4 * Replacement code for mm functions to support CPU's that don't
5 * have any form of memory management unit (thus no virtual memory).
7 * See Documentation/nommu-mmap.txt
9 * Copyright (c) 2004-2008 David Howells <dhowells@redhat.com>
10 * Copyright (c) 2000-2003 David McCullough <davidm@snapgear.com>
11 * Copyright (c) 2000-2001 D Jeff Dionne <jeff@uClinux.org>
12 * Copyright (c) 2002 Greg Ungerer <gerg@snapgear.com>
13 * Copyright (c) 2007-2010 Paul Mundt <lethal@linux-sh.org>
16 #include <linux/module.h>
18 #include <linux/mman.h>
19 #include <linux/swap.h>
20 #include <linux/file.h>
21 #include <linux/highmem.h>
22 #include <linux/pagemap.h>
23 #include <linux/slab.h>
24 #include <linux/vmalloc.h>
25 #include <linux/tracehook.h>
26 #include <linux/blkdev.h>
27 #include <linux/backing-dev.h>
28 #include <linux/mount.h>
29 #include <linux/personality.h>
30 #include <linux/security.h>
31 #include <linux/syscalls.h>
32 #include <linux/audit.h>
34 #include <asm/uaccess.h>
36 #include <asm/tlbflush.h>
37 #include <asm/mmu_context.h>
41 #define kenter(FMT, ...) \
42 printk(KERN_DEBUG "==> %s("FMT")\n", __func__, ##__VA_ARGS__)
43 #define kleave(FMT, ...) \
44 printk(KERN_DEBUG "<== %s()"FMT"\n", __func__, ##__VA_ARGS__)
45 #define kdebug(FMT, ...) \
46 printk(KERN_DEBUG "xxx" FMT"yyy\n", ##__VA_ARGS__)
48 #define kenter(FMT, ...) \
49 no_printk(KERN_DEBUG "==> %s("FMT")\n", __func__, ##__VA_ARGS__)
50 #define kleave(FMT, ...) \
51 no_printk(KERN_DEBUG "<== %s()"FMT"\n", __func__, ##__VA_ARGS__)
52 #define kdebug(FMT, ...) \
53 no_printk(KERN_DEBUG FMT"\n", ##__VA_ARGS__)
58 unsigned long max_mapnr
;
59 unsigned long num_physpages
;
60 unsigned long highest_memmap_pfn
;
61 struct percpu_counter vm_committed_as
;
62 int sysctl_overcommit_memory
= OVERCOMMIT_GUESS
; /* heuristic overcommit */
63 int sysctl_overcommit_ratio
= 50; /* default is 50% */
64 int sysctl_max_map_count
= DEFAULT_MAX_MAP_COUNT
;
65 int sysctl_nr_trim_pages
= CONFIG_NOMMU_INITIAL_TRIM_EXCESS
;
66 int heap_stack_gap
= 0;
68 atomic_long_t mmap_pages_allocated
;
70 EXPORT_SYMBOL(mem_map
);
71 EXPORT_SYMBOL(num_physpages
);
73 /* list of mapped, potentially shareable regions */
74 static struct kmem_cache
*vm_region_jar
;
75 struct rb_root nommu_region_tree
= RB_ROOT
;
76 DECLARE_RWSEM(nommu_region_sem
);
78 const struct vm_operations_struct generic_file_vm_ops
= {
82 * Return the total memory allocated for this pointer, not
83 * just what the caller asked for.
85 * Doesn't have to be accurate, i.e. may have races.
87 unsigned int kobjsize(const void *objp
)
92 * If the object we have should not have ksize performed on it,
95 if (!objp
|| !virt_addr_valid(objp
))
98 page
= virt_to_head_page(objp
);
101 * If the allocator sets PageSlab, we know the pointer came from
108 * If it's not a compound page, see if we have a matching VMA
109 * region. This test is intentionally done in reverse order,
110 * so if there's no VMA, we still fall through and hand back
111 * PAGE_SIZE for 0-order pages.
113 if (!PageCompound(page
)) {
114 struct vm_area_struct
*vma
;
116 vma
= find_vma(current
->mm
, (unsigned long)objp
);
118 return vma
->vm_end
- vma
->vm_start
;
122 * The ksize() function is only guaranteed to work for pointers
123 * returned by kmalloc(). So handle arbitrary pointers here.
125 return PAGE_SIZE
<< compound_order(page
);
128 int __get_user_pages(struct task_struct
*tsk
, struct mm_struct
*mm
,
129 unsigned long start
, int nr_pages
, unsigned int foll_flags
,
130 struct page
**pages
, struct vm_area_struct
**vmas
,
133 struct vm_area_struct
*vma
;
134 unsigned long vm_flags
;
137 /* calculate required read or write permissions.
138 * If FOLL_FORCE is set, we only require the "MAY" flags.
140 vm_flags
= (foll_flags
& FOLL_WRITE
) ?
141 (VM_WRITE
| VM_MAYWRITE
) : (VM_READ
| VM_MAYREAD
);
142 vm_flags
&= (foll_flags
& FOLL_FORCE
) ?
143 (VM_MAYREAD
| VM_MAYWRITE
) : (VM_READ
| VM_WRITE
);
145 for (i
= 0; i
< nr_pages
; i
++) {
146 vma
= find_vma(mm
, start
);
148 goto finish_or_fault
;
150 /* protect what we can, including chardevs */
151 if ((vma
->vm_flags
& (VM_IO
| VM_PFNMAP
)) ||
152 !(vm_flags
& vma
->vm_flags
))
153 goto finish_or_fault
;
156 pages
[i
] = virt_to_page(start
);
158 page_cache_get(pages
[i
]);
162 start
= (start
+ PAGE_SIZE
) & PAGE_MASK
;
168 return i
? : -EFAULT
;
172 * get a list of pages in an address range belonging to the specified process
173 * and indicate the VMA that covers each page
174 * - this is potentially dodgy as we may end incrementing the page count of a
175 * slab page or a secondary page from a compound page
176 * - don't permit access to VMAs that don't support it, such as I/O mappings
178 int get_user_pages(struct task_struct
*tsk
, struct mm_struct
*mm
,
179 unsigned long start
, int nr_pages
, int write
, int force
,
180 struct page
**pages
, struct vm_area_struct
**vmas
)
189 return __get_user_pages(tsk
, mm
, start
, nr_pages
, flags
, pages
, vmas
,
192 EXPORT_SYMBOL(get_user_pages
);
195 * follow_pfn - look up PFN at a user virtual address
196 * @vma: memory mapping
197 * @address: user virtual address
198 * @pfn: location to store found PFN
200 * Only IO mappings and raw PFN mappings are allowed.
202 * Returns zero and the pfn at @pfn on success, -ve otherwise.
204 int follow_pfn(struct vm_area_struct
*vma
, unsigned long address
,
207 if (!(vma
->vm_flags
& (VM_IO
| VM_PFNMAP
)))
210 *pfn
= address
>> PAGE_SHIFT
;
213 EXPORT_SYMBOL(follow_pfn
);
215 DEFINE_RWLOCK(vmlist_lock
);
216 struct vm_struct
*vmlist
;
218 void vfree(const void *addr
)
222 EXPORT_SYMBOL(vfree
);
224 void *__vmalloc(unsigned long size
, gfp_t gfp_mask
, pgprot_t prot
)
227 * You can't specify __GFP_HIGHMEM with kmalloc() since kmalloc()
228 * returns only a logical address.
230 return kmalloc(size
, (gfp_mask
| __GFP_COMP
) & ~__GFP_HIGHMEM
);
232 EXPORT_SYMBOL(__vmalloc
);
234 void *vmalloc_user(unsigned long size
)
238 ret
= __vmalloc(size
, GFP_KERNEL
| __GFP_HIGHMEM
| __GFP_ZERO
,
241 struct vm_area_struct
*vma
;
243 down_write(¤t
->mm
->mmap_sem
);
244 vma
= find_vma(current
->mm
, (unsigned long)ret
);
246 vma
->vm_flags
|= VM_USERMAP
;
247 up_write(¤t
->mm
->mmap_sem
);
252 EXPORT_SYMBOL(vmalloc_user
);
254 struct page
*vmalloc_to_page(const void *addr
)
256 return virt_to_page(addr
);
258 EXPORT_SYMBOL(vmalloc_to_page
);
260 unsigned long vmalloc_to_pfn(const void *addr
)
262 return page_to_pfn(virt_to_page(addr
));
264 EXPORT_SYMBOL(vmalloc_to_pfn
);
266 long vread(char *buf
, char *addr
, unsigned long count
)
268 memcpy(buf
, addr
, count
);
272 long vwrite(char *buf
, char *addr
, unsigned long count
)
274 /* Don't allow overflow */
275 if ((unsigned long) addr
+ count
< count
)
276 count
= -(unsigned long) addr
;
278 memcpy(addr
, buf
, count
);
283 * vmalloc - allocate virtually continguos memory
285 * @size: allocation size
287 * Allocate enough pages to cover @size from the page level
288 * allocator and map them into continguos kernel virtual space.
290 * For tight control over page level allocator and protection flags
291 * use __vmalloc() instead.
293 void *vmalloc(unsigned long size
)
295 return __vmalloc(size
, GFP_KERNEL
| __GFP_HIGHMEM
, PAGE_KERNEL
);
297 EXPORT_SYMBOL(vmalloc
);
300 * vzalloc - allocate virtually continguos memory with zero fill
302 * @size: allocation size
304 * Allocate enough pages to cover @size from the page level
305 * allocator and map them into continguos kernel virtual space.
306 * The memory allocated is set to zero.
308 * For tight control over page level allocator and protection flags
309 * use __vmalloc() instead.
311 void *vzalloc(unsigned long size
)
313 return __vmalloc(size
, GFP_KERNEL
| __GFP_HIGHMEM
| __GFP_ZERO
,
316 EXPORT_SYMBOL(vzalloc
);
319 * vmalloc_node - allocate memory on a specific node
320 * @size: allocation size
323 * Allocate enough pages to cover @size from the page level
324 * allocator and map them into contiguous kernel virtual space.
326 * For tight control over page level allocator and protection flags
327 * use __vmalloc() instead.
329 void *vmalloc_node(unsigned long size
, int node
)
331 return vmalloc(size
);
333 EXPORT_SYMBOL(vmalloc_node
);
336 * vzalloc_node - allocate memory on a specific node with zero fill
337 * @size: allocation size
340 * Allocate enough pages to cover @size from the page level
341 * allocator and map them into contiguous kernel virtual space.
342 * The memory allocated is set to zero.
344 * For tight control over page level allocator and protection flags
345 * use __vmalloc() instead.
347 void *vzalloc_node(unsigned long size
, int node
)
349 return vzalloc(size
);
351 EXPORT_SYMBOL(vzalloc_node
);
353 #ifndef PAGE_KERNEL_EXEC
354 # define PAGE_KERNEL_EXEC PAGE_KERNEL
358 * vmalloc_exec - allocate virtually contiguous, executable memory
359 * @size: allocation size
361 * Kernel-internal function to allocate enough pages to cover @size
362 * the page level allocator and map them into contiguous and
363 * executable kernel virtual space.
365 * For tight control over page level allocator and protection flags
366 * use __vmalloc() instead.
369 void *vmalloc_exec(unsigned long size
)
371 return __vmalloc(size
, GFP_KERNEL
| __GFP_HIGHMEM
, PAGE_KERNEL_EXEC
);
375 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
376 * @size: allocation size
378 * Allocate enough 32bit PA addressable pages to cover @size from the
379 * page level allocator and map them into continguos kernel virtual space.
381 void *vmalloc_32(unsigned long size
)
383 return __vmalloc(size
, GFP_KERNEL
, PAGE_KERNEL
);
385 EXPORT_SYMBOL(vmalloc_32
);
388 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
389 * @size: allocation size
391 * The resulting memory area is 32bit addressable and zeroed so it can be
392 * mapped to userspace without leaking data.
394 * VM_USERMAP is set on the corresponding VMA so that subsequent calls to
395 * remap_vmalloc_range() are permissible.
397 void *vmalloc_32_user(unsigned long size
)
400 * We'll have to sort out the ZONE_DMA bits for 64-bit,
401 * but for now this can simply use vmalloc_user() directly.
403 return vmalloc_user(size
);
405 EXPORT_SYMBOL(vmalloc_32_user
);
407 void *vmap(struct page
**pages
, unsigned int count
, unsigned long flags
, pgprot_t prot
)
414 void vunmap(const void *addr
)
418 EXPORT_SYMBOL(vunmap
);
420 void *vm_map_ram(struct page
**pages
, unsigned int count
, int node
, pgprot_t prot
)
425 EXPORT_SYMBOL(vm_map_ram
);
427 void vm_unmap_ram(const void *mem
, unsigned int count
)
431 EXPORT_SYMBOL(vm_unmap_ram
);
433 void vm_unmap_aliases(void)
436 EXPORT_SYMBOL_GPL(vm_unmap_aliases
);
439 * Implement a stub for vmalloc_sync_all() if the architecture chose not to
442 void __attribute__((weak
)) vmalloc_sync_all(void)
447 * alloc_vm_area - allocate a range of kernel address space
448 * @size: size of the area
450 * Returns: NULL on failure, vm_struct on success
452 * This function reserves a range of kernel address space, and
453 * allocates pagetables to map that range. No actual mappings
454 * are created. If the kernel address space is not shared
455 * between processes, it syncs the pagetable across all
458 struct vm_struct
*alloc_vm_area(size_t size
)
463 EXPORT_SYMBOL_GPL(alloc_vm_area
);
465 void free_vm_area(struct vm_struct
*area
)
469 EXPORT_SYMBOL_GPL(free_vm_area
);
471 int vm_insert_page(struct vm_area_struct
*vma
, unsigned long addr
,
476 EXPORT_SYMBOL(vm_insert_page
);
479 * sys_brk() for the most part doesn't need the global kernel
480 * lock, except when an application is doing something nasty
481 * like trying to un-brk an area that has already been mapped
482 * to a regular file. in this case, the unmapping will need
483 * to invoke file system routines that need the global lock.
485 SYSCALL_DEFINE1(brk
, unsigned long, brk
)
487 struct mm_struct
*mm
= current
->mm
;
489 if (brk
< mm
->start_brk
|| brk
> mm
->context
.end_brk
)
496 * Always allow shrinking brk
498 if (brk
<= mm
->brk
) {
504 * Ok, looks good - let it rip.
506 flush_icache_range(mm
->brk
, brk
);
507 return mm
->brk
= brk
;
511 * initialise the VMA and region record slabs
513 void __init
mmap_init(void)
517 ret
= percpu_counter_init(&vm_committed_as
, 0);
519 vm_region_jar
= KMEM_CACHE(vm_region
, SLAB_PANIC
);
523 * validate the region tree
524 * - the caller must hold the region lock
526 #ifdef CONFIG_DEBUG_NOMMU_REGIONS
527 static noinline
void validate_nommu_regions(void)
529 struct vm_region
*region
, *last
;
530 struct rb_node
*p
, *lastp
;
532 lastp
= rb_first(&nommu_region_tree
);
536 last
= rb_entry(lastp
, struct vm_region
, vm_rb
);
537 BUG_ON(unlikely(last
->vm_end
<= last
->vm_start
));
538 BUG_ON(unlikely(last
->vm_top
< last
->vm_end
));
540 while ((p
= rb_next(lastp
))) {
541 region
= rb_entry(p
, struct vm_region
, vm_rb
);
542 last
= rb_entry(lastp
, struct vm_region
, vm_rb
);
544 BUG_ON(unlikely(region
->vm_end
<= region
->vm_start
));
545 BUG_ON(unlikely(region
->vm_top
< region
->vm_end
));
546 BUG_ON(unlikely(region
->vm_start
< last
->vm_top
));
552 static void validate_nommu_regions(void)
558 * add a region into the global tree
560 static void add_nommu_region(struct vm_region
*region
)
562 struct vm_region
*pregion
;
563 struct rb_node
**p
, *parent
;
565 validate_nommu_regions();
568 p
= &nommu_region_tree
.rb_node
;
571 pregion
= rb_entry(parent
, struct vm_region
, vm_rb
);
572 if (region
->vm_start
< pregion
->vm_start
)
574 else if (region
->vm_start
> pregion
->vm_start
)
576 else if (pregion
== region
)
582 rb_link_node(®ion
->vm_rb
, parent
, p
);
583 rb_insert_color(®ion
->vm_rb
, &nommu_region_tree
);
585 validate_nommu_regions();
589 * delete a region from the global tree
591 static void delete_nommu_region(struct vm_region
*region
)
593 BUG_ON(!nommu_region_tree
.rb_node
);
595 validate_nommu_regions();
596 rb_erase(®ion
->vm_rb
, &nommu_region_tree
);
597 validate_nommu_regions();
601 * free a contiguous series of pages
603 static void free_page_series(unsigned long from
, unsigned long to
)
605 for (; from
< to
; from
+= PAGE_SIZE
) {
606 struct page
*page
= virt_to_page(from
);
608 kdebug("- free %lx", from
);
609 atomic_long_dec(&mmap_pages_allocated
);
610 if (page_count(page
) != 1)
611 kdebug("free page %p: refcount not one: %d",
612 page
, page_count(page
));
618 * release a reference to a region
619 * - the caller must hold the region semaphore for writing, which this releases
620 * - the region may not have been added to the tree yet, in which case vm_top
621 * will equal vm_start
623 static void __put_nommu_region(struct vm_region
*region
)
624 __releases(nommu_region_sem
)
626 kenter("%p{%d}", region
, region
->vm_usage
);
628 BUG_ON(!nommu_region_tree
.rb_node
);
630 if (--region
->vm_usage
== 0) {
631 if (region
->vm_top
> region
->vm_start
)
632 delete_nommu_region(region
);
633 up_write(&nommu_region_sem
);
636 fput(region
->vm_file
);
638 /* IO memory and memory shared directly out of the pagecache
639 * from ramfs/tmpfs mustn't be released here */
640 if (region
->vm_flags
& VM_MAPPED_COPY
) {
641 kdebug("free series");
642 free_page_series(region
->vm_start
, region
->vm_top
);
644 kmem_cache_free(vm_region_jar
, region
);
646 up_write(&nommu_region_sem
);
651 * release a reference to a region
653 static void put_nommu_region(struct vm_region
*region
)
655 down_write(&nommu_region_sem
);
656 __put_nommu_region(region
);
660 * update protection on a vma
662 static void protect_vma(struct vm_area_struct
*vma
, unsigned long flags
)
665 struct mm_struct
*mm
= vma
->vm_mm
;
666 long start
= vma
->vm_start
& PAGE_MASK
;
667 while (start
< vma
->vm_end
) {
668 protect_page(mm
, start
, flags
);
671 update_protections(mm
);
676 * add a VMA into a process's mm_struct in the appropriate place in the list
677 * and tree and add to the address space's page tree also if not an anonymous
679 * - should be called with mm->mmap_sem held writelocked
681 static void add_vma_to_mm(struct mm_struct
*mm
, struct vm_area_struct
*vma
)
683 struct vm_area_struct
*pvma
, *prev
;
684 struct address_space
*mapping
;
685 struct rb_node
**p
, *parent
, *rb_prev
;
689 BUG_ON(!vma
->vm_region
);
694 protect_vma(vma
, vma
->vm_flags
);
696 /* add the VMA to the mapping */
698 mapping
= vma
->vm_file
->f_mapping
;
700 mutex_lock(&mapping
->i_mmap_mutex
);
701 flush_dcache_mmap_lock(mapping
);
702 vma_prio_tree_insert(vma
, &mapping
->i_mmap
);
703 flush_dcache_mmap_unlock(mapping
);
704 mutex_unlock(&mapping
->i_mmap_mutex
);
707 /* add the VMA to the tree */
708 parent
= rb_prev
= NULL
;
709 p
= &mm
->mm_rb
.rb_node
;
712 pvma
= rb_entry(parent
, struct vm_area_struct
, vm_rb
);
714 /* sort by: start addr, end addr, VMA struct addr in that order
715 * (the latter is necessary as we may get identical VMAs) */
716 if (vma
->vm_start
< pvma
->vm_start
)
718 else if (vma
->vm_start
> pvma
->vm_start
) {
721 } else if (vma
->vm_end
< pvma
->vm_end
)
723 else if (vma
->vm_end
> pvma
->vm_end
) {
726 } else if (vma
< pvma
)
728 else if (vma
> pvma
) {
735 rb_link_node(&vma
->vm_rb
, parent
, p
);
736 rb_insert_color(&vma
->vm_rb
, &mm
->mm_rb
);
738 /* add VMA to the VMA list also */
741 prev
= rb_entry(rb_prev
, struct vm_area_struct
, vm_rb
);
743 __vma_link_list(mm
, vma
, prev
, parent
);
747 * delete a VMA from its owning mm_struct and address space
749 static void delete_vma_from_mm(struct vm_area_struct
*vma
)
751 struct address_space
*mapping
;
752 struct mm_struct
*mm
= vma
->vm_mm
;
759 if (mm
->mmap_cache
== vma
)
760 mm
->mmap_cache
= NULL
;
762 /* remove the VMA from the mapping */
764 mapping
= vma
->vm_file
->f_mapping
;
766 mutex_lock(&mapping
->i_mmap_mutex
);
767 flush_dcache_mmap_lock(mapping
);
768 vma_prio_tree_remove(vma
, &mapping
->i_mmap
);
769 flush_dcache_mmap_unlock(mapping
);
770 mutex_unlock(&mapping
->i_mmap_mutex
);
773 /* remove from the MM's tree and list */
774 rb_erase(&vma
->vm_rb
, &mm
->mm_rb
);
777 vma
->vm_prev
->vm_next
= vma
->vm_next
;
779 mm
->mmap
= vma
->vm_next
;
782 vma
->vm_next
->vm_prev
= vma
->vm_prev
;
786 * destroy a VMA record
788 static void delete_vma(struct mm_struct
*mm
, struct vm_area_struct
*vma
)
791 if (vma
->vm_ops
&& vma
->vm_ops
->close
)
792 vma
->vm_ops
->close(vma
);
795 if (vma
->vm_flags
& VM_EXECUTABLE
)
796 removed_exe_file_vma(mm
);
798 put_nommu_region(vma
->vm_region
);
799 kmem_cache_free(vm_area_cachep
, vma
);
803 * look up the first VMA in which addr resides, NULL if none
804 * - should be called with mm->mmap_sem at least held readlocked
806 struct vm_area_struct
*find_vma(struct mm_struct
*mm
, unsigned long addr
)
808 struct vm_area_struct
*vma
;
810 /* check the cache first */
811 vma
= mm
->mmap_cache
;
812 if (vma
&& vma
->vm_start
<= addr
&& vma
->vm_end
> addr
)
815 /* trawl the list (there may be multiple mappings in which addr
817 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
) {
818 if (vma
->vm_start
> addr
)
820 if (vma
->vm_end
> addr
) {
821 mm
->mmap_cache
= vma
;
828 EXPORT_SYMBOL(find_vma
);
832 * - we don't extend stack VMAs under NOMMU conditions
834 struct vm_area_struct
*find_extend_vma(struct mm_struct
*mm
, unsigned long addr
)
836 return find_vma(mm
, addr
);
840 * expand a stack to a given address
841 * - not supported under NOMMU conditions
843 int expand_stack(struct vm_area_struct
*vma
, unsigned long address
)
849 * look up the first VMA exactly that exactly matches addr
850 * - should be called with mm->mmap_sem at least held readlocked
852 static struct vm_area_struct
*find_vma_exact(struct mm_struct
*mm
,
856 struct vm_area_struct
*vma
;
857 unsigned long end
= addr
+ len
;
859 /* check the cache first */
860 vma
= mm
->mmap_cache
;
861 if (vma
&& vma
->vm_start
== addr
&& vma
->vm_end
== end
)
864 /* trawl the list (there may be multiple mappings in which addr
866 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
) {
867 if (vma
->vm_start
< addr
)
869 if (vma
->vm_start
> addr
)
871 if (vma
->vm_end
== end
) {
872 mm
->mmap_cache
= vma
;
881 * determine whether a mapping should be permitted and, if so, what sort of
882 * mapping we're capable of supporting
884 static int validate_mmap_request(struct file
*file
,
890 unsigned long *_capabilities
)
892 unsigned long capabilities
, rlen
;
893 unsigned long reqprot
= prot
;
896 /* do the simple checks first */
897 if (flags
& MAP_FIXED
) {
899 "%d: Can't do fixed-address/overlay mmap of RAM\n",
904 if ((flags
& MAP_TYPE
) != MAP_PRIVATE
&&
905 (flags
& MAP_TYPE
) != MAP_SHARED
)
911 /* Careful about overflows.. */
912 rlen
= PAGE_ALIGN(len
);
913 if (!rlen
|| rlen
> TASK_SIZE
)
916 /* offset overflow? */
917 if ((pgoff
+ (rlen
>> PAGE_SHIFT
)) < pgoff
)
921 /* validate file mapping requests */
922 struct address_space
*mapping
;
924 /* files must support mmap */
925 if (!file
->f_op
|| !file
->f_op
->mmap
)
928 /* work out if what we've got could possibly be shared
929 * - we support chardevs that provide their own "memory"
930 * - we support files/blockdevs that are memory backed
932 mapping
= file
->f_mapping
;
934 mapping
= file
->f_path
.dentry
->d_inode
->i_mapping
;
937 if (mapping
&& mapping
->backing_dev_info
)
938 capabilities
= mapping
->backing_dev_info
->capabilities
;
941 /* no explicit capabilities set, so assume some
943 switch (file
->f_path
.dentry
->d_inode
->i_mode
& S_IFMT
) {
946 capabilities
= BDI_CAP_MAP_COPY
;
961 /* eliminate any capabilities that we can't support on this
963 if (!file
->f_op
->get_unmapped_area
)
964 capabilities
&= ~BDI_CAP_MAP_DIRECT
;
965 if (!file
->f_op
->read
)
966 capabilities
&= ~BDI_CAP_MAP_COPY
;
968 /* The file shall have been opened with read permission. */
969 if (!(file
->f_mode
& FMODE_READ
))
972 if (flags
& MAP_SHARED
) {
973 /* do checks for writing, appending and locking */
974 if ((prot
& PROT_WRITE
) &&
975 !(file
->f_mode
& FMODE_WRITE
))
978 if (IS_APPEND(file
->f_path
.dentry
->d_inode
) &&
979 (file
->f_mode
& FMODE_WRITE
))
982 if (locks_verify_locked(file
->f_path
.dentry
->d_inode
))
985 if (!(capabilities
& BDI_CAP_MAP_DIRECT
))
988 /* we mustn't privatise shared mappings */
989 capabilities
&= ~BDI_CAP_MAP_COPY
;
992 /* we're going to read the file into private memory we
994 if (!(capabilities
& BDI_CAP_MAP_COPY
))
997 /* we don't permit a private writable mapping to be
998 * shared with the backing device */
999 if (prot
& PROT_WRITE
)
1000 capabilities
&= ~BDI_CAP_MAP_DIRECT
;
1003 if (capabilities
& BDI_CAP_MAP_DIRECT
) {
1004 if (((prot
& PROT_READ
) && !(capabilities
& BDI_CAP_READ_MAP
)) ||
1005 ((prot
& PROT_WRITE
) && !(capabilities
& BDI_CAP_WRITE_MAP
)) ||
1006 ((prot
& PROT_EXEC
) && !(capabilities
& BDI_CAP_EXEC_MAP
))
1008 capabilities
&= ~BDI_CAP_MAP_DIRECT
;
1009 if (flags
& MAP_SHARED
) {
1011 "MAP_SHARED not completely supported on !MMU\n");
1017 /* handle executable mappings and implied executable
1019 if (file
->f_path
.mnt
->mnt_flags
& MNT_NOEXEC
) {
1020 if (prot
& PROT_EXEC
)
1023 else if ((prot
& PROT_READ
) && !(prot
& PROT_EXEC
)) {
1024 /* handle implication of PROT_EXEC by PROT_READ */
1025 if (current
->personality
& READ_IMPLIES_EXEC
) {
1026 if (capabilities
& BDI_CAP_EXEC_MAP
)
1030 else if ((prot
& PROT_READ
) &&
1031 (prot
& PROT_EXEC
) &&
1032 !(capabilities
& BDI_CAP_EXEC_MAP
)
1034 /* backing file is not executable, try to copy */
1035 capabilities
&= ~BDI_CAP_MAP_DIRECT
;
1039 /* anonymous mappings are always memory backed and can be
1042 capabilities
= BDI_CAP_MAP_COPY
;
1044 /* handle PROT_EXEC implication by PROT_READ */
1045 if ((prot
& PROT_READ
) &&
1046 (current
->personality
& READ_IMPLIES_EXEC
))
1050 /* allow the security API to have its say */
1051 ret
= security_file_mmap(file
, reqprot
, prot
, flags
, addr
, 0);
1056 *_capabilities
= capabilities
;
1061 * we've determined that we can make the mapping, now translate what we
1062 * now know into VMA flags
1064 static unsigned long determine_vm_flags(struct file
*file
,
1066 unsigned long flags
,
1067 unsigned long capabilities
)
1069 unsigned long vm_flags
;
1071 vm_flags
= calc_vm_prot_bits(prot
) | calc_vm_flag_bits(flags
);
1072 /* vm_flags |= mm->def_flags; */
1074 if (!(capabilities
& BDI_CAP_MAP_DIRECT
)) {
1075 /* attempt to share read-only copies of mapped file chunks */
1076 vm_flags
|= VM_MAYREAD
| VM_MAYWRITE
| VM_MAYEXEC
;
1077 if (file
&& !(prot
& PROT_WRITE
))
1078 vm_flags
|= VM_MAYSHARE
;
1080 /* overlay a shareable mapping on the backing device or inode
1081 * if possible - used for chardevs, ramfs/tmpfs/shmfs and
1083 vm_flags
|= VM_MAYSHARE
| (capabilities
& BDI_CAP_VMFLAGS
);
1084 if (flags
& MAP_SHARED
)
1085 vm_flags
|= VM_SHARED
;
1088 /* refuse to let anyone share private mappings with this process if
1089 * it's being traced - otherwise breakpoints set in it may interfere
1090 * with another untraced process
1092 if ((flags
& MAP_PRIVATE
) && tracehook_expect_breakpoints(current
))
1093 vm_flags
&= ~VM_MAYSHARE
;
1099 * set up a shared mapping on a file (the driver or filesystem provides and
1102 static int do_mmap_shared_file(struct vm_area_struct
*vma
)
1106 ret
= vma
->vm_file
->f_op
->mmap(vma
->vm_file
, vma
);
1108 vma
->vm_region
->vm_top
= vma
->vm_region
->vm_end
;
1114 /* getting -ENOSYS indicates that direct mmap isn't possible (as
1115 * opposed to tried but failed) so we can only give a suitable error as
1116 * it's not possible to make a private copy if MAP_SHARED was given */
1121 * set up a private mapping or an anonymous shared mapping
1123 static int do_mmap_private(struct vm_area_struct
*vma
,
1124 struct vm_region
*region
,
1126 unsigned long capabilities
)
1129 unsigned long total
, point
, n
;
1133 /* invoke the file's mapping function so that it can keep track of
1134 * shared mappings on devices or memory
1135 * - VM_MAYSHARE will be set if it may attempt to share
1137 if (capabilities
& BDI_CAP_MAP_DIRECT
) {
1138 ret
= vma
->vm_file
->f_op
->mmap(vma
->vm_file
, vma
);
1140 /* shouldn't return success if we're not sharing */
1141 BUG_ON(!(vma
->vm_flags
& VM_MAYSHARE
));
1142 vma
->vm_region
->vm_top
= vma
->vm_region
->vm_end
;
1148 /* getting an ENOSYS error indicates that direct mmap isn't
1149 * possible (as opposed to tried but failed) so we'll try to
1150 * make a private copy of the data and map that instead */
1154 /* allocate some memory to hold the mapping
1155 * - note that this may not return a page-aligned address if the object
1156 * we're allocating is smaller than a page
1158 order
= get_order(len
);
1159 kdebug("alloc order %d for %lx", order
, len
);
1161 pages
= alloc_pages(GFP_KERNEL
, order
);
1166 atomic_long_add(total
, &mmap_pages_allocated
);
1168 point
= len
>> PAGE_SHIFT
;
1170 /* we allocated a power-of-2 sized page set, so we may want to trim off
1172 if (sysctl_nr_trim_pages
&& total
- point
>= sysctl_nr_trim_pages
) {
1173 while (total
> point
) {
1174 order
= ilog2(total
- point
);
1176 kdebug("shave %lu/%lu @%lu", n
, total
- point
, total
);
1177 atomic_long_sub(n
, &mmap_pages_allocated
);
1179 set_page_refcounted(pages
+ total
);
1180 __free_pages(pages
+ total
, order
);
1184 for (point
= 1; point
< total
; point
++)
1185 set_page_refcounted(&pages
[point
]);
1187 base
= page_address(pages
);
1188 region
->vm_flags
= vma
->vm_flags
|= VM_MAPPED_COPY
;
1189 region
->vm_start
= (unsigned long) base
;
1190 region
->vm_end
= region
->vm_start
+ len
;
1191 region
->vm_top
= region
->vm_start
+ (total
<< PAGE_SHIFT
);
1193 vma
->vm_start
= region
->vm_start
;
1194 vma
->vm_end
= region
->vm_start
+ len
;
1197 /* read the contents of a file into the copy */
1198 mm_segment_t old_fs
;
1201 fpos
= vma
->vm_pgoff
;
1202 fpos
<<= PAGE_SHIFT
;
1206 ret
= vma
->vm_file
->f_op
->read(vma
->vm_file
, base
, len
, &fpos
);
1212 /* clear the last little bit */
1214 memset(base
+ ret
, 0, len
- ret
);
1221 free_page_series(region
->vm_start
, region
->vm_top
);
1222 region
->vm_start
= vma
->vm_start
= 0;
1223 region
->vm_end
= vma
->vm_end
= 0;
1228 printk("Allocation of length %lu from process %d (%s) failed\n",
1229 len
, current
->pid
, current
->comm
);
1235 * handle mapping creation for uClinux
1237 unsigned long do_mmap_pgoff(struct file
*file
,
1241 unsigned long flags
,
1242 unsigned long pgoff
)
1244 struct vm_area_struct
*vma
;
1245 struct vm_region
*region
;
1247 unsigned long capabilities
, vm_flags
, result
;
1250 kenter(",%lx,%lx,%lx,%lx,%lx", addr
, len
, prot
, flags
, pgoff
);
1252 /* decide whether we should attempt the mapping, and if so what sort of
1254 ret
= validate_mmap_request(file
, addr
, len
, prot
, flags
, pgoff
,
1257 kleave(" = %d [val]", ret
);
1261 /* we ignore the address hint */
1263 len
= PAGE_ALIGN(len
);
1265 /* we've determined that we can make the mapping, now translate what we
1266 * now know into VMA flags */
1267 vm_flags
= determine_vm_flags(file
, prot
, flags
, capabilities
);
1269 /* we're going to need to record the mapping */
1270 region
= kmem_cache_zalloc(vm_region_jar
, GFP_KERNEL
);
1272 goto error_getting_region
;
1274 vma
= kmem_cache_zalloc(vm_area_cachep
, GFP_KERNEL
);
1276 goto error_getting_vma
;
1278 region
->vm_usage
= 1;
1279 region
->vm_flags
= vm_flags
;
1280 region
->vm_pgoff
= pgoff
;
1282 INIT_LIST_HEAD(&vma
->anon_vma_chain
);
1283 vma
->vm_flags
= vm_flags
;
1284 vma
->vm_pgoff
= pgoff
;
1287 region
->vm_file
= file
;
1289 vma
->vm_file
= file
;
1291 if (vm_flags
& VM_EXECUTABLE
) {
1292 added_exe_file_vma(current
->mm
);
1293 vma
->vm_mm
= current
->mm
;
1297 down_write(&nommu_region_sem
);
1299 /* if we want to share, we need to check for regions created by other
1300 * mmap() calls that overlap with our proposed mapping
1301 * - we can only share with a superset match on most regular files
1302 * - shared mappings on character devices and memory backed files are
1303 * permitted to overlap inexactly as far as we are concerned for in
1304 * these cases, sharing is handled in the driver or filesystem rather
1307 if (vm_flags
& VM_MAYSHARE
) {
1308 struct vm_region
*pregion
;
1309 unsigned long pglen
, rpglen
, pgend
, rpgend
, start
;
1311 pglen
= (len
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
1312 pgend
= pgoff
+ pglen
;
1314 for (rb
= rb_first(&nommu_region_tree
); rb
; rb
= rb_next(rb
)) {
1315 pregion
= rb_entry(rb
, struct vm_region
, vm_rb
);
1317 if (!(pregion
->vm_flags
& VM_MAYSHARE
))
1320 /* search for overlapping mappings on the same file */
1321 if (pregion
->vm_file
->f_path
.dentry
->d_inode
!=
1322 file
->f_path
.dentry
->d_inode
)
1325 if (pregion
->vm_pgoff
>= pgend
)
1328 rpglen
= pregion
->vm_end
- pregion
->vm_start
;
1329 rpglen
= (rpglen
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
1330 rpgend
= pregion
->vm_pgoff
+ rpglen
;
1331 if (pgoff
>= rpgend
)
1334 /* handle inexactly overlapping matches between
1336 if ((pregion
->vm_pgoff
!= pgoff
|| rpglen
!= pglen
) &&
1337 !(pgoff
>= pregion
->vm_pgoff
&& pgend
<= rpgend
)) {
1338 /* new mapping is not a subset of the region */
1339 if (!(capabilities
& BDI_CAP_MAP_DIRECT
))
1340 goto sharing_violation
;
1344 /* we've found a region we can share */
1345 pregion
->vm_usage
++;
1346 vma
->vm_region
= pregion
;
1347 start
= pregion
->vm_start
;
1348 start
+= (pgoff
- pregion
->vm_pgoff
) << PAGE_SHIFT
;
1349 vma
->vm_start
= start
;
1350 vma
->vm_end
= start
+ len
;
1352 if (pregion
->vm_flags
& VM_MAPPED_COPY
) {
1353 kdebug("share copy");
1354 vma
->vm_flags
|= VM_MAPPED_COPY
;
1356 kdebug("share mmap");
1357 ret
= do_mmap_shared_file(vma
);
1359 vma
->vm_region
= NULL
;
1362 pregion
->vm_usage
--;
1364 goto error_just_free
;
1367 fput(region
->vm_file
);
1368 kmem_cache_free(vm_region_jar
, region
);
1374 /* obtain the address at which to make a shared mapping
1375 * - this is the hook for quasi-memory character devices to
1376 * tell us the location of a shared mapping
1378 if (capabilities
& BDI_CAP_MAP_DIRECT
) {
1379 addr
= file
->f_op
->get_unmapped_area(file
, addr
, len
,
1381 if (IS_ERR_VALUE(addr
)) {
1384 goto error_just_free
;
1386 /* the driver refused to tell us where to site
1387 * the mapping so we'll have to attempt to copy
1390 if (!(capabilities
& BDI_CAP_MAP_COPY
))
1391 goto error_just_free
;
1393 capabilities
&= ~BDI_CAP_MAP_DIRECT
;
1395 vma
->vm_start
= region
->vm_start
= addr
;
1396 vma
->vm_end
= region
->vm_end
= addr
+ len
;
1401 vma
->vm_region
= region
;
1403 /* set up the mapping
1404 * - the region is filled in if BDI_CAP_MAP_DIRECT is still set
1406 if (file
&& vma
->vm_flags
& VM_SHARED
)
1407 ret
= do_mmap_shared_file(vma
);
1409 ret
= do_mmap_private(vma
, region
, len
, capabilities
);
1411 goto error_just_free
;
1412 add_nommu_region(region
);
1414 /* clear anonymous mappings that don't ask for uninitialized data */
1415 if (!vma
->vm_file
&& !(flags
& MAP_UNINITIALIZED
))
1416 memset((void *)region
->vm_start
, 0,
1417 region
->vm_end
- region
->vm_start
);
1419 /* okay... we have a mapping; now we have to register it */
1420 result
= vma
->vm_start
;
1422 current
->mm
->total_vm
+= len
>> PAGE_SHIFT
;
1425 add_vma_to_mm(current
->mm
, vma
);
1427 /* we flush the region from the icache only when the first executable
1428 * mapping of it is made */
1429 if (vma
->vm_flags
& VM_EXEC
&& !region
->vm_icache_flushed
) {
1430 flush_icache_range(region
->vm_start
, region
->vm_end
);
1431 region
->vm_icache_flushed
= true;
1434 up_write(&nommu_region_sem
);
1436 kleave(" = %lx", result
);
1440 up_write(&nommu_region_sem
);
1442 if (region
->vm_file
)
1443 fput(region
->vm_file
);
1444 kmem_cache_free(vm_region_jar
, region
);
1447 if (vma
->vm_flags
& VM_EXECUTABLE
)
1448 removed_exe_file_vma(vma
->vm_mm
);
1449 kmem_cache_free(vm_area_cachep
, vma
);
1450 kleave(" = %d", ret
);
1454 up_write(&nommu_region_sem
);
1455 printk(KERN_WARNING
"Attempt to share mismatched mappings\n");
1460 kmem_cache_free(vm_region_jar
, region
);
1461 printk(KERN_WARNING
"Allocation of vma for %lu byte allocation"
1462 " from process %d failed\n",
1467 error_getting_region
:
1468 printk(KERN_WARNING
"Allocation of vm region for %lu byte allocation"
1469 " from process %d failed\n",
1474 EXPORT_SYMBOL(do_mmap_pgoff
);
1476 SYSCALL_DEFINE6(mmap_pgoff
, unsigned long, addr
, unsigned long, len
,
1477 unsigned long, prot
, unsigned long, flags
,
1478 unsigned long, fd
, unsigned long, pgoff
)
1480 struct file
*file
= NULL
;
1481 unsigned long retval
= -EBADF
;
1483 audit_mmap_fd(fd
, flags
);
1484 if (!(flags
& MAP_ANONYMOUS
)) {
1490 flags
&= ~(MAP_EXECUTABLE
| MAP_DENYWRITE
);
1492 down_write(¤t
->mm
->mmap_sem
);
1493 retval
= do_mmap_pgoff(file
, addr
, len
, prot
, flags
, pgoff
);
1494 up_write(¤t
->mm
->mmap_sem
);
1502 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1503 struct mmap_arg_struct
{
1507 unsigned long flags
;
1509 unsigned long offset
;
1512 SYSCALL_DEFINE1(old_mmap
, struct mmap_arg_struct __user
*, arg
)
1514 struct mmap_arg_struct a
;
1516 if (copy_from_user(&a
, arg
, sizeof(a
)))
1518 if (a
.offset
& ~PAGE_MASK
)
1521 return sys_mmap_pgoff(a
.addr
, a
.len
, a
.prot
, a
.flags
, a
.fd
,
1522 a
.offset
>> PAGE_SHIFT
);
1524 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1527 * split a vma into two pieces at address 'addr', a new vma is allocated either
1528 * for the first part or the tail.
1530 int split_vma(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
1531 unsigned long addr
, int new_below
)
1533 struct vm_area_struct
*new;
1534 struct vm_region
*region
;
1535 unsigned long npages
;
1539 /* we're only permitted to split anonymous regions (these should have
1540 * only a single usage on the region) */
1544 if (mm
->map_count
>= sysctl_max_map_count
)
1547 region
= kmem_cache_alloc(vm_region_jar
, GFP_KERNEL
);
1551 new = kmem_cache_alloc(vm_area_cachep
, GFP_KERNEL
);
1553 kmem_cache_free(vm_region_jar
, region
);
1557 /* most fields are the same, copy all, and then fixup */
1559 *region
= *vma
->vm_region
;
1560 new->vm_region
= region
;
1562 npages
= (addr
- vma
->vm_start
) >> PAGE_SHIFT
;
1565 region
->vm_top
= region
->vm_end
= new->vm_end
= addr
;
1567 region
->vm_start
= new->vm_start
= addr
;
1568 region
->vm_pgoff
= new->vm_pgoff
+= npages
;
1571 if (new->vm_ops
&& new->vm_ops
->open
)
1572 new->vm_ops
->open(new);
1574 delete_vma_from_mm(vma
);
1575 down_write(&nommu_region_sem
);
1576 delete_nommu_region(vma
->vm_region
);
1578 vma
->vm_region
->vm_start
= vma
->vm_start
= addr
;
1579 vma
->vm_region
->vm_pgoff
= vma
->vm_pgoff
+= npages
;
1581 vma
->vm_region
->vm_end
= vma
->vm_end
= addr
;
1582 vma
->vm_region
->vm_top
= addr
;
1584 add_nommu_region(vma
->vm_region
);
1585 add_nommu_region(new->vm_region
);
1586 up_write(&nommu_region_sem
);
1587 add_vma_to_mm(mm
, vma
);
1588 add_vma_to_mm(mm
, new);
1593 * shrink a VMA by removing the specified chunk from either the beginning or
1596 static int shrink_vma(struct mm_struct
*mm
,
1597 struct vm_area_struct
*vma
,
1598 unsigned long from
, unsigned long to
)
1600 struct vm_region
*region
;
1604 /* adjust the VMA's pointers, which may reposition it in the MM's tree
1606 delete_vma_from_mm(vma
);
1607 if (from
> vma
->vm_start
)
1611 add_vma_to_mm(mm
, vma
);
1613 /* cut the backing region down to size */
1614 region
= vma
->vm_region
;
1615 BUG_ON(region
->vm_usage
!= 1);
1617 down_write(&nommu_region_sem
);
1618 delete_nommu_region(region
);
1619 if (from
> region
->vm_start
) {
1620 to
= region
->vm_top
;
1621 region
->vm_top
= region
->vm_end
= from
;
1623 region
->vm_start
= to
;
1625 add_nommu_region(region
);
1626 up_write(&nommu_region_sem
);
1628 free_page_series(from
, to
);
1634 * - under NOMMU conditions the chunk to be unmapped must be backed by a single
1635 * VMA, though it need not cover the whole VMA
1637 int do_munmap(struct mm_struct
*mm
, unsigned long start
, size_t len
)
1639 struct vm_area_struct
*vma
;
1643 kenter(",%lx,%zx", start
, len
);
1645 len
= PAGE_ALIGN(len
);
1651 /* find the first potentially overlapping VMA */
1652 vma
= find_vma(mm
, start
);
1654 static int limit
= 0;
1657 "munmap of memory not mmapped by process %d"
1658 " (%s): 0x%lx-0x%lx\n",
1659 current
->pid
, current
->comm
,
1660 start
, start
+ len
- 1);
1666 /* we're allowed to split an anonymous VMA but not a file-backed one */
1669 if (start
> vma
->vm_start
) {
1670 kleave(" = -EINVAL [miss]");
1673 if (end
== vma
->vm_end
)
1674 goto erase_whole_vma
;
1677 kleave(" = -EINVAL [split file]");
1680 /* the chunk must be a subset of the VMA found */
1681 if (start
== vma
->vm_start
&& end
== vma
->vm_end
)
1682 goto erase_whole_vma
;
1683 if (start
< vma
->vm_start
|| end
> vma
->vm_end
) {
1684 kleave(" = -EINVAL [superset]");
1687 if (start
& ~PAGE_MASK
) {
1688 kleave(" = -EINVAL [unaligned start]");
1691 if (end
!= vma
->vm_end
&& end
& ~PAGE_MASK
) {
1692 kleave(" = -EINVAL [unaligned split]");
1695 if (start
!= vma
->vm_start
&& end
!= vma
->vm_end
) {
1696 ret
= split_vma(mm
, vma
, start
, 1);
1698 kleave(" = %d [split]", ret
);
1702 return shrink_vma(mm
, vma
, start
, end
);
1706 delete_vma_from_mm(vma
);
1707 delete_vma(mm
, vma
);
1711 EXPORT_SYMBOL(do_munmap
);
1713 SYSCALL_DEFINE2(munmap
, unsigned long, addr
, size_t, len
)
1716 struct mm_struct
*mm
= current
->mm
;
1718 down_write(&mm
->mmap_sem
);
1719 ret
= do_munmap(mm
, addr
, len
);
1720 up_write(&mm
->mmap_sem
);
1725 * release all the mappings made in a process's VM space
1727 void exit_mmap(struct mm_struct
*mm
)
1729 struct vm_area_struct
*vma
;
1738 while ((vma
= mm
->mmap
)) {
1739 mm
->mmap
= vma
->vm_next
;
1740 delete_vma_from_mm(vma
);
1741 delete_vma(mm
, vma
);
1748 unsigned long do_brk(unsigned long addr
, unsigned long len
)
1754 * expand (or shrink) an existing mapping, potentially moving it at the same
1755 * time (controlled by the MREMAP_MAYMOVE flag and available VM space)
1757 * under NOMMU conditions, we only permit changing a mapping's size, and only
1758 * as long as it stays within the region allocated by do_mmap_private() and the
1759 * block is not shareable
1761 * MREMAP_FIXED is not supported under NOMMU conditions
1763 unsigned long do_mremap(unsigned long addr
,
1764 unsigned long old_len
, unsigned long new_len
,
1765 unsigned long flags
, unsigned long new_addr
)
1767 struct vm_area_struct
*vma
;
1769 /* insanity checks first */
1770 old_len
= PAGE_ALIGN(old_len
);
1771 new_len
= PAGE_ALIGN(new_len
);
1772 if (old_len
== 0 || new_len
== 0)
1773 return (unsigned long) -EINVAL
;
1775 if (addr
& ~PAGE_MASK
)
1778 if (flags
& MREMAP_FIXED
&& new_addr
!= addr
)
1779 return (unsigned long) -EINVAL
;
1781 vma
= find_vma_exact(current
->mm
, addr
, old_len
);
1783 return (unsigned long) -EINVAL
;
1785 if (vma
->vm_end
!= vma
->vm_start
+ old_len
)
1786 return (unsigned long) -EFAULT
;
1788 if (vma
->vm_flags
& VM_MAYSHARE
)
1789 return (unsigned long) -EPERM
;
1791 if (new_len
> vma
->vm_region
->vm_end
- vma
->vm_region
->vm_start
)
1792 return (unsigned long) -ENOMEM
;
1794 /* all checks complete - do it */
1795 vma
->vm_end
= vma
->vm_start
+ new_len
;
1796 return vma
->vm_start
;
1798 EXPORT_SYMBOL(do_mremap
);
1800 SYSCALL_DEFINE5(mremap
, unsigned long, addr
, unsigned long, old_len
,
1801 unsigned long, new_len
, unsigned long, flags
,
1802 unsigned long, new_addr
)
1806 down_write(¤t
->mm
->mmap_sem
);
1807 ret
= do_mremap(addr
, old_len
, new_len
, flags
, new_addr
);
1808 up_write(¤t
->mm
->mmap_sem
);
1812 struct page
*follow_page(struct vm_area_struct
*vma
, unsigned long address
,
1813 unsigned int foll_flags
)
1818 int remap_pfn_range(struct vm_area_struct
*vma
, unsigned long addr
,
1819 unsigned long pfn
, unsigned long size
, pgprot_t prot
)
1821 if (addr
!= (pfn
<< PAGE_SHIFT
))
1824 vma
->vm_flags
|= VM_IO
| VM_RESERVED
| VM_PFNMAP
;
1827 EXPORT_SYMBOL(remap_pfn_range
);
1829 int remap_vmalloc_range(struct vm_area_struct
*vma
, void *addr
,
1830 unsigned long pgoff
)
1832 unsigned int size
= vma
->vm_end
- vma
->vm_start
;
1834 if (!(vma
->vm_flags
& VM_USERMAP
))
1837 vma
->vm_start
= (unsigned long)(addr
+ (pgoff
<< PAGE_SHIFT
));
1838 vma
->vm_end
= vma
->vm_start
+ size
;
1842 EXPORT_SYMBOL(remap_vmalloc_range
);
1844 unsigned long arch_get_unmapped_area(struct file
*file
, unsigned long addr
,
1845 unsigned long len
, unsigned long pgoff
, unsigned long flags
)
1850 void arch_unmap_area(struct mm_struct
*mm
, unsigned long addr
)
1854 void unmap_mapping_range(struct address_space
*mapping
,
1855 loff_t
const holebegin
, loff_t
const holelen
,
1859 EXPORT_SYMBOL(unmap_mapping_range
);
1862 * Check that a process has enough memory to allocate a new virtual
1863 * mapping. 0 means there is enough memory for the allocation to
1864 * succeed and -ENOMEM implies there is not.
1866 * We currently support three overcommit policies, which are set via the
1867 * vm.overcommit_memory sysctl. See Documentation/vm/overcommit-accounting
1869 * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
1870 * Additional code 2002 Jul 20 by Robert Love.
1872 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
1874 * Note this is a helper function intended to be used by LSMs which
1875 * wish to use this logic.
1877 int __vm_enough_memory(struct mm_struct
*mm
, long pages
, int cap_sys_admin
)
1879 unsigned long free
, allowed
;
1881 vm_acct_memory(pages
);
1884 * Sometimes we want to use more memory than we have
1886 if (sysctl_overcommit_memory
== OVERCOMMIT_ALWAYS
)
1889 if (sysctl_overcommit_memory
== OVERCOMMIT_GUESS
) {
1892 free
= global_page_state(NR_FILE_PAGES
);
1893 free
+= nr_swap_pages
;
1896 * Any slabs which are created with the
1897 * SLAB_RECLAIM_ACCOUNT flag claim to have contents
1898 * which are reclaimable, under pressure. The dentry
1899 * cache and most inode caches should fall into this
1901 free
+= global_page_state(NR_SLAB_RECLAIMABLE
);
1904 * Leave the last 3% for root
1913 * nr_free_pages() is very expensive on large systems,
1914 * only call if we're about to fail.
1916 n
= nr_free_pages();
1919 * Leave reserved pages. The pages are not for anonymous pages.
1921 if (n
<= totalreserve_pages
)
1924 n
-= totalreserve_pages
;
1927 * Leave the last 3% for root
1939 allowed
= totalram_pages
* sysctl_overcommit_ratio
/ 100;
1941 * Leave the last 3% for root
1944 allowed
-= allowed
/ 32;
1945 allowed
+= total_swap_pages
;
1947 /* Don't let a single process grow too big:
1948 leave 3% of the size of this process for other processes */
1950 allowed
-= mm
->total_vm
/ 32;
1952 if (percpu_counter_read_positive(&vm_committed_as
) < allowed
)
1956 vm_unacct_memory(pages
);
1961 int in_gate_area_no_mm(unsigned long addr
)
1966 int filemap_fault(struct vm_area_struct
*vma
, struct vm_fault
*vmf
)
1971 EXPORT_SYMBOL(filemap_fault
);
1973 static int __access_remote_vm(struct task_struct
*tsk
, struct mm_struct
*mm
,
1974 unsigned long addr
, void *buf
, int len
, int write
)
1976 struct vm_area_struct
*vma
;
1978 down_read(&mm
->mmap_sem
);
1980 /* the access must start within one of the target process's mappings */
1981 vma
= find_vma(mm
, addr
);
1983 /* don't overrun this mapping */
1984 if (addr
+ len
>= vma
->vm_end
)
1985 len
= vma
->vm_end
- addr
;
1987 /* only read or write mappings where it is permitted */
1988 if (write
&& vma
->vm_flags
& VM_MAYWRITE
)
1989 copy_to_user_page(vma
, NULL
, addr
,
1990 (void *) addr
, buf
, len
);
1991 else if (!write
&& vma
->vm_flags
& VM_MAYREAD
)
1992 copy_from_user_page(vma
, NULL
, addr
,
1993 buf
, (void *) addr
, len
);
2000 up_read(&mm
->mmap_sem
);
2006 * @access_remote_vm - access another process' address space
2007 * @mm: the mm_struct of the target address space
2008 * @addr: start address to access
2009 * @buf: source or destination buffer
2010 * @len: number of bytes to transfer
2011 * @write: whether the access is a write
2013 * The caller must hold a reference on @mm.
2015 int access_remote_vm(struct mm_struct
*mm
, unsigned long addr
,
2016 void *buf
, int len
, int write
)
2018 return __access_remote_vm(NULL
, mm
, addr
, buf
, len
, write
);
2022 * Access another process' address space.
2023 * - source/target buffer must be kernel space
2025 int access_process_vm(struct task_struct
*tsk
, unsigned long addr
, void *buf
, int len
, int write
)
2027 struct mm_struct
*mm
;
2029 if (addr
+ len
< addr
)
2032 mm
= get_task_mm(tsk
);
2036 len
= __access_remote_vm(tsk
, mm
, addr
, buf
, len
, write
);
2043 * nommu_shrink_inode_mappings - Shrink the shared mappings on an inode
2044 * @inode: The inode to check
2045 * @size: The current filesize of the inode
2046 * @newsize: The proposed filesize of the inode
2048 * Check the shared mappings on an inode on behalf of a shrinking truncate to
2049 * make sure that that any outstanding VMAs aren't broken and then shrink the
2050 * vm_regions that extend that beyond so that do_mmap_pgoff() doesn't
2051 * automatically grant mappings that are too large.
2053 int nommu_shrink_inode_mappings(struct inode
*inode
, size_t size
,
2056 struct vm_area_struct
*vma
;
2057 struct prio_tree_iter iter
;
2058 struct vm_region
*region
;
2060 size_t r_size
, r_top
;
2062 low
= newsize
>> PAGE_SHIFT
;
2063 high
= (size
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
2065 down_write(&nommu_region_sem
);
2066 mutex_lock(&inode
->i_mapping
->i_mmap_mutex
);
2068 /* search for VMAs that fall within the dead zone */
2069 vma_prio_tree_foreach(vma
, &iter
, &inode
->i_mapping
->i_mmap
,
2071 /* found one - only interested if it's shared out of the page
2073 if (vma
->vm_flags
& VM_SHARED
) {
2074 mutex_unlock(&inode
->i_mapping
->i_mmap_mutex
);
2075 up_write(&nommu_region_sem
);
2076 return -ETXTBSY
; /* not quite true, but near enough */
2080 /* reduce any regions that overlap the dead zone - if in existence,
2081 * these will be pointed to by VMAs that don't overlap the dead zone
2083 * we don't check for any regions that start beyond the EOF as there
2086 vma_prio_tree_foreach(vma
, &iter
, &inode
->i_mapping
->i_mmap
,
2088 if (!(vma
->vm_flags
& VM_SHARED
))
2091 region
= vma
->vm_region
;
2092 r_size
= region
->vm_top
- region
->vm_start
;
2093 r_top
= (region
->vm_pgoff
<< PAGE_SHIFT
) + r_size
;
2095 if (r_top
> newsize
) {
2096 region
->vm_top
-= r_top
- newsize
;
2097 if (region
->vm_end
> region
->vm_top
)
2098 region
->vm_end
= region
->vm_top
;
2102 mutex_unlock(&inode
->i_mapping
->i_mmap_mutex
);
2103 up_write(&nommu_region_sem
);