2 * drivers/dma/fsl_raid.c
4 * Freescale RAID Engine device driver
7 * Harninder Rai <harninder.rai@freescale.com>
8 * Naveen Burmi <naveenburmi@freescale.com>
11 * Xuelin Shi <xuelin.shi@freescale.com>
13 * Copyright (c) 2010-2014 Freescale Semiconductor, Inc.
15 * Redistribution and use in source and binary forms, with or without
16 * modification, are permitted provided that the following conditions are met:
17 * * Redistributions of source code must retain the above copyright
18 * notice, this list of conditions and the following disclaimer.
19 * * Redistributions in binary form must reproduce the above copyright
20 * notice, this list of conditions and the following disclaimer in the
21 * documentation and/or other materials provided with the distribution.
22 * * Neither the name of Freescale Semiconductor nor the
23 * names of its contributors may be used to endorse or promote products
24 * derived from this software without specific prior written permission.
26 * ALTERNATIVELY, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") as published by the Free Software
28 * Foundation, either version 2 of that License or (at your option) any
31 * THIS SOFTWARE IS PROVIDED BY Freescale Semiconductor ``AS IS'' AND ANY
32 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
33 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
34 * DISCLAIMED. IN NO EVENT SHALL Freescale Semiconductor BE LIABLE FOR ANY
35 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
36 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
37 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
38 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
39 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
40 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
42 * Theory of operation:
44 * General capabilities:
45 * RAID Engine (RE) block is capable of offloading XOR, memcpy and P/Q
46 * calculations required in RAID5 and RAID6 operations. RE driver
47 * registers with Linux's ASYNC layer as dma driver. RE hardware
48 * maintains strict ordering of the requests through chained
52 * Software RAID layer of Linux (MD layer) maintains RAID partitions,
53 * strips, stripes etc. It sends requests to the underlying ASYNC layer
54 * which further passes it to RE driver. ASYNC layer decides which request
55 * goes to which job ring of RE hardware. For every request processed by
56 * RAID Engine, driver gets an interrupt unless coalescing is set. The
57 * per job ring interrupt handler checks the status register for errors,
58 * clears the interrupt and leave the post interrupt processing to the irq
61 #include <linux/interrupt.h>
62 #include <linux/module.h>
63 #include <linux/of_irq.h>
64 #include <linux/of_address.h>
65 #include <linux/of_platform.h>
66 #include <linux/dma-mapping.h>
67 #include <linux/dmapool.h>
68 #include <linux/dmaengine.h>
70 #include <linux/spinlock.h>
71 #include <linux/slab.h>
73 #include "dmaengine.h"
76 #define FSL_RE_MAX_XOR_SRCS 16
77 #define FSL_RE_MAX_PQ_SRCS 16
78 #define FSL_RE_MIN_DESCS 256
79 #define FSL_RE_MAX_DESCS (4 * FSL_RE_MIN_DESCS)
80 #define FSL_RE_FRAME_FORMAT 0x1
81 #define FSL_RE_MAX_DATA_LEN (1024*1024)
83 #define to_fsl_re_dma_desc(tx) container_of(tx, struct fsl_re_desc, async_tx)
85 /* Add descriptors into per chan software queue - submit_q */
86 static dma_cookie_t
fsl_re_tx_submit(struct dma_async_tx_descriptor
*tx
)
88 struct fsl_re_desc
*desc
;
89 struct fsl_re_chan
*re_chan
;
93 desc
= to_fsl_re_dma_desc(tx
);
94 re_chan
= container_of(tx
->chan
, struct fsl_re_chan
, chan
);
96 spin_lock_irqsave(&re_chan
->desc_lock
, flags
);
97 cookie
= dma_cookie_assign(tx
);
98 list_add_tail(&desc
->node
, &re_chan
->submit_q
);
99 spin_unlock_irqrestore(&re_chan
->desc_lock
, flags
);
104 /* Copy descriptor from per chan software queue into hardware job ring */
105 static void fsl_re_issue_pending(struct dma_chan
*chan
)
107 struct fsl_re_chan
*re_chan
;
109 struct fsl_re_desc
*desc
, *_desc
;
112 re_chan
= container_of(chan
, struct fsl_re_chan
, chan
);
114 spin_lock_irqsave(&re_chan
->desc_lock
, flags
);
115 avail
= FSL_RE_SLOT_AVAIL(
116 in_be32(&re_chan
->jrregs
->inbring_slot_avail
));
118 list_for_each_entry_safe(desc
, _desc
, &re_chan
->submit_q
, node
) {
122 list_move_tail(&desc
->node
, &re_chan
->active_q
);
124 memcpy(&re_chan
->inb_ring_virt_addr
[re_chan
->inb_count
],
125 &desc
->hwdesc
, sizeof(struct fsl_re_hw_desc
));
127 re_chan
->inb_count
= (re_chan
->inb_count
+ 1) &
128 FSL_RE_RING_SIZE_MASK
;
129 out_be32(&re_chan
->jrregs
->inbring_add_job
, FSL_RE_ADD_JOB(1));
132 spin_unlock_irqrestore(&re_chan
->desc_lock
, flags
);
135 static void fsl_re_desc_done(struct fsl_re_desc
*desc
)
137 dma_cookie_complete(&desc
->async_tx
);
138 dma_descriptor_unmap(&desc
->async_tx
);
139 dmaengine_desc_get_callback_invoke(&desc
->async_tx
, NULL
);
142 static void fsl_re_cleanup_descs(struct fsl_re_chan
*re_chan
)
144 struct fsl_re_desc
*desc
, *_desc
;
147 spin_lock_irqsave(&re_chan
->desc_lock
, flags
);
148 list_for_each_entry_safe(desc
, _desc
, &re_chan
->ack_q
, node
) {
149 if (async_tx_test_ack(&desc
->async_tx
))
150 list_move_tail(&desc
->node
, &re_chan
->free_q
);
152 spin_unlock_irqrestore(&re_chan
->desc_lock
, flags
);
154 fsl_re_issue_pending(&re_chan
->chan
);
157 static void fsl_re_dequeue(unsigned long data
)
159 struct fsl_re_chan
*re_chan
;
160 struct fsl_re_desc
*desc
, *_desc
;
161 struct fsl_re_hw_desc
*hwdesc
;
163 unsigned int count
, oub_count
;
166 re_chan
= dev_get_drvdata((struct device
*)data
);
168 fsl_re_cleanup_descs(re_chan
);
170 spin_lock_irqsave(&re_chan
->desc_lock
, flags
);
171 count
= FSL_RE_SLOT_FULL(in_be32(&re_chan
->jrregs
->oubring_slot_full
));
174 hwdesc
= &re_chan
->oub_ring_virt_addr
[re_chan
->oub_count
];
175 list_for_each_entry_safe(desc
, _desc
, &re_chan
->active_q
,
177 /* compare the hw dma addr to find the completed */
178 if (desc
->hwdesc
.lbea32
== hwdesc
->lbea32
&&
179 desc
->hwdesc
.addr_low
== hwdesc
->addr_low
) {
186 fsl_re_desc_done(desc
);
187 list_move_tail(&desc
->node
, &re_chan
->ack_q
);
189 dev_err(re_chan
->dev
,
190 "found hwdesc not in sw queue, discard it\n");
193 oub_count
= (re_chan
->oub_count
+ 1) & FSL_RE_RING_SIZE_MASK
;
194 re_chan
->oub_count
= oub_count
;
196 out_be32(&re_chan
->jrregs
->oubring_job_rmvd
,
199 spin_unlock_irqrestore(&re_chan
->desc_lock
, flags
);
202 /* Per Job Ring interrupt handler */
203 static irqreturn_t
fsl_re_isr(int irq
, void *data
)
205 struct fsl_re_chan
*re_chan
;
206 u32 irqstate
, status
;
208 re_chan
= dev_get_drvdata((struct device
*)data
);
210 irqstate
= in_be32(&re_chan
->jrregs
->jr_interrupt_status
);
215 * There's no way in upper layer (read MD layer) to recover from
216 * error conditions except restart everything. In long term we
217 * need to do something more than just crashing
219 if (irqstate
& FSL_RE_ERROR
) {
220 status
= in_be32(&re_chan
->jrregs
->jr_status
);
221 dev_err(re_chan
->dev
, "chan error irqstate: %x, status: %x\n",
225 /* Clear interrupt */
226 out_be32(&re_chan
->jrregs
->jr_interrupt_status
, FSL_RE_CLR_INTR
);
228 tasklet_schedule(&re_chan
->irqtask
);
233 static enum dma_status
fsl_re_tx_status(struct dma_chan
*chan
,
235 struct dma_tx_state
*txstate
)
237 return dma_cookie_status(chan
, cookie
, txstate
);
240 static void fill_cfd_frame(struct fsl_re_cmpnd_frame
*cf
, u8 index
,
241 size_t length
, dma_addr_t addr
, bool final
)
243 u32 efrl
= length
& FSL_RE_CF_LENGTH_MASK
;
245 efrl
|= final
<< FSL_RE_CF_FINAL_SHIFT
;
246 cf
[index
].efrl32
= efrl
;
247 cf
[index
].addr_high
= upper_32_bits(addr
);
248 cf
[index
].addr_low
= lower_32_bits(addr
);
251 static struct fsl_re_desc
*fsl_re_init_desc(struct fsl_re_chan
*re_chan
,
252 struct fsl_re_desc
*desc
,
253 void *cf
, dma_addr_t paddr
)
255 desc
->re_chan
= re_chan
;
256 desc
->async_tx
.tx_submit
= fsl_re_tx_submit
;
257 dma_async_tx_descriptor_init(&desc
->async_tx
, &re_chan
->chan
);
258 INIT_LIST_HEAD(&desc
->node
);
260 desc
->hwdesc
.fmt32
= FSL_RE_FRAME_FORMAT
<< FSL_RE_HWDESC_FMT_SHIFT
;
261 desc
->hwdesc
.lbea32
= upper_32_bits(paddr
);
262 desc
->hwdesc
.addr_low
= lower_32_bits(paddr
);
264 desc
->cf_paddr
= paddr
;
266 desc
->cdb_addr
= (void *)(cf
+ FSL_RE_CF_DESC_SIZE
);
267 desc
->cdb_paddr
= paddr
+ FSL_RE_CF_DESC_SIZE
;
272 static struct fsl_re_desc
*fsl_re_chan_alloc_desc(struct fsl_re_chan
*re_chan
,
275 struct fsl_re_desc
*desc
= NULL
;
278 unsigned long lock_flag
;
280 fsl_re_cleanup_descs(re_chan
);
282 spin_lock_irqsave(&re_chan
->desc_lock
, lock_flag
);
283 if (!list_empty(&re_chan
->free_q
)) {
284 /* take one desc from free_q */
285 desc
= list_first_entry(&re_chan
->free_q
,
286 struct fsl_re_desc
, node
);
287 list_del(&desc
->node
);
289 desc
->async_tx
.flags
= flags
;
291 spin_unlock_irqrestore(&re_chan
->desc_lock
, lock_flag
);
294 desc
= kzalloc(sizeof(*desc
), GFP_NOWAIT
);
298 cf
= dma_pool_alloc(re_chan
->re_dev
->cf_desc_pool
, GFP_NOWAIT
,
305 desc
= fsl_re_init_desc(re_chan
, desc
, cf
, paddr
);
306 desc
->async_tx
.flags
= flags
;
308 spin_lock_irqsave(&re_chan
->desc_lock
, lock_flag
);
309 re_chan
->alloc_count
++;
310 spin_unlock_irqrestore(&re_chan
->desc_lock
, lock_flag
);
316 static struct dma_async_tx_descriptor
*fsl_re_prep_dma_genq(
317 struct dma_chan
*chan
, dma_addr_t dest
, dma_addr_t
*src
,
318 unsigned int src_cnt
, const unsigned char *scf
, size_t len
,
321 struct fsl_re_chan
*re_chan
;
322 struct fsl_re_desc
*desc
;
323 struct fsl_re_xor_cdb
*xor;
324 struct fsl_re_cmpnd_frame
*cf
;
327 unsigned int save_src_cnt
= src_cnt
;
330 re_chan
= container_of(chan
, struct fsl_re_chan
, chan
);
331 if (len
> FSL_RE_MAX_DATA_LEN
) {
332 dev_err(re_chan
->dev
, "genq tx length %zu, max length %d\n",
333 len
, FSL_RE_MAX_DATA_LEN
);
337 desc
= fsl_re_chan_alloc_desc(re_chan
, flags
);
341 if (scf
&& (flags
& DMA_PREP_CONTINUE
)) {
346 /* Filling xor CDB */
347 cdb
= FSL_RE_XOR_OPCODE
<< FSL_RE_CDB_OPCODE_SHIFT
;
348 cdb
|= (src_cnt
- 1) << FSL_RE_CDB_NRCS_SHIFT
;
349 cdb
|= FSL_RE_BLOCK_SIZE
<< FSL_RE_CDB_BLKSIZE_SHIFT
;
350 cdb
|= FSL_RE_INTR_ON_ERROR
<< FSL_RE_CDB_ERROR_SHIFT
;
351 cdb
|= FSL_RE_DATA_DEP
<< FSL_RE_CDB_DEPEND_SHIFT
;
352 xor = desc
->cdb_addr
;
356 /* compute q = src0*coef0^src1*coef1^..., * is GF(8) mult */
357 for (i
= 0; i
< save_src_cnt
; i
++)
358 xor->gfm
[i
] = scf
[i
];
362 /* compute P, that is XOR all srcs */
363 for (i
= 0; i
< src_cnt
; i
++)
367 /* Filling frame 0 of compound frame descriptor with CDB */
369 fill_cfd_frame(cf
, 0, sizeof(*xor), desc
->cdb_paddr
, 0);
371 /* Fill CFD's 1st frame with dest buffer */
372 fill_cfd_frame(cf
, 1, len
, dest
, 0);
374 /* Fill CFD's rest of the frames with source buffers */
375 for (i
= 2, j
= 0; j
< save_src_cnt
; i
++, j
++)
376 fill_cfd_frame(cf
, i
, len
, src
[j
], 0);
379 fill_cfd_frame(cf
, i
++, len
, dest
, 0);
381 /* Setting the final bit in the last source buffer frame in CFD */
382 cf
[i
- 1].efrl32
|= 1 << FSL_RE_CF_FINAL_SHIFT
;
384 return &desc
->async_tx
;
388 * Prep function for P parity calculation.In RAID Engine terminology,
389 * XOR calculation is called GenQ calculation done through GenQ command
391 static struct dma_async_tx_descriptor
*fsl_re_prep_dma_xor(
392 struct dma_chan
*chan
, dma_addr_t dest
, dma_addr_t
*src
,
393 unsigned int src_cnt
, size_t len
, unsigned long flags
)
395 /* NULL let genq take all coef as 1 */
396 return fsl_re_prep_dma_genq(chan
, dest
, src
, src_cnt
, NULL
, len
, flags
);
400 * Prep function for P/Q parity calculation.In RAID Engine terminology,
401 * P/Q calculation is called GenQQ done through GenQQ command
403 static struct dma_async_tx_descriptor
*fsl_re_prep_dma_pq(
404 struct dma_chan
*chan
, dma_addr_t
*dest
, dma_addr_t
*src
,
405 unsigned int src_cnt
, const unsigned char *scf
, size_t len
,
408 struct fsl_re_chan
*re_chan
;
409 struct fsl_re_desc
*desc
;
410 struct fsl_re_pq_cdb
*pq
;
411 struct fsl_re_cmpnd_frame
*cf
;
415 unsigned int save_src_cnt
= src_cnt
;
417 re_chan
= container_of(chan
, struct fsl_re_chan
, chan
);
418 if (len
> FSL_RE_MAX_DATA_LEN
) {
419 dev_err(re_chan
->dev
, "pq tx length is %zu, max length is %d\n",
420 len
, FSL_RE_MAX_DATA_LEN
);
425 * RE requires at least 2 sources, if given only one source, we pass the
426 * second source same as the first one.
427 * With only one source, generating P is meaningless, only generate Q.
430 struct dma_async_tx_descriptor
*tx
;
431 dma_addr_t dma_src
[2];
432 unsigned char coef
[2];
438 tx
= fsl_re_prep_dma_genq(chan
, dest
[1], dma_src
, 2, coef
, len
,
441 desc
= to_fsl_re_dma_desc(tx
);
447 * During RAID6 array creation, Linux's MD layer gets P and Q
448 * calculated separately in two steps. But our RAID Engine has
449 * the capability to calculate both P and Q with a single command
450 * Hence to merge well with MD layer, we need to provide a hook
451 * here and call re_jq_prep_dma_genq() function
454 if (flags
& DMA_PREP_PQ_DISABLE_P
)
455 return fsl_re_prep_dma_genq(chan
, dest
[1], src
, src_cnt
,
458 if (flags
& DMA_PREP_CONTINUE
)
461 desc
= fsl_re_chan_alloc_desc(re_chan
, flags
);
465 /* Filling GenQQ CDB */
466 cdb
= FSL_RE_PQ_OPCODE
<< FSL_RE_CDB_OPCODE_SHIFT
;
467 cdb
|= (src_cnt
- 1) << FSL_RE_CDB_NRCS_SHIFT
;
468 cdb
|= FSL_RE_BLOCK_SIZE
<< FSL_RE_CDB_BLKSIZE_SHIFT
;
469 cdb
|= FSL_RE_BUFFER_OUTPUT
<< FSL_RE_CDB_BUFFER_SHIFT
;
470 cdb
|= FSL_RE_DATA_DEP
<< FSL_RE_CDB_DEPEND_SHIFT
;
477 for (i
= 0; i
< src_cnt
; i
++)
480 /* Align gfm[] to 32bit */
481 gfmq_len
= ALIGN(src_cnt
, 4);
485 for (i
= 0; i
< src_cnt
; i
++)
488 /* Filling frame 0 of compound frame descriptor with CDB */
490 fill_cfd_frame(cf
, 0, sizeof(struct fsl_re_pq_cdb
), desc
->cdb_paddr
, 0);
492 /* Fill CFD's 1st & 2nd frame with dest buffers */
493 for (i
= 1, j
= 0; i
< 3; i
++, j
++)
494 fill_cfd_frame(cf
, i
, len
, dest
[j
], 0);
496 /* Fill CFD's rest of the frames with source buffers */
497 for (i
= 3, j
= 0; j
< save_src_cnt
; i
++, j
++)
498 fill_cfd_frame(cf
, i
, len
, src
[j
], 0);
500 /* PQ computation continuation */
501 if (flags
& DMA_PREP_CONTINUE
) {
502 if (src_cnt
- save_src_cnt
== 3) {
504 p
[save_src_cnt
+ 1] = 0;
505 p
[save_src_cnt
+ 2] = 1;
506 fill_cfd_frame(cf
, i
++, len
, dest
[0], 0);
507 fill_cfd_frame(cf
, i
++, len
, dest
[1], 0);
508 fill_cfd_frame(cf
, i
++, len
, dest
[1], 0);
510 dev_err(re_chan
->dev
, "PQ tx continuation error!\n");
515 /* Setting the final bit in the last source buffer frame in CFD */
516 cf
[i
- 1].efrl32
|= 1 << FSL_RE_CF_FINAL_SHIFT
;
518 return &desc
->async_tx
;
522 * Prep function for memcpy. In RAID Engine, memcpy is done through MOVE
523 * command. Logic of this function will need to be modified once multipage
524 * support is added in Linux's MD/ASYNC Layer
526 static struct dma_async_tx_descriptor
*fsl_re_prep_dma_memcpy(
527 struct dma_chan
*chan
, dma_addr_t dest
, dma_addr_t src
,
528 size_t len
, unsigned long flags
)
530 struct fsl_re_chan
*re_chan
;
531 struct fsl_re_desc
*desc
;
533 struct fsl_re_cmpnd_frame
*cf
;
534 struct fsl_re_move_cdb
*move
;
537 re_chan
= container_of(chan
, struct fsl_re_chan
, chan
);
539 if (len
> FSL_RE_MAX_DATA_LEN
) {
540 dev_err(re_chan
->dev
, "cp tx length is %zu, max length is %d\n",
541 len
, FSL_RE_MAX_DATA_LEN
);
545 desc
= fsl_re_chan_alloc_desc(re_chan
, flags
);
549 /* Filling move CDB */
550 cdb
= FSL_RE_MOVE_OPCODE
<< FSL_RE_CDB_OPCODE_SHIFT
;
551 cdb
|= FSL_RE_BLOCK_SIZE
<< FSL_RE_CDB_BLKSIZE_SHIFT
;
552 cdb
|= FSL_RE_INTR_ON_ERROR
<< FSL_RE_CDB_ERROR_SHIFT
;
553 cdb
|= FSL_RE_DATA_DEP
<< FSL_RE_CDB_DEPEND_SHIFT
;
555 move
= desc
->cdb_addr
;
558 /* Filling frame 0 of CFD with move CDB */
560 fill_cfd_frame(cf
, 0, sizeof(*move
), desc
->cdb_paddr
, 0);
562 length
= min_t(size_t, len
, FSL_RE_MAX_DATA_LEN
);
564 /* Fill CFD's 1st frame with dest buffer */
565 fill_cfd_frame(cf
, 1, length
, dest
, 0);
567 /* Fill CFD's 2nd frame with src buffer */
568 fill_cfd_frame(cf
, 2, length
, src
, 1);
570 return &desc
->async_tx
;
573 static int fsl_re_alloc_chan_resources(struct dma_chan
*chan
)
575 struct fsl_re_chan
*re_chan
;
576 struct fsl_re_desc
*desc
;
581 re_chan
= container_of(chan
, struct fsl_re_chan
, chan
);
582 for (i
= 0; i
< FSL_RE_MIN_DESCS
; i
++) {
583 desc
= kzalloc(sizeof(*desc
), GFP_KERNEL
);
587 cf
= dma_pool_alloc(re_chan
->re_dev
->cf_desc_pool
, GFP_KERNEL
,
594 INIT_LIST_HEAD(&desc
->node
);
595 fsl_re_init_desc(re_chan
, desc
, cf
, paddr
);
597 list_add_tail(&desc
->node
, &re_chan
->free_q
);
598 re_chan
->alloc_count
++;
600 return re_chan
->alloc_count
;
603 static void fsl_re_free_chan_resources(struct dma_chan
*chan
)
605 struct fsl_re_chan
*re_chan
;
606 struct fsl_re_desc
*desc
;
608 re_chan
= container_of(chan
, struct fsl_re_chan
, chan
);
609 while (re_chan
->alloc_count
--) {
610 desc
= list_first_entry(&re_chan
->free_q
,
614 list_del(&desc
->node
);
615 dma_pool_free(re_chan
->re_dev
->cf_desc_pool
, desc
->cf_addr
,
620 if (!list_empty(&re_chan
->free_q
))
621 dev_err(re_chan
->dev
, "chan resource cannot be cleaned!\n");
624 static int fsl_re_chan_probe(struct platform_device
*ofdev
,
625 struct device_node
*np
, u8 q
, u32 off
)
627 struct device
*dev
, *chandev
;
628 struct fsl_re_drv_private
*re_priv
;
629 struct fsl_re_chan
*chan
;
630 struct dma_device
*dma_dev
;
634 struct platform_device
*chan_ofdev
;
637 re_priv
= dev_get_drvdata(dev
);
638 dma_dev
= &re_priv
->dma_dev
;
640 chan
= devm_kzalloc(dev
, sizeof(*chan
), GFP_KERNEL
);
644 /* create platform device for chan node */
645 chan_ofdev
= of_platform_device_create(np
, NULL
, dev
);
647 dev_err(dev
, "Not able to create ofdev for jr %d\n", q
);
652 /* read reg property from dts */
653 rc
= of_property_read_u32(np
, "reg", &ptr
);
655 dev_err(dev
, "Reg property not found in jr %d\n", q
);
660 chan
->jrregs
= (struct fsl_re_chan_cfg
*)((u8
*)re_priv
->re_regs
+
663 /* read irq property from dts */
664 chan
->irq
= irq_of_parse_and_map(np
, 0);
666 dev_err(dev
, "No IRQ defined for JR %d\n", q
);
671 snprintf(chan
->name
, sizeof(chan
->name
), "re_jr%02d", q
);
673 chandev
= &chan_ofdev
->dev
;
674 tasklet_init(&chan
->irqtask
, fsl_re_dequeue
, (unsigned long)chandev
);
676 ret
= request_irq(chan
->irq
, fsl_re_isr
, 0, chan
->name
, chandev
);
678 dev_err(dev
, "Unable to register interrupt for JR %d\n", q
);
683 re_priv
->re_jrs
[q
] = chan
;
684 chan
->chan
.device
= dma_dev
;
685 chan
->chan
.private = chan
;
687 chan
->re_dev
= re_priv
;
689 spin_lock_init(&chan
->desc_lock
);
690 INIT_LIST_HEAD(&chan
->ack_q
);
691 INIT_LIST_HEAD(&chan
->active_q
);
692 INIT_LIST_HEAD(&chan
->submit_q
);
693 INIT_LIST_HEAD(&chan
->free_q
);
695 chan
->inb_ring_virt_addr
= dma_pool_alloc(chan
->re_dev
->hw_desc_pool
,
696 GFP_KERNEL
, &chan
->inb_phys_addr
);
697 if (!chan
->inb_ring_virt_addr
) {
698 dev_err(dev
, "No dma memory for inb_ring_virt_addr\n");
703 chan
->oub_ring_virt_addr
= dma_pool_alloc(chan
->re_dev
->hw_desc_pool
,
704 GFP_KERNEL
, &chan
->oub_phys_addr
);
705 if (!chan
->oub_ring_virt_addr
) {
706 dev_err(dev
, "No dma memory for oub_ring_virt_addr\n");
711 /* Program the Inbound/Outbound ring base addresses and size */
712 out_be32(&chan
->jrregs
->inbring_base_h
,
713 chan
->inb_phys_addr
& FSL_RE_ADDR_BIT_MASK
);
714 out_be32(&chan
->jrregs
->oubring_base_h
,
715 chan
->oub_phys_addr
& FSL_RE_ADDR_BIT_MASK
);
716 out_be32(&chan
->jrregs
->inbring_base_l
,
717 chan
->inb_phys_addr
>> FSL_RE_ADDR_BIT_SHIFT
);
718 out_be32(&chan
->jrregs
->oubring_base_l
,
719 chan
->oub_phys_addr
>> FSL_RE_ADDR_BIT_SHIFT
);
720 out_be32(&chan
->jrregs
->inbring_size
,
721 FSL_RE_RING_SIZE
<< FSL_RE_RING_SIZE_SHIFT
);
722 out_be32(&chan
->jrregs
->oubring_size
,
723 FSL_RE_RING_SIZE
<< FSL_RE_RING_SIZE_SHIFT
);
725 /* Read LIODN value from u-boot */
726 status
= in_be32(&chan
->jrregs
->jr_config_1
) & FSL_RE_REG_LIODN_MASK
;
728 /* Program the CFG reg */
729 out_be32(&chan
->jrregs
->jr_config_1
,
730 FSL_RE_CFG1_CBSI
| FSL_RE_CFG1_CBS0
| status
);
732 dev_set_drvdata(chandev
, chan
);
735 out_be32(&chan
->jrregs
->jr_command
, FSL_RE_ENABLE
);
740 dma_pool_free(chan
->re_dev
->hw_desc_pool
, chan
->inb_ring_virt_addr
,
741 chan
->inb_phys_addr
);
746 /* Probe function for RAID Engine */
747 static int fsl_re_probe(struct platform_device
*ofdev
)
749 struct fsl_re_drv_private
*re_priv
;
750 struct device_node
*np
;
751 struct device_node
*child
;
754 struct dma_device
*dma_dev
;
755 struct resource
*res
;
757 struct device
*dev
= &ofdev
->dev
;
759 re_priv
= devm_kzalloc(dev
, sizeof(*re_priv
), GFP_KERNEL
);
763 res
= platform_get_resource(ofdev
, IORESOURCE_MEM
, 0);
767 /* IOMAP the entire RAID Engine region */
768 re_priv
->re_regs
= devm_ioremap(dev
, res
->start
, resource_size(res
));
769 if (!re_priv
->re_regs
)
772 /* Program the RE mode */
773 out_be32(&re_priv
->re_regs
->global_config
, FSL_RE_NON_DPAA_MODE
);
775 /* Program Galois Field polynomial */
776 out_be32(&re_priv
->re_regs
->galois_field_config
, FSL_RE_GFM_POLY
);
778 dev_info(dev
, "version %x, mode %x, gfp %x\n",
779 in_be32(&re_priv
->re_regs
->re_version_id
),
780 in_be32(&re_priv
->re_regs
->global_config
),
781 in_be32(&re_priv
->re_regs
->galois_field_config
));
783 dma_dev
= &re_priv
->dma_dev
;
785 INIT_LIST_HEAD(&dma_dev
->channels
);
786 dma_set_mask(dev
, DMA_BIT_MASK(40));
788 dma_dev
->device_alloc_chan_resources
= fsl_re_alloc_chan_resources
;
789 dma_dev
->device_tx_status
= fsl_re_tx_status
;
790 dma_dev
->device_issue_pending
= fsl_re_issue_pending
;
792 dma_dev
->max_xor
= FSL_RE_MAX_XOR_SRCS
;
793 dma_dev
->device_prep_dma_xor
= fsl_re_prep_dma_xor
;
794 dma_cap_set(DMA_XOR
, dma_dev
->cap_mask
);
796 dma_dev
->max_pq
= FSL_RE_MAX_PQ_SRCS
;
797 dma_dev
->device_prep_dma_pq
= fsl_re_prep_dma_pq
;
798 dma_cap_set(DMA_PQ
, dma_dev
->cap_mask
);
800 dma_dev
->device_prep_dma_memcpy
= fsl_re_prep_dma_memcpy
;
801 dma_cap_set(DMA_MEMCPY
, dma_dev
->cap_mask
);
803 dma_dev
->device_free_chan_resources
= fsl_re_free_chan_resources
;
805 re_priv
->total_chans
= 0;
807 re_priv
->cf_desc_pool
= dmam_pool_create("fsl_re_cf_desc_pool", dev
,
809 FSL_RE_CF_CDB_ALIGN
, 0);
811 if (!re_priv
->cf_desc_pool
) {
812 dev_err(dev
, "No memory for fsl re_cf desc pool\n");
816 re_priv
->hw_desc_pool
= dmam_pool_create("fsl_re_hw_desc_pool", dev
,
817 sizeof(struct fsl_re_hw_desc
) * FSL_RE_RING_SIZE
,
818 FSL_RE_FRAME_ALIGN
, 0);
819 if (!re_priv
->hw_desc_pool
) {
820 dev_err(dev
, "No memory for fsl re_hw desc pool\n");
824 dev_set_drvdata(dev
, re_priv
);
826 /* Parse Device tree to find out the total number of JQs present */
827 for_each_compatible_node(np
, NULL
, "fsl,raideng-v1.0-job-queue") {
828 rc
= of_property_read_u32(np
, "reg", &off
);
830 dev_err(dev
, "Reg property not found in JQ node\n");
834 /* Find out the Job Rings present under each JQ */
835 for_each_child_of_node(np
, child
) {
836 rc
= of_device_is_compatible(child
,
837 "fsl,raideng-v1.0-job-ring");
839 fsl_re_chan_probe(ofdev
, child
, ridx
++, off
);
840 re_priv
->total_chans
++;
845 dma_async_device_register(dma_dev
);
850 static void fsl_re_remove_chan(struct fsl_re_chan
*chan
)
852 tasklet_kill(&chan
->irqtask
);
854 dma_pool_free(chan
->re_dev
->hw_desc_pool
, chan
->inb_ring_virt_addr
,
855 chan
->inb_phys_addr
);
857 dma_pool_free(chan
->re_dev
->hw_desc_pool
, chan
->oub_ring_virt_addr
,
858 chan
->oub_phys_addr
);
861 static int fsl_re_remove(struct platform_device
*ofdev
)
863 struct fsl_re_drv_private
*re_priv
;
868 re_priv
= dev_get_drvdata(dev
);
870 /* Cleanup chan related memory areas */
871 for (i
= 0; i
< re_priv
->total_chans
; i
++)
872 fsl_re_remove_chan(re_priv
->re_jrs
[i
]);
874 /* Unregister the driver */
875 dma_async_device_unregister(&re_priv
->dma_dev
);
880 static struct of_device_id fsl_re_ids
[] = {
881 { .compatible
= "fsl,raideng-v1.0", },
884 MODULE_DEVICE_TABLE(of
, fsl_re_ids
);
886 static struct platform_driver fsl_re_driver
= {
888 .name
= "fsl-raideng",
889 .of_match_table
= fsl_re_ids
,
891 .probe
= fsl_re_probe
,
892 .remove
= fsl_re_remove
,
895 module_platform_driver(fsl_re_driver
);
897 MODULE_AUTHOR("Harninder Rai <harninder.rai@freescale.com>");
898 MODULE_LICENSE("GPL v2");
899 MODULE_DESCRIPTION("Freescale RAID Engine Device Driver");