2 * Copyright (C) 2009 Red Hat, Inc.
4 * This work is licensed under the terms of the GNU GPL, version 2. See
5 * the COPYING file in the top-level directory.
8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11 #include <linux/sched.h>
12 #include <linux/highmem.h>
13 #include <linux/hugetlb.h>
14 #include <linux/mmu_notifier.h>
15 #include <linux/rmap.h>
16 #include <linux/swap.h>
17 #include <linux/shrinker.h>
18 #include <linux/mm_inline.h>
19 #include <linux/kthread.h>
20 #include <linux/khugepaged.h>
21 #include <linux/freezer.h>
22 #include <linux/mman.h>
23 #include <linux/pagemap.h>
24 #include <linux/migrate.h>
25 #include <linux/hashtable.h>
28 #include <asm/pgalloc.h>
32 * By default transparent hugepage support is disabled in order that avoid
33 * to risk increase the memory footprint of applications without a guaranteed
34 * benefit. When transparent hugepage support is enabled, is for all mappings,
35 * and khugepaged scans all mappings.
36 * Defrag is invoked by khugepaged hugepage allocations and by page faults
37 * for all hugepage allocations.
39 unsigned long transparent_hugepage_flags __read_mostly
=
40 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
41 (1<<TRANSPARENT_HUGEPAGE_FLAG
)|
43 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
44 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG
)|
46 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_FLAG
)|
47 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG
)|
48 (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG
);
50 /* default scan 8*512 pte (or vmas) every 30 second */
51 static unsigned int khugepaged_pages_to_scan __read_mostly
= HPAGE_PMD_NR
*8;
52 static unsigned int khugepaged_pages_collapsed
;
53 static unsigned int khugepaged_full_scans
;
54 static unsigned int khugepaged_scan_sleep_millisecs __read_mostly
= 10000;
55 /* during fragmentation poll the hugepage allocator once every minute */
56 static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly
= 60000;
57 static struct task_struct
*khugepaged_thread __read_mostly
;
58 static DEFINE_MUTEX(khugepaged_mutex
);
59 static DEFINE_SPINLOCK(khugepaged_mm_lock
);
60 static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait
);
62 * default collapse hugepages if there is at least one pte mapped like
63 * it would have happened if the vma was large enough during page
66 static unsigned int khugepaged_max_ptes_none __read_mostly
= HPAGE_PMD_NR
-1;
68 static int khugepaged(void *none
);
69 static int khugepaged_slab_init(void);
70 static void khugepaged_slab_exit(void);
72 #define MM_SLOTS_HASH_BITS 10
73 static __read_mostly
DEFINE_HASHTABLE(mm_slots_hash
, MM_SLOTS_HASH_BITS
);
75 static struct kmem_cache
*mm_slot_cache __read_mostly
;
78 * struct mm_slot - hash lookup from mm to mm_slot
79 * @hash: hash collision list
80 * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
81 * @mm: the mm that this information is valid for
84 struct hlist_node hash
;
85 struct list_head mm_node
;
90 * struct khugepaged_scan - cursor for scanning
91 * @mm_head: the head of the mm list to scan
92 * @mm_slot: the current mm_slot we are scanning
93 * @address: the next address inside that to be scanned
95 * There is only the one khugepaged_scan instance of this cursor structure.
97 struct khugepaged_scan
{
98 struct list_head mm_head
;
99 struct mm_slot
*mm_slot
;
100 unsigned long address
;
102 static struct khugepaged_scan khugepaged_scan
= {
103 .mm_head
= LIST_HEAD_INIT(khugepaged_scan
.mm_head
),
107 static int set_recommended_min_free_kbytes(void)
111 unsigned long recommended_min
;
113 for_each_populated_zone(zone
)
116 /* Make sure at least 2 hugepages are free for MIGRATE_RESERVE */
117 recommended_min
= pageblock_nr_pages
* nr_zones
* 2;
120 * Make sure that on average at least two pageblocks are almost free
121 * of another type, one for a migratetype to fall back to and a
122 * second to avoid subsequent fallbacks of other types There are 3
123 * MIGRATE_TYPES we care about.
125 recommended_min
+= pageblock_nr_pages
* nr_zones
*
126 MIGRATE_PCPTYPES
* MIGRATE_PCPTYPES
;
128 /* don't ever allow to reserve more than 5% of the lowmem */
129 recommended_min
= min(recommended_min
,
130 (unsigned long) nr_free_buffer_pages() / 20);
131 recommended_min
<<= (PAGE_SHIFT
-10);
133 if (recommended_min
> min_free_kbytes
) {
134 if (user_min_free_kbytes
>= 0)
135 pr_info("raising min_free_kbytes from %d to %lu "
136 "to help transparent hugepage allocations\n",
137 min_free_kbytes
, recommended_min
);
139 min_free_kbytes
= recommended_min
;
141 setup_per_zone_wmarks();
145 static int start_stop_khugepaged(void)
148 if (khugepaged_enabled()) {
149 if (!khugepaged_thread
)
150 khugepaged_thread
= kthread_run(khugepaged
, NULL
,
152 if (unlikely(IS_ERR(khugepaged_thread
))) {
153 pr_err("khugepaged: kthread_run(khugepaged) failed\n");
154 err
= PTR_ERR(khugepaged_thread
);
155 khugepaged_thread
= NULL
;
159 if (!list_empty(&khugepaged_scan
.mm_head
))
160 wake_up_interruptible(&khugepaged_wait
);
162 set_recommended_min_free_kbytes();
163 } else if (khugepaged_thread
) {
164 kthread_stop(khugepaged_thread
);
165 khugepaged_thread
= NULL
;
171 static atomic_t huge_zero_refcount
;
172 struct page
*huge_zero_page __read_mostly
;
174 static inline bool is_huge_zero_pmd(pmd_t pmd
)
176 return is_huge_zero_page(pmd_page(pmd
));
179 static struct page
*get_huge_zero_page(void)
181 struct page
*zero_page
;
183 if (likely(atomic_inc_not_zero(&huge_zero_refcount
)))
184 return READ_ONCE(huge_zero_page
);
186 zero_page
= alloc_pages((GFP_TRANSHUGE
| __GFP_ZERO
) & ~__GFP_MOVABLE
,
189 count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED
);
192 count_vm_event(THP_ZERO_PAGE_ALLOC
);
194 if (cmpxchg(&huge_zero_page
, NULL
, zero_page
)) {
196 __free_pages(zero_page
, compound_order(zero_page
));
200 /* We take additional reference here. It will be put back by shrinker */
201 atomic_set(&huge_zero_refcount
, 2);
203 return READ_ONCE(huge_zero_page
);
206 static void put_huge_zero_page(void)
209 * Counter should never go to zero here. Only shrinker can put
212 BUG_ON(atomic_dec_and_test(&huge_zero_refcount
));
215 static unsigned long shrink_huge_zero_page_count(struct shrinker
*shrink
,
216 struct shrink_control
*sc
)
218 /* we can free zero page only if last reference remains */
219 return atomic_read(&huge_zero_refcount
) == 1 ? HPAGE_PMD_NR
: 0;
222 static unsigned long shrink_huge_zero_page_scan(struct shrinker
*shrink
,
223 struct shrink_control
*sc
)
225 if (atomic_cmpxchg(&huge_zero_refcount
, 1, 0) == 1) {
226 struct page
*zero_page
= xchg(&huge_zero_page
, NULL
);
227 BUG_ON(zero_page
== NULL
);
228 __free_pages(zero_page
, compound_order(zero_page
));
235 static struct shrinker huge_zero_page_shrinker
= {
236 .count_objects
= shrink_huge_zero_page_count
,
237 .scan_objects
= shrink_huge_zero_page_scan
,
238 .seeks
= DEFAULT_SEEKS
,
243 static ssize_t
double_flag_show(struct kobject
*kobj
,
244 struct kobj_attribute
*attr
, char *buf
,
245 enum transparent_hugepage_flag enabled
,
246 enum transparent_hugepage_flag req_madv
)
248 if (test_bit(enabled
, &transparent_hugepage_flags
)) {
249 VM_BUG_ON(test_bit(req_madv
, &transparent_hugepage_flags
));
250 return sprintf(buf
, "[always] madvise never\n");
251 } else if (test_bit(req_madv
, &transparent_hugepage_flags
))
252 return sprintf(buf
, "always [madvise] never\n");
254 return sprintf(buf
, "always madvise [never]\n");
256 static ssize_t
double_flag_store(struct kobject
*kobj
,
257 struct kobj_attribute
*attr
,
258 const char *buf
, size_t count
,
259 enum transparent_hugepage_flag enabled
,
260 enum transparent_hugepage_flag req_madv
)
262 if (!memcmp("always", buf
,
263 min(sizeof("always")-1, count
))) {
264 set_bit(enabled
, &transparent_hugepage_flags
);
265 clear_bit(req_madv
, &transparent_hugepage_flags
);
266 } else if (!memcmp("madvise", buf
,
267 min(sizeof("madvise")-1, count
))) {
268 clear_bit(enabled
, &transparent_hugepage_flags
);
269 set_bit(req_madv
, &transparent_hugepage_flags
);
270 } else if (!memcmp("never", buf
,
271 min(sizeof("never")-1, count
))) {
272 clear_bit(enabled
, &transparent_hugepage_flags
);
273 clear_bit(req_madv
, &transparent_hugepage_flags
);
280 static ssize_t
enabled_show(struct kobject
*kobj
,
281 struct kobj_attribute
*attr
, char *buf
)
283 return double_flag_show(kobj
, attr
, buf
,
284 TRANSPARENT_HUGEPAGE_FLAG
,
285 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG
);
287 static ssize_t
enabled_store(struct kobject
*kobj
,
288 struct kobj_attribute
*attr
,
289 const char *buf
, size_t count
)
293 ret
= double_flag_store(kobj
, attr
, buf
, count
,
294 TRANSPARENT_HUGEPAGE_FLAG
,
295 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG
);
300 mutex_lock(&khugepaged_mutex
);
301 err
= start_stop_khugepaged();
302 mutex_unlock(&khugepaged_mutex
);
310 static struct kobj_attribute enabled_attr
=
311 __ATTR(enabled
, 0644, enabled_show
, enabled_store
);
313 static ssize_t
single_flag_show(struct kobject
*kobj
,
314 struct kobj_attribute
*attr
, char *buf
,
315 enum transparent_hugepage_flag flag
)
317 return sprintf(buf
, "%d\n",
318 !!test_bit(flag
, &transparent_hugepage_flags
));
321 static ssize_t
single_flag_store(struct kobject
*kobj
,
322 struct kobj_attribute
*attr
,
323 const char *buf
, size_t count
,
324 enum transparent_hugepage_flag flag
)
329 ret
= kstrtoul(buf
, 10, &value
);
336 set_bit(flag
, &transparent_hugepage_flags
);
338 clear_bit(flag
, &transparent_hugepage_flags
);
344 * Currently defrag only disables __GFP_NOWAIT for allocation. A blind
345 * __GFP_REPEAT is too aggressive, it's never worth swapping tons of
346 * memory just to allocate one more hugepage.
348 static ssize_t
defrag_show(struct kobject
*kobj
,
349 struct kobj_attribute
*attr
, char *buf
)
351 return double_flag_show(kobj
, attr
, buf
,
352 TRANSPARENT_HUGEPAGE_DEFRAG_FLAG
,
353 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG
);
355 static ssize_t
defrag_store(struct kobject
*kobj
,
356 struct kobj_attribute
*attr
,
357 const char *buf
, size_t count
)
359 return double_flag_store(kobj
, attr
, buf
, count
,
360 TRANSPARENT_HUGEPAGE_DEFRAG_FLAG
,
361 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG
);
363 static struct kobj_attribute defrag_attr
=
364 __ATTR(defrag
, 0644, defrag_show
, defrag_store
);
366 static ssize_t
use_zero_page_show(struct kobject
*kobj
,
367 struct kobj_attribute
*attr
, char *buf
)
369 return single_flag_show(kobj
, attr
, buf
,
370 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG
);
372 static ssize_t
use_zero_page_store(struct kobject
*kobj
,
373 struct kobj_attribute
*attr
, const char *buf
, size_t count
)
375 return single_flag_store(kobj
, attr
, buf
, count
,
376 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG
);
378 static struct kobj_attribute use_zero_page_attr
=
379 __ATTR(use_zero_page
, 0644, use_zero_page_show
, use_zero_page_store
);
380 #ifdef CONFIG_DEBUG_VM
381 static ssize_t
debug_cow_show(struct kobject
*kobj
,
382 struct kobj_attribute
*attr
, char *buf
)
384 return single_flag_show(kobj
, attr
, buf
,
385 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG
);
387 static ssize_t
debug_cow_store(struct kobject
*kobj
,
388 struct kobj_attribute
*attr
,
389 const char *buf
, size_t count
)
391 return single_flag_store(kobj
, attr
, buf
, count
,
392 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG
);
394 static struct kobj_attribute debug_cow_attr
=
395 __ATTR(debug_cow
, 0644, debug_cow_show
, debug_cow_store
);
396 #endif /* CONFIG_DEBUG_VM */
398 static struct attribute
*hugepage_attr
[] = {
401 &use_zero_page_attr
.attr
,
402 #ifdef CONFIG_DEBUG_VM
403 &debug_cow_attr
.attr
,
408 static struct attribute_group hugepage_attr_group
= {
409 .attrs
= hugepage_attr
,
412 static ssize_t
scan_sleep_millisecs_show(struct kobject
*kobj
,
413 struct kobj_attribute
*attr
,
416 return sprintf(buf
, "%u\n", khugepaged_scan_sleep_millisecs
);
419 static ssize_t
scan_sleep_millisecs_store(struct kobject
*kobj
,
420 struct kobj_attribute
*attr
,
421 const char *buf
, size_t count
)
426 err
= kstrtoul(buf
, 10, &msecs
);
427 if (err
|| msecs
> UINT_MAX
)
430 khugepaged_scan_sleep_millisecs
= msecs
;
431 wake_up_interruptible(&khugepaged_wait
);
435 static struct kobj_attribute scan_sleep_millisecs_attr
=
436 __ATTR(scan_sleep_millisecs
, 0644, scan_sleep_millisecs_show
,
437 scan_sleep_millisecs_store
);
439 static ssize_t
alloc_sleep_millisecs_show(struct kobject
*kobj
,
440 struct kobj_attribute
*attr
,
443 return sprintf(buf
, "%u\n", khugepaged_alloc_sleep_millisecs
);
446 static ssize_t
alloc_sleep_millisecs_store(struct kobject
*kobj
,
447 struct kobj_attribute
*attr
,
448 const char *buf
, size_t count
)
453 err
= kstrtoul(buf
, 10, &msecs
);
454 if (err
|| msecs
> UINT_MAX
)
457 khugepaged_alloc_sleep_millisecs
= msecs
;
458 wake_up_interruptible(&khugepaged_wait
);
462 static struct kobj_attribute alloc_sleep_millisecs_attr
=
463 __ATTR(alloc_sleep_millisecs
, 0644, alloc_sleep_millisecs_show
,
464 alloc_sleep_millisecs_store
);
466 static ssize_t
pages_to_scan_show(struct kobject
*kobj
,
467 struct kobj_attribute
*attr
,
470 return sprintf(buf
, "%u\n", khugepaged_pages_to_scan
);
472 static ssize_t
pages_to_scan_store(struct kobject
*kobj
,
473 struct kobj_attribute
*attr
,
474 const char *buf
, size_t count
)
479 err
= kstrtoul(buf
, 10, &pages
);
480 if (err
|| !pages
|| pages
> UINT_MAX
)
483 khugepaged_pages_to_scan
= pages
;
487 static struct kobj_attribute pages_to_scan_attr
=
488 __ATTR(pages_to_scan
, 0644, pages_to_scan_show
,
489 pages_to_scan_store
);
491 static ssize_t
pages_collapsed_show(struct kobject
*kobj
,
492 struct kobj_attribute
*attr
,
495 return sprintf(buf
, "%u\n", khugepaged_pages_collapsed
);
497 static struct kobj_attribute pages_collapsed_attr
=
498 __ATTR_RO(pages_collapsed
);
500 static ssize_t
full_scans_show(struct kobject
*kobj
,
501 struct kobj_attribute
*attr
,
504 return sprintf(buf
, "%u\n", khugepaged_full_scans
);
506 static struct kobj_attribute full_scans_attr
=
507 __ATTR_RO(full_scans
);
509 static ssize_t
khugepaged_defrag_show(struct kobject
*kobj
,
510 struct kobj_attribute
*attr
, char *buf
)
512 return single_flag_show(kobj
, attr
, buf
,
513 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG
);
515 static ssize_t
khugepaged_defrag_store(struct kobject
*kobj
,
516 struct kobj_attribute
*attr
,
517 const char *buf
, size_t count
)
519 return single_flag_store(kobj
, attr
, buf
, count
,
520 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG
);
522 static struct kobj_attribute khugepaged_defrag_attr
=
523 __ATTR(defrag
, 0644, khugepaged_defrag_show
,
524 khugepaged_defrag_store
);
527 * max_ptes_none controls if khugepaged should collapse hugepages over
528 * any unmapped ptes in turn potentially increasing the memory
529 * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
530 * reduce the available free memory in the system as it
531 * runs. Increasing max_ptes_none will instead potentially reduce the
532 * free memory in the system during the khugepaged scan.
534 static ssize_t
khugepaged_max_ptes_none_show(struct kobject
*kobj
,
535 struct kobj_attribute
*attr
,
538 return sprintf(buf
, "%u\n", khugepaged_max_ptes_none
);
540 static ssize_t
khugepaged_max_ptes_none_store(struct kobject
*kobj
,
541 struct kobj_attribute
*attr
,
542 const char *buf
, size_t count
)
545 unsigned long max_ptes_none
;
547 err
= kstrtoul(buf
, 10, &max_ptes_none
);
548 if (err
|| max_ptes_none
> HPAGE_PMD_NR
-1)
551 khugepaged_max_ptes_none
= max_ptes_none
;
555 static struct kobj_attribute khugepaged_max_ptes_none_attr
=
556 __ATTR(max_ptes_none
, 0644, khugepaged_max_ptes_none_show
,
557 khugepaged_max_ptes_none_store
);
559 static struct attribute
*khugepaged_attr
[] = {
560 &khugepaged_defrag_attr
.attr
,
561 &khugepaged_max_ptes_none_attr
.attr
,
562 &pages_to_scan_attr
.attr
,
563 &pages_collapsed_attr
.attr
,
564 &full_scans_attr
.attr
,
565 &scan_sleep_millisecs_attr
.attr
,
566 &alloc_sleep_millisecs_attr
.attr
,
570 static struct attribute_group khugepaged_attr_group
= {
571 .attrs
= khugepaged_attr
,
572 .name
= "khugepaged",
575 static int __init
hugepage_init_sysfs(struct kobject
**hugepage_kobj
)
579 *hugepage_kobj
= kobject_create_and_add("transparent_hugepage", mm_kobj
);
580 if (unlikely(!*hugepage_kobj
)) {
581 pr_err("failed to create transparent hugepage kobject\n");
585 err
= sysfs_create_group(*hugepage_kobj
, &hugepage_attr_group
);
587 pr_err("failed to register transparent hugepage group\n");
591 err
= sysfs_create_group(*hugepage_kobj
, &khugepaged_attr_group
);
593 pr_err("failed to register transparent hugepage group\n");
594 goto remove_hp_group
;
600 sysfs_remove_group(*hugepage_kobj
, &hugepage_attr_group
);
602 kobject_put(*hugepage_kobj
);
606 static void __init
hugepage_exit_sysfs(struct kobject
*hugepage_kobj
)
608 sysfs_remove_group(hugepage_kobj
, &khugepaged_attr_group
);
609 sysfs_remove_group(hugepage_kobj
, &hugepage_attr_group
);
610 kobject_put(hugepage_kobj
);
613 static inline int hugepage_init_sysfs(struct kobject
**hugepage_kobj
)
618 static inline void hugepage_exit_sysfs(struct kobject
*hugepage_kobj
)
621 #endif /* CONFIG_SYSFS */
623 static int __init
hugepage_init(void)
626 struct kobject
*hugepage_kobj
;
628 if (!has_transparent_hugepage()) {
629 transparent_hugepage_flags
= 0;
633 err
= hugepage_init_sysfs(&hugepage_kobj
);
637 err
= khugepaged_slab_init();
641 err
= register_shrinker(&huge_zero_page_shrinker
);
643 goto err_hzp_shrinker
;
646 * By default disable transparent hugepages on smaller systems,
647 * where the extra memory used could hurt more than TLB overhead
648 * is likely to save. The admin can still enable it through /sys.
650 if (totalram_pages
< (512 << (20 - PAGE_SHIFT
))) {
651 transparent_hugepage_flags
= 0;
655 err
= start_stop_khugepaged();
661 unregister_shrinker(&huge_zero_page_shrinker
);
663 khugepaged_slab_exit();
665 hugepage_exit_sysfs(hugepage_kobj
);
669 subsys_initcall(hugepage_init
);
671 static int __init
setup_transparent_hugepage(char *str
)
676 if (!strcmp(str
, "always")) {
677 set_bit(TRANSPARENT_HUGEPAGE_FLAG
,
678 &transparent_hugepage_flags
);
679 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG
,
680 &transparent_hugepage_flags
);
682 } else if (!strcmp(str
, "madvise")) {
683 clear_bit(TRANSPARENT_HUGEPAGE_FLAG
,
684 &transparent_hugepage_flags
);
685 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG
,
686 &transparent_hugepage_flags
);
688 } else if (!strcmp(str
, "never")) {
689 clear_bit(TRANSPARENT_HUGEPAGE_FLAG
,
690 &transparent_hugepage_flags
);
691 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG
,
692 &transparent_hugepage_flags
);
697 pr_warn("transparent_hugepage= cannot parse, ignored\n");
700 __setup("transparent_hugepage=", setup_transparent_hugepage
);
702 pmd_t
maybe_pmd_mkwrite(pmd_t pmd
, struct vm_area_struct
*vma
)
704 if (likely(vma
->vm_flags
& VM_WRITE
))
705 pmd
= pmd_mkwrite(pmd
);
709 static inline pmd_t
mk_huge_pmd(struct page
*page
, pgprot_t prot
)
712 entry
= mk_pmd(page
, prot
);
713 entry
= pmd_mkhuge(entry
);
717 static int __do_huge_pmd_anonymous_page(struct mm_struct
*mm
,
718 struct vm_area_struct
*vma
,
719 unsigned long haddr
, pmd_t
*pmd
,
720 struct page
*page
, gfp_t gfp
)
722 struct mem_cgroup
*memcg
;
726 VM_BUG_ON_PAGE(!PageCompound(page
), page
);
728 if (mem_cgroup_try_charge(page
, mm
, gfp
, &memcg
))
731 pgtable
= pte_alloc_one(mm
, haddr
);
732 if (unlikely(!pgtable
)) {
733 mem_cgroup_cancel_charge(page
, memcg
);
737 clear_huge_page(page
, haddr
, HPAGE_PMD_NR
);
739 * The memory barrier inside __SetPageUptodate makes sure that
740 * clear_huge_page writes become visible before the set_pmd_at()
743 __SetPageUptodate(page
);
745 ptl
= pmd_lock(mm
, pmd
);
746 if (unlikely(!pmd_none(*pmd
))) {
748 mem_cgroup_cancel_charge(page
, memcg
);
750 pte_free(mm
, pgtable
);
753 entry
= mk_huge_pmd(page
, vma
->vm_page_prot
);
754 entry
= maybe_pmd_mkwrite(pmd_mkdirty(entry
), vma
);
755 page_add_new_anon_rmap(page
, vma
, haddr
);
756 mem_cgroup_commit_charge(page
, memcg
, false);
757 lru_cache_add_active_or_unevictable(page
, vma
);
758 pgtable_trans_huge_deposit(mm
, pmd
, pgtable
);
759 set_pmd_at(mm
, haddr
, pmd
, entry
);
760 add_mm_counter(mm
, MM_ANONPAGES
, HPAGE_PMD_NR
);
761 atomic_long_inc(&mm
->nr_ptes
);
768 static inline gfp_t
alloc_hugepage_gfpmask(int defrag
, gfp_t extra_gfp
)
770 return (GFP_TRANSHUGE
& ~(defrag
? 0 : __GFP_WAIT
)) | extra_gfp
;
773 /* Caller must hold page table lock. */
774 static bool set_huge_zero_page(pgtable_t pgtable
, struct mm_struct
*mm
,
775 struct vm_area_struct
*vma
, unsigned long haddr
, pmd_t
*pmd
,
776 struct page
*zero_page
)
781 entry
= mk_pmd(zero_page
, vma
->vm_page_prot
);
782 entry
= pmd_mkhuge(entry
);
783 pgtable_trans_huge_deposit(mm
, pmd
, pgtable
);
784 set_pmd_at(mm
, haddr
, pmd
, entry
);
785 atomic_long_inc(&mm
->nr_ptes
);
789 int do_huge_pmd_anonymous_page(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
790 unsigned long address
, pmd_t
*pmd
,
795 unsigned long haddr
= address
& HPAGE_PMD_MASK
;
797 if (haddr
< vma
->vm_start
|| haddr
+ HPAGE_PMD_SIZE
> vma
->vm_end
)
798 return VM_FAULT_FALLBACK
;
799 if (unlikely(anon_vma_prepare(vma
)))
801 if (unlikely(khugepaged_enter(vma
, vma
->vm_flags
)))
803 if (!(flags
& FAULT_FLAG_WRITE
) && !mm_forbids_zeropage(mm
) &&
804 transparent_hugepage_use_zero_page()) {
807 struct page
*zero_page
;
809 pgtable
= pte_alloc_one(mm
, haddr
);
810 if (unlikely(!pgtable
))
812 zero_page
= get_huge_zero_page();
813 if (unlikely(!zero_page
)) {
814 pte_free(mm
, pgtable
);
815 count_vm_event(THP_FAULT_FALLBACK
);
816 return VM_FAULT_FALLBACK
;
818 ptl
= pmd_lock(mm
, pmd
);
819 set
= set_huge_zero_page(pgtable
, mm
, vma
, haddr
, pmd
,
823 pte_free(mm
, pgtable
);
824 put_huge_zero_page();
828 gfp
= alloc_hugepage_gfpmask(transparent_hugepage_defrag(vma
), 0);
829 page
= alloc_hugepage_vma(gfp
, vma
, haddr
, HPAGE_PMD_ORDER
);
830 if (unlikely(!page
)) {
831 count_vm_event(THP_FAULT_FALLBACK
);
832 return VM_FAULT_FALLBACK
;
834 if (unlikely(__do_huge_pmd_anonymous_page(mm
, vma
, haddr
, pmd
, page
, gfp
))) {
836 count_vm_event(THP_FAULT_FALLBACK
);
837 return VM_FAULT_FALLBACK
;
840 count_vm_event(THP_FAULT_ALLOC
);
844 int copy_huge_pmd(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
845 pmd_t
*dst_pmd
, pmd_t
*src_pmd
, unsigned long addr
,
846 struct vm_area_struct
*vma
)
848 spinlock_t
*dst_ptl
, *src_ptl
;
849 struct page
*src_page
;
855 pgtable
= pte_alloc_one(dst_mm
, addr
);
856 if (unlikely(!pgtable
))
859 dst_ptl
= pmd_lock(dst_mm
, dst_pmd
);
860 src_ptl
= pmd_lockptr(src_mm
, src_pmd
);
861 spin_lock_nested(src_ptl
, SINGLE_DEPTH_NESTING
);
865 if (unlikely(!pmd_trans_huge(pmd
))) {
866 pte_free(dst_mm
, pgtable
);
870 * When page table lock is held, the huge zero pmd should not be
871 * under splitting since we don't split the page itself, only pmd to
874 if (is_huge_zero_pmd(pmd
)) {
875 struct page
*zero_page
;
878 * get_huge_zero_page() will never allocate a new page here,
879 * since we already have a zero page to copy. It just takes a
882 zero_page
= get_huge_zero_page();
883 set
= set_huge_zero_page(pgtable
, dst_mm
, vma
, addr
, dst_pmd
,
885 BUG_ON(!set
); /* unexpected !pmd_none(dst_pmd) */
890 if (unlikely(pmd_trans_splitting(pmd
))) {
891 /* split huge page running from under us */
892 spin_unlock(src_ptl
);
893 spin_unlock(dst_ptl
);
894 pte_free(dst_mm
, pgtable
);
896 wait_split_huge_page(vma
->anon_vma
, src_pmd
); /* src_vma */
899 src_page
= pmd_page(pmd
);
900 VM_BUG_ON_PAGE(!PageHead(src_page
), src_page
);
902 page_dup_rmap(src_page
);
903 add_mm_counter(dst_mm
, MM_ANONPAGES
, HPAGE_PMD_NR
);
905 pmdp_set_wrprotect(src_mm
, addr
, src_pmd
);
906 pmd
= pmd_mkold(pmd_wrprotect(pmd
));
907 pgtable_trans_huge_deposit(dst_mm
, dst_pmd
, pgtable
);
908 set_pmd_at(dst_mm
, addr
, dst_pmd
, pmd
);
909 atomic_long_inc(&dst_mm
->nr_ptes
);
913 spin_unlock(src_ptl
);
914 spin_unlock(dst_ptl
);
919 void huge_pmd_set_accessed(struct mm_struct
*mm
,
920 struct vm_area_struct
*vma
,
921 unsigned long address
,
922 pmd_t
*pmd
, pmd_t orig_pmd
,
929 ptl
= pmd_lock(mm
, pmd
);
930 if (unlikely(!pmd_same(*pmd
, orig_pmd
)))
933 entry
= pmd_mkyoung(orig_pmd
);
934 haddr
= address
& HPAGE_PMD_MASK
;
935 if (pmdp_set_access_flags(vma
, haddr
, pmd
, entry
, dirty
))
936 update_mmu_cache_pmd(vma
, address
, pmd
);
943 * Save CONFIG_DEBUG_PAGEALLOC from faulting falsely on tail pages
944 * during copy_user_huge_page()'s copy_page_rep(): in the case when
945 * the source page gets split and a tail freed before copy completes.
946 * Called under pmd_lock of checked pmd, so safe from splitting itself.
948 static void get_user_huge_page(struct page
*page
)
950 if (IS_ENABLED(CONFIG_DEBUG_PAGEALLOC
)) {
951 struct page
*endpage
= page
+ HPAGE_PMD_NR
;
953 atomic_add(HPAGE_PMD_NR
, &page
->_count
);
954 while (++page
< endpage
)
955 get_huge_page_tail(page
);
961 static void put_user_huge_page(struct page
*page
)
963 if (IS_ENABLED(CONFIG_DEBUG_PAGEALLOC
)) {
964 struct page
*endpage
= page
+ HPAGE_PMD_NR
;
966 while (page
< endpage
)
973 static int do_huge_pmd_wp_page_fallback(struct mm_struct
*mm
,
974 struct vm_area_struct
*vma
,
975 unsigned long address
,
976 pmd_t
*pmd
, pmd_t orig_pmd
,
980 struct mem_cgroup
*memcg
;
986 unsigned long mmun_start
; /* For mmu_notifiers */
987 unsigned long mmun_end
; /* For mmu_notifiers */
989 pages
= kmalloc(sizeof(struct page
*) * HPAGE_PMD_NR
,
991 if (unlikely(!pages
)) {
996 for (i
= 0; i
< HPAGE_PMD_NR
; i
++) {
997 pages
[i
] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE
|
999 vma
, address
, page_to_nid(page
));
1000 if (unlikely(!pages
[i
] ||
1001 mem_cgroup_try_charge(pages
[i
], mm
, GFP_KERNEL
,
1006 memcg
= (void *)page_private(pages
[i
]);
1007 set_page_private(pages
[i
], 0);
1008 mem_cgroup_cancel_charge(pages
[i
], memcg
);
1012 ret
|= VM_FAULT_OOM
;
1015 set_page_private(pages
[i
], (unsigned long)memcg
);
1018 for (i
= 0; i
< HPAGE_PMD_NR
; i
++) {
1019 copy_user_highpage(pages
[i
], page
+ i
,
1020 haddr
+ PAGE_SIZE
* i
, vma
);
1021 __SetPageUptodate(pages
[i
]);
1026 mmun_end
= haddr
+ HPAGE_PMD_SIZE
;
1027 mmu_notifier_invalidate_range_start(mm
, mmun_start
, mmun_end
);
1029 ptl
= pmd_lock(mm
, pmd
);
1030 if (unlikely(!pmd_same(*pmd
, orig_pmd
)))
1031 goto out_free_pages
;
1032 VM_BUG_ON_PAGE(!PageHead(page
), page
);
1034 pmdp_huge_clear_flush_notify(vma
, haddr
, pmd
);
1035 /* leave pmd empty until pte is filled */
1037 pgtable
= pgtable_trans_huge_withdraw(mm
, pmd
);
1038 pmd_populate(mm
, &_pmd
, pgtable
);
1040 for (i
= 0; i
< HPAGE_PMD_NR
; i
++, haddr
+= PAGE_SIZE
) {
1042 entry
= mk_pte(pages
[i
], vma
->vm_page_prot
);
1043 entry
= maybe_mkwrite(pte_mkdirty(entry
), vma
);
1044 memcg
= (void *)page_private(pages
[i
]);
1045 set_page_private(pages
[i
], 0);
1046 page_add_new_anon_rmap(pages
[i
], vma
, haddr
);
1047 mem_cgroup_commit_charge(pages
[i
], memcg
, false);
1048 lru_cache_add_active_or_unevictable(pages
[i
], vma
);
1049 pte
= pte_offset_map(&_pmd
, haddr
);
1050 VM_BUG_ON(!pte_none(*pte
));
1051 set_pte_at(mm
, haddr
, pte
, entry
);
1056 smp_wmb(); /* make pte visible before pmd */
1057 pmd_populate(mm
, pmd
, pgtable
);
1058 page_remove_rmap(page
);
1061 mmu_notifier_invalidate_range_end(mm
, mmun_start
, mmun_end
);
1063 ret
|= VM_FAULT_WRITE
;
1071 mmu_notifier_invalidate_range_end(mm
, mmun_start
, mmun_end
);
1072 for (i
= 0; i
< HPAGE_PMD_NR
; i
++) {
1073 memcg
= (void *)page_private(pages
[i
]);
1074 set_page_private(pages
[i
], 0);
1075 mem_cgroup_cancel_charge(pages
[i
], memcg
);
1082 int do_huge_pmd_wp_page(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
1083 unsigned long address
, pmd_t
*pmd
, pmd_t orig_pmd
)
1087 struct page
*page
= NULL
, *new_page
;
1088 struct mem_cgroup
*memcg
;
1089 unsigned long haddr
;
1090 unsigned long mmun_start
; /* For mmu_notifiers */
1091 unsigned long mmun_end
; /* For mmu_notifiers */
1092 gfp_t huge_gfp
; /* for allocation and charge */
1094 ptl
= pmd_lockptr(mm
, pmd
);
1095 VM_BUG_ON_VMA(!vma
->anon_vma
, vma
);
1096 haddr
= address
& HPAGE_PMD_MASK
;
1097 if (is_huge_zero_pmd(orig_pmd
))
1100 if (unlikely(!pmd_same(*pmd
, orig_pmd
)))
1103 page
= pmd_page(orig_pmd
);
1104 VM_BUG_ON_PAGE(!PageCompound(page
) || !PageHead(page
), page
);
1105 if (page_mapcount(page
) == 1) {
1107 entry
= pmd_mkyoung(orig_pmd
);
1108 entry
= maybe_pmd_mkwrite(pmd_mkdirty(entry
), vma
);
1109 if (pmdp_set_access_flags(vma
, haddr
, pmd
, entry
, 1))
1110 update_mmu_cache_pmd(vma
, address
, pmd
);
1111 ret
|= VM_FAULT_WRITE
;
1114 get_user_huge_page(page
);
1117 if (transparent_hugepage_enabled(vma
) &&
1118 !transparent_hugepage_debug_cow()) {
1119 huge_gfp
= alloc_hugepage_gfpmask(transparent_hugepage_defrag(vma
), 0);
1120 new_page
= alloc_hugepage_vma(huge_gfp
, vma
, haddr
, HPAGE_PMD_ORDER
);
1124 if (unlikely(!new_page
)) {
1126 split_huge_page_pmd(vma
, address
, pmd
);
1127 ret
|= VM_FAULT_FALLBACK
;
1129 ret
= do_huge_pmd_wp_page_fallback(mm
, vma
, address
,
1130 pmd
, orig_pmd
, page
, haddr
);
1131 if (ret
& VM_FAULT_OOM
) {
1132 split_huge_page(page
);
1133 ret
|= VM_FAULT_FALLBACK
;
1135 put_user_huge_page(page
);
1137 count_vm_event(THP_FAULT_FALLBACK
);
1141 if (unlikely(mem_cgroup_try_charge(new_page
, mm
, huge_gfp
, &memcg
))) {
1144 split_huge_page(page
);
1145 put_user_huge_page(page
);
1147 split_huge_page_pmd(vma
, address
, pmd
);
1148 ret
|= VM_FAULT_FALLBACK
;
1149 count_vm_event(THP_FAULT_FALLBACK
);
1153 count_vm_event(THP_FAULT_ALLOC
);
1156 clear_huge_page(new_page
, haddr
, HPAGE_PMD_NR
);
1158 copy_user_huge_page(new_page
, page
, haddr
, vma
, HPAGE_PMD_NR
);
1159 __SetPageUptodate(new_page
);
1162 mmun_end
= haddr
+ HPAGE_PMD_SIZE
;
1163 mmu_notifier_invalidate_range_start(mm
, mmun_start
, mmun_end
);
1167 put_user_huge_page(page
);
1168 if (unlikely(!pmd_same(*pmd
, orig_pmd
))) {
1170 mem_cgroup_cancel_charge(new_page
, memcg
);
1175 entry
= mk_huge_pmd(new_page
, vma
->vm_page_prot
);
1176 entry
= maybe_pmd_mkwrite(pmd_mkdirty(entry
), vma
);
1177 pmdp_huge_clear_flush_notify(vma
, haddr
, pmd
);
1178 page_add_new_anon_rmap(new_page
, vma
, haddr
);
1179 mem_cgroup_commit_charge(new_page
, memcg
, false);
1180 lru_cache_add_active_or_unevictable(new_page
, vma
);
1181 set_pmd_at(mm
, haddr
, pmd
, entry
);
1182 update_mmu_cache_pmd(vma
, address
, pmd
);
1184 add_mm_counter(mm
, MM_ANONPAGES
, HPAGE_PMD_NR
);
1185 put_huge_zero_page();
1187 VM_BUG_ON_PAGE(!PageHead(page
), page
);
1188 page_remove_rmap(page
);
1191 ret
|= VM_FAULT_WRITE
;
1195 mmu_notifier_invalidate_range_end(mm
, mmun_start
, mmun_end
);
1203 struct page
*follow_trans_huge_pmd(struct vm_area_struct
*vma
,
1208 struct mm_struct
*mm
= vma
->vm_mm
;
1209 struct page
*page
= NULL
;
1211 assert_spin_locked(pmd_lockptr(mm
, pmd
));
1213 if (flags
& FOLL_WRITE
&& !pmd_write(*pmd
))
1216 /* Avoid dumping huge zero page */
1217 if ((flags
& FOLL_DUMP
) && is_huge_zero_pmd(*pmd
))
1218 return ERR_PTR(-EFAULT
);
1220 /* Full NUMA hinting faults to serialise migration in fault paths */
1221 if ((flags
& FOLL_NUMA
) && pmd_protnone(*pmd
))
1224 page
= pmd_page(*pmd
);
1225 VM_BUG_ON_PAGE(!PageHead(page
), page
);
1226 if (flags
& FOLL_TOUCH
) {
1229 * We should set the dirty bit only for FOLL_WRITE but
1230 * for now the dirty bit in the pmd is meaningless.
1231 * And if the dirty bit will become meaningful and
1232 * we'll only set it with FOLL_WRITE, an atomic
1233 * set_bit will be required on the pmd to set the
1234 * young bit, instead of the current set_pmd_at.
1236 _pmd
= pmd_mkyoung(pmd_mkdirty(*pmd
));
1237 if (pmdp_set_access_flags(vma
, addr
& HPAGE_PMD_MASK
,
1239 update_mmu_cache_pmd(vma
, addr
, pmd
);
1241 if ((flags
& FOLL_POPULATE
) && (vma
->vm_flags
& VM_LOCKED
)) {
1242 if (page
->mapping
&& trylock_page(page
)) {
1245 mlock_vma_page(page
);
1249 page
+= (addr
& ~HPAGE_PMD_MASK
) >> PAGE_SHIFT
;
1250 VM_BUG_ON_PAGE(!PageCompound(page
), page
);
1251 if (flags
& FOLL_GET
)
1252 get_page_foll(page
);
1258 /* NUMA hinting page fault entry point for trans huge pmds */
1259 int do_huge_pmd_numa_page(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
1260 unsigned long addr
, pmd_t pmd
, pmd_t
*pmdp
)
1263 struct anon_vma
*anon_vma
= NULL
;
1265 unsigned long haddr
= addr
& HPAGE_PMD_MASK
;
1266 int page_nid
= -1, this_nid
= numa_node_id();
1267 int target_nid
, last_cpupid
= -1;
1269 bool migrated
= false;
1273 /* A PROT_NONE fault should not end up here */
1274 BUG_ON(!(vma
->vm_flags
& (VM_READ
| VM_EXEC
| VM_WRITE
)));
1276 ptl
= pmd_lock(mm
, pmdp
);
1277 if (unlikely(!pmd_same(pmd
, *pmdp
)))
1281 * If there are potential migrations, wait for completion and retry
1282 * without disrupting NUMA hinting information. Do not relock and
1283 * check_same as the page may no longer be mapped.
1285 if (unlikely(pmd_trans_migrating(*pmdp
))) {
1286 page
= pmd_page(*pmdp
);
1288 wait_on_page_locked(page
);
1292 page
= pmd_page(pmd
);
1293 BUG_ON(is_huge_zero_page(page
));
1294 page_nid
= page_to_nid(page
);
1295 last_cpupid
= page_cpupid_last(page
);
1296 count_vm_numa_event(NUMA_HINT_FAULTS
);
1297 if (page_nid
== this_nid
) {
1298 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL
);
1299 flags
|= TNF_FAULT_LOCAL
;
1302 /* See similar comment in do_numa_page for explanation */
1303 if (!(vma
->vm_flags
& VM_WRITE
))
1304 flags
|= TNF_NO_GROUP
;
1307 * Acquire the page lock to serialise THP migrations but avoid dropping
1308 * page_table_lock if at all possible
1310 page_locked
= trylock_page(page
);
1311 target_nid
= mpol_misplaced(page
, vma
, haddr
);
1312 if (target_nid
== -1) {
1313 /* If the page was locked, there are no parallel migrations */
1318 /* Migration could have started since the pmd_trans_migrating check */
1321 wait_on_page_locked(page
);
1327 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
1328 * to serialises splits
1332 anon_vma
= page_lock_anon_vma_read(page
);
1334 /* Confirm the PMD did not change while page_table_lock was released */
1336 if (unlikely(!pmd_same(pmd
, *pmdp
))) {
1343 /* Bail if we fail to protect against THP splits for any reason */
1344 if (unlikely(!anon_vma
)) {
1351 * Migrate the THP to the requested node, returns with page unlocked
1352 * and access rights restored.
1355 migrated
= migrate_misplaced_transhuge_page(mm
, vma
,
1356 pmdp
, pmd
, addr
, page
, target_nid
);
1358 flags
|= TNF_MIGRATED
;
1359 page_nid
= target_nid
;
1361 flags
|= TNF_MIGRATE_FAIL
;
1365 BUG_ON(!PageLocked(page
));
1366 was_writable
= pmd_write(pmd
);
1367 pmd
= pmd_modify(pmd
, vma
->vm_page_prot
);
1368 pmd
= pmd_mkyoung(pmd
);
1370 pmd
= pmd_mkwrite(pmd
);
1371 set_pmd_at(mm
, haddr
, pmdp
, pmd
);
1372 update_mmu_cache_pmd(vma
, addr
, pmdp
);
1379 page_unlock_anon_vma_read(anon_vma
);
1382 task_numa_fault(last_cpupid
, page_nid
, HPAGE_PMD_NR
, flags
);
1387 int zap_huge_pmd(struct mmu_gather
*tlb
, struct vm_area_struct
*vma
,
1388 pmd_t
*pmd
, unsigned long addr
)
1393 if (__pmd_trans_huge_lock(pmd
, vma
, &ptl
) == 1) {
1398 * For architectures like ppc64 we look at deposited pgtable
1399 * when calling pmdp_huge_get_and_clear. So do the
1400 * pgtable_trans_huge_withdraw after finishing pmdp related
1403 orig_pmd
= pmdp_huge_get_and_clear_full(tlb
->mm
, addr
, pmd
,
1405 tlb_remove_pmd_tlb_entry(tlb
, pmd
, addr
);
1406 pgtable
= pgtable_trans_huge_withdraw(tlb
->mm
, pmd
);
1407 if (is_huge_zero_pmd(orig_pmd
)) {
1408 atomic_long_dec(&tlb
->mm
->nr_ptes
);
1410 put_huge_zero_page();
1412 page
= pmd_page(orig_pmd
);
1413 page_remove_rmap(page
);
1414 VM_BUG_ON_PAGE(page_mapcount(page
) < 0, page
);
1415 add_mm_counter(tlb
->mm
, MM_ANONPAGES
, -HPAGE_PMD_NR
);
1416 VM_BUG_ON_PAGE(!PageHead(page
), page
);
1417 atomic_long_dec(&tlb
->mm
->nr_ptes
);
1419 tlb_remove_page(tlb
, page
);
1421 pte_free(tlb
->mm
, pgtable
);
1427 int move_huge_pmd(struct vm_area_struct
*vma
, struct vm_area_struct
*new_vma
,
1428 unsigned long old_addr
,
1429 unsigned long new_addr
, unsigned long old_end
,
1430 pmd_t
*old_pmd
, pmd_t
*new_pmd
)
1432 spinlock_t
*old_ptl
, *new_ptl
;
1436 struct mm_struct
*mm
= vma
->vm_mm
;
1438 if ((old_addr
& ~HPAGE_PMD_MASK
) ||
1439 (new_addr
& ~HPAGE_PMD_MASK
) ||
1440 old_end
- old_addr
< HPAGE_PMD_SIZE
||
1441 (new_vma
->vm_flags
& VM_NOHUGEPAGE
))
1445 * The destination pmd shouldn't be established, free_pgtables()
1446 * should have release it.
1448 if (WARN_ON(!pmd_none(*new_pmd
))) {
1449 VM_BUG_ON(pmd_trans_huge(*new_pmd
));
1454 * We don't have to worry about the ordering of src and dst
1455 * ptlocks because exclusive mmap_sem prevents deadlock.
1457 ret
= __pmd_trans_huge_lock(old_pmd
, vma
, &old_ptl
);
1459 new_ptl
= pmd_lockptr(mm
, new_pmd
);
1460 if (new_ptl
!= old_ptl
)
1461 spin_lock_nested(new_ptl
, SINGLE_DEPTH_NESTING
);
1462 pmd
= pmdp_huge_get_and_clear(mm
, old_addr
, old_pmd
);
1463 VM_BUG_ON(!pmd_none(*new_pmd
));
1465 if (pmd_move_must_withdraw(new_ptl
, old_ptl
)) {
1467 pgtable
= pgtable_trans_huge_withdraw(mm
, old_pmd
);
1468 pgtable_trans_huge_deposit(mm
, new_pmd
, pgtable
);
1470 set_pmd_at(mm
, new_addr
, new_pmd
, pmd_mksoft_dirty(pmd
));
1471 if (new_ptl
!= old_ptl
)
1472 spin_unlock(new_ptl
);
1473 spin_unlock(old_ptl
);
1481 * - 0 if PMD could not be locked
1482 * - 1 if PMD was locked but protections unchange and TLB flush unnecessary
1483 * - HPAGE_PMD_NR is protections changed and TLB flush necessary
1485 int change_huge_pmd(struct vm_area_struct
*vma
, pmd_t
*pmd
,
1486 unsigned long addr
, pgprot_t newprot
, int prot_numa
)
1488 struct mm_struct
*mm
= vma
->vm_mm
;
1492 if (__pmd_trans_huge_lock(pmd
, vma
, &ptl
) == 1) {
1494 bool preserve_write
= prot_numa
&& pmd_write(*pmd
);
1498 * Avoid trapping faults against the zero page. The read-only
1499 * data is likely to be read-cached on the local CPU and
1500 * local/remote hits to the zero page are not interesting.
1502 if (prot_numa
&& is_huge_zero_pmd(*pmd
)) {
1507 if (!prot_numa
|| !pmd_protnone(*pmd
)) {
1508 entry
= pmdp_huge_get_and_clear_notify(mm
, addr
, pmd
);
1509 entry
= pmd_modify(entry
, newprot
);
1511 entry
= pmd_mkwrite(entry
);
1513 set_pmd_at(mm
, addr
, pmd
, entry
);
1514 BUG_ON(!preserve_write
&& pmd_write(entry
));
1523 * Returns 1 if a given pmd maps a stable (not under splitting) thp.
1524 * Returns -1 if it maps a thp under splitting. Returns 0 otherwise.
1526 * Note that if it returns 1, this routine returns without unlocking page
1527 * table locks. So callers must unlock them.
1529 int __pmd_trans_huge_lock(pmd_t
*pmd
, struct vm_area_struct
*vma
,
1532 *ptl
= pmd_lock(vma
->vm_mm
, pmd
);
1533 if (likely(pmd_trans_huge(*pmd
))) {
1534 if (unlikely(pmd_trans_splitting(*pmd
))) {
1536 wait_split_huge_page(vma
->anon_vma
, pmd
);
1539 /* Thp mapped by 'pmd' is stable, so we can
1540 * handle it as it is. */
1549 * This function returns whether a given @page is mapped onto the @address
1550 * in the virtual space of @mm.
1552 * When it's true, this function returns *pmd with holding the page table lock
1553 * and passing it back to the caller via @ptl.
1554 * If it's false, returns NULL without holding the page table lock.
1556 pmd_t
*page_check_address_pmd(struct page
*page
,
1557 struct mm_struct
*mm
,
1558 unsigned long address
,
1559 enum page_check_address_pmd_flag flag
,
1566 if (address
& ~HPAGE_PMD_MASK
)
1569 pgd
= pgd_offset(mm
, address
);
1570 if (!pgd_present(*pgd
))
1572 pud
= pud_offset(pgd
, address
);
1573 if (!pud_present(*pud
))
1575 pmd
= pmd_offset(pud
, address
);
1577 *ptl
= pmd_lock(mm
, pmd
);
1578 if (!pmd_present(*pmd
))
1580 if (pmd_page(*pmd
) != page
)
1583 * split_vma() may create temporary aliased mappings. There is
1584 * no risk as long as all huge pmd are found and have their
1585 * splitting bit set before __split_huge_page_refcount
1586 * runs. Finding the same huge pmd more than once during the
1587 * same rmap walk is not a problem.
1589 if (flag
== PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG
&&
1590 pmd_trans_splitting(*pmd
))
1592 if (pmd_trans_huge(*pmd
)) {
1593 VM_BUG_ON(flag
== PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG
&&
1594 !pmd_trans_splitting(*pmd
));
1602 static int __split_huge_page_splitting(struct page
*page
,
1603 struct vm_area_struct
*vma
,
1604 unsigned long address
)
1606 struct mm_struct
*mm
= vma
->vm_mm
;
1610 /* For mmu_notifiers */
1611 const unsigned long mmun_start
= address
;
1612 const unsigned long mmun_end
= address
+ HPAGE_PMD_SIZE
;
1614 mmu_notifier_invalidate_range_start(mm
, mmun_start
, mmun_end
);
1615 pmd
= page_check_address_pmd(page
, mm
, address
,
1616 PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG
, &ptl
);
1619 * We can't temporarily set the pmd to null in order
1620 * to split it, the pmd must remain marked huge at all
1621 * times or the VM won't take the pmd_trans_huge paths
1622 * and it won't wait on the anon_vma->root->rwsem to
1623 * serialize against split_huge_page*.
1625 pmdp_splitting_flush(vma
, address
, pmd
);
1630 mmu_notifier_invalidate_range_end(mm
, mmun_start
, mmun_end
);
1635 static void __split_huge_page_refcount(struct page
*page
,
1636 struct list_head
*list
)
1639 struct zone
*zone
= page_zone(page
);
1640 struct lruvec
*lruvec
;
1643 /* prevent PageLRU to go away from under us, and freeze lru stats */
1644 spin_lock_irq(&zone
->lru_lock
);
1645 lruvec
= mem_cgroup_page_lruvec(page
, zone
);
1647 compound_lock(page
);
1648 /* complete memcg works before add pages to LRU */
1649 mem_cgroup_split_huge_fixup(page
);
1651 for (i
= HPAGE_PMD_NR
- 1; i
>= 1; i
--) {
1652 struct page
*page_tail
= page
+ i
;
1654 /* tail_page->_mapcount cannot change */
1655 BUG_ON(page_mapcount(page_tail
) < 0);
1656 tail_count
+= page_mapcount(page_tail
);
1657 /* check for overflow */
1658 BUG_ON(tail_count
< 0);
1659 BUG_ON(atomic_read(&page_tail
->_count
) != 0);
1661 * tail_page->_count is zero and not changing from
1662 * under us. But get_page_unless_zero() may be running
1663 * from under us on the tail_page. If we used
1664 * atomic_set() below instead of atomic_add(), we
1665 * would then run atomic_set() concurrently with
1666 * get_page_unless_zero(), and atomic_set() is
1667 * implemented in C not using locked ops. spin_unlock
1668 * on x86 sometime uses locked ops because of PPro
1669 * errata 66, 92, so unless somebody can guarantee
1670 * atomic_set() here would be safe on all archs (and
1671 * not only on x86), it's safer to use atomic_add().
1673 atomic_add(page_mapcount(page
) + page_mapcount(page_tail
) + 1,
1674 &page_tail
->_count
);
1676 /* after clearing PageTail the gup refcount can be released */
1677 smp_mb__after_atomic();
1680 * retain hwpoison flag of the poisoned tail page:
1681 * fix for the unsuitable process killed on Guest Machine(KVM)
1682 * by the memory-failure.
1684 page_tail
->flags
&= ~PAGE_FLAGS_CHECK_AT_PREP
| __PG_HWPOISON
;
1685 page_tail
->flags
|= (page
->flags
&
1686 ((1L << PG_referenced
) |
1687 (1L << PG_swapbacked
) |
1688 (1L << PG_mlocked
) |
1689 (1L << PG_uptodate
) |
1691 (1L << PG_unevictable
)));
1692 page_tail
->flags
|= (1L << PG_dirty
);
1694 /* clear PageTail before overwriting first_page */
1698 * __split_huge_page_splitting() already set the
1699 * splitting bit in all pmd that could map this
1700 * hugepage, that will ensure no CPU can alter the
1701 * mapcount on the head page. The mapcount is only
1702 * accounted in the head page and it has to be
1703 * transferred to all tail pages in the below code. So
1704 * for this code to be safe, the split the mapcount
1705 * can't change. But that doesn't mean userland can't
1706 * keep changing and reading the page contents while
1707 * we transfer the mapcount, so the pmd splitting
1708 * status is achieved setting a reserved bit in the
1709 * pmd, not by clearing the present bit.
1711 page_tail
->_mapcount
= page
->_mapcount
;
1713 BUG_ON(page_tail
->mapping
);
1714 page_tail
->mapping
= page
->mapping
;
1716 page_tail
->index
= page
->index
+ i
;
1717 page_cpupid_xchg_last(page_tail
, page_cpupid_last(page
));
1719 BUG_ON(!PageAnon(page_tail
));
1720 BUG_ON(!PageUptodate(page_tail
));
1721 BUG_ON(!PageDirty(page_tail
));
1722 BUG_ON(!PageSwapBacked(page_tail
));
1724 lru_add_page_tail(page
, page_tail
, lruvec
, list
);
1726 atomic_sub(tail_count
, &page
->_count
);
1727 BUG_ON(atomic_read(&page
->_count
) <= 0);
1729 __mod_zone_page_state(zone
, NR_ANON_TRANSPARENT_HUGEPAGES
, -1);
1731 ClearPageCompound(page
);
1732 compound_unlock(page
);
1733 spin_unlock_irq(&zone
->lru_lock
);
1735 for (i
= 1; i
< HPAGE_PMD_NR
; i
++) {
1736 struct page
*page_tail
= page
+ i
;
1737 BUG_ON(page_count(page_tail
) <= 0);
1739 * Tail pages may be freed if there wasn't any mapping
1740 * like if add_to_swap() is running on a lru page that
1741 * had its mapping zapped. And freeing these pages
1742 * requires taking the lru_lock so we do the put_page
1743 * of the tail pages after the split is complete.
1745 put_page(page_tail
);
1749 * Only the head page (now become a regular page) is required
1750 * to be pinned by the caller.
1752 BUG_ON(page_count(page
) <= 0);
1755 static int __split_huge_page_map(struct page
*page
,
1756 struct vm_area_struct
*vma
,
1757 unsigned long address
)
1759 struct mm_struct
*mm
= vma
->vm_mm
;
1764 unsigned long haddr
;
1766 pmd
= page_check_address_pmd(page
, mm
, address
,
1767 PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG
, &ptl
);
1769 pgtable
= pgtable_trans_huge_withdraw(mm
, pmd
);
1770 pmd_populate(mm
, &_pmd
, pgtable
);
1771 if (pmd_write(*pmd
))
1772 BUG_ON(page_mapcount(page
) != 1);
1775 for (i
= 0; i
< HPAGE_PMD_NR
; i
++, haddr
+= PAGE_SIZE
) {
1777 BUG_ON(PageCompound(page
+i
));
1779 * Note that NUMA hinting access restrictions are not
1780 * transferred to avoid any possibility of altering
1781 * permissions across VMAs.
1783 entry
= mk_pte(page
+ i
, vma
->vm_page_prot
);
1784 entry
= maybe_mkwrite(pte_mkdirty(entry
), vma
);
1785 if (!pmd_write(*pmd
))
1786 entry
= pte_wrprotect(entry
);
1787 if (!pmd_young(*pmd
))
1788 entry
= pte_mkold(entry
);
1789 pte
= pte_offset_map(&_pmd
, haddr
);
1790 BUG_ON(!pte_none(*pte
));
1791 set_pte_at(mm
, haddr
, pte
, entry
);
1795 smp_wmb(); /* make pte visible before pmd */
1797 * Up to this point the pmd is present and huge and
1798 * userland has the whole access to the hugepage
1799 * during the split (which happens in place). If we
1800 * overwrite the pmd with the not-huge version
1801 * pointing to the pte here (which of course we could
1802 * if all CPUs were bug free), userland could trigger
1803 * a small page size TLB miss on the small sized TLB
1804 * while the hugepage TLB entry is still established
1805 * in the huge TLB. Some CPU doesn't like that. See
1806 * http://support.amd.com/us/Processor_TechDocs/41322.pdf,
1807 * Erratum 383 on page 93. Intel should be safe but is
1808 * also warns that it's only safe if the permission
1809 * and cache attributes of the two entries loaded in
1810 * the two TLB is identical (which should be the case
1811 * here). But it is generally safer to never allow
1812 * small and huge TLB entries for the same virtual
1813 * address to be loaded simultaneously. So instead of
1814 * doing "pmd_populate(); flush_tlb_range();" we first
1815 * mark the current pmd notpresent (atomically because
1816 * here the pmd_trans_huge and pmd_trans_splitting
1817 * must remain set at all times on the pmd until the
1818 * split is complete for this pmd), then we flush the
1819 * SMP TLB and finally we write the non-huge version
1820 * of the pmd entry with pmd_populate.
1822 pmdp_invalidate(vma
, address
, pmd
);
1823 pmd_populate(mm
, pmd
, pgtable
);
1831 /* must be called with anon_vma->root->rwsem held */
1832 static void __split_huge_page(struct page
*page
,
1833 struct anon_vma
*anon_vma
,
1834 struct list_head
*list
)
1836 int mapcount
, mapcount2
;
1837 pgoff_t pgoff
= page
->index
<< (PAGE_CACHE_SHIFT
- PAGE_SHIFT
);
1838 struct anon_vma_chain
*avc
;
1840 BUG_ON(!PageHead(page
));
1841 BUG_ON(PageTail(page
));
1844 anon_vma_interval_tree_foreach(avc
, &anon_vma
->rb_root
, pgoff
, pgoff
) {
1845 struct vm_area_struct
*vma
= avc
->vma
;
1846 unsigned long addr
= vma_address(page
, vma
);
1847 BUG_ON(is_vma_temporary_stack(vma
));
1848 mapcount
+= __split_huge_page_splitting(page
, vma
, addr
);
1851 * It is critical that new vmas are added to the tail of the
1852 * anon_vma list. This guarantes that if copy_huge_pmd() runs
1853 * and establishes a child pmd before
1854 * __split_huge_page_splitting() freezes the parent pmd (so if
1855 * we fail to prevent copy_huge_pmd() from running until the
1856 * whole __split_huge_page() is complete), we will still see
1857 * the newly established pmd of the child later during the
1858 * walk, to be able to set it as pmd_trans_splitting too.
1860 if (mapcount
!= page_mapcount(page
)) {
1861 pr_err("mapcount %d page_mapcount %d\n",
1862 mapcount
, page_mapcount(page
));
1866 __split_huge_page_refcount(page
, list
);
1869 anon_vma_interval_tree_foreach(avc
, &anon_vma
->rb_root
, pgoff
, pgoff
) {
1870 struct vm_area_struct
*vma
= avc
->vma
;
1871 unsigned long addr
= vma_address(page
, vma
);
1872 BUG_ON(is_vma_temporary_stack(vma
));
1873 mapcount2
+= __split_huge_page_map(page
, vma
, addr
);
1875 if (mapcount
!= mapcount2
) {
1876 pr_err("mapcount %d mapcount2 %d page_mapcount %d\n",
1877 mapcount
, mapcount2
, page_mapcount(page
));
1883 * Split a hugepage into normal pages. This doesn't change the position of head
1884 * page. If @list is null, tail pages will be added to LRU list, otherwise, to
1885 * @list. Both head page and tail pages will inherit mapping, flags, and so on
1886 * from the hugepage.
1887 * Return 0 if the hugepage is split successfully otherwise return 1.
1889 int split_huge_page_to_list(struct page
*page
, struct list_head
*list
)
1891 struct anon_vma
*anon_vma
;
1894 BUG_ON(is_huge_zero_page(page
));
1895 BUG_ON(!PageAnon(page
));
1898 * The caller does not necessarily hold an mmap_sem that would prevent
1899 * the anon_vma disappearing so we first we take a reference to it
1900 * and then lock the anon_vma for write. This is similar to
1901 * page_lock_anon_vma_read except the write lock is taken to serialise
1902 * against parallel split or collapse operations.
1904 anon_vma
= page_get_anon_vma(page
);
1907 anon_vma_lock_write(anon_vma
);
1910 if (!PageCompound(page
))
1913 BUG_ON(!PageSwapBacked(page
));
1914 __split_huge_page(page
, anon_vma
, list
);
1915 count_vm_event(THP_SPLIT
);
1917 BUG_ON(PageCompound(page
));
1919 anon_vma_unlock_write(anon_vma
);
1920 put_anon_vma(anon_vma
);
1925 #define VM_NO_THP (VM_SPECIAL | VM_HUGETLB | VM_SHARED | VM_MAYSHARE)
1927 int hugepage_madvise(struct vm_area_struct
*vma
,
1928 unsigned long *vm_flags
, int advice
)
1934 * qemu blindly sets MADV_HUGEPAGE on all allocations, but s390
1935 * can't handle this properly after s390_enable_sie, so we simply
1936 * ignore the madvise to prevent qemu from causing a SIGSEGV.
1938 if (mm_has_pgste(vma
->vm_mm
))
1942 * Be somewhat over-protective like KSM for now!
1944 if (*vm_flags
& (VM_HUGEPAGE
| VM_NO_THP
))
1946 *vm_flags
&= ~VM_NOHUGEPAGE
;
1947 *vm_flags
|= VM_HUGEPAGE
;
1949 * If the vma become good for khugepaged to scan,
1950 * register it here without waiting a page fault that
1951 * may not happen any time soon.
1953 if (unlikely(khugepaged_enter_vma_merge(vma
, *vm_flags
)))
1956 case MADV_NOHUGEPAGE
:
1958 * Be somewhat over-protective like KSM for now!
1960 if (*vm_flags
& (VM_NOHUGEPAGE
| VM_NO_THP
))
1962 *vm_flags
&= ~VM_HUGEPAGE
;
1963 *vm_flags
|= VM_NOHUGEPAGE
;
1965 * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
1966 * this vma even if we leave the mm registered in khugepaged if
1967 * it got registered before VM_NOHUGEPAGE was set.
1975 static int __init
khugepaged_slab_init(void)
1977 mm_slot_cache
= kmem_cache_create("khugepaged_mm_slot",
1978 sizeof(struct mm_slot
),
1979 __alignof__(struct mm_slot
), 0, NULL
);
1986 static void __init
khugepaged_slab_exit(void)
1988 kmem_cache_destroy(mm_slot_cache
);
1991 static inline struct mm_slot
*alloc_mm_slot(void)
1993 if (!mm_slot_cache
) /* initialization failed */
1995 return kmem_cache_zalloc(mm_slot_cache
, GFP_KERNEL
);
1998 static inline void free_mm_slot(struct mm_slot
*mm_slot
)
2000 kmem_cache_free(mm_slot_cache
, mm_slot
);
2003 static struct mm_slot
*get_mm_slot(struct mm_struct
*mm
)
2005 struct mm_slot
*mm_slot
;
2007 hash_for_each_possible(mm_slots_hash
, mm_slot
, hash
, (unsigned long)mm
)
2008 if (mm
== mm_slot
->mm
)
2014 static void insert_to_mm_slots_hash(struct mm_struct
*mm
,
2015 struct mm_slot
*mm_slot
)
2018 hash_add(mm_slots_hash
, &mm_slot
->hash
, (long)mm
);
2021 static inline int khugepaged_test_exit(struct mm_struct
*mm
)
2023 return atomic_read(&mm
->mm_users
) == 0;
2026 int __khugepaged_enter(struct mm_struct
*mm
)
2028 struct mm_slot
*mm_slot
;
2031 mm_slot
= alloc_mm_slot();
2035 /* __khugepaged_exit() must not run from under us */
2036 VM_BUG_ON_MM(khugepaged_test_exit(mm
), mm
);
2037 if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE
, &mm
->flags
))) {
2038 free_mm_slot(mm_slot
);
2042 spin_lock(&khugepaged_mm_lock
);
2043 insert_to_mm_slots_hash(mm
, mm_slot
);
2045 * Insert just behind the scanning cursor, to let the area settle
2048 wakeup
= list_empty(&khugepaged_scan
.mm_head
);
2049 list_add_tail(&mm_slot
->mm_node
, &khugepaged_scan
.mm_head
);
2050 spin_unlock(&khugepaged_mm_lock
);
2052 atomic_inc(&mm
->mm_count
);
2054 wake_up_interruptible(&khugepaged_wait
);
2059 int khugepaged_enter_vma_merge(struct vm_area_struct
*vma
,
2060 unsigned long vm_flags
)
2062 unsigned long hstart
, hend
;
2065 * Not yet faulted in so we will register later in the
2066 * page fault if needed.
2070 /* khugepaged not yet working on file or special mappings */
2072 VM_BUG_ON_VMA(vm_flags
& VM_NO_THP
, vma
);
2073 hstart
= (vma
->vm_start
+ ~HPAGE_PMD_MASK
) & HPAGE_PMD_MASK
;
2074 hend
= vma
->vm_end
& HPAGE_PMD_MASK
;
2076 return khugepaged_enter(vma
, vm_flags
);
2080 void __khugepaged_exit(struct mm_struct
*mm
)
2082 struct mm_slot
*mm_slot
;
2085 spin_lock(&khugepaged_mm_lock
);
2086 mm_slot
= get_mm_slot(mm
);
2087 if (mm_slot
&& khugepaged_scan
.mm_slot
!= mm_slot
) {
2088 hash_del(&mm_slot
->hash
);
2089 list_del(&mm_slot
->mm_node
);
2092 spin_unlock(&khugepaged_mm_lock
);
2095 clear_bit(MMF_VM_HUGEPAGE
, &mm
->flags
);
2096 free_mm_slot(mm_slot
);
2098 } else if (mm_slot
) {
2100 * This is required to serialize against
2101 * khugepaged_test_exit() (which is guaranteed to run
2102 * under mmap sem read mode). Stop here (after we
2103 * return all pagetables will be destroyed) until
2104 * khugepaged has finished working on the pagetables
2105 * under the mmap_sem.
2107 down_write(&mm
->mmap_sem
);
2108 up_write(&mm
->mmap_sem
);
2112 static void release_pte_page(struct page
*page
)
2114 /* 0 stands for page_is_file_cache(page) == false */
2115 dec_zone_page_state(page
, NR_ISOLATED_ANON
+ 0);
2117 putback_lru_page(page
);
2120 static void release_pte_pages(pte_t
*pte
, pte_t
*_pte
)
2122 while (--_pte
>= pte
) {
2123 pte_t pteval
= *_pte
;
2124 if (!pte_none(pteval
) && !is_zero_pfn(pte_pfn(pteval
)))
2125 release_pte_page(pte_page(pteval
));
2129 static int __collapse_huge_page_isolate(struct vm_area_struct
*vma
,
2130 unsigned long address
,
2135 int none_or_zero
= 0;
2136 bool referenced
= false, writable
= false;
2137 for (_pte
= pte
; _pte
< pte
+HPAGE_PMD_NR
;
2138 _pte
++, address
+= PAGE_SIZE
) {
2139 pte_t pteval
= *_pte
;
2140 if (pte_none(pteval
) || is_zero_pfn(pte_pfn(pteval
))) {
2141 if (++none_or_zero
<= khugepaged_max_ptes_none
)
2146 if (!pte_present(pteval
))
2148 page
= vm_normal_page(vma
, address
, pteval
);
2149 if (unlikely(!page
))
2152 VM_BUG_ON_PAGE(PageCompound(page
), page
);
2153 VM_BUG_ON_PAGE(!PageAnon(page
), page
);
2154 VM_BUG_ON_PAGE(!PageSwapBacked(page
), page
);
2157 * We can do it before isolate_lru_page because the
2158 * page can't be freed from under us. NOTE: PG_lock
2159 * is needed to serialize against split_huge_page
2160 * when invoked from the VM.
2162 if (!trylock_page(page
))
2166 * cannot use mapcount: can't collapse if there's a gup pin.
2167 * The page must only be referenced by the scanned process
2168 * and page swap cache.
2170 if (page_count(page
) != 1 + !!PageSwapCache(page
)) {
2174 if (pte_write(pteval
)) {
2177 if (PageSwapCache(page
) && !reuse_swap_page(page
)) {
2182 * Page is not in the swap cache. It can be collapsed
2188 * Isolate the page to avoid collapsing an hugepage
2189 * currently in use by the VM.
2191 if (isolate_lru_page(page
)) {
2195 /* 0 stands for page_is_file_cache(page) == false */
2196 inc_zone_page_state(page
, NR_ISOLATED_ANON
+ 0);
2197 VM_BUG_ON_PAGE(!PageLocked(page
), page
);
2198 VM_BUG_ON_PAGE(PageLRU(page
), page
);
2200 /* If there is no mapped pte young don't collapse the page */
2201 if (pte_young(pteval
) || PageReferenced(page
) ||
2202 mmu_notifier_test_young(vma
->vm_mm
, address
))
2205 if (likely(referenced
&& writable
))
2208 release_pte_pages(pte
, _pte
);
2212 static void __collapse_huge_page_copy(pte_t
*pte
, struct page
*page
,
2213 struct vm_area_struct
*vma
,
2214 unsigned long address
,
2218 for (_pte
= pte
; _pte
< pte
+HPAGE_PMD_NR
; _pte
++) {
2219 pte_t pteval
= *_pte
;
2220 struct page
*src_page
;
2222 if (pte_none(pteval
) || is_zero_pfn(pte_pfn(pteval
))) {
2223 clear_user_highpage(page
, address
);
2224 add_mm_counter(vma
->vm_mm
, MM_ANONPAGES
, 1);
2225 if (is_zero_pfn(pte_pfn(pteval
))) {
2227 * ptl mostly unnecessary.
2231 * paravirt calls inside pte_clear here are
2234 pte_clear(vma
->vm_mm
, address
, _pte
);
2238 src_page
= pte_page(pteval
);
2239 copy_user_highpage(page
, src_page
, address
, vma
);
2240 VM_BUG_ON_PAGE(page_mapcount(src_page
) != 1, src_page
);
2241 release_pte_page(src_page
);
2243 * ptl mostly unnecessary, but preempt has to
2244 * be disabled to update the per-cpu stats
2245 * inside page_remove_rmap().
2249 * paravirt calls inside pte_clear here are
2252 pte_clear(vma
->vm_mm
, address
, _pte
);
2253 page_remove_rmap(src_page
);
2255 free_page_and_swap_cache(src_page
);
2258 address
+= PAGE_SIZE
;
2263 static void khugepaged_alloc_sleep(void)
2265 wait_event_freezable_timeout(khugepaged_wait
, false,
2266 msecs_to_jiffies(khugepaged_alloc_sleep_millisecs
));
2269 static int khugepaged_node_load
[MAX_NUMNODES
];
2271 static bool khugepaged_scan_abort(int nid
)
2276 * If zone_reclaim_mode is disabled, then no extra effort is made to
2277 * allocate memory locally.
2279 if (!zone_reclaim_mode
)
2282 /* If there is a count for this node already, it must be acceptable */
2283 if (khugepaged_node_load
[nid
])
2286 for (i
= 0; i
< MAX_NUMNODES
; i
++) {
2287 if (!khugepaged_node_load
[i
])
2289 if (node_distance(nid
, i
) > RECLAIM_DISTANCE
)
2296 static int khugepaged_find_target_node(void)
2298 static int last_khugepaged_target_node
= NUMA_NO_NODE
;
2299 int nid
, target_node
= 0, max_value
= 0;
2301 /* find first node with max normal pages hit */
2302 for (nid
= 0; nid
< MAX_NUMNODES
; nid
++)
2303 if (khugepaged_node_load
[nid
] > max_value
) {
2304 max_value
= khugepaged_node_load
[nid
];
2308 /* do some balance if several nodes have the same hit record */
2309 if (target_node
<= last_khugepaged_target_node
)
2310 for (nid
= last_khugepaged_target_node
+ 1; nid
< MAX_NUMNODES
;
2312 if (max_value
== khugepaged_node_load
[nid
]) {
2317 last_khugepaged_target_node
= target_node
;
2321 static bool khugepaged_prealloc_page(struct page
**hpage
, bool *wait
)
2323 if (IS_ERR(*hpage
)) {
2329 khugepaged_alloc_sleep();
2330 } else if (*hpage
) {
2338 static struct page
*
2339 khugepaged_alloc_page(struct page
**hpage
, gfp_t gfp
, struct mm_struct
*mm
,
2340 struct vm_area_struct
*vma
, unsigned long address
,
2343 VM_BUG_ON_PAGE(*hpage
, *hpage
);
2346 * Before allocating the hugepage, release the mmap_sem read lock.
2347 * The allocation can take potentially a long time if it involves
2348 * sync compaction, and we do not need to hold the mmap_sem during
2349 * that. We will recheck the vma after taking it again in write mode.
2351 up_read(&mm
->mmap_sem
);
2353 *hpage
= alloc_pages_exact_node(node
, gfp
, HPAGE_PMD_ORDER
);
2354 if (unlikely(!*hpage
)) {
2355 count_vm_event(THP_COLLAPSE_ALLOC_FAILED
);
2356 *hpage
= ERR_PTR(-ENOMEM
);
2360 count_vm_event(THP_COLLAPSE_ALLOC
);
2364 static int khugepaged_find_target_node(void)
2369 static inline struct page
*alloc_hugepage(int defrag
)
2371 return alloc_pages(alloc_hugepage_gfpmask(defrag
, 0),
2375 static struct page
*khugepaged_alloc_hugepage(bool *wait
)
2380 hpage
= alloc_hugepage(khugepaged_defrag());
2382 count_vm_event(THP_COLLAPSE_ALLOC_FAILED
);
2387 khugepaged_alloc_sleep();
2389 count_vm_event(THP_COLLAPSE_ALLOC
);
2390 } while (unlikely(!hpage
) && likely(khugepaged_enabled()));
2395 static bool khugepaged_prealloc_page(struct page
**hpage
, bool *wait
)
2398 *hpage
= khugepaged_alloc_hugepage(wait
);
2400 if (unlikely(!*hpage
))
2406 static struct page
*
2407 khugepaged_alloc_page(struct page
**hpage
, gfp_t gfp
, struct mm_struct
*mm
,
2408 struct vm_area_struct
*vma
, unsigned long address
,
2411 up_read(&mm
->mmap_sem
);
2418 static bool hugepage_vma_check(struct vm_area_struct
*vma
)
2420 if ((!(vma
->vm_flags
& VM_HUGEPAGE
) && !khugepaged_always()) ||
2421 (vma
->vm_flags
& VM_NOHUGEPAGE
))
2424 if (!vma
->anon_vma
|| vma
->vm_ops
)
2426 if (is_vma_temporary_stack(vma
))
2428 VM_BUG_ON_VMA(vma
->vm_flags
& VM_NO_THP
, vma
);
2432 static void collapse_huge_page(struct mm_struct
*mm
,
2433 unsigned long address
,
2434 struct page
**hpage
,
2435 struct vm_area_struct
*vma
,
2441 struct page
*new_page
;
2442 spinlock_t
*pmd_ptl
, *pte_ptl
;
2444 unsigned long hstart
, hend
;
2445 struct mem_cgroup
*memcg
;
2446 unsigned long mmun_start
; /* For mmu_notifiers */
2447 unsigned long mmun_end
; /* For mmu_notifiers */
2450 VM_BUG_ON(address
& ~HPAGE_PMD_MASK
);
2452 /* Only allocate from the target node */
2453 gfp
= alloc_hugepage_gfpmask(khugepaged_defrag(), __GFP_OTHER_NODE
) |
2456 /* release the mmap_sem read lock. */
2457 new_page
= khugepaged_alloc_page(hpage
, gfp
, mm
, vma
, address
, node
);
2461 if (unlikely(mem_cgroup_try_charge(new_page
, mm
,
2466 * Prevent all access to pagetables with the exception of
2467 * gup_fast later hanlded by the ptep_clear_flush and the VM
2468 * handled by the anon_vma lock + PG_lock.
2470 down_write(&mm
->mmap_sem
);
2471 if (unlikely(khugepaged_test_exit(mm
)))
2474 vma
= find_vma(mm
, address
);
2477 hstart
= (vma
->vm_start
+ ~HPAGE_PMD_MASK
) & HPAGE_PMD_MASK
;
2478 hend
= vma
->vm_end
& HPAGE_PMD_MASK
;
2479 if (address
< hstart
|| address
+ HPAGE_PMD_SIZE
> hend
)
2481 if (!hugepage_vma_check(vma
))
2483 pmd
= mm_find_pmd(mm
, address
);
2487 anon_vma_lock_write(vma
->anon_vma
);
2489 pte
= pte_offset_map(pmd
, address
);
2490 pte_ptl
= pte_lockptr(mm
, pmd
);
2492 mmun_start
= address
;
2493 mmun_end
= address
+ HPAGE_PMD_SIZE
;
2494 mmu_notifier_invalidate_range_start(mm
, mmun_start
, mmun_end
);
2495 pmd_ptl
= pmd_lock(mm
, pmd
); /* probably unnecessary */
2497 * After this gup_fast can't run anymore. This also removes
2498 * any huge TLB entry from the CPU so we won't allow
2499 * huge and small TLB entries for the same virtual address
2500 * to avoid the risk of CPU bugs in that area.
2502 _pmd
= pmdp_collapse_flush(vma
, address
, pmd
);
2503 spin_unlock(pmd_ptl
);
2504 mmu_notifier_invalidate_range_end(mm
, mmun_start
, mmun_end
);
2507 isolated
= __collapse_huge_page_isolate(vma
, address
, pte
);
2508 spin_unlock(pte_ptl
);
2510 if (unlikely(!isolated
)) {
2513 BUG_ON(!pmd_none(*pmd
));
2515 * We can only use set_pmd_at when establishing
2516 * hugepmds and never for establishing regular pmds that
2517 * points to regular pagetables. Use pmd_populate for that
2519 pmd_populate(mm
, pmd
, pmd_pgtable(_pmd
));
2520 spin_unlock(pmd_ptl
);
2521 anon_vma_unlock_write(vma
->anon_vma
);
2526 * All pages are isolated and locked so anon_vma rmap
2527 * can't run anymore.
2529 anon_vma_unlock_write(vma
->anon_vma
);
2531 __collapse_huge_page_copy(pte
, new_page
, vma
, address
, pte_ptl
);
2533 __SetPageUptodate(new_page
);
2534 pgtable
= pmd_pgtable(_pmd
);
2536 _pmd
= mk_huge_pmd(new_page
, vma
->vm_page_prot
);
2537 _pmd
= maybe_pmd_mkwrite(pmd_mkdirty(_pmd
), vma
);
2540 * spin_lock() below is not the equivalent of smp_wmb(), so
2541 * this is needed to avoid the copy_huge_page writes to become
2542 * visible after the set_pmd_at() write.
2547 BUG_ON(!pmd_none(*pmd
));
2548 page_add_new_anon_rmap(new_page
, vma
, address
);
2549 mem_cgroup_commit_charge(new_page
, memcg
, false);
2550 lru_cache_add_active_or_unevictable(new_page
, vma
);
2551 pgtable_trans_huge_deposit(mm
, pmd
, pgtable
);
2552 set_pmd_at(mm
, address
, pmd
, _pmd
);
2553 update_mmu_cache_pmd(vma
, address
, pmd
);
2554 spin_unlock(pmd_ptl
);
2558 khugepaged_pages_collapsed
++;
2560 up_write(&mm
->mmap_sem
);
2564 mem_cgroup_cancel_charge(new_page
, memcg
);
2568 static int khugepaged_scan_pmd(struct mm_struct
*mm
,
2569 struct vm_area_struct
*vma
,
2570 unsigned long address
,
2571 struct page
**hpage
)
2575 int ret
= 0, none_or_zero
= 0;
2577 unsigned long _address
;
2579 int node
= NUMA_NO_NODE
;
2580 bool writable
= false, referenced
= false;
2582 VM_BUG_ON(address
& ~HPAGE_PMD_MASK
);
2584 pmd
= mm_find_pmd(mm
, address
);
2588 memset(khugepaged_node_load
, 0, sizeof(khugepaged_node_load
));
2589 pte
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
2590 for (_address
= address
, _pte
= pte
; _pte
< pte
+HPAGE_PMD_NR
;
2591 _pte
++, _address
+= PAGE_SIZE
) {
2592 pte_t pteval
= *_pte
;
2593 if (pte_none(pteval
) || is_zero_pfn(pte_pfn(pteval
))) {
2594 if (++none_or_zero
<= khugepaged_max_ptes_none
)
2599 if (!pte_present(pteval
))
2601 if (pte_write(pteval
))
2604 page
= vm_normal_page(vma
, _address
, pteval
);
2605 if (unlikely(!page
))
2608 * Record which node the original page is from and save this
2609 * information to khugepaged_node_load[].
2610 * Khupaged will allocate hugepage from the node has the max
2613 node
= page_to_nid(page
);
2614 if (khugepaged_scan_abort(node
))
2616 khugepaged_node_load
[node
]++;
2617 VM_BUG_ON_PAGE(PageCompound(page
), page
);
2618 if (!PageLRU(page
) || PageLocked(page
) || !PageAnon(page
))
2621 * cannot use mapcount: can't collapse if there's a gup pin.
2622 * The page must only be referenced by the scanned process
2623 * and page swap cache.
2625 if (page_count(page
) != 1 + !!PageSwapCache(page
))
2627 if (pte_young(pteval
) || PageReferenced(page
) ||
2628 mmu_notifier_test_young(vma
->vm_mm
, address
))
2631 if (referenced
&& writable
)
2634 pte_unmap_unlock(pte
, ptl
);
2636 node
= khugepaged_find_target_node();
2637 /* collapse_huge_page will return with the mmap_sem released */
2638 collapse_huge_page(mm
, address
, hpage
, vma
, node
);
2644 static void collect_mm_slot(struct mm_slot
*mm_slot
)
2646 struct mm_struct
*mm
= mm_slot
->mm
;
2648 VM_BUG_ON(NR_CPUS
!= 1 && !spin_is_locked(&khugepaged_mm_lock
));
2650 if (khugepaged_test_exit(mm
)) {
2652 hash_del(&mm_slot
->hash
);
2653 list_del(&mm_slot
->mm_node
);
2656 * Not strictly needed because the mm exited already.
2658 * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
2661 /* khugepaged_mm_lock actually not necessary for the below */
2662 free_mm_slot(mm_slot
);
2667 static unsigned int khugepaged_scan_mm_slot(unsigned int pages
,
2668 struct page
**hpage
)
2669 __releases(&khugepaged_mm_lock
)
2670 __acquires(&khugepaged_mm_lock
)
2672 struct mm_slot
*mm_slot
;
2673 struct mm_struct
*mm
;
2674 struct vm_area_struct
*vma
;
2678 VM_BUG_ON(NR_CPUS
!= 1 && !spin_is_locked(&khugepaged_mm_lock
));
2680 if (khugepaged_scan
.mm_slot
)
2681 mm_slot
= khugepaged_scan
.mm_slot
;
2683 mm_slot
= list_entry(khugepaged_scan
.mm_head
.next
,
2684 struct mm_slot
, mm_node
);
2685 khugepaged_scan
.address
= 0;
2686 khugepaged_scan
.mm_slot
= mm_slot
;
2688 spin_unlock(&khugepaged_mm_lock
);
2691 down_read(&mm
->mmap_sem
);
2692 if (unlikely(khugepaged_test_exit(mm
)))
2695 vma
= find_vma(mm
, khugepaged_scan
.address
);
2698 for (; vma
; vma
= vma
->vm_next
) {
2699 unsigned long hstart
, hend
;
2702 if (unlikely(khugepaged_test_exit(mm
))) {
2706 if (!hugepage_vma_check(vma
)) {
2711 hstart
= (vma
->vm_start
+ ~HPAGE_PMD_MASK
) & HPAGE_PMD_MASK
;
2712 hend
= vma
->vm_end
& HPAGE_PMD_MASK
;
2715 if (khugepaged_scan
.address
> hend
)
2717 if (khugepaged_scan
.address
< hstart
)
2718 khugepaged_scan
.address
= hstart
;
2719 VM_BUG_ON(khugepaged_scan
.address
& ~HPAGE_PMD_MASK
);
2721 while (khugepaged_scan
.address
< hend
) {
2724 if (unlikely(khugepaged_test_exit(mm
)))
2725 goto breakouterloop
;
2727 VM_BUG_ON(khugepaged_scan
.address
< hstart
||
2728 khugepaged_scan
.address
+ HPAGE_PMD_SIZE
>
2730 ret
= khugepaged_scan_pmd(mm
, vma
,
2731 khugepaged_scan
.address
,
2733 /* move to next address */
2734 khugepaged_scan
.address
+= HPAGE_PMD_SIZE
;
2735 progress
+= HPAGE_PMD_NR
;
2737 /* we released mmap_sem so break loop */
2738 goto breakouterloop_mmap_sem
;
2739 if (progress
>= pages
)
2740 goto breakouterloop
;
2744 up_read(&mm
->mmap_sem
); /* exit_mmap will destroy ptes after this */
2745 breakouterloop_mmap_sem
:
2747 spin_lock(&khugepaged_mm_lock
);
2748 VM_BUG_ON(khugepaged_scan
.mm_slot
!= mm_slot
);
2750 * Release the current mm_slot if this mm is about to die, or
2751 * if we scanned all vmas of this mm.
2753 if (khugepaged_test_exit(mm
) || !vma
) {
2755 * Make sure that if mm_users is reaching zero while
2756 * khugepaged runs here, khugepaged_exit will find
2757 * mm_slot not pointing to the exiting mm.
2759 if (mm_slot
->mm_node
.next
!= &khugepaged_scan
.mm_head
) {
2760 khugepaged_scan
.mm_slot
= list_entry(
2761 mm_slot
->mm_node
.next
,
2762 struct mm_slot
, mm_node
);
2763 khugepaged_scan
.address
= 0;
2765 khugepaged_scan
.mm_slot
= NULL
;
2766 khugepaged_full_scans
++;
2769 collect_mm_slot(mm_slot
);
2775 static int khugepaged_has_work(void)
2777 return !list_empty(&khugepaged_scan
.mm_head
) &&
2778 khugepaged_enabled();
2781 static int khugepaged_wait_event(void)
2783 return !list_empty(&khugepaged_scan
.mm_head
) ||
2784 kthread_should_stop();
2787 static void khugepaged_do_scan(void)
2789 struct page
*hpage
= NULL
;
2790 unsigned int progress
= 0, pass_through_head
= 0;
2791 unsigned int pages
= khugepaged_pages_to_scan
;
2794 barrier(); /* write khugepaged_pages_to_scan to local stack */
2796 while (progress
< pages
) {
2797 if (!khugepaged_prealloc_page(&hpage
, &wait
))
2802 if (unlikely(kthread_should_stop() || try_to_freeze()))
2805 spin_lock(&khugepaged_mm_lock
);
2806 if (!khugepaged_scan
.mm_slot
)
2807 pass_through_head
++;
2808 if (khugepaged_has_work() &&
2809 pass_through_head
< 2)
2810 progress
+= khugepaged_scan_mm_slot(pages
- progress
,
2814 spin_unlock(&khugepaged_mm_lock
);
2817 if (!IS_ERR_OR_NULL(hpage
))
2821 static void khugepaged_wait_work(void)
2823 if (khugepaged_has_work()) {
2824 if (!khugepaged_scan_sleep_millisecs
)
2827 wait_event_freezable_timeout(khugepaged_wait
,
2828 kthread_should_stop(),
2829 msecs_to_jiffies(khugepaged_scan_sleep_millisecs
));
2833 if (khugepaged_enabled())
2834 wait_event_freezable(khugepaged_wait
, khugepaged_wait_event());
2837 static int khugepaged(void *none
)
2839 struct mm_slot
*mm_slot
;
2842 set_user_nice(current
, MAX_NICE
);
2844 while (!kthread_should_stop()) {
2845 khugepaged_do_scan();
2846 khugepaged_wait_work();
2849 spin_lock(&khugepaged_mm_lock
);
2850 mm_slot
= khugepaged_scan
.mm_slot
;
2851 khugepaged_scan
.mm_slot
= NULL
;
2853 collect_mm_slot(mm_slot
);
2854 spin_unlock(&khugepaged_mm_lock
);
2858 static void __split_huge_zero_page_pmd(struct vm_area_struct
*vma
,
2859 unsigned long haddr
, pmd_t
*pmd
)
2861 struct mm_struct
*mm
= vma
->vm_mm
;
2866 pmdp_huge_clear_flush_notify(vma
, haddr
, pmd
);
2867 /* leave pmd empty until pte is filled */
2869 pgtable
= pgtable_trans_huge_withdraw(mm
, pmd
);
2870 pmd_populate(mm
, &_pmd
, pgtable
);
2872 for (i
= 0; i
< HPAGE_PMD_NR
; i
++, haddr
+= PAGE_SIZE
) {
2874 entry
= pfn_pte(my_zero_pfn(haddr
), vma
->vm_page_prot
);
2875 entry
= pte_mkspecial(entry
);
2876 pte
= pte_offset_map(&_pmd
, haddr
);
2877 VM_BUG_ON(!pte_none(*pte
));
2878 set_pte_at(mm
, haddr
, pte
, entry
);
2881 smp_wmb(); /* make pte visible before pmd */
2882 pmd_populate(mm
, pmd
, pgtable
);
2883 put_huge_zero_page();
2886 void __split_huge_page_pmd(struct vm_area_struct
*vma
, unsigned long address
,
2891 struct mm_struct
*mm
= vma
->vm_mm
;
2892 unsigned long haddr
= address
& HPAGE_PMD_MASK
;
2893 unsigned long mmun_start
; /* For mmu_notifiers */
2894 unsigned long mmun_end
; /* For mmu_notifiers */
2896 BUG_ON(vma
->vm_start
> haddr
|| vma
->vm_end
< haddr
+ HPAGE_PMD_SIZE
);
2899 mmun_end
= haddr
+ HPAGE_PMD_SIZE
;
2901 mmu_notifier_invalidate_range_start(mm
, mmun_start
, mmun_end
);
2902 ptl
= pmd_lock(mm
, pmd
);
2903 if (unlikely(!pmd_trans_huge(*pmd
))) {
2905 mmu_notifier_invalidate_range_end(mm
, mmun_start
, mmun_end
);
2908 if (is_huge_zero_pmd(*pmd
)) {
2909 __split_huge_zero_page_pmd(vma
, haddr
, pmd
);
2911 mmu_notifier_invalidate_range_end(mm
, mmun_start
, mmun_end
);
2914 page
= pmd_page(*pmd
);
2915 VM_BUG_ON_PAGE(!page_count(page
), page
);
2918 mmu_notifier_invalidate_range_end(mm
, mmun_start
, mmun_end
);
2920 split_huge_page(page
);
2925 * We don't always have down_write of mmap_sem here: a racing
2926 * do_huge_pmd_wp_page() might have copied-on-write to another
2927 * huge page before our split_huge_page() got the anon_vma lock.
2929 if (unlikely(pmd_trans_huge(*pmd
)))
2933 void split_huge_page_pmd_mm(struct mm_struct
*mm
, unsigned long address
,
2936 struct vm_area_struct
*vma
;
2938 vma
= find_vma(mm
, address
);
2939 BUG_ON(vma
== NULL
);
2940 split_huge_page_pmd(vma
, address
, pmd
);
2943 static void split_huge_page_address(struct mm_struct
*mm
,
2944 unsigned long address
)
2950 VM_BUG_ON(!(address
& ~HPAGE_PMD_MASK
));
2952 pgd
= pgd_offset(mm
, address
);
2953 if (!pgd_present(*pgd
))
2956 pud
= pud_offset(pgd
, address
);
2957 if (!pud_present(*pud
))
2960 pmd
= pmd_offset(pud
, address
);
2961 if (!pmd_present(*pmd
))
2964 * Caller holds the mmap_sem write mode, so a huge pmd cannot
2965 * materialize from under us.
2967 split_huge_page_pmd_mm(mm
, address
, pmd
);
2970 void __vma_adjust_trans_huge(struct vm_area_struct
*vma
,
2971 unsigned long start
,
2976 * If the new start address isn't hpage aligned and it could
2977 * previously contain an hugepage: check if we need to split
2980 if (start
& ~HPAGE_PMD_MASK
&&
2981 (start
& HPAGE_PMD_MASK
) >= vma
->vm_start
&&
2982 (start
& HPAGE_PMD_MASK
) + HPAGE_PMD_SIZE
<= vma
->vm_end
)
2983 split_huge_page_address(vma
->vm_mm
, start
);
2986 * If the new end address isn't hpage aligned and it could
2987 * previously contain an hugepage: check if we need to split
2990 if (end
& ~HPAGE_PMD_MASK
&&
2991 (end
& HPAGE_PMD_MASK
) >= vma
->vm_start
&&
2992 (end
& HPAGE_PMD_MASK
) + HPAGE_PMD_SIZE
<= vma
->vm_end
)
2993 split_huge_page_address(vma
->vm_mm
, end
);
2996 * If we're also updating the vma->vm_next->vm_start, if the new
2997 * vm_next->vm_start isn't page aligned and it could previously
2998 * contain an hugepage: check if we need to split an huge pmd.
3000 if (adjust_next
> 0) {
3001 struct vm_area_struct
*next
= vma
->vm_next
;
3002 unsigned long nstart
= next
->vm_start
;
3003 nstart
+= adjust_next
<< PAGE_SHIFT
;
3004 if (nstart
& ~HPAGE_PMD_MASK
&&
3005 (nstart
& HPAGE_PMD_MASK
) >= next
->vm_start
&&
3006 (nstart
& HPAGE_PMD_MASK
) + HPAGE_PMD_SIZE
<= next
->vm_end
)
3007 split_huge_page_address(next
->vm_mm
, nstart
);