ALSA: usb-audio: fix Roland A-PRO support
[linux/fpc-iii.git] / mm / vmalloc.c
blobbdb70042c123f879830f17155146156ac46b971b
1 /*
2 * linux/mm/vmalloc.c
4 * Copyright (C) 1993 Linus Torvalds
5 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
6 * SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
7 * Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
8 * Numa awareness, Christoph Lameter, SGI, June 2005
9 */
11 #include <linux/vmalloc.h>
12 #include <linux/mm.h>
13 #include <linux/module.h>
14 #include <linux/highmem.h>
15 #include <linux/sched.h>
16 #include <linux/slab.h>
17 #include <linux/spinlock.h>
18 #include <linux/interrupt.h>
19 #include <linux/proc_fs.h>
20 #include <linux/seq_file.h>
21 #include <linux/debugobjects.h>
22 #include <linux/kallsyms.h>
23 #include <linux/list.h>
24 #include <linux/rbtree.h>
25 #include <linux/radix-tree.h>
26 #include <linux/rcupdate.h>
27 #include <linux/pfn.h>
28 #include <linux/kmemleak.h>
29 #include <asm/atomic.h>
30 #include <asm/uaccess.h>
31 #include <asm/tlbflush.h>
32 #include <asm/shmparam.h>
34 /*** Page table manipulation functions ***/
36 static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end)
38 pte_t *pte;
40 pte = pte_offset_kernel(pmd, addr);
41 do {
42 pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
43 WARN_ON(!pte_none(ptent) && !pte_present(ptent));
44 } while (pte++, addr += PAGE_SIZE, addr != end);
47 static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end)
49 pmd_t *pmd;
50 unsigned long next;
52 pmd = pmd_offset(pud, addr);
53 do {
54 next = pmd_addr_end(addr, end);
55 if (pmd_none_or_clear_bad(pmd))
56 continue;
57 vunmap_pte_range(pmd, addr, next);
58 } while (pmd++, addr = next, addr != end);
61 static void vunmap_pud_range(pgd_t *pgd, unsigned long addr, unsigned long end)
63 pud_t *pud;
64 unsigned long next;
66 pud = pud_offset(pgd, addr);
67 do {
68 next = pud_addr_end(addr, end);
69 if (pud_none_or_clear_bad(pud))
70 continue;
71 vunmap_pmd_range(pud, addr, next);
72 } while (pud++, addr = next, addr != end);
75 static void vunmap_page_range(unsigned long addr, unsigned long end)
77 pgd_t *pgd;
78 unsigned long next;
80 BUG_ON(addr >= end);
81 pgd = pgd_offset_k(addr);
82 do {
83 next = pgd_addr_end(addr, end);
84 if (pgd_none_or_clear_bad(pgd))
85 continue;
86 vunmap_pud_range(pgd, addr, next);
87 } while (pgd++, addr = next, addr != end);
90 static int vmap_pte_range(pmd_t *pmd, unsigned long addr,
91 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
93 pte_t *pte;
96 * nr is a running index into the array which helps higher level
97 * callers keep track of where we're up to.
100 pte = pte_alloc_kernel(pmd, addr);
101 if (!pte)
102 return -ENOMEM;
103 do {
104 struct page *page = pages[*nr];
106 if (WARN_ON(!pte_none(*pte)))
107 return -EBUSY;
108 if (WARN_ON(!page))
109 return -ENOMEM;
110 set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
111 (*nr)++;
112 } while (pte++, addr += PAGE_SIZE, addr != end);
113 return 0;
116 static int vmap_pmd_range(pud_t *pud, unsigned long addr,
117 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
119 pmd_t *pmd;
120 unsigned long next;
122 pmd = pmd_alloc(&init_mm, pud, addr);
123 if (!pmd)
124 return -ENOMEM;
125 do {
126 next = pmd_addr_end(addr, end);
127 if (vmap_pte_range(pmd, addr, next, prot, pages, nr))
128 return -ENOMEM;
129 } while (pmd++, addr = next, addr != end);
130 return 0;
133 static int vmap_pud_range(pgd_t *pgd, unsigned long addr,
134 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
136 pud_t *pud;
137 unsigned long next;
139 pud = pud_alloc(&init_mm, pgd, addr);
140 if (!pud)
141 return -ENOMEM;
142 do {
143 next = pud_addr_end(addr, end);
144 if (vmap_pmd_range(pud, addr, next, prot, pages, nr))
145 return -ENOMEM;
146 } while (pud++, addr = next, addr != end);
147 return 0;
151 * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and
152 * will have pfns corresponding to the "pages" array.
154 * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N]
156 static int vmap_page_range_noflush(unsigned long start, unsigned long end,
157 pgprot_t prot, struct page **pages)
159 pgd_t *pgd;
160 unsigned long next;
161 unsigned long addr = start;
162 int err = 0;
163 int nr = 0;
165 BUG_ON(addr >= end);
166 pgd = pgd_offset_k(addr);
167 do {
168 next = pgd_addr_end(addr, end);
169 err = vmap_pud_range(pgd, addr, next, prot, pages, &nr);
170 if (err)
171 return err;
172 } while (pgd++, addr = next, addr != end);
174 return nr;
177 static int vmap_page_range(unsigned long start, unsigned long end,
178 pgprot_t prot, struct page **pages)
180 int ret;
182 ret = vmap_page_range_noflush(start, end, prot, pages);
183 flush_cache_vmap(start, end);
184 return ret;
187 int is_vmalloc_or_module_addr(const void *x)
190 * ARM, x86-64 and sparc64 put modules in a special place,
191 * and fall back on vmalloc() if that fails. Others
192 * just put it in the vmalloc space.
194 #if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
195 unsigned long addr = (unsigned long)x;
196 if (addr >= MODULES_VADDR && addr < MODULES_END)
197 return 1;
198 #endif
199 return is_vmalloc_addr(x);
203 * Walk a vmap address to the struct page it maps.
205 struct page *vmalloc_to_page(const void *vmalloc_addr)
207 unsigned long addr = (unsigned long) vmalloc_addr;
208 struct page *page = NULL;
209 pgd_t *pgd = pgd_offset_k(addr);
212 * XXX we might need to change this if we add VIRTUAL_BUG_ON for
213 * architectures that do not vmalloc module space
215 VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
217 if (!pgd_none(*pgd)) {
218 pud_t *pud = pud_offset(pgd, addr);
219 if (!pud_none(*pud)) {
220 pmd_t *pmd = pmd_offset(pud, addr);
221 if (!pmd_none(*pmd)) {
222 pte_t *ptep, pte;
224 ptep = pte_offset_map(pmd, addr);
225 pte = *ptep;
226 if (pte_present(pte))
227 page = pte_page(pte);
228 pte_unmap(ptep);
232 return page;
234 EXPORT_SYMBOL(vmalloc_to_page);
237 * Map a vmalloc()-space virtual address to the physical page frame number.
239 unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
241 return page_to_pfn(vmalloc_to_page(vmalloc_addr));
243 EXPORT_SYMBOL(vmalloc_to_pfn);
246 /*** Global kva allocator ***/
248 #define VM_LAZY_FREE 0x01
249 #define VM_LAZY_FREEING 0x02
250 #define VM_VM_AREA 0x04
252 struct vmap_area {
253 unsigned long va_start;
254 unsigned long va_end;
255 unsigned long flags;
256 struct rb_node rb_node; /* address sorted rbtree */
257 struct list_head list; /* address sorted list */
258 struct list_head purge_list; /* "lazy purge" list */
259 struct vm_struct *vm;
260 struct rcu_head rcu_head;
263 static DEFINE_SPINLOCK(vmap_area_lock);
264 static LIST_HEAD(vmap_area_list);
265 static struct rb_root vmap_area_root = RB_ROOT;
267 /* The vmap cache globals are protected by vmap_area_lock */
268 static struct rb_node *free_vmap_cache;
269 static unsigned long cached_hole_size;
270 static unsigned long cached_vstart;
271 static unsigned long cached_align;
273 static unsigned long vmap_area_pcpu_hole;
275 static struct vmap_area *__find_vmap_area(unsigned long addr)
277 struct rb_node *n = vmap_area_root.rb_node;
279 while (n) {
280 struct vmap_area *va;
282 va = rb_entry(n, struct vmap_area, rb_node);
283 if (addr < va->va_start)
284 n = n->rb_left;
285 else if (addr > va->va_start)
286 n = n->rb_right;
287 else
288 return va;
291 return NULL;
294 static void __insert_vmap_area(struct vmap_area *va)
296 struct rb_node **p = &vmap_area_root.rb_node;
297 struct rb_node *parent = NULL;
298 struct rb_node *tmp;
300 while (*p) {
301 struct vmap_area *tmp_va;
303 parent = *p;
304 tmp_va = rb_entry(parent, struct vmap_area, rb_node);
305 if (va->va_start < tmp_va->va_end)
306 p = &(*p)->rb_left;
307 else if (va->va_end > tmp_va->va_start)
308 p = &(*p)->rb_right;
309 else
310 BUG();
313 rb_link_node(&va->rb_node, parent, p);
314 rb_insert_color(&va->rb_node, &vmap_area_root);
316 /* address-sort this list so it is usable like the vmlist */
317 tmp = rb_prev(&va->rb_node);
318 if (tmp) {
319 struct vmap_area *prev;
320 prev = rb_entry(tmp, struct vmap_area, rb_node);
321 list_add_rcu(&va->list, &prev->list);
322 } else
323 list_add_rcu(&va->list, &vmap_area_list);
326 static void purge_vmap_area_lazy(void);
329 * Allocate a region of KVA of the specified size and alignment, within the
330 * vstart and vend.
332 static struct vmap_area *alloc_vmap_area(unsigned long size,
333 unsigned long align,
334 unsigned long vstart, unsigned long vend,
335 int node, gfp_t gfp_mask)
337 struct vmap_area *va;
338 struct rb_node *n;
339 unsigned long addr;
340 int purged = 0;
341 struct vmap_area *first;
343 BUG_ON(!size);
344 BUG_ON(size & ~PAGE_MASK);
345 BUG_ON(!is_power_of_2(align));
347 va = kmalloc_node(sizeof(struct vmap_area),
348 gfp_mask & GFP_RECLAIM_MASK, node);
349 if (unlikely(!va))
350 return ERR_PTR(-ENOMEM);
352 retry:
353 spin_lock(&vmap_area_lock);
355 * Invalidate cache if we have more permissive parameters.
356 * cached_hole_size notes the largest hole noticed _below_
357 * the vmap_area cached in free_vmap_cache: if size fits
358 * into that hole, we want to scan from vstart to reuse
359 * the hole instead of allocating above free_vmap_cache.
360 * Note that __free_vmap_area may update free_vmap_cache
361 * without updating cached_hole_size or cached_align.
363 if (!free_vmap_cache ||
364 size < cached_hole_size ||
365 vstart < cached_vstart ||
366 align < cached_align) {
367 nocache:
368 cached_hole_size = 0;
369 free_vmap_cache = NULL;
371 /* record if we encounter less permissive parameters */
372 cached_vstart = vstart;
373 cached_align = align;
375 /* find starting point for our search */
376 if (free_vmap_cache) {
377 first = rb_entry(free_vmap_cache, struct vmap_area, rb_node);
378 addr = ALIGN(first->va_end, align);
379 if (addr < vstart)
380 goto nocache;
381 if (addr + size - 1 < addr)
382 goto overflow;
384 } else {
385 addr = ALIGN(vstart, align);
386 if (addr + size - 1 < addr)
387 goto overflow;
389 n = vmap_area_root.rb_node;
390 first = NULL;
392 while (n) {
393 struct vmap_area *tmp;
394 tmp = rb_entry(n, struct vmap_area, rb_node);
395 if (tmp->va_end >= addr) {
396 first = tmp;
397 if (tmp->va_start <= addr)
398 break;
399 n = n->rb_left;
400 } else
401 n = n->rb_right;
404 if (!first)
405 goto found;
408 /* from the starting point, walk areas until a suitable hole is found */
409 while (addr + size > first->va_start && addr + size <= vend) {
410 if (addr + cached_hole_size < first->va_start)
411 cached_hole_size = first->va_start - addr;
412 addr = ALIGN(first->va_end, align);
413 if (addr + size - 1 < addr)
414 goto overflow;
416 n = rb_next(&first->rb_node);
417 if (n)
418 first = rb_entry(n, struct vmap_area, rb_node);
419 else
420 goto found;
423 found:
424 if (addr + size > vend)
425 goto overflow;
427 va->va_start = addr;
428 va->va_end = addr + size;
429 va->flags = 0;
430 __insert_vmap_area(va);
431 free_vmap_cache = &va->rb_node;
432 spin_unlock(&vmap_area_lock);
434 BUG_ON(va->va_start & (align-1));
435 BUG_ON(va->va_start < vstart);
436 BUG_ON(va->va_end > vend);
438 return va;
440 overflow:
441 spin_unlock(&vmap_area_lock);
442 if (!purged) {
443 purge_vmap_area_lazy();
444 purged = 1;
445 goto retry;
447 if (printk_ratelimit())
448 printk(KERN_WARNING
449 "vmap allocation for size %lu failed: "
450 "use vmalloc=<size> to increase size.\n", size);
451 kfree(va);
452 return ERR_PTR(-EBUSY);
455 static void rcu_free_va(struct rcu_head *head)
457 struct vmap_area *va = container_of(head, struct vmap_area, rcu_head);
459 kfree(va);
462 static void __free_vmap_area(struct vmap_area *va)
464 BUG_ON(RB_EMPTY_NODE(&va->rb_node));
466 if (free_vmap_cache) {
467 if (va->va_end < cached_vstart) {
468 free_vmap_cache = NULL;
469 } else {
470 struct vmap_area *cache;
471 cache = rb_entry(free_vmap_cache, struct vmap_area, rb_node);
472 if (va->va_start <= cache->va_start) {
473 free_vmap_cache = rb_prev(&va->rb_node);
475 * We don't try to update cached_hole_size or
476 * cached_align, but it won't go very wrong.
481 rb_erase(&va->rb_node, &vmap_area_root);
482 RB_CLEAR_NODE(&va->rb_node);
483 list_del_rcu(&va->list);
486 * Track the highest possible candidate for pcpu area
487 * allocation. Areas outside of vmalloc area can be returned
488 * here too, consider only end addresses which fall inside
489 * vmalloc area proper.
491 if (va->va_end > VMALLOC_START && va->va_end <= VMALLOC_END)
492 vmap_area_pcpu_hole = max(vmap_area_pcpu_hole, va->va_end);
494 call_rcu(&va->rcu_head, rcu_free_va);
498 * Free a region of KVA allocated by alloc_vmap_area
500 static void free_vmap_area(struct vmap_area *va)
502 spin_lock(&vmap_area_lock);
503 __free_vmap_area(va);
504 spin_unlock(&vmap_area_lock);
508 * Clear the pagetable entries of a given vmap_area
510 static void unmap_vmap_area(struct vmap_area *va)
512 vunmap_page_range(va->va_start, va->va_end);
515 static void vmap_debug_free_range(unsigned long start, unsigned long end)
518 * Unmap page tables and force a TLB flush immediately if
519 * CONFIG_DEBUG_PAGEALLOC is set. This catches use after free
520 * bugs similarly to those in linear kernel virtual address
521 * space after a page has been freed.
523 * All the lazy freeing logic is still retained, in order to
524 * minimise intrusiveness of this debugging feature.
526 * This is going to be *slow* (linear kernel virtual address
527 * debugging doesn't do a broadcast TLB flush so it is a lot
528 * faster).
530 #ifdef CONFIG_DEBUG_PAGEALLOC
531 vunmap_page_range(start, end);
532 flush_tlb_kernel_range(start, end);
533 #endif
537 * lazy_max_pages is the maximum amount of virtual address space we gather up
538 * before attempting to purge with a TLB flush.
540 * There is a tradeoff here: a larger number will cover more kernel page tables
541 * and take slightly longer to purge, but it will linearly reduce the number of
542 * global TLB flushes that must be performed. It would seem natural to scale
543 * this number up linearly with the number of CPUs (because vmapping activity
544 * could also scale linearly with the number of CPUs), however it is likely
545 * that in practice, workloads might be constrained in other ways that mean
546 * vmap activity will not scale linearly with CPUs. Also, I want to be
547 * conservative and not introduce a big latency on huge systems, so go with
548 * a less aggressive log scale. It will still be an improvement over the old
549 * code, and it will be simple to change the scale factor if we find that it
550 * becomes a problem on bigger systems.
552 static unsigned long lazy_max_pages(void)
554 unsigned int log;
556 log = fls(num_online_cpus());
558 return log * (32UL * 1024 * 1024 / PAGE_SIZE);
561 static atomic_t vmap_lazy_nr = ATOMIC_INIT(0);
563 /* for per-CPU blocks */
564 static void purge_fragmented_blocks_allcpus(void);
567 * called before a call to iounmap() if the caller wants vm_area_struct's
568 * immediately freed.
570 void set_iounmap_nonlazy(void)
572 atomic_set(&vmap_lazy_nr, lazy_max_pages()+1);
576 * Purges all lazily-freed vmap areas.
578 * If sync is 0 then don't purge if there is already a purge in progress.
579 * If force_flush is 1, then flush kernel TLBs between *start and *end even
580 * if we found no lazy vmap areas to unmap (callers can use this to optimise
581 * their own TLB flushing).
582 * Returns with *start = min(*start, lowest purged address)
583 * *end = max(*end, highest purged address)
585 static void __purge_vmap_area_lazy(unsigned long *start, unsigned long *end,
586 int sync, int force_flush)
588 static DEFINE_SPINLOCK(purge_lock);
589 LIST_HEAD(valist);
590 struct vmap_area *va;
591 struct vmap_area *n_va;
592 int nr = 0;
595 * If sync is 0 but force_flush is 1, we'll go sync anyway but callers
596 * should not expect such behaviour. This just simplifies locking for
597 * the case that isn't actually used at the moment anyway.
599 if (!sync && !force_flush) {
600 if (!spin_trylock(&purge_lock))
601 return;
602 } else
603 spin_lock(&purge_lock);
605 if (sync)
606 purge_fragmented_blocks_allcpus();
608 rcu_read_lock();
609 list_for_each_entry_rcu(va, &vmap_area_list, list) {
610 if (va->flags & VM_LAZY_FREE) {
611 if (va->va_start < *start)
612 *start = va->va_start;
613 if (va->va_end > *end)
614 *end = va->va_end;
615 nr += (va->va_end - va->va_start) >> PAGE_SHIFT;
616 list_add_tail(&va->purge_list, &valist);
617 va->flags |= VM_LAZY_FREEING;
618 va->flags &= ~VM_LAZY_FREE;
621 rcu_read_unlock();
623 if (nr)
624 atomic_sub(nr, &vmap_lazy_nr);
626 if (nr || force_flush)
627 flush_tlb_kernel_range(*start, *end);
629 if (nr) {
630 spin_lock(&vmap_area_lock);
631 list_for_each_entry_safe(va, n_va, &valist, purge_list)
632 __free_vmap_area(va);
633 spin_unlock(&vmap_area_lock);
635 spin_unlock(&purge_lock);
639 * Kick off a purge of the outstanding lazy areas. Don't bother if somebody
640 * is already purging.
642 static void try_purge_vmap_area_lazy(void)
644 unsigned long start = ULONG_MAX, end = 0;
646 __purge_vmap_area_lazy(&start, &end, 0, 0);
650 * Kick off a purge of the outstanding lazy areas.
652 static void purge_vmap_area_lazy(void)
654 unsigned long start = ULONG_MAX, end = 0;
656 __purge_vmap_area_lazy(&start, &end, 1, 0);
660 * Free a vmap area, caller ensuring that the area has been unmapped
661 * and flush_cache_vunmap had been called for the correct range
662 * previously.
664 static void free_vmap_area_noflush(struct vmap_area *va)
666 va->flags |= VM_LAZY_FREE;
667 atomic_add((va->va_end - va->va_start) >> PAGE_SHIFT, &vmap_lazy_nr);
668 if (unlikely(atomic_read(&vmap_lazy_nr) > lazy_max_pages()))
669 try_purge_vmap_area_lazy();
673 * Free and unmap a vmap area, caller ensuring flush_cache_vunmap had been
674 * called for the correct range previously.
676 static void free_unmap_vmap_area_noflush(struct vmap_area *va)
678 unmap_vmap_area(va);
679 free_vmap_area_noflush(va);
683 * Free and unmap a vmap area
685 static void free_unmap_vmap_area(struct vmap_area *va)
687 flush_cache_vunmap(va->va_start, va->va_end);
688 free_unmap_vmap_area_noflush(va);
691 static struct vmap_area *find_vmap_area(unsigned long addr)
693 struct vmap_area *va;
695 spin_lock(&vmap_area_lock);
696 va = __find_vmap_area(addr);
697 spin_unlock(&vmap_area_lock);
699 return va;
702 static void free_unmap_vmap_area_addr(unsigned long addr)
704 struct vmap_area *va;
706 va = find_vmap_area(addr);
707 BUG_ON(!va);
708 free_unmap_vmap_area(va);
712 /*** Per cpu kva allocator ***/
715 * vmap space is limited especially on 32 bit architectures. Ensure there is
716 * room for at least 16 percpu vmap blocks per CPU.
719 * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
720 * to #define VMALLOC_SPACE (VMALLOC_END-VMALLOC_START). Guess
721 * instead (we just need a rough idea)
723 #if BITS_PER_LONG == 32
724 #define VMALLOC_SPACE (128UL*1024*1024)
725 #else
726 #define VMALLOC_SPACE (128UL*1024*1024*1024)
727 #endif
729 #define VMALLOC_PAGES (VMALLOC_SPACE / PAGE_SIZE)
730 #define VMAP_MAX_ALLOC BITS_PER_LONG /* 256K with 4K pages */
731 #define VMAP_BBMAP_BITS_MAX 1024 /* 4MB with 4K pages */
732 #define VMAP_BBMAP_BITS_MIN (VMAP_MAX_ALLOC*2)
733 #define VMAP_MIN(x, y) ((x) < (y) ? (x) : (y)) /* can't use min() */
734 #define VMAP_MAX(x, y) ((x) > (y) ? (x) : (y)) /* can't use max() */
735 #define VMAP_BBMAP_BITS \
736 VMAP_MIN(VMAP_BBMAP_BITS_MAX, \
737 VMAP_MAX(VMAP_BBMAP_BITS_MIN, \
738 VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16))
740 #define VMAP_BLOCK_SIZE (VMAP_BBMAP_BITS * PAGE_SIZE)
742 static bool vmap_initialized __read_mostly = false;
744 struct vmap_block_queue {
745 spinlock_t lock;
746 struct list_head free;
749 struct vmap_block {
750 spinlock_t lock;
751 struct vmap_area *va;
752 struct vmap_block_queue *vbq;
753 unsigned long free, dirty;
754 DECLARE_BITMAP(alloc_map, VMAP_BBMAP_BITS);
755 DECLARE_BITMAP(dirty_map, VMAP_BBMAP_BITS);
756 struct list_head free_list;
757 struct rcu_head rcu_head;
758 struct list_head purge;
761 /* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
762 static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);
765 * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block
766 * in the free path. Could get rid of this if we change the API to return a
767 * "cookie" from alloc, to be passed to free. But no big deal yet.
769 static DEFINE_SPINLOCK(vmap_block_tree_lock);
770 static RADIX_TREE(vmap_block_tree, GFP_ATOMIC);
773 * We should probably have a fallback mechanism to allocate virtual memory
774 * out of partially filled vmap blocks. However vmap block sizing should be
775 * fairly reasonable according to the vmalloc size, so it shouldn't be a
776 * big problem.
779 static unsigned long addr_to_vb_idx(unsigned long addr)
781 addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
782 addr /= VMAP_BLOCK_SIZE;
783 return addr;
786 static struct vmap_block *new_vmap_block(gfp_t gfp_mask)
788 struct vmap_block_queue *vbq;
789 struct vmap_block *vb;
790 struct vmap_area *va;
791 unsigned long vb_idx;
792 int node, err;
794 node = numa_node_id();
796 vb = kmalloc_node(sizeof(struct vmap_block),
797 gfp_mask & GFP_RECLAIM_MASK, node);
798 if (unlikely(!vb))
799 return ERR_PTR(-ENOMEM);
801 va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
802 VMALLOC_START, VMALLOC_END,
803 node, gfp_mask);
804 if (IS_ERR(va)) {
805 kfree(vb);
806 return ERR_CAST(va);
809 err = radix_tree_preload(gfp_mask);
810 if (unlikely(err)) {
811 kfree(vb);
812 free_vmap_area(va);
813 return ERR_PTR(err);
816 spin_lock_init(&vb->lock);
817 vb->va = va;
818 vb->free = VMAP_BBMAP_BITS;
819 vb->dirty = 0;
820 bitmap_zero(vb->alloc_map, VMAP_BBMAP_BITS);
821 bitmap_zero(vb->dirty_map, VMAP_BBMAP_BITS);
822 INIT_LIST_HEAD(&vb->free_list);
824 vb_idx = addr_to_vb_idx(va->va_start);
825 spin_lock(&vmap_block_tree_lock);
826 err = radix_tree_insert(&vmap_block_tree, vb_idx, vb);
827 spin_unlock(&vmap_block_tree_lock);
828 BUG_ON(err);
829 radix_tree_preload_end();
831 vbq = &get_cpu_var(vmap_block_queue);
832 vb->vbq = vbq;
833 spin_lock(&vbq->lock);
834 list_add_rcu(&vb->free_list, &vbq->free);
835 spin_unlock(&vbq->lock);
836 put_cpu_var(vmap_block_queue);
838 return vb;
841 static void rcu_free_vb(struct rcu_head *head)
843 struct vmap_block *vb = container_of(head, struct vmap_block, rcu_head);
845 kfree(vb);
848 static void free_vmap_block(struct vmap_block *vb)
850 struct vmap_block *tmp;
851 unsigned long vb_idx;
853 vb_idx = addr_to_vb_idx(vb->va->va_start);
854 spin_lock(&vmap_block_tree_lock);
855 tmp = radix_tree_delete(&vmap_block_tree, vb_idx);
856 spin_unlock(&vmap_block_tree_lock);
857 BUG_ON(tmp != vb);
859 free_vmap_area_noflush(vb->va);
860 call_rcu(&vb->rcu_head, rcu_free_vb);
863 static void purge_fragmented_blocks(int cpu)
865 LIST_HEAD(purge);
866 struct vmap_block *vb;
867 struct vmap_block *n_vb;
868 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
870 rcu_read_lock();
871 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
873 if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS))
874 continue;
876 spin_lock(&vb->lock);
877 if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) {
878 vb->free = 0; /* prevent further allocs after releasing lock */
879 vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */
880 bitmap_fill(vb->alloc_map, VMAP_BBMAP_BITS);
881 bitmap_fill(vb->dirty_map, VMAP_BBMAP_BITS);
882 spin_lock(&vbq->lock);
883 list_del_rcu(&vb->free_list);
884 spin_unlock(&vbq->lock);
885 spin_unlock(&vb->lock);
886 list_add_tail(&vb->purge, &purge);
887 } else
888 spin_unlock(&vb->lock);
890 rcu_read_unlock();
892 list_for_each_entry_safe(vb, n_vb, &purge, purge) {
893 list_del(&vb->purge);
894 free_vmap_block(vb);
898 static void purge_fragmented_blocks_thiscpu(void)
900 purge_fragmented_blocks(smp_processor_id());
903 static void purge_fragmented_blocks_allcpus(void)
905 int cpu;
907 for_each_possible_cpu(cpu)
908 purge_fragmented_blocks(cpu);
911 static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
913 struct vmap_block_queue *vbq;
914 struct vmap_block *vb;
915 unsigned long addr = 0;
916 unsigned int order;
917 int purge = 0;
919 BUG_ON(size & ~PAGE_MASK);
920 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
921 order = get_order(size);
923 again:
924 rcu_read_lock();
925 vbq = &get_cpu_var(vmap_block_queue);
926 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
927 int i;
929 spin_lock(&vb->lock);
930 if (vb->free < 1UL << order)
931 goto next;
933 i = bitmap_find_free_region(vb->alloc_map,
934 VMAP_BBMAP_BITS, order);
936 if (i < 0) {
937 if (vb->free + vb->dirty == VMAP_BBMAP_BITS) {
938 /* fragmented and no outstanding allocations */
939 BUG_ON(vb->dirty != VMAP_BBMAP_BITS);
940 purge = 1;
942 goto next;
944 addr = vb->va->va_start + (i << PAGE_SHIFT);
945 BUG_ON(addr_to_vb_idx(addr) !=
946 addr_to_vb_idx(vb->va->va_start));
947 vb->free -= 1UL << order;
948 if (vb->free == 0) {
949 spin_lock(&vbq->lock);
950 list_del_rcu(&vb->free_list);
951 spin_unlock(&vbq->lock);
953 spin_unlock(&vb->lock);
954 break;
955 next:
956 spin_unlock(&vb->lock);
959 if (purge)
960 purge_fragmented_blocks_thiscpu();
962 put_cpu_var(vmap_block_queue);
963 rcu_read_unlock();
965 if (!addr) {
966 vb = new_vmap_block(gfp_mask);
967 if (IS_ERR(vb))
968 return vb;
969 goto again;
972 return (void *)addr;
975 static void vb_free(const void *addr, unsigned long size)
977 unsigned long offset;
978 unsigned long vb_idx;
979 unsigned int order;
980 struct vmap_block *vb;
982 BUG_ON(size & ~PAGE_MASK);
983 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
985 flush_cache_vunmap((unsigned long)addr, (unsigned long)addr + size);
987 order = get_order(size);
989 offset = (unsigned long)addr & (VMAP_BLOCK_SIZE - 1);
991 vb_idx = addr_to_vb_idx((unsigned long)addr);
992 rcu_read_lock();
993 vb = radix_tree_lookup(&vmap_block_tree, vb_idx);
994 rcu_read_unlock();
995 BUG_ON(!vb);
997 vunmap_page_range((unsigned long)addr, (unsigned long)addr + size);
999 spin_lock(&vb->lock);
1000 BUG_ON(bitmap_allocate_region(vb->dirty_map, offset >> PAGE_SHIFT, order));
1002 vb->dirty += 1UL << order;
1003 if (vb->dirty == VMAP_BBMAP_BITS) {
1004 BUG_ON(vb->free);
1005 spin_unlock(&vb->lock);
1006 free_vmap_block(vb);
1007 } else
1008 spin_unlock(&vb->lock);
1012 * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
1014 * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
1015 * to amortize TLB flushing overheads. What this means is that any page you
1016 * have now, may, in a former life, have been mapped into kernel virtual
1017 * address by the vmap layer and so there might be some CPUs with TLB entries
1018 * still referencing that page (additional to the regular 1:1 kernel mapping).
1020 * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
1021 * be sure that none of the pages we have control over will have any aliases
1022 * from the vmap layer.
1024 void vm_unmap_aliases(void)
1026 unsigned long start = ULONG_MAX, end = 0;
1027 int cpu;
1028 int flush = 0;
1030 if (unlikely(!vmap_initialized))
1031 return;
1033 for_each_possible_cpu(cpu) {
1034 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
1035 struct vmap_block *vb;
1037 rcu_read_lock();
1038 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
1039 int i;
1041 spin_lock(&vb->lock);
1042 i = find_first_bit(vb->dirty_map, VMAP_BBMAP_BITS);
1043 while (i < VMAP_BBMAP_BITS) {
1044 unsigned long s, e;
1045 int j;
1046 j = find_next_zero_bit(vb->dirty_map,
1047 VMAP_BBMAP_BITS, i);
1049 s = vb->va->va_start + (i << PAGE_SHIFT);
1050 e = vb->va->va_start + (j << PAGE_SHIFT);
1051 flush = 1;
1053 if (s < start)
1054 start = s;
1055 if (e > end)
1056 end = e;
1058 i = j;
1059 i = find_next_bit(vb->dirty_map,
1060 VMAP_BBMAP_BITS, i);
1062 spin_unlock(&vb->lock);
1064 rcu_read_unlock();
1067 __purge_vmap_area_lazy(&start, &end, 1, flush);
1069 EXPORT_SYMBOL_GPL(vm_unmap_aliases);
1072 * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
1073 * @mem: the pointer returned by vm_map_ram
1074 * @count: the count passed to that vm_map_ram call (cannot unmap partial)
1076 void vm_unmap_ram(const void *mem, unsigned int count)
1078 unsigned long size = count << PAGE_SHIFT;
1079 unsigned long addr = (unsigned long)mem;
1081 BUG_ON(!addr);
1082 BUG_ON(addr < VMALLOC_START);
1083 BUG_ON(addr > VMALLOC_END);
1084 BUG_ON(addr & (PAGE_SIZE-1));
1086 debug_check_no_locks_freed(mem, size);
1087 vmap_debug_free_range(addr, addr+size);
1089 if (likely(count <= VMAP_MAX_ALLOC))
1090 vb_free(mem, size);
1091 else
1092 free_unmap_vmap_area_addr(addr);
1094 EXPORT_SYMBOL(vm_unmap_ram);
1097 * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
1098 * @pages: an array of pointers to the pages to be mapped
1099 * @count: number of pages
1100 * @node: prefer to allocate data structures on this node
1101 * @prot: memory protection to use. PAGE_KERNEL for regular RAM
1103 * Returns: a pointer to the address that has been mapped, or %NULL on failure
1105 void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
1107 unsigned long size = count << PAGE_SHIFT;
1108 unsigned long addr;
1109 void *mem;
1111 if (likely(count <= VMAP_MAX_ALLOC)) {
1112 mem = vb_alloc(size, GFP_KERNEL);
1113 if (IS_ERR(mem))
1114 return NULL;
1115 addr = (unsigned long)mem;
1116 } else {
1117 struct vmap_area *va;
1118 va = alloc_vmap_area(size, PAGE_SIZE,
1119 VMALLOC_START, VMALLOC_END, node, GFP_KERNEL);
1120 if (IS_ERR(va))
1121 return NULL;
1123 addr = va->va_start;
1124 mem = (void *)addr;
1126 if (vmap_page_range(addr, addr + size, prot, pages) < 0) {
1127 vm_unmap_ram(mem, count);
1128 return NULL;
1130 return mem;
1132 EXPORT_SYMBOL(vm_map_ram);
1135 * vm_area_register_early - register vmap area early during boot
1136 * @vm: vm_struct to register
1137 * @align: requested alignment
1139 * This function is used to register kernel vm area before
1140 * vmalloc_init() is called. @vm->size and @vm->flags should contain
1141 * proper values on entry and other fields should be zero. On return,
1142 * vm->addr contains the allocated address.
1144 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1146 void __init vm_area_register_early(struct vm_struct *vm, size_t align)
1148 static size_t vm_init_off __initdata;
1149 unsigned long addr;
1151 addr = ALIGN(VMALLOC_START + vm_init_off, align);
1152 vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START;
1154 vm->addr = (void *)addr;
1156 vm->next = vmlist;
1157 vmlist = vm;
1160 void __init vmalloc_init(void)
1162 struct vmap_area *va;
1163 struct vm_struct *tmp;
1164 int i;
1166 for_each_possible_cpu(i) {
1167 struct vmap_block_queue *vbq;
1169 vbq = &per_cpu(vmap_block_queue, i);
1170 spin_lock_init(&vbq->lock);
1171 INIT_LIST_HEAD(&vbq->free);
1174 /* Import existing vmlist entries. */
1175 for (tmp = vmlist; tmp; tmp = tmp->next) {
1176 va = kzalloc(sizeof(struct vmap_area), GFP_NOWAIT);
1177 va->flags = VM_VM_AREA;
1178 va->va_start = (unsigned long)tmp->addr;
1179 va->va_end = va->va_start + tmp->size;
1180 va->vm = tmp;
1181 __insert_vmap_area(va);
1184 vmap_area_pcpu_hole = VMALLOC_END;
1186 vmap_initialized = true;
1190 * map_kernel_range_noflush - map kernel VM area with the specified pages
1191 * @addr: start of the VM area to map
1192 * @size: size of the VM area to map
1193 * @prot: page protection flags to use
1194 * @pages: pages to map
1196 * Map PFN_UP(@size) pages at @addr. The VM area @addr and @size
1197 * specify should have been allocated using get_vm_area() and its
1198 * friends.
1200 * NOTE:
1201 * This function does NOT do any cache flushing. The caller is
1202 * responsible for calling flush_cache_vmap() on to-be-mapped areas
1203 * before calling this function.
1205 * RETURNS:
1206 * The number of pages mapped on success, -errno on failure.
1208 int map_kernel_range_noflush(unsigned long addr, unsigned long size,
1209 pgprot_t prot, struct page **pages)
1211 return vmap_page_range_noflush(addr, addr + size, prot, pages);
1215 * unmap_kernel_range_noflush - unmap kernel VM area
1216 * @addr: start of the VM area to unmap
1217 * @size: size of the VM area to unmap
1219 * Unmap PFN_UP(@size) pages at @addr. The VM area @addr and @size
1220 * specify should have been allocated using get_vm_area() and its
1221 * friends.
1223 * NOTE:
1224 * This function does NOT do any cache flushing. The caller is
1225 * responsible for calling flush_cache_vunmap() on to-be-mapped areas
1226 * before calling this function and flush_tlb_kernel_range() after.
1228 void unmap_kernel_range_noflush(unsigned long addr, unsigned long size)
1230 vunmap_page_range(addr, addr + size);
1232 EXPORT_SYMBOL_GPL(unmap_kernel_range_noflush);
1235 * unmap_kernel_range - unmap kernel VM area and flush cache and TLB
1236 * @addr: start of the VM area to unmap
1237 * @size: size of the VM area to unmap
1239 * Similar to unmap_kernel_range_noflush() but flushes vcache before
1240 * the unmapping and tlb after.
1242 void unmap_kernel_range(unsigned long addr, unsigned long size)
1244 unsigned long end = addr + size;
1246 flush_cache_vunmap(addr, end);
1247 vunmap_page_range(addr, end);
1248 flush_tlb_kernel_range(addr, end);
1251 int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page ***pages)
1253 unsigned long addr = (unsigned long)area->addr;
1254 unsigned long end = addr + area->size - PAGE_SIZE;
1255 int err;
1257 err = vmap_page_range(addr, end, prot, *pages);
1258 if (err > 0) {
1259 *pages += err;
1260 err = 0;
1263 return err;
1265 EXPORT_SYMBOL_GPL(map_vm_area);
1267 /*** Old vmalloc interfaces ***/
1268 DEFINE_RWLOCK(vmlist_lock);
1269 struct vm_struct *vmlist;
1271 static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va,
1272 unsigned long flags, void *caller)
1274 vm->flags = flags;
1275 vm->addr = (void *)va->va_start;
1276 vm->size = va->va_end - va->va_start;
1277 vm->caller = caller;
1278 va->vm = vm;
1279 va->flags |= VM_VM_AREA;
1282 static void insert_vmalloc_vmlist(struct vm_struct *vm)
1284 struct vm_struct *tmp, **p;
1286 vm->flags &= ~VM_UNLIST;
1287 write_lock(&vmlist_lock);
1288 for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
1289 if (tmp->addr >= vm->addr)
1290 break;
1292 vm->next = *p;
1293 *p = vm;
1294 write_unlock(&vmlist_lock);
1297 static void insert_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va,
1298 unsigned long flags, void *caller)
1300 setup_vmalloc_vm(vm, va, flags, caller);
1301 insert_vmalloc_vmlist(vm);
1304 static struct vm_struct *__get_vm_area_node(unsigned long size,
1305 unsigned long align, unsigned long flags, unsigned long start,
1306 unsigned long end, int node, gfp_t gfp_mask, void *caller)
1308 static struct vmap_area *va;
1309 struct vm_struct *area;
1311 BUG_ON(in_interrupt());
1312 if (flags & VM_IOREMAP) {
1313 int bit = fls(size);
1315 if (bit > IOREMAP_MAX_ORDER)
1316 bit = IOREMAP_MAX_ORDER;
1317 else if (bit < PAGE_SHIFT)
1318 bit = PAGE_SHIFT;
1320 align = 1ul << bit;
1323 size = PAGE_ALIGN(size);
1324 if (unlikely(!size))
1325 return NULL;
1327 area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
1328 if (unlikely(!area))
1329 return NULL;
1332 * We always allocate a guard page.
1334 size += PAGE_SIZE;
1336 va = alloc_vmap_area(size, align, start, end, node, gfp_mask);
1337 if (IS_ERR(va)) {
1338 kfree(area);
1339 return NULL;
1343 * When this function is called from __vmalloc_node_range,
1344 * we do not add vm_struct to vmlist here to avoid
1345 * accessing uninitialized members of vm_struct such as
1346 * pages and nr_pages fields. They will be set later.
1347 * To distinguish it from others, we use a VM_UNLIST flag.
1349 if (flags & VM_UNLIST)
1350 setup_vmalloc_vm(area, va, flags, caller);
1351 else
1352 insert_vmalloc_vm(area, va, flags, caller);
1354 return area;
1357 struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags,
1358 unsigned long start, unsigned long end)
1360 return __get_vm_area_node(size, 1, flags, start, end, -1, GFP_KERNEL,
1361 __builtin_return_address(0));
1363 EXPORT_SYMBOL_GPL(__get_vm_area);
1365 struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
1366 unsigned long start, unsigned long end,
1367 void *caller)
1369 return __get_vm_area_node(size, 1, flags, start, end, -1, GFP_KERNEL,
1370 caller);
1374 * get_vm_area - reserve a contiguous kernel virtual area
1375 * @size: size of the area
1376 * @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC
1378 * Search an area of @size in the kernel virtual mapping area,
1379 * and reserved it for out purposes. Returns the area descriptor
1380 * on success or %NULL on failure.
1382 struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
1384 return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
1385 -1, GFP_KERNEL, __builtin_return_address(0));
1388 struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
1389 void *caller)
1391 return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
1392 -1, GFP_KERNEL, caller);
1395 static struct vm_struct *find_vm_area(const void *addr)
1397 struct vmap_area *va;
1399 va = find_vmap_area((unsigned long)addr);
1400 if (va && va->flags & VM_VM_AREA)
1401 return va->vm;
1403 return NULL;
1407 * remove_vm_area - find and remove a continuous kernel virtual area
1408 * @addr: base address
1410 * Search for the kernel VM area starting at @addr, and remove it.
1411 * This function returns the found VM area, but using it is NOT safe
1412 * on SMP machines, except for its size or flags.
1414 struct vm_struct *remove_vm_area(const void *addr)
1416 struct vmap_area *va;
1418 va = find_vmap_area((unsigned long)addr);
1419 if (va && va->flags & VM_VM_AREA) {
1420 struct vm_struct *vm = va->vm;
1422 if (!(vm->flags & VM_UNLIST)) {
1423 struct vm_struct *tmp, **p;
1425 * remove from list and disallow access to
1426 * this vm_struct before unmap. (address range
1427 * confliction is maintained by vmap.)
1429 write_lock(&vmlist_lock);
1430 for (p = &vmlist; (tmp = *p) != vm; p = &tmp->next)
1432 *p = tmp->next;
1433 write_unlock(&vmlist_lock);
1436 vmap_debug_free_range(va->va_start, va->va_end);
1437 free_unmap_vmap_area(va);
1438 vm->size -= PAGE_SIZE;
1440 return vm;
1442 return NULL;
1445 static void __vunmap(const void *addr, int deallocate_pages)
1447 struct vm_struct *area;
1449 if (!addr)
1450 return;
1452 if ((PAGE_SIZE-1) & (unsigned long)addr) {
1453 WARN(1, KERN_ERR "Trying to vfree() bad address (%p)\n", addr);
1454 return;
1457 area = remove_vm_area(addr);
1458 if (unlikely(!area)) {
1459 WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
1460 addr);
1461 return;
1464 debug_check_no_locks_freed(addr, area->size);
1465 debug_check_no_obj_freed(addr, area->size);
1467 if (deallocate_pages) {
1468 int i;
1470 for (i = 0; i < area->nr_pages; i++) {
1471 struct page *page = area->pages[i];
1473 BUG_ON(!page);
1474 __free_page(page);
1477 if (area->flags & VM_VPAGES)
1478 vfree(area->pages);
1479 else
1480 kfree(area->pages);
1483 kfree(area);
1484 return;
1488 * vfree - release memory allocated by vmalloc()
1489 * @addr: memory base address
1491 * Free the virtually continuous memory area starting at @addr, as
1492 * obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is
1493 * NULL, no operation is performed.
1495 * Must not be called in interrupt context.
1497 void vfree(const void *addr)
1499 BUG_ON(in_interrupt());
1501 kmemleak_free(addr);
1503 __vunmap(addr, 1);
1505 EXPORT_SYMBOL(vfree);
1508 * vunmap - release virtual mapping obtained by vmap()
1509 * @addr: memory base address
1511 * Free the virtually contiguous memory area starting at @addr,
1512 * which was created from the page array passed to vmap().
1514 * Must not be called in interrupt context.
1516 void vunmap(const void *addr)
1518 BUG_ON(in_interrupt());
1519 might_sleep();
1520 __vunmap(addr, 0);
1522 EXPORT_SYMBOL(vunmap);
1525 * vmap - map an array of pages into virtually contiguous space
1526 * @pages: array of page pointers
1527 * @count: number of pages to map
1528 * @flags: vm_area->flags
1529 * @prot: page protection for the mapping
1531 * Maps @count pages from @pages into contiguous kernel virtual
1532 * space.
1534 void *vmap(struct page **pages, unsigned int count,
1535 unsigned long flags, pgprot_t prot)
1537 struct vm_struct *area;
1539 might_sleep();
1541 if (count > totalram_pages)
1542 return NULL;
1544 area = get_vm_area_caller((count << PAGE_SHIFT), flags,
1545 __builtin_return_address(0));
1546 if (!area)
1547 return NULL;
1549 if (map_vm_area(area, prot, &pages)) {
1550 vunmap(area->addr);
1551 return NULL;
1554 return area->addr;
1556 EXPORT_SYMBOL(vmap);
1558 static void *__vmalloc_node(unsigned long size, unsigned long align,
1559 gfp_t gfp_mask, pgprot_t prot,
1560 int node, void *caller);
1561 static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
1562 pgprot_t prot, int node, void *caller)
1564 const int order = 0;
1565 struct page **pages;
1566 unsigned int nr_pages, array_size, i;
1567 gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO;
1569 nr_pages = (area->size - PAGE_SIZE) >> PAGE_SHIFT;
1570 array_size = (nr_pages * sizeof(struct page *));
1572 area->nr_pages = nr_pages;
1573 /* Please note that the recursion is strictly bounded. */
1574 if (array_size > PAGE_SIZE) {
1575 pages = __vmalloc_node(array_size, 1, nested_gfp|__GFP_HIGHMEM,
1576 PAGE_KERNEL, node, caller);
1577 area->flags |= VM_VPAGES;
1578 } else {
1579 pages = kmalloc_node(array_size, nested_gfp, node);
1581 area->pages = pages;
1582 area->caller = caller;
1583 if (!area->pages) {
1584 remove_vm_area(area->addr);
1585 kfree(area);
1586 return NULL;
1589 for (i = 0; i < area->nr_pages; i++) {
1590 struct page *page;
1591 gfp_t tmp_mask = gfp_mask | __GFP_NOWARN;
1593 if (node < 0)
1594 page = alloc_page(tmp_mask);
1595 else
1596 page = alloc_pages_node(node, tmp_mask, order);
1598 if (unlikely(!page)) {
1599 /* Successfully allocated i pages, free them in __vunmap() */
1600 area->nr_pages = i;
1601 goto fail;
1603 area->pages[i] = page;
1606 if (map_vm_area(area, prot, &pages))
1607 goto fail;
1608 return area->addr;
1610 fail:
1611 warn_alloc_failed(gfp_mask, order, "vmalloc: allocation failure, "
1612 "allocated %ld of %ld bytes\n",
1613 (area->nr_pages*PAGE_SIZE), area->size);
1614 vfree(area->addr);
1615 return NULL;
1619 * __vmalloc_node_range - allocate virtually contiguous memory
1620 * @size: allocation size
1621 * @align: desired alignment
1622 * @start: vm area range start
1623 * @end: vm area range end
1624 * @gfp_mask: flags for the page level allocator
1625 * @prot: protection mask for the allocated pages
1626 * @node: node to use for allocation or -1
1627 * @caller: caller's return address
1629 * Allocate enough pages to cover @size from the page level
1630 * allocator with @gfp_mask flags. Map them into contiguous
1631 * kernel virtual space, using a pagetable protection of @prot.
1633 void *__vmalloc_node_range(unsigned long size, unsigned long align,
1634 unsigned long start, unsigned long end, gfp_t gfp_mask,
1635 pgprot_t prot, int node, void *caller)
1637 struct vm_struct *area;
1638 void *addr;
1639 unsigned long real_size = size;
1641 size = PAGE_ALIGN(size);
1642 if (!size || (size >> PAGE_SHIFT) > totalram_pages)
1643 return NULL;
1645 area = __get_vm_area_node(size, align, VM_ALLOC | VM_UNLIST,
1646 start, end, node, gfp_mask, caller);
1648 if (!area)
1649 return NULL;
1651 addr = __vmalloc_area_node(area, gfp_mask, prot, node, caller);
1652 if (!addr)
1653 return NULL;
1656 * In this function, newly allocated vm_struct is not added
1657 * to vmlist at __get_vm_area_node(). so, it is added here.
1659 insert_vmalloc_vmlist(area);
1662 * A ref_count = 3 is needed because the vm_struct and vmap_area
1663 * structures allocated in the __get_vm_area_node() function contain
1664 * references to the virtual address of the vmalloc'ed block.
1666 kmemleak_alloc(addr, real_size, 3, gfp_mask);
1668 return addr;
1672 * __vmalloc_node - allocate virtually contiguous memory
1673 * @size: allocation size
1674 * @align: desired alignment
1675 * @gfp_mask: flags for the page level allocator
1676 * @prot: protection mask for the allocated pages
1677 * @node: node to use for allocation or -1
1678 * @caller: caller's return address
1680 * Allocate enough pages to cover @size from the page level
1681 * allocator with @gfp_mask flags. Map them into contiguous
1682 * kernel virtual space, using a pagetable protection of @prot.
1684 static void *__vmalloc_node(unsigned long size, unsigned long align,
1685 gfp_t gfp_mask, pgprot_t prot,
1686 int node, void *caller)
1688 return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END,
1689 gfp_mask, prot, node, caller);
1692 void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
1694 return __vmalloc_node(size, 1, gfp_mask, prot, -1,
1695 __builtin_return_address(0));
1697 EXPORT_SYMBOL(__vmalloc);
1699 static inline void *__vmalloc_node_flags(unsigned long size,
1700 int node, gfp_t flags)
1702 return __vmalloc_node(size, 1, flags, PAGE_KERNEL,
1703 node, __builtin_return_address(0));
1707 * vmalloc - allocate virtually contiguous memory
1708 * @size: allocation size
1709 * Allocate enough pages to cover @size from the page level
1710 * allocator and map them into contiguous kernel virtual space.
1712 * For tight control over page level allocator and protection flags
1713 * use __vmalloc() instead.
1715 void *vmalloc(unsigned long size)
1717 return __vmalloc_node_flags(size, -1, GFP_KERNEL | __GFP_HIGHMEM);
1719 EXPORT_SYMBOL(vmalloc);
1722 * vzalloc - allocate virtually contiguous memory with zero fill
1723 * @size: allocation size
1724 * Allocate enough pages to cover @size from the page level
1725 * allocator and map them into contiguous kernel virtual space.
1726 * The memory allocated is set to zero.
1728 * For tight control over page level allocator and protection flags
1729 * use __vmalloc() instead.
1731 void *vzalloc(unsigned long size)
1733 return __vmalloc_node_flags(size, -1,
1734 GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO);
1736 EXPORT_SYMBOL(vzalloc);
1739 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
1740 * @size: allocation size
1742 * The resulting memory area is zeroed so it can be mapped to userspace
1743 * without leaking data.
1745 void *vmalloc_user(unsigned long size)
1747 struct vm_struct *area;
1748 void *ret;
1750 ret = __vmalloc_node(size, SHMLBA,
1751 GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
1752 PAGE_KERNEL, -1, __builtin_return_address(0));
1753 if (ret) {
1754 area = find_vm_area(ret);
1755 area->flags |= VM_USERMAP;
1757 return ret;
1759 EXPORT_SYMBOL(vmalloc_user);
1762 * vmalloc_node - allocate memory on a specific node
1763 * @size: allocation size
1764 * @node: numa node
1766 * Allocate enough pages to cover @size from the page level
1767 * allocator and map them into contiguous kernel virtual space.
1769 * For tight control over page level allocator and protection flags
1770 * use __vmalloc() instead.
1772 void *vmalloc_node(unsigned long size, int node)
1774 return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL,
1775 node, __builtin_return_address(0));
1777 EXPORT_SYMBOL(vmalloc_node);
1780 * vzalloc_node - allocate memory on a specific node with zero fill
1781 * @size: allocation size
1782 * @node: numa node
1784 * Allocate enough pages to cover @size from the page level
1785 * allocator and map them into contiguous kernel virtual space.
1786 * The memory allocated is set to zero.
1788 * For tight control over page level allocator and protection flags
1789 * use __vmalloc_node() instead.
1791 void *vzalloc_node(unsigned long size, int node)
1793 return __vmalloc_node_flags(size, node,
1794 GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO);
1796 EXPORT_SYMBOL(vzalloc_node);
1798 #ifndef PAGE_KERNEL_EXEC
1799 # define PAGE_KERNEL_EXEC PAGE_KERNEL
1800 #endif
1803 * vmalloc_exec - allocate virtually contiguous, executable memory
1804 * @size: allocation size
1806 * Kernel-internal function to allocate enough pages to cover @size
1807 * the page level allocator and map them into contiguous and
1808 * executable kernel virtual space.
1810 * For tight control over page level allocator and protection flags
1811 * use __vmalloc() instead.
1814 void *vmalloc_exec(unsigned long size)
1816 return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC,
1817 -1, __builtin_return_address(0));
1820 #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
1821 #define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL
1822 #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
1823 #define GFP_VMALLOC32 GFP_DMA | GFP_KERNEL
1824 #else
1825 #define GFP_VMALLOC32 GFP_KERNEL
1826 #endif
1829 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
1830 * @size: allocation size
1832 * Allocate enough 32bit PA addressable pages to cover @size from the
1833 * page level allocator and map them into contiguous kernel virtual space.
1835 void *vmalloc_32(unsigned long size)
1837 return __vmalloc_node(size, 1, GFP_VMALLOC32, PAGE_KERNEL,
1838 -1, __builtin_return_address(0));
1840 EXPORT_SYMBOL(vmalloc_32);
1843 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
1844 * @size: allocation size
1846 * The resulting memory area is 32bit addressable and zeroed so it can be
1847 * mapped to userspace without leaking data.
1849 void *vmalloc_32_user(unsigned long size)
1851 struct vm_struct *area;
1852 void *ret;
1854 ret = __vmalloc_node(size, 1, GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
1855 -1, __builtin_return_address(0));
1856 if (ret) {
1857 area = find_vm_area(ret);
1858 area->flags |= VM_USERMAP;
1860 return ret;
1862 EXPORT_SYMBOL(vmalloc_32_user);
1865 * small helper routine , copy contents to buf from addr.
1866 * If the page is not present, fill zero.
1869 static int aligned_vread(char *buf, char *addr, unsigned long count)
1871 struct page *p;
1872 int copied = 0;
1874 while (count) {
1875 unsigned long offset, length;
1877 offset = (unsigned long)addr & ~PAGE_MASK;
1878 length = PAGE_SIZE - offset;
1879 if (length > count)
1880 length = count;
1881 p = vmalloc_to_page(addr);
1883 * To do safe access to this _mapped_ area, we need
1884 * lock. But adding lock here means that we need to add
1885 * overhead of vmalloc()/vfree() calles for this _debug_
1886 * interface, rarely used. Instead of that, we'll use
1887 * kmap() and get small overhead in this access function.
1889 if (p) {
1891 * we can expect USER0 is not used (see vread/vwrite's
1892 * function description)
1894 void *map = kmap_atomic(p, KM_USER0);
1895 memcpy(buf, map + offset, length);
1896 kunmap_atomic(map, KM_USER0);
1897 } else
1898 memset(buf, 0, length);
1900 addr += length;
1901 buf += length;
1902 copied += length;
1903 count -= length;
1905 return copied;
1908 static int aligned_vwrite(char *buf, char *addr, unsigned long count)
1910 struct page *p;
1911 int copied = 0;
1913 while (count) {
1914 unsigned long offset, length;
1916 offset = (unsigned long)addr & ~PAGE_MASK;
1917 length = PAGE_SIZE - offset;
1918 if (length > count)
1919 length = count;
1920 p = vmalloc_to_page(addr);
1922 * To do safe access to this _mapped_ area, we need
1923 * lock. But adding lock here means that we need to add
1924 * overhead of vmalloc()/vfree() calles for this _debug_
1925 * interface, rarely used. Instead of that, we'll use
1926 * kmap() and get small overhead in this access function.
1928 if (p) {
1930 * we can expect USER0 is not used (see vread/vwrite's
1931 * function description)
1933 void *map = kmap_atomic(p, KM_USER0);
1934 memcpy(map + offset, buf, length);
1935 kunmap_atomic(map, KM_USER0);
1937 addr += length;
1938 buf += length;
1939 copied += length;
1940 count -= length;
1942 return copied;
1946 * vread() - read vmalloc area in a safe way.
1947 * @buf: buffer for reading data
1948 * @addr: vm address.
1949 * @count: number of bytes to be read.
1951 * Returns # of bytes which addr and buf should be increased.
1952 * (same number to @count). Returns 0 if [addr...addr+count) doesn't
1953 * includes any intersect with alive vmalloc area.
1955 * This function checks that addr is a valid vmalloc'ed area, and
1956 * copy data from that area to a given buffer. If the given memory range
1957 * of [addr...addr+count) includes some valid address, data is copied to
1958 * proper area of @buf. If there are memory holes, they'll be zero-filled.
1959 * IOREMAP area is treated as memory hole and no copy is done.
1961 * If [addr...addr+count) doesn't includes any intersects with alive
1962 * vm_struct area, returns 0.
1963 * @buf should be kernel's buffer. Because this function uses KM_USER0,
1964 * the caller should guarantee KM_USER0 is not used.
1966 * Note: In usual ops, vread() is never necessary because the caller
1967 * should know vmalloc() area is valid and can use memcpy().
1968 * This is for routines which have to access vmalloc area without
1969 * any informaion, as /dev/kmem.
1973 long vread(char *buf, char *addr, unsigned long count)
1975 struct vm_struct *tmp;
1976 char *vaddr, *buf_start = buf;
1977 unsigned long buflen = count;
1978 unsigned long n;
1980 /* Don't allow overflow */
1981 if ((unsigned long) addr + count < count)
1982 count = -(unsigned long) addr;
1984 read_lock(&vmlist_lock);
1985 for (tmp = vmlist; count && tmp; tmp = tmp->next) {
1986 vaddr = (char *) tmp->addr;
1987 if (addr >= vaddr + tmp->size - PAGE_SIZE)
1988 continue;
1989 while (addr < vaddr) {
1990 if (count == 0)
1991 goto finished;
1992 *buf = '\0';
1993 buf++;
1994 addr++;
1995 count--;
1997 n = vaddr + tmp->size - PAGE_SIZE - addr;
1998 if (n > count)
1999 n = count;
2000 if (!(tmp->flags & VM_IOREMAP))
2001 aligned_vread(buf, addr, n);
2002 else /* IOREMAP area is treated as memory hole */
2003 memset(buf, 0, n);
2004 buf += n;
2005 addr += n;
2006 count -= n;
2008 finished:
2009 read_unlock(&vmlist_lock);
2011 if (buf == buf_start)
2012 return 0;
2013 /* zero-fill memory holes */
2014 if (buf != buf_start + buflen)
2015 memset(buf, 0, buflen - (buf - buf_start));
2017 return buflen;
2021 * vwrite() - write vmalloc area in a safe way.
2022 * @buf: buffer for source data
2023 * @addr: vm address.
2024 * @count: number of bytes to be read.
2026 * Returns # of bytes which addr and buf should be incresed.
2027 * (same number to @count).
2028 * If [addr...addr+count) doesn't includes any intersect with valid
2029 * vmalloc area, returns 0.
2031 * This function checks that addr is a valid vmalloc'ed area, and
2032 * copy data from a buffer to the given addr. If specified range of
2033 * [addr...addr+count) includes some valid address, data is copied from
2034 * proper area of @buf. If there are memory holes, no copy to hole.
2035 * IOREMAP area is treated as memory hole and no copy is done.
2037 * If [addr...addr+count) doesn't includes any intersects with alive
2038 * vm_struct area, returns 0.
2039 * @buf should be kernel's buffer. Because this function uses KM_USER0,
2040 * the caller should guarantee KM_USER0 is not used.
2042 * Note: In usual ops, vwrite() is never necessary because the caller
2043 * should know vmalloc() area is valid and can use memcpy().
2044 * This is for routines which have to access vmalloc area without
2045 * any informaion, as /dev/kmem.
2048 long vwrite(char *buf, char *addr, unsigned long count)
2050 struct vm_struct *tmp;
2051 char *vaddr;
2052 unsigned long n, buflen;
2053 int copied = 0;
2055 /* Don't allow overflow */
2056 if ((unsigned long) addr + count < count)
2057 count = -(unsigned long) addr;
2058 buflen = count;
2060 read_lock(&vmlist_lock);
2061 for (tmp = vmlist; count && tmp; tmp = tmp->next) {
2062 vaddr = (char *) tmp->addr;
2063 if (addr >= vaddr + tmp->size - PAGE_SIZE)
2064 continue;
2065 while (addr < vaddr) {
2066 if (count == 0)
2067 goto finished;
2068 buf++;
2069 addr++;
2070 count--;
2072 n = vaddr + tmp->size - PAGE_SIZE - addr;
2073 if (n > count)
2074 n = count;
2075 if (!(tmp->flags & VM_IOREMAP)) {
2076 aligned_vwrite(buf, addr, n);
2077 copied++;
2079 buf += n;
2080 addr += n;
2081 count -= n;
2083 finished:
2084 read_unlock(&vmlist_lock);
2085 if (!copied)
2086 return 0;
2087 return buflen;
2091 * remap_vmalloc_range - map vmalloc pages to userspace
2092 * @vma: vma to cover (map full range of vma)
2093 * @addr: vmalloc memory
2094 * @pgoff: number of pages into addr before first page to map
2096 * Returns: 0 for success, -Exxx on failure
2098 * This function checks that addr is a valid vmalloc'ed area, and
2099 * that it is big enough to cover the vma. Will return failure if
2100 * that criteria isn't met.
2102 * Similar to remap_pfn_range() (see mm/memory.c)
2104 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
2105 unsigned long pgoff)
2107 struct vm_struct *area;
2108 unsigned long uaddr = vma->vm_start;
2109 unsigned long usize = vma->vm_end - vma->vm_start;
2111 if ((PAGE_SIZE-1) & (unsigned long)addr)
2112 return -EINVAL;
2114 area = find_vm_area(addr);
2115 if (!area)
2116 return -EINVAL;
2118 if (!(area->flags & VM_USERMAP))
2119 return -EINVAL;
2121 if (usize + (pgoff << PAGE_SHIFT) > area->size - PAGE_SIZE)
2122 return -EINVAL;
2124 addr += pgoff << PAGE_SHIFT;
2125 do {
2126 struct page *page = vmalloc_to_page(addr);
2127 int ret;
2129 ret = vm_insert_page(vma, uaddr, page);
2130 if (ret)
2131 return ret;
2133 uaddr += PAGE_SIZE;
2134 addr += PAGE_SIZE;
2135 usize -= PAGE_SIZE;
2136 } while (usize > 0);
2138 /* Prevent "things" like memory migration? VM_flags need a cleanup... */
2139 vma->vm_flags |= VM_RESERVED;
2141 return 0;
2143 EXPORT_SYMBOL(remap_vmalloc_range);
2146 * Implement a stub for vmalloc_sync_all() if the architecture chose not to
2147 * have one.
2149 void __attribute__((weak)) vmalloc_sync_all(void)
2154 static int f(pte_t *pte, pgtable_t table, unsigned long addr, void *data)
2156 /* apply_to_page_range() does all the hard work. */
2157 return 0;
2161 * alloc_vm_area - allocate a range of kernel address space
2162 * @size: size of the area
2164 * Returns: NULL on failure, vm_struct on success
2166 * This function reserves a range of kernel address space, and
2167 * allocates pagetables to map that range. No actual mappings
2168 * are created. If the kernel address space is not shared
2169 * between processes, it syncs the pagetable across all
2170 * processes.
2172 struct vm_struct *alloc_vm_area(size_t size)
2174 struct vm_struct *area;
2176 area = get_vm_area_caller(size, VM_IOREMAP,
2177 __builtin_return_address(0));
2178 if (area == NULL)
2179 return NULL;
2182 * This ensures that page tables are constructed for this region
2183 * of kernel virtual address space and mapped into init_mm.
2185 if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
2186 area->size, f, NULL)) {
2187 free_vm_area(area);
2188 return NULL;
2192 * If the allocated address space is passed to a hypercall
2193 * before being used then we cannot rely on a page fault to
2194 * trigger an update of the page tables. So sync all the page
2195 * tables here.
2197 vmalloc_sync_all();
2199 return area;
2201 EXPORT_SYMBOL_GPL(alloc_vm_area);
2203 void free_vm_area(struct vm_struct *area)
2205 struct vm_struct *ret;
2206 ret = remove_vm_area(area->addr);
2207 BUG_ON(ret != area);
2208 kfree(area);
2210 EXPORT_SYMBOL_GPL(free_vm_area);
2212 #ifdef CONFIG_SMP
2213 static struct vmap_area *node_to_va(struct rb_node *n)
2215 return n ? rb_entry(n, struct vmap_area, rb_node) : NULL;
2219 * pvm_find_next_prev - find the next and prev vmap_area surrounding @end
2220 * @end: target address
2221 * @pnext: out arg for the next vmap_area
2222 * @pprev: out arg for the previous vmap_area
2224 * Returns: %true if either or both of next and prev are found,
2225 * %false if no vmap_area exists
2227 * Find vmap_areas end addresses of which enclose @end. ie. if not
2228 * NULL, *pnext->va_end > @end and *pprev->va_end <= @end.
2230 static bool pvm_find_next_prev(unsigned long end,
2231 struct vmap_area **pnext,
2232 struct vmap_area **pprev)
2234 struct rb_node *n = vmap_area_root.rb_node;
2235 struct vmap_area *va = NULL;
2237 while (n) {
2238 va = rb_entry(n, struct vmap_area, rb_node);
2239 if (end < va->va_end)
2240 n = n->rb_left;
2241 else if (end > va->va_end)
2242 n = n->rb_right;
2243 else
2244 break;
2247 if (!va)
2248 return false;
2250 if (va->va_end > end) {
2251 *pnext = va;
2252 *pprev = node_to_va(rb_prev(&(*pnext)->rb_node));
2253 } else {
2254 *pprev = va;
2255 *pnext = node_to_va(rb_next(&(*pprev)->rb_node));
2257 return true;
2261 * pvm_determine_end - find the highest aligned address between two vmap_areas
2262 * @pnext: in/out arg for the next vmap_area
2263 * @pprev: in/out arg for the previous vmap_area
2264 * @align: alignment
2266 * Returns: determined end address
2268 * Find the highest aligned address between *@pnext and *@pprev below
2269 * VMALLOC_END. *@pnext and *@pprev are adjusted so that the aligned
2270 * down address is between the end addresses of the two vmap_areas.
2272 * Please note that the address returned by this function may fall
2273 * inside *@pnext vmap_area. The caller is responsible for checking
2274 * that.
2276 static unsigned long pvm_determine_end(struct vmap_area **pnext,
2277 struct vmap_area **pprev,
2278 unsigned long align)
2280 const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
2281 unsigned long addr;
2283 if (*pnext)
2284 addr = min((*pnext)->va_start & ~(align - 1), vmalloc_end);
2285 else
2286 addr = vmalloc_end;
2288 while (*pprev && (*pprev)->va_end > addr) {
2289 *pnext = *pprev;
2290 *pprev = node_to_va(rb_prev(&(*pnext)->rb_node));
2293 return addr;
2297 * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
2298 * @offsets: array containing offset of each area
2299 * @sizes: array containing size of each area
2300 * @nr_vms: the number of areas to allocate
2301 * @align: alignment, all entries in @offsets and @sizes must be aligned to this
2303 * Returns: kmalloc'd vm_struct pointer array pointing to allocated
2304 * vm_structs on success, %NULL on failure
2306 * Percpu allocator wants to use congruent vm areas so that it can
2307 * maintain the offsets among percpu areas. This function allocates
2308 * congruent vmalloc areas for it with GFP_KERNEL. These areas tend to
2309 * be scattered pretty far, distance between two areas easily going up
2310 * to gigabytes. To avoid interacting with regular vmallocs, these
2311 * areas are allocated from top.
2313 * Despite its complicated look, this allocator is rather simple. It
2314 * does everything top-down and scans areas from the end looking for
2315 * matching slot. While scanning, if any of the areas overlaps with
2316 * existing vmap_area, the base address is pulled down to fit the
2317 * area. Scanning is repeated till all the areas fit and then all
2318 * necessary data structres are inserted and the result is returned.
2320 struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets,
2321 const size_t *sizes, int nr_vms,
2322 size_t align)
2324 const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align);
2325 const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
2326 struct vmap_area **vas, *prev, *next;
2327 struct vm_struct **vms;
2328 int area, area2, last_area, term_area;
2329 unsigned long base, start, end, last_end;
2330 bool purged = false;
2332 /* verify parameters and allocate data structures */
2333 BUG_ON(align & ~PAGE_MASK || !is_power_of_2(align));
2334 for (last_area = 0, area = 0; area < nr_vms; area++) {
2335 start = offsets[area];
2336 end = start + sizes[area];
2338 /* is everything aligned properly? */
2339 BUG_ON(!IS_ALIGNED(offsets[area], align));
2340 BUG_ON(!IS_ALIGNED(sizes[area], align));
2342 /* detect the area with the highest address */
2343 if (start > offsets[last_area])
2344 last_area = area;
2346 for (area2 = 0; area2 < nr_vms; area2++) {
2347 unsigned long start2 = offsets[area2];
2348 unsigned long end2 = start2 + sizes[area2];
2350 if (area2 == area)
2351 continue;
2353 BUG_ON(start2 >= start && start2 < end);
2354 BUG_ON(end2 <= end && end2 > start);
2357 last_end = offsets[last_area] + sizes[last_area];
2359 if (vmalloc_end - vmalloc_start < last_end) {
2360 WARN_ON(true);
2361 return NULL;
2364 vms = kzalloc(sizeof(vms[0]) * nr_vms, GFP_KERNEL);
2365 vas = kzalloc(sizeof(vas[0]) * nr_vms, GFP_KERNEL);
2366 if (!vas || !vms)
2367 goto err_free;
2369 for (area = 0; area < nr_vms; area++) {
2370 vas[area] = kzalloc(sizeof(struct vmap_area), GFP_KERNEL);
2371 vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL);
2372 if (!vas[area] || !vms[area])
2373 goto err_free;
2375 retry:
2376 spin_lock(&vmap_area_lock);
2378 /* start scanning - we scan from the top, begin with the last area */
2379 area = term_area = last_area;
2380 start = offsets[area];
2381 end = start + sizes[area];
2383 if (!pvm_find_next_prev(vmap_area_pcpu_hole, &next, &prev)) {
2384 base = vmalloc_end - last_end;
2385 goto found;
2387 base = pvm_determine_end(&next, &prev, align) - end;
2389 while (true) {
2390 BUG_ON(next && next->va_end <= base + end);
2391 BUG_ON(prev && prev->va_end > base + end);
2394 * base might have underflowed, add last_end before
2395 * comparing.
2397 if (base + last_end < vmalloc_start + last_end) {
2398 spin_unlock(&vmap_area_lock);
2399 if (!purged) {
2400 purge_vmap_area_lazy();
2401 purged = true;
2402 goto retry;
2404 goto err_free;
2408 * If next overlaps, move base downwards so that it's
2409 * right below next and then recheck.
2411 if (next && next->va_start < base + end) {
2412 base = pvm_determine_end(&next, &prev, align) - end;
2413 term_area = area;
2414 continue;
2418 * If prev overlaps, shift down next and prev and move
2419 * base so that it's right below new next and then
2420 * recheck.
2422 if (prev && prev->va_end > base + start) {
2423 next = prev;
2424 prev = node_to_va(rb_prev(&next->rb_node));
2425 base = pvm_determine_end(&next, &prev, align) - end;
2426 term_area = area;
2427 continue;
2431 * This area fits, move on to the previous one. If
2432 * the previous one is the terminal one, we're done.
2434 area = (area + nr_vms - 1) % nr_vms;
2435 if (area == term_area)
2436 break;
2437 start = offsets[area];
2438 end = start + sizes[area];
2439 pvm_find_next_prev(base + end, &next, &prev);
2441 found:
2442 /* we've found a fitting base, insert all va's */
2443 for (area = 0; area < nr_vms; area++) {
2444 struct vmap_area *va = vas[area];
2446 va->va_start = base + offsets[area];
2447 va->va_end = va->va_start + sizes[area];
2448 __insert_vmap_area(va);
2451 vmap_area_pcpu_hole = base + offsets[last_area];
2453 spin_unlock(&vmap_area_lock);
2455 /* insert all vm's */
2456 for (area = 0; area < nr_vms; area++)
2457 insert_vmalloc_vm(vms[area], vas[area], VM_ALLOC,
2458 pcpu_get_vm_areas);
2460 kfree(vas);
2461 return vms;
2463 err_free:
2464 for (area = 0; area < nr_vms; area++) {
2465 if (vas)
2466 kfree(vas[area]);
2467 if (vms)
2468 kfree(vms[area]);
2470 kfree(vas);
2471 kfree(vms);
2472 return NULL;
2476 * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
2477 * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
2478 * @nr_vms: the number of allocated areas
2480 * Free vm_structs and the array allocated by pcpu_get_vm_areas().
2482 void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms)
2484 int i;
2486 for (i = 0; i < nr_vms; i++)
2487 free_vm_area(vms[i]);
2488 kfree(vms);
2490 #endif /* CONFIG_SMP */
2492 #ifdef CONFIG_PROC_FS
2493 static void *s_start(struct seq_file *m, loff_t *pos)
2494 __acquires(&vmlist_lock)
2496 loff_t n = *pos;
2497 struct vm_struct *v;
2499 read_lock(&vmlist_lock);
2500 v = vmlist;
2501 while (n > 0 && v) {
2502 n--;
2503 v = v->next;
2505 if (!n)
2506 return v;
2508 return NULL;
2512 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
2514 struct vm_struct *v = p;
2516 ++*pos;
2517 return v->next;
2520 static void s_stop(struct seq_file *m, void *p)
2521 __releases(&vmlist_lock)
2523 read_unlock(&vmlist_lock);
2526 static void show_numa_info(struct seq_file *m, struct vm_struct *v)
2528 if (NUMA_BUILD) {
2529 unsigned int nr, *counters = m->private;
2531 if (!counters)
2532 return;
2534 memset(counters, 0, nr_node_ids * sizeof(unsigned int));
2536 for (nr = 0; nr < v->nr_pages; nr++)
2537 counters[page_to_nid(v->pages[nr])]++;
2539 for_each_node_state(nr, N_HIGH_MEMORY)
2540 if (counters[nr])
2541 seq_printf(m, " N%u=%u", nr, counters[nr]);
2545 static int s_show(struct seq_file *m, void *p)
2547 struct vm_struct *v = p;
2549 seq_printf(m, "0x%p-0x%p %7ld",
2550 v->addr, v->addr + v->size, v->size);
2552 if (v->caller)
2553 seq_printf(m, " %pS", v->caller);
2555 if (v->nr_pages)
2556 seq_printf(m, " pages=%d", v->nr_pages);
2558 if (v->phys_addr)
2559 seq_printf(m, " phys=%llx", (unsigned long long)v->phys_addr);
2561 if (v->flags & VM_IOREMAP)
2562 seq_printf(m, " ioremap");
2564 if (v->flags & VM_ALLOC)
2565 seq_printf(m, " vmalloc");
2567 if (v->flags & VM_MAP)
2568 seq_printf(m, " vmap");
2570 if (v->flags & VM_USERMAP)
2571 seq_printf(m, " user");
2573 if (v->flags & VM_VPAGES)
2574 seq_printf(m, " vpages");
2576 show_numa_info(m, v);
2577 seq_putc(m, '\n');
2578 return 0;
2581 static const struct seq_operations vmalloc_op = {
2582 .start = s_start,
2583 .next = s_next,
2584 .stop = s_stop,
2585 .show = s_show,
2588 static int vmalloc_open(struct inode *inode, struct file *file)
2590 unsigned int *ptr = NULL;
2591 int ret;
2593 if (NUMA_BUILD) {
2594 ptr = kmalloc(nr_node_ids * sizeof(unsigned int), GFP_KERNEL);
2595 if (ptr == NULL)
2596 return -ENOMEM;
2598 ret = seq_open(file, &vmalloc_op);
2599 if (!ret) {
2600 struct seq_file *m = file->private_data;
2601 m->private = ptr;
2602 } else
2603 kfree(ptr);
2604 return ret;
2607 static const struct file_operations proc_vmalloc_operations = {
2608 .open = vmalloc_open,
2609 .read = seq_read,
2610 .llseek = seq_lseek,
2611 .release = seq_release_private,
2614 static int __init proc_vmalloc_init(void)
2616 proc_create("vmallocinfo", S_IRUSR, NULL, &proc_vmalloc_operations);
2617 return 0;
2619 module_init(proc_vmalloc_init);
2620 #endif