4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
11 #include <linux/module.h>
12 #include <linux/init.h>
14 #include <linux/statfs.h>
15 #include <linux/buffer_head.h>
16 #include <linux/backing-dev.h>
17 #include <linux/kthread.h>
18 #include <linux/parser.h>
19 #include <linux/mount.h>
20 #include <linux/seq_file.h>
21 #include <linux/proc_fs.h>
22 #include <linux/random.h>
23 #include <linux/exportfs.h>
24 #include <linux/blkdev.h>
25 #include <linux/quotaops.h>
26 #include <linux/f2fs_fs.h>
27 #include <linux/sysfs.h>
28 #include <linux/quota.h>
37 #define CREATE_TRACE_POINTS
38 #include <trace/events/f2fs.h>
40 static struct kmem_cache
*f2fs_inode_cachep
;
42 #ifdef CONFIG_F2FS_FAULT_INJECTION
44 char *f2fs_fault_name
[FAULT_MAX
] = {
45 [FAULT_KMALLOC
] = "kmalloc",
46 [FAULT_KVMALLOC
] = "kvmalloc",
47 [FAULT_PAGE_ALLOC
] = "page alloc",
48 [FAULT_PAGE_GET
] = "page get",
49 [FAULT_ALLOC_BIO
] = "alloc bio",
50 [FAULT_ALLOC_NID
] = "alloc nid",
51 [FAULT_ORPHAN
] = "orphan",
52 [FAULT_BLOCK
] = "no more block",
53 [FAULT_DIR_DEPTH
] = "too big dir depth",
54 [FAULT_EVICT_INODE
] = "evict_inode fail",
55 [FAULT_TRUNCATE
] = "truncate fail",
56 [FAULT_IO
] = "IO error",
57 [FAULT_CHECKPOINT
] = "checkpoint error",
58 [FAULT_DISCARD
] = "discard error",
61 void f2fs_build_fault_attr(struct f2fs_sb_info
*sbi
, unsigned int rate
,
64 struct f2fs_fault_info
*ffi
= &F2FS_OPTION(sbi
).fault_info
;
67 atomic_set(&ffi
->inject_ops
, 0);
68 ffi
->inject_rate
= rate
;
72 ffi
->inject_type
= type
;
75 memset(ffi
, 0, sizeof(struct f2fs_fault_info
));
79 /* f2fs-wide shrinker description */
80 static struct shrinker f2fs_shrinker_info
= {
81 .scan_objects
= f2fs_shrink_scan
,
82 .count_objects
= f2fs_shrink_count
,
83 .seeks
= DEFAULT_SEEKS
,
88 Opt_disable_roll_forward
,
99 Opt_disable_ext_identify
,
102 Opt_inline_xattr_size
,
140 Opt_test_dummy_encryption
,
144 static match_table_t f2fs_tokens
= {
145 {Opt_gc_background
, "background_gc=%s"},
146 {Opt_disable_roll_forward
, "disable_roll_forward"},
147 {Opt_norecovery
, "norecovery"},
148 {Opt_discard
, "discard"},
149 {Opt_nodiscard
, "nodiscard"},
150 {Opt_noheap
, "no_heap"},
152 {Opt_user_xattr
, "user_xattr"},
153 {Opt_nouser_xattr
, "nouser_xattr"},
155 {Opt_noacl
, "noacl"},
156 {Opt_active_logs
, "active_logs=%u"},
157 {Opt_disable_ext_identify
, "disable_ext_identify"},
158 {Opt_inline_xattr
, "inline_xattr"},
159 {Opt_noinline_xattr
, "noinline_xattr"},
160 {Opt_inline_xattr_size
, "inline_xattr_size=%u"},
161 {Opt_inline_data
, "inline_data"},
162 {Opt_inline_dentry
, "inline_dentry"},
163 {Opt_noinline_dentry
, "noinline_dentry"},
164 {Opt_flush_merge
, "flush_merge"},
165 {Opt_noflush_merge
, "noflush_merge"},
166 {Opt_nobarrier
, "nobarrier"},
167 {Opt_fastboot
, "fastboot"},
168 {Opt_extent_cache
, "extent_cache"},
169 {Opt_noextent_cache
, "noextent_cache"},
170 {Opt_noinline_data
, "noinline_data"},
171 {Opt_data_flush
, "data_flush"},
172 {Opt_reserve_root
, "reserve_root=%u"},
173 {Opt_resgid
, "resgid=%u"},
174 {Opt_resuid
, "resuid=%u"},
175 {Opt_mode
, "mode=%s"},
176 {Opt_io_size_bits
, "io_bits=%u"},
177 {Opt_fault_injection
, "fault_injection=%u"},
178 {Opt_fault_type
, "fault_type=%u"},
179 {Opt_lazytime
, "lazytime"},
180 {Opt_nolazytime
, "nolazytime"},
181 {Opt_quota
, "quota"},
182 {Opt_noquota
, "noquota"},
183 {Opt_usrquota
, "usrquota"},
184 {Opt_grpquota
, "grpquota"},
185 {Opt_prjquota
, "prjquota"},
186 {Opt_usrjquota
, "usrjquota=%s"},
187 {Opt_grpjquota
, "grpjquota=%s"},
188 {Opt_prjjquota
, "prjjquota=%s"},
189 {Opt_offusrjquota
, "usrjquota="},
190 {Opt_offgrpjquota
, "grpjquota="},
191 {Opt_offprjjquota
, "prjjquota="},
192 {Opt_jqfmt_vfsold
, "jqfmt=vfsold"},
193 {Opt_jqfmt_vfsv0
, "jqfmt=vfsv0"},
194 {Opt_jqfmt_vfsv1
, "jqfmt=vfsv1"},
195 {Opt_whint
, "whint_mode=%s"},
196 {Opt_alloc
, "alloc_mode=%s"},
197 {Opt_fsync
, "fsync_mode=%s"},
198 {Opt_test_dummy_encryption
, "test_dummy_encryption"},
202 void f2fs_msg(struct super_block
*sb
, const char *level
, const char *fmt
, ...)
204 struct va_format vaf
;
210 printk_ratelimited("%sF2FS-fs (%s): %pV\n", level
, sb
->s_id
, &vaf
);
214 static inline void limit_reserve_root(struct f2fs_sb_info
*sbi
)
216 block_t limit
= (sbi
->user_block_count
<< 1) / 1000;
219 if (test_opt(sbi
, RESERVE_ROOT
) &&
220 F2FS_OPTION(sbi
).root_reserved_blocks
> limit
) {
221 F2FS_OPTION(sbi
).root_reserved_blocks
= limit
;
222 f2fs_msg(sbi
->sb
, KERN_INFO
,
223 "Reduce reserved blocks for root = %u",
224 F2FS_OPTION(sbi
).root_reserved_blocks
);
226 if (!test_opt(sbi
, RESERVE_ROOT
) &&
227 (!uid_eq(F2FS_OPTION(sbi
).s_resuid
,
228 make_kuid(&init_user_ns
, F2FS_DEF_RESUID
)) ||
229 !gid_eq(F2FS_OPTION(sbi
).s_resgid
,
230 make_kgid(&init_user_ns
, F2FS_DEF_RESGID
))))
231 f2fs_msg(sbi
->sb
, KERN_INFO
,
232 "Ignore s_resuid=%u, s_resgid=%u w/o reserve_root",
233 from_kuid_munged(&init_user_ns
,
234 F2FS_OPTION(sbi
).s_resuid
),
235 from_kgid_munged(&init_user_ns
,
236 F2FS_OPTION(sbi
).s_resgid
));
239 static void init_once(void *foo
)
241 struct f2fs_inode_info
*fi
= (struct f2fs_inode_info
*) foo
;
243 inode_init_once(&fi
->vfs_inode
);
247 static const char * const quotatypes
[] = INITQFNAMES
;
248 #define QTYPE2NAME(t) (quotatypes[t])
249 static int f2fs_set_qf_name(struct super_block
*sb
, int qtype
,
252 struct f2fs_sb_info
*sbi
= F2FS_SB(sb
);
256 if (sb_any_quota_loaded(sb
) && !F2FS_OPTION(sbi
).s_qf_names
[qtype
]) {
257 f2fs_msg(sb
, KERN_ERR
,
258 "Cannot change journaled "
259 "quota options when quota turned on");
262 if (f2fs_sb_has_quota_ino(sb
)) {
263 f2fs_msg(sb
, KERN_INFO
,
264 "QUOTA feature is enabled, so ignore qf_name");
268 qname
= match_strdup(args
);
270 f2fs_msg(sb
, KERN_ERR
,
271 "Not enough memory for storing quotafile name");
274 if (F2FS_OPTION(sbi
).s_qf_names
[qtype
]) {
275 if (strcmp(F2FS_OPTION(sbi
).s_qf_names
[qtype
], qname
) == 0)
278 f2fs_msg(sb
, KERN_ERR
,
279 "%s quota file already specified",
283 if (strchr(qname
, '/')) {
284 f2fs_msg(sb
, KERN_ERR
,
285 "quotafile must be on filesystem root");
288 F2FS_OPTION(sbi
).s_qf_names
[qtype
] = qname
;
296 static int f2fs_clear_qf_name(struct super_block
*sb
, int qtype
)
298 struct f2fs_sb_info
*sbi
= F2FS_SB(sb
);
300 if (sb_any_quota_loaded(sb
) && F2FS_OPTION(sbi
).s_qf_names
[qtype
]) {
301 f2fs_msg(sb
, KERN_ERR
, "Cannot change journaled quota options"
302 " when quota turned on");
305 kfree(F2FS_OPTION(sbi
).s_qf_names
[qtype
]);
306 F2FS_OPTION(sbi
).s_qf_names
[qtype
] = NULL
;
310 static int f2fs_check_quota_options(struct f2fs_sb_info
*sbi
)
313 * We do the test below only for project quotas. 'usrquota' and
314 * 'grpquota' mount options are allowed even without quota feature
315 * to support legacy quotas in quota files.
317 if (test_opt(sbi
, PRJQUOTA
) && !f2fs_sb_has_project_quota(sbi
->sb
)) {
318 f2fs_msg(sbi
->sb
, KERN_ERR
, "Project quota feature not enabled. "
319 "Cannot enable project quota enforcement.");
322 if (F2FS_OPTION(sbi
).s_qf_names
[USRQUOTA
] ||
323 F2FS_OPTION(sbi
).s_qf_names
[GRPQUOTA
] ||
324 F2FS_OPTION(sbi
).s_qf_names
[PRJQUOTA
]) {
325 if (test_opt(sbi
, USRQUOTA
) &&
326 F2FS_OPTION(sbi
).s_qf_names
[USRQUOTA
])
327 clear_opt(sbi
, USRQUOTA
);
329 if (test_opt(sbi
, GRPQUOTA
) &&
330 F2FS_OPTION(sbi
).s_qf_names
[GRPQUOTA
])
331 clear_opt(sbi
, GRPQUOTA
);
333 if (test_opt(sbi
, PRJQUOTA
) &&
334 F2FS_OPTION(sbi
).s_qf_names
[PRJQUOTA
])
335 clear_opt(sbi
, PRJQUOTA
);
337 if (test_opt(sbi
, GRPQUOTA
) || test_opt(sbi
, USRQUOTA
) ||
338 test_opt(sbi
, PRJQUOTA
)) {
339 f2fs_msg(sbi
->sb
, KERN_ERR
, "old and new quota "
344 if (!F2FS_OPTION(sbi
).s_jquota_fmt
) {
345 f2fs_msg(sbi
->sb
, KERN_ERR
, "journaled quota format "
351 if (f2fs_sb_has_quota_ino(sbi
->sb
) && F2FS_OPTION(sbi
).s_jquota_fmt
) {
352 f2fs_msg(sbi
->sb
, KERN_INFO
,
353 "QUOTA feature is enabled, so ignore jquota_fmt");
354 F2FS_OPTION(sbi
).s_jquota_fmt
= 0;
360 static int parse_options(struct super_block
*sb
, char *options
)
362 struct f2fs_sb_info
*sbi
= F2FS_SB(sb
);
363 struct request_queue
*q
;
364 substring_t args
[MAX_OPT_ARGS
];
376 while ((p
= strsep(&options
, ",")) != NULL
) {
381 * Initialize args struct so we know whether arg was
382 * found; some options take optional arguments.
384 args
[0].to
= args
[0].from
= NULL
;
385 token
= match_token(p
, f2fs_tokens
, args
);
388 case Opt_gc_background
:
389 name
= match_strdup(&args
[0]);
393 if (strlen(name
) == 2 && !strncmp(name
, "on", 2)) {
395 clear_opt(sbi
, FORCE_FG_GC
);
396 } else if (strlen(name
) == 3 && !strncmp(name
, "off", 3)) {
397 clear_opt(sbi
, BG_GC
);
398 clear_opt(sbi
, FORCE_FG_GC
);
399 } else if (strlen(name
) == 4 && !strncmp(name
, "sync", 4)) {
401 set_opt(sbi
, FORCE_FG_GC
);
408 case Opt_disable_roll_forward
:
409 set_opt(sbi
, DISABLE_ROLL_FORWARD
);
412 /* this option mounts f2fs with ro */
413 set_opt(sbi
, DISABLE_ROLL_FORWARD
);
414 if (!f2fs_readonly(sb
))
418 q
= bdev_get_queue(sb
->s_bdev
);
419 if (blk_queue_discard(q
)) {
420 set_opt(sbi
, DISCARD
);
421 } else if (!f2fs_sb_has_blkzoned(sb
)) {
422 f2fs_msg(sb
, KERN_WARNING
,
423 "mounting with \"discard\" option, but "
424 "the device does not support discard");
428 if (f2fs_sb_has_blkzoned(sb
)) {
429 f2fs_msg(sb
, KERN_WARNING
,
430 "discard is required for zoned block devices");
433 clear_opt(sbi
, DISCARD
);
436 set_opt(sbi
, NOHEAP
);
439 clear_opt(sbi
, NOHEAP
);
441 #ifdef CONFIG_F2FS_FS_XATTR
443 set_opt(sbi
, XATTR_USER
);
445 case Opt_nouser_xattr
:
446 clear_opt(sbi
, XATTR_USER
);
448 case Opt_inline_xattr
:
449 set_opt(sbi
, INLINE_XATTR
);
451 case Opt_noinline_xattr
:
452 clear_opt(sbi
, INLINE_XATTR
);
454 case Opt_inline_xattr_size
:
455 if (args
->from
&& match_int(args
, &arg
))
457 set_opt(sbi
, INLINE_XATTR_SIZE
);
458 F2FS_OPTION(sbi
).inline_xattr_size
= arg
;
462 f2fs_msg(sb
, KERN_INFO
,
463 "user_xattr options not supported");
465 case Opt_nouser_xattr
:
466 f2fs_msg(sb
, KERN_INFO
,
467 "nouser_xattr options not supported");
469 case Opt_inline_xattr
:
470 f2fs_msg(sb
, KERN_INFO
,
471 "inline_xattr options not supported");
473 case Opt_noinline_xattr
:
474 f2fs_msg(sb
, KERN_INFO
,
475 "noinline_xattr options not supported");
478 #ifdef CONFIG_F2FS_FS_POSIX_ACL
480 set_opt(sbi
, POSIX_ACL
);
483 clear_opt(sbi
, POSIX_ACL
);
487 f2fs_msg(sb
, KERN_INFO
, "acl options not supported");
490 f2fs_msg(sb
, KERN_INFO
, "noacl options not supported");
493 case Opt_active_logs
:
494 if (args
->from
&& match_int(args
, &arg
))
496 if (arg
!= 2 && arg
!= 4 && arg
!= NR_CURSEG_TYPE
)
498 F2FS_OPTION(sbi
).active_logs
= arg
;
500 case Opt_disable_ext_identify
:
501 set_opt(sbi
, DISABLE_EXT_IDENTIFY
);
503 case Opt_inline_data
:
504 set_opt(sbi
, INLINE_DATA
);
506 case Opt_inline_dentry
:
507 set_opt(sbi
, INLINE_DENTRY
);
509 case Opt_noinline_dentry
:
510 clear_opt(sbi
, INLINE_DENTRY
);
512 case Opt_flush_merge
:
513 set_opt(sbi
, FLUSH_MERGE
);
515 case Opt_noflush_merge
:
516 clear_opt(sbi
, FLUSH_MERGE
);
519 set_opt(sbi
, NOBARRIER
);
522 set_opt(sbi
, FASTBOOT
);
524 case Opt_extent_cache
:
525 set_opt(sbi
, EXTENT_CACHE
);
527 case Opt_noextent_cache
:
528 clear_opt(sbi
, EXTENT_CACHE
);
530 case Opt_noinline_data
:
531 clear_opt(sbi
, INLINE_DATA
);
534 set_opt(sbi
, DATA_FLUSH
);
536 case Opt_reserve_root
:
537 if (args
->from
&& match_int(args
, &arg
))
539 if (test_opt(sbi
, RESERVE_ROOT
)) {
540 f2fs_msg(sb
, KERN_INFO
,
541 "Preserve previous reserve_root=%u",
542 F2FS_OPTION(sbi
).root_reserved_blocks
);
544 F2FS_OPTION(sbi
).root_reserved_blocks
= arg
;
545 set_opt(sbi
, RESERVE_ROOT
);
549 if (args
->from
&& match_int(args
, &arg
))
551 uid
= make_kuid(current_user_ns(), arg
);
552 if (!uid_valid(uid
)) {
553 f2fs_msg(sb
, KERN_ERR
,
554 "Invalid uid value %d", arg
);
557 F2FS_OPTION(sbi
).s_resuid
= uid
;
560 if (args
->from
&& match_int(args
, &arg
))
562 gid
= make_kgid(current_user_ns(), arg
);
563 if (!gid_valid(gid
)) {
564 f2fs_msg(sb
, KERN_ERR
,
565 "Invalid gid value %d", arg
);
568 F2FS_OPTION(sbi
).s_resgid
= gid
;
571 name
= match_strdup(&args
[0]);
575 if (strlen(name
) == 8 &&
576 !strncmp(name
, "adaptive", 8)) {
577 if (f2fs_sb_has_blkzoned(sb
)) {
578 f2fs_msg(sb
, KERN_WARNING
,
579 "adaptive mode is not allowed with "
580 "zoned block device feature");
584 set_opt_mode(sbi
, F2FS_MOUNT_ADAPTIVE
);
585 } else if (strlen(name
) == 3 &&
586 !strncmp(name
, "lfs", 3)) {
587 set_opt_mode(sbi
, F2FS_MOUNT_LFS
);
594 case Opt_io_size_bits
:
595 if (args
->from
&& match_int(args
, &arg
))
597 if (arg
> __ilog2_u32(BIO_MAX_PAGES
)) {
598 f2fs_msg(sb
, KERN_WARNING
,
599 "Not support %d, larger than %d",
600 1 << arg
, BIO_MAX_PAGES
);
603 F2FS_OPTION(sbi
).write_io_size_bits
= arg
;
605 case Opt_fault_injection
:
606 if (args
->from
&& match_int(args
, &arg
))
608 #ifdef CONFIG_F2FS_FAULT_INJECTION
609 f2fs_build_fault_attr(sbi
, arg
, F2FS_ALL_FAULT_TYPE
);
610 set_opt(sbi
, FAULT_INJECTION
);
612 f2fs_msg(sb
, KERN_INFO
,
613 "FAULT_INJECTION was not selected");
617 if (args
->from
&& match_int(args
, &arg
))
619 #ifdef CONFIG_F2FS_FAULT_INJECTION
620 f2fs_build_fault_attr(sbi
, 0, arg
);
621 set_opt(sbi
, FAULT_INJECTION
);
623 f2fs_msg(sb
, KERN_INFO
,
624 "FAULT_INJECTION was not selected");
628 sb
->s_flags
|= SB_LAZYTIME
;
631 sb
->s_flags
&= ~SB_LAZYTIME
;
636 set_opt(sbi
, USRQUOTA
);
639 set_opt(sbi
, GRPQUOTA
);
642 set_opt(sbi
, PRJQUOTA
);
645 ret
= f2fs_set_qf_name(sb
, USRQUOTA
, &args
[0]);
650 ret
= f2fs_set_qf_name(sb
, GRPQUOTA
, &args
[0]);
655 ret
= f2fs_set_qf_name(sb
, PRJQUOTA
, &args
[0]);
659 case Opt_offusrjquota
:
660 ret
= f2fs_clear_qf_name(sb
, USRQUOTA
);
664 case Opt_offgrpjquota
:
665 ret
= f2fs_clear_qf_name(sb
, GRPQUOTA
);
669 case Opt_offprjjquota
:
670 ret
= f2fs_clear_qf_name(sb
, PRJQUOTA
);
674 case Opt_jqfmt_vfsold
:
675 F2FS_OPTION(sbi
).s_jquota_fmt
= QFMT_VFS_OLD
;
677 case Opt_jqfmt_vfsv0
:
678 F2FS_OPTION(sbi
).s_jquota_fmt
= QFMT_VFS_V0
;
680 case Opt_jqfmt_vfsv1
:
681 F2FS_OPTION(sbi
).s_jquota_fmt
= QFMT_VFS_V1
;
684 clear_opt(sbi
, QUOTA
);
685 clear_opt(sbi
, USRQUOTA
);
686 clear_opt(sbi
, GRPQUOTA
);
687 clear_opt(sbi
, PRJQUOTA
);
697 case Opt_offusrjquota
:
698 case Opt_offgrpjquota
:
699 case Opt_offprjjquota
:
700 case Opt_jqfmt_vfsold
:
701 case Opt_jqfmt_vfsv0
:
702 case Opt_jqfmt_vfsv1
:
704 f2fs_msg(sb
, KERN_INFO
,
705 "quota operations not supported");
709 name
= match_strdup(&args
[0]);
712 if (strlen(name
) == 10 &&
713 !strncmp(name
, "user-based", 10)) {
714 F2FS_OPTION(sbi
).whint_mode
= WHINT_MODE_USER
;
715 } else if (strlen(name
) == 3 &&
716 !strncmp(name
, "off", 3)) {
717 F2FS_OPTION(sbi
).whint_mode
= WHINT_MODE_OFF
;
718 } else if (strlen(name
) == 8 &&
719 !strncmp(name
, "fs-based", 8)) {
720 F2FS_OPTION(sbi
).whint_mode
= WHINT_MODE_FS
;
728 name
= match_strdup(&args
[0]);
732 if (strlen(name
) == 7 &&
733 !strncmp(name
, "default", 7)) {
734 F2FS_OPTION(sbi
).alloc_mode
= ALLOC_MODE_DEFAULT
;
735 } else if (strlen(name
) == 5 &&
736 !strncmp(name
, "reuse", 5)) {
737 F2FS_OPTION(sbi
).alloc_mode
= ALLOC_MODE_REUSE
;
745 name
= match_strdup(&args
[0]);
748 if (strlen(name
) == 5 &&
749 !strncmp(name
, "posix", 5)) {
750 F2FS_OPTION(sbi
).fsync_mode
= FSYNC_MODE_POSIX
;
751 } else if (strlen(name
) == 6 &&
752 !strncmp(name
, "strict", 6)) {
753 F2FS_OPTION(sbi
).fsync_mode
= FSYNC_MODE_STRICT
;
754 } else if (strlen(name
) == 9 &&
755 !strncmp(name
, "nobarrier", 9)) {
756 F2FS_OPTION(sbi
).fsync_mode
=
757 FSYNC_MODE_NOBARRIER
;
764 case Opt_test_dummy_encryption
:
765 #ifdef CONFIG_F2FS_FS_ENCRYPTION
766 if (!f2fs_sb_has_encrypt(sb
)) {
767 f2fs_msg(sb
, KERN_ERR
, "Encrypt feature is off");
771 F2FS_OPTION(sbi
).test_dummy_encryption
= true;
772 f2fs_msg(sb
, KERN_INFO
,
773 "Test dummy encryption mode enabled");
775 f2fs_msg(sb
, KERN_INFO
,
776 "Test dummy encryption mount option ignored");
780 f2fs_msg(sb
, KERN_ERR
,
781 "Unrecognized mount option \"%s\" or missing value",
787 if (f2fs_check_quota_options(sbi
))
790 if (f2fs_sb_has_quota_ino(sbi
->sb
) && !f2fs_readonly(sbi
->sb
)) {
791 f2fs_msg(sbi
->sb
, KERN_INFO
,
792 "Filesystem with quota feature cannot be mounted RDWR "
793 "without CONFIG_QUOTA");
796 if (f2fs_sb_has_project_quota(sbi
->sb
) && !f2fs_readonly(sbi
->sb
)) {
797 f2fs_msg(sb
, KERN_ERR
,
798 "Filesystem with project quota feature cannot be "
799 "mounted RDWR without CONFIG_QUOTA");
804 if (F2FS_IO_SIZE_BITS(sbi
) && !test_opt(sbi
, LFS
)) {
805 f2fs_msg(sb
, KERN_ERR
,
806 "Should set mode=lfs with %uKB-sized IO",
807 F2FS_IO_SIZE_KB(sbi
));
811 if (test_opt(sbi
, INLINE_XATTR_SIZE
)) {
812 if (!f2fs_sb_has_extra_attr(sb
) ||
813 !f2fs_sb_has_flexible_inline_xattr(sb
)) {
814 f2fs_msg(sb
, KERN_ERR
,
815 "extra_attr or flexible_inline_xattr "
819 if (!test_opt(sbi
, INLINE_XATTR
)) {
820 f2fs_msg(sb
, KERN_ERR
,
821 "inline_xattr_size option should be "
822 "set with inline_xattr option");
825 if (!F2FS_OPTION(sbi
).inline_xattr_size
||
826 F2FS_OPTION(sbi
).inline_xattr_size
>=
827 DEF_ADDRS_PER_INODE
-
828 F2FS_TOTAL_EXTRA_ATTR_SIZE
-
829 DEF_INLINE_RESERVED_SIZE
-
830 DEF_MIN_INLINE_SIZE
) {
831 f2fs_msg(sb
, KERN_ERR
,
832 "inline xattr size is out of range");
837 /* Not pass down write hints if the number of active logs is lesser
838 * than NR_CURSEG_TYPE.
840 if (F2FS_OPTION(sbi
).active_logs
!= NR_CURSEG_TYPE
)
841 F2FS_OPTION(sbi
).whint_mode
= WHINT_MODE_OFF
;
845 static struct inode
*f2fs_alloc_inode(struct super_block
*sb
)
847 struct f2fs_inode_info
*fi
;
849 fi
= kmem_cache_alloc(f2fs_inode_cachep
, GFP_F2FS_ZERO
);
853 init_once((void *) fi
);
855 /* Initialize f2fs-specific inode info */
856 atomic_set(&fi
->dirty_pages
, 0);
857 init_rwsem(&fi
->i_sem
);
858 INIT_LIST_HEAD(&fi
->dirty_list
);
859 INIT_LIST_HEAD(&fi
->gdirty_list
);
860 INIT_LIST_HEAD(&fi
->inmem_ilist
);
861 INIT_LIST_HEAD(&fi
->inmem_pages
);
862 mutex_init(&fi
->inmem_lock
);
863 init_rwsem(&fi
->i_gc_rwsem
[READ
]);
864 init_rwsem(&fi
->i_gc_rwsem
[WRITE
]);
865 init_rwsem(&fi
->i_mmap_sem
);
866 init_rwsem(&fi
->i_xattr_sem
);
868 /* Will be used by directory only */
869 fi
->i_dir_level
= F2FS_SB(sb
)->dir_level
;
871 return &fi
->vfs_inode
;
874 static int f2fs_drop_inode(struct inode
*inode
)
878 * This is to avoid a deadlock condition like below.
879 * writeback_single_inode(inode)
880 * - f2fs_write_data_page
881 * - f2fs_gc -> iput -> evict
882 * - inode_wait_for_writeback(inode)
884 if ((!inode_unhashed(inode
) && inode
->i_state
& I_SYNC
)) {
885 if (!inode
->i_nlink
&& !is_bad_inode(inode
)) {
886 /* to avoid evict_inode call simultaneously */
887 atomic_inc(&inode
->i_count
);
888 spin_unlock(&inode
->i_lock
);
890 /* some remained atomic pages should discarded */
891 if (f2fs_is_atomic_file(inode
))
892 f2fs_drop_inmem_pages(inode
);
894 /* should remain fi->extent_tree for writepage */
895 f2fs_destroy_extent_node(inode
);
897 sb_start_intwrite(inode
->i_sb
);
898 f2fs_i_size_write(inode
, 0);
900 if (F2FS_HAS_BLOCKS(inode
))
901 f2fs_truncate(inode
);
903 sb_end_intwrite(inode
->i_sb
);
905 spin_lock(&inode
->i_lock
);
906 atomic_dec(&inode
->i_count
);
908 trace_f2fs_drop_inode(inode
, 0);
911 ret
= generic_drop_inode(inode
);
912 trace_f2fs_drop_inode(inode
, ret
);
916 int f2fs_inode_dirtied(struct inode
*inode
, bool sync
)
918 struct f2fs_sb_info
*sbi
= F2FS_I_SB(inode
);
921 spin_lock(&sbi
->inode_lock
[DIRTY_META
]);
922 if (is_inode_flag_set(inode
, FI_DIRTY_INODE
)) {
925 set_inode_flag(inode
, FI_DIRTY_INODE
);
926 stat_inc_dirty_inode(sbi
, DIRTY_META
);
928 if (sync
&& list_empty(&F2FS_I(inode
)->gdirty_list
)) {
929 list_add_tail(&F2FS_I(inode
)->gdirty_list
,
930 &sbi
->inode_list
[DIRTY_META
]);
931 inc_page_count(sbi
, F2FS_DIRTY_IMETA
);
933 spin_unlock(&sbi
->inode_lock
[DIRTY_META
]);
937 void f2fs_inode_synced(struct inode
*inode
)
939 struct f2fs_sb_info
*sbi
= F2FS_I_SB(inode
);
941 spin_lock(&sbi
->inode_lock
[DIRTY_META
]);
942 if (!is_inode_flag_set(inode
, FI_DIRTY_INODE
)) {
943 spin_unlock(&sbi
->inode_lock
[DIRTY_META
]);
946 if (!list_empty(&F2FS_I(inode
)->gdirty_list
)) {
947 list_del_init(&F2FS_I(inode
)->gdirty_list
);
948 dec_page_count(sbi
, F2FS_DIRTY_IMETA
);
950 clear_inode_flag(inode
, FI_DIRTY_INODE
);
951 clear_inode_flag(inode
, FI_AUTO_RECOVER
);
952 stat_dec_dirty_inode(F2FS_I_SB(inode
), DIRTY_META
);
953 spin_unlock(&sbi
->inode_lock
[DIRTY_META
]);
957 * f2fs_dirty_inode() is called from __mark_inode_dirty()
959 * We should call set_dirty_inode to write the dirty inode through write_inode.
961 static void f2fs_dirty_inode(struct inode
*inode
, int flags
)
963 struct f2fs_sb_info
*sbi
= F2FS_I_SB(inode
);
965 if (inode
->i_ino
== F2FS_NODE_INO(sbi
) ||
966 inode
->i_ino
== F2FS_META_INO(sbi
))
969 if (flags
== I_DIRTY_TIME
)
972 if (is_inode_flag_set(inode
, FI_AUTO_RECOVER
))
973 clear_inode_flag(inode
, FI_AUTO_RECOVER
);
975 f2fs_inode_dirtied(inode
, false);
978 static void f2fs_i_callback(struct rcu_head
*head
)
980 struct inode
*inode
= container_of(head
, struct inode
, i_rcu
);
981 kmem_cache_free(f2fs_inode_cachep
, F2FS_I(inode
));
984 static void f2fs_destroy_inode(struct inode
*inode
)
986 call_rcu(&inode
->i_rcu
, f2fs_i_callback
);
989 static void destroy_percpu_info(struct f2fs_sb_info
*sbi
)
991 percpu_counter_destroy(&sbi
->alloc_valid_block_count
);
992 percpu_counter_destroy(&sbi
->total_valid_inode_count
);
995 static void destroy_device_list(struct f2fs_sb_info
*sbi
)
999 for (i
= 0; i
< sbi
->s_ndevs
; i
++) {
1000 blkdev_put(FDEV(i
).bdev
, FMODE_EXCL
);
1001 #ifdef CONFIG_BLK_DEV_ZONED
1002 kfree(FDEV(i
).blkz_type
);
1008 static void f2fs_put_super(struct super_block
*sb
)
1010 struct f2fs_sb_info
*sbi
= F2FS_SB(sb
);
1014 f2fs_quota_off_umount(sb
);
1016 /* prevent remaining shrinker jobs */
1017 mutex_lock(&sbi
->umount_mutex
);
1020 * We don't need to do checkpoint when superblock is clean.
1021 * But, the previous checkpoint was not done by umount, it needs to do
1022 * clean checkpoint again.
1024 if (is_sbi_flag_set(sbi
, SBI_IS_DIRTY
) ||
1025 !is_set_ckpt_flags(sbi
, CP_UMOUNT_FLAG
)) {
1026 struct cp_control cpc
= {
1027 .reason
= CP_UMOUNT
,
1029 f2fs_write_checkpoint(sbi
, &cpc
);
1032 /* be sure to wait for any on-going discard commands */
1033 dropped
= f2fs_wait_discard_bios(sbi
);
1035 if (f2fs_discard_en(sbi
) && !sbi
->discard_blks
&& !dropped
) {
1036 struct cp_control cpc
= {
1037 .reason
= CP_UMOUNT
| CP_TRIMMED
,
1039 f2fs_write_checkpoint(sbi
, &cpc
);
1042 /* f2fs_write_checkpoint can update stat informaion */
1043 f2fs_destroy_stats(sbi
);
1046 * normally superblock is clean, so we need to release this.
1047 * In addition, EIO will skip do checkpoint, we need this as well.
1049 f2fs_release_ino_entry(sbi
, true);
1051 f2fs_leave_shrinker(sbi
);
1052 mutex_unlock(&sbi
->umount_mutex
);
1054 /* our cp_error case, we can wait for any writeback page */
1055 f2fs_flush_merged_writes(sbi
);
1057 f2fs_wait_on_all_pages_writeback(sbi
);
1059 f2fs_bug_on(sbi
, sbi
->fsync_node_num
);
1061 iput(sbi
->node_inode
);
1062 iput(sbi
->meta_inode
);
1064 /* destroy f2fs internal modules */
1065 f2fs_destroy_node_manager(sbi
);
1066 f2fs_destroy_segment_manager(sbi
);
1070 f2fs_unregister_sysfs(sbi
);
1072 sb
->s_fs_info
= NULL
;
1073 if (sbi
->s_chksum_driver
)
1074 crypto_free_shash(sbi
->s_chksum_driver
);
1075 kfree(sbi
->raw_super
);
1077 destroy_device_list(sbi
);
1078 mempool_destroy(sbi
->write_io_dummy
);
1080 for (i
= 0; i
< MAXQUOTAS
; i
++)
1081 kfree(F2FS_OPTION(sbi
).s_qf_names
[i
]);
1083 destroy_percpu_info(sbi
);
1084 for (i
= 0; i
< NR_PAGE_TYPE
; i
++)
1085 kfree(sbi
->write_io
[i
]);
1089 int f2fs_sync_fs(struct super_block
*sb
, int sync
)
1091 struct f2fs_sb_info
*sbi
= F2FS_SB(sb
);
1094 if (unlikely(f2fs_cp_error(sbi
)))
1097 trace_f2fs_sync_fs(sb
, sync
);
1099 if (unlikely(is_sbi_flag_set(sbi
, SBI_POR_DOING
)))
1103 struct cp_control cpc
;
1105 cpc
.reason
= __get_cp_reason(sbi
);
1107 mutex_lock(&sbi
->gc_mutex
);
1108 err
= f2fs_write_checkpoint(sbi
, &cpc
);
1109 mutex_unlock(&sbi
->gc_mutex
);
1111 f2fs_trace_ios(NULL
, 1);
1116 static int f2fs_freeze(struct super_block
*sb
)
1118 if (f2fs_readonly(sb
))
1121 /* IO error happened before */
1122 if (unlikely(f2fs_cp_error(F2FS_SB(sb
))))
1125 /* must be clean, since sync_filesystem() was already called */
1126 if (is_sbi_flag_set(F2FS_SB(sb
), SBI_IS_DIRTY
))
1131 static int f2fs_unfreeze(struct super_block
*sb
)
1137 static int f2fs_statfs_project(struct super_block
*sb
,
1138 kprojid_t projid
, struct kstatfs
*buf
)
1141 struct dquot
*dquot
;
1145 qid
= make_kqid_projid(projid
);
1146 dquot
= dqget(sb
, qid
);
1148 return PTR_ERR(dquot
);
1149 spin_lock(&dquot
->dq_dqb_lock
);
1151 limit
= (dquot
->dq_dqb
.dqb_bsoftlimit
?
1152 dquot
->dq_dqb
.dqb_bsoftlimit
:
1153 dquot
->dq_dqb
.dqb_bhardlimit
) >> sb
->s_blocksize_bits
;
1154 if (limit
&& buf
->f_blocks
> limit
) {
1155 curblock
= dquot
->dq_dqb
.dqb_curspace
>> sb
->s_blocksize_bits
;
1156 buf
->f_blocks
= limit
;
1157 buf
->f_bfree
= buf
->f_bavail
=
1158 (buf
->f_blocks
> curblock
) ?
1159 (buf
->f_blocks
- curblock
) : 0;
1162 limit
= dquot
->dq_dqb
.dqb_isoftlimit
?
1163 dquot
->dq_dqb
.dqb_isoftlimit
:
1164 dquot
->dq_dqb
.dqb_ihardlimit
;
1165 if (limit
&& buf
->f_files
> limit
) {
1166 buf
->f_files
= limit
;
1168 (buf
->f_files
> dquot
->dq_dqb
.dqb_curinodes
) ?
1169 (buf
->f_files
- dquot
->dq_dqb
.dqb_curinodes
) : 0;
1172 spin_unlock(&dquot
->dq_dqb_lock
);
1178 static int f2fs_statfs(struct dentry
*dentry
, struct kstatfs
*buf
)
1180 struct super_block
*sb
= dentry
->d_sb
;
1181 struct f2fs_sb_info
*sbi
= F2FS_SB(sb
);
1182 u64 id
= huge_encode_dev(sb
->s_bdev
->bd_dev
);
1183 block_t total_count
, user_block_count
, start_count
;
1184 u64 avail_node_count
;
1186 total_count
= le64_to_cpu(sbi
->raw_super
->block_count
);
1187 user_block_count
= sbi
->user_block_count
;
1188 start_count
= le32_to_cpu(sbi
->raw_super
->segment0_blkaddr
);
1189 buf
->f_type
= F2FS_SUPER_MAGIC
;
1190 buf
->f_bsize
= sbi
->blocksize
;
1192 buf
->f_blocks
= total_count
- start_count
;
1193 buf
->f_bfree
= user_block_count
- valid_user_blocks(sbi
) -
1194 sbi
->current_reserved_blocks
;
1195 if (buf
->f_bfree
> F2FS_OPTION(sbi
).root_reserved_blocks
)
1196 buf
->f_bavail
= buf
->f_bfree
-
1197 F2FS_OPTION(sbi
).root_reserved_blocks
;
1201 avail_node_count
= sbi
->total_node_count
- sbi
->nquota_files
-
1202 F2FS_RESERVED_NODE_NUM
;
1204 if (avail_node_count
> user_block_count
) {
1205 buf
->f_files
= user_block_count
;
1206 buf
->f_ffree
= buf
->f_bavail
;
1208 buf
->f_files
= avail_node_count
;
1209 buf
->f_ffree
= min(avail_node_count
- valid_node_count(sbi
),
1213 buf
->f_namelen
= F2FS_NAME_LEN
;
1214 buf
->f_fsid
.val
[0] = (u32
)id
;
1215 buf
->f_fsid
.val
[1] = (u32
)(id
>> 32);
1218 if (is_inode_flag_set(dentry
->d_inode
, FI_PROJ_INHERIT
) &&
1219 sb_has_quota_limits_enabled(sb
, PRJQUOTA
)) {
1220 f2fs_statfs_project(sb
, F2FS_I(dentry
->d_inode
)->i_projid
, buf
);
1226 static inline void f2fs_show_quota_options(struct seq_file
*seq
,
1227 struct super_block
*sb
)
1230 struct f2fs_sb_info
*sbi
= F2FS_SB(sb
);
1232 if (F2FS_OPTION(sbi
).s_jquota_fmt
) {
1235 switch (F2FS_OPTION(sbi
).s_jquota_fmt
) {
1246 seq_printf(seq
, ",jqfmt=%s", fmtname
);
1249 if (F2FS_OPTION(sbi
).s_qf_names
[USRQUOTA
])
1250 seq_show_option(seq
, "usrjquota",
1251 F2FS_OPTION(sbi
).s_qf_names
[USRQUOTA
]);
1253 if (F2FS_OPTION(sbi
).s_qf_names
[GRPQUOTA
])
1254 seq_show_option(seq
, "grpjquota",
1255 F2FS_OPTION(sbi
).s_qf_names
[GRPQUOTA
]);
1257 if (F2FS_OPTION(sbi
).s_qf_names
[PRJQUOTA
])
1258 seq_show_option(seq
, "prjjquota",
1259 F2FS_OPTION(sbi
).s_qf_names
[PRJQUOTA
]);
1263 static int f2fs_show_options(struct seq_file
*seq
, struct dentry
*root
)
1265 struct f2fs_sb_info
*sbi
= F2FS_SB(root
->d_sb
);
1267 if (!f2fs_readonly(sbi
->sb
) && test_opt(sbi
, BG_GC
)) {
1268 if (test_opt(sbi
, FORCE_FG_GC
))
1269 seq_printf(seq
, ",background_gc=%s", "sync");
1271 seq_printf(seq
, ",background_gc=%s", "on");
1273 seq_printf(seq
, ",background_gc=%s", "off");
1275 if (test_opt(sbi
, DISABLE_ROLL_FORWARD
))
1276 seq_puts(seq
, ",disable_roll_forward");
1277 if (test_opt(sbi
, DISCARD
))
1278 seq_puts(seq
, ",discard");
1279 if (test_opt(sbi
, NOHEAP
))
1280 seq_puts(seq
, ",no_heap");
1282 seq_puts(seq
, ",heap");
1283 #ifdef CONFIG_F2FS_FS_XATTR
1284 if (test_opt(sbi
, XATTR_USER
))
1285 seq_puts(seq
, ",user_xattr");
1287 seq_puts(seq
, ",nouser_xattr");
1288 if (test_opt(sbi
, INLINE_XATTR
))
1289 seq_puts(seq
, ",inline_xattr");
1291 seq_puts(seq
, ",noinline_xattr");
1292 if (test_opt(sbi
, INLINE_XATTR_SIZE
))
1293 seq_printf(seq
, ",inline_xattr_size=%u",
1294 F2FS_OPTION(sbi
).inline_xattr_size
);
1296 #ifdef CONFIG_F2FS_FS_POSIX_ACL
1297 if (test_opt(sbi
, POSIX_ACL
))
1298 seq_puts(seq
, ",acl");
1300 seq_puts(seq
, ",noacl");
1302 if (test_opt(sbi
, DISABLE_EXT_IDENTIFY
))
1303 seq_puts(seq
, ",disable_ext_identify");
1304 if (test_opt(sbi
, INLINE_DATA
))
1305 seq_puts(seq
, ",inline_data");
1307 seq_puts(seq
, ",noinline_data");
1308 if (test_opt(sbi
, INLINE_DENTRY
))
1309 seq_puts(seq
, ",inline_dentry");
1311 seq_puts(seq
, ",noinline_dentry");
1312 if (!f2fs_readonly(sbi
->sb
) && test_opt(sbi
, FLUSH_MERGE
))
1313 seq_puts(seq
, ",flush_merge");
1314 if (test_opt(sbi
, NOBARRIER
))
1315 seq_puts(seq
, ",nobarrier");
1316 if (test_opt(sbi
, FASTBOOT
))
1317 seq_puts(seq
, ",fastboot");
1318 if (test_opt(sbi
, EXTENT_CACHE
))
1319 seq_puts(seq
, ",extent_cache");
1321 seq_puts(seq
, ",noextent_cache");
1322 if (test_opt(sbi
, DATA_FLUSH
))
1323 seq_puts(seq
, ",data_flush");
1325 seq_puts(seq
, ",mode=");
1326 if (test_opt(sbi
, ADAPTIVE
))
1327 seq_puts(seq
, "adaptive");
1328 else if (test_opt(sbi
, LFS
))
1329 seq_puts(seq
, "lfs");
1330 seq_printf(seq
, ",active_logs=%u", F2FS_OPTION(sbi
).active_logs
);
1331 if (test_opt(sbi
, RESERVE_ROOT
))
1332 seq_printf(seq
, ",reserve_root=%u,resuid=%u,resgid=%u",
1333 F2FS_OPTION(sbi
).root_reserved_blocks
,
1334 from_kuid_munged(&init_user_ns
,
1335 F2FS_OPTION(sbi
).s_resuid
),
1336 from_kgid_munged(&init_user_ns
,
1337 F2FS_OPTION(sbi
).s_resgid
));
1338 if (F2FS_IO_SIZE_BITS(sbi
))
1339 seq_printf(seq
, ",io_size=%uKB", F2FS_IO_SIZE_KB(sbi
));
1340 #ifdef CONFIG_F2FS_FAULT_INJECTION
1341 if (test_opt(sbi
, FAULT_INJECTION
)) {
1342 seq_printf(seq
, ",fault_injection=%u",
1343 F2FS_OPTION(sbi
).fault_info
.inject_rate
);
1344 seq_printf(seq
, ",fault_type=%u",
1345 F2FS_OPTION(sbi
).fault_info
.inject_type
);
1349 if (test_opt(sbi
, QUOTA
))
1350 seq_puts(seq
, ",quota");
1351 if (test_opt(sbi
, USRQUOTA
))
1352 seq_puts(seq
, ",usrquota");
1353 if (test_opt(sbi
, GRPQUOTA
))
1354 seq_puts(seq
, ",grpquota");
1355 if (test_opt(sbi
, PRJQUOTA
))
1356 seq_puts(seq
, ",prjquota");
1358 f2fs_show_quota_options(seq
, sbi
->sb
);
1359 if (F2FS_OPTION(sbi
).whint_mode
== WHINT_MODE_USER
)
1360 seq_printf(seq
, ",whint_mode=%s", "user-based");
1361 else if (F2FS_OPTION(sbi
).whint_mode
== WHINT_MODE_FS
)
1362 seq_printf(seq
, ",whint_mode=%s", "fs-based");
1363 #ifdef CONFIG_F2FS_FS_ENCRYPTION
1364 if (F2FS_OPTION(sbi
).test_dummy_encryption
)
1365 seq_puts(seq
, ",test_dummy_encryption");
1368 if (F2FS_OPTION(sbi
).alloc_mode
== ALLOC_MODE_DEFAULT
)
1369 seq_printf(seq
, ",alloc_mode=%s", "default");
1370 else if (F2FS_OPTION(sbi
).alloc_mode
== ALLOC_MODE_REUSE
)
1371 seq_printf(seq
, ",alloc_mode=%s", "reuse");
1373 if (F2FS_OPTION(sbi
).fsync_mode
== FSYNC_MODE_POSIX
)
1374 seq_printf(seq
, ",fsync_mode=%s", "posix");
1375 else if (F2FS_OPTION(sbi
).fsync_mode
== FSYNC_MODE_STRICT
)
1376 seq_printf(seq
, ",fsync_mode=%s", "strict");
1377 else if (F2FS_OPTION(sbi
).fsync_mode
== FSYNC_MODE_NOBARRIER
)
1378 seq_printf(seq
, ",fsync_mode=%s", "nobarrier");
1382 static void default_options(struct f2fs_sb_info
*sbi
)
1384 /* init some FS parameters */
1385 F2FS_OPTION(sbi
).active_logs
= NR_CURSEG_TYPE
;
1386 F2FS_OPTION(sbi
).inline_xattr_size
= DEFAULT_INLINE_XATTR_ADDRS
;
1387 F2FS_OPTION(sbi
).whint_mode
= WHINT_MODE_OFF
;
1388 F2FS_OPTION(sbi
).alloc_mode
= ALLOC_MODE_DEFAULT
;
1389 F2FS_OPTION(sbi
).fsync_mode
= FSYNC_MODE_POSIX
;
1390 F2FS_OPTION(sbi
).test_dummy_encryption
= false;
1391 F2FS_OPTION(sbi
).s_resuid
= make_kuid(&init_user_ns
, F2FS_DEF_RESUID
);
1392 F2FS_OPTION(sbi
).s_resgid
= make_kgid(&init_user_ns
, F2FS_DEF_RESGID
);
1394 set_opt(sbi
, BG_GC
);
1395 set_opt(sbi
, INLINE_XATTR
);
1396 set_opt(sbi
, INLINE_DATA
);
1397 set_opt(sbi
, INLINE_DENTRY
);
1398 set_opt(sbi
, EXTENT_CACHE
);
1399 set_opt(sbi
, NOHEAP
);
1400 sbi
->sb
->s_flags
|= SB_LAZYTIME
;
1401 set_opt(sbi
, FLUSH_MERGE
);
1402 if (blk_queue_discard(bdev_get_queue(sbi
->sb
->s_bdev
)))
1403 set_opt(sbi
, DISCARD
);
1404 if (f2fs_sb_has_blkzoned(sbi
->sb
))
1405 set_opt_mode(sbi
, F2FS_MOUNT_LFS
);
1407 set_opt_mode(sbi
, F2FS_MOUNT_ADAPTIVE
);
1409 #ifdef CONFIG_F2FS_FS_XATTR
1410 set_opt(sbi
, XATTR_USER
);
1412 #ifdef CONFIG_F2FS_FS_POSIX_ACL
1413 set_opt(sbi
, POSIX_ACL
);
1416 f2fs_build_fault_attr(sbi
, 0, 0);
1420 static int f2fs_enable_quotas(struct super_block
*sb
);
1422 static int f2fs_remount(struct super_block
*sb
, int *flags
, char *data
)
1424 struct f2fs_sb_info
*sbi
= F2FS_SB(sb
);
1425 struct f2fs_mount_info org_mount_opt
;
1426 unsigned long old_sb_flags
;
1428 bool need_restart_gc
= false;
1429 bool need_stop_gc
= false;
1430 bool no_extent_cache
= !test_opt(sbi
, EXTENT_CACHE
);
1436 * Save the old mount options in case we
1437 * need to restore them.
1439 org_mount_opt
= sbi
->mount_opt
;
1440 old_sb_flags
= sb
->s_flags
;
1443 org_mount_opt
.s_jquota_fmt
= F2FS_OPTION(sbi
).s_jquota_fmt
;
1444 for (i
= 0; i
< MAXQUOTAS
; i
++) {
1445 if (F2FS_OPTION(sbi
).s_qf_names
[i
]) {
1446 org_mount_opt
.s_qf_names
[i
] =
1447 kstrdup(F2FS_OPTION(sbi
).s_qf_names
[i
],
1449 if (!org_mount_opt
.s_qf_names
[i
]) {
1450 for (j
= 0; j
< i
; j
++)
1451 kfree(org_mount_opt
.s_qf_names
[j
]);
1455 org_mount_opt
.s_qf_names
[i
] = NULL
;
1460 /* recover superblocks we couldn't write due to previous RO mount */
1461 if (!(*flags
& SB_RDONLY
) && is_sbi_flag_set(sbi
, SBI_NEED_SB_WRITE
)) {
1462 err
= f2fs_commit_super(sbi
, false);
1463 f2fs_msg(sb
, KERN_INFO
,
1464 "Try to recover all the superblocks, ret: %d", err
);
1466 clear_sbi_flag(sbi
, SBI_NEED_SB_WRITE
);
1469 default_options(sbi
);
1471 /* parse mount options */
1472 err
= parse_options(sb
, data
);
1477 * Previous and new state of filesystem is RO,
1478 * so skip checking GC and FLUSH_MERGE conditions.
1480 if (f2fs_readonly(sb
) && (*flags
& SB_RDONLY
))
1484 if (!f2fs_readonly(sb
) && (*flags
& SB_RDONLY
)) {
1485 err
= dquot_suspend(sb
, -1);
1488 } else if (f2fs_readonly(sb
) && !(*flags
& MS_RDONLY
)) {
1489 /* dquot_resume needs RW */
1490 sb
->s_flags
&= ~SB_RDONLY
;
1491 if (sb_any_quota_suspended(sb
)) {
1492 dquot_resume(sb
, -1);
1493 } else if (f2fs_sb_has_quota_ino(sb
)) {
1494 err
= f2fs_enable_quotas(sb
);
1500 /* disallow enable/disable extent_cache dynamically */
1501 if (no_extent_cache
== !!test_opt(sbi
, EXTENT_CACHE
)) {
1503 f2fs_msg(sbi
->sb
, KERN_WARNING
,
1504 "switch extent_cache option is not allowed");
1509 * We stop the GC thread if FS is mounted as RO
1510 * or if background_gc = off is passed in mount
1511 * option. Also sync the filesystem.
1513 if ((*flags
& SB_RDONLY
) || !test_opt(sbi
, BG_GC
)) {
1514 if (sbi
->gc_thread
) {
1515 f2fs_stop_gc_thread(sbi
);
1516 need_restart_gc
= true;
1518 } else if (!sbi
->gc_thread
) {
1519 err
= f2fs_start_gc_thread(sbi
);
1522 need_stop_gc
= true;
1525 if (*flags
& SB_RDONLY
||
1526 F2FS_OPTION(sbi
).whint_mode
!= org_mount_opt
.whint_mode
) {
1527 writeback_inodes_sb(sb
, WB_REASON_SYNC
);
1530 set_sbi_flag(sbi
, SBI_IS_DIRTY
);
1531 set_sbi_flag(sbi
, SBI_IS_CLOSE
);
1532 f2fs_sync_fs(sb
, 1);
1533 clear_sbi_flag(sbi
, SBI_IS_CLOSE
);
1537 * We stop issue flush thread if FS is mounted as RO
1538 * or if flush_merge is not passed in mount option.
1540 if ((*flags
& SB_RDONLY
) || !test_opt(sbi
, FLUSH_MERGE
)) {
1541 clear_opt(sbi
, FLUSH_MERGE
);
1542 f2fs_destroy_flush_cmd_control(sbi
, false);
1544 err
= f2fs_create_flush_cmd_control(sbi
);
1550 /* Release old quota file names */
1551 for (i
= 0; i
< MAXQUOTAS
; i
++)
1552 kfree(org_mount_opt
.s_qf_names
[i
]);
1554 /* Update the POSIXACL Flag */
1555 sb
->s_flags
= (sb
->s_flags
& ~SB_POSIXACL
) |
1556 (test_opt(sbi
, POSIX_ACL
) ? SB_POSIXACL
: 0);
1558 limit_reserve_root(sbi
);
1561 if (need_restart_gc
) {
1562 if (f2fs_start_gc_thread(sbi
))
1563 f2fs_msg(sbi
->sb
, KERN_WARNING
,
1564 "background gc thread has stopped");
1565 } else if (need_stop_gc
) {
1566 f2fs_stop_gc_thread(sbi
);
1570 F2FS_OPTION(sbi
).s_jquota_fmt
= org_mount_opt
.s_jquota_fmt
;
1571 for (i
= 0; i
< MAXQUOTAS
; i
++) {
1572 kfree(F2FS_OPTION(sbi
).s_qf_names
[i
]);
1573 F2FS_OPTION(sbi
).s_qf_names
[i
] = org_mount_opt
.s_qf_names
[i
];
1576 sbi
->mount_opt
= org_mount_opt
;
1577 sb
->s_flags
= old_sb_flags
;
1582 /* Read data from quotafile */
1583 static ssize_t
f2fs_quota_read(struct super_block
*sb
, int type
, char *data
,
1584 size_t len
, loff_t off
)
1586 struct inode
*inode
= sb_dqopt(sb
)->files
[type
];
1587 struct address_space
*mapping
= inode
->i_mapping
;
1588 block_t blkidx
= F2FS_BYTES_TO_BLK(off
);
1589 int offset
= off
& (sb
->s_blocksize
- 1);
1592 loff_t i_size
= i_size_read(inode
);
1599 if (off
+ len
> i_size
)
1602 while (toread
> 0) {
1603 tocopy
= min_t(unsigned long, sb
->s_blocksize
- offset
, toread
);
1605 page
= read_cache_page_gfp(mapping
, blkidx
, GFP_NOFS
);
1607 if (PTR_ERR(page
) == -ENOMEM
) {
1608 congestion_wait(BLK_RW_ASYNC
, HZ
/50);
1611 return PTR_ERR(page
);
1616 if (unlikely(page
->mapping
!= mapping
)) {
1617 f2fs_put_page(page
, 1);
1620 if (unlikely(!PageUptodate(page
))) {
1621 f2fs_put_page(page
, 1);
1625 kaddr
= kmap_atomic(page
);
1626 memcpy(data
, kaddr
+ offset
, tocopy
);
1627 kunmap_atomic(kaddr
);
1628 f2fs_put_page(page
, 1);
1638 /* Write to quotafile */
1639 static ssize_t
f2fs_quota_write(struct super_block
*sb
, int type
,
1640 const char *data
, size_t len
, loff_t off
)
1642 struct inode
*inode
= sb_dqopt(sb
)->files
[type
];
1643 struct address_space
*mapping
= inode
->i_mapping
;
1644 const struct address_space_operations
*a_ops
= mapping
->a_ops
;
1645 int offset
= off
& (sb
->s_blocksize
- 1);
1646 size_t towrite
= len
;
1652 while (towrite
> 0) {
1653 tocopy
= min_t(unsigned long, sb
->s_blocksize
- offset
,
1656 err
= a_ops
->write_begin(NULL
, mapping
, off
, tocopy
, 0,
1658 if (unlikely(err
)) {
1659 if (err
== -ENOMEM
) {
1660 congestion_wait(BLK_RW_ASYNC
, HZ
/50);
1666 kaddr
= kmap_atomic(page
);
1667 memcpy(kaddr
+ offset
, data
, tocopy
);
1668 kunmap_atomic(kaddr
);
1669 flush_dcache_page(page
);
1671 a_ops
->write_end(NULL
, mapping
, off
, tocopy
, tocopy
,
1682 inode
->i_mtime
= inode
->i_ctime
= current_time(inode
);
1683 f2fs_mark_inode_dirty_sync(inode
, false);
1684 return len
- towrite
;
1687 static struct dquot
**f2fs_get_dquots(struct inode
*inode
)
1689 return F2FS_I(inode
)->i_dquot
;
1692 static qsize_t
*f2fs_get_reserved_space(struct inode
*inode
)
1694 return &F2FS_I(inode
)->i_reserved_quota
;
1697 static int f2fs_quota_on_mount(struct f2fs_sb_info
*sbi
, int type
)
1699 return dquot_quota_on_mount(sbi
->sb
, F2FS_OPTION(sbi
).s_qf_names
[type
],
1700 F2FS_OPTION(sbi
).s_jquota_fmt
, type
);
1703 int f2fs_enable_quota_files(struct f2fs_sb_info
*sbi
, bool rdonly
)
1708 if (f2fs_sb_has_quota_ino(sbi
->sb
) && rdonly
) {
1709 err
= f2fs_enable_quotas(sbi
->sb
);
1711 f2fs_msg(sbi
->sb
, KERN_ERR
,
1712 "Cannot turn on quota_ino: %d", err
);
1718 for (i
= 0; i
< MAXQUOTAS
; i
++) {
1719 if (F2FS_OPTION(sbi
).s_qf_names
[i
]) {
1720 err
= f2fs_quota_on_mount(sbi
, i
);
1725 f2fs_msg(sbi
->sb
, KERN_ERR
,
1726 "Cannot turn on quotas: %d on %d", err
, i
);
1732 static int f2fs_quota_enable(struct super_block
*sb
, int type
, int format_id
,
1735 struct inode
*qf_inode
;
1736 unsigned long qf_inum
;
1739 BUG_ON(!f2fs_sb_has_quota_ino(sb
));
1741 qf_inum
= f2fs_qf_ino(sb
, type
);
1745 qf_inode
= f2fs_iget(sb
, qf_inum
);
1746 if (IS_ERR(qf_inode
)) {
1747 f2fs_msg(sb
, KERN_ERR
,
1748 "Bad quota inode %u:%lu", type
, qf_inum
);
1749 return PTR_ERR(qf_inode
);
1752 /* Don't account quota for quota files to avoid recursion */
1753 qf_inode
->i_flags
|= S_NOQUOTA
;
1754 err
= dquot_enable(qf_inode
, type
, format_id
, flags
);
1759 static int f2fs_enable_quotas(struct super_block
*sb
)
1762 unsigned long qf_inum
;
1763 bool quota_mopt
[MAXQUOTAS
] = {
1764 test_opt(F2FS_SB(sb
), USRQUOTA
),
1765 test_opt(F2FS_SB(sb
), GRPQUOTA
),
1766 test_opt(F2FS_SB(sb
), PRJQUOTA
),
1769 sb_dqopt(sb
)->flags
|= DQUOT_QUOTA_SYS_FILE
| DQUOT_NOLIST_DIRTY
;
1770 for (type
= 0; type
< MAXQUOTAS
; type
++) {
1771 qf_inum
= f2fs_qf_ino(sb
, type
);
1773 err
= f2fs_quota_enable(sb
, type
, QFMT_VFS_V1
,
1774 DQUOT_USAGE_ENABLED
|
1775 (quota_mopt
[type
] ? DQUOT_LIMITS_ENABLED
: 0));
1777 f2fs_msg(sb
, KERN_ERR
,
1778 "Failed to enable quota tracking "
1779 "(type=%d, err=%d). Please run "
1780 "fsck to fix.", type
, err
);
1781 for (type
--; type
>= 0; type
--)
1782 dquot_quota_off(sb
, type
);
1790 static int f2fs_quota_sync(struct super_block
*sb
, int type
)
1792 struct quota_info
*dqopt
= sb_dqopt(sb
);
1796 ret
= dquot_writeback_dquots(sb
, type
);
1801 * Now when everything is written we can discard the pagecache so
1802 * that userspace sees the changes.
1804 for (cnt
= 0; cnt
< MAXQUOTAS
; cnt
++) {
1805 if (type
!= -1 && cnt
!= type
)
1807 if (!sb_has_quota_active(sb
, cnt
))
1810 ret
= filemap_write_and_wait(dqopt
->files
[cnt
]->i_mapping
);
1814 inode_lock(dqopt
->files
[cnt
]);
1815 truncate_inode_pages(&dqopt
->files
[cnt
]->i_data
, 0);
1816 inode_unlock(dqopt
->files
[cnt
]);
1821 static int f2fs_quota_on(struct super_block
*sb
, int type
, int format_id
,
1822 const struct path
*path
)
1824 struct inode
*inode
;
1827 err
= f2fs_quota_sync(sb
, type
);
1831 err
= dquot_quota_on(sb
, type
, format_id
, path
);
1835 inode
= d_inode(path
->dentry
);
1838 F2FS_I(inode
)->i_flags
|= F2FS_NOATIME_FL
| F2FS_IMMUTABLE_FL
;
1839 inode_set_flags(inode
, S_NOATIME
| S_IMMUTABLE
,
1840 S_NOATIME
| S_IMMUTABLE
);
1841 inode_unlock(inode
);
1842 f2fs_mark_inode_dirty_sync(inode
, false);
1847 static int f2fs_quota_off(struct super_block
*sb
, int type
)
1849 struct inode
*inode
= sb_dqopt(sb
)->files
[type
];
1852 if (!inode
|| !igrab(inode
))
1853 return dquot_quota_off(sb
, type
);
1855 f2fs_quota_sync(sb
, type
);
1857 err
= dquot_quota_off(sb
, type
);
1858 if (err
|| f2fs_sb_has_quota_ino(sb
))
1862 F2FS_I(inode
)->i_flags
&= ~(F2FS_NOATIME_FL
| F2FS_IMMUTABLE_FL
);
1863 inode_set_flags(inode
, 0, S_NOATIME
| S_IMMUTABLE
);
1864 inode_unlock(inode
);
1865 f2fs_mark_inode_dirty_sync(inode
, false);
1871 void f2fs_quota_off_umount(struct super_block
*sb
)
1875 for (type
= 0; type
< MAXQUOTAS
; type
++)
1876 f2fs_quota_off(sb
, type
);
1879 static int f2fs_get_projid(struct inode
*inode
, kprojid_t
*projid
)
1881 *projid
= F2FS_I(inode
)->i_projid
;
1885 static const struct dquot_operations f2fs_quota_operations
= {
1886 .get_reserved_space
= f2fs_get_reserved_space
,
1887 .write_dquot
= dquot_commit
,
1888 .acquire_dquot
= dquot_acquire
,
1889 .release_dquot
= dquot_release
,
1890 .mark_dirty
= dquot_mark_dquot_dirty
,
1891 .write_info
= dquot_commit_info
,
1892 .alloc_dquot
= dquot_alloc
,
1893 .destroy_dquot
= dquot_destroy
,
1894 .get_projid
= f2fs_get_projid
,
1895 .get_next_id
= dquot_get_next_id
,
1898 static const struct quotactl_ops f2fs_quotactl_ops
= {
1899 .quota_on
= f2fs_quota_on
,
1900 .quota_off
= f2fs_quota_off
,
1901 .quota_sync
= f2fs_quota_sync
,
1902 .get_state
= dquot_get_state
,
1903 .set_info
= dquot_set_dqinfo
,
1904 .get_dqblk
= dquot_get_dqblk
,
1905 .set_dqblk
= dquot_set_dqblk
,
1906 .get_nextdqblk
= dquot_get_next_dqblk
,
1909 void f2fs_quota_off_umount(struct super_block
*sb
)
1914 static const struct super_operations f2fs_sops
= {
1915 .alloc_inode
= f2fs_alloc_inode
,
1916 .drop_inode
= f2fs_drop_inode
,
1917 .destroy_inode
= f2fs_destroy_inode
,
1918 .write_inode
= f2fs_write_inode
,
1919 .dirty_inode
= f2fs_dirty_inode
,
1920 .show_options
= f2fs_show_options
,
1922 .quota_read
= f2fs_quota_read
,
1923 .quota_write
= f2fs_quota_write
,
1924 .get_dquots
= f2fs_get_dquots
,
1926 .evict_inode
= f2fs_evict_inode
,
1927 .put_super
= f2fs_put_super
,
1928 .sync_fs
= f2fs_sync_fs
,
1929 .freeze_fs
= f2fs_freeze
,
1930 .unfreeze_fs
= f2fs_unfreeze
,
1931 .statfs
= f2fs_statfs
,
1932 .remount_fs
= f2fs_remount
,
1935 #ifdef CONFIG_F2FS_FS_ENCRYPTION
1936 static int f2fs_get_context(struct inode
*inode
, void *ctx
, size_t len
)
1938 return f2fs_getxattr(inode
, F2FS_XATTR_INDEX_ENCRYPTION
,
1939 F2FS_XATTR_NAME_ENCRYPTION_CONTEXT
,
1943 static int f2fs_set_context(struct inode
*inode
, const void *ctx
, size_t len
,
1946 struct f2fs_sb_info
*sbi
= F2FS_I_SB(inode
);
1949 * Encrypting the root directory is not allowed because fsck
1950 * expects lost+found directory to exist and remain unencrypted
1951 * if LOST_FOUND feature is enabled.
1954 if (f2fs_sb_has_lost_found(sbi
->sb
) &&
1955 inode
->i_ino
== F2FS_ROOT_INO(sbi
))
1958 return f2fs_setxattr(inode
, F2FS_XATTR_INDEX_ENCRYPTION
,
1959 F2FS_XATTR_NAME_ENCRYPTION_CONTEXT
,
1960 ctx
, len
, fs_data
, XATTR_CREATE
);
1963 static bool f2fs_dummy_context(struct inode
*inode
)
1965 return DUMMY_ENCRYPTION_ENABLED(F2FS_I_SB(inode
));
1968 static const struct fscrypt_operations f2fs_cryptops
= {
1969 .key_prefix
= "f2fs:",
1970 .get_context
= f2fs_get_context
,
1971 .set_context
= f2fs_set_context
,
1972 .dummy_context
= f2fs_dummy_context
,
1973 .empty_dir
= f2fs_empty_dir
,
1974 .max_namelen
= F2FS_NAME_LEN
,
1978 static struct inode
*f2fs_nfs_get_inode(struct super_block
*sb
,
1979 u64 ino
, u32 generation
)
1981 struct f2fs_sb_info
*sbi
= F2FS_SB(sb
);
1982 struct inode
*inode
;
1984 if (f2fs_check_nid_range(sbi
, ino
))
1985 return ERR_PTR(-ESTALE
);
1988 * f2fs_iget isn't quite right if the inode is currently unallocated!
1989 * However f2fs_iget currently does appropriate checks to handle stale
1990 * inodes so everything is OK.
1992 inode
= f2fs_iget(sb
, ino
);
1994 return ERR_CAST(inode
);
1995 if (unlikely(generation
&& inode
->i_generation
!= generation
)) {
1996 /* we didn't find the right inode.. */
1998 return ERR_PTR(-ESTALE
);
2003 static struct dentry
*f2fs_fh_to_dentry(struct super_block
*sb
, struct fid
*fid
,
2004 int fh_len
, int fh_type
)
2006 return generic_fh_to_dentry(sb
, fid
, fh_len
, fh_type
,
2007 f2fs_nfs_get_inode
);
2010 static struct dentry
*f2fs_fh_to_parent(struct super_block
*sb
, struct fid
*fid
,
2011 int fh_len
, int fh_type
)
2013 return generic_fh_to_parent(sb
, fid
, fh_len
, fh_type
,
2014 f2fs_nfs_get_inode
);
2017 static const struct export_operations f2fs_export_ops
= {
2018 .fh_to_dentry
= f2fs_fh_to_dentry
,
2019 .fh_to_parent
= f2fs_fh_to_parent
,
2020 .get_parent
= f2fs_get_parent
,
2023 static loff_t
max_file_blocks(void)
2026 loff_t leaf_count
= ADDRS_PER_BLOCK
;
2029 * note: previously, result is equal to (DEF_ADDRS_PER_INODE -
2030 * DEFAULT_INLINE_XATTR_ADDRS), but now f2fs try to reserve more
2031 * space in inode.i_addr, it will be more safe to reassign
2035 /* two direct node blocks */
2036 result
+= (leaf_count
* 2);
2038 /* two indirect node blocks */
2039 leaf_count
*= NIDS_PER_BLOCK
;
2040 result
+= (leaf_count
* 2);
2042 /* one double indirect node block */
2043 leaf_count
*= NIDS_PER_BLOCK
;
2044 result
+= leaf_count
;
2049 static int __f2fs_commit_super(struct buffer_head
*bh
,
2050 struct f2fs_super_block
*super
)
2054 memcpy(bh
->b_data
+ F2FS_SUPER_OFFSET
, super
, sizeof(*super
));
2055 set_buffer_dirty(bh
);
2058 /* it's rare case, we can do fua all the time */
2059 return __sync_dirty_buffer(bh
, REQ_SYNC
| REQ_PREFLUSH
| REQ_FUA
);
2062 static inline bool sanity_check_area_boundary(struct f2fs_sb_info
*sbi
,
2063 struct buffer_head
*bh
)
2065 struct f2fs_super_block
*raw_super
= (struct f2fs_super_block
*)
2066 (bh
->b_data
+ F2FS_SUPER_OFFSET
);
2067 struct super_block
*sb
= sbi
->sb
;
2068 u32 segment0_blkaddr
= le32_to_cpu(raw_super
->segment0_blkaddr
);
2069 u32 cp_blkaddr
= le32_to_cpu(raw_super
->cp_blkaddr
);
2070 u32 sit_blkaddr
= le32_to_cpu(raw_super
->sit_blkaddr
);
2071 u32 nat_blkaddr
= le32_to_cpu(raw_super
->nat_blkaddr
);
2072 u32 ssa_blkaddr
= le32_to_cpu(raw_super
->ssa_blkaddr
);
2073 u32 main_blkaddr
= le32_to_cpu(raw_super
->main_blkaddr
);
2074 u32 segment_count_ckpt
= le32_to_cpu(raw_super
->segment_count_ckpt
);
2075 u32 segment_count_sit
= le32_to_cpu(raw_super
->segment_count_sit
);
2076 u32 segment_count_nat
= le32_to_cpu(raw_super
->segment_count_nat
);
2077 u32 segment_count_ssa
= le32_to_cpu(raw_super
->segment_count_ssa
);
2078 u32 segment_count_main
= le32_to_cpu(raw_super
->segment_count_main
);
2079 u32 segment_count
= le32_to_cpu(raw_super
->segment_count
);
2080 u32 log_blocks_per_seg
= le32_to_cpu(raw_super
->log_blocks_per_seg
);
2081 u64 main_end_blkaddr
= main_blkaddr
+
2082 (segment_count_main
<< log_blocks_per_seg
);
2083 u64 seg_end_blkaddr
= segment0_blkaddr
+
2084 (segment_count
<< log_blocks_per_seg
);
2086 if (segment0_blkaddr
!= cp_blkaddr
) {
2087 f2fs_msg(sb
, KERN_INFO
,
2088 "Mismatch start address, segment0(%u) cp_blkaddr(%u)",
2089 segment0_blkaddr
, cp_blkaddr
);
2093 if (cp_blkaddr
+ (segment_count_ckpt
<< log_blocks_per_seg
) !=
2095 f2fs_msg(sb
, KERN_INFO
,
2096 "Wrong CP boundary, start(%u) end(%u) blocks(%u)",
2097 cp_blkaddr
, sit_blkaddr
,
2098 segment_count_ckpt
<< log_blocks_per_seg
);
2102 if (sit_blkaddr
+ (segment_count_sit
<< log_blocks_per_seg
) !=
2104 f2fs_msg(sb
, KERN_INFO
,
2105 "Wrong SIT boundary, start(%u) end(%u) blocks(%u)",
2106 sit_blkaddr
, nat_blkaddr
,
2107 segment_count_sit
<< log_blocks_per_seg
);
2111 if (nat_blkaddr
+ (segment_count_nat
<< log_blocks_per_seg
) !=
2113 f2fs_msg(sb
, KERN_INFO
,
2114 "Wrong NAT boundary, start(%u) end(%u) blocks(%u)",
2115 nat_blkaddr
, ssa_blkaddr
,
2116 segment_count_nat
<< log_blocks_per_seg
);
2120 if (ssa_blkaddr
+ (segment_count_ssa
<< log_blocks_per_seg
) !=
2122 f2fs_msg(sb
, KERN_INFO
,
2123 "Wrong SSA boundary, start(%u) end(%u) blocks(%u)",
2124 ssa_blkaddr
, main_blkaddr
,
2125 segment_count_ssa
<< log_blocks_per_seg
);
2129 if (main_end_blkaddr
> seg_end_blkaddr
) {
2130 f2fs_msg(sb
, KERN_INFO
,
2131 "Wrong MAIN_AREA boundary, start(%u) end(%u) block(%u)",
2134 (segment_count
<< log_blocks_per_seg
),
2135 segment_count_main
<< log_blocks_per_seg
);
2137 } else if (main_end_blkaddr
< seg_end_blkaddr
) {
2141 /* fix in-memory information all the time */
2142 raw_super
->segment_count
= cpu_to_le32((main_end_blkaddr
-
2143 segment0_blkaddr
) >> log_blocks_per_seg
);
2145 if (f2fs_readonly(sb
) || bdev_read_only(sb
->s_bdev
)) {
2146 set_sbi_flag(sbi
, SBI_NEED_SB_WRITE
);
2149 err
= __f2fs_commit_super(bh
, NULL
);
2150 res
= err
? "failed" : "done";
2152 f2fs_msg(sb
, KERN_INFO
,
2153 "Fix alignment : %s, start(%u) end(%u) block(%u)",
2156 (segment_count
<< log_blocks_per_seg
),
2157 segment_count_main
<< log_blocks_per_seg
);
2164 static int sanity_check_raw_super(struct f2fs_sb_info
*sbi
,
2165 struct buffer_head
*bh
)
2167 block_t segment_count
, segs_per_sec
, secs_per_zone
;
2168 block_t total_sections
, blocks_per_seg
;
2169 struct f2fs_super_block
*raw_super
= (struct f2fs_super_block
*)
2170 (bh
->b_data
+ F2FS_SUPER_OFFSET
);
2171 struct super_block
*sb
= sbi
->sb
;
2172 unsigned int blocksize
;
2174 if (F2FS_SUPER_MAGIC
!= le32_to_cpu(raw_super
->magic
)) {
2175 f2fs_msg(sb
, KERN_INFO
,
2176 "Magic Mismatch, valid(0x%x) - read(0x%x)",
2177 F2FS_SUPER_MAGIC
, le32_to_cpu(raw_super
->magic
));
2181 /* Currently, support only 4KB page cache size */
2182 if (F2FS_BLKSIZE
!= PAGE_SIZE
) {
2183 f2fs_msg(sb
, KERN_INFO
,
2184 "Invalid page_cache_size (%lu), supports only 4KB\n",
2189 /* Currently, support only 4KB block size */
2190 blocksize
= 1 << le32_to_cpu(raw_super
->log_blocksize
);
2191 if (blocksize
!= F2FS_BLKSIZE
) {
2192 f2fs_msg(sb
, KERN_INFO
,
2193 "Invalid blocksize (%u), supports only 4KB\n",
2198 /* check log blocks per segment */
2199 if (le32_to_cpu(raw_super
->log_blocks_per_seg
) != 9) {
2200 f2fs_msg(sb
, KERN_INFO
,
2201 "Invalid log blocks per segment (%u)\n",
2202 le32_to_cpu(raw_super
->log_blocks_per_seg
));
2206 /* Currently, support 512/1024/2048/4096 bytes sector size */
2207 if (le32_to_cpu(raw_super
->log_sectorsize
) >
2208 F2FS_MAX_LOG_SECTOR_SIZE
||
2209 le32_to_cpu(raw_super
->log_sectorsize
) <
2210 F2FS_MIN_LOG_SECTOR_SIZE
) {
2211 f2fs_msg(sb
, KERN_INFO
, "Invalid log sectorsize (%u)",
2212 le32_to_cpu(raw_super
->log_sectorsize
));
2215 if (le32_to_cpu(raw_super
->log_sectors_per_block
) +
2216 le32_to_cpu(raw_super
->log_sectorsize
) !=
2217 F2FS_MAX_LOG_SECTOR_SIZE
) {
2218 f2fs_msg(sb
, KERN_INFO
,
2219 "Invalid log sectors per block(%u) log sectorsize(%u)",
2220 le32_to_cpu(raw_super
->log_sectors_per_block
),
2221 le32_to_cpu(raw_super
->log_sectorsize
));
2225 segment_count
= le32_to_cpu(raw_super
->segment_count
);
2226 segs_per_sec
= le32_to_cpu(raw_super
->segs_per_sec
);
2227 secs_per_zone
= le32_to_cpu(raw_super
->secs_per_zone
);
2228 total_sections
= le32_to_cpu(raw_super
->section_count
);
2230 /* blocks_per_seg should be 512, given the above check */
2231 blocks_per_seg
= 1 << le32_to_cpu(raw_super
->log_blocks_per_seg
);
2233 if (segment_count
> F2FS_MAX_SEGMENT
||
2234 segment_count
< F2FS_MIN_SEGMENTS
) {
2235 f2fs_msg(sb
, KERN_INFO
,
2236 "Invalid segment count (%u)",
2241 if (total_sections
> segment_count
||
2242 total_sections
< F2FS_MIN_SEGMENTS
||
2243 segs_per_sec
> segment_count
|| !segs_per_sec
) {
2244 f2fs_msg(sb
, KERN_INFO
,
2245 "Invalid segment/section count (%u, %u x %u)",
2246 segment_count
, total_sections
, segs_per_sec
);
2250 if ((segment_count
/ segs_per_sec
) < total_sections
) {
2251 f2fs_msg(sb
, KERN_INFO
,
2252 "Small segment_count (%u < %u * %u)",
2253 segment_count
, segs_per_sec
, total_sections
);
2257 if (segment_count
> (le32_to_cpu(raw_super
->block_count
) >> 9)) {
2258 f2fs_msg(sb
, KERN_INFO
,
2259 "Wrong segment_count / block_count (%u > %u)",
2260 segment_count
, le32_to_cpu(raw_super
->block_count
));
2264 if (secs_per_zone
> total_sections
|| !secs_per_zone
) {
2265 f2fs_msg(sb
, KERN_INFO
,
2266 "Wrong secs_per_zone / total_sections (%u, %u)",
2267 secs_per_zone
, total_sections
);
2270 if (le32_to_cpu(raw_super
->extension_count
) > F2FS_MAX_EXTENSION
||
2271 raw_super
->hot_ext_count
> F2FS_MAX_EXTENSION
||
2272 (le32_to_cpu(raw_super
->extension_count
) +
2273 raw_super
->hot_ext_count
) > F2FS_MAX_EXTENSION
) {
2274 f2fs_msg(sb
, KERN_INFO
,
2275 "Corrupted extension count (%u + %u > %u)",
2276 le32_to_cpu(raw_super
->extension_count
),
2277 raw_super
->hot_ext_count
,
2278 F2FS_MAX_EXTENSION
);
2282 if (le32_to_cpu(raw_super
->cp_payload
) >
2283 (blocks_per_seg
- F2FS_CP_PACKS
)) {
2284 f2fs_msg(sb
, KERN_INFO
,
2285 "Insane cp_payload (%u > %u)",
2286 le32_to_cpu(raw_super
->cp_payload
),
2287 blocks_per_seg
- F2FS_CP_PACKS
);
2291 /* check reserved ino info */
2292 if (le32_to_cpu(raw_super
->node_ino
) != 1 ||
2293 le32_to_cpu(raw_super
->meta_ino
) != 2 ||
2294 le32_to_cpu(raw_super
->root_ino
) != 3) {
2295 f2fs_msg(sb
, KERN_INFO
,
2296 "Invalid Fs Meta Ino: node(%u) meta(%u) root(%u)",
2297 le32_to_cpu(raw_super
->node_ino
),
2298 le32_to_cpu(raw_super
->meta_ino
),
2299 le32_to_cpu(raw_super
->root_ino
));
2303 /* check CP/SIT/NAT/SSA/MAIN_AREA area boundary */
2304 if (sanity_check_area_boundary(sbi
, bh
))
2310 int f2fs_sanity_check_ckpt(struct f2fs_sb_info
*sbi
)
2312 unsigned int total
, fsmeta
;
2313 struct f2fs_super_block
*raw_super
= F2FS_RAW_SUPER(sbi
);
2314 struct f2fs_checkpoint
*ckpt
= F2FS_CKPT(sbi
);
2315 unsigned int ovp_segments
, reserved_segments
;
2316 unsigned int main_segs
, blocks_per_seg
;
2317 unsigned int sit_segs
, nat_segs
;
2318 unsigned int sit_bitmap_size
, nat_bitmap_size
;
2319 unsigned int log_blocks_per_seg
;
2320 unsigned int segment_count_main
;
2321 unsigned int cp_pack_start_sum
, cp_payload
;
2322 block_t user_block_count
;
2325 total
= le32_to_cpu(raw_super
->segment_count
);
2326 fsmeta
= le32_to_cpu(raw_super
->segment_count_ckpt
);
2327 sit_segs
= le32_to_cpu(raw_super
->segment_count_sit
);
2329 nat_segs
= le32_to_cpu(raw_super
->segment_count_nat
);
2331 fsmeta
+= le32_to_cpu(ckpt
->rsvd_segment_count
);
2332 fsmeta
+= le32_to_cpu(raw_super
->segment_count_ssa
);
2334 if (unlikely(fsmeta
>= total
))
2337 ovp_segments
= le32_to_cpu(ckpt
->overprov_segment_count
);
2338 reserved_segments
= le32_to_cpu(ckpt
->rsvd_segment_count
);
2340 if (unlikely(fsmeta
< F2FS_MIN_SEGMENTS
||
2341 ovp_segments
== 0 || reserved_segments
== 0)) {
2342 f2fs_msg(sbi
->sb
, KERN_ERR
,
2343 "Wrong layout: check mkfs.f2fs version");
2347 user_block_count
= le64_to_cpu(ckpt
->user_block_count
);
2348 segment_count_main
= le32_to_cpu(raw_super
->segment_count_main
);
2349 log_blocks_per_seg
= le32_to_cpu(raw_super
->log_blocks_per_seg
);
2350 if (!user_block_count
|| user_block_count
>=
2351 segment_count_main
<< log_blocks_per_seg
) {
2352 f2fs_msg(sbi
->sb
, KERN_ERR
,
2353 "Wrong user_block_count: %u", user_block_count
);
2357 main_segs
= le32_to_cpu(raw_super
->segment_count_main
);
2358 blocks_per_seg
= sbi
->blocks_per_seg
;
2360 for (i
= 0; i
< NR_CURSEG_NODE_TYPE
; i
++) {
2361 if (le32_to_cpu(ckpt
->cur_node_segno
[i
]) >= main_segs
||
2362 le16_to_cpu(ckpt
->cur_node_blkoff
[i
]) >= blocks_per_seg
)
2365 for (i
= 0; i
< NR_CURSEG_DATA_TYPE
; i
++) {
2366 if (le32_to_cpu(ckpt
->cur_data_segno
[i
]) >= main_segs
||
2367 le16_to_cpu(ckpt
->cur_data_blkoff
[i
]) >= blocks_per_seg
)
2371 sit_bitmap_size
= le32_to_cpu(ckpt
->sit_ver_bitmap_bytesize
);
2372 nat_bitmap_size
= le32_to_cpu(ckpt
->nat_ver_bitmap_bytesize
);
2374 if (sit_bitmap_size
!= ((sit_segs
/ 2) << log_blocks_per_seg
) / 8 ||
2375 nat_bitmap_size
!= ((nat_segs
/ 2) << log_blocks_per_seg
) / 8) {
2376 f2fs_msg(sbi
->sb
, KERN_ERR
,
2377 "Wrong bitmap size: sit: %u, nat:%u",
2378 sit_bitmap_size
, nat_bitmap_size
);
2382 cp_pack_start_sum
= __start_sum_addr(sbi
);
2383 cp_payload
= __cp_payload(sbi
);
2384 if (cp_pack_start_sum
< cp_payload
+ 1 ||
2385 cp_pack_start_sum
> blocks_per_seg
- 1 -
2387 f2fs_msg(sbi
->sb
, KERN_ERR
,
2388 "Wrong cp_pack_start_sum: %u",
2393 if (unlikely(f2fs_cp_error(sbi
))) {
2394 f2fs_msg(sbi
->sb
, KERN_ERR
, "A bug case: need to run fsck");
2400 static void init_sb_info(struct f2fs_sb_info
*sbi
)
2402 struct f2fs_super_block
*raw_super
= sbi
->raw_super
;
2405 sbi
->log_sectors_per_block
=
2406 le32_to_cpu(raw_super
->log_sectors_per_block
);
2407 sbi
->log_blocksize
= le32_to_cpu(raw_super
->log_blocksize
);
2408 sbi
->blocksize
= 1 << sbi
->log_blocksize
;
2409 sbi
->log_blocks_per_seg
= le32_to_cpu(raw_super
->log_blocks_per_seg
);
2410 sbi
->blocks_per_seg
= 1 << sbi
->log_blocks_per_seg
;
2411 sbi
->segs_per_sec
= le32_to_cpu(raw_super
->segs_per_sec
);
2412 sbi
->secs_per_zone
= le32_to_cpu(raw_super
->secs_per_zone
);
2413 sbi
->total_sections
= le32_to_cpu(raw_super
->section_count
);
2414 sbi
->total_node_count
=
2415 (le32_to_cpu(raw_super
->segment_count_nat
) / 2)
2416 * sbi
->blocks_per_seg
* NAT_ENTRY_PER_BLOCK
;
2417 sbi
->root_ino_num
= le32_to_cpu(raw_super
->root_ino
);
2418 sbi
->node_ino_num
= le32_to_cpu(raw_super
->node_ino
);
2419 sbi
->meta_ino_num
= le32_to_cpu(raw_super
->meta_ino
);
2420 sbi
->cur_victim_sec
= NULL_SECNO
;
2421 sbi
->max_victim_search
= DEF_MAX_VICTIM_SEARCH
;
2423 sbi
->dir_level
= DEF_DIR_LEVEL
;
2424 sbi
->interval_time
[CP_TIME
] = DEF_CP_INTERVAL
;
2425 sbi
->interval_time
[REQ_TIME
] = DEF_IDLE_INTERVAL
;
2426 clear_sbi_flag(sbi
, SBI_NEED_FSCK
);
2428 for (i
= 0; i
< NR_COUNT_TYPE
; i
++)
2429 atomic_set(&sbi
->nr_pages
[i
], 0);
2431 for (i
= 0; i
< META
; i
++)
2432 atomic_set(&sbi
->wb_sync_req
[i
], 0);
2434 INIT_LIST_HEAD(&sbi
->s_list
);
2435 mutex_init(&sbi
->umount_mutex
);
2436 for (i
= 0; i
< NR_PAGE_TYPE
- 1; i
++)
2437 for (j
= HOT
; j
< NR_TEMP_TYPE
; j
++)
2438 mutex_init(&sbi
->wio_mutex
[i
][j
]);
2439 init_rwsem(&sbi
->io_order_lock
);
2440 spin_lock_init(&sbi
->cp_lock
);
2442 sbi
->dirty_device
= 0;
2443 spin_lock_init(&sbi
->dev_lock
);
2445 init_rwsem(&sbi
->sb_lock
);
2448 static int init_percpu_info(struct f2fs_sb_info
*sbi
)
2452 err
= percpu_counter_init(&sbi
->alloc_valid_block_count
, 0, GFP_KERNEL
);
2456 return percpu_counter_init(&sbi
->total_valid_inode_count
, 0,
2460 #ifdef CONFIG_BLK_DEV_ZONED
2461 static int init_blkz_info(struct f2fs_sb_info
*sbi
, int devi
)
2463 struct block_device
*bdev
= FDEV(devi
).bdev
;
2464 sector_t nr_sectors
= bdev
->bd_part
->nr_sects
;
2465 sector_t sector
= 0;
2466 struct blk_zone
*zones
;
2467 unsigned int i
, nr_zones
;
2471 if (!f2fs_sb_has_blkzoned(sbi
->sb
))
2474 if (sbi
->blocks_per_blkz
&& sbi
->blocks_per_blkz
!=
2475 SECTOR_TO_BLOCK(bdev_zone_sectors(bdev
)))
2477 sbi
->blocks_per_blkz
= SECTOR_TO_BLOCK(bdev_zone_sectors(bdev
));
2478 if (sbi
->log_blocks_per_blkz
&& sbi
->log_blocks_per_blkz
!=
2479 __ilog2_u32(sbi
->blocks_per_blkz
))
2481 sbi
->log_blocks_per_blkz
= __ilog2_u32(sbi
->blocks_per_blkz
);
2482 FDEV(devi
).nr_blkz
= SECTOR_TO_BLOCK(nr_sectors
) >>
2483 sbi
->log_blocks_per_blkz
;
2484 if (nr_sectors
& (bdev_zone_sectors(bdev
) - 1))
2485 FDEV(devi
).nr_blkz
++;
2487 FDEV(devi
).blkz_type
= f2fs_kmalloc(sbi
, FDEV(devi
).nr_blkz
,
2489 if (!FDEV(devi
).blkz_type
)
2492 #define F2FS_REPORT_NR_ZONES 4096
2494 zones
= f2fs_kzalloc(sbi
,
2495 array_size(F2FS_REPORT_NR_ZONES
,
2496 sizeof(struct blk_zone
)),
2501 /* Get block zones type */
2502 while (zones
&& sector
< nr_sectors
) {
2504 nr_zones
= F2FS_REPORT_NR_ZONES
;
2505 err
= blkdev_report_zones(bdev
, sector
,
2515 for (i
= 0; i
< nr_zones
; i
++) {
2516 FDEV(devi
).blkz_type
[n
] = zones
[i
].type
;
2517 sector
+= zones
[i
].len
;
2529 * Read f2fs raw super block.
2530 * Because we have two copies of super block, so read both of them
2531 * to get the first valid one. If any one of them is broken, we pass
2532 * them recovery flag back to the caller.
2534 static int read_raw_super_block(struct f2fs_sb_info
*sbi
,
2535 struct f2fs_super_block
**raw_super
,
2536 int *valid_super_block
, int *recovery
)
2538 struct super_block
*sb
= sbi
->sb
;
2540 struct buffer_head
*bh
;
2541 struct f2fs_super_block
*super
;
2544 super
= kzalloc(sizeof(struct f2fs_super_block
), GFP_KERNEL
);
2548 for (block
= 0; block
< 2; block
++) {
2549 bh
= sb_bread(sb
, block
);
2551 f2fs_msg(sb
, KERN_ERR
, "Unable to read %dth superblock",
2557 /* sanity checking of raw super */
2558 if (sanity_check_raw_super(sbi
, bh
)) {
2559 f2fs_msg(sb
, KERN_ERR
,
2560 "Can't find valid F2FS filesystem in %dth superblock",
2568 memcpy(super
, bh
->b_data
+ F2FS_SUPER_OFFSET
,
2570 *valid_super_block
= block
;
2576 /* Fail to read any one of the superblocks*/
2580 /* No valid superblock */
2589 int f2fs_commit_super(struct f2fs_sb_info
*sbi
, bool recover
)
2591 struct buffer_head
*bh
;
2594 if ((recover
&& f2fs_readonly(sbi
->sb
)) ||
2595 bdev_read_only(sbi
->sb
->s_bdev
)) {
2596 set_sbi_flag(sbi
, SBI_NEED_SB_WRITE
);
2600 /* write back-up superblock first */
2601 bh
= sb_bread(sbi
->sb
, sbi
->valid_super_block
? 0 : 1);
2604 err
= __f2fs_commit_super(bh
, F2FS_RAW_SUPER(sbi
));
2607 /* if we are in recovery path, skip writing valid superblock */
2611 /* write current valid superblock */
2612 bh
= sb_bread(sbi
->sb
, sbi
->valid_super_block
);
2615 err
= __f2fs_commit_super(bh
, F2FS_RAW_SUPER(sbi
));
2620 static int f2fs_scan_devices(struct f2fs_sb_info
*sbi
)
2622 struct f2fs_super_block
*raw_super
= F2FS_RAW_SUPER(sbi
);
2623 unsigned int max_devices
= MAX_DEVICES
;
2626 /* Initialize single device information */
2627 if (!RDEV(0).path
[0]) {
2628 if (!bdev_is_zoned(sbi
->sb
->s_bdev
))
2634 * Initialize multiple devices information, or single
2635 * zoned block device information.
2637 sbi
->devs
= f2fs_kzalloc(sbi
,
2638 array_size(max_devices
,
2639 sizeof(struct f2fs_dev_info
)),
2644 for (i
= 0; i
< max_devices
; i
++) {
2646 if (i
> 0 && !RDEV(i
).path
[0])
2649 if (max_devices
== 1) {
2650 /* Single zoned block device mount */
2652 blkdev_get_by_dev(sbi
->sb
->s_bdev
->bd_dev
,
2653 sbi
->sb
->s_mode
, sbi
->sb
->s_type
);
2655 /* Multi-device mount */
2656 memcpy(FDEV(i
).path
, RDEV(i
).path
, MAX_PATH_LEN
);
2657 FDEV(i
).total_segments
=
2658 le32_to_cpu(RDEV(i
).total_segments
);
2660 FDEV(i
).start_blk
= 0;
2661 FDEV(i
).end_blk
= FDEV(i
).start_blk
+
2662 (FDEV(i
).total_segments
<<
2663 sbi
->log_blocks_per_seg
) - 1 +
2664 le32_to_cpu(raw_super
->segment0_blkaddr
);
2666 FDEV(i
).start_blk
= FDEV(i
- 1).end_blk
+ 1;
2667 FDEV(i
).end_blk
= FDEV(i
).start_blk
+
2668 (FDEV(i
).total_segments
<<
2669 sbi
->log_blocks_per_seg
) - 1;
2671 FDEV(i
).bdev
= blkdev_get_by_path(FDEV(i
).path
,
2672 sbi
->sb
->s_mode
, sbi
->sb
->s_type
);
2674 if (IS_ERR(FDEV(i
).bdev
))
2675 return PTR_ERR(FDEV(i
).bdev
);
2677 /* to release errored devices */
2678 sbi
->s_ndevs
= i
+ 1;
2680 #ifdef CONFIG_BLK_DEV_ZONED
2681 if (bdev_zoned_model(FDEV(i
).bdev
) == BLK_ZONED_HM
&&
2682 !f2fs_sb_has_blkzoned(sbi
->sb
)) {
2683 f2fs_msg(sbi
->sb
, KERN_ERR
,
2684 "Zoned block device feature not enabled\n");
2687 if (bdev_zoned_model(FDEV(i
).bdev
) != BLK_ZONED_NONE
) {
2688 if (init_blkz_info(sbi
, i
)) {
2689 f2fs_msg(sbi
->sb
, KERN_ERR
,
2690 "Failed to initialize F2FS blkzone information");
2693 if (max_devices
== 1)
2695 f2fs_msg(sbi
->sb
, KERN_INFO
,
2696 "Mount Device [%2d]: %20s, %8u, %8x - %8x (zone: %s)",
2698 FDEV(i
).total_segments
,
2699 FDEV(i
).start_blk
, FDEV(i
).end_blk
,
2700 bdev_zoned_model(FDEV(i
).bdev
) == BLK_ZONED_HA
?
2701 "Host-aware" : "Host-managed");
2705 f2fs_msg(sbi
->sb
, KERN_INFO
,
2706 "Mount Device [%2d]: %20s, %8u, %8x - %8x",
2708 FDEV(i
).total_segments
,
2709 FDEV(i
).start_blk
, FDEV(i
).end_blk
);
2711 f2fs_msg(sbi
->sb
, KERN_INFO
,
2712 "IO Block Size: %8d KB", F2FS_IO_SIZE_KB(sbi
));
2716 static void f2fs_tuning_parameters(struct f2fs_sb_info
*sbi
)
2718 struct f2fs_sm_info
*sm_i
= SM_I(sbi
);
2720 /* adjust parameters according to the volume size */
2721 if (sm_i
->main_segments
<= SMALL_VOLUME_SEGMENTS
) {
2722 F2FS_OPTION(sbi
).alloc_mode
= ALLOC_MODE_REUSE
;
2723 sm_i
->dcc_info
->discard_granularity
= 1;
2724 sm_i
->ipu_policy
= 1 << F2FS_IPU_FORCE
;
2727 sbi
->readdir_ra
= 1;
2730 static int f2fs_fill_super(struct super_block
*sb
, void *data
, int silent
)
2732 struct f2fs_sb_info
*sbi
;
2733 struct f2fs_super_block
*raw_super
;
2736 bool retry
= true, need_fsck
= false;
2737 char *options
= NULL
;
2738 int recovery
, i
, valid_super_block
;
2739 struct curseg_info
*seg_i
;
2744 valid_super_block
= -1;
2747 /* allocate memory for f2fs-specific super block info */
2748 sbi
= kzalloc(sizeof(struct f2fs_sb_info
), GFP_KERNEL
);
2754 /* Load the checksum driver */
2755 sbi
->s_chksum_driver
= crypto_alloc_shash("crc32", 0, 0);
2756 if (IS_ERR(sbi
->s_chksum_driver
)) {
2757 f2fs_msg(sb
, KERN_ERR
, "Cannot load crc32 driver.");
2758 err
= PTR_ERR(sbi
->s_chksum_driver
);
2759 sbi
->s_chksum_driver
= NULL
;
2763 /* set a block size */
2764 if (unlikely(!sb_set_blocksize(sb
, F2FS_BLKSIZE
))) {
2765 f2fs_msg(sb
, KERN_ERR
, "unable to set blocksize");
2769 err
= read_raw_super_block(sbi
, &raw_super
, &valid_super_block
,
2774 sb
->s_fs_info
= sbi
;
2775 sbi
->raw_super
= raw_super
;
2777 /* precompute checksum seed for metadata */
2778 if (f2fs_sb_has_inode_chksum(sb
))
2779 sbi
->s_chksum_seed
= f2fs_chksum(sbi
, ~0, raw_super
->uuid
,
2780 sizeof(raw_super
->uuid
));
2783 * The BLKZONED feature indicates that the drive was formatted with
2784 * zone alignment optimization. This is optional for host-aware
2785 * devices, but mandatory for host-managed zoned block devices.
2787 #ifndef CONFIG_BLK_DEV_ZONED
2788 if (f2fs_sb_has_blkzoned(sb
)) {
2789 f2fs_msg(sb
, KERN_ERR
,
2790 "Zoned block device support is not enabled\n");
2795 default_options(sbi
);
2796 /* parse mount options */
2797 options
= kstrdup((const char *)data
, GFP_KERNEL
);
2798 if (data
&& !options
) {
2803 err
= parse_options(sb
, options
);
2807 sbi
->max_file_blocks
= max_file_blocks();
2808 sb
->s_maxbytes
= sbi
->max_file_blocks
<<
2809 le32_to_cpu(raw_super
->log_blocksize
);
2810 sb
->s_max_links
= F2FS_LINK_MAX
;
2811 get_random_bytes(&sbi
->s_next_generation
, sizeof(u32
));
2814 sb
->dq_op
= &f2fs_quota_operations
;
2815 if (f2fs_sb_has_quota_ino(sb
))
2816 sb
->s_qcop
= &dquot_quotactl_sysfile_ops
;
2818 sb
->s_qcop
= &f2fs_quotactl_ops
;
2819 sb
->s_quota_types
= QTYPE_MASK_USR
| QTYPE_MASK_GRP
| QTYPE_MASK_PRJ
;
2821 if (f2fs_sb_has_quota_ino(sbi
->sb
)) {
2822 for (i
= 0; i
< MAXQUOTAS
; i
++) {
2823 if (f2fs_qf_ino(sbi
->sb
, i
))
2824 sbi
->nquota_files
++;
2829 sb
->s_op
= &f2fs_sops
;
2830 #ifdef CONFIG_F2FS_FS_ENCRYPTION
2831 sb
->s_cop
= &f2fs_cryptops
;
2833 sb
->s_xattr
= f2fs_xattr_handlers
;
2834 sb
->s_export_op
= &f2fs_export_ops
;
2835 sb
->s_magic
= F2FS_SUPER_MAGIC
;
2836 sb
->s_time_gran
= 1;
2837 sb
->s_flags
= (sb
->s_flags
& ~SB_POSIXACL
) |
2838 (test_opt(sbi
, POSIX_ACL
) ? SB_POSIXACL
: 0);
2839 memcpy(&sb
->s_uuid
, raw_super
->uuid
, sizeof(raw_super
->uuid
));
2840 sb
->s_iflags
|= SB_I_CGROUPWB
;
2842 /* init f2fs-specific super block info */
2843 sbi
->valid_super_block
= valid_super_block
;
2844 mutex_init(&sbi
->gc_mutex
);
2845 mutex_init(&sbi
->writepages
);
2846 mutex_init(&sbi
->cp_mutex
);
2847 init_rwsem(&sbi
->node_write
);
2848 init_rwsem(&sbi
->node_change
);
2850 /* disallow all the data/node/meta page writes */
2851 set_sbi_flag(sbi
, SBI_POR_DOING
);
2852 spin_lock_init(&sbi
->stat_lock
);
2854 /* init iostat info */
2855 spin_lock_init(&sbi
->iostat_lock
);
2856 sbi
->iostat_enable
= false;
2858 for (i
= 0; i
< NR_PAGE_TYPE
; i
++) {
2859 int n
= (i
== META
) ? 1: NR_TEMP_TYPE
;
2865 sizeof(struct f2fs_bio_info
)),
2867 if (!sbi
->write_io
[i
]) {
2872 for (j
= HOT
; j
< n
; j
++) {
2873 init_rwsem(&sbi
->write_io
[i
][j
].io_rwsem
);
2874 sbi
->write_io
[i
][j
].sbi
= sbi
;
2875 sbi
->write_io
[i
][j
].bio
= NULL
;
2876 spin_lock_init(&sbi
->write_io
[i
][j
].io_lock
);
2877 INIT_LIST_HEAD(&sbi
->write_io
[i
][j
].io_list
);
2881 init_rwsem(&sbi
->cp_rwsem
);
2882 init_waitqueue_head(&sbi
->cp_wait
);
2885 err
= init_percpu_info(sbi
);
2889 if (F2FS_IO_SIZE(sbi
) > 1) {
2890 sbi
->write_io_dummy
=
2891 mempool_create_page_pool(2 * (F2FS_IO_SIZE(sbi
) - 1), 0);
2892 if (!sbi
->write_io_dummy
) {
2898 /* get an inode for meta space */
2899 sbi
->meta_inode
= f2fs_iget(sb
, F2FS_META_INO(sbi
));
2900 if (IS_ERR(sbi
->meta_inode
)) {
2901 f2fs_msg(sb
, KERN_ERR
, "Failed to read F2FS meta data inode");
2902 err
= PTR_ERR(sbi
->meta_inode
);
2906 err
= f2fs_get_valid_checkpoint(sbi
);
2908 f2fs_msg(sb
, KERN_ERR
, "Failed to get valid F2FS checkpoint");
2909 goto free_meta_inode
;
2912 /* Initialize device list */
2913 err
= f2fs_scan_devices(sbi
);
2915 f2fs_msg(sb
, KERN_ERR
, "Failed to find devices");
2919 sbi
->total_valid_node_count
=
2920 le32_to_cpu(sbi
->ckpt
->valid_node_count
);
2921 percpu_counter_set(&sbi
->total_valid_inode_count
,
2922 le32_to_cpu(sbi
->ckpt
->valid_inode_count
));
2923 sbi
->user_block_count
= le64_to_cpu(sbi
->ckpt
->user_block_count
);
2924 sbi
->total_valid_block_count
=
2925 le64_to_cpu(sbi
->ckpt
->valid_block_count
);
2926 sbi
->last_valid_block_count
= sbi
->total_valid_block_count
;
2927 sbi
->reserved_blocks
= 0;
2928 sbi
->current_reserved_blocks
= 0;
2929 limit_reserve_root(sbi
);
2931 for (i
= 0; i
< NR_INODE_TYPE
; i
++) {
2932 INIT_LIST_HEAD(&sbi
->inode_list
[i
]);
2933 spin_lock_init(&sbi
->inode_lock
[i
]);
2936 f2fs_init_extent_cache_info(sbi
);
2938 f2fs_init_ino_entry_info(sbi
);
2940 f2fs_init_fsync_node_info(sbi
);
2942 /* setup f2fs internal modules */
2943 err
= f2fs_build_segment_manager(sbi
);
2945 f2fs_msg(sb
, KERN_ERR
,
2946 "Failed to initialize F2FS segment manager");
2949 err
= f2fs_build_node_manager(sbi
);
2951 f2fs_msg(sb
, KERN_ERR
,
2952 "Failed to initialize F2FS node manager");
2956 /* For write statistics */
2957 if (sb
->s_bdev
->bd_part
)
2958 sbi
->sectors_written_start
=
2959 (u64
)part_stat_read(sb
->s_bdev
->bd_part
,
2960 sectors
[STAT_WRITE
]);
2962 /* Read accumulated write IO statistics if exists */
2963 seg_i
= CURSEG_I(sbi
, CURSEG_HOT_NODE
);
2964 if (__exist_node_summaries(sbi
))
2965 sbi
->kbytes_written
=
2966 le64_to_cpu(seg_i
->journal
->info
.kbytes_written
);
2968 f2fs_build_gc_manager(sbi
);
2970 /* get an inode for node space */
2971 sbi
->node_inode
= f2fs_iget(sb
, F2FS_NODE_INO(sbi
));
2972 if (IS_ERR(sbi
->node_inode
)) {
2973 f2fs_msg(sb
, KERN_ERR
, "Failed to read node inode");
2974 err
= PTR_ERR(sbi
->node_inode
);
2978 err
= f2fs_build_stats(sbi
);
2980 goto free_node_inode
;
2982 /* read root inode and dentry */
2983 root
= f2fs_iget(sb
, F2FS_ROOT_INO(sbi
));
2985 f2fs_msg(sb
, KERN_ERR
, "Failed to read root inode");
2986 err
= PTR_ERR(root
);
2989 if (!S_ISDIR(root
->i_mode
) || !root
->i_blocks
||
2990 !root
->i_size
|| !root
->i_nlink
) {
2996 sb
->s_root
= d_make_root(root
); /* allocate root dentry */
2999 goto free_root_inode
;
3002 err
= f2fs_register_sysfs(sbi
);
3004 goto free_root_inode
;
3007 /* Enable quota usage during mount */
3008 if (f2fs_sb_has_quota_ino(sb
) && !f2fs_readonly(sb
)) {
3009 err
= f2fs_enable_quotas(sb
);
3011 f2fs_msg(sb
, KERN_ERR
,
3012 "Cannot turn on quotas: error %d", err
);
3017 /* if there are nt orphan nodes free them */
3018 err
= f2fs_recover_orphan_inodes(sbi
);
3022 /* recover fsynced data */
3023 if (!test_opt(sbi
, DISABLE_ROLL_FORWARD
)) {
3025 * mount should be failed, when device has readonly mode, and
3026 * previous checkpoint was not done by clean system shutdown.
3028 if (bdev_read_only(sb
->s_bdev
) &&
3029 !is_set_ckpt_flags(sbi
, CP_UMOUNT_FLAG
)) {
3035 set_sbi_flag(sbi
, SBI_NEED_FSCK
);
3040 err
= f2fs_recover_fsync_data(sbi
, false);
3043 f2fs_msg(sb
, KERN_ERR
,
3044 "Cannot recover all fsync data errno=%d", err
);
3048 err
= f2fs_recover_fsync_data(sbi
, true);
3050 if (!f2fs_readonly(sb
) && err
> 0) {
3052 f2fs_msg(sb
, KERN_ERR
,
3053 "Need to recover fsync data");
3058 /* f2fs_recover_fsync_data() cleared this already */
3059 clear_sbi_flag(sbi
, SBI_POR_DOING
);
3062 * If filesystem is not mounted as read-only then
3063 * do start the gc_thread.
3065 if (test_opt(sbi
, BG_GC
) && !f2fs_readonly(sb
)) {
3066 /* After POR, we can run background GC thread.*/
3067 err
= f2fs_start_gc_thread(sbi
);
3073 /* recover broken superblock */
3075 err
= f2fs_commit_super(sbi
, true);
3076 f2fs_msg(sb
, KERN_INFO
,
3077 "Try to recover %dth superblock, ret: %d",
3078 sbi
->valid_super_block
? 1 : 2, err
);
3081 f2fs_join_shrinker(sbi
);
3083 f2fs_tuning_parameters(sbi
);
3085 f2fs_msg(sbi
->sb
, KERN_NOTICE
, "Mounted with checkpoint version = %llx",
3086 cur_cp_version(F2FS_CKPT(sbi
)));
3087 f2fs_update_time(sbi
, CP_TIME
);
3088 f2fs_update_time(sbi
, REQ_TIME
);
3093 if (f2fs_sb_has_quota_ino(sb
) && !f2fs_readonly(sb
))
3094 f2fs_quota_off_umount(sbi
->sb
);
3096 f2fs_sync_inode_meta(sbi
);
3098 * Some dirty meta pages can be produced by f2fs_recover_orphan_inodes()
3099 * failed by EIO. Then, iput(node_inode) can trigger balance_fs_bg()
3100 * followed by f2fs_write_checkpoint() through f2fs_write_node_pages(), which
3101 * falls into an infinite loop in f2fs_sync_meta_pages().
3103 truncate_inode_pages_final(META_MAPPING(sbi
));
3107 f2fs_unregister_sysfs(sbi
);
3112 f2fs_destroy_stats(sbi
);
3114 f2fs_release_ino_entry(sbi
, true);
3115 truncate_inode_pages_final(NODE_MAPPING(sbi
));
3116 iput(sbi
->node_inode
);
3118 f2fs_destroy_node_manager(sbi
);
3120 f2fs_destroy_segment_manager(sbi
);
3122 destroy_device_list(sbi
);
3125 make_bad_inode(sbi
->meta_inode
);
3126 iput(sbi
->meta_inode
);
3128 mempool_destroy(sbi
->write_io_dummy
);
3130 destroy_percpu_info(sbi
);
3132 for (i
= 0; i
< NR_PAGE_TYPE
; i
++)
3133 kfree(sbi
->write_io
[i
]);
3136 for (i
= 0; i
< MAXQUOTAS
; i
++)
3137 kfree(F2FS_OPTION(sbi
).s_qf_names
[i
]);
3143 if (sbi
->s_chksum_driver
)
3144 crypto_free_shash(sbi
->s_chksum_driver
);
3147 /* give only one another chance */
3150 shrink_dcache_sb(sb
);
3156 static struct dentry
*f2fs_mount(struct file_system_type
*fs_type
, int flags
,
3157 const char *dev_name
, void *data
)
3159 return mount_bdev(fs_type
, flags
, dev_name
, data
, f2fs_fill_super
);
3162 static void kill_f2fs_super(struct super_block
*sb
)
3165 struct f2fs_sb_info
*sbi
= F2FS_SB(sb
);
3167 set_sbi_flag(sbi
, SBI_IS_CLOSE
);
3168 f2fs_stop_gc_thread(sbi
);
3169 f2fs_stop_discard_thread(sbi
);
3171 if (is_sbi_flag_set(sbi
, SBI_IS_DIRTY
) ||
3172 !is_set_ckpt_flags(sbi
, CP_UMOUNT_FLAG
)) {
3173 struct cp_control cpc
= {
3174 .reason
= CP_UMOUNT
,
3176 f2fs_write_checkpoint(sbi
, &cpc
);
3179 kill_block_super(sb
);
3182 static struct file_system_type f2fs_fs_type
= {
3183 .owner
= THIS_MODULE
,
3185 .mount
= f2fs_mount
,
3186 .kill_sb
= kill_f2fs_super
,
3187 .fs_flags
= FS_REQUIRES_DEV
,
3189 MODULE_ALIAS_FS("f2fs");
3191 static int __init
init_inodecache(void)
3193 f2fs_inode_cachep
= kmem_cache_create("f2fs_inode_cache",
3194 sizeof(struct f2fs_inode_info
), 0,
3195 SLAB_RECLAIM_ACCOUNT
|SLAB_ACCOUNT
, NULL
);
3196 if (!f2fs_inode_cachep
)
3201 static void destroy_inodecache(void)
3204 * Make sure all delayed rcu free inodes are flushed before we
3208 kmem_cache_destroy(f2fs_inode_cachep
);
3211 static int __init
init_f2fs_fs(void)
3215 if (PAGE_SIZE
!= F2FS_BLKSIZE
) {
3216 printk("F2FS not supported on PAGE_SIZE(%lu) != %d\n",
3217 PAGE_SIZE
, F2FS_BLKSIZE
);
3221 f2fs_build_trace_ios();
3223 err
= init_inodecache();
3226 err
= f2fs_create_node_manager_caches();
3228 goto free_inodecache
;
3229 err
= f2fs_create_segment_manager_caches();
3231 goto free_node_manager_caches
;
3232 err
= f2fs_create_checkpoint_caches();
3234 goto free_segment_manager_caches
;
3235 err
= f2fs_create_extent_cache();
3237 goto free_checkpoint_caches
;
3238 err
= f2fs_init_sysfs();
3240 goto free_extent_cache
;
3241 err
= register_shrinker(&f2fs_shrinker_info
);
3244 err
= register_filesystem(&f2fs_fs_type
);
3247 err
= f2fs_create_root_stats();
3249 goto free_filesystem
;
3250 err
= f2fs_init_post_read_processing();
3252 goto free_root_stats
;
3256 f2fs_destroy_root_stats();
3258 unregister_filesystem(&f2fs_fs_type
);
3260 unregister_shrinker(&f2fs_shrinker_info
);
3264 f2fs_destroy_extent_cache();
3265 free_checkpoint_caches
:
3266 f2fs_destroy_checkpoint_caches();
3267 free_segment_manager_caches
:
3268 f2fs_destroy_segment_manager_caches();
3269 free_node_manager_caches
:
3270 f2fs_destroy_node_manager_caches();
3272 destroy_inodecache();
3277 static void __exit
exit_f2fs_fs(void)
3279 f2fs_destroy_post_read_processing();
3280 f2fs_destroy_root_stats();
3281 unregister_filesystem(&f2fs_fs_type
);
3282 unregister_shrinker(&f2fs_shrinker_info
);
3284 f2fs_destroy_extent_cache();
3285 f2fs_destroy_checkpoint_caches();
3286 f2fs_destroy_segment_manager_caches();
3287 f2fs_destroy_node_manager_caches();
3288 destroy_inodecache();
3289 f2fs_destroy_trace_ios();
3292 module_init(init_f2fs_fs
)
3293 module_exit(exit_f2fs_fs
)
3295 MODULE_AUTHOR("Samsung Electronics's Praesto Team");
3296 MODULE_DESCRIPTION("Flash Friendly File System");
3297 MODULE_LICENSE("GPL");