2 * Driver for the Cirrus Logic EP93xx DMA Controller
4 * Copyright (C) 2011 Mika Westerberg
6 * DMA M2P implementation is based on the original
7 * arch/arm/mach-ep93xx/dma-m2p.c which has following copyrights:
9 * Copyright (C) 2006 Lennert Buytenhek <buytenh@wantstofly.org>
10 * Copyright (C) 2006 Applied Data Systems
11 * Copyright (C) 2009 Ryan Mallon <rmallon@gmail.com>
13 * This driver is based on dw_dmac and amba-pl08x drivers.
15 * This program is free software; you can redistribute it and/or modify
16 * it under the terms of the GNU General Public License as published by
17 * the Free Software Foundation; either version 2 of the License, or
18 * (at your option) any later version.
21 #include <linux/clk.h>
22 #include <linux/init.h>
23 #include <linux/interrupt.h>
24 #include <linux/dmaengine.h>
25 #include <linux/module.h>
26 #include <linux/platform_device.h>
27 #include <linux/slab.h>
29 #include <linux/platform_data/dma-ep93xx.h>
31 #include "dmaengine.h"
34 #define M2P_CONTROL 0x0000
35 #define M2P_CONTROL_STALLINT BIT(0)
36 #define M2P_CONTROL_NFBINT BIT(1)
37 #define M2P_CONTROL_CH_ERROR_INT BIT(3)
38 #define M2P_CONTROL_ENABLE BIT(4)
39 #define M2P_CONTROL_ICE BIT(6)
41 #define M2P_INTERRUPT 0x0004
42 #define M2P_INTERRUPT_STALL BIT(0)
43 #define M2P_INTERRUPT_NFB BIT(1)
44 #define M2P_INTERRUPT_ERROR BIT(3)
46 #define M2P_PPALLOC 0x0008
47 #define M2P_STATUS 0x000c
49 #define M2P_MAXCNT0 0x0020
50 #define M2P_BASE0 0x0024
51 #define M2P_MAXCNT1 0x0030
52 #define M2P_BASE1 0x0034
54 #define M2P_STATE_IDLE 0
55 #define M2P_STATE_STALL 1
56 #define M2P_STATE_ON 2
57 #define M2P_STATE_NEXT 3
60 #define M2M_CONTROL 0x0000
61 #define M2M_CONTROL_DONEINT BIT(2)
62 #define M2M_CONTROL_ENABLE BIT(3)
63 #define M2M_CONTROL_START BIT(4)
64 #define M2M_CONTROL_DAH BIT(11)
65 #define M2M_CONTROL_SAH BIT(12)
66 #define M2M_CONTROL_PW_SHIFT 9
67 #define M2M_CONTROL_PW_8 (0 << M2M_CONTROL_PW_SHIFT)
68 #define M2M_CONTROL_PW_16 (1 << M2M_CONTROL_PW_SHIFT)
69 #define M2M_CONTROL_PW_32 (2 << M2M_CONTROL_PW_SHIFT)
70 #define M2M_CONTROL_PW_MASK (3 << M2M_CONTROL_PW_SHIFT)
71 #define M2M_CONTROL_TM_SHIFT 13
72 #define M2M_CONTROL_TM_TX (1 << M2M_CONTROL_TM_SHIFT)
73 #define M2M_CONTROL_TM_RX (2 << M2M_CONTROL_TM_SHIFT)
74 #define M2M_CONTROL_NFBINT BIT(21)
75 #define M2M_CONTROL_RSS_SHIFT 22
76 #define M2M_CONTROL_RSS_SSPRX (1 << M2M_CONTROL_RSS_SHIFT)
77 #define M2M_CONTROL_RSS_SSPTX (2 << M2M_CONTROL_RSS_SHIFT)
78 #define M2M_CONTROL_RSS_IDE (3 << M2M_CONTROL_RSS_SHIFT)
79 #define M2M_CONTROL_NO_HDSK BIT(24)
80 #define M2M_CONTROL_PWSC_SHIFT 25
82 #define M2M_INTERRUPT 0x0004
83 #define M2M_INTERRUPT_MASK 6
85 #define M2M_STATUS 0x000c
86 #define M2M_STATUS_CTL_SHIFT 1
87 #define M2M_STATUS_CTL_IDLE (0 << M2M_STATUS_CTL_SHIFT)
88 #define M2M_STATUS_CTL_STALL (1 << M2M_STATUS_CTL_SHIFT)
89 #define M2M_STATUS_CTL_MEMRD (2 << M2M_STATUS_CTL_SHIFT)
90 #define M2M_STATUS_CTL_MEMWR (3 << M2M_STATUS_CTL_SHIFT)
91 #define M2M_STATUS_CTL_BWCWAIT (4 << M2M_STATUS_CTL_SHIFT)
92 #define M2M_STATUS_CTL_MASK (7 << M2M_STATUS_CTL_SHIFT)
93 #define M2M_STATUS_BUF_SHIFT 4
94 #define M2M_STATUS_BUF_NO (0 << M2M_STATUS_BUF_SHIFT)
95 #define M2M_STATUS_BUF_ON (1 << M2M_STATUS_BUF_SHIFT)
96 #define M2M_STATUS_BUF_NEXT (2 << M2M_STATUS_BUF_SHIFT)
97 #define M2M_STATUS_BUF_MASK (3 << M2M_STATUS_BUF_SHIFT)
98 #define M2M_STATUS_DONE BIT(6)
100 #define M2M_BCR0 0x0010
101 #define M2M_BCR1 0x0014
102 #define M2M_SAR_BASE0 0x0018
103 #define M2M_SAR_BASE1 0x001c
104 #define M2M_DAR_BASE0 0x002c
105 #define M2M_DAR_BASE1 0x0030
107 #define DMA_MAX_CHAN_BYTES 0xffff
108 #define DMA_MAX_CHAN_DESCRIPTORS 32
110 struct ep93xx_dma_engine
;
113 * struct ep93xx_dma_desc - EP93xx specific transaction descriptor
114 * @src_addr: source address of the transaction
115 * @dst_addr: destination address of the transaction
116 * @size: size of the transaction (in bytes)
117 * @complete: this descriptor is completed
118 * @txd: dmaengine API descriptor
119 * @tx_list: list of linked descriptors
120 * @node: link used for putting this into a channel queue
122 struct ep93xx_dma_desc
{
127 struct dma_async_tx_descriptor txd
;
128 struct list_head tx_list
;
129 struct list_head node
;
133 * struct ep93xx_dma_chan - an EP93xx DMA M2P/M2M channel
134 * @chan: dmaengine API channel
135 * @edma: pointer to to the engine device
136 * @regs: memory mapped registers
137 * @irq: interrupt number of the channel
138 * @clk: clock used by this channel
139 * @tasklet: channel specific tasklet used for callbacks
140 * @lock: lock protecting the fields following
141 * @flags: flags for the channel
142 * @buffer: which buffer to use next (0/1)
143 * @active: flattened chain of descriptors currently being processed
144 * @queue: pending descriptors which are handled next
145 * @free_list: list of free descriptors which can be used
146 * @runtime_addr: physical address currently used as dest/src (M2M only). This
147 * is set via .device_config before slave operation is
149 * @runtime_ctrl: M2M runtime values for the control register.
151 * As EP93xx DMA controller doesn't support real chained DMA descriptors we
152 * will have slightly different scheme here: @active points to a head of
153 * flattened DMA descriptor chain.
155 * @queue holds pending transactions. These are linked through the first
156 * descriptor in the chain. When a descriptor is moved to the @active queue,
157 * the first and chained descriptors are flattened into a single list.
159 * @chan.private holds pointer to &struct ep93xx_dma_data which contains
160 * necessary channel configuration information. For memcpy channels this must
163 struct ep93xx_dma_chan
{
164 struct dma_chan chan
;
165 const struct ep93xx_dma_engine
*edma
;
169 struct tasklet_struct tasklet
;
170 /* protects the fields following */
173 /* Channel is configured for cyclic transfers */
174 #define EP93XX_DMA_IS_CYCLIC 0
177 struct list_head active
;
178 struct list_head queue
;
179 struct list_head free_list
;
185 * struct ep93xx_dma_engine - the EP93xx DMA engine instance
186 * @dma_dev: holds the dmaengine device
187 * @m2m: is this an M2M or M2P device
188 * @hw_setup: method which sets the channel up for operation
189 * @hw_shutdown: shuts the channel down and flushes whatever is left
190 * @hw_submit: pushes active descriptor(s) to the hardware
191 * @hw_interrupt: handle the interrupt
192 * @num_channels: number of channels for this instance
193 * @channels: array of channels
195 * There is one instance of this struct for the M2P channels and one for the
196 * M2M channels. hw_xxx() methods are used to perform operations which are
197 * different on M2M and M2P channels. These methods are called with channel
198 * lock held and interrupts disabled so they cannot sleep.
200 struct ep93xx_dma_engine
{
201 struct dma_device dma_dev
;
203 int (*hw_setup
)(struct ep93xx_dma_chan
*);
204 void (*hw_synchronize
)(struct ep93xx_dma_chan
*);
205 void (*hw_shutdown
)(struct ep93xx_dma_chan
*);
206 void (*hw_submit
)(struct ep93xx_dma_chan
*);
207 int (*hw_interrupt
)(struct ep93xx_dma_chan
*);
208 #define INTERRUPT_UNKNOWN 0
209 #define INTERRUPT_DONE 1
210 #define INTERRUPT_NEXT_BUFFER 2
213 struct ep93xx_dma_chan channels
[];
216 static inline struct device
*chan2dev(struct ep93xx_dma_chan
*edmac
)
218 return &edmac
->chan
.dev
->device
;
221 static struct ep93xx_dma_chan
*to_ep93xx_dma_chan(struct dma_chan
*chan
)
223 return container_of(chan
, struct ep93xx_dma_chan
, chan
);
227 * ep93xx_dma_set_active - set new active descriptor chain
229 * @desc: head of the new active descriptor chain
231 * Sets @desc to be the head of the new active descriptor chain. This is the
232 * chain which is processed next. The active list must be empty before calling
235 * Called with @edmac->lock held and interrupts disabled.
237 static void ep93xx_dma_set_active(struct ep93xx_dma_chan
*edmac
,
238 struct ep93xx_dma_desc
*desc
)
240 BUG_ON(!list_empty(&edmac
->active
));
242 list_add_tail(&desc
->node
, &edmac
->active
);
244 /* Flatten the @desc->tx_list chain into @edmac->active list */
245 while (!list_empty(&desc
->tx_list
)) {
246 struct ep93xx_dma_desc
*d
= list_first_entry(&desc
->tx_list
,
247 struct ep93xx_dma_desc
, node
);
250 * We copy the callback parameters from the first descriptor
251 * to all the chained descriptors. This way we can call the
252 * callback without having to find out the first descriptor in
253 * the chain. Useful for cyclic transfers.
255 d
->txd
.callback
= desc
->txd
.callback
;
256 d
->txd
.callback_param
= desc
->txd
.callback_param
;
258 list_move_tail(&d
->node
, &edmac
->active
);
262 /* Called with @edmac->lock held and interrupts disabled */
263 static struct ep93xx_dma_desc
*
264 ep93xx_dma_get_active(struct ep93xx_dma_chan
*edmac
)
266 return list_first_entry_or_null(&edmac
->active
,
267 struct ep93xx_dma_desc
, node
);
271 * ep93xx_dma_advance_active - advances to the next active descriptor
274 * Function advances active descriptor to the next in the @edmac->active and
275 * returns %true if we still have descriptors in the chain to process.
276 * Otherwise returns %false.
278 * When the channel is in cyclic mode always returns %true.
280 * Called with @edmac->lock held and interrupts disabled.
282 static bool ep93xx_dma_advance_active(struct ep93xx_dma_chan
*edmac
)
284 struct ep93xx_dma_desc
*desc
;
286 list_rotate_left(&edmac
->active
);
288 if (test_bit(EP93XX_DMA_IS_CYCLIC
, &edmac
->flags
))
291 desc
= ep93xx_dma_get_active(edmac
);
296 * If txd.cookie is set it means that we are back in the first
297 * descriptor in the chain and hence done with it.
299 return !desc
->txd
.cookie
;
303 * M2P DMA implementation
306 static void m2p_set_control(struct ep93xx_dma_chan
*edmac
, u32 control
)
308 writel(control
, edmac
->regs
+ M2P_CONTROL
);
310 * EP93xx User's Guide states that we must perform a dummy read after
311 * write to the control register.
313 readl(edmac
->regs
+ M2P_CONTROL
);
316 static int m2p_hw_setup(struct ep93xx_dma_chan
*edmac
)
318 struct ep93xx_dma_data
*data
= edmac
->chan
.private;
321 writel(data
->port
& 0xf, edmac
->regs
+ M2P_PPALLOC
);
323 control
= M2P_CONTROL_CH_ERROR_INT
| M2P_CONTROL_ICE
324 | M2P_CONTROL_ENABLE
;
325 m2p_set_control(edmac
, control
);
332 static inline u32
m2p_channel_state(struct ep93xx_dma_chan
*edmac
)
334 return (readl(edmac
->regs
+ M2P_STATUS
) >> 4) & 0x3;
337 static void m2p_hw_synchronize(struct ep93xx_dma_chan
*edmac
)
342 spin_lock_irqsave(&edmac
->lock
, flags
);
343 control
= readl(edmac
->regs
+ M2P_CONTROL
);
344 control
&= ~(M2P_CONTROL_STALLINT
| M2P_CONTROL_NFBINT
);
345 m2p_set_control(edmac
, control
);
346 spin_unlock_irqrestore(&edmac
->lock
, flags
);
348 while (m2p_channel_state(edmac
) >= M2P_STATE_ON
)
352 static void m2p_hw_shutdown(struct ep93xx_dma_chan
*edmac
)
354 m2p_set_control(edmac
, 0);
356 while (m2p_channel_state(edmac
) != M2P_STATE_IDLE
)
357 dev_warn(chan2dev(edmac
), "M2P: Not yet IDLE\n");
360 static void m2p_fill_desc(struct ep93xx_dma_chan
*edmac
)
362 struct ep93xx_dma_desc
*desc
;
365 desc
= ep93xx_dma_get_active(edmac
);
367 dev_warn(chan2dev(edmac
), "M2P: empty descriptor list\n");
371 if (ep93xx_dma_chan_direction(&edmac
->chan
) == DMA_MEM_TO_DEV
)
372 bus_addr
= desc
->src_addr
;
374 bus_addr
= desc
->dst_addr
;
376 if (edmac
->buffer
== 0) {
377 writel(desc
->size
, edmac
->regs
+ M2P_MAXCNT0
);
378 writel(bus_addr
, edmac
->regs
+ M2P_BASE0
);
380 writel(desc
->size
, edmac
->regs
+ M2P_MAXCNT1
);
381 writel(bus_addr
, edmac
->regs
+ M2P_BASE1
);
387 static void m2p_hw_submit(struct ep93xx_dma_chan
*edmac
)
389 u32 control
= readl(edmac
->regs
+ M2P_CONTROL
);
391 m2p_fill_desc(edmac
);
392 control
|= M2P_CONTROL_STALLINT
;
394 if (ep93xx_dma_advance_active(edmac
)) {
395 m2p_fill_desc(edmac
);
396 control
|= M2P_CONTROL_NFBINT
;
399 m2p_set_control(edmac
, control
);
402 static int m2p_hw_interrupt(struct ep93xx_dma_chan
*edmac
)
404 u32 irq_status
= readl(edmac
->regs
+ M2P_INTERRUPT
);
407 if (irq_status
& M2P_INTERRUPT_ERROR
) {
408 struct ep93xx_dma_desc
*desc
= ep93xx_dma_get_active(edmac
);
410 /* Clear the error interrupt */
411 writel(1, edmac
->regs
+ M2P_INTERRUPT
);
414 * It seems that there is no easy way of reporting errors back
415 * to client so we just report the error here and continue as
418 * Revisit this when there is a mechanism to report back the
421 dev_err(chan2dev(edmac
),
422 "DMA transfer failed! Details:\n"
424 "\tsrc_addr : 0x%08x\n"
425 "\tdst_addr : 0x%08x\n"
427 desc
->txd
.cookie
, desc
->src_addr
, desc
->dst_addr
,
432 * Even latest E2 silicon revision sometimes assert STALL interrupt
433 * instead of NFB. Therefore we treat them equally, basing on the
434 * amount of data we still have to transfer.
436 if (!(irq_status
& (M2P_INTERRUPT_STALL
| M2P_INTERRUPT_NFB
)))
437 return INTERRUPT_UNKNOWN
;
439 if (ep93xx_dma_advance_active(edmac
)) {
440 m2p_fill_desc(edmac
);
441 return INTERRUPT_NEXT_BUFFER
;
444 /* Disable interrupts */
445 control
= readl(edmac
->regs
+ M2P_CONTROL
);
446 control
&= ~(M2P_CONTROL_STALLINT
| M2P_CONTROL_NFBINT
);
447 m2p_set_control(edmac
, control
);
449 return INTERRUPT_DONE
;
453 * M2M DMA implementation
456 static int m2m_hw_setup(struct ep93xx_dma_chan
*edmac
)
458 const struct ep93xx_dma_data
*data
= edmac
->chan
.private;
462 /* This is memcpy channel, nothing to configure */
463 writel(control
, edmac
->regs
+ M2M_CONTROL
);
467 switch (data
->port
) {
470 * This was found via experimenting - anything less than 5
471 * causes the channel to perform only a partial transfer which
472 * leads to problems since we don't get DONE interrupt then.
474 control
= (5 << M2M_CONTROL_PWSC_SHIFT
);
475 control
|= M2M_CONTROL_NO_HDSK
;
477 if (data
->direction
== DMA_MEM_TO_DEV
) {
478 control
|= M2M_CONTROL_DAH
;
479 control
|= M2M_CONTROL_TM_TX
;
480 control
|= M2M_CONTROL_RSS_SSPTX
;
482 control
|= M2M_CONTROL_SAH
;
483 control
|= M2M_CONTROL_TM_RX
;
484 control
|= M2M_CONTROL_RSS_SSPRX
;
490 * This IDE part is totally untested. Values below are taken
491 * from the EP93xx Users's Guide and might not be correct.
493 if (data
->direction
== DMA_MEM_TO_DEV
) {
494 /* Worst case from the UG */
495 control
= (3 << M2M_CONTROL_PWSC_SHIFT
);
496 control
|= M2M_CONTROL_DAH
;
497 control
|= M2M_CONTROL_TM_TX
;
499 control
= (2 << M2M_CONTROL_PWSC_SHIFT
);
500 control
|= M2M_CONTROL_SAH
;
501 control
|= M2M_CONTROL_TM_RX
;
504 control
|= M2M_CONTROL_NO_HDSK
;
505 control
|= M2M_CONTROL_RSS_IDE
;
506 control
|= M2M_CONTROL_PW_16
;
513 writel(control
, edmac
->regs
+ M2M_CONTROL
);
517 static void m2m_hw_shutdown(struct ep93xx_dma_chan
*edmac
)
519 /* Just disable the channel */
520 writel(0, edmac
->regs
+ M2M_CONTROL
);
523 static void m2m_fill_desc(struct ep93xx_dma_chan
*edmac
)
525 struct ep93xx_dma_desc
*desc
;
527 desc
= ep93xx_dma_get_active(edmac
);
529 dev_warn(chan2dev(edmac
), "M2M: empty descriptor list\n");
533 if (edmac
->buffer
== 0) {
534 writel(desc
->src_addr
, edmac
->regs
+ M2M_SAR_BASE0
);
535 writel(desc
->dst_addr
, edmac
->regs
+ M2M_DAR_BASE0
);
536 writel(desc
->size
, edmac
->regs
+ M2M_BCR0
);
538 writel(desc
->src_addr
, edmac
->regs
+ M2M_SAR_BASE1
);
539 writel(desc
->dst_addr
, edmac
->regs
+ M2M_DAR_BASE1
);
540 writel(desc
->size
, edmac
->regs
+ M2M_BCR1
);
546 static void m2m_hw_submit(struct ep93xx_dma_chan
*edmac
)
548 struct ep93xx_dma_data
*data
= edmac
->chan
.private;
549 u32 control
= readl(edmac
->regs
+ M2M_CONTROL
);
552 * Since we allow clients to configure PW (peripheral width) we always
553 * clear PW bits here and then set them according what is given in
554 * the runtime configuration.
556 control
&= ~M2M_CONTROL_PW_MASK
;
557 control
|= edmac
->runtime_ctrl
;
559 m2m_fill_desc(edmac
);
560 control
|= M2M_CONTROL_DONEINT
;
562 if (ep93xx_dma_advance_active(edmac
)) {
563 m2m_fill_desc(edmac
);
564 control
|= M2M_CONTROL_NFBINT
;
568 * Now we can finally enable the channel. For M2M channel this must be
569 * done _after_ the BCRx registers are programmed.
571 control
|= M2M_CONTROL_ENABLE
;
572 writel(control
, edmac
->regs
+ M2M_CONTROL
);
576 * For memcpy channels the software trigger must be asserted
577 * in order to start the memcpy operation.
579 control
|= M2M_CONTROL_START
;
580 writel(control
, edmac
->regs
+ M2M_CONTROL
);
585 * According to EP93xx User's Guide, we should receive DONE interrupt when all
586 * M2M DMA controller transactions complete normally. This is not always the
587 * case - sometimes EP93xx M2M DMA asserts DONE interrupt when the DMA channel
588 * is still running (channel Buffer FSM in DMA_BUF_ON state, and channel
589 * Control FSM in DMA_MEM_RD state, observed at least in IDE-DMA operation).
590 * In effect, disabling the channel when only DONE bit is set could stop
591 * currently running DMA transfer. To avoid this, we use Buffer FSM and
592 * Control FSM to check current state of DMA channel.
594 static int m2m_hw_interrupt(struct ep93xx_dma_chan
*edmac
)
596 u32 status
= readl(edmac
->regs
+ M2M_STATUS
);
597 u32 ctl_fsm
= status
& M2M_STATUS_CTL_MASK
;
598 u32 buf_fsm
= status
& M2M_STATUS_BUF_MASK
;
599 bool done
= status
& M2M_STATUS_DONE
;
602 struct ep93xx_dma_desc
*desc
;
604 /* Accept only DONE and NFB interrupts */
605 if (!(readl(edmac
->regs
+ M2M_INTERRUPT
) & M2M_INTERRUPT_MASK
))
606 return INTERRUPT_UNKNOWN
;
609 /* Clear the DONE bit */
610 writel(0, edmac
->regs
+ M2M_INTERRUPT
);
614 * Check whether we are done with descriptors or not. This, together
615 * with DMA channel state, determines action to take in interrupt.
617 desc
= ep93xx_dma_get_active(edmac
);
618 last_done
= !desc
|| desc
->txd
.cookie
;
621 * Use M2M DMA Buffer FSM and Control FSM to check current state of
622 * DMA channel. Using DONE and NFB bits from channel status register
623 * or bits from channel interrupt register is not reliable.
626 (buf_fsm
== M2M_STATUS_BUF_NO
||
627 buf_fsm
== M2M_STATUS_BUF_ON
)) {
629 * Two buffers are ready for update when Buffer FSM is in
630 * DMA_NO_BUF state. Only one buffer can be prepared without
631 * disabling the channel or polling the DONE bit.
632 * To simplify things, always prepare only one buffer.
634 if (ep93xx_dma_advance_active(edmac
)) {
635 m2m_fill_desc(edmac
);
636 if (done
&& !edmac
->chan
.private) {
637 /* Software trigger for memcpy channel */
638 control
= readl(edmac
->regs
+ M2M_CONTROL
);
639 control
|= M2M_CONTROL_START
;
640 writel(control
, edmac
->regs
+ M2M_CONTROL
);
642 return INTERRUPT_NEXT_BUFFER
;
649 * Disable the channel only when Buffer FSM is in DMA_NO_BUF state
650 * and Control FSM is in DMA_STALL state.
653 buf_fsm
== M2M_STATUS_BUF_NO
&&
654 ctl_fsm
== M2M_STATUS_CTL_STALL
) {
655 /* Disable interrupts and the channel */
656 control
= readl(edmac
->regs
+ M2M_CONTROL
);
657 control
&= ~(M2M_CONTROL_DONEINT
| M2M_CONTROL_NFBINT
658 | M2M_CONTROL_ENABLE
);
659 writel(control
, edmac
->regs
+ M2M_CONTROL
);
660 return INTERRUPT_DONE
;
664 * Nothing to do this time.
666 return INTERRUPT_NEXT_BUFFER
;
670 * DMA engine API implementation
673 static struct ep93xx_dma_desc
*
674 ep93xx_dma_desc_get(struct ep93xx_dma_chan
*edmac
)
676 struct ep93xx_dma_desc
*desc
, *_desc
;
677 struct ep93xx_dma_desc
*ret
= NULL
;
680 spin_lock_irqsave(&edmac
->lock
, flags
);
681 list_for_each_entry_safe(desc
, _desc
, &edmac
->free_list
, node
) {
682 if (async_tx_test_ack(&desc
->txd
)) {
683 list_del_init(&desc
->node
);
685 /* Re-initialize the descriptor */
689 desc
->complete
= false;
690 desc
->txd
.cookie
= 0;
691 desc
->txd
.callback
= NULL
;
692 desc
->txd
.callback_param
= NULL
;
698 spin_unlock_irqrestore(&edmac
->lock
, flags
);
702 static void ep93xx_dma_desc_put(struct ep93xx_dma_chan
*edmac
,
703 struct ep93xx_dma_desc
*desc
)
708 spin_lock_irqsave(&edmac
->lock
, flags
);
709 list_splice_init(&desc
->tx_list
, &edmac
->free_list
);
710 list_add(&desc
->node
, &edmac
->free_list
);
711 spin_unlock_irqrestore(&edmac
->lock
, flags
);
716 * ep93xx_dma_advance_work - start processing the next pending transaction
719 * If we have pending transactions queued and we are currently idling, this
720 * function takes the next queued transaction from the @edmac->queue and
721 * pushes it to the hardware for execution.
723 static void ep93xx_dma_advance_work(struct ep93xx_dma_chan
*edmac
)
725 struct ep93xx_dma_desc
*new;
728 spin_lock_irqsave(&edmac
->lock
, flags
);
729 if (!list_empty(&edmac
->active
) || list_empty(&edmac
->queue
)) {
730 spin_unlock_irqrestore(&edmac
->lock
, flags
);
734 /* Take the next descriptor from the pending queue */
735 new = list_first_entry(&edmac
->queue
, struct ep93xx_dma_desc
, node
);
736 list_del_init(&new->node
);
738 ep93xx_dma_set_active(edmac
, new);
740 /* Push it to the hardware */
741 edmac
->edma
->hw_submit(edmac
);
742 spin_unlock_irqrestore(&edmac
->lock
, flags
);
745 static void ep93xx_dma_tasklet(unsigned long data
)
747 struct ep93xx_dma_chan
*edmac
= (struct ep93xx_dma_chan
*)data
;
748 struct ep93xx_dma_desc
*desc
, *d
;
749 struct dmaengine_desc_callback cb
;
752 memset(&cb
, 0, sizeof(cb
));
753 spin_lock_irq(&edmac
->lock
);
755 * If dma_terminate_all() was called before we get to run, the active
756 * list has become empty. If that happens we aren't supposed to do
757 * anything more than call ep93xx_dma_advance_work().
759 desc
= ep93xx_dma_get_active(edmac
);
761 if (desc
->complete
) {
762 /* mark descriptor complete for non cyclic case only */
763 if (!test_bit(EP93XX_DMA_IS_CYCLIC
, &edmac
->flags
))
764 dma_cookie_complete(&desc
->txd
);
765 list_splice_init(&edmac
->active
, &list
);
767 dmaengine_desc_get_callback(&desc
->txd
, &cb
);
769 spin_unlock_irq(&edmac
->lock
);
771 /* Pick up the next descriptor from the queue */
772 ep93xx_dma_advance_work(edmac
);
774 /* Now we can release all the chained descriptors */
775 list_for_each_entry_safe(desc
, d
, &list
, node
) {
776 dma_descriptor_unmap(&desc
->txd
);
777 ep93xx_dma_desc_put(edmac
, desc
);
780 dmaengine_desc_callback_invoke(&cb
, NULL
);
783 static irqreturn_t
ep93xx_dma_interrupt(int irq
, void *dev_id
)
785 struct ep93xx_dma_chan
*edmac
= dev_id
;
786 struct ep93xx_dma_desc
*desc
;
787 irqreturn_t ret
= IRQ_HANDLED
;
789 spin_lock(&edmac
->lock
);
791 desc
= ep93xx_dma_get_active(edmac
);
793 dev_warn(chan2dev(edmac
),
794 "got interrupt while active list is empty\n");
795 spin_unlock(&edmac
->lock
);
799 switch (edmac
->edma
->hw_interrupt(edmac
)) {
801 desc
->complete
= true;
802 tasklet_schedule(&edmac
->tasklet
);
805 case INTERRUPT_NEXT_BUFFER
:
806 if (test_bit(EP93XX_DMA_IS_CYCLIC
, &edmac
->flags
))
807 tasklet_schedule(&edmac
->tasklet
);
811 dev_warn(chan2dev(edmac
), "unknown interrupt!\n");
816 spin_unlock(&edmac
->lock
);
821 * ep93xx_dma_tx_submit - set the prepared descriptor(s) to be executed
822 * @tx: descriptor to be executed
824 * Function will execute given descriptor on the hardware or if the hardware
825 * is busy, queue the descriptor to be executed later on. Returns cookie which
826 * can be used to poll the status of the descriptor.
828 static dma_cookie_t
ep93xx_dma_tx_submit(struct dma_async_tx_descriptor
*tx
)
830 struct ep93xx_dma_chan
*edmac
= to_ep93xx_dma_chan(tx
->chan
);
831 struct ep93xx_dma_desc
*desc
;
835 spin_lock_irqsave(&edmac
->lock
, flags
);
836 cookie
= dma_cookie_assign(tx
);
838 desc
= container_of(tx
, struct ep93xx_dma_desc
, txd
);
841 * If nothing is currently prosessed, we push this descriptor
842 * directly to the hardware. Otherwise we put the descriptor
843 * to the pending queue.
845 if (list_empty(&edmac
->active
)) {
846 ep93xx_dma_set_active(edmac
, desc
);
847 edmac
->edma
->hw_submit(edmac
);
849 list_add_tail(&desc
->node
, &edmac
->queue
);
852 spin_unlock_irqrestore(&edmac
->lock
, flags
);
857 * ep93xx_dma_alloc_chan_resources - allocate resources for the channel
858 * @chan: channel to allocate resources
860 * Function allocates necessary resources for the given DMA channel and
861 * returns number of allocated descriptors for the channel. Negative errno
862 * is returned in case of failure.
864 static int ep93xx_dma_alloc_chan_resources(struct dma_chan
*chan
)
866 struct ep93xx_dma_chan
*edmac
= to_ep93xx_dma_chan(chan
);
867 struct ep93xx_dma_data
*data
= chan
->private;
868 const char *name
= dma_chan_name(chan
);
871 /* Sanity check the channel parameters */
872 if (!edmac
->edma
->m2m
) {
875 if (data
->port
< EP93XX_DMA_I2S1
||
876 data
->port
> EP93XX_DMA_IRDA
)
878 if (data
->direction
!= ep93xx_dma_chan_direction(chan
))
882 switch (data
->port
) {
885 if (!is_slave_direction(data
->direction
))
894 if (data
&& data
->name
)
897 ret
= clk_enable(edmac
->clk
);
901 ret
= request_irq(edmac
->irq
, ep93xx_dma_interrupt
, 0, name
, edmac
);
903 goto fail_clk_disable
;
905 spin_lock_irq(&edmac
->lock
);
906 dma_cookie_init(&edmac
->chan
);
907 ret
= edmac
->edma
->hw_setup(edmac
);
908 spin_unlock_irq(&edmac
->lock
);
913 for (i
= 0; i
< DMA_MAX_CHAN_DESCRIPTORS
; i
++) {
914 struct ep93xx_dma_desc
*desc
;
916 desc
= kzalloc(sizeof(*desc
), GFP_KERNEL
);
918 dev_warn(chan2dev(edmac
), "not enough descriptors\n");
922 INIT_LIST_HEAD(&desc
->tx_list
);
924 dma_async_tx_descriptor_init(&desc
->txd
, chan
);
925 desc
->txd
.flags
= DMA_CTRL_ACK
;
926 desc
->txd
.tx_submit
= ep93xx_dma_tx_submit
;
928 ep93xx_dma_desc_put(edmac
, desc
);
934 free_irq(edmac
->irq
, edmac
);
936 clk_disable(edmac
->clk
);
942 * ep93xx_dma_free_chan_resources - release resources for the channel
945 * Function releases all the resources allocated for the given channel.
946 * The channel must be idle when this is called.
948 static void ep93xx_dma_free_chan_resources(struct dma_chan
*chan
)
950 struct ep93xx_dma_chan
*edmac
= to_ep93xx_dma_chan(chan
);
951 struct ep93xx_dma_desc
*desc
, *d
;
955 BUG_ON(!list_empty(&edmac
->active
));
956 BUG_ON(!list_empty(&edmac
->queue
));
958 spin_lock_irqsave(&edmac
->lock
, flags
);
959 edmac
->edma
->hw_shutdown(edmac
);
960 edmac
->runtime_addr
= 0;
961 edmac
->runtime_ctrl
= 0;
963 list_splice_init(&edmac
->free_list
, &list
);
964 spin_unlock_irqrestore(&edmac
->lock
, flags
);
966 list_for_each_entry_safe(desc
, d
, &list
, node
)
969 clk_disable(edmac
->clk
);
970 free_irq(edmac
->irq
, edmac
);
974 * ep93xx_dma_prep_dma_memcpy - prepare a memcpy DMA operation
976 * @dest: destination bus address
977 * @src: source bus address
978 * @len: size of the transaction
979 * @flags: flags for the descriptor
981 * Returns a valid DMA descriptor or %NULL in case of failure.
983 static struct dma_async_tx_descriptor
*
984 ep93xx_dma_prep_dma_memcpy(struct dma_chan
*chan
, dma_addr_t dest
,
985 dma_addr_t src
, size_t len
, unsigned long flags
)
987 struct ep93xx_dma_chan
*edmac
= to_ep93xx_dma_chan(chan
);
988 struct ep93xx_dma_desc
*desc
, *first
;
989 size_t bytes
, offset
;
992 for (offset
= 0; offset
< len
; offset
+= bytes
) {
993 desc
= ep93xx_dma_desc_get(edmac
);
995 dev_warn(chan2dev(edmac
), "couln't get descriptor\n");
999 bytes
= min_t(size_t, len
- offset
, DMA_MAX_CHAN_BYTES
);
1001 desc
->src_addr
= src
+ offset
;
1002 desc
->dst_addr
= dest
+ offset
;
1008 list_add_tail(&desc
->node
, &first
->tx_list
);
1011 first
->txd
.cookie
= -EBUSY
;
1012 first
->txd
.flags
= flags
;
1016 ep93xx_dma_desc_put(edmac
, first
);
1021 * ep93xx_dma_prep_slave_sg - prepare a slave DMA operation
1023 * @sgl: list of buffers to transfer
1024 * @sg_len: number of entries in @sgl
1025 * @dir: direction of tha DMA transfer
1026 * @flags: flags for the descriptor
1027 * @context: operation context (ignored)
1029 * Returns a valid DMA descriptor or %NULL in case of failure.
1031 static struct dma_async_tx_descriptor
*
1032 ep93xx_dma_prep_slave_sg(struct dma_chan
*chan
, struct scatterlist
*sgl
,
1033 unsigned int sg_len
, enum dma_transfer_direction dir
,
1034 unsigned long flags
, void *context
)
1036 struct ep93xx_dma_chan
*edmac
= to_ep93xx_dma_chan(chan
);
1037 struct ep93xx_dma_desc
*desc
, *first
;
1038 struct scatterlist
*sg
;
1041 if (!edmac
->edma
->m2m
&& dir
!= ep93xx_dma_chan_direction(chan
)) {
1042 dev_warn(chan2dev(edmac
),
1043 "channel was configured with different direction\n");
1047 if (test_bit(EP93XX_DMA_IS_CYCLIC
, &edmac
->flags
)) {
1048 dev_warn(chan2dev(edmac
),
1049 "channel is already used for cyclic transfers\n");
1054 for_each_sg(sgl
, sg
, sg_len
, i
) {
1055 size_t len
= sg_dma_len(sg
);
1057 if (len
> DMA_MAX_CHAN_BYTES
) {
1058 dev_warn(chan2dev(edmac
), "too big transfer size %zu\n",
1063 desc
= ep93xx_dma_desc_get(edmac
);
1065 dev_warn(chan2dev(edmac
), "couln't get descriptor\n");
1069 if (dir
== DMA_MEM_TO_DEV
) {
1070 desc
->src_addr
= sg_dma_address(sg
);
1071 desc
->dst_addr
= edmac
->runtime_addr
;
1073 desc
->src_addr
= edmac
->runtime_addr
;
1074 desc
->dst_addr
= sg_dma_address(sg
);
1081 list_add_tail(&desc
->node
, &first
->tx_list
);
1084 first
->txd
.cookie
= -EBUSY
;
1085 first
->txd
.flags
= flags
;
1090 ep93xx_dma_desc_put(edmac
, first
);
1095 * ep93xx_dma_prep_dma_cyclic - prepare a cyclic DMA operation
1097 * @dma_addr: DMA mapped address of the buffer
1098 * @buf_len: length of the buffer (in bytes)
1099 * @period_len: length of a single period
1100 * @dir: direction of the operation
1101 * @flags: tx descriptor status flags
1103 * Prepares a descriptor for cyclic DMA operation. This means that once the
1104 * descriptor is submitted, we will be submitting in a @period_len sized
1105 * buffers and calling callback once the period has been elapsed. Transfer
1106 * terminates only when client calls dmaengine_terminate_all() for this
1109 * Returns a valid DMA descriptor or %NULL in case of failure.
1111 static struct dma_async_tx_descriptor
*
1112 ep93xx_dma_prep_dma_cyclic(struct dma_chan
*chan
, dma_addr_t dma_addr
,
1113 size_t buf_len
, size_t period_len
,
1114 enum dma_transfer_direction dir
, unsigned long flags
)
1116 struct ep93xx_dma_chan
*edmac
= to_ep93xx_dma_chan(chan
);
1117 struct ep93xx_dma_desc
*desc
, *first
;
1120 if (!edmac
->edma
->m2m
&& dir
!= ep93xx_dma_chan_direction(chan
)) {
1121 dev_warn(chan2dev(edmac
),
1122 "channel was configured with different direction\n");
1126 if (test_and_set_bit(EP93XX_DMA_IS_CYCLIC
, &edmac
->flags
)) {
1127 dev_warn(chan2dev(edmac
),
1128 "channel is already used for cyclic transfers\n");
1132 if (period_len
> DMA_MAX_CHAN_BYTES
) {
1133 dev_warn(chan2dev(edmac
), "too big period length %zu\n",
1138 /* Split the buffer into period size chunks */
1140 for (offset
= 0; offset
< buf_len
; offset
+= period_len
) {
1141 desc
= ep93xx_dma_desc_get(edmac
);
1143 dev_warn(chan2dev(edmac
), "couln't get descriptor\n");
1147 if (dir
== DMA_MEM_TO_DEV
) {
1148 desc
->src_addr
= dma_addr
+ offset
;
1149 desc
->dst_addr
= edmac
->runtime_addr
;
1151 desc
->src_addr
= edmac
->runtime_addr
;
1152 desc
->dst_addr
= dma_addr
+ offset
;
1155 desc
->size
= period_len
;
1160 list_add_tail(&desc
->node
, &first
->tx_list
);
1163 first
->txd
.cookie
= -EBUSY
;
1168 ep93xx_dma_desc_put(edmac
, first
);
1173 * ep93xx_dma_synchronize - Synchronizes the termination of transfers to the
1177 * Synchronizes the DMA channel termination to the current context. When this
1178 * function returns it is guaranteed that all transfers for previously issued
1179 * descriptors have stopped and and it is safe to free the memory associated
1180 * with them. Furthermore it is guaranteed that all complete callback functions
1181 * for a previously submitted descriptor have finished running and it is safe to
1182 * free resources accessed from within the complete callbacks.
1184 static void ep93xx_dma_synchronize(struct dma_chan
*chan
)
1186 struct ep93xx_dma_chan
*edmac
= to_ep93xx_dma_chan(chan
);
1188 if (edmac
->edma
->hw_synchronize
)
1189 edmac
->edma
->hw_synchronize(edmac
);
1193 * ep93xx_dma_terminate_all - terminate all transactions
1196 * Stops all DMA transactions. All descriptors are put back to the
1197 * @edmac->free_list and callbacks are _not_ called.
1199 static int ep93xx_dma_terminate_all(struct dma_chan
*chan
)
1201 struct ep93xx_dma_chan
*edmac
= to_ep93xx_dma_chan(chan
);
1202 struct ep93xx_dma_desc
*desc
, *_d
;
1203 unsigned long flags
;
1206 spin_lock_irqsave(&edmac
->lock
, flags
);
1207 /* First we disable and flush the DMA channel */
1208 edmac
->edma
->hw_shutdown(edmac
);
1209 clear_bit(EP93XX_DMA_IS_CYCLIC
, &edmac
->flags
);
1210 list_splice_init(&edmac
->active
, &list
);
1211 list_splice_init(&edmac
->queue
, &list
);
1213 * We then re-enable the channel. This way we can continue submitting
1214 * the descriptors by just calling ->hw_submit() again.
1216 edmac
->edma
->hw_setup(edmac
);
1217 spin_unlock_irqrestore(&edmac
->lock
, flags
);
1219 list_for_each_entry_safe(desc
, _d
, &list
, node
)
1220 ep93xx_dma_desc_put(edmac
, desc
);
1225 static int ep93xx_dma_slave_config(struct dma_chan
*chan
,
1226 struct dma_slave_config
*config
)
1228 struct ep93xx_dma_chan
*edmac
= to_ep93xx_dma_chan(chan
);
1229 enum dma_slave_buswidth width
;
1230 unsigned long flags
;
1233 if (!edmac
->edma
->m2m
)
1236 switch (config
->direction
) {
1237 case DMA_DEV_TO_MEM
:
1238 width
= config
->src_addr_width
;
1239 addr
= config
->src_addr
;
1242 case DMA_MEM_TO_DEV
:
1243 width
= config
->dst_addr_width
;
1244 addr
= config
->dst_addr
;
1252 case DMA_SLAVE_BUSWIDTH_1_BYTE
:
1255 case DMA_SLAVE_BUSWIDTH_2_BYTES
:
1256 ctrl
= M2M_CONTROL_PW_16
;
1258 case DMA_SLAVE_BUSWIDTH_4_BYTES
:
1259 ctrl
= M2M_CONTROL_PW_32
;
1265 spin_lock_irqsave(&edmac
->lock
, flags
);
1266 edmac
->runtime_addr
= addr
;
1267 edmac
->runtime_ctrl
= ctrl
;
1268 spin_unlock_irqrestore(&edmac
->lock
, flags
);
1274 * ep93xx_dma_tx_status - check if a transaction is completed
1276 * @cookie: transaction specific cookie
1277 * @state: state of the transaction is stored here if given
1279 * This function can be used to query state of a given transaction.
1281 static enum dma_status
ep93xx_dma_tx_status(struct dma_chan
*chan
,
1282 dma_cookie_t cookie
,
1283 struct dma_tx_state
*state
)
1285 return dma_cookie_status(chan
, cookie
, state
);
1289 * ep93xx_dma_issue_pending - push pending transactions to the hardware
1292 * When this function is called, all pending transactions are pushed to the
1293 * hardware and executed.
1295 static void ep93xx_dma_issue_pending(struct dma_chan
*chan
)
1297 ep93xx_dma_advance_work(to_ep93xx_dma_chan(chan
));
1300 static int __init
ep93xx_dma_probe(struct platform_device
*pdev
)
1302 struct ep93xx_dma_platform_data
*pdata
= dev_get_platdata(&pdev
->dev
);
1303 struct ep93xx_dma_engine
*edma
;
1304 struct dma_device
*dma_dev
;
1308 edma_size
= pdata
->num_channels
* sizeof(struct ep93xx_dma_chan
);
1309 edma
= kzalloc(sizeof(*edma
) + edma_size
, GFP_KERNEL
);
1313 dma_dev
= &edma
->dma_dev
;
1314 edma
->m2m
= platform_get_device_id(pdev
)->driver_data
;
1315 edma
->num_channels
= pdata
->num_channels
;
1317 INIT_LIST_HEAD(&dma_dev
->channels
);
1318 for (i
= 0; i
< pdata
->num_channels
; i
++) {
1319 const struct ep93xx_dma_chan_data
*cdata
= &pdata
->channels
[i
];
1320 struct ep93xx_dma_chan
*edmac
= &edma
->channels
[i
];
1322 edmac
->chan
.device
= dma_dev
;
1323 edmac
->regs
= cdata
->base
;
1324 edmac
->irq
= cdata
->irq
;
1327 edmac
->clk
= clk_get(NULL
, cdata
->name
);
1328 if (IS_ERR(edmac
->clk
)) {
1329 dev_warn(&pdev
->dev
, "failed to get clock for %s\n",
1334 spin_lock_init(&edmac
->lock
);
1335 INIT_LIST_HEAD(&edmac
->active
);
1336 INIT_LIST_HEAD(&edmac
->queue
);
1337 INIT_LIST_HEAD(&edmac
->free_list
);
1338 tasklet_init(&edmac
->tasklet
, ep93xx_dma_tasklet
,
1339 (unsigned long)edmac
);
1341 list_add_tail(&edmac
->chan
.device_node
,
1342 &dma_dev
->channels
);
1345 dma_cap_zero(dma_dev
->cap_mask
);
1346 dma_cap_set(DMA_SLAVE
, dma_dev
->cap_mask
);
1347 dma_cap_set(DMA_CYCLIC
, dma_dev
->cap_mask
);
1349 dma_dev
->dev
= &pdev
->dev
;
1350 dma_dev
->device_alloc_chan_resources
= ep93xx_dma_alloc_chan_resources
;
1351 dma_dev
->device_free_chan_resources
= ep93xx_dma_free_chan_resources
;
1352 dma_dev
->device_prep_slave_sg
= ep93xx_dma_prep_slave_sg
;
1353 dma_dev
->device_prep_dma_cyclic
= ep93xx_dma_prep_dma_cyclic
;
1354 dma_dev
->device_config
= ep93xx_dma_slave_config
;
1355 dma_dev
->device_synchronize
= ep93xx_dma_synchronize
;
1356 dma_dev
->device_terminate_all
= ep93xx_dma_terminate_all
;
1357 dma_dev
->device_issue_pending
= ep93xx_dma_issue_pending
;
1358 dma_dev
->device_tx_status
= ep93xx_dma_tx_status
;
1360 dma_set_max_seg_size(dma_dev
->dev
, DMA_MAX_CHAN_BYTES
);
1363 dma_cap_set(DMA_MEMCPY
, dma_dev
->cap_mask
);
1364 dma_dev
->device_prep_dma_memcpy
= ep93xx_dma_prep_dma_memcpy
;
1366 edma
->hw_setup
= m2m_hw_setup
;
1367 edma
->hw_shutdown
= m2m_hw_shutdown
;
1368 edma
->hw_submit
= m2m_hw_submit
;
1369 edma
->hw_interrupt
= m2m_hw_interrupt
;
1371 dma_cap_set(DMA_PRIVATE
, dma_dev
->cap_mask
);
1373 edma
->hw_synchronize
= m2p_hw_synchronize
;
1374 edma
->hw_setup
= m2p_hw_setup
;
1375 edma
->hw_shutdown
= m2p_hw_shutdown
;
1376 edma
->hw_submit
= m2p_hw_submit
;
1377 edma
->hw_interrupt
= m2p_hw_interrupt
;
1380 ret
= dma_async_device_register(dma_dev
);
1381 if (unlikely(ret
)) {
1382 for (i
= 0; i
< edma
->num_channels
; i
++) {
1383 struct ep93xx_dma_chan
*edmac
= &edma
->channels
[i
];
1384 if (!IS_ERR_OR_NULL(edmac
->clk
))
1385 clk_put(edmac
->clk
);
1389 dev_info(dma_dev
->dev
, "EP93xx M2%s DMA ready\n",
1390 edma
->m2m
? "M" : "P");
1396 static const struct platform_device_id ep93xx_dma_driver_ids
[] = {
1397 { "ep93xx-dma-m2p", 0 },
1398 { "ep93xx-dma-m2m", 1 },
1402 static struct platform_driver ep93xx_dma_driver
= {
1404 .name
= "ep93xx-dma",
1406 .id_table
= ep93xx_dma_driver_ids
,
1409 static int __init
ep93xx_dma_module_init(void)
1411 return platform_driver_probe(&ep93xx_dma_driver
, ep93xx_dma_probe
);
1413 subsys_initcall(ep93xx_dma_module_init
);
1415 MODULE_AUTHOR("Mika Westerberg <mika.westerberg@iki.fi>");
1416 MODULE_DESCRIPTION("EP93xx DMA driver");
1417 MODULE_LICENSE("GPL");