2 * Copyright (C) 2011, 2012 STRATO. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/blkdev.h>
20 #include <linux/ratelimit.h>
24 #include "ordered-data.h"
25 #include "transaction.h"
27 #include "extent_io.h"
28 #include "dev-replace.h"
29 #include "check-integrity.h"
30 #include "rcu-string.h"
34 * This is only the first step towards a full-features scrub. It reads all
35 * extent and super block and verifies the checksums. In case a bad checksum
36 * is found or the extent cannot be read, good data will be written back if
39 * Future enhancements:
40 * - In case an unrepairable extent is encountered, track which files are
41 * affected and report them
42 * - track and record media errors, throw out bad devices
43 * - add a mode to also read unallocated space
50 * the following three values only influence the performance.
51 * The last one configures the number of parallel and outstanding I/O
52 * operations. The first two values configure an upper limit for the number
53 * of (dynamically allocated) pages that are added to a bio.
55 #define SCRUB_PAGES_PER_RD_BIO 32 /* 128k per bio */
56 #define SCRUB_PAGES_PER_WR_BIO 32 /* 128k per bio */
57 #define SCRUB_BIOS_PER_SCTX 64 /* 8MB per device in flight */
60 * the following value times PAGE_SIZE needs to be large enough to match the
61 * largest node/leaf/sector size that shall be supported.
62 * Values larger than BTRFS_STRIPE_LEN are not supported.
64 #define SCRUB_MAX_PAGES_PER_BLOCK 16 /* 64k per node/leaf/sector */
66 struct scrub_recover
{
68 struct btrfs_bio
*bbio
;
73 struct scrub_block
*sblock
;
75 struct btrfs_device
*dev
;
76 struct list_head list
;
77 u64 flags
; /* extent flags */
81 u64 physical_for_dev_replace
;
84 unsigned int mirror_num
:8;
85 unsigned int have_csum
:1;
86 unsigned int io_error
:1;
88 u8 csum
[BTRFS_CSUM_SIZE
];
90 struct scrub_recover
*recover
;
95 struct scrub_ctx
*sctx
;
96 struct btrfs_device
*dev
;
101 #if SCRUB_PAGES_PER_WR_BIO >= SCRUB_PAGES_PER_RD_BIO
102 struct scrub_page
*pagev
[SCRUB_PAGES_PER_WR_BIO
];
104 struct scrub_page
*pagev
[SCRUB_PAGES_PER_RD_BIO
];
108 struct btrfs_work work
;
112 struct scrub_page
*pagev
[SCRUB_MAX_PAGES_PER_BLOCK
];
114 atomic_t outstanding_pages
;
115 atomic_t refs
; /* free mem on transition to zero */
116 struct scrub_ctx
*sctx
;
117 struct scrub_parity
*sparity
;
119 unsigned int header_error
:1;
120 unsigned int checksum_error
:1;
121 unsigned int no_io_error_seen
:1;
122 unsigned int generation_error
:1; /* also sets header_error */
124 /* The following is for the data used to check parity */
125 /* It is for the data with checksum */
126 unsigned int data_corrected
:1;
128 struct btrfs_work work
;
131 /* Used for the chunks with parity stripe such RAID5/6 */
132 struct scrub_parity
{
133 struct scrub_ctx
*sctx
;
135 struct btrfs_device
*scrub_dev
;
147 struct list_head spages
;
149 /* Work of parity check and repair */
150 struct btrfs_work work
;
152 /* Mark the parity blocks which have data */
153 unsigned long *dbitmap
;
156 * Mark the parity blocks which have data, but errors happen when
157 * read data or check data
159 unsigned long *ebitmap
;
161 unsigned long bitmap
[0];
164 struct scrub_wr_ctx
{
165 struct scrub_bio
*wr_curr_bio
;
166 struct btrfs_device
*tgtdev
;
167 int pages_per_wr_bio
; /* <= SCRUB_PAGES_PER_WR_BIO */
168 atomic_t flush_all_writes
;
169 struct mutex wr_lock
;
173 struct scrub_bio
*bios
[SCRUB_BIOS_PER_SCTX
];
174 struct btrfs_fs_info
*fs_info
;
177 atomic_t bios_in_flight
;
178 atomic_t workers_pending
;
179 spinlock_t list_lock
;
180 wait_queue_head_t list_wait
;
182 struct list_head csum_list
;
185 int pages_per_rd_bio
;
190 struct scrub_wr_ctx wr_ctx
;
195 struct btrfs_scrub_progress stat
;
196 spinlock_t stat_lock
;
199 * Use a ref counter to avoid use-after-free issues. Scrub workers
200 * decrement bios_in_flight and workers_pending and then do a wakeup
201 * on the list_wait wait queue. We must ensure the main scrub task
202 * doesn't free the scrub context before or while the workers are
203 * doing the wakeup() call.
208 struct scrub_fixup_nodatasum
{
209 struct scrub_ctx
*sctx
;
210 struct btrfs_device
*dev
;
212 struct btrfs_root
*root
;
213 struct btrfs_work work
;
217 struct scrub_nocow_inode
{
221 struct list_head list
;
224 struct scrub_copy_nocow_ctx
{
225 struct scrub_ctx
*sctx
;
229 u64 physical_for_dev_replace
;
230 struct list_head inodes
;
231 struct btrfs_work work
;
234 struct scrub_warning
{
235 struct btrfs_path
*path
;
236 u64 extent_item_size
;
240 struct btrfs_device
*dev
;
243 static void scrub_pending_bio_inc(struct scrub_ctx
*sctx
);
244 static void scrub_pending_bio_dec(struct scrub_ctx
*sctx
);
245 static void scrub_pending_trans_workers_inc(struct scrub_ctx
*sctx
);
246 static void scrub_pending_trans_workers_dec(struct scrub_ctx
*sctx
);
247 static int scrub_handle_errored_block(struct scrub_block
*sblock_to_check
);
248 static int scrub_setup_recheck_block(struct scrub_block
*original_sblock
,
249 struct scrub_block
*sblocks_for_recheck
);
250 static void scrub_recheck_block(struct btrfs_fs_info
*fs_info
,
251 struct scrub_block
*sblock
,
252 int retry_failed_mirror
);
253 static void scrub_recheck_block_checksum(struct scrub_block
*sblock
);
254 static int scrub_repair_block_from_good_copy(struct scrub_block
*sblock_bad
,
255 struct scrub_block
*sblock_good
);
256 static int scrub_repair_page_from_good_copy(struct scrub_block
*sblock_bad
,
257 struct scrub_block
*sblock_good
,
258 int page_num
, int force_write
);
259 static void scrub_write_block_to_dev_replace(struct scrub_block
*sblock
);
260 static int scrub_write_page_to_dev_replace(struct scrub_block
*sblock
,
262 static int scrub_checksum_data(struct scrub_block
*sblock
);
263 static int scrub_checksum_tree_block(struct scrub_block
*sblock
);
264 static int scrub_checksum_super(struct scrub_block
*sblock
);
265 static void scrub_block_get(struct scrub_block
*sblock
);
266 static void scrub_block_put(struct scrub_block
*sblock
);
267 static void scrub_page_get(struct scrub_page
*spage
);
268 static void scrub_page_put(struct scrub_page
*spage
);
269 static void scrub_parity_get(struct scrub_parity
*sparity
);
270 static void scrub_parity_put(struct scrub_parity
*sparity
);
271 static int scrub_add_page_to_rd_bio(struct scrub_ctx
*sctx
,
272 struct scrub_page
*spage
);
273 static int scrub_pages(struct scrub_ctx
*sctx
, u64 logical
, u64 len
,
274 u64 physical
, struct btrfs_device
*dev
, u64 flags
,
275 u64 gen
, int mirror_num
, u8
*csum
, int force
,
276 u64 physical_for_dev_replace
);
277 static void scrub_bio_end_io(struct bio
*bio
);
278 static void scrub_bio_end_io_worker(struct btrfs_work
*work
);
279 static void scrub_block_complete(struct scrub_block
*sblock
);
280 static void scrub_remap_extent(struct btrfs_fs_info
*fs_info
,
281 u64 extent_logical
, u64 extent_len
,
282 u64
*extent_physical
,
283 struct btrfs_device
**extent_dev
,
284 int *extent_mirror_num
);
285 static int scrub_setup_wr_ctx(struct scrub_ctx
*sctx
,
286 struct scrub_wr_ctx
*wr_ctx
,
287 struct btrfs_fs_info
*fs_info
,
288 struct btrfs_device
*dev
,
290 static void scrub_free_wr_ctx(struct scrub_wr_ctx
*wr_ctx
);
291 static int scrub_add_page_to_wr_bio(struct scrub_ctx
*sctx
,
292 struct scrub_page
*spage
);
293 static void scrub_wr_submit(struct scrub_ctx
*sctx
);
294 static void scrub_wr_bio_end_io(struct bio
*bio
);
295 static void scrub_wr_bio_end_io_worker(struct btrfs_work
*work
);
296 static int write_page_nocow(struct scrub_ctx
*sctx
,
297 u64 physical_for_dev_replace
, struct page
*page
);
298 static int copy_nocow_pages_for_inode(u64 inum
, u64 offset
, u64 root
,
299 struct scrub_copy_nocow_ctx
*ctx
);
300 static int copy_nocow_pages(struct scrub_ctx
*sctx
, u64 logical
, u64 len
,
301 int mirror_num
, u64 physical_for_dev_replace
);
302 static void copy_nocow_pages_worker(struct btrfs_work
*work
);
303 static void __scrub_blocked_if_needed(struct btrfs_fs_info
*fs_info
);
304 static void scrub_blocked_if_needed(struct btrfs_fs_info
*fs_info
);
305 static void scrub_put_ctx(struct scrub_ctx
*sctx
);
308 static void scrub_pending_bio_inc(struct scrub_ctx
*sctx
)
310 atomic_inc(&sctx
->refs
);
311 atomic_inc(&sctx
->bios_in_flight
);
314 static void scrub_pending_bio_dec(struct scrub_ctx
*sctx
)
316 atomic_dec(&sctx
->bios_in_flight
);
317 wake_up(&sctx
->list_wait
);
321 static void __scrub_blocked_if_needed(struct btrfs_fs_info
*fs_info
)
323 while (atomic_read(&fs_info
->scrub_pause_req
)) {
324 mutex_unlock(&fs_info
->scrub_lock
);
325 wait_event(fs_info
->scrub_pause_wait
,
326 atomic_read(&fs_info
->scrub_pause_req
) == 0);
327 mutex_lock(&fs_info
->scrub_lock
);
331 static void scrub_pause_on(struct btrfs_fs_info
*fs_info
)
333 atomic_inc(&fs_info
->scrubs_paused
);
334 wake_up(&fs_info
->scrub_pause_wait
);
337 static void scrub_pause_off(struct btrfs_fs_info
*fs_info
)
339 mutex_lock(&fs_info
->scrub_lock
);
340 __scrub_blocked_if_needed(fs_info
);
341 atomic_dec(&fs_info
->scrubs_paused
);
342 mutex_unlock(&fs_info
->scrub_lock
);
344 wake_up(&fs_info
->scrub_pause_wait
);
347 static void scrub_blocked_if_needed(struct btrfs_fs_info
*fs_info
)
349 scrub_pause_on(fs_info
);
350 scrub_pause_off(fs_info
);
354 * used for workers that require transaction commits (i.e., for the
357 static void scrub_pending_trans_workers_inc(struct scrub_ctx
*sctx
)
359 struct btrfs_fs_info
*fs_info
= sctx
->fs_info
;
361 atomic_inc(&sctx
->refs
);
363 * increment scrubs_running to prevent cancel requests from
364 * completing as long as a worker is running. we must also
365 * increment scrubs_paused to prevent deadlocking on pause
366 * requests used for transactions commits (as the worker uses a
367 * transaction context). it is safe to regard the worker
368 * as paused for all matters practical. effectively, we only
369 * avoid cancellation requests from completing.
371 mutex_lock(&fs_info
->scrub_lock
);
372 atomic_inc(&fs_info
->scrubs_running
);
373 atomic_inc(&fs_info
->scrubs_paused
);
374 mutex_unlock(&fs_info
->scrub_lock
);
377 * check if @scrubs_running=@scrubs_paused condition
378 * inside wait_event() is not an atomic operation.
379 * which means we may inc/dec @scrub_running/paused
380 * at any time. Let's wake up @scrub_pause_wait as
381 * much as we can to let commit transaction blocked less.
383 wake_up(&fs_info
->scrub_pause_wait
);
385 atomic_inc(&sctx
->workers_pending
);
388 /* used for workers that require transaction commits */
389 static void scrub_pending_trans_workers_dec(struct scrub_ctx
*sctx
)
391 struct btrfs_fs_info
*fs_info
= sctx
->fs_info
;
394 * see scrub_pending_trans_workers_inc() why we're pretending
395 * to be paused in the scrub counters
397 mutex_lock(&fs_info
->scrub_lock
);
398 atomic_dec(&fs_info
->scrubs_running
);
399 atomic_dec(&fs_info
->scrubs_paused
);
400 mutex_unlock(&fs_info
->scrub_lock
);
401 atomic_dec(&sctx
->workers_pending
);
402 wake_up(&fs_info
->scrub_pause_wait
);
403 wake_up(&sctx
->list_wait
);
407 static void scrub_free_csums(struct scrub_ctx
*sctx
)
409 while (!list_empty(&sctx
->csum_list
)) {
410 struct btrfs_ordered_sum
*sum
;
411 sum
= list_first_entry(&sctx
->csum_list
,
412 struct btrfs_ordered_sum
, list
);
413 list_del(&sum
->list
);
418 static noinline_for_stack
void scrub_free_ctx(struct scrub_ctx
*sctx
)
425 scrub_free_wr_ctx(&sctx
->wr_ctx
);
427 /* this can happen when scrub is cancelled */
428 if (sctx
->curr
!= -1) {
429 struct scrub_bio
*sbio
= sctx
->bios
[sctx
->curr
];
431 for (i
= 0; i
< sbio
->page_count
; i
++) {
432 WARN_ON(!sbio
->pagev
[i
]->page
);
433 scrub_block_put(sbio
->pagev
[i
]->sblock
);
438 for (i
= 0; i
< SCRUB_BIOS_PER_SCTX
; ++i
) {
439 struct scrub_bio
*sbio
= sctx
->bios
[i
];
446 scrub_free_csums(sctx
);
450 static void scrub_put_ctx(struct scrub_ctx
*sctx
)
452 if (atomic_dec_and_test(&sctx
->refs
))
453 scrub_free_ctx(sctx
);
456 static noinline_for_stack
457 struct scrub_ctx
*scrub_setup_ctx(struct btrfs_device
*dev
, int is_dev_replace
)
459 struct scrub_ctx
*sctx
;
461 struct btrfs_fs_info
*fs_info
= dev
->fs_info
;
464 sctx
= kzalloc(sizeof(*sctx
), GFP_KERNEL
);
467 atomic_set(&sctx
->refs
, 1);
468 sctx
->is_dev_replace
= is_dev_replace
;
469 sctx
->pages_per_rd_bio
= SCRUB_PAGES_PER_RD_BIO
;
471 sctx
->fs_info
= dev
->fs_info
;
472 for (i
= 0; i
< SCRUB_BIOS_PER_SCTX
; ++i
) {
473 struct scrub_bio
*sbio
;
475 sbio
= kzalloc(sizeof(*sbio
), GFP_KERNEL
);
478 sctx
->bios
[i
] = sbio
;
482 sbio
->page_count
= 0;
483 btrfs_init_work(&sbio
->work
, btrfs_scrub_helper
,
484 scrub_bio_end_io_worker
, NULL
, NULL
);
486 if (i
!= SCRUB_BIOS_PER_SCTX
- 1)
487 sctx
->bios
[i
]->next_free
= i
+ 1;
489 sctx
->bios
[i
]->next_free
= -1;
491 sctx
->first_free
= 0;
492 sctx
->nodesize
= fs_info
->nodesize
;
493 sctx
->sectorsize
= fs_info
->sectorsize
;
494 atomic_set(&sctx
->bios_in_flight
, 0);
495 atomic_set(&sctx
->workers_pending
, 0);
496 atomic_set(&sctx
->cancel_req
, 0);
497 sctx
->csum_size
= btrfs_super_csum_size(fs_info
->super_copy
);
498 INIT_LIST_HEAD(&sctx
->csum_list
);
500 spin_lock_init(&sctx
->list_lock
);
501 spin_lock_init(&sctx
->stat_lock
);
502 init_waitqueue_head(&sctx
->list_wait
);
504 ret
= scrub_setup_wr_ctx(sctx
, &sctx
->wr_ctx
, fs_info
,
505 fs_info
->dev_replace
.tgtdev
, is_dev_replace
);
507 scrub_free_ctx(sctx
);
513 scrub_free_ctx(sctx
);
514 return ERR_PTR(-ENOMEM
);
517 static int scrub_print_warning_inode(u64 inum
, u64 offset
, u64 root
,
524 struct extent_buffer
*eb
;
525 struct btrfs_inode_item
*inode_item
;
526 struct scrub_warning
*swarn
= warn_ctx
;
527 struct btrfs_fs_info
*fs_info
= swarn
->dev
->fs_info
;
528 struct inode_fs_paths
*ipath
= NULL
;
529 struct btrfs_root
*local_root
;
530 struct btrfs_key root_key
;
531 struct btrfs_key key
;
533 root_key
.objectid
= root
;
534 root_key
.type
= BTRFS_ROOT_ITEM_KEY
;
535 root_key
.offset
= (u64
)-1;
536 local_root
= btrfs_read_fs_root_no_name(fs_info
, &root_key
);
537 if (IS_ERR(local_root
)) {
538 ret
= PTR_ERR(local_root
);
543 * this makes the path point to (inum INODE_ITEM ioff)
546 key
.type
= BTRFS_INODE_ITEM_KEY
;
549 ret
= btrfs_search_slot(NULL
, local_root
, &key
, swarn
->path
, 0, 0);
551 btrfs_release_path(swarn
->path
);
555 eb
= swarn
->path
->nodes
[0];
556 inode_item
= btrfs_item_ptr(eb
, swarn
->path
->slots
[0],
557 struct btrfs_inode_item
);
558 isize
= btrfs_inode_size(eb
, inode_item
);
559 nlink
= btrfs_inode_nlink(eb
, inode_item
);
560 btrfs_release_path(swarn
->path
);
562 ipath
= init_ipath(4096, local_root
, swarn
->path
);
564 ret
= PTR_ERR(ipath
);
568 ret
= paths_from_inode(inum
, ipath
);
574 * we deliberately ignore the bit ipath might have been too small to
575 * hold all of the paths here
577 for (i
= 0; i
< ipath
->fspath
->elem_cnt
; ++i
)
578 btrfs_warn_in_rcu(fs_info
,
579 "%s at logical %llu on dev %s, sector %llu, root %llu, inode %llu, offset %llu, length %llu, links %u (path: %s)",
580 swarn
->errstr
, swarn
->logical
,
581 rcu_str_deref(swarn
->dev
->name
),
582 (unsigned long long)swarn
->sector
,
584 min(isize
- offset
, (u64
)PAGE_SIZE
), nlink
,
585 (char *)(unsigned long)ipath
->fspath
->val
[i
]);
591 btrfs_warn_in_rcu(fs_info
,
592 "%s at logical %llu on dev %s, sector %llu, root %llu, inode %llu, offset %llu: path resolving failed with ret=%d",
593 swarn
->errstr
, swarn
->logical
,
594 rcu_str_deref(swarn
->dev
->name
),
595 (unsigned long long)swarn
->sector
,
596 root
, inum
, offset
, ret
);
602 static void scrub_print_warning(const char *errstr
, struct scrub_block
*sblock
)
604 struct btrfs_device
*dev
;
605 struct btrfs_fs_info
*fs_info
;
606 struct btrfs_path
*path
;
607 struct btrfs_key found_key
;
608 struct extent_buffer
*eb
;
609 struct btrfs_extent_item
*ei
;
610 struct scrub_warning swarn
;
611 unsigned long ptr
= 0;
619 WARN_ON(sblock
->page_count
< 1);
620 dev
= sblock
->pagev
[0]->dev
;
621 fs_info
= sblock
->sctx
->fs_info
;
623 path
= btrfs_alloc_path();
627 swarn
.sector
= (sblock
->pagev
[0]->physical
) >> 9;
628 swarn
.logical
= sblock
->pagev
[0]->logical
;
629 swarn
.errstr
= errstr
;
632 ret
= extent_from_logical(fs_info
, swarn
.logical
, path
, &found_key
,
637 extent_item_pos
= swarn
.logical
- found_key
.objectid
;
638 swarn
.extent_item_size
= found_key
.offset
;
641 ei
= btrfs_item_ptr(eb
, path
->slots
[0], struct btrfs_extent_item
);
642 item_size
= btrfs_item_size_nr(eb
, path
->slots
[0]);
644 if (flags
& BTRFS_EXTENT_FLAG_TREE_BLOCK
) {
646 ret
= tree_backref_for_extent(&ptr
, eb
, &found_key
, ei
,
647 item_size
, &ref_root
,
649 btrfs_warn_in_rcu(fs_info
,
650 "%s at logical %llu on dev %s, sector %llu: metadata %s (level %d) in tree %llu",
651 errstr
, swarn
.logical
,
652 rcu_str_deref(dev
->name
),
653 (unsigned long long)swarn
.sector
,
654 ref_level
? "node" : "leaf",
655 ret
< 0 ? -1 : ref_level
,
656 ret
< 0 ? -1 : ref_root
);
658 btrfs_release_path(path
);
660 btrfs_release_path(path
);
663 iterate_extent_inodes(fs_info
, found_key
.objectid
,
665 scrub_print_warning_inode
, &swarn
);
669 btrfs_free_path(path
);
672 static int scrub_fixup_readpage(u64 inum
, u64 offset
, u64 root
, void *fixup_ctx
)
674 struct page
*page
= NULL
;
676 struct scrub_fixup_nodatasum
*fixup
= fixup_ctx
;
679 struct btrfs_key key
;
680 struct inode
*inode
= NULL
;
681 struct btrfs_fs_info
*fs_info
;
682 u64 end
= offset
+ PAGE_SIZE
- 1;
683 struct btrfs_root
*local_root
;
687 key
.type
= BTRFS_ROOT_ITEM_KEY
;
688 key
.offset
= (u64
)-1;
690 fs_info
= fixup
->root
->fs_info
;
691 srcu_index
= srcu_read_lock(&fs_info
->subvol_srcu
);
693 local_root
= btrfs_read_fs_root_no_name(fs_info
, &key
);
694 if (IS_ERR(local_root
)) {
695 srcu_read_unlock(&fs_info
->subvol_srcu
, srcu_index
);
696 return PTR_ERR(local_root
);
699 key
.type
= BTRFS_INODE_ITEM_KEY
;
702 inode
= btrfs_iget(fs_info
->sb
, &key
, local_root
, NULL
);
703 srcu_read_unlock(&fs_info
->subvol_srcu
, srcu_index
);
705 return PTR_ERR(inode
);
707 index
= offset
>> PAGE_SHIFT
;
709 page
= find_or_create_page(inode
->i_mapping
, index
, GFP_NOFS
);
715 if (PageUptodate(page
)) {
716 if (PageDirty(page
)) {
718 * we need to write the data to the defect sector. the
719 * data that was in that sector is not in memory,
720 * because the page was modified. we must not write the
721 * modified page to that sector.
723 * TODO: what could be done here: wait for the delalloc
724 * runner to write out that page (might involve
725 * COW) and see whether the sector is still
726 * referenced afterwards.
728 * For the meantime, we'll treat this error
729 * incorrectable, although there is a chance that a
730 * later scrub will find the bad sector again and that
731 * there's no dirty page in memory, then.
736 ret
= repair_io_failure(inode
, offset
, PAGE_SIZE
,
737 fixup
->logical
, page
,
738 offset
- page_offset(page
),
744 * we need to get good data first. the general readpage path
745 * will call repair_io_failure for us, we just have to make
746 * sure we read the bad mirror.
748 ret
= set_extent_bits(&BTRFS_I(inode
)->io_tree
, offset
, end
,
751 /* set_extent_bits should give proper error */
758 ret
= extent_read_full_page(&BTRFS_I(inode
)->io_tree
, page
,
761 wait_on_page_locked(page
);
763 corrected
= !test_range_bit(&BTRFS_I(inode
)->io_tree
, offset
,
764 end
, EXTENT_DAMAGED
, 0, NULL
);
766 clear_extent_bits(&BTRFS_I(inode
)->io_tree
, offset
, end
,
779 if (ret
== 0 && corrected
) {
781 * we only need to call readpage for one of the inodes belonging
782 * to this extent. so make iterate_extent_inodes stop
790 static void scrub_fixup_nodatasum(struct btrfs_work
*work
)
792 struct btrfs_fs_info
*fs_info
;
794 struct scrub_fixup_nodatasum
*fixup
;
795 struct scrub_ctx
*sctx
;
796 struct btrfs_trans_handle
*trans
= NULL
;
797 struct btrfs_path
*path
;
798 int uncorrectable
= 0;
800 fixup
= container_of(work
, struct scrub_fixup_nodatasum
, work
);
802 fs_info
= fixup
->root
->fs_info
;
804 path
= btrfs_alloc_path();
806 spin_lock(&sctx
->stat_lock
);
807 ++sctx
->stat
.malloc_errors
;
808 spin_unlock(&sctx
->stat_lock
);
813 trans
= btrfs_join_transaction(fixup
->root
);
820 * the idea is to trigger a regular read through the standard path. we
821 * read a page from the (failed) logical address by specifying the
822 * corresponding copynum of the failed sector. thus, that readpage is
824 * that is the point where on-the-fly error correction will kick in
825 * (once it's finished) and rewrite the failed sector if a good copy
828 ret
= iterate_inodes_from_logical(fixup
->logical
, fs_info
, path
,
829 scrub_fixup_readpage
, fixup
);
836 spin_lock(&sctx
->stat_lock
);
837 ++sctx
->stat
.corrected_errors
;
838 spin_unlock(&sctx
->stat_lock
);
841 if (trans
&& !IS_ERR(trans
))
842 btrfs_end_transaction(trans
);
844 spin_lock(&sctx
->stat_lock
);
845 ++sctx
->stat
.uncorrectable_errors
;
846 spin_unlock(&sctx
->stat_lock
);
847 btrfs_dev_replace_stats_inc(
848 &fs_info
->dev_replace
.num_uncorrectable_read_errors
);
849 btrfs_err_rl_in_rcu(fs_info
,
850 "unable to fixup (nodatasum) error at logical %llu on dev %s",
851 fixup
->logical
, rcu_str_deref(fixup
->dev
->name
));
854 btrfs_free_path(path
);
857 scrub_pending_trans_workers_dec(sctx
);
860 static inline void scrub_get_recover(struct scrub_recover
*recover
)
862 atomic_inc(&recover
->refs
);
865 static inline void scrub_put_recover(struct scrub_recover
*recover
)
867 if (atomic_dec_and_test(&recover
->refs
)) {
868 btrfs_put_bbio(recover
->bbio
);
874 * scrub_handle_errored_block gets called when either verification of the
875 * pages failed or the bio failed to read, e.g. with EIO. In the latter
876 * case, this function handles all pages in the bio, even though only one
878 * The goal of this function is to repair the errored block by using the
879 * contents of one of the mirrors.
881 static int scrub_handle_errored_block(struct scrub_block
*sblock_to_check
)
883 struct scrub_ctx
*sctx
= sblock_to_check
->sctx
;
884 struct btrfs_device
*dev
;
885 struct btrfs_fs_info
*fs_info
;
888 unsigned int failed_mirror_index
;
889 unsigned int is_metadata
;
890 unsigned int have_csum
;
891 struct scrub_block
*sblocks_for_recheck
; /* holds one for each mirror */
892 struct scrub_block
*sblock_bad
;
897 static DEFINE_RATELIMIT_STATE(_rs
, DEFAULT_RATELIMIT_INTERVAL
,
898 DEFAULT_RATELIMIT_BURST
);
900 BUG_ON(sblock_to_check
->page_count
< 1);
901 fs_info
= sctx
->fs_info
;
902 if (sblock_to_check
->pagev
[0]->flags
& BTRFS_EXTENT_FLAG_SUPER
) {
904 * if we find an error in a super block, we just report it.
905 * They will get written with the next transaction commit
908 spin_lock(&sctx
->stat_lock
);
909 ++sctx
->stat
.super_errors
;
910 spin_unlock(&sctx
->stat_lock
);
913 length
= sblock_to_check
->page_count
* PAGE_SIZE
;
914 logical
= sblock_to_check
->pagev
[0]->logical
;
915 BUG_ON(sblock_to_check
->pagev
[0]->mirror_num
< 1);
916 failed_mirror_index
= sblock_to_check
->pagev
[0]->mirror_num
- 1;
917 is_metadata
= !(sblock_to_check
->pagev
[0]->flags
&
918 BTRFS_EXTENT_FLAG_DATA
);
919 have_csum
= sblock_to_check
->pagev
[0]->have_csum
;
920 dev
= sblock_to_check
->pagev
[0]->dev
;
922 if (sctx
->is_dev_replace
&& !is_metadata
&& !have_csum
) {
923 sblocks_for_recheck
= NULL
;
928 * read all mirrors one after the other. This includes to
929 * re-read the extent or metadata block that failed (that was
930 * the cause that this fixup code is called) another time,
931 * page by page this time in order to know which pages
932 * caused I/O errors and which ones are good (for all mirrors).
933 * It is the goal to handle the situation when more than one
934 * mirror contains I/O errors, but the errors do not
935 * overlap, i.e. the data can be repaired by selecting the
936 * pages from those mirrors without I/O error on the
937 * particular pages. One example (with blocks >= 2 * PAGE_SIZE)
938 * would be that mirror #1 has an I/O error on the first page,
939 * the second page is good, and mirror #2 has an I/O error on
940 * the second page, but the first page is good.
941 * Then the first page of the first mirror can be repaired by
942 * taking the first page of the second mirror, and the
943 * second page of the second mirror can be repaired by
944 * copying the contents of the 2nd page of the 1st mirror.
945 * One more note: if the pages of one mirror contain I/O
946 * errors, the checksum cannot be verified. In order to get
947 * the best data for repairing, the first attempt is to find
948 * a mirror without I/O errors and with a validated checksum.
949 * Only if this is not possible, the pages are picked from
950 * mirrors with I/O errors without considering the checksum.
951 * If the latter is the case, at the end, the checksum of the
952 * repaired area is verified in order to correctly maintain
956 sblocks_for_recheck
= kcalloc(BTRFS_MAX_MIRRORS
,
957 sizeof(*sblocks_for_recheck
), GFP_NOFS
);
958 if (!sblocks_for_recheck
) {
959 spin_lock(&sctx
->stat_lock
);
960 sctx
->stat
.malloc_errors
++;
961 sctx
->stat
.read_errors
++;
962 sctx
->stat
.uncorrectable_errors
++;
963 spin_unlock(&sctx
->stat_lock
);
964 btrfs_dev_stat_inc_and_print(dev
, BTRFS_DEV_STAT_READ_ERRS
);
968 /* setup the context, map the logical blocks and alloc the pages */
969 ret
= scrub_setup_recheck_block(sblock_to_check
, sblocks_for_recheck
);
971 spin_lock(&sctx
->stat_lock
);
972 sctx
->stat
.read_errors
++;
973 sctx
->stat
.uncorrectable_errors
++;
974 spin_unlock(&sctx
->stat_lock
);
975 btrfs_dev_stat_inc_and_print(dev
, BTRFS_DEV_STAT_READ_ERRS
);
978 BUG_ON(failed_mirror_index
>= BTRFS_MAX_MIRRORS
);
979 sblock_bad
= sblocks_for_recheck
+ failed_mirror_index
;
981 /* build and submit the bios for the failed mirror, check checksums */
982 scrub_recheck_block(fs_info
, sblock_bad
, 1);
984 if (!sblock_bad
->header_error
&& !sblock_bad
->checksum_error
&&
985 sblock_bad
->no_io_error_seen
) {
987 * the error disappeared after reading page by page, or
988 * the area was part of a huge bio and other parts of the
989 * bio caused I/O errors, or the block layer merged several
990 * read requests into one and the error is caused by a
991 * different bio (usually one of the two latter cases is
994 spin_lock(&sctx
->stat_lock
);
995 sctx
->stat
.unverified_errors
++;
996 sblock_to_check
->data_corrected
= 1;
997 spin_unlock(&sctx
->stat_lock
);
999 if (sctx
->is_dev_replace
)
1000 scrub_write_block_to_dev_replace(sblock_bad
);
1004 if (!sblock_bad
->no_io_error_seen
) {
1005 spin_lock(&sctx
->stat_lock
);
1006 sctx
->stat
.read_errors
++;
1007 spin_unlock(&sctx
->stat_lock
);
1008 if (__ratelimit(&_rs
))
1009 scrub_print_warning("i/o error", sblock_to_check
);
1010 btrfs_dev_stat_inc_and_print(dev
, BTRFS_DEV_STAT_READ_ERRS
);
1011 } else if (sblock_bad
->checksum_error
) {
1012 spin_lock(&sctx
->stat_lock
);
1013 sctx
->stat
.csum_errors
++;
1014 spin_unlock(&sctx
->stat_lock
);
1015 if (__ratelimit(&_rs
))
1016 scrub_print_warning("checksum error", sblock_to_check
);
1017 btrfs_dev_stat_inc_and_print(dev
,
1018 BTRFS_DEV_STAT_CORRUPTION_ERRS
);
1019 } else if (sblock_bad
->header_error
) {
1020 spin_lock(&sctx
->stat_lock
);
1021 sctx
->stat
.verify_errors
++;
1022 spin_unlock(&sctx
->stat_lock
);
1023 if (__ratelimit(&_rs
))
1024 scrub_print_warning("checksum/header error",
1026 if (sblock_bad
->generation_error
)
1027 btrfs_dev_stat_inc_and_print(dev
,
1028 BTRFS_DEV_STAT_GENERATION_ERRS
);
1030 btrfs_dev_stat_inc_and_print(dev
,
1031 BTRFS_DEV_STAT_CORRUPTION_ERRS
);
1034 if (sctx
->readonly
) {
1035 ASSERT(!sctx
->is_dev_replace
);
1039 if (!is_metadata
&& !have_csum
) {
1040 struct scrub_fixup_nodatasum
*fixup_nodatasum
;
1042 WARN_ON(sctx
->is_dev_replace
);
1047 * !is_metadata and !have_csum, this means that the data
1048 * might not be COWed, that it might be modified
1049 * concurrently. The general strategy to work on the
1050 * commit root does not help in the case when COW is not
1053 fixup_nodatasum
= kzalloc(sizeof(*fixup_nodatasum
), GFP_NOFS
);
1054 if (!fixup_nodatasum
)
1055 goto did_not_correct_error
;
1056 fixup_nodatasum
->sctx
= sctx
;
1057 fixup_nodatasum
->dev
= dev
;
1058 fixup_nodatasum
->logical
= logical
;
1059 fixup_nodatasum
->root
= fs_info
->extent_root
;
1060 fixup_nodatasum
->mirror_num
= failed_mirror_index
+ 1;
1061 scrub_pending_trans_workers_inc(sctx
);
1062 btrfs_init_work(&fixup_nodatasum
->work
, btrfs_scrub_helper
,
1063 scrub_fixup_nodatasum
, NULL
, NULL
);
1064 btrfs_queue_work(fs_info
->scrub_workers
,
1065 &fixup_nodatasum
->work
);
1070 * now build and submit the bios for the other mirrors, check
1072 * First try to pick the mirror which is completely without I/O
1073 * errors and also does not have a checksum error.
1074 * If one is found, and if a checksum is present, the full block
1075 * that is known to contain an error is rewritten. Afterwards
1076 * the block is known to be corrected.
1077 * If a mirror is found which is completely correct, and no
1078 * checksum is present, only those pages are rewritten that had
1079 * an I/O error in the block to be repaired, since it cannot be
1080 * determined, which copy of the other pages is better (and it
1081 * could happen otherwise that a correct page would be
1082 * overwritten by a bad one).
1084 for (mirror_index
= 0;
1085 mirror_index
< BTRFS_MAX_MIRRORS
&&
1086 sblocks_for_recheck
[mirror_index
].page_count
> 0;
1088 struct scrub_block
*sblock_other
;
1090 if (mirror_index
== failed_mirror_index
)
1092 sblock_other
= sblocks_for_recheck
+ mirror_index
;
1094 /* build and submit the bios, check checksums */
1095 scrub_recheck_block(fs_info
, sblock_other
, 0);
1097 if (!sblock_other
->header_error
&&
1098 !sblock_other
->checksum_error
&&
1099 sblock_other
->no_io_error_seen
) {
1100 if (sctx
->is_dev_replace
) {
1101 scrub_write_block_to_dev_replace(sblock_other
);
1102 goto corrected_error
;
1104 ret
= scrub_repair_block_from_good_copy(
1105 sblock_bad
, sblock_other
);
1107 goto corrected_error
;
1112 if (sblock_bad
->no_io_error_seen
&& !sctx
->is_dev_replace
)
1113 goto did_not_correct_error
;
1116 * In case of I/O errors in the area that is supposed to be
1117 * repaired, continue by picking good copies of those pages.
1118 * Select the good pages from mirrors to rewrite bad pages from
1119 * the area to fix. Afterwards verify the checksum of the block
1120 * that is supposed to be repaired. This verification step is
1121 * only done for the purpose of statistic counting and for the
1122 * final scrub report, whether errors remain.
1123 * A perfect algorithm could make use of the checksum and try
1124 * all possible combinations of pages from the different mirrors
1125 * until the checksum verification succeeds. For example, when
1126 * the 2nd page of mirror #1 faces I/O errors, and the 2nd page
1127 * of mirror #2 is readable but the final checksum test fails,
1128 * then the 2nd page of mirror #3 could be tried, whether now
1129 * the final checksum succeeds. But this would be a rare
1130 * exception and is therefore not implemented. At least it is
1131 * avoided that the good copy is overwritten.
1132 * A more useful improvement would be to pick the sectors
1133 * without I/O error based on sector sizes (512 bytes on legacy
1134 * disks) instead of on PAGE_SIZE. Then maybe 512 byte of one
1135 * mirror could be repaired by taking 512 byte of a different
1136 * mirror, even if other 512 byte sectors in the same PAGE_SIZE
1137 * area are unreadable.
1140 for (page_num
= 0; page_num
< sblock_bad
->page_count
;
1142 struct scrub_page
*page_bad
= sblock_bad
->pagev
[page_num
];
1143 struct scrub_block
*sblock_other
= NULL
;
1145 /* skip no-io-error page in scrub */
1146 if (!page_bad
->io_error
&& !sctx
->is_dev_replace
)
1149 /* try to find no-io-error page in mirrors */
1150 if (page_bad
->io_error
) {
1151 for (mirror_index
= 0;
1152 mirror_index
< BTRFS_MAX_MIRRORS
&&
1153 sblocks_for_recheck
[mirror_index
].page_count
> 0;
1155 if (!sblocks_for_recheck
[mirror_index
].
1156 pagev
[page_num
]->io_error
) {
1157 sblock_other
= sblocks_for_recheck
+
1166 if (sctx
->is_dev_replace
) {
1168 * did not find a mirror to fetch the page
1169 * from. scrub_write_page_to_dev_replace()
1170 * handles this case (page->io_error), by
1171 * filling the block with zeros before
1172 * submitting the write request
1175 sblock_other
= sblock_bad
;
1177 if (scrub_write_page_to_dev_replace(sblock_other
,
1179 btrfs_dev_replace_stats_inc(
1180 &fs_info
->dev_replace
.num_write_errors
);
1183 } else if (sblock_other
) {
1184 ret
= scrub_repair_page_from_good_copy(sblock_bad
,
1188 page_bad
->io_error
= 0;
1194 if (success
&& !sctx
->is_dev_replace
) {
1195 if (is_metadata
|| have_csum
) {
1197 * need to verify the checksum now that all
1198 * sectors on disk are repaired (the write
1199 * request for data to be repaired is on its way).
1200 * Just be lazy and use scrub_recheck_block()
1201 * which re-reads the data before the checksum
1202 * is verified, but most likely the data comes out
1203 * of the page cache.
1205 scrub_recheck_block(fs_info
, sblock_bad
, 1);
1206 if (!sblock_bad
->header_error
&&
1207 !sblock_bad
->checksum_error
&&
1208 sblock_bad
->no_io_error_seen
)
1209 goto corrected_error
;
1211 goto did_not_correct_error
;
1214 spin_lock(&sctx
->stat_lock
);
1215 sctx
->stat
.corrected_errors
++;
1216 sblock_to_check
->data_corrected
= 1;
1217 spin_unlock(&sctx
->stat_lock
);
1218 btrfs_err_rl_in_rcu(fs_info
,
1219 "fixed up error at logical %llu on dev %s",
1220 logical
, rcu_str_deref(dev
->name
));
1223 did_not_correct_error
:
1224 spin_lock(&sctx
->stat_lock
);
1225 sctx
->stat
.uncorrectable_errors
++;
1226 spin_unlock(&sctx
->stat_lock
);
1227 btrfs_err_rl_in_rcu(fs_info
,
1228 "unable to fixup (regular) error at logical %llu on dev %s",
1229 logical
, rcu_str_deref(dev
->name
));
1233 if (sblocks_for_recheck
) {
1234 for (mirror_index
= 0; mirror_index
< BTRFS_MAX_MIRRORS
;
1236 struct scrub_block
*sblock
= sblocks_for_recheck
+
1238 struct scrub_recover
*recover
;
1241 for (page_index
= 0; page_index
< sblock
->page_count
;
1243 sblock
->pagev
[page_index
]->sblock
= NULL
;
1244 recover
= sblock
->pagev
[page_index
]->recover
;
1246 scrub_put_recover(recover
);
1247 sblock
->pagev
[page_index
]->recover
=
1250 scrub_page_put(sblock
->pagev
[page_index
]);
1253 kfree(sblocks_for_recheck
);
1259 static inline int scrub_nr_raid_mirrors(struct btrfs_bio
*bbio
)
1261 if (bbio
->map_type
& BTRFS_BLOCK_GROUP_RAID5
)
1263 else if (bbio
->map_type
& BTRFS_BLOCK_GROUP_RAID6
)
1266 return (int)bbio
->num_stripes
;
1269 static inline void scrub_stripe_index_and_offset(u64 logical
, u64 map_type
,
1272 int nstripes
, int mirror
,
1278 if (map_type
& BTRFS_BLOCK_GROUP_RAID56_MASK
) {
1280 for (i
= 0; i
< nstripes
; i
++) {
1281 if (raid_map
[i
] == RAID6_Q_STRIPE
||
1282 raid_map
[i
] == RAID5_P_STRIPE
)
1285 if (logical
>= raid_map
[i
] &&
1286 logical
< raid_map
[i
] + mapped_length
)
1291 *stripe_offset
= logical
- raid_map
[i
];
1293 /* The other RAID type */
1294 *stripe_index
= mirror
;
1299 static int scrub_setup_recheck_block(struct scrub_block
*original_sblock
,
1300 struct scrub_block
*sblocks_for_recheck
)
1302 struct scrub_ctx
*sctx
= original_sblock
->sctx
;
1303 struct btrfs_fs_info
*fs_info
= sctx
->fs_info
;
1304 u64 length
= original_sblock
->page_count
* PAGE_SIZE
;
1305 u64 logical
= original_sblock
->pagev
[0]->logical
;
1306 u64 generation
= original_sblock
->pagev
[0]->generation
;
1307 u64 flags
= original_sblock
->pagev
[0]->flags
;
1308 u64 have_csum
= original_sblock
->pagev
[0]->have_csum
;
1309 struct scrub_recover
*recover
;
1310 struct btrfs_bio
*bbio
;
1321 * note: the two members refs and outstanding_pages
1322 * are not used (and not set) in the blocks that are used for
1323 * the recheck procedure
1326 while (length
> 0) {
1327 sublen
= min_t(u64
, length
, PAGE_SIZE
);
1328 mapped_length
= sublen
;
1332 * with a length of PAGE_SIZE, each returned stripe
1333 * represents one mirror
1335 ret
= btrfs_map_sblock(fs_info
, BTRFS_MAP_GET_READ_MIRRORS
,
1336 logical
, &mapped_length
, &bbio
, 0, 1);
1337 if (ret
|| !bbio
|| mapped_length
< sublen
) {
1338 btrfs_put_bbio(bbio
);
1342 recover
= kzalloc(sizeof(struct scrub_recover
), GFP_NOFS
);
1344 btrfs_put_bbio(bbio
);
1348 atomic_set(&recover
->refs
, 1);
1349 recover
->bbio
= bbio
;
1350 recover
->map_length
= mapped_length
;
1352 BUG_ON(page_index
>= SCRUB_MAX_PAGES_PER_BLOCK
);
1354 nmirrors
= min(scrub_nr_raid_mirrors(bbio
), BTRFS_MAX_MIRRORS
);
1356 for (mirror_index
= 0; mirror_index
< nmirrors
;
1358 struct scrub_block
*sblock
;
1359 struct scrub_page
*page
;
1361 sblock
= sblocks_for_recheck
+ mirror_index
;
1362 sblock
->sctx
= sctx
;
1364 page
= kzalloc(sizeof(*page
), GFP_NOFS
);
1367 spin_lock(&sctx
->stat_lock
);
1368 sctx
->stat
.malloc_errors
++;
1369 spin_unlock(&sctx
->stat_lock
);
1370 scrub_put_recover(recover
);
1373 scrub_page_get(page
);
1374 sblock
->pagev
[page_index
] = page
;
1375 page
->sblock
= sblock
;
1376 page
->flags
= flags
;
1377 page
->generation
= generation
;
1378 page
->logical
= logical
;
1379 page
->have_csum
= have_csum
;
1382 original_sblock
->pagev
[0]->csum
,
1385 scrub_stripe_index_and_offset(logical
,
1394 page
->physical
= bbio
->stripes
[stripe_index
].physical
+
1396 page
->dev
= bbio
->stripes
[stripe_index
].dev
;
1398 BUG_ON(page_index
>= original_sblock
->page_count
);
1399 page
->physical_for_dev_replace
=
1400 original_sblock
->pagev
[page_index
]->
1401 physical_for_dev_replace
;
1402 /* for missing devices, dev->bdev is NULL */
1403 page
->mirror_num
= mirror_index
+ 1;
1404 sblock
->page_count
++;
1405 page
->page
= alloc_page(GFP_NOFS
);
1409 scrub_get_recover(recover
);
1410 page
->recover
= recover
;
1412 scrub_put_recover(recover
);
1421 struct scrub_bio_ret
{
1422 struct completion event
;
1426 static void scrub_bio_wait_endio(struct bio
*bio
)
1428 struct scrub_bio_ret
*ret
= bio
->bi_private
;
1430 ret
->error
= bio
->bi_error
;
1431 complete(&ret
->event
);
1434 static inline int scrub_is_page_on_raid56(struct scrub_page
*page
)
1436 return page
->recover
&&
1437 (page
->recover
->bbio
->map_type
& BTRFS_BLOCK_GROUP_RAID56_MASK
);
1440 static int scrub_submit_raid56_bio_wait(struct btrfs_fs_info
*fs_info
,
1442 struct scrub_page
*page
)
1444 struct scrub_bio_ret done
;
1447 init_completion(&done
.event
);
1449 bio
->bi_iter
.bi_sector
= page
->logical
>> 9;
1450 bio
->bi_private
= &done
;
1451 bio
->bi_end_io
= scrub_bio_wait_endio
;
1453 ret
= raid56_parity_recover(fs_info
, bio
, page
->recover
->bbio
,
1454 page
->recover
->map_length
,
1455 page
->mirror_num
, 0);
1459 wait_for_completion(&done
.event
);
1467 * this function will check the on disk data for checksum errors, header
1468 * errors and read I/O errors. If any I/O errors happen, the exact pages
1469 * which are errored are marked as being bad. The goal is to enable scrub
1470 * to take those pages that are not errored from all the mirrors so that
1471 * the pages that are errored in the just handled mirror can be repaired.
1473 static void scrub_recheck_block(struct btrfs_fs_info
*fs_info
,
1474 struct scrub_block
*sblock
,
1475 int retry_failed_mirror
)
1479 sblock
->no_io_error_seen
= 1;
1481 for (page_num
= 0; page_num
< sblock
->page_count
; page_num
++) {
1483 struct scrub_page
*page
= sblock
->pagev
[page_num
];
1485 if (page
->dev
->bdev
== NULL
) {
1487 sblock
->no_io_error_seen
= 0;
1491 WARN_ON(!page
->page
);
1492 bio
= btrfs_io_bio_alloc(GFP_NOFS
, 1);
1495 sblock
->no_io_error_seen
= 0;
1498 bio
->bi_bdev
= page
->dev
->bdev
;
1500 bio_add_page(bio
, page
->page
, PAGE_SIZE
, 0);
1501 if (!retry_failed_mirror
&& scrub_is_page_on_raid56(page
)) {
1502 if (scrub_submit_raid56_bio_wait(fs_info
, bio
, page
))
1503 sblock
->no_io_error_seen
= 0;
1505 bio
->bi_iter
.bi_sector
= page
->physical
>> 9;
1506 bio_set_op_attrs(bio
, REQ_OP_READ
, 0);
1508 if (btrfsic_submit_bio_wait(bio
))
1509 sblock
->no_io_error_seen
= 0;
1515 if (sblock
->no_io_error_seen
)
1516 scrub_recheck_block_checksum(sblock
);
1519 static inline int scrub_check_fsid(u8 fsid
[],
1520 struct scrub_page
*spage
)
1522 struct btrfs_fs_devices
*fs_devices
= spage
->dev
->fs_devices
;
1525 ret
= memcmp(fsid
, fs_devices
->fsid
, BTRFS_UUID_SIZE
);
1529 static void scrub_recheck_block_checksum(struct scrub_block
*sblock
)
1531 sblock
->header_error
= 0;
1532 sblock
->checksum_error
= 0;
1533 sblock
->generation_error
= 0;
1535 if (sblock
->pagev
[0]->flags
& BTRFS_EXTENT_FLAG_DATA
)
1536 scrub_checksum_data(sblock
);
1538 scrub_checksum_tree_block(sblock
);
1541 static int scrub_repair_block_from_good_copy(struct scrub_block
*sblock_bad
,
1542 struct scrub_block
*sblock_good
)
1547 for (page_num
= 0; page_num
< sblock_bad
->page_count
; page_num
++) {
1550 ret_sub
= scrub_repair_page_from_good_copy(sblock_bad
,
1560 static int scrub_repair_page_from_good_copy(struct scrub_block
*sblock_bad
,
1561 struct scrub_block
*sblock_good
,
1562 int page_num
, int force_write
)
1564 struct scrub_page
*page_bad
= sblock_bad
->pagev
[page_num
];
1565 struct scrub_page
*page_good
= sblock_good
->pagev
[page_num
];
1566 struct btrfs_fs_info
*fs_info
= sblock_bad
->sctx
->fs_info
;
1568 BUG_ON(page_bad
->page
== NULL
);
1569 BUG_ON(page_good
->page
== NULL
);
1570 if (force_write
|| sblock_bad
->header_error
||
1571 sblock_bad
->checksum_error
|| page_bad
->io_error
) {
1575 if (!page_bad
->dev
->bdev
) {
1576 btrfs_warn_rl(fs_info
,
1577 "scrub_repair_page_from_good_copy(bdev == NULL) is unexpected");
1581 bio
= btrfs_io_bio_alloc(GFP_NOFS
, 1);
1584 bio
->bi_bdev
= page_bad
->dev
->bdev
;
1585 bio
->bi_iter
.bi_sector
= page_bad
->physical
>> 9;
1586 bio_set_op_attrs(bio
, REQ_OP_WRITE
, 0);
1588 ret
= bio_add_page(bio
, page_good
->page
, PAGE_SIZE
, 0);
1589 if (PAGE_SIZE
!= ret
) {
1594 if (btrfsic_submit_bio_wait(bio
)) {
1595 btrfs_dev_stat_inc_and_print(page_bad
->dev
,
1596 BTRFS_DEV_STAT_WRITE_ERRS
);
1597 btrfs_dev_replace_stats_inc(
1598 &fs_info
->dev_replace
.num_write_errors
);
1608 static void scrub_write_block_to_dev_replace(struct scrub_block
*sblock
)
1610 struct btrfs_fs_info
*fs_info
= sblock
->sctx
->fs_info
;
1614 * This block is used for the check of the parity on the source device,
1615 * so the data needn't be written into the destination device.
1617 if (sblock
->sparity
)
1620 for (page_num
= 0; page_num
< sblock
->page_count
; page_num
++) {
1623 ret
= scrub_write_page_to_dev_replace(sblock
, page_num
);
1625 btrfs_dev_replace_stats_inc(
1626 &fs_info
->dev_replace
.num_write_errors
);
1630 static int scrub_write_page_to_dev_replace(struct scrub_block
*sblock
,
1633 struct scrub_page
*spage
= sblock
->pagev
[page_num
];
1635 BUG_ON(spage
->page
== NULL
);
1636 if (spage
->io_error
) {
1637 void *mapped_buffer
= kmap_atomic(spage
->page
);
1639 memset(mapped_buffer
, 0, PAGE_SIZE
);
1640 flush_dcache_page(spage
->page
);
1641 kunmap_atomic(mapped_buffer
);
1643 return scrub_add_page_to_wr_bio(sblock
->sctx
, spage
);
1646 static int scrub_add_page_to_wr_bio(struct scrub_ctx
*sctx
,
1647 struct scrub_page
*spage
)
1649 struct scrub_wr_ctx
*wr_ctx
= &sctx
->wr_ctx
;
1650 struct scrub_bio
*sbio
;
1653 mutex_lock(&wr_ctx
->wr_lock
);
1655 if (!wr_ctx
->wr_curr_bio
) {
1656 wr_ctx
->wr_curr_bio
= kzalloc(sizeof(*wr_ctx
->wr_curr_bio
),
1658 if (!wr_ctx
->wr_curr_bio
) {
1659 mutex_unlock(&wr_ctx
->wr_lock
);
1662 wr_ctx
->wr_curr_bio
->sctx
= sctx
;
1663 wr_ctx
->wr_curr_bio
->page_count
= 0;
1665 sbio
= wr_ctx
->wr_curr_bio
;
1666 if (sbio
->page_count
== 0) {
1669 sbio
->physical
= spage
->physical_for_dev_replace
;
1670 sbio
->logical
= spage
->logical
;
1671 sbio
->dev
= wr_ctx
->tgtdev
;
1674 bio
= btrfs_io_bio_alloc(GFP_KERNEL
,
1675 wr_ctx
->pages_per_wr_bio
);
1677 mutex_unlock(&wr_ctx
->wr_lock
);
1683 bio
->bi_private
= sbio
;
1684 bio
->bi_end_io
= scrub_wr_bio_end_io
;
1685 bio
->bi_bdev
= sbio
->dev
->bdev
;
1686 bio
->bi_iter
.bi_sector
= sbio
->physical
>> 9;
1687 bio_set_op_attrs(bio
, REQ_OP_WRITE
, 0);
1689 } else if (sbio
->physical
+ sbio
->page_count
* PAGE_SIZE
!=
1690 spage
->physical_for_dev_replace
||
1691 sbio
->logical
+ sbio
->page_count
* PAGE_SIZE
!=
1693 scrub_wr_submit(sctx
);
1697 ret
= bio_add_page(sbio
->bio
, spage
->page
, PAGE_SIZE
, 0);
1698 if (ret
!= PAGE_SIZE
) {
1699 if (sbio
->page_count
< 1) {
1702 mutex_unlock(&wr_ctx
->wr_lock
);
1705 scrub_wr_submit(sctx
);
1709 sbio
->pagev
[sbio
->page_count
] = spage
;
1710 scrub_page_get(spage
);
1712 if (sbio
->page_count
== wr_ctx
->pages_per_wr_bio
)
1713 scrub_wr_submit(sctx
);
1714 mutex_unlock(&wr_ctx
->wr_lock
);
1719 static void scrub_wr_submit(struct scrub_ctx
*sctx
)
1721 struct scrub_wr_ctx
*wr_ctx
= &sctx
->wr_ctx
;
1722 struct scrub_bio
*sbio
;
1724 if (!wr_ctx
->wr_curr_bio
)
1727 sbio
= wr_ctx
->wr_curr_bio
;
1728 wr_ctx
->wr_curr_bio
= NULL
;
1729 WARN_ON(!sbio
->bio
->bi_bdev
);
1730 scrub_pending_bio_inc(sctx
);
1731 /* process all writes in a single worker thread. Then the block layer
1732 * orders the requests before sending them to the driver which
1733 * doubled the write performance on spinning disks when measured
1735 btrfsic_submit_bio(sbio
->bio
);
1738 static void scrub_wr_bio_end_io(struct bio
*bio
)
1740 struct scrub_bio
*sbio
= bio
->bi_private
;
1741 struct btrfs_fs_info
*fs_info
= sbio
->dev
->fs_info
;
1743 sbio
->err
= bio
->bi_error
;
1746 btrfs_init_work(&sbio
->work
, btrfs_scrubwrc_helper
,
1747 scrub_wr_bio_end_io_worker
, NULL
, NULL
);
1748 btrfs_queue_work(fs_info
->scrub_wr_completion_workers
, &sbio
->work
);
1751 static void scrub_wr_bio_end_io_worker(struct btrfs_work
*work
)
1753 struct scrub_bio
*sbio
= container_of(work
, struct scrub_bio
, work
);
1754 struct scrub_ctx
*sctx
= sbio
->sctx
;
1757 WARN_ON(sbio
->page_count
> SCRUB_PAGES_PER_WR_BIO
);
1759 struct btrfs_dev_replace
*dev_replace
=
1760 &sbio
->sctx
->fs_info
->dev_replace
;
1762 for (i
= 0; i
< sbio
->page_count
; i
++) {
1763 struct scrub_page
*spage
= sbio
->pagev
[i
];
1765 spage
->io_error
= 1;
1766 btrfs_dev_replace_stats_inc(&dev_replace
->
1771 for (i
= 0; i
< sbio
->page_count
; i
++)
1772 scrub_page_put(sbio
->pagev
[i
]);
1776 scrub_pending_bio_dec(sctx
);
1779 static int scrub_checksum(struct scrub_block
*sblock
)
1785 * No need to initialize these stats currently,
1786 * because this function only use return value
1787 * instead of these stats value.
1792 sblock
->header_error
= 0;
1793 sblock
->generation_error
= 0;
1794 sblock
->checksum_error
= 0;
1796 WARN_ON(sblock
->page_count
< 1);
1797 flags
= sblock
->pagev
[0]->flags
;
1799 if (flags
& BTRFS_EXTENT_FLAG_DATA
)
1800 ret
= scrub_checksum_data(sblock
);
1801 else if (flags
& BTRFS_EXTENT_FLAG_TREE_BLOCK
)
1802 ret
= scrub_checksum_tree_block(sblock
);
1803 else if (flags
& BTRFS_EXTENT_FLAG_SUPER
)
1804 (void)scrub_checksum_super(sblock
);
1808 scrub_handle_errored_block(sblock
);
1813 static int scrub_checksum_data(struct scrub_block
*sblock
)
1815 struct scrub_ctx
*sctx
= sblock
->sctx
;
1816 u8 csum
[BTRFS_CSUM_SIZE
];
1824 BUG_ON(sblock
->page_count
< 1);
1825 if (!sblock
->pagev
[0]->have_csum
)
1828 on_disk_csum
= sblock
->pagev
[0]->csum
;
1829 page
= sblock
->pagev
[0]->page
;
1830 buffer
= kmap_atomic(page
);
1832 len
= sctx
->sectorsize
;
1835 u64 l
= min_t(u64
, len
, PAGE_SIZE
);
1837 crc
= btrfs_csum_data(buffer
, crc
, l
);
1838 kunmap_atomic(buffer
);
1843 BUG_ON(index
>= sblock
->page_count
);
1844 BUG_ON(!sblock
->pagev
[index
]->page
);
1845 page
= sblock
->pagev
[index
]->page
;
1846 buffer
= kmap_atomic(page
);
1849 btrfs_csum_final(crc
, csum
);
1850 if (memcmp(csum
, on_disk_csum
, sctx
->csum_size
))
1851 sblock
->checksum_error
= 1;
1853 return sblock
->checksum_error
;
1856 static int scrub_checksum_tree_block(struct scrub_block
*sblock
)
1858 struct scrub_ctx
*sctx
= sblock
->sctx
;
1859 struct btrfs_header
*h
;
1860 struct btrfs_fs_info
*fs_info
= sctx
->fs_info
;
1861 u8 calculated_csum
[BTRFS_CSUM_SIZE
];
1862 u8 on_disk_csum
[BTRFS_CSUM_SIZE
];
1864 void *mapped_buffer
;
1871 BUG_ON(sblock
->page_count
< 1);
1872 page
= sblock
->pagev
[0]->page
;
1873 mapped_buffer
= kmap_atomic(page
);
1874 h
= (struct btrfs_header
*)mapped_buffer
;
1875 memcpy(on_disk_csum
, h
->csum
, sctx
->csum_size
);
1878 * we don't use the getter functions here, as we
1879 * a) don't have an extent buffer and
1880 * b) the page is already kmapped
1882 if (sblock
->pagev
[0]->logical
!= btrfs_stack_header_bytenr(h
))
1883 sblock
->header_error
= 1;
1885 if (sblock
->pagev
[0]->generation
!= btrfs_stack_header_generation(h
)) {
1886 sblock
->header_error
= 1;
1887 sblock
->generation_error
= 1;
1890 if (!scrub_check_fsid(h
->fsid
, sblock
->pagev
[0]))
1891 sblock
->header_error
= 1;
1893 if (memcmp(h
->chunk_tree_uuid
, fs_info
->chunk_tree_uuid
,
1895 sblock
->header_error
= 1;
1897 len
= sctx
->nodesize
- BTRFS_CSUM_SIZE
;
1898 mapped_size
= PAGE_SIZE
- BTRFS_CSUM_SIZE
;
1899 p
= ((u8
*)mapped_buffer
) + BTRFS_CSUM_SIZE
;
1902 u64 l
= min_t(u64
, len
, mapped_size
);
1904 crc
= btrfs_csum_data(p
, crc
, l
);
1905 kunmap_atomic(mapped_buffer
);
1910 BUG_ON(index
>= sblock
->page_count
);
1911 BUG_ON(!sblock
->pagev
[index
]->page
);
1912 page
= sblock
->pagev
[index
]->page
;
1913 mapped_buffer
= kmap_atomic(page
);
1914 mapped_size
= PAGE_SIZE
;
1918 btrfs_csum_final(crc
, calculated_csum
);
1919 if (memcmp(calculated_csum
, on_disk_csum
, sctx
->csum_size
))
1920 sblock
->checksum_error
= 1;
1922 return sblock
->header_error
|| sblock
->checksum_error
;
1925 static int scrub_checksum_super(struct scrub_block
*sblock
)
1927 struct btrfs_super_block
*s
;
1928 struct scrub_ctx
*sctx
= sblock
->sctx
;
1929 u8 calculated_csum
[BTRFS_CSUM_SIZE
];
1930 u8 on_disk_csum
[BTRFS_CSUM_SIZE
];
1932 void *mapped_buffer
;
1941 BUG_ON(sblock
->page_count
< 1);
1942 page
= sblock
->pagev
[0]->page
;
1943 mapped_buffer
= kmap_atomic(page
);
1944 s
= (struct btrfs_super_block
*)mapped_buffer
;
1945 memcpy(on_disk_csum
, s
->csum
, sctx
->csum_size
);
1947 if (sblock
->pagev
[0]->logical
!= btrfs_super_bytenr(s
))
1950 if (sblock
->pagev
[0]->generation
!= btrfs_super_generation(s
))
1953 if (!scrub_check_fsid(s
->fsid
, sblock
->pagev
[0]))
1956 len
= BTRFS_SUPER_INFO_SIZE
- BTRFS_CSUM_SIZE
;
1957 mapped_size
= PAGE_SIZE
- BTRFS_CSUM_SIZE
;
1958 p
= ((u8
*)mapped_buffer
) + BTRFS_CSUM_SIZE
;
1961 u64 l
= min_t(u64
, len
, mapped_size
);
1963 crc
= btrfs_csum_data(p
, crc
, l
);
1964 kunmap_atomic(mapped_buffer
);
1969 BUG_ON(index
>= sblock
->page_count
);
1970 BUG_ON(!sblock
->pagev
[index
]->page
);
1971 page
= sblock
->pagev
[index
]->page
;
1972 mapped_buffer
= kmap_atomic(page
);
1973 mapped_size
= PAGE_SIZE
;
1977 btrfs_csum_final(crc
, calculated_csum
);
1978 if (memcmp(calculated_csum
, on_disk_csum
, sctx
->csum_size
))
1981 if (fail_cor
+ fail_gen
) {
1983 * if we find an error in a super block, we just report it.
1984 * They will get written with the next transaction commit
1987 spin_lock(&sctx
->stat_lock
);
1988 ++sctx
->stat
.super_errors
;
1989 spin_unlock(&sctx
->stat_lock
);
1991 btrfs_dev_stat_inc_and_print(sblock
->pagev
[0]->dev
,
1992 BTRFS_DEV_STAT_CORRUPTION_ERRS
);
1994 btrfs_dev_stat_inc_and_print(sblock
->pagev
[0]->dev
,
1995 BTRFS_DEV_STAT_GENERATION_ERRS
);
1998 return fail_cor
+ fail_gen
;
2001 static void scrub_block_get(struct scrub_block
*sblock
)
2003 atomic_inc(&sblock
->refs
);
2006 static void scrub_block_put(struct scrub_block
*sblock
)
2008 if (atomic_dec_and_test(&sblock
->refs
)) {
2011 if (sblock
->sparity
)
2012 scrub_parity_put(sblock
->sparity
);
2014 for (i
= 0; i
< sblock
->page_count
; i
++)
2015 scrub_page_put(sblock
->pagev
[i
]);
2020 static void scrub_page_get(struct scrub_page
*spage
)
2022 atomic_inc(&spage
->refs
);
2025 static void scrub_page_put(struct scrub_page
*spage
)
2027 if (atomic_dec_and_test(&spage
->refs
)) {
2029 __free_page(spage
->page
);
2034 static void scrub_submit(struct scrub_ctx
*sctx
)
2036 struct scrub_bio
*sbio
;
2038 if (sctx
->curr
== -1)
2041 sbio
= sctx
->bios
[sctx
->curr
];
2043 scrub_pending_bio_inc(sctx
);
2044 btrfsic_submit_bio(sbio
->bio
);
2047 static int scrub_add_page_to_rd_bio(struct scrub_ctx
*sctx
,
2048 struct scrub_page
*spage
)
2050 struct scrub_block
*sblock
= spage
->sblock
;
2051 struct scrub_bio
*sbio
;
2056 * grab a fresh bio or wait for one to become available
2058 while (sctx
->curr
== -1) {
2059 spin_lock(&sctx
->list_lock
);
2060 sctx
->curr
= sctx
->first_free
;
2061 if (sctx
->curr
!= -1) {
2062 sctx
->first_free
= sctx
->bios
[sctx
->curr
]->next_free
;
2063 sctx
->bios
[sctx
->curr
]->next_free
= -1;
2064 sctx
->bios
[sctx
->curr
]->page_count
= 0;
2065 spin_unlock(&sctx
->list_lock
);
2067 spin_unlock(&sctx
->list_lock
);
2068 wait_event(sctx
->list_wait
, sctx
->first_free
!= -1);
2071 sbio
= sctx
->bios
[sctx
->curr
];
2072 if (sbio
->page_count
== 0) {
2075 sbio
->physical
= spage
->physical
;
2076 sbio
->logical
= spage
->logical
;
2077 sbio
->dev
= spage
->dev
;
2080 bio
= btrfs_io_bio_alloc(GFP_KERNEL
,
2081 sctx
->pages_per_rd_bio
);
2087 bio
->bi_private
= sbio
;
2088 bio
->bi_end_io
= scrub_bio_end_io
;
2089 bio
->bi_bdev
= sbio
->dev
->bdev
;
2090 bio
->bi_iter
.bi_sector
= sbio
->physical
>> 9;
2091 bio_set_op_attrs(bio
, REQ_OP_READ
, 0);
2093 } else if (sbio
->physical
+ sbio
->page_count
* PAGE_SIZE
!=
2095 sbio
->logical
+ sbio
->page_count
* PAGE_SIZE
!=
2097 sbio
->dev
!= spage
->dev
) {
2102 sbio
->pagev
[sbio
->page_count
] = spage
;
2103 ret
= bio_add_page(sbio
->bio
, spage
->page
, PAGE_SIZE
, 0);
2104 if (ret
!= PAGE_SIZE
) {
2105 if (sbio
->page_count
< 1) {
2114 scrub_block_get(sblock
); /* one for the page added to the bio */
2115 atomic_inc(&sblock
->outstanding_pages
);
2117 if (sbio
->page_count
== sctx
->pages_per_rd_bio
)
2123 static void scrub_missing_raid56_end_io(struct bio
*bio
)
2125 struct scrub_block
*sblock
= bio
->bi_private
;
2126 struct btrfs_fs_info
*fs_info
= sblock
->sctx
->fs_info
;
2129 sblock
->no_io_error_seen
= 0;
2133 btrfs_queue_work(fs_info
->scrub_workers
, &sblock
->work
);
2136 static void scrub_missing_raid56_worker(struct btrfs_work
*work
)
2138 struct scrub_block
*sblock
= container_of(work
, struct scrub_block
, work
);
2139 struct scrub_ctx
*sctx
= sblock
->sctx
;
2140 struct btrfs_fs_info
*fs_info
= sctx
->fs_info
;
2142 struct btrfs_device
*dev
;
2144 logical
= sblock
->pagev
[0]->logical
;
2145 dev
= sblock
->pagev
[0]->dev
;
2147 if (sblock
->no_io_error_seen
)
2148 scrub_recheck_block_checksum(sblock
);
2150 if (!sblock
->no_io_error_seen
) {
2151 spin_lock(&sctx
->stat_lock
);
2152 sctx
->stat
.read_errors
++;
2153 spin_unlock(&sctx
->stat_lock
);
2154 btrfs_err_rl_in_rcu(fs_info
,
2155 "IO error rebuilding logical %llu for dev %s",
2156 logical
, rcu_str_deref(dev
->name
));
2157 } else if (sblock
->header_error
|| sblock
->checksum_error
) {
2158 spin_lock(&sctx
->stat_lock
);
2159 sctx
->stat
.uncorrectable_errors
++;
2160 spin_unlock(&sctx
->stat_lock
);
2161 btrfs_err_rl_in_rcu(fs_info
,
2162 "failed to rebuild valid logical %llu for dev %s",
2163 logical
, rcu_str_deref(dev
->name
));
2165 scrub_write_block_to_dev_replace(sblock
);
2168 scrub_block_put(sblock
);
2170 if (sctx
->is_dev_replace
&&
2171 atomic_read(&sctx
->wr_ctx
.flush_all_writes
)) {
2172 mutex_lock(&sctx
->wr_ctx
.wr_lock
);
2173 scrub_wr_submit(sctx
);
2174 mutex_unlock(&sctx
->wr_ctx
.wr_lock
);
2177 scrub_pending_bio_dec(sctx
);
2180 static void scrub_missing_raid56_pages(struct scrub_block
*sblock
)
2182 struct scrub_ctx
*sctx
= sblock
->sctx
;
2183 struct btrfs_fs_info
*fs_info
= sctx
->fs_info
;
2184 u64 length
= sblock
->page_count
* PAGE_SIZE
;
2185 u64 logical
= sblock
->pagev
[0]->logical
;
2186 struct btrfs_bio
*bbio
= NULL
;
2188 struct btrfs_raid_bio
*rbio
;
2192 ret
= btrfs_map_sblock(fs_info
, BTRFS_MAP_GET_READ_MIRRORS
, logical
,
2193 &length
, &bbio
, 0, 1);
2194 if (ret
|| !bbio
|| !bbio
->raid_map
)
2197 if (WARN_ON(!sctx
->is_dev_replace
||
2198 !(bbio
->map_type
& BTRFS_BLOCK_GROUP_RAID56_MASK
))) {
2200 * We shouldn't be scrubbing a missing device. Even for dev
2201 * replace, we should only get here for RAID 5/6. We either
2202 * managed to mount something with no mirrors remaining or
2203 * there's a bug in scrub_remap_extent()/btrfs_map_block().
2208 bio
= btrfs_io_bio_alloc(GFP_NOFS
, 0);
2212 bio
->bi_iter
.bi_sector
= logical
>> 9;
2213 bio
->bi_private
= sblock
;
2214 bio
->bi_end_io
= scrub_missing_raid56_end_io
;
2216 rbio
= raid56_alloc_missing_rbio(fs_info
, bio
, bbio
, length
);
2220 for (i
= 0; i
< sblock
->page_count
; i
++) {
2221 struct scrub_page
*spage
= sblock
->pagev
[i
];
2223 raid56_add_scrub_pages(rbio
, spage
->page
, spage
->logical
);
2226 btrfs_init_work(&sblock
->work
, btrfs_scrub_helper
,
2227 scrub_missing_raid56_worker
, NULL
, NULL
);
2228 scrub_block_get(sblock
);
2229 scrub_pending_bio_inc(sctx
);
2230 raid56_submit_missing_rbio(rbio
);
2236 btrfs_put_bbio(bbio
);
2237 spin_lock(&sctx
->stat_lock
);
2238 sctx
->stat
.malloc_errors
++;
2239 spin_unlock(&sctx
->stat_lock
);
2242 static int scrub_pages(struct scrub_ctx
*sctx
, u64 logical
, u64 len
,
2243 u64 physical
, struct btrfs_device
*dev
, u64 flags
,
2244 u64 gen
, int mirror_num
, u8
*csum
, int force
,
2245 u64 physical_for_dev_replace
)
2247 struct scrub_block
*sblock
;
2250 sblock
= kzalloc(sizeof(*sblock
), GFP_KERNEL
);
2252 spin_lock(&sctx
->stat_lock
);
2253 sctx
->stat
.malloc_errors
++;
2254 spin_unlock(&sctx
->stat_lock
);
2258 /* one ref inside this function, plus one for each page added to
2260 atomic_set(&sblock
->refs
, 1);
2261 sblock
->sctx
= sctx
;
2262 sblock
->no_io_error_seen
= 1;
2264 for (index
= 0; len
> 0; index
++) {
2265 struct scrub_page
*spage
;
2266 u64 l
= min_t(u64
, len
, PAGE_SIZE
);
2268 spage
= kzalloc(sizeof(*spage
), GFP_KERNEL
);
2271 spin_lock(&sctx
->stat_lock
);
2272 sctx
->stat
.malloc_errors
++;
2273 spin_unlock(&sctx
->stat_lock
);
2274 scrub_block_put(sblock
);
2277 BUG_ON(index
>= SCRUB_MAX_PAGES_PER_BLOCK
);
2278 scrub_page_get(spage
);
2279 sblock
->pagev
[index
] = spage
;
2280 spage
->sblock
= sblock
;
2282 spage
->flags
= flags
;
2283 spage
->generation
= gen
;
2284 spage
->logical
= logical
;
2285 spage
->physical
= physical
;
2286 spage
->physical_for_dev_replace
= physical_for_dev_replace
;
2287 spage
->mirror_num
= mirror_num
;
2289 spage
->have_csum
= 1;
2290 memcpy(spage
->csum
, csum
, sctx
->csum_size
);
2292 spage
->have_csum
= 0;
2294 sblock
->page_count
++;
2295 spage
->page
= alloc_page(GFP_KERNEL
);
2301 physical_for_dev_replace
+= l
;
2304 WARN_ON(sblock
->page_count
== 0);
2307 * This case should only be hit for RAID 5/6 device replace. See
2308 * the comment in scrub_missing_raid56_pages() for details.
2310 scrub_missing_raid56_pages(sblock
);
2312 for (index
= 0; index
< sblock
->page_count
; index
++) {
2313 struct scrub_page
*spage
= sblock
->pagev
[index
];
2316 ret
= scrub_add_page_to_rd_bio(sctx
, spage
);
2318 scrub_block_put(sblock
);
2327 /* last one frees, either here or in bio completion for last page */
2328 scrub_block_put(sblock
);
2332 static void scrub_bio_end_io(struct bio
*bio
)
2334 struct scrub_bio
*sbio
= bio
->bi_private
;
2335 struct btrfs_fs_info
*fs_info
= sbio
->dev
->fs_info
;
2337 sbio
->err
= bio
->bi_error
;
2340 btrfs_queue_work(fs_info
->scrub_workers
, &sbio
->work
);
2343 static void scrub_bio_end_io_worker(struct btrfs_work
*work
)
2345 struct scrub_bio
*sbio
= container_of(work
, struct scrub_bio
, work
);
2346 struct scrub_ctx
*sctx
= sbio
->sctx
;
2349 BUG_ON(sbio
->page_count
> SCRUB_PAGES_PER_RD_BIO
);
2351 for (i
= 0; i
< sbio
->page_count
; i
++) {
2352 struct scrub_page
*spage
= sbio
->pagev
[i
];
2354 spage
->io_error
= 1;
2355 spage
->sblock
->no_io_error_seen
= 0;
2359 /* now complete the scrub_block items that have all pages completed */
2360 for (i
= 0; i
< sbio
->page_count
; i
++) {
2361 struct scrub_page
*spage
= sbio
->pagev
[i
];
2362 struct scrub_block
*sblock
= spage
->sblock
;
2364 if (atomic_dec_and_test(&sblock
->outstanding_pages
))
2365 scrub_block_complete(sblock
);
2366 scrub_block_put(sblock
);
2371 spin_lock(&sctx
->list_lock
);
2372 sbio
->next_free
= sctx
->first_free
;
2373 sctx
->first_free
= sbio
->index
;
2374 spin_unlock(&sctx
->list_lock
);
2376 if (sctx
->is_dev_replace
&&
2377 atomic_read(&sctx
->wr_ctx
.flush_all_writes
)) {
2378 mutex_lock(&sctx
->wr_ctx
.wr_lock
);
2379 scrub_wr_submit(sctx
);
2380 mutex_unlock(&sctx
->wr_ctx
.wr_lock
);
2383 scrub_pending_bio_dec(sctx
);
2386 static inline void __scrub_mark_bitmap(struct scrub_parity
*sparity
,
2387 unsigned long *bitmap
,
2392 int sectorsize
= sparity
->sctx
->fs_info
->sectorsize
;
2394 if (len
>= sparity
->stripe_len
) {
2395 bitmap_set(bitmap
, 0, sparity
->nsectors
);
2399 start
-= sparity
->logic_start
;
2400 start
= div_u64_rem(start
, sparity
->stripe_len
, &offset
);
2401 offset
/= sectorsize
;
2402 nsectors
= (int)len
/ sectorsize
;
2404 if (offset
+ nsectors
<= sparity
->nsectors
) {
2405 bitmap_set(bitmap
, offset
, nsectors
);
2409 bitmap_set(bitmap
, offset
, sparity
->nsectors
- offset
);
2410 bitmap_set(bitmap
, 0, nsectors
- (sparity
->nsectors
- offset
));
2413 static inline void scrub_parity_mark_sectors_error(struct scrub_parity
*sparity
,
2416 __scrub_mark_bitmap(sparity
, sparity
->ebitmap
, start
, len
);
2419 static inline void scrub_parity_mark_sectors_data(struct scrub_parity
*sparity
,
2422 __scrub_mark_bitmap(sparity
, sparity
->dbitmap
, start
, len
);
2425 static void scrub_block_complete(struct scrub_block
*sblock
)
2429 if (!sblock
->no_io_error_seen
) {
2431 scrub_handle_errored_block(sblock
);
2434 * if has checksum error, write via repair mechanism in
2435 * dev replace case, otherwise write here in dev replace
2438 corrupted
= scrub_checksum(sblock
);
2439 if (!corrupted
&& sblock
->sctx
->is_dev_replace
)
2440 scrub_write_block_to_dev_replace(sblock
);
2443 if (sblock
->sparity
&& corrupted
&& !sblock
->data_corrected
) {
2444 u64 start
= sblock
->pagev
[0]->logical
;
2445 u64 end
= sblock
->pagev
[sblock
->page_count
- 1]->logical
+
2448 scrub_parity_mark_sectors_error(sblock
->sparity
,
2449 start
, end
- start
);
2453 static int scrub_find_csum(struct scrub_ctx
*sctx
, u64 logical
, u8
*csum
)
2455 struct btrfs_ordered_sum
*sum
= NULL
;
2456 unsigned long index
;
2457 unsigned long num_sectors
;
2459 while (!list_empty(&sctx
->csum_list
)) {
2460 sum
= list_first_entry(&sctx
->csum_list
,
2461 struct btrfs_ordered_sum
, list
);
2462 if (sum
->bytenr
> logical
)
2464 if (sum
->bytenr
+ sum
->len
> logical
)
2467 ++sctx
->stat
.csum_discards
;
2468 list_del(&sum
->list
);
2475 index
= ((u32
)(logical
- sum
->bytenr
)) / sctx
->sectorsize
;
2476 num_sectors
= sum
->len
/ sctx
->sectorsize
;
2477 memcpy(csum
, sum
->sums
+ index
, sctx
->csum_size
);
2478 if (index
== num_sectors
- 1) {
2479 list_del(&sum
->list
);
2485 /* scrub extent tries to collect up to 64 kB for each bio */
2486 static int scrub_extent(struct scrub_ctx
*sctx
, u64 logical
, u64 len
,
2487 u64 physical
, struct btrfs_device
*dev
, u64 flags
,
2488 u64 gen
, int mirror_num
, u64 physical_for_dev_replace
)
2491 u8 csum
[BTRFS_CSUM_SIZE
];
2494 if (flags
& BTRFS_EXTENT_FLAG_DATA
) {
2495 blocksize
= sctx
->sectorsize
;
2496 spin_lock(&sctx
->stat_lock
);
2497 sctx
->stat
.data_extents_scrubbed
++;
2498 sctx
->stat
.data_bytes_scrubbed
+= len
;
2499 spin_unlock(&sctx
->stat_lock
);
2500 } else if (flags
& BTRFS_EXTENT_FLAG_TREE_BLOCK
) {
2501 blocksize
= sctx
->nodesize
;
2502 spin_lock(&sctx
->stat_lock
);
2503 sctx
->stat
.tree_extents_scrubbed
++;
2504 sctx
->stat
.tree_bytes_scrubbed
+= len
;
2505 spin_unlock(&sctx
->stat_lock
);
2507 blocksize
= sctx
->sectorsize
;
2512 u64 l
= min_t(u64
, len
, blocksize
);
2515 if (flags
& BTRFS_EXTENT_FLAG_DATA
) {
2516 /* push csums to sbio */
2517 have_csum
= scrub_find_csum(sctx
, logical
, csum
);
2519 ++sctx
->stat
.no_csum
;
2520 if (sctx
->is_dev_replace
&& !have_csum
) {
2521 ret
= copy_nocow_pages(sctx
, logical
, l
,
2523 physical_for_dev_replace
);
2524 goto behind_scrub_pages
;
2527 ret
= scrub_pages(sctx
, logical
, l
, physical
, dev
, flags
, gen
,
2528 mirror_num
, have_csum
? csum
: NULL
, 0,
2529 physical_for_dev_replace
);
2536 physical_for_dev_replace
+= l
;
2541 static int scrub_pages_for_parity(struct scrub_parity
*sparity
,
2542 u64 logical
, u64 len
,
2543 u64 physical
, struct btrfs_device
*dev
,
2544 u64 flags
, u64 gen
, int mirror_num
, u8
*csum
)
2546 struct scrub_ctx
*sctx
= sparity
->sctx
;
2547 struct scrub_block
*sblock
;
2550 sblock
= kzalloc(sizeof(*sblock
), GFP_KERNEL
);
2552 spin_lock(&sctx
->stat_lock
);
2553 sctx
->stat
.malloc_errors
++;
2554 spin_unlock(&sctx
->stat_lock
);
2558 /* one ref inside this function, plus one for each page added to
2560 atomic_set(&sblock
->refs
, 1);
2561 sblock
->sctx
= sctx
;
2562 sblock
->no_io_error_seen
= 1;
2563 sblock
->sparity
= sparity
;
2564 scrub_parity_get(sparity
);
2566 for (index
= 0; len
> 0; index
++) {
2567 struct scrub_page
*spage
;
2568 u64 l
= min_t(u64
, len
, PAGE_SIZE
);
2570 spage
= kzalloc(sizeof(*spage
), GFP_KERNEL
);
2573 spin_lock(&sctx
->stat_lock
);
2574 sctx
->stat
.malloc_errors
++;
2575 spin_unlock(&sctx
->stat_lock
);
2576 scrub_block_put(sblock
);
2579 BUG_ON(index
>= SCRUB_MAX_PAGES_PER_BLOCK
);
2580 /* For scrub block */
2581 scrub_page_get(spage
);
2582 sblock
->pagev
[index
] = spage
;
2583 /* For scrub parity */
2584 scrub_page_get(spage
);
2585 list_add_tail(&spage
->list
, &sparity
->spages
);
2586 spage
->sblock
= sblock
;
2588 spage
->flags
= flags
;
2589 spage
->generation
= gen
;
2590 spage
->logical
= logical
;
2591 spage
->physical
= physical
;
2592 spage
->mirror_num
= mirror_num
;
2594 spage
->have_csum
= 1;
2595 memcpy(spage
->csum
, csum
, sctx
->csum_size
);
2597 spage
->have_csum
= 0;
2599 sblock
->page_count
++;
2600 spage
->page
= alloc_page(GFP_KERNEL
);
2608 WARN_ON(sblock
->page_count
== 0);
2609 for (index
= 0; index
< sblock
->page_count
; index
++) {
2610 struct scrub_page
*spage
= sblock
->pagev
[index
];
2613 ret
= scrub_add_page_to_rd_bio(sctx
, spage
);
2615 scrub_block_put(sblock
);
2620 /* last one frees, either here or in bio completion for last page */
2621 scrub_block_put(sblock
);
2625 static int scrub_extent_for_parity(struct scrub_parity
*sparity
,
2626 u64 logical
, u64 len
,
2627 u64 physical
, struct btrfs_device
*dev
,
2628 u64 flags
, u64 gen
, int mirror_num
)
2630 struct scrub_ctx
*sctx
= sparity
->sctx
;
2632 u8 csum
[BTRFS_CSUM_SIZE
];
2636 scrub_parity_mark_sectors_error(sparity
, logical
, len
);
2640 if (flags
& BTRFS_EXTENT_FLAG_DATA
) {
2641 blocksize
= sctx
->sectorsize
;
2642 } else if (flags
& BTRFS_EXTENT_FLAG_TREE_BLOCK
) {
2643 blocksize
= sctx
->nodesize
;
2645 blocksize
= sctx
->sectorsize
;
2650 u64 l
= min_t(u64
, len
, blocksize
);
2653 if (flags
& BTRFS_EXTENT_FLAG_DATA
) {
2654 /* push csums to sbio */
2655 have_csum
= scrub_find_csum(sctx
, logical
, csum
);
2659 ret
= scrub_pages_for_parity(sparity
, logical
, l
, physical
, dev
,
2660 flags
, gen
, mirror_num
,
2661 have_csum
? csum
: NULL
);
2673 * Given a physical address, this will calculate it's
2674 * logical offset. if this is a parity stripe, it will return
2675 * the most left data stripe's logical offset.
2677 * return 0 if it is a data stripe, 1 means parity stripe.
2679 static int get_raid56_logic_offset(u64 physical
, int num
,
2680 struct map_lookup
*map
, u64
*offset
,
2690 last_offset
= (physical
- map
->stripes
[num
].physical
) *
2691 nr_data_stripes(map
);
2693 *stripe_start
= last_offset
;
2695 *offset
= last_offset
;
2696 for (i
= 0; i
< nr_data_stripes(map
); i
++) {
2697 *offset
= last_offset
+ i
* map
->stripe_len
;
2699 stripe_nr
= div_u64(*offset
, map
->stripe_len
);
2700 stripe_nr
= div_u64(stripe_nr
, nr_data_stripes(map
));
2702 /* Work out the disk rotation on this stripe-set */
2703 stripe_nr
= div_u64_rem(stripe_nr
, map
->num_stripes
, &rot
);
2704 /* calculate which stripe this data locates */
2706 stripe_index
= rot
% map
->num_stripes
;
2707 if (stripe_index
== num
)
2709 if (stripe_index
< num
)
2712 *offset
= last_offset
+ j
* map
->stripe_len
;
2716 static void scrub_free_parity(struct scrub_parity
*sparity
)
2718 struct scrub_ctx
*sctx
= sparity
->sctx
;
2719 struct scrub_page
*curr
, *next
;
2722 nbits
= bitmap_weight(sparity
->ebitmap
, sparity
->nsectors
);
2724 spin_lock(&sctx
->stat_lock
);
2725 sctx
->stat
.read_errors
+= nbits
;
2726 sctx
->stat
.uncorrectable_errors
+= nbits
;
2727 spin_unlock(&sctx
->stat_lock
);
2730 list_for_each_entry_safe(curr
, next
, &sparity
->spages
, list
) {
2731 list_del_init(&curr
->list
);
2732 scrub_page_put(curr
);
2738 static void scrub_parity_bio_endio_worker(struct btrfs_work
*work
)
2740 struct scrub_parity
*sparity
= container_of(work
, struct scrub_parity
,
2742 struct scrub_ctx
*sctx
= sparity
->sctx
;
2744 scrub_free_parity(sparity
);
2745 scrub_pending_bio_dec(sctx
);
2748 static void scrub_parity_bio_endio(struct bio
*bio
)
2750 struct scrub_parity
*sparity
= (struct scrub_parity
*)bio
->bi_private
;
2751 struct btrfs_fs_info
*fs_info
= sparity
->sctx
->fs_info
;
2754 bitmap_or(sparity
->ebitmap
, sparity
->ebitmap
, sparity
->dbitmap
,
2759 btrfs_init_work(&sparity
->work
, btrfs_scrubparity_helper
,
2760 scrub_parity_bio_endio_worker
, NULL
, NULL
);
2761 btrfs_queue_work(fs_info
->scrub_parity_workers
, &sparity
->work
);
2764 static void scrub_parity_check_and_repair(struct scrub_parity
*sparity
)
2766 struct scrub_ctx
*sctx
= sparity
->sctx
;
2767 struct btrfs_fs_info
*fs_info
= sctx
->fs_info
;
2769 struct btrfs_raid_bio
*rbio
;
2770 struct scrub_page
*spage
;
2771 struct btrfs_bio
*bbio
= NULL
;
2775 if (!bitmap_andnot(sparity
->dbitmap
, sparity
->dbitmap
, sparity
->ebitmap
,
2779 length
= sparity
->logic_end
- sparity
->logic_start
;
2780 ret
= btrfs_map_sblock(fs_info
, BTRFS_MAP_WRITE
, sparity
->logic_start
,
2781 &length
, &bbio
, 0, 1);
2782 if (ret
|| !bbio
|| !bbio
->raid_map
)
2785 bio
= btrfs_io_bio_alloc(GFP_NOFS
, 0);
2789 bio
->bi_iter
.bi_sector
= sparity
->logic_start
>> 9;
2790 bio
->bi_private
= sparity
;
2791 bio
->bi_end_io
= scrub_parity_bio_endio
;
2793 rbio
= raid56_parity_alloc_scrub_rbio(fs_info
, bio
, bbio
,
2794 length
, sparity
->scrub_dev
,
2800 list_for_each_entry(spage
, &sparity
->spages
, list
)
2801 raid56_add_scrub_pages(rbio
, spage
->page
, spage
->logical
);
2803 scrub_pending_bio_inc(sctx
);
2804 raid56_parity_submit_scrub_rbio(rbio
);
2810 btrfs_put_bbio(bbio
);
2811 bitmap_or(sparity
->ebitmap
, sparity
->ebitmap
, sparity
->dbitmap
,
2813 spin_lock(&sctx
->stat_lock
);
2814 sctx
->stat
.malloc_errors
++;
2815 spin_unlock(&sctx
->stat_lock
);
2817 scrub_free_parity(sparity
);
2820 static inline int scrub_calc_parity_bitmap_len(int nsectors
)
2822 return DIV_ROUND_UP(nsectors
, BITS_PER_LONG
) * sizeof(long);
2825 static void scrub_parity_get(struct scrub_parity
*sparity
)
2827 atomic_inc(&sparity
->refs
);
2830 static void scrub_parity_put(struct scrub_parity
*sparity
)
2832 if (!atomic_dec_and_test(&sparity
->refs
))
2835 scrub_parity_check_and_repair(sparity
);
2838 static noinline_for_stack
int scrub_raid56_parity(struct scrub_ctx
*sctx
,
2839 struct map_lookup
*map
,
2840 struct btrfs_device
*sdev
,
2841 struct btrfs_path
*path
,
2845 struct btrfs_fs_info
*fs_info
= sctx
->fs_info
;
2846 struct btrfs_root
*root
= fs_info
->extent_root
;
2847 struct btrfs_root
*csum_root
= fs_info
->csum_root
;
2848 struct btrfs_extent_item
*extent
;
2849 struct btrfs_bio
*bbio
= NULL
;
2853 struct extent_buffer
*l
;
2854 struct btrfs_key key
;
2857 u64 extent_physical
;
2860 struct btrfs_device
*extent_dev
;
2861 struct scrub_parity
*sparity
;
2864 int extent_mirror_num
;
2867 nsectors
= div_u64(map
->stripe_len
, fs_info
->sectorsize
);
2868 bitmap_len
= scrub_calc_parity_bitmap_len(nsectors
);
2869 sparity
= kzalloc(sizeof(struct scrub_parity
) + 2 * bitmap_len
,
2872 spin_lock(&sctx
->stat_lock
);
2873 sctx
->stat
.malloc_errors
++;
2874 spin_unlock(&sctx
->stat_lock
);
2878 sparity
->stripe_len
= map
->stripe_len
;
2879 sparity
->nsectors
= nsectors
;
2880 sparity
->sctx
= sctx
;
2881 sparity
->scrub_dev
= sdev
;
2882 sparity
->logic_start
= logic_start
;
2883 sparity
->logic_end
= logic_end
;
2884 atomic_set(&sparity
->refs
, 1);
2885 INIT_LIST_HEAD(&sparity
->spages
);
2886 sparity
->dbitmap
= sparity
->bitmap
;
2887 sparity
->ebitmap
= (void *)sparity
->bitmap
+ bitmap_len
;
2890 while (logic_start
< logic_end
) {
2891 if (btrfs_fs_incompat(fs_info
, SKINNY_METADATA
))
2892 key
.type
= BTRFS_METADATA_ITEM_KEY
;
2894 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
2895 key
.objectid
= logic_start
;
2896 key
.offset
= (u64
)-1;
2898 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
2903 ret
= btrfs_previous_extent_item(root
, path
, 0);
2907 btrfs_release_path(path
);
2908 ret
= btrfs_search_slot(NULL
, root
, &key
,
2920 slot
= path
->slots
[0];
2921 if (slot
>= btrfs_header_nritems(l
)) {
2922 ret
= btrfs_next_leaf(root
, path
);
2931 btrfs_item_key_to_cpu(l
, &key
, slot
);
2933 if (key
.type
!= BTRFS_EXTENT_ITEM_KEY
&&
2934 key
.type
!= BTRFS_METADATA_ITEM_KEY
)
2937 if (key
.type
== BTRFS_METADATA_ITEM_KEY
)
2938 bytes
= fs_info
->nodesize
;
2942 if (key
.objectid
+ bytes
<= logic_start
)
2945 if (key
.objectid
>= logic_end
) {
2950 while (key
.objectid
>= logic_start
+ map
->stripe_len
)
2951 logic_start
+= map
->stripe_len
;
2953 extent
= btrfs_item_ptr(l
, slot
,
2954 struct btrfs_extent_item
);
2955 flags
= btrfs_extent_flags(l
, extent
);
2956 generation
= btrfs_extent_generation(l
, extent
);
2958 if ((flags
& BTRFS_EXTENT_FLAG_TREE_BLOCK
) &&
2959 (key
.objectid
< logic_start
||
2960 key
.objectid
+ bytes
>
2961 logic_start
+ map
->stripe_len
)) {
2963 "scrub: tree block %llu spanning stripes, ignored. logical=%llu",
2964 key
.objectid
, logic_start
);
2965 spin_lock(&sctx
->stat_lock
);
2966 sctx
->stat
.uncorrectable_errors
++;
2967 spin_unlock(&sctx
->stat_lock
);
2971 extent_logical
= key
.objectid
;
2974 if (extent_logical
< logic_start
) {
2975 extent_len
-= logic_start
- extent_logical
;
2976 extent_logical
= logic_start
;
2979 if (extent_logical
+ extent_len
>
2980 logic_start
+ map
->stripe_len
)
2981 extent_len
= logic_start
+ map
->stripe_len
-
2984 scrub_parity_mark_sectors_data(sparity
, extent_logical
,
2987 mapped_length
= extent_len
;
2989 ret
= btrfs_map_block(fs_info
, BTRFS_MAP_READ
,
2990 extent_logical
, &mapped_length
, &bbio
,
2993 if (!bbio
|| mapped_length
< extent_len
)
2997 btrfs_put_bbio(bbio
);
3000 extent_physical
= bbio
->stripes
[0].physical
;
3001 extent_mirror_num
= bbio
->mirror_num
;
3002 extent_dev
= bbio
->stripes
[0].dev
;
3003 btrfs_put_bbio(bbio
);
3005 ret
= btrfs_lookup_csums_range(csum_root
,
3007 extent_logical
+ extent_len
- 1,
3008 &sctx
->csum_list
, 1);
3012 ret
= scrub_extent_for_parity(sparity
, extent_logical
,
3019 scrub_free_csums(sctx
);
3024 if (extent_logical
+ extent_len
<
3025 key
.objectid
+ bytes
) {
3026 logic_start
+= map
->stripe_len
;
3028 if (logic_start
>= logic_end
) {
3033 if (logic_start
< key
.objectid
+ bytes
) {
3042 btrfs_release_path(path
);
3047 logic_start
+= map
->stripe_len
;
3051 scrub_parity_mark_sectors_error(sparity
, logic_start
,
3052 logic_end
- logic_start
);
3053 scrub_parity_put(sparity
);
3055 mutex_lock(&sctx
->wr_ctx
.wr_lock
);
3056 scrub_wr_submit(sctx
);
3057 mutex_unlock(&sctx
->wr_ctx
.wr_lock
);
3059 btrfs_release_path(path
);
3060 return ret
< 0 ? ret
: 0;
3063 static noinline_for_stack
int scrub_stripe(struct scrub_ctx
*sctx
,
3064 struct map_lookup
*map
,
3065 struct btrfs_device
*scrub_dev
,
3066 int num
, u64 base
, u64 length
,
3069 struct btrfs_path
*path
, *ppath
;
3070 struct btrfs_fs_info
*fs_info
= sctx
->fs_info
;
3071 struct btrfs_root
*root
= fs_info
->extent_root
;
3072 struct btrfs_root
*csum_root
= fs_info
->csum_root
;
3073 struct btrfs_extent_item
*extent
;
3074 struct blk_plug plug
;
3079 struct extent_buffer
*l
;
3086 struct reada_control
*reada1
;
3087 struct reada_control
*reada2
;
3088 struct btrfs_key key
;
3089 struct btrfs_key key_end
;
3090 u64 increment
= map
->stripe_len
;
3093 u64 extent_physical
;
3097 struct btrfs_device
*extent_dev
;
3098 int extent_mirror_num
;
3101 physical
= map
->stripes
[num
].physical
;
3103 nstripes
= div_u64(length
, map
->stripe_len
);
3104 if (map
->type
& BTRFS_BLOCK_GROUP_RAID0
) {
3105 offset
= map
->stripe_len
* num
;
3106 increment
= map
->stripe_len
* map
->num_stripes
;
3108 } else if (map
->type
& BTRFS_BLOCK_GROUP_RAID10
) {
3109 int factor
= map
->num_stripes
/ map
->sub_stripes
;
3110 offset
= map
->stripe_len
* (num
/ map
->sub_stripes
);
3111 increment
= map
->stripe_len
* factor
;
3112 mirror_num
= num
% map
->sub_stripes
+ 1;
3113 } else if (map
->type
& BTRFS_BLOCK_GROUP_RAID1
) {
3114 increment
= map
->stripe_len
;
3115 mirror_num
= num
% map
->num_stripes
+ 1;
3116 } else if (map
->type
& BTRFS_BLOCK_GROUP_DUP
) {
3117 increment
= map
->stripe_len
;
3118 mirror_num
= num
% map
->num_stripes
+ 1;
3119 } else if (map
->type
& BTRFS_BLOCK_GROUP_RAID56_MASK
) {
3120 get_raid56_logic_offset(physical
, num
, map
, &offset
, NULL
);
3121 increment
= map
->stripe_len
* nr_data_stripes(map
);
3124 increment
= map
->stripe_len
;
3128 path
= btrfs_alloc_path();
3132 ppath
= btrfs_alloc_path();
3134 btrfs_free_path(path
);
3139 * work on commit root. The related disk blocks are static as
3140 * long as COW is applied. This means, it is save to rewrite
3141 * them to repair disk errors without any race conditions
3143 path
->search_commit_root
= 1;
3144 path
->skip_locking
= 1;
3146 ppath
->search_commit_root
= 1;
3147 ppath
->skip_locking
= 1;
3149 * trigger the readahead for extent tree csum tree and wait for
3150 * completion. During readahead, the scrub is officially paused
3151 * to not hold off transaction commits
3153 logical
= base
+ offset
;
3154 physical_end
= physical
+ nstripes
* map
->stripe_len
;
3155 if (map
->type
& BTRFS_BLOCK_GROUP_RAID56_MASK
) {
3156 get_raid56_logic_offset(physical_end
, num
,
3157 map
, &logic_end
, NULL
);
3160 logic_end
= logical
+ increment
* nstripes
;
3162 wait_event(sctx
->list_wait
,
3163 atomic_read(&sctx
->bios_in_flight
) == 0);
3164 scrub_blocked_if_needed(fs_info
);
3166 /* FIXME it might be better to start readahead at commit root */
3167 key
.objectid
= logical
;
3168 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
3169 key
.offset
= (u64
)0;
3170 key_end
.objectid
= logic_end
;
3171 key_end
.type
= BTRFS_METADATA_ITEM_KEY
;
3172 key_end
.offset
= (u64
)-1;
3173 reada1
= btrfs_reada_add(root
, &key
, &key_end
);
3175 key
.objectid
= BTRFS_EXTENT_CSUM_OBJECTID
;
3176 key
.type
= BTRFS_EXTENT_CSUM_KEY
;
3177 key
.offset
= logical
;
3178 key_end
.objectid
= BTRFS_EXTENT_CSUM_OBJECTID
;
3179 key_end
.type
= BTRFS_EXTENT_CSUM_KEY
;
3180 key_end
.offset
= logic_end
;
3181 reada2
= btrfs_reada_add(csum_root
, &key
, &key_end
);
3183 if (!IS_ERR(reada1
))
3184 btrfs_reada_wait(reada1
);
3185 if (!IS_ERR(reada2
))
3186 btrfs_reada_wait(reada2
);
3190 * collect all data csums for the stripe to avoid seeking during
3191 * the scrub. This might currently (crc32) end up to be about 1MB
3193 blk_start_plug(&plug
);
3196 * now find all extents for each stripe and scrub them
3199 while (physical
< physical_end
) {
3203 if (atomic_read(&fs_info
->scrub_cancel_req
) ||
3204 atomic_read(&sctx
->cancel_req
)) {
3209 * check to see if we have to pause
3211 if (atomic_read(&fs_info
->scrub_pause_req
)) {
3212 /* push queued extents */
3213 atomic_set(&sctx
->wr_ctx
.flush_all_writes
, 1);
3215 mutex_lock(&sctx
->wr_ctx
.wr_lock
);
3216 scrub_wr_submit(sctx
);
3217 mutex_unlock(&sctx
->wr_ctx
.wr_lock
);
3218 wait_event(sctx
->list_wait
,
3219 atomic_read(&sctx
->bios_in_flight
) == 0);
3220 atomic_set(&sctx
->wr_ctx
.flush_all_writes
, 0);
3221 scrub_blocked_if_needed(fs_info
);
3224 if (map
->type
& BTRFS_BLOCK_GROUP_RAID56_MASK
) {
3225 ret
= get_raid56_logic_offset(physical
, num
, map
,
3230 /* it is parity strip */
3231 stripe_logical
+= base
;
3232 stripe_end
= stripe_logical
+ increment
;
3233 ret
= scrub_raid56_parity(sctx
, map
, scrub_dev
,
3234 ppath
, stripe_logical
,
3242 if (btrfs_fs_incompat(fs_info
, SKINNY_METADATA
))
3243 key
.type
= BTRFS_METADATA_ITEM_KEY
;
3245 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
3246 key
.objectid
= logical
;
3247 key
.offset
= (u64
)-1;
3249 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
3254 ret
= btrfs_previous_extent_item(root
, path
, 0);
3258 /* there's no smaller item, so stick with the
3260 btrfs_release_path(path
);
3261 ret
= btrfs_search_slot(NULL
, root
, &key
,
3273 slot
= path
->slots
[0];
3274 if (slot
>= btrfs_header_nritems(l
)) {
3275 ret
= btrfs_next_leaf(root
, path
);
3284 btrfs_item_key_to_cpu(l
, &key
, slot
);
3286 if (key
.type
!= BTRFS_EXTENT_ITEM_KEY
&&
3287 key
.type
!= BTRFS_METADATA_ITEM_KEY
)
3290 if (key
.type
== BTRFS_METADATA_ITEM_KEY
)
3291 bytes
= fs_info
->nodesize
;
3295 if (key
.objectid
+ bytes
<= logical
)
3298 if (key
.objectid
>= logical
+ map
->stripe_len
) {
3299 /* out of this device extent */
3300 if (key
.objectid
>= logic_end
)
3305 extent
= btrfs_item_ptr(l
, slot
,
3306 struct btrfs_extent_item
);
3307 flags
= btrfs_extent_flags(l
, extent
);
3308 generation
= btrfs_extent_generation(l
, extent
);
3310 if ((flags
& BTRFS_EXTENT_FLAG_TREE_BLOCK
) &&
3311 (key
.objectid
< logical
||
3312 key
.objectid
+ bytes
>
3313 logical
+ map
->stripe_len
)) {
3315 "scrub: tree block %llu spanning stripes, ignored. logical=%llu",
3316 key
.objectid
, logical
);
3317 spin_lock(&sctx
->stat_lock
);
3318 sctx
->stat
.uncorrectable_errors
++;
3319 spin_unlock(&sctx
->stat_lock
);
3324 extent_logical
= key
.objectid
;
3328 * trim extent to this stripe
3330 if (extent_logical
< logical
) {
3331 extent_len
-= logical
- extent_logical
;
3332 extent_logical
= logical
;
3334 if (extent_logical
+ extent_len
>
3335 logical
+ map
->stripe_len
) {
3336 extent_len
= logical
+ map
->stripe_len
-
3340 extent_physical
= extent_logical
- logical
+ physical
;
3341 extent_dev
= scrub_dev
;
3342 extent_mirror_num
= mirror_num
;
3344 scrub_remap_extent(fs_info
, extent_logical
,
3345 extent_len
, &extent_physical
,
3347 &extent_mirror_num
);
3349 ret
= btrfs_lookup_csums_range(csum_root
,
3353 &sctx
->csum_list
, 1);
3357 ret
= scrub_extent(sctx
, extent_logical
, extent_len
,
3358 extent_physical
, extent_dev
, flags
,
3359 generation
, extent_mirror_num
,
3360 extent_logical
- logical
+ physical
);
3362 scrub_free_csums(sctx
);
3367 if (extent_logical
+ extent_len
<
3368 key
.objectid
+ bytes
) {
3369 if (map
->type
& BTRFS_BLOCK_GROUP_RAID56_MASK
) {
3371 * loop until we find next data stripe
3372 * or we have finished all stripes.
3375 physical
+= map
->stripe_len
;
3376 ret
= get_raid56_logic_offset(physical
,
3381 if (ret
&& physical
< physical_end
) {
3382 stripe_logical
+= base
;
3383 stripe_end
= stripe_logical
+
3385 ret
= scrub_raid56_parity(sctx
,
3386 map
, scrub_dev
, ppath
,
3394 physical
+= map
->stripe_len
;
3395 logical
+= increment
;
3397 if (logical
< key
.objectid
+ bytes
) {
3402 if (physical
>= physical_end
) {
3410 btrfs_release_path(path
);
3412 logical
+= increment
;
3413 physical
+= map
->stripe_len
;
3414 spin_lock(&sctx
->stat_lock
);
3416 sctx
->stat
.last_physical
= map
->stripes
[num
].physical
+
3419 sctx
->stat
.last_physical
= physical
;
3420 spin_unlock(&sctx
->stat_lock
);
3425 /* push queued extents */
3427 mutex_lock(&sctx
->wr_ctx
.wr_lock
);
3428 scrub_wr_submit(sctx
);
3429 mutex_unlock(&sctx
->wr_ctx
.wr_lock
);
3431 blk_finish_plug(&plug
);
3432 btrfs_free_path(path
);
3433 btrfs_free_path(ppath
);
3434 return ret
< 0 ? ret
: 0;
3437 static noinline_for_stack
int scrub_chunk(struct scrub_ctx
*sctx
,
3438 struct btrfs_device
*scrub_dev
,
3439 u64 chunk_offset
, u64 length
,
3441 struct btrfs_block_group_cache
*cache
,
3444 struct btrfs_fs_info
*fs_info
= sctx
->fs_info
;
3445 struct btrfs_mapping_tree
*map_tree
= &fs_info
->mapping_tree
;
3446 struct map_lookup
*map
;
3447 struct extent_map
*em
;
3451 read_lock(&map_tree
->map_tree
.lock
);
3452 em
= lookup_extent_mapping(&map_tree
->map_tree
, chunk_offset
, 1);
3453 read_unlock(&map_tree
->map_tree
.lock
);
3457 * Might have been an unused block group deleted by the cleaner
3458 * kthread or relocation.
3460 spin_lock(&cache
->lock
);
3461 if (!cache
->removed
)
3463 spin_unlock(&cache
->lock
);
3468 map
= em
->map_lookup
;
3469 if (em
->start
!= chunk_offset
)
3472 if (em
->len
< length
)
3475 for (i
= 0; i
< map
->num_stripes
; ++i
) {
3476 if (map
->stripes
[i
].dev
->bdev
== scrub_dev
->bdev
&&
3477 map
->stripes
[i
].physical
== dev_offset
) {
3478 ret
= scrub_stripe(sctx
, map
, scrub_dev
, i
,
3479 chunk_offset
, length
,
3486 free_extent_map(em
);
3491 static noinline_for_stack
3492 int scrub_enumerate_chunks(struct scrub_ctx
*sctx
,
3493 struct btrfs_device
*scrub_dev
, u64 start
, u64 end
,
3496 struct btrfs_dev_extent
*dev_extent
= NULL
;
3497 struct btrfs_path
*path
;
3498 struct btrfs_fs_info
*fs_info
= sctx
->fs_info
;
3499 struct btrfs_root
*root
= fs_info
->dev_root
;
3505 struct extent_buffer
*l
;
3506 struct btrfs_key key
;
3507 struct btrfs_key found_key
;
3508 struct btrfs_block_group_cache
*cache
;
3509 struct btrfs_dev_replace
*dev_replace
= &fs_info
->dev_replace
;
3511 path
= btrfs_alloc_path();
3515 path
->reada
= READA_FORWARD
;
3516 path
->search_commit_root
= 1;
3517 path
->skip_locking
= 1;
3519 key
.objectid
= scrub_dev
->devid
;
3521 key
.type
= BTRFS_DEV_EXTENT_KEY
;
3524 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
3528 if (path
->slots
[0] >=
3529 btrfs_header_nritems(path
->nodes
[0])) {
3530 ret
= btrfs_next_leaf(root
, path
);
3543 slot
= path
->slots
[0];
3545 btrfs_item_key_to_cpu(l
, &found_key
, slot
);
3547 if (found_key
.objectid
!= scrub_dev
->devid
)
3550 if (found_key
.type
!= BTRFS_DEV_EXTENT_KEY
)
3553 if (found_key
.offset
>= end
)
3556 if (found_key
.offset
< key
.offset
)
3559 dev_extent
= btrfs_item_ptr(l
, slot
, struct btrfs_dev_extent
);
3560 length
= btrfs_dev_extent_length(l
, dev_extent
);
3562 if (found_key
.offset
+ length
<= start
)
3565 chunk_offset
= btrfs_dev_extent_chunk_offset(l
, dev_extent
);
3568 * get a reference on the corresponding block group to prevent
3569 * the chunk from going away while we scrub it
3571 cache
= btrfs_lookup_block_group(fs_info
, chunk_offset
);
3573 /* some chunks are removed but not committed to disk yet,
3574 * continue scrubbing */
3579 * we need call btrfs_inc_block_group_ro() with scrubs_paused,
3580 * to avoid deadlock caused by:
3581 * btrfs_inc_block_group_ro()
3582 * -> btrfs_wait_for_commit()
3583 * -> btrfs_commit_transaction()
3584 * -> btrfs_scrub_pause()
3586 scrub_pause_on(fs_info
);
3587 ret
= btrfs_inc_block_group_ro(root
, cache
);
3588 if (!ret
&& is_dev_replace
) {
3590 * If we are doing a device replace wait for any tasks
3591 * that started dellaloc right before we set the block
3592 * group to RO mode, as they might have just allocated
3593 * an extent from it or decided they could do a nocow
3594 * write. And if any such tasks did that, wait for their
3595 * ordered extents to complete and then commit the
3596 * current transaction, so that we can later see the new
3597 * extent items in the extent tree - the ordered extents
3598 * create delayed data references (for cow writes) when
3599 * they complete, which will be run and insert the
3600 * corresponding extent items into the extent tree when
3601 * we commit the transaction they used when running
3602 * inode.c:btrfs_finish_ordered_io(). We later use
3603 * the commit root of the extent tree to find extents
3604 * to copy from the srcdev into the tgtdev, and we don't
3605 * want to miss any new extents.
3607 btrfs_wait_block_group_reservations(cache
);
3608 btrfs_wait_nocow_writers(cache
);
3609 ret
= btrfs_wait_ordered_roots(fs_info
, -1,
3610 cache
->key
.objectid
,
3613 struct btrfs_trans_handle
*trans
;
3615 trans
= btrfs_join_transaction(root
);
3617 ret
= PTR_ERR(trans
);
3619 ret
= btrfs_commit_transaction(trans
);
3621 scrub_pause_off(fs_info
);
3622 btrfs_put_block_group(cache
);
3627 scrub_pause_off(fs_info
);
3631 } else if (ret
== -ENOSPC
) {
3633 * btrfs_inc_block_group_ro return -ENOSPC when it
3634 * failed in creating new chunk for metadata.
3635 * It is not a problem for scrub/replace, because
3636 * metadata are always cowed, and our scrub paused
3637 * commit_transactions.
3642 "failed setting block group ro, ret=%d\n",
3644 btrfs_put_block_group(cache
);
3648 btrfs_dev_replace_lock(&fs_info
->dev_replace
, 1);
3649 dev_replace
->cursor_right
= found_key
.offset
+ length
;
3650 dev_replace
->cursor_left
= found_key
.offset
;
3651 dev_replace
->item_needs_writeback
= 1;
3652 btrfs_dev_replace_unlock(&fs_info
->dev_replace
, 1);
3653 ret
= scrub_chunk(sctx
, scrub_dev
, chunk_offset
, length
,
3654 found_key
.offset
, cache
, is_dev_replace
);
3657 * flush, submit all pending read and write bios, afterwards
3659 * Note that in the dev replace case, a read request causes
3660 * write requests that are submitted in the read completion
3661 * worker. Therefore in the current situation, it is required
3662 * that all write requests are flushed, so that all read and
3663 * write requests are really completed when bios_in_flight
3666 atomic_set(&sctx
->wr_ctx
.flush_all_writes
, 1);
3668 mutex_lock(&sctx
->wr_ctx
.wr_lock
);
3669 scrub_wr_submit(sctx
);
3670 mutex_unlock(&sctx
->wr_ctx
.wr_lock
);
3672 wait_event(sctx
->list_wait
,
3673 atomic_read(&sctx
->bios_in_flight
) == 0);
3675 scrub_pause_on(fs_info
);
3678 * must be called before we decrease @scrub_paused.
3679 * make sure we don't block transaction commit while
3680 * we are waiting pending workers finished.
3682 wait_event(sctx
->list_wait
,
3683 atomic_read(&sctx
->workers_pending
) == 0);
3684 atomic_set(&sctx
->wr_ctx
.flush_all_writes
, 0);
3686 scrub_pause_off(fs_info
);
3688 btrfs_dev_replace_lock(&fs_info
->dev_replace
, 1);
3689 dev_replace
->cursor_left
= dev_replace
->cursor_right
;
3690 dev_replace
->item_needs_writeback
= 1;
3691 btrfs_dev_replace_unlock(&fs_info
->dev_replace
, 1);
3694 btrfs_dec_block_group_ro(cache
);
3697 * We might have prevented the cleaner kthread from deleting
3698 * this block group if it was already unused because we raced
3699 * and set it to RO mode first. So add it back to the unused
3700 * list, otherwise it might not ever be deleted unless a manual
3701 * balance is triggered or it becomes used and unused again.
3703 spin_lock(&cache
->lock
);
3704 if (!cache
->removed
&& !cache
->ro
&& cache
->reserved
== 0 &&
3705 btrfs_block_group_used(&cache
->item
) == 0) {
3706 spin_unlock(&cache
->lock
);
3707 spin_lock(&fs_info
->unused_bgs_lock
);
3708 if (list_empty(&cache
->bg_list
)) {
3709 btrfs_get_block_group(cache
);
3710 list_add_tail(&cache
->bg_list
,
3711 &fs_info
->unused_bgs
);
3713 spin_unlock(&fs_info
->unused_bgs_lock
);
3715 spin_unlock(&cache
->lock
);
3718 btrfs_put_block_group(cache
);
3721 if (is_dev_replace
&&
3722 atomic64_read(&dev_replace
->num_write_errors
) > 0) {
3726 if (sctx
->stat
.malloc_errors
> 0) {
3731 key
.offset
= found_key
.offset
+ length
;
3732 btrfs_release_path(path
);
3735 btrfs_free_path(path
);
3740 static noinline_for_stack
int scrub_supers(struct scrub_ctx
*sctx
,
3741 struct btrfs_device
*scrub_dev
)
3747 struct btrfs_fs_info
*fs_info
= sctx
->fs_info
;
3749 if (test_bit(BTRFS_FS_STATE_ERROR
, &fs_info
->fs_state
))
3752 /* Seed devices of a new filesystem has their own generation. */
3753 if (scrub_dev
->fs_devices
!= fs_info
->fs_devices
)
3754 gen
= scrub_dev
->generation
;
3756 gen
= fs_info
->last_trans_committed
;
3758 for (i
= 0; i
< BTRFS_SUPER_MIRROR_MAX
; i
++) {
3759 bytenr
= btrfs_sb_offset(i
);
3760 if (bytenr
+ BTRFS_SUPER_INFO_SIZE
>
3761 scrub_dev
->commit_total_bytes
)
3764 ret
= scrub_pages(sctx
, bytenr
, BTRFS_SUPER_INFO_SIZE
, bytenr
,
3765 scrub_dev
, BTRFS_EXTENT_FLAG_SUPER
, gen
, i
,
3770 wait_event(sctx
->list_wait
, atomic_read(&sctx
->bios_in_flight
) == 0);
3776 * get a reference count on fs_info->scrub_workers. start worker if necessary
3778 static noinline_for_stack
int scrub_workers_get(struct btrfs_fs_info
*fs_info
,
3781 unsigned int flags
= WQ_FREEZABLE
| WQ_UNBOUND
;
3782 int max_active
= fs_info
->thread_pool_size
;
3784 if (fs_info
->scrub_workers_refcnt
== 0) {
3786 fs_info
->scrub_workers
=
3787 btrfs_alloc_workqueue(fs_info
, "scrub", flags
,
3790 fs_info
->scrub_workers
=
3791 btrfs_alloc_workqueue(fs_info
, "scrub", flags
,
3793 if (!fs_info
->scrub_workers
)
3794 goto fail_scrub_workers
;
3796 fs_info
->scrub_wr_completion_workers
=
3797 btrfs_alloc_workqueue(fs_info
, "scrubwrc", flags
,
3799 if (!fs_info
->scrub_wr_completion_workers
)
3800 goto fail_scrub_wr_completion_workers
;
3802 fs_info
->scrub_nocow_workers
=
3803 btrfs_alloc_workqueue(fs_info
, "scrubnc", flags
, 1, 0);
3804 if (!fs_info
->scrub_nocow_workers
)
3805 goto fail_scrub_nocow_workers
;
3806 fs_info
->scrub_parity_workers
=
3807 btrfs_alloc_workqueue(fs_info
, "scrubparity", flags
,
3809 if (!fs_info
->scrub_parity_workers
)
3810 goto fail_scrub_parity_workers
;
3812 ++fs_info
->scrub_workers_refcnt
;
3815 fail_scrub_parity_workers
:
3816 btrfs_destroy_workqueue(fs_info
->scrub_nocow_workers
);
3817 fail_scrub_nocow_workers
:
3818 btrfs_destroy_workqueue(fs_info
->scrub_wr_completion_workers
);
3819 fail_scrub_wr_completion_workers
:
3820 btrfs_destroy_workqueue(fs_info
->scrub_workers
);
3825 static noinline_for_stack
void scrub_workers_put(struct btrfs_fs_info
*fs_info
)
3827 if (--fs_info
->scrub_workers_refcnt
== 0) {
3828 btrfs_destroy_workqueue(fs_info
->scrub_workers
);
3829 btrfs_destroy_workqueue(fs_info
->scrub_wr_completion_workers
);
3830 btrfs_destroy_workqueue(fs_info
->scrub_nocow_workers
);
3831 btrfs_destroy_workqueue(fs_info
->scrub_parity_workers
);
3833 WARN_ON(fs_info
->scrub_workers_refcnt
< 0);
3836 int btrfs_scrub_dev(struct btrfs_fs_info
*fs_info
, u64 devid
, u64 start
,
3837 u64 end
, struct btrfs_scrub_progress
*progress
,
3838 int readonly
, int is_dev_replace
)
3840 struct scrub_ctx
*sctx
;
3842 struct btrfs_device
*dev
;
3843 struct rcu_string
*name
;
3845 if (btrfs_fs_closing(fs_info
))
3848 if (fs_info
->nodesize
> BTRFS_STRIPE_LEN
) {
3850 * in this case scrub is unable to calculate the checksum
3851 * the way scrub is implemented. Do not handle this
3852 * situation at all because it won't ever happen.
3855 "scrub: size assumption nodesize <= BTRFS_STRIPE_LEN (%d <= %d) fails",
3861 if (fs_info
->sectorsize
!= PAGE_SIZE
) {
3862 /* not supported for data w/o checksums */
3863 btrfs_err_rl(fs_info
,
3864 "scrub: size assumption sectorsize != PAGE_SIZE (%d != %lu) fails",
3865 fs_info
->sectorsize
, PAGE_SIZE
);
3869 if (fs_info
->nodesize
>
3870 PAGE_SIZE
* SCRUB_MAX_PAGES_PER_BLOCK
||
3871 fs_info
->sectorsize
> PAGE_SIZE
* SCRUB_MAX_PAGES_PER_BLOCK
) {
3873 * would exhaust the array bounds of pagev member in
3874 * struct scrub_block
3877 "scrub: size assumption nodesize and sectorsize <= SCRUB_MAX_PAGES_PER_BLOCK (%d <= %d && %d <= %d) fails",
3879 SCRUB_MAX_PAGES_PER_BLOCK
,
3880 fs_info
->sectorsize
,
3881 SCRUB_MAX_PAGES_PER_BLOCK
);
3886 mutex_lock(&fs_info
->fs_devices
->device_list_mutex
);
3887 dev
= btrfs_find_device(fs_info
, devid
, NULL
, NULL
);
3888 if (!dev
|| (dev
->missing
&& !is_dev_replace
)) {
3889 mutex_unlock(&fs_info
->fs_devices
->device_list_mutex
);
3893 if (!is_dev_replace
&& !readonly
&& !dev
->writeable
) {
3894 mutex_unlock(&fs_info
->fs_devices
->device_list_mutex
);
3896 name
= rcu_dereference(dev
->name
);
3897 btrfs_err(fs_info
, "scrub: device %s is not writable",
3903 mutex_lock(&fs_info
->scrub_lock
);
3904 if (!dev
->in_fs_metadata
|| dev
->is_tgtdev_for_dev_replace
) {
3905 mutex_unlock(&fs_info
->scrub_lock
);
3906 mutex_unlock(&fs_info
->fs_devices
->device_list_mutex
);
3910 btrfs_dev_replace_lock(&fs_info
->dev_replace
, 0);
3911 if (dev
->scrub_device
||
3913 btrfs_dev_replace_is_ongoing(&fs_info
->dev_replace
))) {
3914 btrfs_dev_replace_unlock(&fs_info
->dev_replace
, 0);
3915 mutex_unlock(&fs_info
->scrub_lock
);
3916 mutex_unlock(&fs_info
->fs_devices
->device_list_mutex
);
3917 return -EINPROGRESS
;
3919 btrfs_dev_replace_unlock(&fs_info
->dev_replace
, 0);
3921 ret
= scrub_workers_get(fs_info
, is_dev_replace
);
3923 mutex_unlock(&fs_info
->scrub_lock
);
3924 mutex_unlock(&fs_info
->fs_devices
->device_list_mutex
);
3928 sctx
= scrub_setup_ctx(dev
, is_dev_replace
);
3930 mutex_unlock(&fs_info
->scrub_lock
);
3931 mutex_unlock(&fs_info
->fs_devices
->device_list_mutex
);
3932 scrub_workers_put(fs_info
);
3933 return PTR_ERR(sctx
);
3935 sctx
->readonly
= readonly
;
3936 dev
->scrub_device
= sctx
;
3937 mutex_unlock(&fs_info
->fs_devices
->device_list_mutex
);
3940 * checking @scrub_pause_req here, we can avoid
3941 * race between committing transaction and scrubbing.
3943 __scrub_blocked_if_needed(fs_info
);
3944 atomic_inc(&fs_info
->scrubs_running
);
3945 mutex_unlock(&fs_info
->scrub_lock
);
3947 if (!is_dev_replace
) {
3949 * by holding device list mutex, we can
3950 * kick off writing super in log tree sync.
3952 mutex_lock(&fs_info
->fs_devices
->device_list_mutex
);
3953 ret
= scrub_supers(sctx
, dev
);
3954 mutex_unlock(&fs_info
->fs_devices
->device_list_mutex
);
3958 ret
= scrub_enumerate_chunks(sctx
, dev
, start
, end
,
3961 wait_event(sctx
->list_wait
, atomic_read(&sctx
->bios_in_flight
) == 0);
3962 atomic_dec(&fs_info
->scrubs_running
);
3963 wake_up(&fs_info
->scrub_pause_wait
);
3965 wait_event(sctx
->list_wait
, atomic_read(&sctx
->workers_pending
) == 0);
3968 memcpy(progress
, &sctx
->stat
, sizeof(*progress
));
3970 mutex_lock(&fs_info
->scrub_lock
);
3971 dev
->scrub_device
= NULL
;
3972 scrub_workers_put(fs_info
);
3973 mutex_unlock(&fs_info
->scrub_lock
);
3975 scrub_put_ctx(sctx
);
3980 void btrfs_scrub_pause(struct btrfs_fs_info
*fs_info
)
3982 mutex_lock(&fs_info
->scrub_lock
);
3983 atomic_inc(&fs_info
->scrub_pause_req
);
3984 while (atomic_read(&fs_info
->scrubs_paused
) !=
3985 atomic_read(&fs_info
->scrubs_running
)) {
3986 mutex_unlock(&fs_info
->scrub_lock
);
3987 wait_event(fs_info
->scrub_pause_wait
,
3988 atomic_read(&fs_info
->scrubs_paused
) ==
3989 atomic_read(&fs_info
->scrubs_running
));
3990 mutex_lock(&fs_info
->scrub_lock
);
3992 mutex_unlock(&fs_info
->scrub_lock
);
3995 void btrfs_scrub_continue(struct btrfs_fs_info
*fs_info
)
3997 atomic_dec(&fs_info
->scrub_pause_req
);
3998 wake_up(&fs_info
->scrub_pause_wait
);
4001 int btrfs_scrub_cancel(struct btrfs_fs_info
*fs_info
)
4003 mutex_lock(&fs_info
->scrub_lock
);
4004 if (!atomic_read(&fs_info
->scrubs_running
)) {
4005 mutex_unlock(&fs_info
->scrub_lock
);
4009 atomic_inc(&fs_info
->scrub_cancel_req
);
4010 while (atomic_read(&fs_info
->scrubs_running
)) {
4011 mutex_unlock(&fs_info
->scrub_lock
);
4012 wait_event(fs_info
->scrub_pause_wait
,
4013 atomic_read(&fs_info
->scrubs_running
) == 0);
4014 mutex_lock(&fs_info
->scrub_lock
);
4016 atomic_dec(&fs_info
->scrub_cancel_req
);
4017 mutex_unlock(&fs_info
->scrub_lock
);
4022 int btrfs_scrub_cancel_dev(struct btrfs_fs_info
*fs_info
,
4023 struct btrfs_device
*dev
)
4025 struct scrub_ctx
*sctx
;
4027 mutex_lock(&fs_info
->scrub_lock
);
4028 sctx
= dev
->scrub_device
;
4030 mutex_unlock(&fs_info
->scrub_lock
);
4033 atomic_inc(&sctx
->cancel_req
);
4034 while (dev
->scrub_device
) {
4035 mutex_unlock(&fs_info
->scrub_lock
);
4036 wait_event(fs_info
->scrub_pause_wait
,
4037 dev
->scrub_device
== NULL
);
4038 mutex_lock(&fs_info
->scrub_lock
);
4040 mutex_unlock(&fs_info
->scrub_lock
);
4045 int btrfs_scrub_progress(struct btrfs_fs_info
*fs_info
, u64 devid
,
4046 struct btrfs_scrub_progress
*progress
)
4048 struct btrfs_device
*dev
;
4049 struct scrub_ctx
*sctx
= NULL
;
4051 mutex_lock(&fs_info
->fs_devices
->device_list_mutex
);
4052 dev
= btrfs_find_device(fs_info
, devid
, NULL
, NULL
);
4054 sctx
= dev
->scrub_device
;
4056 memcpy(progress
, &sctx
->stat
, sizeof(*progress
));
4057 mutex_unlock(&fs_info
->fs_devices
->device_list_mutex
);
4059 return dev
? (sctx
? 0 : -ENOTCONN
) : -ENODEV
;
4062 static void scrub_remap_extent(struct btrfs_fs_info
*fs_info
,
4063 u64 extent_logical
, u64 extent_len
,
4064 u64
*extent_physical
,
4065 struct btrfs_device
**extent_dev
,
4066 int *extent_mirror_num
)
4069 struct btrfs_bio
*bbio
= NULL
;
4072 mapped_length
= extent_len
;
4073 ret
= btrfs_map_block(fs_info
, BTRFS_MAP_READ
, extent_logical
,
4074 &mapped_length
, &bbio
, 0);
4075 if (ret
|| !bbio
|| mapped_length
< extent_len
||
4076 !bbio
->stripes
[0].dev
->bdev
) {
4077 btrfs_put_bbio(bbio
);
4081 *extent_physical
= bbio
->stripes
[0].physical
;
4082 *extent_mirror_num
= bbio
->mirror_num
;
4083 *extent_dev
= bbio
->stripes
[0].dev
;
4084 btrfs_put_bbio(bbio
);
4087 static int scrub_setup_wr_ctx(struct scrub_ctx
*sctx
,
4088 struct scrub_wr_ctx
*wr_ctx
,
4089 struct btrfs_fs_info
*fs_info
,
4090 struct btrfs_device
*dev
,
4093 WARN_ON(wr_ctx
->wr_curr_bio
!= NULL
);
4095 mutex_init(&wr_ctx
->wr_lock
);
4096 wr_ctx
->wr_curr_bio
= NULL
;
4097 if (!is_dev_replace
)
4100 WARN_ON(!dev
->bdev
);
4101 wr_ctx
->pages_per_wr_bio
= SCRUB_PAGES_PER_WR_BIO
;
4102 wr_ctx
->tgtdev
= dev
;
4103 atomic_set(&wr_ctx
->flush_all_writes
, 0);
4107 static void scrub_free_wr_ctx(struct scrub_wr_ctx
*wr_ctx
)
4109 mutex_lock(&wr_ctx
->wr_lock
);
4110 kfree(wr_ctx
->wr_curr_bio
);
4111 wr_ctx
->wr_curr_bio
= NULL
;
4112 mutex_unlock(&wr_ctx
->wr_lock
);
4115 static int copy_nocow_pages(struct scrub_ctx
*sctx
, u64 logical
, u64 len
,
4116 int mirror_num
, u64 physical_for_dev_replace
)
4118 struct scrub_copy_nocow_ctx
*nocow_ctx
;
4119 struct btrfs_fs_info
*fs_info
= sctx
->fs_info
;
4121 nocow_ctx
= kzalloc(sizeof(*nocow_ctx
), GFP_NOFS
);
4123 spin_lock(&sctx
->stat_lock
);
4124 sctx
->stat
.malloc_errors
++;
4125 spin_unlock(&sctx
->stat_lock
);
4129 scrub_pending_trans_workers_inc(sctx
);
4131 nocow_ctx
->sctx
= sctx
;
4132 nocow_ctx
->logical
= logical
;
4133 nocow_ctx
->len
= len
;
4134 nocow_ctx
->mirror_num
= mirror_num
;
4135 nocow_ctx
->physical_for_dev_replace
= physical_for_dev_replace
;
4136 btrfs_init_work(&nocow_ctx
->work
, btrfs_scrubnc_helper
,
4137 copy_nocow_pages_worker
, NULL
, NULL
);
4138 INIT_LIST_HEAD(&nocow_ctx
->inodes
);
4139 btrfs_queue_work(fs_info
->scrub_nocow_workers
,
4145 static int record_inode_for_nocow(u64 inum
, u64 offset
, u64 root
, void *ctx
)
4147 struct scrub_copy_nocow_ctx
*nocow_ctx
= ctx
;
4148 struct scrub_nocow_inode
*nocow_inode
;
4150 nocow_inode
= kzalloc(sizeof(*nocow_inode
), GFP_NOFS
);
4153 nocow_inode
->inum
= inum
;
4154 nocow_inode
->offset
= offset
;
4155 nocow_inode
->root
= root
;
4156 list_add_tail(&nocow_inode
->list
, &nocow_ctx
->inodes
);
4160 #define COPY_COMPLETE 1
4162 static void copy_nocow_pages_worker(struct btrfs_work
*work
)
4164 struct scrub_copy_nocow_ctx
*nocow_ctx
=
4165 container_of(work
, struct scrub_copy_nocow_ctx
, work
);
4166 struct scrub_ctx
*sctx
= nocow_ctx
->sctx
;
4167 struct btrfs_fs_info
*fs_info
= sctx
->fs_info
;
4168 struct btrfs_root
*root
= fs_info
->extent_root
;
4169 u64 logical
= nocow_ctx
->logical
;
4170 u64 len
= nocow_ctx
->len
;
4171 int mirror_num
= nocow_ctx
->mirror_num
;
4172 u64 physical_for_dev_replace
= nocow_ctx
->physical_for_dev_replace
;
4174 struct btrfs_trans_handle
*trans
= NULL
;
4175 struct btrfs_path
*path
;
4176 int not_written
= 0;
4178 path
= btrfs_alloc_path();
4180 spin_lock(&sctx
->stat_lock
);
4181 sctx
->stat
.malloc_errors
++;
4182 spin_unlock(&sctx
->stat_lock
);
4187 trans
= btrfs_join_transaction(root
);
4188 if (IS_ERR(trans
)) {
4193 ret
= iterate_inodes_from_logical(logical
, fs_info
, path
,
4194 record_inode_for_nocow
, nocow_ctx
);
4195 if (ret
!= 0 && ret
!= -ENOENT
) {
4197 "iterate_inodes_from_logical() failed: log %llu, phys %llu, len %llu, mir %u, ret %d",
4198 logical
, physical_for_dev_replace
, len
, mirror_num
,
4204 btrfs_end_transaction(trans
);
4206 while (!list_empty(&nocow_ctx
->inodes
)) {
4207 struct scrub_nocow_inode
*entry
;
4208 entry
= list_first_entry(&nocow_ctx
->inodes
,
4209 struct scrub_nocow_inode
,
4211 list_del_init(&entry
->list
);
4212 ret
= copy_nocow_pages_for_inode(entry
->inum
, entry
->offset
,
4213 entry
->root
, nocow_ctx
);
4215 if (ret
== COPY_COMPLETE
) {
4223 while (!list_empty(&nocow_ctx
->inodes
)) {
4224 struct scrub_nocow_inode
*entry
;
4225 entry
= list_first_entry(&nocow_ctx
->inodes
,
4226 struct scrub_nocow_inode
,
4228 list_del_init(&entry
->list
);
4231 if (trans
&& !IS_ERR(trans
))
4232 btrfs_end_transaction(trans
);
4234 btrfs_dev_replace_stats_inc(&fs_info
->dev_replace
.
4235 num_uncorrectable_read_errors
);
4237 btrfs_free_path(path
);
4240 scrub_pending_trans_workers_dec(sctx
);
4243 static int check_extent_to_block(struct inode
*inode
, u64 start
, u64 len
,
4246 struct extent_state
*cached_state
= NULL
;
4247 struct btrfs_ordered_extent
*ordered
;
4248 struct extent_io_tree
*io_tree
;
4249 struct extent_map
*em
;
4250 u64 lockstart
= start
, lockend
= start
+ len
- 1;
4253 io_tree
= &BTRFS_I(inode
)->io_tree
;
4255 lock_extent_bits(io_tree
, lockstart
, lockend
, &cached_state
);
4256 ordered
= btrfs_lookup_ordered_range(inode
, lockstart
, len
);
4258 btrfs_put_ordered_extent(ordered
);
4263 em
= btrfs_get_extent(inode
, NULL
, 0, start
, len
, 0);
4270 * This extent does not actually cover the logical extent anymore,
4271 * move on to the next inode.
4273 if (em
->block_start
> logical
||
4274 em
->block_start
+ em
->block_len
< logical
+ len
) {
4275 free_extent_map(em
);
4279 free_extent_map(em
);
4282 unlock_extent_cached(io_tree
, lockstart
, lockend
, &cached_state
,
4287 static int copy_nocow_pages_for_inode(u64 inum
, u64 offset
, u64 root
,
4288 struct scrub_copy_nocow_ctx
*nocow_ctx
)
4290 struct btrfs_fs_info
*fs_info
= nocow_ctx
->sctx
->fs_info
;
4291 struct btrfs_key key
;
4292 struct inode
*inode
;
4294 struct btrfs_root
*local_root
;
4295 struct extent_io_tree
*io_tree
;
4296 u64 physical_for_dev_replace
;
4297 u64 nocow_ctx_logical
;
4298 u64 len
= nocow_ctx
->len
;
4299 unsigned long index
;
4304 key
.objectid
= root
;
4305 key
.type
= BTRFS_ROOT_ITEM_KEY
;
4306 key
.offset
= (u64
)-1;
4308 srcu_index
= srcu_read_lock(&fs_info
->subvol_srcu
);
4310 local_root
= btrfs_read_fs_root_no_name(fs_info
, &key
);
4311 if (IS_ERR(local_root
)) {
4312 srcu_read_unlock(&fs_info
->subvol_srcu
, srcu_index
);
4313 return PTR_ERR(local_root
);
4316 key
.type
= BTRFS_INODE_ITEM_KEY
;
4317 key
.objectid
= inum
;
4319 inode
= btrfs_iget(fs_info
->sb
, &key
, local_root
, NULL
);
4320 srcu_read_unlock(&fs_info
->subvol_srcu
, srcu_index
);
4322 return PTR_ERR(inode
);
4324 /* Avoid truncate/dio/punch hole.. */
4326 inode_dio_wait(inode
);
4328 physical_for_dev_replace
= nocow_ctx
->physical_for_dev_replace
;
4329 io_tree
= &BTRFS_I(inode
)->io_tree
;
4330 nocow_ctx_logical
= nocow_ctx
->logical
;
4332 ret
= check_extent_to_block(inode
, offset
, len
, nocow_ctx_logical
);
4334 ret
= ret
> 0 ? 0 : ret
;
4338 while (len
>= PAGE_SIZE
) {
4339 index
= offset
>> PAGE_SHIFT
;
4341 page
= find_or_create_page(inode
->i_mapping
, index
, GFP_NOFS
);
4343 btrfs_err(fs_info
, "find_or_create_page() failed");
4348 if (PageUptodate(page
)) {
4349 if (PageDirty(page
))
4352 ClearPageError(page
);
4353 err
= extent_read_full_page(io_tree
, page
,
4355 nocow_ctx
->mirror_num
);
4363 * If the page has been remove from the page cache,
4364 * the data on it is meaningless, because it may be
4365 * old one, the new data may be written into the new
4366 * page in the page cache.
4368 if (page
->mapping
!= inode
->i_mapping
) {
4373 if (!PageUptodate(page
)) {
4379 ret
= check_extent_to_block(inode
, offset
, len
,
4382 ret
= ret
> 0 ? 0 : ret
;
4386 err
= write_page_nocow(nocow_ctx
->sctx
,
4387 physical_for_dev_replace
, page
);
4397 offset
+= PAGE_SIZE
;
4398 physical_for_dev_replace
+= PAGE_SIZE
;
4399 nocow_ctx_logical
+= PAGE_SIZE
;
4402 ret
= COPY_COMPLETE
;
4404 inode_unlock(inode
);
4409 static int write_page_nocow(struct scrub_ctx
*sctx
,
4410 u64 physical_for_dev_replace
, struct page
*page
)
4413 struct btrfs_device
*dev
;
4416 dev
= sctx
->wr_ctx
.tgtdev
;
4420 btrfs_warn_rl(dev
->fs_info
,
4421 "scrub write_page_nocow(bdev == NULL) is unexpected");
4424 bio
= btrfs_io_bio_alloc(GFP_NOFS
, 1);
4426 spin_lock(&sctx
->stat_lock
);
4427 sctx
->stat
.malloc_errors
++;
4428 spin_unlock(&sctx
->stat_lock
);
4431 bio
->bi_iter
.bi_size
= 0;
4432 bio
->bi_iter
.bi_sector
= physical_for_dev_replace
>> 9;
4433 bio
->bi_bdev
= dev
->bdev
;
4434 bio
->bi_opf
= REQ_OP_WRITE
| REQ_SYNC
;
4435 ret
= bio_add_page(bio
, page
, PAGE_SIZE
, 0);
4436 if (ret
!= PAGE_SIZE
) {
4439 btrfs_dev_stat_inc_and_print(dev
, BTRFS_DEV_STAT_WRITE_ERRS
);
4443 if (btrfsic_submit_bio_wait(bio
))
4444 goto leave_with_eio
;