2 * Wireless utility functions
4 * Copyright 2007-2009 Johannes Berg <johannes@sipsolutions.net>
5 * Copyright 2013-2014 Intel Mobile Communications GmbH
7 #include <linux/export.h>
8 #include <linux/bitops.h>
9 #include <linux/etherdevice.h>
10 #include <linux/slab.h>
11 #include <net/cfg80211.h>
13 #include <net/dsfield.h>
14 #include <linux/if_vlan.h>
15 #include <linux/mpls.h>
16 #include <linux/gcd.h>
21 struct ieee80211_rate
*
22 ieee80211_get_response_rate(struct ieee80211_supported_band
*sband
,
23 u32 basic_rates
, int bitrate
)
25 struct ieee80211_rate
*result
= &sband
->bitrates
[0];
28 for (i
= 0; i
< sband
->n_bitrates
; i
++) {
29 if (!(basic_rates
& BIT(i
)))
31 if (sband
->bitrates
[i
].bitrate
> bitrate
)
33 result
= &sband
->bitrates
[i
];
38 EXPORT_SYMBOL(ieee80211_get_response_rate
);
40 u32
ieee80211_mandatory_rates(struct ieee80211_supported_band
*sband
,
41 enum nl80211_bss_scan_width scan_width
)
43 struct ieee80211_rate
*bitrates
;
44 u32 mandatory_rates
= 0;
45 enum ieee80211_rate_flags mandatory_flag
;
51 if (sband
->band
== NL80211_BAND_2GHZ
) {
52 if (scan_width
== NL80211_BSS_CHAN_WIDTH_5
||
53 scan_width
== NL80211_BSS_CHAN_WIDTH_10
)
54 mandatory_flag
= IEEE80211_RATE_MANDATORY_G
;
56 mandatory_flag
= IEEE80211_RATE_MANDATORY_B
;
58 mandatory_flag
= IEEE80211_RATE_MANDATORY_A
;
61 bitrates
= sband
->bitrates
;
62 for (i
= 0; i
< sband
->n_bitrates
; i
++)
63 if (bitrates
[i
].flags
& mandatory_flag
)
64 mandatory_rates
|= BIT(i
);
65 return mandatory_rates
;
67 EXPORT_SYMBOL(ieee80211_mandatory_rates
);
69 int ieee80211_channel_to_frequency(int chan
, enum nl80211_band band
)
71 /* see 802.11 17.3.8.3.2 and Annex J
72 * there are overlapping channel numbers in 5GHz and 2GHz bands */
74 return 0; /* not supported */
76 case NL80211_BAND_2GHZ
:
80 return 2407 + chan
* 5;
82 case NL80211_BAND_5GHZ
:
83 if (chan
>= 182 && chan
<= 196)
84 return 4000 + chan
* 5;
86 return 5000 + chan
* 5;
88 case NL80211_BAND_60GHZ
:
90 return 56160 + chan
* 2160;
95 return 0; /* not supported */
97 EXPORT_SYMBOL(ieee80211_channel_to_frequency
);
99 int ieee80211_frequency_to_channel(int freq
)
101 /* see 802.11 17.3.8.3.2 and Annex J */
104 else if (freq
< 2484)
105 return (freq
- 2407) / 5;
106 else if (freq
>= 4910 && freq
<= 4980)
107 return (freq
- 4000) / 5;
108 else if (freq
<= 45000) /* DMG band lower limit */
109 return (freq
- 5000) / 5;
110 else if (freq
>= 58320 && freq
<= 64800)
111 return (freq
- 56160) / 2160;
115 EXPORT_SYMBOL(ieee80211_frequency_to_channel
);
117 struct ieee80211_channel
*ieee80211_get_channel(struct wiphy
*wiphy
, int freq
)
119 enum nl80211_band band
;
120 struct ieee80211_supported_band
*sband
;
123 for (band
= 0; band
< NUM_NL80211_BANDS
; band
++) {
124 sband
= wiphy
->bands
[band
];
129 for (i
= 0; i
< sband
->n_channels
; i
++) {
130 if (sband
->channels
[i
].center_freq
== freq
)
131 return &sband
->channels
[i
];
137 EXPORT_SYMBOL(ieee80211_get_channel
);
139 static void set_mandatory_flags_band(struct ieee80211_supported_band
*sband
)
143 switch (sband
->band
) {
144 case NL80211_BAND_5GHZ
:
146 for (i
= 0; i
< sband
->n_bitrates
; i
++) {
147 if (sband
->bitrates
[i
].bitrate
== 60 ||
148 sband
->bitrates
[i
].bitrate
== 120 ||
149 sband
->bitrates
[i
].bitrate
== 240) {
150 sband
->bitrates
[i
].flags
|=
151 IEEE80211_RATE_MANDATORY_A
;
157 case NL80211_BAND_2GHZ
:
159 for (i
= 0; i
< sband
->n_bitrates
; i
++) {
160 if (sband
->bitrates
[i
].bitrate
== 10) {
161 sband
->bitrates
[i
].flags
|=
162 IEEE80211_RATE_MANDATORY_B
|
163 IEEE80211_RATE_MANDATORY_G
;
167 if (sband
->bitrates
[i
].bitrate
== 20 ||
168 sband
->bitrates
[i
].bitrate
== 55 ||
169 sband
->bitrates
[i
].bitrate
== 110 ||
170 sband
->bitrates
[i
].bitrate
== 60 ||
171 sband
->bitrates
[i
].bitrate
== 120 ||
172 sband
->bitrates
[i
].bitrate
== 240) {
173 sband
->bitrates
[i
].flags
|=
174 IEEE80211_RATE_MANDATORY_G
;
178 if (sband
->bitrates
[i
].bitrate
!= 10 &&
179 sband
->bitrates
[i
].bitrate
!= 20 &&
180 sband
->bitrates
[i
].bitrate
!= 55 &&
181 sband
->bitrates
[i
].bitrate
!= 110)
182 sband
->bitrates
[i
].flags
|=
183 IEEE80211_RATE_ERP_G
;
185 WARN_ON(want
!= 0 && want
!= 3 && want
!= 6);
187 case NL80211_BAND_60GHZ
:
188 /* check for mandatory HT MCS 1..4 */
189 WARN_ON(!sband
->ht_cap
.ht_supported
);
190 WARN_ON((sband
->ht_cap
.mcs
.rx_mask
[0] & 0x1e) != 0x1e);
192 case NUM_NL80211_BANDS
:
199 void ieee80211_set_bitrate_flags(struct wiphy
*wiphy
)
201 enum nl80211_band band
;
203 for (band
= 0; band
< NUM_NL80211_BANDS
; band
++)
204 if (wiphy
->bands
[band
])
205 set_mandatory_flags_band(wiphy
->bands
[band
]);
208 bool cfg80211_supported_cipher_suite(struct wiphy
*wiphy
, u32 cipher
)
211 for (i
= 0; i
< wiphy
->n_cipher_suites
; i
++)
212 if (cipher
== wiphy
->cipher_suites
[i
])
217 int cfg80211_validate_key_settings(struct cfg80211_registered_device
*rdev
,
218 struct key_params
*params
, int key_idx
,
219 bool pairwise
, const u8
*mac_addr
)
221 if (key_idx
< 0 || key_idx
> 5)
224 if (!pairwise
&& mac_addr
&& !(rdev
->wiphy
.flags
& WIPHY_FLAG_IBSS_RSN
))
227 if (pairwise
&& !mac_addr
)
230 switch (params
->cipher
) {
231 case WLAN_CIPHER_SUITE_TKIP
:
232 case WLAN_CIPHER_SUITE_CCMP
:
233 case WLAN_CIPHER_SUITE_CCMP_256
:
234 case WLAN_CIPHER_SUITE_GCMP
:
235 case WLAN_CIPHER_SUITE_GCMP_256
:
236 /* Disallow pairwise keys with non-zero index unless it's WEP
237 * or a vendor specific cipher (because current deployments use
238 * pairwise WEP keys with non-zero indices and for vendor
239 * specific ciphers this should be validated in the driver or
240 * hardware level - but 802.11i clearly specifies to use zero)
242 if (pairwise
&& key_idx
)
245 case WLAN_CIPHER_SUITE_AES_CMAC
:
246 case WLAN_CIPHER_SUITE_BIP_CMAC_256
:
247 case WLAN_CIPHER_SUITE_BIP_GMAC_128
:
248 case WLAN_CIPHER_SUITE_BIP_GMAC_256
:
249 /* Disallow BIP (group-only) cipher as pairwise cipher */
255 case WLAN_CIPHER_SUITE_WEP40
:
256 case WLAN_CIPHER_SUITE_WEP104
:
263 switch (params
->cipher
) {
264 case WLAN_CIPHER_SUITE_WEP40
:
265 if (params
->key_len
!= WLAN_KEY_LEN_WEP40
)
268 case WLAN_CIPHER_SUITE_TKIP
:
269 if (params
->key_len
!= WLAN_KEY_LEN_TKIP
)
272 case WLAN_CIPHER_SUITE_CCMP
:
273 if (params
->key_len
!= WLAN_KEY_LEN_CCMP
)
276 case WLAN_CIPHER_SUITE_CCMP_256
:
277 if (params
->key_len
!= WLAN_KEY_LEN_CCMP_256
)
280 case WLAN_CIPHER_SUITE_GCMP
:
281 if (params
->key_len
!= WLAN_KEY_LEN_GCMP
)
284 case WLAN_CIPHER_SUITE_GCMP_256
:
285 if (params
->key_len
!= WLAN_KEY_LEN_GCMP_256
)
288 case WLAN_CIPHER_SUITE_WEP104
:
289 if (params
->key_len
!= WLAN_KEY_LEN_WEP104
)
292 case WLAN_CIPHER_SUITE_AES_CMAC
:
293 if (params
->key_len
!= WLAN_KEY_LEN_AES_CMAC
)
296 case WLAN_CIPHER_SUITE_BIP_CMAC_256
:
297 if (params
->key_len
!= WLAN_KEY_LEN_BIP_CMAC_256
)
300 case WLAN_CIPHER_SUITE_BIP_GMAC_128
:
301 if (params
->key_len
!= WLAN_KEY_LEN_BIP_GMAC_128
)
304 case WLAN_CIPHER_SUITE_BIP_GMAC_256
:
305 if (params
->key_len
!= WLAN_KEY_LEN_BIP_GMAC_256
)
310 * We don't know anything about this algorithm,
311 * allow using it -- but the driver must check
312 * all parameters! We still check below whether
313 * or not the driver supports this algorithm,
320 switch (params
->cipher
) {
321 case WLAN_CIPHER_SUITE_WEP40
:
322 case WLAN_CIPHER_SUITE_WEP104
:
323 /* These ciphers do not use key sequence */
325 case WLAN_CIPHER_SUITE_TKIP
:
326 case WLAN_CIPHER_SUITE_CCMP
:
327 case WLAN_CIPHER_SUITE_CCMP_256
:
328 case WLAN_CIPHER_SUITE_GCMP
:
329 case WLAN_CIPHER_SUITE_GCMP_256
:
330 case WLAN_CIPHER_SUITE_AES_CMAC
:
331 case WLAN_CIPHER_SUITE_BIP_CMAC_256
:
332 case WLAN_CIPHER_SUITE_BIP_GMAC_128
:
333 case WLAN_CIPHER_SUITE_BIP_GMAC_256
:
334 if (params
->seq_len
!= 6)
340 if (!cfg80211_supported_cipher_suite(&rdev
->wiphy
, params
->cipher
))
346 unsigned int __attribute_const__
ieee80211_hdrlen(__le16 fc
)
348 unsigned int hdrlen
= 24;
350 if (ieee80211_is_data(fc
)) {
351 if (ieee80211_has_a4(fc
))
353 if (ieee80211_is_data_qos(fc
)) {
354 hdrlen
+= IEEE80211_QOS_CTL_LEN
;
355 if (ieee80211_has_order(fc
))
356 hdrlen
+= IEEE80211_HT_CTL_LEN
;
361 if (ieee80211_is_mgmt(fc
)) {
362 if (ieee80211_has_order(fc
))
363 hdrlen
+= IEEE80211_HT_CTL_LEN
;
367 if (ieee80211_is_ctl(fc
)) {
369 * ACK and CTS are 10 bytes, all others 16. To see how
370 * to get this condition consider
371 * subtype mask: 0b0000000011110000 (0x00F0)
372 * ACK subtype: 0b0000000011010000 (0x00D0)
373 * CTS subtype: 0b0000000011000000 (0x00C0)
374 * bits that matter: ^^^ (0x00E0)
375 * value of those: 0b0000000011000000 (0x00C0)
377 if ((fc
& cpu_to_le16(0x00E0)) == cpu_to_le16(0x00C0))
385 EXPORT_SYMBOL(ieee80211_hdrlen
);
387 unsigned int ieee80211_get_hdrlen_from_skb(const struct sk_buff
*skb
)
389 const struct ieee80211_hdr
*hdr
=
390 (const struct ieee80211_hdr
*)skb
->data
;
393 if (unlikely(skb
->len
< 10))
395 hdrlen
= ieee80211_hdrlen(hdr
->frame_control
);
396 if (unlikely(hdrlen
> skb
->len
))
400 EXPORT_SYMBOL(ieee80211_get_hdrlen_from_skb
);
402 static unsigned int __ieee80211_get_mesh_hdrlen(u8 flags
)
404 int ae
= flags
& MESH_FLAGS_AE
;
405 /* 802.11-2012, 8.2.4.7.3 */
410 case MESH_FLAGS_AE_A4
:
412 case MESH_FLAGS_AE_A5_A6
:
417 unsigned int ieee80211_get_mesh_hdrlen(struct ieee80211s_hdr
*meshhdr
)
419 return __ieee80211_get_mesh_hdrlen(meshhdr
->flags
);
421 EXPORT_SYMBOL(ieee80211_get_mesh_hdrlen
);
423 int ieee80211_data_to_8023_exthdr(struct sk_buff
*skb
, struct ethhdr
*ehdr
,
424 const u8
*addr
, enum nl80211_iftype iftype
)
426 struct ieee80211_hdr
*hdr
= (struct ieee80211_hdr
*) skb
->data
;
428 u8 hdr
[ETH_ALEN
] __aligned(2);
435 if (unlikely(!ieee80211_is_data_present(hdr
->frame_control
)))
438 hdrlen
= ieee80211_hdrlen(hdr
->frame_control
);
439 if (skb
->len
< hdrlen
+ 8)
442 /* convert IEEE 802.11 header + possible LLC headers into Ethernet
444 * IEEE 802.11 address fields:
445 * ToDS FromDS Addr1 Addr2 Addr3 Addr4
446 * 0 0 DA SA BSSID n/a
447 * 0 1 DA BSSID SA n/a
448 * 1 0 BSSID SA DA n/a
451 memcpy(tmp
.h_dest
, ieee80211_get_DA(hdr
), ETH_ALEN
);
452 memcpy(tmp
.h_source
, ieee80211_get_SA(hdr
), ETH_ALEN
);
454 if (iftype
== NL80211_IFTYPE_MESH_POINT
)
455 skb_copy_bits(skb
, hdrlen
, &mesh_flags
, 1);
457 mesh_flags
&= MESH_FLAGS_AE
;
459 switch (hdr
->frame_control
&
460 cpu_to_le16(IEEE80211_FCTL_TODS
| IEEE80211_FCTL_FROMDS
)) {
461 case cpu_to_le16(IEEE80211_FCTL_TODS
):
462 if (unlikely(iftype
!= NL80211_IFTYPE_AP
&&
463 iftype
!= NL80211_IFTYPE_AP_VLAN
&&
464 iftype
!= NL80211_IFTYPE_P2P_GO
))
467 case cpu_to_le16(IEEE80211_FCTL_TODS
| IEEE80211_FCTL_FROMDS
):
468 if (unlikely(iftype
!= NL80211_IFTYPE_WDS
&&
469 iftype
!= NL80211_IFTYPE_MESH_POINT
&&
470 iftype
!= NL80211_IFTYPE_AP_VLAN
&&
471 iftype
!= NL80211_IFTYPE_STATION
))
473 if (iftype
== NL80211_IFTYPE_MESH_POINT
) {
474 if (mesh_flags
== MESH_FLAGS_AE_A4
)
476 if (mesh_flags
== MESH_FLAGS_AE_A5_A6
) {
477 skb_copy_bits(skb
, hdrlen
+
478 offsetof(struct ieee80211s_hdr
, eaddr1
),
479 tmp
.h_dest
, 2 * ETH_ALEN
);
481 hdrlen
+= __ieee80211_get_mesh_hdrlen(mesh_flags
);
484 case cpu_to_le16(IEEE80211_FCTL_FROMDS
):
485 if ((iftype
!= NL80211_IFTYPE_STATION
&&
486 iftype
!= NL80211_IFTYPE_P2P_CLIENT
&&
487 iftype
!= NL80211_IFTYPE_MESH_POINT
) ||
488 (is_multicast_ether_addr(tmp
.h_dest
) &&
489 ether_addr_equal(tmp
.h_source
, addr
)))
491 if (iftype
== NL80211_IFTYPE_MESH_POINT
) {
492 if (mesh_flags
== MESH_FLAGS_AE_A5_A6
)
494 if (mesh_flags
== MESH_FLAGS_AE_A4
)
495 skb_copy_bits(skb
, hdrlen
+
496 offsetof(struct ieee80211s_hdr
, eaddr1
),
497 tmp
.h_source
, ETH_ALEN
);
498 hdrlen
+= __ieee80211_get_mesh_hdrlen(mesh_flags
);
502 if (iftype
!= NL80211_IFTYPE_ADHOC
&&
503 iftype
!= NL80211_IFTYPE_STATION
&&
504 iftype
!= NL80211_IFTYPE_OCB
)
509 skb_copy_bits(skb
, hdrlen
, &payload
, sizeof(payload
));
510 tmp
.h_proto
= payload
.proto
;
512 if (likely((ether_addr_equal(payload
.hdr
, rfc1042_header
) &&
513 tmp
.h_proto
!= htons(ETH_P_AARP
) &&
514 tmp
.h_proto
!= htons(ETH_P_IPX
)) ||
515 ether_addr_equal(payload
.hdr
, bridge_tunnel_header
)))
516 /* remove RFC1042 or Bridge-Tunnel encapsulation and
517 * replace EtherType */
518 hdrlen
+= ETH_ALEN
+ 2;
520 tmp
.h_proto
= htons(skb
->len
- hdrlen
);
522 pskb_pull(skb
, hdrlen
);
525 ehdr
= (struct ethhdr
*) skb_push(skb
, sizeof(struct ethhdr
));
526 memcpy(ehdr
, &tmp
, sizeof(tmp
));
530 EXPORT_SYMBOL(ieee80211_data_to_8023_exthdr
);
532 int ieee80211_data_from_8023(struct sk_buff
*skb
, const u8
*addr
,
533 enum nl80211_iftype iftype
,
534 const u8
*bssid
, bool qos
)
536 struct ieee80211_hdr hdr
;
537 u16 hdrlen
, ethertype
;
539 const u8
*encaps_data
;
540 int encaps_len
, skip_header_bytes
;
544 if (unlikely(skb
->len
< ETH_HLEN
))
547 nh_pos
= skb_network_header(skb
) - skb
->data
;
548 h_pos
= skb_transport_header(skb
) - skb
->data
;
550 /* convert Ethernet header to proper 802.11 header (based on
552 ethertype
= (skb
->data
[12] << 8) | skb
->data
[13];
553 fc
= cpu_to_le16(IEEE80211_FTYPE_DATA
| IEEE80211_STYPE_DATA
);
556 case NL80211_IFTYPE_AP
:
557 case NL80211_IFTYPE_AP_VLAN
:
558 case NL80211_IFTYPE_P2P_GO
:
559 fc
|= cpu_to_le16(IEEE80211_FCTL_FROMDS
);
561 memcpy(hdr
.addr1
, skb
->data
, ETH_ALEN
);
562 memcpy(hdr
.addr2
, addr
, ETH_ALEN
);
563 memcpy(hdr
.addr3
, skb
->data
+ ETH_ALEN
, ETH_ALEN
);
566 case NL80211_IFTYPE_STATION
:
567 case NL80211_IFTYPE_P2P_CLIENT
:
568 fc
|= cpu_to_le16(IEEE80211_FCTL_TODS
);
570 memcpy(hdr
.addr1
, bssid
, ETH_ALEN
);
571 memcpy(hdr
.addr2
, skb
->data
+ ETH_ALEN
, ETH_ALEN
);
572 memcpy(hdr
.addr3
, skb
->data
, ETH_ALEN
);
575 case NL80211_IFTYPE_OCB
:
576 case NL80211_IFTYPE_ADHOC
:
578 memcpy(hdr
.addr1
, skb
->data
, ETH_ALEN
);
579 memcpy(hdr
.addr2
, skb
->data
+ ETH_ALEN
, ETH_ALEN
);
580 memcpy(hdr
.addr3
, bssid
, ETH_ALEN
);
588 fc
|= cpu_to_le16(IEEE80211_STYPE_QOS_DATA
);
592 hdr
.frame_control
= fc
;
596 skip_header_bytes
= ETH_HLEN
;
597 if (ethertype
== ETH_P_AARP
|| ethertype
== ETH_P_IPX
) {
598 encaps_data
= bridge_tunnel_header
;
599 encaps_len
= sizeof(bridge_tunnel_header
);
600 skip_header_bytes
-= 2;
601 } else if (ethertype
>= ETH_P_802_3_MIN
) {
602 encaps_data
= rfc1042_header
;
603 encaps_len
= sizeof(rfc1042_header
);
604 skip_header_bytes
-= 2;
610 skb_pull(skb
, skip_header_bytes
);
611 nh_pos
-= skip_header_bytes
;
612 h_pos
-= skip_header_bytes
;
614 head_need
= hdrlen
+ encaps_len
- skb_headroom(skb
);
616 if (head_need
> 0 || skb_cloned(skb
)) {
617 head_need
= max(head_need
, 0);
621 if (pskb_expand_head(skb
, head_need
, 0, GFP_ATOMIC
))
626 memcpy(skb_push(skb
, encaps_len
), encaps_data
, encaps_len
);
627 nh_pos
+= encaps_len
;
631 memcpy(skb_push(skb
, hdrlen
), &hdr
, hdrlen
);
636 /* Update skb pointers to various headers since this modified frame
637 * is going to go through Linux networking code that may potentially
638 * need things like pointer to IP header. */
639 skb_reset_mac_header(skb
);
640 skb_set_network_header(skb
, nh_pos
);
641 skb_set_transport_header(skb
, h_pos
);
645 EXPORT_SYMBOL(ieee80211_data_from_8023
);
648 __frame_add_frag(struct sk_buff
*skb
, struct page
*page
,
649 void *ptr
, int len
, int size
)
651 struct skb_shared_info
*sh
= skb_shinfo(skb
);
655 page_offset
= ptr
- page_address(page
);
656 skb_add_rx_frag(skb
, sh
->nr_frags
, page
, page_offset
, len
, size
);
660 __ieee80211_amsdu_copy_frag(struct sk_buff
*skb
, struct sk_buff
*frame
,
663 struct skb_shared_info
*sh
= skb_shinfo(skb
);
664 const skb_frag_t
*frag
= &sh
->frags
[0];
665 struct page
*frag_page
;
667 int frag_len
, frag_size
;
668 int head_size
= skb
->len
- skb
->data_len
;
671 frag_page
= virt_to_head_page(skb
->head
);
672 frag_ptr
= skb
->data
;
673 frag_size
= head_size
;
675 while (offset
>= frag_size
) {
677 frag_page
= skb_frag_page(frag
);
678 frag_ptr
= skb_frag_address(frag
);
679 frag_size
= skb_frag_size(frag
);
684 frag_len
= frag_size
- offset
;
686 cur_len
= min(len
, frag_len
);
688 __frame_add_frag(frame
, frag_page
, frag_ptr
, cur_len
, frag_size
);
692 frag_len
= skb_frag_size(frag
);
693 cur_len
= min(len
, frag_len
);
694 __frame_add_frag(frame
, skb_frag_page(frag
),
695 skb_frag_address(frag
), cur_len
, frag_len
);
701 static struct sk_buff
*
702 __ieee80211_amsdu_copy(struct sk_buff
*skb
, unsigned int hlen
,
703 int offset
, int len
, bool reuse_frag
)
705 struct sk_buff
*frame
;
708 if (skb
->len
- offset
< len
)
712 * When reusing framents, copy some data to the head to simplify
713 * ethernet header handling and speed up protocol header processing
714 * in the stack later.
717 cur_len
= min_t(int, len
, 32);
720 * Allocate and reserve two bytes more for payload
721 * alignment since sizeof(struct ethhdr) is 14.
723 frame
= dev_alloc_skb(hlen
+ sizeof(struct ethhdr
) + 2 + cur_len
);
727 skb_reserve(frame
, hlen
+ sizeof(struct ethhdr
) + 2);
728 skb_copy_bits(skb
, offset
, skb_put(frame
, cur_len
), cur_len
);
735 __ieee80211_amsdu_copy_frag(skb
, frame
, offset
, len
);
740 void ieee80211_amsdu_to_8023s(struct sk_buff
*skb
, struct sk_buff_head
*list
,
741 const u8
*addr
, enum nl80211_iftype iftype
,
742 const unsigned int extra_headroom
,
743 const u8
*check_da
, const u8
*check_sa
)
745 unsigned int hlen
= ALIGN(extra_headroom
, 4);
746 struct sk_buff
*frame
= NULL
;
749 int offset
= 0, remaining
;
751 bool reuse_frag
= skb
->head_frag
&& !skb_has_frag_list(skb
);
752 bool reuse_skb
= false;
756 unsigned int subframe_len
;
760 skb_copy_bits(skb
, offset
, ð
, sizeof(eth
));
761 len
= ntohs(eth
.h_proto
);
762 subframe_len
= sizeof(struct ethhdr
) + len
;
763 padding
= (4 - subframe_len
) & 0x3;
765 /* the last MSDU has no padding */
766 remaining
= skb
->len
- offset
;
767 if (subframe_len
> remaining
)
770 offset
+= sizeof(struct ethhdr
);
771 last
= remaining
<= subframe_len
+ padding
;
773 /* FIXME: should we really accept multicast DA? */
774 if ((check_da
&& !is_multicast_ether_addr(eth
.h_dest
) &&
775 !ether_addr_equal(check_da
, eth
.h_dest
)) ||
776 (check_sa
&& !ether_addr_equal(check_sa
, eth
.h_source
))) {
777 offset
+= len
+ padding
;
781 /* reuse skb for the last subframe */
782 if (!skb_is_nonlinear(skb
) && !reuse_frag
&& last
) {
783 skb_pull(skb
, offset
);
787 frame
= __ieee80211_amsdu_copy(skb
, hlen
, offset
, len
,
792 offset
+= len
+ padding
;
795 skb_reset_network_header(frame
);
796 frame
->dev
= skb
->dev
;
797 frame
->priority
= skb
->priority
;
799 payload
= frame
->data
;
800 ethertype
= (payload
[6] << 8) | payload
[7];
801 if (likely((ether_addr_equal(payload
, rfc1042_header
) &&
802 ethertype
!= ETH_P_AARP
&& ethertype
!= ETH_P_IPX
) ||
803 ether_addr_equal(payload
, bridge_tunnel_header
))) {
804 eth
.h_proto
= htons(ethertype
);
805 skb_pull(frame
, ETH_ALEN
+ 2);
808 memcpy(skb_push(frame
, sizeof(eth
)), ð
, sizeof(eth
));
809 __skb_queue_tail(list
, frame
);
818 __skb_queue_purge(list
);
821 EXPORT_SYMBOL(ieee80211_amsdu_to_8023s
);
823 /* Given a data frame determine the 802.1p/1d tag to use. */
824 unsigned int cfg80211_classify8021d(struct sk_buff
*skb
,
825 struct cfg80211_qos_map
*qos_map
)
828 unsigned char vlan_priority
;
830 /* skb->priority values from 256->263 are magic values to
831 * directly indicate a specific 802.1d priority. This is used
832 * to allow 802.1d priority to be passed directly in from VLAN
835 if (skb
->priority
>= 256 && skb
->priority
<= 263)
836 return skb
->priority
- 256;
838 if (skb_vlan_tag_present(skb
)) {
839 vlan_priority
= (skb_vlan_tag_get(skb
) & VLAN_PRIO_MASK
)
841 if (vlan_priority
> 0)
842 return vlan_priority
;
845 switch (skb
->protocol
) {
846 case htons(ETH_P_IP
):
847 dscp
= ipv4_get_dsfield(ip_hdr(skb
)) & 0xfc;
849 case htons(ETH_P_IPV6
):
850 dscp
= ipv6_get_dsfield(ipv6_hdr(skb
)) & 0xfc;
852 case htons(ETH_P_MPLS_UC
):
853 case htons(ETH_P_MPLS_MC
): {
854 struct mpls_label mpls_tmp
, *mpls
;
856 mpls
= skb_header_pointer(skb
, sizeof(struct ethhdr
),
857 sizeof(*mpls
), &mpls_tmp
);
861 return (ntohl(mpls
->entry
) & MPLS_LS_TC_MASK
)
864 case htons(ETH_P_80221
):
865 /* 802.21 is always network control traffic */
872 unsigned int i
, tmp_dscp
= dscp
>> 2;
874 for (i
= 0; i
< qos_map
->num_des
; i
++) {
875 if (tmp_dscp
== qos_map
->dscp_exception
[i
].dscp
)
876 return qos_map
->dscp_exception
[i
].up
;
879 for (i
= 0; i
< 8; i
++) {
880 if (tmp_dscp
>= qos_map
->up
[i
].low
&&
881 tmp_dscp
<= qos_map
->up
[i
].high
)
888 EXPORT_SYMBOL(cfg80211_classify8021d
);
890 const u8
*ieee80211_bss_get_ie(struct cfg80211_bss
*bss
, u8 ie
)
892 const struct cfg80211_bss_ies
*ies
;
894 ies
= rcu_dereference(bss
->ies
);
898 return cfg80211_find_ie(ie
, ies
->data
, ies
->len
);
900 EXPORT_SYMBOL(ieee80211_bss_get_ie
);
902 void cfg80211_upload_connect_keys(struct wireless_dev
*wdev
)
904 struct cfg80211_registered_device
*rdev
= wiphy_to_rdev(wdev
->wiphy
);
905 struct net_device
*dev
= wdev
->netdev
;
908 if (!wdev
->connect_keys
)
911 for (i
= 0; i
< CFG80211_MAX_WEP_KEYS
; i
++) {
912 if (!wdev
->connect_keys
->params
[i
].cipher
)
914 if (rdev_add_key(rdev
, dev
, i
, false, NULL
,
915 &wdev
->connect_keys
->params
[i
])) {
916 netdev_err(dev
, "failed to set key %d\n", i
);
919 if (wdev
->connect_keys
->def
== i
&&
920 rdev_set_default_key(rdev
, dev
, i
, true, true)) {
921 netdev_err(dev
, "failed to set defkey %d\n", i
);
926 kzfree(wdev
->connect_keys
);
927 wdev
->connect_keys
= NULL
;
930 void cfg80211_process_wdev_events(struct wireless_dev
*wdev
)
932 struct cfg80211_event
*ev
;
935 spin_lock_irqsave(&wdev
->event_lock
, flags
);
936 while (!list_empty(&wdev
->event_list
)) {
937 ev
= list_first_entry(&wdev
->event_list
,
938 struct cfg80211_event
, list
);
940 spin_unlock_irqrestore(&wdev
->event_lock
, flags
);
944 case EVENT_CONNECT_RESULT
:
945 __cfg80211_connect_result(
948 ev
->cr
.status
== WLAN_STATUS_SUCCESS
);
951 __cfg80211_roamed(wdev
, &ev
->rm
);
953 case EVENT_DISCONNECTED
:
954 __cfg80211_disconnected(wdev
->netdev
,
955 ev
->dc
.ie
, ev
->dc
.ie_len
,
957 !ev
->dc
.locally_generated
);
959 case EVENT_IBSS_JOINED
:
960 __cfg80211_ibss_joined(wdev
->netdev
, ev
->ij
.bssid
,
964 __cfg80211_leave(wiphy_to_rdev(wdev
->wiphy
), wdev
);
971 spin_lock_irqsave(&wdev
->event_lock
, flags
);
973 spin_unlock_irqrestore(&wdev
->event_lock
, flags
);
976 void cfg80211_process_rdev_events(struct cfg80211_registered_device
*rdev
)
978 struct wireless_dev
*wdev
;
982 list_for_each_entry(wdev
, &rdev
->wiphy
.wdev_list
, list
)
983 cfg80211_process_wdev_events(wdev
);
986 int cfg80211_change_iface(struct cfg80211_registered_device
*rdev
,
987 struct net_device
*dev
, enum nl80211_iftype ntype
,
988 struct vif_params
*params
)
991 enum nl80211_iftype otype
= dev
->ieee80211_ptr
->iftype
;
995 /* don't support changing VLANs, you just re-create them */
996 if (otype
== NL80211_IFTYPE_AP_VLAN
)
999 /* cannot change into P2P device or NAN */
1000 if (ntype
== NL80211_IFTYPE_P2P_DEVICE
||
1001 ntype
== NL80211_IFTYPE_NAN
)
1004 if (!rdev
->ops
->change_virtual_intf
||
1005 !(rdev
->wiphy
.interface_modes
& (1 << ntype
)))
1008 /* if it's part of a bridge, reject changing type to station/ibss */
1009 if ((dev
->priv_flags
& IFF_BRIDGE_PORT
) &&
1010 (ntype
== NL80211_IFTYPE_ADHOC
||
1011 ntype
== NL80211_IFTYPE_STATION
||
1012 ntype
== NL80211_IFTYPE_P2P_CLIENT
))
1015 if (ntype
!= otype
) {
1016 dev
->ieee80211_ptr
->use_4addr
= false;
1017 dev
->ieee80211_ptr
->mesh_id_up_len
= 0;
1018 wdev_lock(dev
->ieee80211_ptr
);
1019 rdev_set_qos_map(rdev
, dev
, NULL
);
1020 wdev_unlock(dev
->ieee80211_ptr
);
1023 case NL80211_IFTYPE_AP
:
1024 cfg80211_stop_ap(rdev
, dev
, true);
1026 case NL80211_IFTYPE_ADHOC
:
1027 cfg80211_leave_ibss(rdev
, dev
, false);
1029 case NL80211_IFTYPE_STATION
:
1030 case NL80211_IFTYPE_P2P_CLIENT
:
1031 wdev_lock(dev
->ieee80211_ptr
);
1032 cfg80211_disconnect(rdev
, dev
,
1033 WLAN_REASON_DEAUTH_LEAVING
, true);
1034 wdev_unlock(dev
->ieee80211_ptr
);
1036 case NL80211_IFTYPE_MESH_POINT
:
1037 /* mesh should be handled? */
1043 cfg80211_process_rdev_events(rdev
);
1046 err
= rdev_change_virtual_intf(rdev
, dev
, ntype
, params
);
1048 WARN_ON(!err
&& dev
->ieee80211_ptr
->iftype
!= ntype
);
1050 if (!err
&& params
&& params
->use_4addr
!= -1)
1051 dev
->ieee80211_ptr
->use_4addr
= params
->use_4addr
;
1054 dev
->priv_flags
&= ~IFF_DONT_BRIDGE
;
1056 case NL80211_IFTYPE_STATION
:
1057 if (dev
->ieee80211_ptr
->use_4addr
)
1060 case NL80211_IFTYPE_OCB
:
1061 case NL80211_IFTYPE_P2P_CLIENT
:
1062 case NL80211_IFTYPE_ADHOC
:
1063 dev
->priv_flags
|= IFF_DONT_BRIDGE
;
1065 case NL80211_IFTYPE_P2P_GO
:
1066 case NL80211_IFTYPE_AP
:
1067 case NL80211_IFTYPE_AP_VLAN
:
1068 case NL80211_IFTYPE_WDS
:
1069 case NL80211_IFTYPE_MESH_POINT
:
1072 case NL80211_IFTYPE_MONITOR
:
1073 /* monitor can't bridge anyway */
1075 case NL80211_IFTYPE_UNSPECIFIED
:
1076 case NUM_NL80211_IFTYPES
:
1079 case NL80211_IFTYPE_P2P_DEVICE
:
1080 case NL80211_IFTYPE_NAN
:
1086 if (!err
&& ntype
!= otype
&& netif_running(dev
)) {
1087 cfg80211_update_iface_num(rdev
, ntype
, 1);
1088 cfg80211_update_iface_num(rdev
, otype
, -1);
1094 static u32
cfg80211_calculate_bitrate_ht(struct rate_info
*rate
)
1096 int modulation
, streams
, bitrate
;
1098 /* the formula below does only work for MCS values smaller than 32 */
1099 if (WARN_ON_ONCE(rate
->mcs
>= 32))
1102 modulation
= rate
->mcs
& 7;
1103 streams
= (rate
->mcs
>> 3) + 1;
1105 bitrate
= (rate
->bw
== RATE_INFO_BW_40
) ? 13500000 : 6500000;
1108 bitrate
*= (modulation
+ 1);
1109 else if (modulation
== 4)
1110 bitrate
*= (modulation
+ 2);
1112 bitrate
*= (modulation
+ 3);
1116 if (rate
->flags
& RATE_INFO_FLAGS_SHORT_GI
)
1117 bitrate
= (bitrate
/ 9) * 10;
1119 /* do NOT round down here */
1120 return (bitrate
+ 50000) / 100000;
1123 static u32
cfg80211_calculate_bitrate_60g(struct rate_info
*rate
)
1125 static const u32 __mcs2bitrate
[] = {
1133 [5] = 12512, /* 1251.25 mbps */
1143 [14] = 8662, /* 866.25 mbps */
1153 [24] = 67568, /* 6756.75 mbps */
1164 if (WARN_ON_ONCE(rate
->mcs
>= ARRAY_SIZE(__mcs2bitrate
)))
1167 return __mcs2bitrate
[rate
->mcs
];
1170 static u32
cfg80211_calculate_bitrate_vht(struct rate_info
*rate
)
1172 static const u32 base
[4][10] = {
1182 /* not in the spec, but some devices use this: */
1222 if (WARN_ON_ONCE(rate
->mcs
> 9))
1226 case RATE_INFO_BW_160
:
1229 case RATE_INFO_BW_80
:
1232 case RATE_INFO_BW_40
:
1235 case RATE_INFO_BW_5
:
1236 case RATE_INFO_BW_10
:
1240 case RATE_INFO_BW_20
:
1244 bitrate
= base
[idx
][rate
->mcs
];
1245 bitrate
*= rate
->nss
;
1247 if (rate
->flags
& RATE_INFO_FLAGS_SHORT_GI
)
1248 bitrate
= (bitrate
/ 9) * 10;
1250 /* do NOT round down here */
1251 return (bitrate
+ 50000) / 100000;
1254 u32
cfg80211_calculate_bitrate(struct rate_info
*rate
)
1256 if (rate
->flags
& RATE_INFO_FLAGS_MCS
)
1257 return cfg80211_calculate_bitrate_ht(rate
);
1258 if (rate
->flags
& RATE_INFO_FLAGS_60G
)
1259 return cfg80211_calculate_bitrate_60g(rate
);
1260 if (rate
->flags
& RATE_INFO_FLAGS_VHT_MCS
)
1261 return cfg80211_calculate_bitrate_vht(rate
);
1263 return rate
->legacy
;
1265 EXPORT_SYMBOL(cfg80211_calculate_bitrate
);
1267 int cfg80211_get_p2p_attr(const u8
*ies
, unsigned int len
,
1268 enum ieee80211_p2p_attr_id attr
,
1269 u8
*buf
, unsigned int bufsize
)
1272 u16 attr_remaining
= 0;
1273 bool desired_attr
= false;
1274 u16 desired_len
= 0;
1277 unsigned int iedatalen
;
1284 if (iedatalen
+ 2 > len
)
1287 if (ies
[0] != WLAN_EID_VENDOR_SPECIFIC
)
1295 /* check WFA OUI, P2P subtype */
1296 if (iedata
[0] != 0x50 || iedata
[1] != 0x6f ||
1297 iedata
[2] != 0x9a || iedata
[3] != 0x09)
1303 /* check attribute continuation into this IE */
1304 copy
= min_t(unsigned int, attr_remaining
, iedatalen
);
1305 if (copy
&& desired_attr
) {
1306 desired_len
+= copy
;
1308 memcpy(out
, iedata
, min(bufsize
, copy
));
1309 out
+= min(bufsize
, copy
);
1310 bufsize
-= min(bufsize
, copy
);
1314 if (copy
== attr_remaining
)
1318 attr_remaining
-= copy
;
1325 while (iedatalen
> 0) {
1328 /* P2P attribute ID & size must fit */
1331 desired_attr
= iedata
[0] == attr
;
1332 attr_len
= get_unaligned_le16(iedata
+ 1);
1336 copy
= min_t(unsigned int, attr_len
, iedatalen
);
1339 desired_len
+= copy
;
1341 memcpy(out
, iedata
, min(bufsize
, copy
));
1342 out
+= min(bufsize
, copy
);
1343 bufsize
-= min(bufsize
, copy
);
1346 if (copy
== attr_len
)
1352 attr_remaining
= attr_len
- copy
;
1360 if (attr_remaining
&& desired_attr
)
1365 EXPORT_SYMBOL(cfg80211_get_p2p_attr
);
1367 static bool ieee80211_id_in_list(const u8
*ids
, int n_ids
, u8 id
)
1371 for (i
= 0; i
< n_ids
; i
++)
1377 static size_t skip_ie(const u8
*ies
, size_t ielen
, size_t pos
)
1379 /* we assume a validly formed IEs buffer */
1380 u8 len
= ies
[pos
+ 1];
1384 /* the IE itself must have 255 bytes for fragments to follow */
1388 while (pos
< ielen
&& ies
[pos
] == WLAN_EID_FRAGMENT
) {
1396 size_t ieee80211_ie_split_ric(const u8
*ies
, size_t ielen
,
1397 const u8
*ids
, int n_ids
,
1398 const u8
*after_ric
, int n_after_ric
,
1401 size_t pos
= offset
;
1403 while (pos
< ielen
&& ieee80211_id_in_list(ids
, n_ids
, ies
[pos
])) {
1404 if (ies
[pos
] == WLAN_EID_RIC_DATA
&& n_after_ric
) {
1405 pos
= skip_ie(ies
, ielen
, pos
);
1407 while (pos
< ielen
&&
1408 !ieee80211_id_in_list(after_ric
, n_after_ric
,
1410 pos
= skip_ie(ies
, ielen
, pos
);
1412 pos
= skip_ie(ies
, ielen
, pos
);
1418 EXPORT_SYMBOL(ieee80211_ie_split_ric
);
1420 bool ieee80211_operating_class_to_band(u8 operating_class
,
1421 enum nl80211_band
*band
)
1423 switch (operating_class
) {
1427 *band
= NL80211_BAND_5GHZ
;
1433 *band
= NL80211_BAND_2GHZ
;
1436 *band
= NL80211_BAND_60GHZ
;
1442 EXPORT_SYMBOL(ieee80211_operating_class_to_band
);
1444 bool ieee80211_chandef_to_operating_class(struct cfg80211_chan_def
*chandef
,
1448 u16 freq
= chandef
->center_freq1
;
1450 if (freq
>= 2412 && freq
<= 2472) {
1451 if (chandef
->width
> NL80211_CHAN_WIDTH_40
)
1454 /* 2.407 GHz, channels 1..13 */
1455 if (chandef
->width
== NL80211_CHAN_WIDTH_40
) {
1456 if (freq
> chandef
->chan
->center_freq
)
1457 *op_class
= 83; /* HT40+ */
1459 *op_class
= 84; /* HT40- */
1468 if (chandef
->width
> NL80211_CHAN_WIDTH_40
)
1471 *op_class
= 82; /* channel 14 */
1475 switch (chandef
->width
) {
1476 case NL80211_CHAN_WIDTH_80
:
1479 case NL80211_CHAN_WIDTH_160
:
1482 case NL80211_CHAN_WIDTH_80P80
:
1485 case NL80211_CHAN_WIDTH_10
:
1486 case NL80211_CHAN_WIDTH_5
:
1487 return false; /* unsupported for now */
1493 /* 5 GHz, channels 36..48 */
1494 if (freq
>= 5180 && freq
<= 5240) {
1496 *op_class
= vht_opclass
;
1497 } else if (chandef
->width
== NL80211_CHAN_WIDTH_40
) {
1498 if (freq
> chandef
->chan
->center_freq
)
1509 /* 5 GHz, channels 52..64 */
1510 if (freq
>= 5260 && freq
<= 5320) {
1512 *op_class
= vht_opclass
;
1513 } else if (chandef
->width
== NL80211_CHAN_WIDTH_40
) {
1514 if (freq
> chandef
->chan
->center_freq
)
1525 /* 5 GHz, channels 100..144 */
1526 if (freq
>= 5500 && freq
<= 5720) {
1528 *op_class
= vht_opclass
;
1529 } else if (chandef
->width
== NL80211_CHAN_WIDTH_40
) {
1530 if (freq
> chandef
->chan
->center_freq
)
1541 /* 5 GHz, channels 149..169 */
1542 if (freq
>= 5745 && freq
<= 5845) {
1544 *op_class
= vht_opclass
;
1545 } else if (chandef
->width
== NL80211_CHAN_WIDTH_40
) {
1546 if (freq
> chandef
->chan
->center_freq
)
1550 } else if (freq
<= 5805) {
1559 /* 56.16 GHz, channel 1..4 */
1560 if (freq
>= 56160 + 2160 * 1 && freq
<= 56160 + 2160 * 4) {
1561 if (chandef
->width
>= NL80211_CHAN_WIDTH_40
)
1568 /* not supported yet */
1571 EXPORT_SYMBOL(ieee80211_chandef_to_operating_class
);
1573 static void cfg80211_calculate_bi_data(struct wiphy
*wiphy
, u32 new_beacon_int
,
1574 u32
*beacon_int_gcd
,
1575 bool *beacon_int_different
)
1577 struct wireless_dev
*wdev
;
1579 *beacon_int_gcd
= 0;
1580 *beacon_int_different
= false;
1582 list_for_each_entry(wdev
, &wiphy
->wdev_list
, list
) {
1583 if (!wdev
->beacon_interval
)
1586 if (!*beacon_int_gcd
) {
1587 *beacon_int_gcd
= wdev
->beacon_interval
;
1591 if (wdev
->beacon_interval
== *beacon_int_gcd
)
1594 *beacon_int_different
= true;
1595 *beacon_int_gcd
= gcd(*beacon_int_gcd
, wdev
->beacon_interval
);
1598 if (new_beacon_int
&& *beacon_int_gcd
!= new_beacon_int
) {
1599 if (*beacon_int_gcd
)
1600 *beacon_int_different
= true;
1601 *beacon_int_gcd
= gcd(*beacon_int_gcd
, new_beacon_int
);
1605 int cfg80211_validate_beacon_int(struct cfg80211_registered_device
*rdev
,
1606 enum nl80211_iftype iftype
, u32 beacon_int
)
1609 * This is just a basic pre-condition check; if interface combinations
1610 * are possible the driver must already be checking those with a call
1611 * to cfg80211_check_combinations(), in which case we'll validate more
1612 * through the cfg80211_calculate_bi_data() call and code in
1613 * cfg80211_iter_combinations().
1616 if (beacon_int
< 10 || beacon_int
> 10000)
1622 int cfg80211_iter_combinations(struct wiphy
*wiphy
,
1623 struct iface_combination_params
*params
,
1624 void (*iter
)(const struct ieee80211_iface_combination
*c
,
1628 const struct ieee80211_regdomain
*regdom
;
1629 enum nl80211_dfs_regions region
= 0;
1631 int num_interfaces
= 0;
1632 u32 used_iftypes
= 0;
1634 bool beacon_int_different
;
1637 * This is a bit strange, since the iteration used to rely only on
1638 * the data given by the driver, but here it now relies on context,
1639 * in form of the currently operating interfaces.
1640 * This is OK for all current users, and saves us from having to
1641 * push the GCD calculations into all the drivers.
1642 * In the future, this should probably rely more on data that's in
1643 * cfg80211 already - the only thing not would appear to be any new
1644 * interfaces (while being brought up) and channel/radar data.
1646 cfg80211_calculate_bi_data(wiphy
, params
->new_beacon_int
,
1647 &beacon_int_gcd
, &beacon_int_different
);
1649 if (params
->radar_detect
) {
1651 regdom
= rcu_dereference(cfg80211_regdomain
);
1653 region
= regdom
->dfs_region
;
1657 for (iftype
= 0; iftype
< NUM_NL80211_IFTYPES
; iftype
++) {
1658 num_interfaces
+= params
->iftype_num
[iftype
];
1659 if (params
->iftype_num
[iftype
] > 0 &&
1660 !(wiphy
->software_iftypes
& BIT(iftype
)))
1661 used_iftypes
|= BIT(iftype
);
1664 for (i
= 0; i
< wiphy
->n_iface_combinations
; i
++) {
1665 const struct ieee80211_iface_combination
*c
;
1666 struct ieee80211_iface_limit
*limits
;
1667 u32 all_iftypes
= 0;
1669 c
= &wiphy
->iface_combinations
[i
];
1671 if (num_interfaces
> c
->max_interfaces
)
1673 if (params
->num_different_channels
> c
->num_different_channels
)
1676 limits
= kmemdup(c
->limits
, sizeof(limits
[0]) * c
->n_limits
,
1681 for (iftype
= 0; iftype
< NUM_NL80211_IFTYPES
; iftype
++) {
1682 if (wiphy
->software_iftypes
& BIT(iftype
))
1684 for (j
= 0; j
< c
->n_limits
; j
++) {
1685 all_iftypes
|= limits
[j
].types
;
1686 if (!(limits
[j
].types
& BIT(iftype
)))
1688 if (limits
[j
].max
< params
->iftype_num
[iftype
])
1690 limits
[j
].max
-= params
->iftype_num
[iftype
];
1694 if (params
->radar_detect
!=
1695 (c
->radar_detect_widths
& params
->radar_detect
))
1698 if (params
->radar_detect
&& c
->radar_detect_regions
&&
1699 !(c
->radar_detect_regions
& BIT(region
)))
1702 /* Finally check that all iftypes that we're currently
1703 * using are actually part of this combination. If they
1704 * aren't then we can't use this combination and have
1705 * to continue to the next.
1707 if ((all_iftypes
& used_iftypes
) != used_iftypes
)
1710 if (beacon_int_gcd
) {
1711 if (c
->beacon_int_min_gcd
&&
1712 beacon_int_gcd
< c
->beacon_int_min_gcd
)
1714 if (!c
->beacon_int_min_gcd
&& beacon_int_different
)
1718 /* This combination covered all interface types and
1719 * supported the requested numbers, so we're good.
1729 EXPORT_SYMBOL(cfg80211_iter_combinations
);
1732 cfg80211_iter_sum_ifcombs(const struct ieee80211_iface_combination
*c
,
1739 int cfg80211_check_combinations(struct wiphy
*wiphy
,
1740 struct iface_combination_params
*params
)
1744 err
= cfg80211_iter_combinations(wiphy
, params
,
1745 cfg80211_iter_sum_ifcombs
, &num
);
1753 EXPORT_SYMBOL(cfg80211_check_combinations
);
1755 int ieee80211_get_ratemask(struct ieee80211_supported_band
*sband
,
1756 const u8
*rates
, unsigned int n_rates
,
1764 if (n_rates
== 0 || n_rates
> NL80211_MAX_SUPP_RATES
)
1769 for (i
= 0; i
< n_rates
; i
++) {
1770 int rate
= (rates
[i
] & 0x7f) * 5;
1773 for (j
= 0; j
< sband
->n_bitrates
; j
++) {
1774 if (sband
->bitrates
[j
].bitrate
== rate
) {
1785 * mask must have at least one bit set here since we
1786 * didn't accept a 0-length rates array nor allowed
1787 * entries in the array that didn't exist
1793 unsigned int ieee80211_get_num_supported_channels(struct wiphy
*wiphy
)
1795 enum nl80211_band band
;
1796 unsigned int n_channels
= 0;
1798 for (band
= 0; band
< NUM_NL80211_BANDS
; band
++)
1799 if (wiphy
->bands
[band
])
1800 n_channels
+= wiphy
->bands
[band
]->n_channels
;
1804 EXPORT_SYMBOL(ieee80211_get_num_supported_channels
);
1806 int cfg80211_get_station(struct net_device
*dev
, const u8
*mac_addr
,
1807 struct station_info
*sinfo
)
1809 struct cfg80211_registered_device
*rdev
;
1810 struct wireless_dev
*wdev
;
1812 wdev
= dev
->ieee80211_ptr
;
1816 rdev
= wiphy_to_rdev(wdev
->wiphy
);
1817 if (!rdev
->ops
->get_station
)
1820 return rdev_get_station(rdev
, dev
, mac_addr
, sinfo
);
1822 EXPORT_SYMBOL(cfg80211_get_station
);
1824 void cfg80211_free_nan_func(struct cfg80211_nan_func
*f
)
1831 kfree(f
->serv_spec_info
);
1834 for (i
= 0; i
< f
->num_rx_filters
; i
++)
1835 kfree(f
->rx_filters
[i
].filter
);
1837 for (i
= 0; i
< f
->num_tx_filters
; i
++)
1838 kfree(f
->tx_filters
[i
].filter
);
1840 kfree(f
->rx_filters
);
1841 kfree(f
->tx_filters
);
1844 EXPORT_SYMBOL(cfg80211_free_nan_func
);
1846 bool cfg80211_does_bw_fit_range(const struct ieee80211_freq_range
*freq_range
,
1847 u32 center_freq_khz
, u32 bw_khz
)
1849 u32 start_freq_khz
, end_freq_khz
;
1851 start_freq_khz
= center_freq_khz
- (bw_khz
/ 2);
1852 end_freq_khz
= center_freq_khz
+ (bw_khz
/ 2);
1854 if (start_freq_khz
>= freq_range
->start_freq_khz
&&
1855 end_freq_khz
<= freq_range
->end_freq_khz
)
1861 /* See IEEE 802.1H for LLC/SNAP encapsulation/decapsulation */
1862 /* Ethernet-II snap header (RFC1042 for most EtherTypes) */
1863 const unsigned char rfc1042_header
[] __aligned(2) =
1864 { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0x00 };
1865 EXPORT_SYMBOL(rfc1042_header
);
1867 /* Bridge-Tunnel header (for EtherTypes ETH_P_AARP and ETH_P_IPX) */
1868 const unsigned char bridge_tunnel_header
[] __aligned(2) =
1869 { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0xf8 };
1870 EXPORT_SYMBOL(bridge_tunnel_header
);