaction
717 * @edmac: channel
719 * If we have pending transactions queued and we are currently idling, this
720 * function takes the next queued transaction from the @edmac->queue and
721 * pushes it to the hardware for execution.
723 static void ep93xx_dma_advance_work(struct ep93xx_dma_chan *edmac)
725 struct ep93xx_dma_desc *new;
726 unsigned long flags;
728 spin_lock_irqsave(&edmac->lock, flags);
729 if (!list_empty(&edmac->active) || list_empty(&edmac->queue)) {
730 spin_unlock_irqrestore(&edmac->lock, flags);
731 return;
734 /* Take the next descriptor from the pending queue */
735 new = list_first_entry(&edmac->queue, struct ep93xx_dma_desc, node);
736 list_del_init(&new->node);
738 ep93xx_dma_set_active(edmac, new);
740 /* Push it to the hardware */
741 edmac->edma->hw_submit(edmac);
742 spin_unlock_irqrestore(&edmac->lock, flags);
745 static void ep93xx_dma_tasklet(unsigned long data)
747 struct ep93xx_dma_chan *edmac = (struct ep93xx_dma_chan *)data;
748 struct ep93xx_dma_desc *desc, *d;
749 struct dmaengine_desc_callback cb;
750 LIST_HEAD(list);
752 memset(&cb, 0, sizeof(cb));
753 spin_lock_irq(&edmac->lock);
755 * If dma_terminate_all() was called before we get to run, the active
756 * list has become empty. If that happens we aren't supposed to do
757 * anything more than call ep93xx_dma_advance_work().
759 desc = ep93xx_dma_get_active(edmac);
760 if (desc) {
761 if (desc->complete) {
762 /* mark descriptor complete for non cyclic case only */
763 if (!test_bit(EP93XX_DMA_IS_CYCLIC, &edmac->flags))
764 dma_cookie_complete(&desc->txd);
765 list_splice_init(&edmac->active, &list);
767 dmaengine_desc_get_callback(&desc->txd, &cb);
769 spin_unlock_irq(&edmac->lock);
771 /* Pick up the next descriptor from the queue */
772 ep93xx_dma_advance_work(edmac);
774 /* Now we can release all the chained descriptors */
775 list_for_each_entry_safe(desc, d, &list, node) {
776 dma_descriptor_unmap(&desc->txd);
777 ep93xx_dma_desc_put(edmac, desc);
780 dmaengine_desc_callback_invoke(&cb, NULL);
783 static irqreturn_t ep93xx_dma_interrupt(int irq, void *dev_id)
785 struct ep93xx_dma_chan *edmac = dev_id;
786 struct ep93xx_dma_desc *desc;
787 irqreturn_t ret = IRQ_HANDLED;
789 spin_lock(&edmac->lock);
791 desc = ep93xx_dma_get_active(edmac);
792 if (!desc) {
793 dev_warn(chan2dev(edmac),
794 "got interrupt while active list is empty\n");
795 spin_unlock(&edmac->lock);
796 return IRQ_NONE;
799 switch (edmac->edma->hw_interrupt(edmac)) {
800 case INTERRUPT_DONE:
801 desc->complete = true;
802 tasklet_schedule(&edmac->tasklet);
803 break;
805 case INTERRUPT_NEXT_BUFFER:
806 if (test_bit(EP93XX_DMA_IS_CYCLIC, &edmac->flags))
807 tasklet_schedule(&edmac->tasklet);
808 break;
810 default:
811 dev_warn(chan2dev(edmac), "unknown interrupt!\n");
812 ret = IRQ_NONE;
813 break;
816 spin_unlock(&edmac->lock);
817 return ret;
821 * ep93xx_dma_tx_submit - set the prepared descriptor(s) to be executed
822 * @tx: descriptor to be executed
824 * Function will execute given descriptor on the hardware or if the hardware
825 * is busy, queue the descriptor to be executed later on. Returns cookie which
826 * can be used to poll the status of the descriptor.
828 static dma_cookie_t ep93xx_dma_tx_submit(struct dma_async_tx_descriptor *tx)
830 struct ep93xx_dma_chan *edmac = to_ep93xx_dma_chan(tx->chan);
831 struct ep93xx_dma_desc *desc;
832 dma_cookie_t cookie;
833 unsigned long flags;
835 spin_lock_irqsave(&edmac->lock, flags);
836 cookie = dma_cookie_assign(tx);
838 desc = container_of(tx, struct ep93xx_dma_desc, txd);
841 * If nothing is currently prosessed, we push this descriptor
842 * directly to the hardware. Otherwise we put the descriptor
843 * to the pending queue.
845 if (list_empty(&edmac->active)) {
846 ep93xx_dma_set_active(edmac, desc);
847 edmac->edma->hw_submit(edmac);
848 } else {
849 list_add_tail(&desc->node, &edmac->queue);
852 spin_unlock_irqrestore(&edmac->lock, flags);
853 return cookie;
857 * ep93xx_dma_alloc_chan_resources - allocate resources for the channel
858 * @chan: channel to allocate resources
860 * Function allocates necessary resources for the given DMA channel and
861 * returns number of allocated descriptors for the channel. Negative errno
862 * is returned in case of failure.
864 static int ep93xx_dma_alloc_chan_resources(struct dma_chan *chan)
866 struct ep93xx_dma_chan *edmac = to_ep93xx_dma_chan(chan);
867 struct ep93xx_dma_data *data = chan->private;
868 const char *name = dma_chan_name(chan);
869 int ret, i;
871 /* Sanity check the channel parameters */
872 if (!edmac->edma->m2m) {
873 if (!data)
874 return -EINVAL;
875 if (data->port < EP93XX_DMA_I2S1 ||
876 data->port > EP93XX_DMA_IRDA)
877 return -EINVAL;
878 if (data->direction != ep93xx_dma_chan_direction(chan))
879 return -EINVAL;
880 } else {
881 if (data) {
882 switch (data->port) {
883 case EP93XX_DMA_SSP:
884 case EP93XX_DMA_IDE:
885 if (!is_slave_direction(data->direction))
886 return -EINVAL;
887 break;
888 default:
889 return -EINVAL;
894 if (data && data->name)
895 name = data->name;
897 ret = clk_enable(edmac->clk);
898 if (ret)
899 return ret;
901 ret = request_irq(edmac->irq, ep93xx_dma_interrupt, 0, name, edmac);
902 if (ret)
903 goto fail_clk_disable;
905 spin_lock_irq(&edmac->lock);
906 dma_cookie_init(&edmac->chan);
907 ret = edmac->edma->hw_setup(edmac);
908 spin_unlock_irq(&edmac->lock);
910 if (ret)
911 goto fail_free_irq;
913 for (i = 0; i < DMA_MAX_CHAN_DESCRIPTORS; i++) {
914 struct ep93xx_dma_desc *desc;
916 desc = kzalloc(sizeof(*desc), GFP_KERNEL);
917 if (!desc) {
918 dev_warn(chan2dev(edmac), "not enough descriptors\n");
919 break;
922 INIT_LIST_HEAD(&desc->tx_list);
924 dma_async_tx_descriptor_init(&desc->txd, chan);
925 desc->txd.flags = DMA_CTRL_ACK;
926 desc->txd.tx_submit = ep93xx_dma_tx_submit;
928 ep93xx_dma_desc_put(edmac, desc);
931 return i;
933 fail_free_irq:
934 free_irq(edmac->irq, edmac);
935 fail_clk_disable:
936 clk_disable(edmac->clk);
938 return ret;
942 * ep93xx_dma_free_chan_resources - release resources for the channel
943 * @chan: channel
945 * Function releases all the resources allocated for the given channel.
946 * The channel must be idle when this is called.
948 static void ep93xx_dma_free_chan_resources(struct dma_chan *chan)
950 struct ep93xx_dma_chan *edmac = to_ep93xx_dma_chan(chan);
951 struct ep93xx_dma_desc *desc, *d;
952 unsigned long flags;
953 LIST_HEAD(list);
955 BUG_ON(!list_empty(&edmac->active));
956 BUG_ON(!list_empty(&edmac->queue));
958 spin_lock_irqsave(&edmac->lock, flags);
959 edmac->edma->hw_shutdown(edmac);
960 edmac->runtime_addr = 0;
961 edmac->runtime_ctrl = 0;
962 edmac->buffer = 0;
963 list_splice_init(&edmac->free_list, &list);
964 spin_unlock_irqrestore(&edmac->lock, flags);
966 list_for_each_entry_safe(desc, d, &list, node)
967 kfree(desc);
969 clk_disable(edmac->clk);
970 free_irq(edmac->irq, edmac);
974 * ep93xx_dma_prep_dma_memcpy - prepare a memcpy DMA operation
975 * @chan: channel
976 * @dest: destination bus address
977 * @src: source bus address
978 * @len: size of the transaction
979 * @flags: flags for the descriptor
981 * Returns a valid DMA descriptor or %NULL in case of failure.
983 static struct dma_async_tx_descriptor *
984 ep93xx_dma_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dest,
985 dma_addr_t src, size_t len, unsigned long flags)
987 struct ep93xx_dma_chan *edmac = to_ep93xx_dma_chan(chan);
988 struct ep93xx_dma_desc *desc, *first;
989 size_t bytes, offset;
991 first = NULL;
992 for (offset = 0; offset < len; offset += bytes) {
993 desc = ep93xx_dma_desc_get(edmac);
994 if (!desc) {
995 dev_warn(chan2dev(edmac), "couln't get descriptor\n");
996 goto fail;
999 bytes = min_t(size_t, len - offset, DMA_MAX_CHAN_BYTES);
1001 desc->src_addr = src + offset;
1002 desc->dst_addr = dest + offset;
1003 desc->size = bytes;
1005 if (!first)
1006 first = desc;
1007 else
1008 list_add_tail(&desc->node, &first->tx_list);
1011 first->txd.cookie = -EBUSY;
1012 first->txd.flags = flags;
1014 return &first->txd;
1015 fail:
1016 ep93xx_dma_desc_put(edmac, first);
1017 return NULL;
1021 * ep93xx_dma_prep_slave_sg - prepare a slave DMA operation
1022 * @chan: channel
1023 * @sgl: list of buffers to transfer
1024 * @sg_len: number of entries in @sgl
1025 * @dir: direction of tha DMA transfer
1026 * @flags: flags for the descriptor
1027 * @context: operation context (ignored)
1029 * Returns a valid DMA descriptor or %NULL in case of failure.
1031 static struct dma_async_tx_descriptor *
1032 ep93xx_dma_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl,
1033 unsigned int sg_len, enum dma_transfer_direction dir,
1034 unsigned long flags, void *context)
1036 struct ep93xx_dma_chan *edmac = to_ep93xx_dma_chan(chan);
1037 struct ep93xx_dma_desc *desc, *first;
1038 struct scatterlist *sg;
1039 int i;
1041 if (!edmac->edma->m2m && dir != ep93xx_dma_chan_direction(chan)) {
1042 dev_warn(chan2dev(edmac),
1043 "channel was configured with different direction\n");
1044 return NULL;
1047 if (test_bit(EP93XX_DMA_IS_CYCLIC, &edmac->flags)) {
1048 dev_warn(chan2dev(edmac),
1049 "channel is already used for cyclic transfers\n");
1050 return NULL;
1053 first = NULL;
1054 for_each_sg(sgl, sg, sg_len, i) {
1055 size_t len = sg_dma_len(sg);
1057 if (len > DMA_MAX_CHAN_BYTES) {
1058 dev_warn(chan2dev(edmac), "too big transfer size %zu\n",
1059 len);
1060 goto fail;
1063 desc = ep93xx_dma_desc_get(edmac);
1064 if (!desc) {
1065 dev_warn(chan2dev(edmac), "couln't get descriptor\n");
1066 goto fail;
1069 if (dir == DMA_MEM_TO_DEV) {
1070 desc->src_addr = sg_dma_address(sg);
1071 desc->dst_addr = edmac->runtime_addr;
1072 } else {
1073 desc->src_addr = edmac->runtime_addr;
1074 desc->dst_addr = sg_dma_address(sg);
1076 desc->size = len;
1078 if (!first)
1079 first = desc;
1080 else
1081 list_add_tail(&desc->node, &first->tx_list);
1084 first->txd.cookie = -EBUSY;
1085 first->txd.flags = flags;
1087 return &first->txd;
1089 fail:
1090 ep93xx_dma_desc_put(edmac, first);
1091 return NULL;
1095 * ep93xx_dma_prep_dma_cyclic - prepare a cyclic DMA operation
1096 * @chan: channel
1097 * @dma_addr: DMA mapped address of the buffer
1098 * @buf_len: length of the buffer (in bytes)
1099 * @period_len: length of a single period
1100 * @dir: direction of the operation
1101 * @flags: tx descriptor status flags
1103 * Prepares a descriptor for cyclic DMA operation. This means that once the
1104 * descriptor is submitted, we will be submitting in a @period_len sized
1105 * buffers and calling callback once the period has been elapsed. Transfer
1106 * terminates only when client calls dmaengine_terminate_all() for this
1107 * channel.
1109 * Returns a valid DMA descriptor or %NULL in case of failure.
1111 static struct dma_async_tx_descriptor *
1112 ep93xx_dma_prep_dma_cyclic(struct dma_chan *chan, dma_addr_t dma_addr,
1113 size_t buf_len, size_t period_len,
1114 enum dma_transfer_direction dir, unsigned long flags)
1116 struct ep93xx_dma_chan *edmac = to_ep93xx_dma_chan(chan);
1117 struct ep93xx_dma_desc *desc, *first;
1118 size_t offset = 0;
1120 if (!edmac->edma->m2m && dir != ep93xx_dma_chan_direction(chan)) {
1121 dev_warn(chan2dev(edmac),
1122 "channel was configured with different direction\n");
1123 return NULL;
1126 if (test_and_set_bit(EP93XX_DMA_IS_CYCLIC, &edmac->flags)) {
1127 dev_warn(chan2dev(edmac),
1128 "channel is already used for cyclic transfers\n");
1129 return NULL;
1132 if (period_len > DMA_MAX_CHAN_BYTES) {
1133 dev_warn(chan2dev(edmac), "too big period length %zu\n",
1134 period_len);
1135 return NULL;
1138 /* Split the buffer into period size chunks */
1139 first = NULL;
1140 for (offset = 0; offset < buf_len; offset += period_len) {
1141 desc = ep93xx_dma_desc_get(edmac);
1142 if (!desc) {
1143 dev_warn(chan2dev(edmac), "couln't get descriptor\n");
1144 goto fail;
1147 if (dir == DMA_MEM_TO_DEV) {
1148 desc->src_addr = dma_addr + offset;
1149 desc->dst_addr = edmac->runtime_addr;
1150 } else {
1151 desc->src_addr = edmac->runtime_addr;
1152 desc->dst_addr = dma_addr + offset;
1155 desc->size = period_len;
1157 if (!first)
1158 first = desc;
1159 else
1160 list_add_tail(&desc->node, &first->tx_list);
1163 first->txd.cookie = -EBUSY;
1165 return &first->txd;
1167 fail:
1168 ep93xx_dma_desc_put(edmac, first);
1169 return NULL;
1173 * ep93xx_dma_synchronize - Synchronizes the termination of transfers to the
1174 * current context.
1175 * @chan: channel
1177 * Synchronizes the DMA channel termination to the current context. When this
1178 * function returns it is guaranteed that all transfers for previously issued
1179 * descriptors have stopped and and it is safe to free the memory associated
1180 * with them. Furthermore it is guaranteed that all complete callback functions
1181 * for a previously submitted descriptor have finished running and it is safe to
1182 * free resources accessed from within the complete callbacks.
1184 static void ep93xx_dma_synchronize(struct dma_chan *chan)
1186 struct ep93xx_dma_chan *edmac = to_ep93xx_dma_chan(chan);
1188 if (edmac->edma->hw_synchronize)
1189 edmac->edma->hw_synchronize(edmac);
1193 * ep93xx_dma_terminate_all - terminate all transactions
1194 * @chan: channel
1196 * Stops all DMA transactions. All descriptors are put back to the
1197 * @edmac->free_list and callbacks are _not_ called.
1199 static int ep93xx_dma_terminate_all(struct dma_chan *chan)
1201 struct ep93xx_dma_chan *edmac = to_ep93xx_dma_chan(chan);
1202 struct ep93xx_dma_desc *desc, *_d;
1203 unsigned long flags;
1204 LIST_HEAD(list);
1206 spin_lock_irqsave(&edmac->lock, flags);
1207 /* First we disable and flush the DMA channel */
1208 edmac->edma->hw_shutdown(edmac);
1209 clear_bit(EP93XX_DMA_IS_CYCLIC, &edmac->flags);
1210 list_splice_init(&edmac->active, &list);
1211 list_splice_init(&edmac->queue, &list);
1213 * We then re-enable the channel. This way we can continue submitting
1214 * the descriptors by just calling ->hw_submit() again.
1216 edmac->edma->hw_setup(edmac);
1217 spin_unlock_irqrestore(&edmac->lock, flags);
1219 list_for_each_entry_safe(desc, _d, &list, node)
1220 ep93xx_dma_desc_put(edmac, desc);
1222 return 0;
1225 static int ep93xx_dma_slave_config(struct dma_chan *chan,
1226 struct dma_slave_config *config)
1228 struct ep93xx_dma_chan *edmac = to_ep93xx_dma_chan(chan);
1229 enum dma_slave_buswidth width;
1230 unsigned long flags;
1231 u32 addr, ctrl;
1233 if (!edmac->edma->m2m)
1234 return -EINVAL;
1236 switch (config->direction) {
1237 case DMA_DEV_TO_MEM:
1238 width = config->src_addr_width;
1239 addr = config->src_addr;
1240 break;
1242 case DMA_MEM_TO_DEV:
1243 width = config->dst_addr_width;
1244 addr = config->dst_addr;
1245 break;
1247 default:
1248 return -EINVAL;
1251 switch (width) {
1252 case DMA_SLAVE_BUSWIDTH_1_BYTE:
1253 ctrl = 0;
1254 break;
1255 case DMA_SLAVE_BUSWIDTH_2_BYTES:
1256 ctrl = M2M_CONTROL_PW_16;
1257 break;
1258 case DMA_SLAVE_BUSWIDTH_4_BYTES:
1259 ctrl = M2M_CONTROL_PW_32;
1260 break;
1261 default:
1262 return -EINVAL;
1265 spin_lock_irqsave(&edmac->lock, flags);
1266 edmac->runtime_addr = addr;
1267 edmac->runtime_ctrl = ctrl;
1268 spin_unlock_irqrestore(&edmac->lock, flags);
1270 return 0;
1274 * ep93xx_dma_tx_status - check if a transaction is completed
1275 * @chan: channel
1276 * @cookie: transaction specific cookie
1277 * @state: state of the transaction is stored here if given
1279 * This function can be used to query state of a given transaction.
1281 static enum dma_status ep93xx_dma_tx_status(struct dma_chan *chan,
1282 dma_cookie_t cookie,
1283 struct dma_tx_state *state)
1285 return dma_cookie_status(chan, cookie, state);
1289 * ep93xx_dma_issue_pending - push pending transactions to the hardware
1290 * @chan: channel
1292 * When this function is called, all pending transactions are pushed to the
1293 * hardware and executed.
1295 static void ep93xx_dma_issue_pending(struct dma_chan *chan)
1297 ep93xx_dma_advance_work(to_ep93xx_dma_chan(chan));
1300 static int __init ep93xx_dma_probe(struct platform_device *pdev)
1302 struct ep93xx_dma_platform_data *pdata = dev_get_platdata(&pdev->dev);
1303 struct ep93xx_dma_engine *edma;
1304 struct dma_device *dma_dev;
1305 size_t edma_size;
1306 int ret, i;
1308 edma_size = pdata->num_channels * sizeof(struct ep93xx_dma_chan);
1309 edma = kzalloc(sizeof(*edma) + edma_size, GFP_KERNEL);
1310 if (!edma)
1311 return -ENOMEM;
1313 dma_dev = &edma->dma_dev;
1314 edma->m2m = platform_get_device_id(pdev)->driver_data;
1315 edma->num_channels = pdata->num_channels;
1317 INIT_LIST_HEAD(&dma_dev->channels);
1318 for (i = 0; i < pdata->num_channels; i++) {
1319 const struct ep93xx_dma_chan_data *cdata = &pdata->channels[i];
1320 struct ep93xx_dma_chan *edmac = &edma->channels[i];
1322 edmac->chan.device = dma_dev;
1323 edmac->regs = cdata->base;
1324 edmac->irq = cdata->irq;
1325 edmac->edma = edma;
1327 edmac->clk = clk_get(NULL, cdata->name);
1328 if (IS_ERR(edmac->clk)) {
1329 dev_warn(&pdev->dev, "failed to get clock for %s\n",
1330 cdata->name);
1331 continue;
1334 spin_lock_init(&edmac->lock);
1335 INIT_LIST_HEAD(&edmac->active);
1336 INIT_LIST_HEAD(&edmac->queue);
1337 INIT_LIST_HEAD(&edmac->free_list);
1338 tasklet_init(&edmac->tasklet, ep93xx_dma_tasklet,
1339 (unsigned long)edmac);
1341 list_add_tail(&edmac->chan.device_node,
1342 &dma_dev->channels);
1345 dma_cap_zero(dma_dev->cap_mask);
1346 dma_cap_set(DMA_SLAVE, dma_dev->cap_mask);
1347 dma_cap_set(DMA_CYCLIC, dma_dev->cap_mask);
1349 dma_dev->dev = &pdev->dev;
1350 dma_dev->device_alloc_chan_resources = ep93xx_dma_alloc_chan_resources;
1351 dma_dev->device_free_chan_resources = ep93xx_dma_free_chan_resources;
1352 dma_dev->device_prep_slave_sg = ep93xx_dma_prep_slave_sg;
1353 dma_dev->device_prep_dma_cyclic = ep93xx_dma_prep_dma_cyclic;
1354 dma_dev->device_config = ep93xx_dma_slave_config;
1355 dma_dev->device_synchronize = ep93xx_dma_synchronize;
1356 dma_dev->device_terminate_all = ep93xx_dma_terminate_all;
1357 dma_dev->device_issue_pending = ep93xx_dma_issue_pending;
1358 dma_dev->device_tx_status = ep93xx_dma_tx_status;
1360 dma_set_max_seg_size(dma_dev->dev, DMA_MAX_CHAN_BYTES);
1362 if (edma->m2m) {
1363 dma_cap_set(DMA_MEMCPY, dma_dev->cap_mask);
1364 dma_dev->device_prep_dma_memcpy = ep93xx_dma_prep_dma_memcpy;
1366 edma->hw_setup = m2m_hw_setup;
1367 edma->hw_shutdown = m2m_hw_shutdown;
1368 edma->hw_submit = m2m_hw_submit;
1369 edma->hw_interrupt = m2m_hw_interrupt;
1370 } else {
1371 dma_cap_set(DMA_PRIVATE, dma_dev->cap_mask);
1373 edma->hw_synchronize = m2p_hw_synchronize;
1374 edma->hw_setup = m2p_hw_setup;
1375 edma->hw_shutdown = m2p_hw_shutdown;
1376 edma->hw_submit = m2p_hw_submit;
1377 edma->hw_interrupt = m2p_hw_interrupt;
1380 ret = dma_async_device_register(dma_dev);
1381 if (unlikely(ret)) {
1382 for (i = 0; i < edma->num_channels; i++) {
1383 struct ep93xx_dma_chan *edmac = &edma->channels[i];
1384 if (!IS_ERR_OR_NULL(edmac->clk))
1385 clk_put(edmac->clk);
1387 kfree(edma);
1388 } else {
1389 dev_info(dma_dev->dev, "EP93xx M2%s DMA ready\n",
1390 edma->m2m ? "M" : "P");
1393 return ret;
1396 static const struct platform_device_id ep93xx_dma_driver_ids[] = {
1397 { "ep93xx-dma-m2p", 0 },
1398 { "ep93xx-dma-m2m", 1 },
1399 { },
1402 static struct platform_driver ep93xx_dma_driver = {
1403 .driver = {
1404 .name = "ep93xx-dma",
1406 .id_table = ep93xx_dma_driver_ids,
1409 static int __init ep93xx_dma_module_init(void)
1411 return platform_driver_probe(&ep93xx_dma_driver, ep93xx_dma_probe);
1413 subsys_initcall(ep93xx_dma_module_init);
1415 MODULE_AUTHOR("Mika Westerberg <mika.westerberg@iki.fi>");
1416 MODULE_DESCRIPTION("EP93xx DMA driver");
1417 MODULE_LICENSE("GPL");