4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
12 #include <linux/f2fs_fs.h>
13 #include <linux/mpage.h>
14 #include <linux/backing-dev.h>
15 #include <linux/blkdev.h>
16 #include <linux/pagevec.h>
17 #include <linux/swap.h>
23 #include <trace/events/f2fs.h>
25 #define on_build_free_nids(nmi) mutex_is_locked(&nm_i->build_lock)
27 static struct kmem_cache
*nat_entry_slab
;
28 static struct kmem_cache
*free_nid_slab
;
29 static struct kmem_cache
*nat_entry_set_slab
;
31 bool available_free_memory(struct f2fs_sb_info
*sbi
, int type
)
33 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
35 unsigned long avail_ram
;
36 unsigned long mem_size
= 0;
41 /* only uses low memory */
42 avail_ram
= val
.totalram
- val
.totalhigh
;
45 * give 25%, 25%, 50%, 50%, 50% memory for each components respectively
47 if (type
== FREE_NIDS
) {
48 mem_size
= (nm_i
->nid_cnt
[FREE_NID_LIST
] *
49 sizeof(struct free_nid
)) >> PAGE_SHIFT
;
50 res
= mem_size
< ((avail_ram
* nm_i
->ram_thresh
/ 100) >> 2);
51 } else if (type
== NAT_ENTRIES
) {
52 mem_size
= (nm_i
->nat_cnt
* sizeof(struct nat_entry
)) >>
54 res
= mem_size
< ((avail_ram
* nm_i
->ram_thresh
/ 100) >> 2);
55 if (excess_cached_nats(sbi
))
57 } else if (type
== DIRTY_DENTS
) {
58 if (sbi
->sb
->s_bdi
->wb
.dirty_exceeded
)
60 mem_size
= get_pages(sbi
, F2FS_DIRTY_DENTS
);
61 res
= mem_size
< ((avail_ram
* nm_i
->ram_thresh
/ 100) >> 1);
62 } else if (type
== INO_ENTRIES
) {
65 for (i
= 0; i
<= UPDATE_INO
; i
++)
66 mem_size
+= (sbi
->im
[i
].ino_num
*
67 sizeof(struct ino_entry
)) >> PAGE_SHIFT
;
68 res
= mem_size
< ((avail_ram
* nm_i
->ram_thresh
/ 100) >> 1);
69 } else if (type
== EXTENT_CACHE
) {
70 mem_size
= (atomic_read(&sbi
->total_ext_tree
) *
71 sizeof(struct extent_tree
) +
72 atomic_read(&sbi
->total_ext_node
) *
73 sizeof(struct extent_node
)) >> PAGE_SHIFT
;
74 res
= mem_size
< ((avail_ram
* nm_i
->ram_thresh
/ 100) >> 1);
76 if (!sbi
->sb
->s_bdi
->wb
.dirty_exceeded
)
82 static void clear_node_page_dirty(struct page
*page
)
84 struct address_space
*mapping
= page
->mapping
;
85 unsigned int long flags
;
87 if (PageDirty(page
)) {
88 spin_lock_irqsave(&mapping
->tree_lock
, flags
);
89 radix_tree_tag_clear(&mapping
->page_tree
,
92 spin_unlock_irqrestore(&mapping
->tree_lock
, flags
);
94 clear_page_dirty_for_io(page
);
95 dec_page_count(F2FS_M_SB(mapping
), F2FS_DIRTY_NODES
);
97 ClearPageUptodate(page
);
100 static struct page
*get_current_nat_page(struct f2fs_sb_info
*sbi
, nid_t nid
)
102 pgoff_t index
= current_nat_addr(sbi
, nid
);
103 return get_meta_page(sbi
, index
);
106 static struct page
*get_next_nat_page(struct f2fs_sb_info
*sbi
, nid_t nid
)
108 struct page
*src_page
;
109 struct page
*dst_page
;
114 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
116 src_off
= current_nat_addr(sbi
, nid
);
117 dst_off
= next_nat_addr(sbi
, src_off
);
119 /* get current nat block page with lock */
120 src_page
= get_meta_page(sbi
, src_off
);
121 dst_page
= grab_meta_page(sbi
, dst_off
);
122 f2fs_bug_on(sbi
, PageDirty(src_page
));
124 src_addr
= page_address(src_page
);
125 dst_addr
= page_address(dst_page
);
126 memcpy(dst_addr
, src_addr
, PAGE_SIZE
);
127 set_page_dirty(dst_page
);
128 f2fs_put_page(src_page
, 1);
130 set_to_next_nat(nm_i
, nid
);
135 static struct nat_entry
*__lookup_nat_cache(struct f2fs_nm_info
*nm_i
, nid_t n
)
137 return radix_tree_lookup(&nm_i
->nat_root
, n
);
140 static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info
*nm_i
,
141 nid_t start
, unsigned int nr
, struct nat_entry
**ep
)
143 return radix_tree_gang_lookup(&nm_i
->nat_root
, (void **)ep
, start
, nr
);
146 static void __del_from_nat_cache(struct f2fs_nm_info
*nm_i
, struct nat_entry
*e
)
149 radix_tree_delete(&nm_i
->nat_root
, nat_get_nid(e
));
151 kmem_cache_free(nat_entry_slab
, e
);
154 static void __set_nat_cache_dirty(struct f2fs_nm_info
*nm_i
,
155 struct nat_entry
*ne
)
157 nid_t set
= NAT_BLOCK_OFFSET(ne
->ni
.nid
);
158 struct nat_entry_set
*head
;
160 if (get_nat_flag(ne
, IS_DIRTY
))
163 head
= radix_tree_lookup(&nm_i
->nat_set_root
, set
);
165 head
= f2fs_kmem_cache_alloc(nat_entry_set_slab
, GFP_NOFS
);
167 INIT_LIST_HEAD(&head
->entry_list
);
168 INIT_LIST_HEAD(&head
->set_list
);
171 f2fs_radix_tree_insert(&nm_i
->nat_set_root
, set
, head
);
173 list_move_tail(&ne
->list
, &head
->entry_list
);
174 nm_i
->dirty_nat_cnt
++;
176 set_nat_flag(ne
, IS_DIRTY
, true);
179 static void __clear_nat_cache_dirty(struct f2fs_nm_info
*nm_i
,
180 struct nat_entry
*ne
)
182 nid_t set
= NAT_BLOCK_OFFSET(ne
->ni
.nid
);
183 struct nat_entry_set
*head
;
185 head
= radix_tree_lookup(&nm_i
->nat_set_root
, set
);
187 list_move_tail(&ne
->list
, &nm_i
->nat_entries
);
188 set_nat_flag(ne
, IS_DIRTY
, false);
190 nm_i
->dirty_nat_cnt
--;
194 static unsigned int __gang_lookup_nat_set(struct f2fs_nm_info
*nm_i
,
195 nid_t start
, unsigned int nr
, struct nat_entry_set
**ep
)
197 return radix_tree_gang_lookup(&nm_i
->nat_set_root
, (void **)ep
,
201 int need_dentry_mark(struct f2fs_sb_info
*sbi
, nid_t nid
)
203 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
207 down_read(&nm_i
->nat_tree_lock
);
208 e
= __lookup_nat_cache(nm_i
, nid
);
210 if (!get_nat_flag(e
, IS_CHECKPOINTED
) &&
211 !get_nat_flag(e
, HAS_FSYNCED_INODE
))
214 up_read(&nm_i
->nat_tree_lock
);
218 bool is_checkpointed_node(struct f2fs_sb_info
*sbi
, nid_t nid
)
220 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
224 down_read(&nm_i
->nat_tree_lock
);
225 e
= __lookup_nat_cache(nm_i
, nid
);
226 if (e
&& !get_nat_flag(e
, IS_CHECKPOINTED
))
228 up_read(&nm_i
->nat_tree_lock
);
232 bool need_inode_block_update(struct f2fs_sb_info
*sbi
, nid_t ino
)
234 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
236 bool need_update
= true;
238 down_read(&nm_i
->nat_tree_lock
);
239 e
= __lookup_nat_cache(nm_i
, ino
);
240 if (e
&& get_nat_flag(e
, HAS_LAST_FSYNC
) &&
241 (get_nat_flag(e
, IS_CHECKPOINTED
) ||
242 get_nat_flag(e
, HAS_FSYNCED_INODE
)))
244 up_read(&nm_i
->nat_tree_lock
);
248 static struct nat_entry
*grab_nat_entry(struct f2fs_nm_info
*nm_i
, nid_t nid
)
250 struct nat_entry
*new;
252 new = f2fs_kmem_cache_alloc(nat_entry_slab
, GFP_NOFS
);
253 f2fs_radix_tree_insert(&nm_i
->nat_root
, nid
, new);
254 memset(new, 0, sizeof(struct nat_entry
));
255 nat_set_nid(new, nid
);
257 list_add_tail(&new->list
, &nm_i
->nat_entries
);
262 static void cache_nat_entry(struct f2fs_sb_info
*sbi
, nid_t nid
,
263 struct f2fs_nat_entry
*ne
)
265 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
268 e
= __lookup_nat_cache(nm_i
, nid
);
270 e
= grab_nat_entry(nm_i
, nid
);
271 node_info_from_raw_nat(&e
->ni
, ne
);
273 f2fs_bug_on(sbi
, nat_get_ino(e
) != le32_to_cpu(ne
->ino
) ||
274 nat_get_blkaddr(e
) !=
275 le32_to_cpu(ne
->block_addr
) ||
276 nat_get_version(e
) != ne
->version
);
280 static void set_node_addr(struct f2fs_sb_info
*sbi
, struct node_info
*ni
,
281 block_t new_blkaddr
, bool fsync_done
)
283 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
286 down_write(&nm_i
->nat_tree_lock
);
287 e
= __lookup_nat_cache(nm_i
, ni
->nid
);
289 e
= grab_nat_entry(nm_i
, ni
->nid
);
290 copy_node_info(&e
->ni
, ni
);
291 f2fs_bug_on(sbi
, ni
->blk_addr
== NEW_ADDR
);
292 } else if (new_blkaddr
== NEW_ADDR
) {
294 * when nid is reallocated,
295 * previous nat entry can be remained in nat cache.
296 * So, reinitialize it with new information.
298 copy_node_info(&e
->ni
, ni
);
299 f2fs_bug_on(sbi
, ni
->blk_addr
!= NULL_ADDR
);
303 f2fs_bug_on(sbi
, nat_get_blkaddr(e
) != ni
->blk_addr
);
304 f2fs_bug_on(sbi
, nat_get_blkaddr(e
) == NULL_ADDR
&&
305 new_blkaddr
== NULL_ADDR
);
306 f2fs_bug_on(sbi
, nat_get_blkaddr(e
) == NEW_ADDR
&&
307 new_blkaddr
== NEW_ADDR
);
308 f2fs_bug_on(sbi
, nat_get_blkaddr(e
) != NEW_ADDR
&&
309 nat_get_blkaddr(e
) != NULL_ADDR
&&
310 new_blkaddr
== NEW_ADDR
);
312 /* increment version no as node is removed */
313 if (nat_get_blkaddr(e
) != NEW_ADDR
&& new_blkaddr
== NULL_ADDR
) {
314 unsigned char version
= nat_get_version(e
);
315 nat_set_version(e
, inc_node_version(version
));
317 /* in order to reuse the nid */
318 if (nm_i
->next_scan_nid
> ni
->nid
)
319 nm_i
->next_scan_nid
= ni
->nid
;
323 nat_set_blkaddr(e
, new_blkaddr
);
324 if (new_blkaddr
== NEW_ADDR
|| new_blkaddr
== NULL_ADDR
)
325 set_nat_flag(e
, IS_CHECKPOINTED
, false);
326 __set_nat_cache_dirty(nm_i
, e
);
328 /* update fsync_mark if its inode nat entry is still alive */
329 if (ni
->nid
!= ni
->ino
)
330 e
= __lookup_nat_cache(nm_i
, ni
->ino
);
332 if (fsync_done
&& ni
->nid
== ni
->ino
)
333 set_nat_flag(e
, HAS_FSYNCED_INODE
, true);
334 set_nat_flag(e
, HAS_LAST_FSYNC
, fsync_done
);
336 up_write(&nm_i
->nat_tree_lock
);
339 int try_to_free_nats(struct f2fs_sb_info
*sbi
, int nr_shrink
)
341 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
344 if (!down_write_trylock(&nm_i
->nat_tree_lock
))
347 while (nr_shrink
&& !list_empty(&nm_i
->nat_entries
)) {
348 struct nat_entry
*ne
;
349 ne
= list_first_entry(&nm_i
->nat_entries
,
350 struct nat_entry
, list
);
351 __del_from_nat_cache(nm_i
, ne
);
354 up_write(&nm_i
->nat_tree_lock
);
355 return nr
- nr_shrink
;
359 * This function always returns success
361 void get_node_info(struct f2fs_sb_info
*sbi
, nid_t nid
, struct node_info
*ni
)
363 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
364 struct curseg_info
*curseg
= CURSEG_I(sbi
, CURSEG_HOT_DATA
);
365 struct f2fs_journal
*journal
= curseg
->journal
;
366 nid_t start_nid
= START_NID(nid
);
367 struct f2fs_nat_block
*nat_blk
;
368 struct page
*page
= NULL
;
369 struct f2fs_nat_entry ne
;
375 /* Check nat cache */
376 down_read(&nm_i
->nat_tree_lock
);
377 e
= __lookup_nat_cache(nm_i
, nid
);
379 ni
->ino
= nat_get_ino(e
);
380 ni
->blk_addr
= nat_get_blkaddr(e
);
381 ni
->version
= nat_get_version(e
);
382 up_read(&nm_i
->nat_tree_lock
);
386 memset(&ne
, 0, sizeof(struct f2fs_nat_entry
));
388 /* Check current segment summary */
389 down_read(&curseg
->journal_rwsem
);
390 i
= lookup_journal_in_cursum(journal
, NAT_JOURNAL
, nid
, 0);
392 ne
= nat_in_journal(journal
, i
);
393 node_info_from_raw_nat(ni
, &ne
);
395 up_read(&curseg
->journal_rwsem
);
399 /* Fill node_info from nat page */
400 page
= get_current_nat_page(sbi
, start_nid
);
401 nat_blk
= (struct f2fs_nat_block
*)page_address(page
);
402 ne
= nat_blk
->entries
[nid
- start_nid
];
403 node_info_from_raw_nat(ni
, &ne
);
404 f2fs_put_page(page
, 1);
406 up_read(&nm_i
->nat_tree_lock
);
407 /* cache nat entry */
408 down_write(&nm_i
->nat_tree_lock
);
409 cache_nat_entry(sbi
, nid
, &ne
);
410 up_write(&nm_i
->nat_tree_lock
);
414 * readahead MAX_RA_NODE number of node pages.
416 static void ra_node_pages(struct page
*parent
, int start
, int n
)
418 struct f2fs_sb_info
*sbi
= F2FS_P_SB(parent
);
419 struct blk_plug plug
;
423 blk_start_plug(&plug
);
425 /* Then, try readahead for siblings of the desired node */
427 end
= min(end
, NIDS_PER_BLOCK
);
428 for (i
= start
; i
< end
; i
++) {
429 nid
= get_nid(parent
, i
, false);
430 ra_node_page(sbi
, nid
);
433 blk_finish_plug(&plug
);
436 pgoff_t
get_next_page_offset(struct dnode_of_data
*dn
, pgoff_t pgofs
)
438 const long direct_index
= ADDRS_PER_INODE(dn
->inode
);
439 const long direct_blks
= ADDRS_PER_BLOCK
;
440 const long indirect_blks
= ADDRS_PER_BLOCK
* NIDS_PER_BLOCK
;
441 unsigned int skipped_unit
= ADDRS_PER_BLOCK
;
442 int cur_level
= dn
->cur_level
;
443 int max_level
= dn
->max_level
;
449 while (max_level
-- > cur_level
)
450 skipped_unit
*= NIDS_PER_BLOCK
;
452 switch (dn
->max_level
) {
454 base
+= 2 * indirect_blks
;
456 base
+= 2 * direct_blks
;
458 base
+= direct_index
;
461 f2fs_bug_on(F2FS_I_SB(dn
->inode
), 1);
464 return ((pgofs
- base
) / skipped_unit
+ 1) * skipped_unit
+ base
;
468 * The maximum depth is four.
469 * Offset[0] will have raw inode offset.
471 static int get_node_path(struct inode
*inode
, long block
,
472 int offset
[4], unsigned int noffset
[4])
474 const long direct_index
= ADDRS_PER_INODE(inode
);
475 const long direct_blks
= ADDRS_PER_BLOCK
;
476 const long dptrs_per_blk
= NIDS_PER_BLOCK
;
477 const long indirect_blks
= ADDRS_PER_BLOCK
* NIDS_PER_BLOCK
;
478 const long dindirect_blks
= indirect_blks
* NIDS_PER_BLOCK
;
484 if (block
< direct_index
) {
488 block
-= direct_index
;
489 if (block
< direct_blks
) {
490 offset
[n
++] = NODE_DIR1_BLOCK
;
496 block
-= direct_blks
;
497 if (block
< direct_blks
) {
498 offset
[n
++] = NODE_DIR2_BLOCK
;
504 block
-= direct_blks
;
505 if (block
< indirect_blks
) {
506 offset
[n
++] = NODE_IND1_BLOCK
;
508 offset
[n
++] = block
/ direct_blks
;
509 noffset
[n
] = 4 + offset
[n
- 1];
510 offset
[n
] = block
% direct_blks
;
514 block
-= indirect_blks
;
515 if (block
< indirect_blks
) {
516 offset
[n
++] = NODE_IND2_BLOCK
;
517 noffset
[n
] = 4 + dptrs_per_blk
;
518 offset
[n
++] = block
/ direct_blks
;
519 noffset
[n
] = 5 + dptrs_per_blk
+ offset
[n
- 1];
520 offset
[n
] = block
% direct_blks
;
524 block
-= indirect_blks
;
525 if (block
< dindirect_blks
) {
526 offset
[n
++] = NODE_DIND_BLOCK
;
527 noffset
[n
] = 5 + (dptrs_per_blk
* 2);
528 offset
[n
++] = block
/ indirect_blks
;
529 noffset
[n
] = 6 + (dptrs_per_blk
* 2) +
530 offset
[n
- 1] * (dptrs_per_blk
+ 1);
531 offset
[n
++] = (block
/ direct_blks
) % dptrs_per_blk
;
532 noffset
[n
] = 7 + (dptrs_per_blk
* 2) +
533 offset
[n
- 2] * (dptrs_per_blk
+ 1) +
535 offset
[n
] = block
% direct_blks
;
546 * Caller should call f2fs_put_dnode(dn).
547 * Also, it should grab and release a rwsem by calling f2fs_lock_op() and
548 * f2fs_unlock_op() only if ro is not set RDONLY_NODE.
549 * In the case of RDONLY_NODE, we don't need to care about mutex.
551 int get_dnode_of_data(struct dnode_of_data
*dn
, pgoff_t index
, int mode
)
553 struct f2fs_sb_info
*sbi
= F2FS_I_SB(dn
->inode
);
554 struct page
*npage
[4];
555 struct page
*parent
= NULL
;
557 unsigned int noffset
[4];
562 level
= get_node_path(dn
->inode
, index
, offset
, noffset
);
564 nids
[0] = dn
->inode
->i_ino
;
565 npage
[0] = dn
->inode_page
;
568 npage
[0] = get_node_page(sbi
, nids
[0]);
569 if (IS_ERR(npage
[0]))
570 return PTR_ERR(npage
[0]);
573 /* if inline_data is set, should not report any block indices */
574 if (f2fs_has_inline_data(dn
->inode
) && index
) {
576 f2fs_put_page(npage
[0], 1);
582 nids
[1] = get_nid(parent
, offset
[0], true);
583 dn
->inode_page
= npage
[0];
584 dn
->inode_page_locked
= true;
586 /* get indirect or direct nodes */
587 for (i
= 1; i
<= level
; i
++) {
590 if (!nids
[i
] && mode
== ALLOC_NODE
) {
592 if (!alloc_nid(sbi
, &(nids
[i
]))) {
598 npage
[i
] = new_node_page(dn
, noffset
[i
], NULL
);
599 if (IS_ERR(npage
[i
])) {
600 alloc_nid_failed(sbi
, nids
[i
]);
601 err
= PTR_ERR(npage
[i
]);
605 set_nid(parent
, offset
[i
- 1], nids
[i
], i
== 1);
606 alloc_nid_done(sbi
, nids
[i
]);
608 } else if (mode
== LOOKUP_NODE_RA
&& i
== level
&& level
> 1) {
609 npage
[i
] = get_node_page_ra(parent
, offset
[i
- 1]);
610 if (IS_ERR(npage
[i
])) {
611 err
= PTR_ERR(npage
[i
]);
617 dn
->inode_page_locked
= false;
620 f2fs_put_page(parent
, 1);
624 npage
[i
] = get_node_page(sbi
, nids
[i
]);
625 if (IS_ERR(npage
[i
])) {
626 err
= PTR_ERR(npage
[i
]);
627 f2fs_put_page(npage
[0], 0);
633 nids
[i
+ 1] = get_nid(parent
, offset
[i
], false);
636 dn
->nid
= nids
[level
];
637 dn
->ofs_in_node
= offset
[level
];
638 dn
->node_page
= npage
[level
];
639 dn
->data_blkaddr
= datablock_addr(dn
->node_page
, dn
->ofs_in_node
);
643 f2fs_put_page(parent
, 1);
645 f2fs_put_page(npage
[0], 0);
647 dn
->inode_page
= NULL
;
648 dn
->node_page
= NULL
;
649 if (err
== -ENOENT
) {
651 dn
->max_level
= level
;
652 dn
->ofs_in_node
= offset
[level
];
657 static void truncate_node(struct dnode_of_data
*dn
)
659 struct f2fs_sb_info
*sbi
= F2FS_I_SB(dn
->inode
);
662 get_node_info(sbi
, dn
->nid
, &ni
);
663 if (dn
->inode
->i_blocks
== 0) {
664 f2fs_bug_on(sbi
, ni
.blk_addr
!= NULL_ADDR
);
667 f2fs_bug_on(sbi
, ni
.blk_addr
== NULL_ADDR
);
669 /* Deallocate node address */
670 invalidate_blocks(sbi
, ni
.blk_addr
);
671 dec_valid_node_count(sbi
, dn
->inode
);
672 set_node_addr(sbi
, &ni
, NULL_ADDR
, false);
674 if (dn
->nid
== dn
->inode
->i_ino
) {
675 remove_orphan_inode(sbi
, dn
->nid
);
676 dec_valid_inode_count(sbi
);
677 f2fs_inode_synced(dn
->inode
);
680 clear_node_page_dirty(dn
->node_page
);
681 set_sbi_flag(sbi
, SBI_IS_DIRTY
);
683 f2fs_put_page(dn
->node_page
, 1);
685 invalidate_mapping_pages(NODE_MAPPING(sbi
),
686 dn
->node_page
->index
, dn
->node_page
->index
);
688 dn
->node_page
= NULL
;
689 trace_f2fs_truncate_node(dn
->inode
, dn
->nid
, ni
.blk_addr
);
692 static int truncate_dnode(struct dnode_of_data
*dn
)
699 /* get direct node */
700 page
= get_node_page(F2FS_I_SB(dn
->inode
), dn
->nid
);
701 if (IS_ERR(page
) && PTR_ERR(page
) == -ENOENT
)
703 else if (IS_ERR(page
))
704 return PTR_ERR(page
);
706 /* Make dnode_of_data for parameter */
707 dn
->node_page
= page
;
709 truncate_data_blocks(dn
);
714 static int truncate_nodes(struct dnode_of_data
*dn
, unsigned int nofs
,
717 struct dnode_of_data rdn
= *dn
;
719 struct f2fs_node
*rn
;
721 unsigned int child_nofs
;
726 return NIDS_PER_BLOCK
+ 1;
728 trace_f2fs_truncate_nodes_enter(dn
->inode
, dn
->nid
, dn
->data_blkaddr
);
730 page
= get_node_page(F2FS_I_SB(dn
->inode
), dn
->nid
);
732 trace_f2fs_truncate_nodes_exit(dn
->inode
, PTR_ERR(page
));
733 return PTR_ERR(page
);
736 ra_node_pages(page
, ofs
, NIDS_PER_BLOCK
);
738 rn
= F2FS_NODE(page
);
740 for (i
= ofs
; i
< NIDS_PER_BLOCK
; i
++, freed
++) {
741 child_nid
= le32_to_cpu(rn
->in
.nid
[i
]);
745 ret
= truncate_dnode(&rdn
);
748 if (set_nid(page
, i
, 0, false))
749 dn
->node_changed
= true;
752 child_nofs
= nofs
+ ofs
* (NIDS_PER_BLOCK
+ 1) + 1;
753 for (i
= ofs
; i
< NIDS_PER_BLOCK
; i
++) {
754 child_nid
= le32_to_cpu(rn
->in
.nid
[i
]);
755 if (child_nid
== 0) {
756 child_nofs
+= NIDS_PER_BLOCK
+ 1;
760 ret
= truncate_nodes(&rdn
, child_nofs
, 0, depth
- 1);
761 if (ret
== (NIDS_PER_BLOCK
+ 1)) {
762 if (set_nid(page
, i
, 0, false))
763 dn
->node_changed
= true;
765 } else if (ret
< 0 && ret
!= -ENOENT
) {
773 /* remove current indirect node */
774 dn
->node_page
= page
;
778 f2fs_put_page(page
, 1);
780 trace_f2fs_truncate_nodes_exit(dn
->inode
, freed
);
784 f2fs_put_page(page
, 1);
785 trace_f2fs_truncate_nodes_exit(dn
->inode
, ret
);
789 static int truncate_partial_nodes(struct dnode_of_data
*dn
,
790 struct f2fs_inode
*ri
, int *offset
, int depth
)
792 struct page
*pages
[2];
799 nid
[0] = le32_to_cpu(ri
->i_nid
[offset
[0] - NODE_DIR1_BLOCK
]);
803 /* get indirect nodes in the path */
804 for (i
= 0; i
< idx
+ 1; i
++) {
805 /* reference count'll be increased */
806 pages
[i
] = get_node_page(F2FS_I_SB(dn
->inode
), nid
[i
]);
807 if (IS_ERR(pages
[i
])) {
808 err
= PTR_ERR(pages
[i
]);
812 nid
[i
+ 1] = get_nid(pages
[i
], offset
[i
+ 1], false);
815 ra_node_pages(pages
[idx
], offset
[idx
+ 1], NIDS_PER_BLOCK
);
817 /* free direct nodes linked to a partial indirect node */
818 for (i
= offset
[idx
+ 1]; i
< NIDS_PER_BLOCK
; i
++) {
819 child_nid
= get_nid(pages
[idx
], i
, false);
823 err
= truncate_dnode(dn
);
826 if (set_nid(pages
[idx
], i
, 0, false))
827 dn
->node_changed
= true;
830 if (offset
[idx
+ 1] == 0) {
831 dn
->node_page
= pages
[idx
];
835 f2fs_put_page(pages
[idx
], 1);
841 for (i
= idx
; i
>= 0; i
--)
842 f2fs_put_page(pages
[i
], 1);
844 trace_f2fs_truncate_partial_nodes(dn
->inode
, nid
, depth
, err
);
850 * All the block addresses of data and nodes should be nullified.
852 int truncate_inode_blocks(struct inode
*inode
, pgoff_t from
)
854 struct f2fs_sb_info
*sbi
= F2FS_I_SB(inode
);
855 int err
= 0, cont
= 1;
856 int level
, offset
[4], noffset
[4];
857 unsigned int nofs
= 0;
858 struct f2fs_inode
*ri
;
859 struct dnode_of_data dn
;
862 trace_f2fs_truncate_inode_blocks_enter(inode
, from
);
864 level
= get_node_path(inode
, from
, offset
, noffset
);
866 page
= get_node_page(sbi
, inode
->i_ino
);
868 trace_f2fs_truncate_inode_blocks_exit(inode
, PTR_ERR(page
));
869 return PTR_ERR(page
);
872 set_new_dnode(&dn
, inode
, page
, NULL
, 0);
875 ri
= F2FS_INODE(page
);
883 if (!offset
[level
- 1])
885 err
= truncate_partial_nodes(&dn
, ri
, offset
, level
);
886 if (err
< 0 && err
!= -ENOENT
)
888 nofs
+= 1 + NIDS_PER_BLOCK
;
891 nofs
= 5 + 2 * NIDS_PER_BLOCK
;
892 if (!offset
[level
- 1])
894 err
= truncate_partial_nodes(&dn
, ri
, offset
, level
);
895 if (err
< 0 && err
!= -ENOENT
)
904 dn
.nid
= le32_to_cpu(ri
->i_nid
[offset
[0] - NODE_DIR1_BLOCK
]);
906 case NODE_DIR1_BLOCK
:
907 case NODE_DIR2_BLOCK
:
908 err
= truncate_dnode(&dn
);
911 case NODE_IND1_BLOCK
:
912 case NODE_IND2_BLOCK
:
913 err
= truncate_nodes(&dn
, nofs
, offset
[1], 2);
916 case NODE_DIND_BLOCK
:
917 err
= truncate_nodes(&dn
, nofs
, offset
[1], 3);
924 if (err
< 0 && err
!= -ENOENT
)
926 if (offset
[1] == 0 &&
927 ri
->i_nid
[offset
[0] - NODE_DIR1_BLOCK
]) {
929 BUG_ON(page
->mapping
!= NODE_MAPPING(sbi
));
930 f2fs_wait_on_page_writeback(page
, NODE
, true);
931 ri
->i_nid
[offset
[0] - NODE_DIR1_BLOCK
] = 0;
932 set_page_dirty(page
);
940 f2fs_put_page(page
, 0);
941 trace_f2fs_truncate_inode_blocks_exit(inode
, err
);
942 return err
> 0 ? 0 : err
;
945 int truncate_xattr_node(struct inode
*inode
, struct page
*page
)
947 struct f2fs_sb_info
*sbi
= F2FS_I_SB(inode
);
948 nid_t nid
= F2FS_I(inode
)->i_xattr_nid
;
949 struct dnode_of_data dn
;
955 npage
= get_node_page(sbi
, nid
);
957 return PTR_ERR(npage
);
959 f2fs_i_xnid_write(inode
, 0);
961 /* need to do checkpoint during fsync */
962 F2FS_I(inode
)->xattr_ver
= cur_cp_version(F2FS_CKPT(sbi
));
964 set_new_dnode(&dn
, inode
, page
, npage
, nid
);
967 dn
.inode_page_locked
= true;
973 * Caller should grab and release a rwsem by calling f2fs_lock_op() and
976 int remove_inode_page(struct inode
*inode
)
978 struct dnode_of_data dn
;
981 set_new_dnode(&dn
, inode
, NULL
, NULL
, inode
->i_ino
);
982 err
= get_dnode_of_data(&dn
, 0, LOOKUP_NODE
);
986 err
= truncate_xattr_node(inode
, dn
.inode_page
);
992 /* remove potential inline_data blocks */
993 if (S_ISREG(inode
->i_mode
) || S_ISDIR(inode
->i_mode
) ||
994 S_ISLNK(inode
->i_mode
))
995 truncate_data_blocks_range(&dn
, 1);
997 /* 0 is possible, after f2fs_new_inode() has failed */
998 f2fs_bug_on(F2FS_I_SB(inode
),
999 inode
->i_blocks
!= 0 && inode
->i_blocks
!= 1);
1001 /* will put inode & node pages */
1006 struct page
*new_inode_page(struct inode
*inode
)
1008 struct dnode_of_data dn
;
1010 /* allocate inode page for new inode */
1011 set_new_dnode(&dn
, inode
, NULL
, NULL
, inode
->i_ino
);
1013 /* caller should f2fs_put_page(page, 1); */
1014 return new_node_page(&dn
, 0, NULL
);
1017 struct page
*new_node_page(struct dnode_of_data
*dn
,
1018 unsigned int ofs
, struct page
*ipage
)
1020 struct f2fs_sb_info
*sbi
= F2FS_I_SB(dn
->inode
);
1021 struct node_info old_ni
, new_ni
;
1025 if (unlikely(is_inode_flag_set(dn
->inode
, FI_NO_ALLOC
)))
1026 return ERR_PTR(-EPERM
);
1028 page
= f2fs_grab_cache_page(NODE_MAPPING(sbi
), dn
->nid
, false);
1030 return ERR_PTR(-ENOMEM
);
1032 if (unlikely(!inc_valid_node_count(sbi
, dn
->inode
))) {
1037 get_node_info(sbi
, dn
->nid
, &old_ni
);
1039 /* Reinitialize old_ni with new node page */
1040 f2fs_bug_on(sbi
, old_ni
.blk_addr
!= NULL_ADDR
);
1042 new_ni
.ino
= dn
->inode
->i_ino
;
1043 set_node_addr(sbi
, &new_ni
, NEW_ADDR
, false);
1045 f2fs_wait_on_page_writeback(page
, NODE
, true);
1046 fill_node_footer(page
, dn
->nid
, dn
->inode
->i_ino
, ofs
, true);
1047 set_cold_node(dn
->inode
, page
);
1048 if (!PageUptodate(page
))
1049 SetPageUptodate(page
);
1050 if (set_page_dirty(page
))
1051 dn
->node_changed
= true;
1053 if (f2fs_has_xattr_block(ofs
))
1054 f2fs_i_xnid_write(dn
->inode
, dn
->nid
);
1057 inc_valid_inode_count(sbi
);
1061 clear_node_page_dirty(page
);
1062 f2fs_put_page(page
, 1);
1063 return ERR_PTR(err
);
1067 * Caller should do after getting the following values.
1068 * 0: f2fs_put_page(page, 0)
1069 * LOCKED_PAGE or error: f2fs_put_page(page, 1)
1071 static int read_node_page(struct page
*page
, int op_flags
)
1073 struct f2fs_sb_info
*sbi
= F2FS_P_SB(page
);
1074 struct node_info ni
;
1075 struct f2fs_io_info fio
= {
1079 .op_flags
= op_flags
,
1081 .encrypted_page
= NULL
,
1084 if (PageUptodate(page
))
1087 get_node_info(sbi
, page
->index
, &ni
);
1089 if (unlikely(ni
.blk_addr
== NULL_ADDR
)) {
1090 ClearPageUptodate(page
);
1094 fio
.new_blkaddr
= fio
.old_blkaddr
= ni
.blk_addr
;
1095 return f2fs_submit_page_bio(&fio
);
1099 * Readahead a node page
1101 void ra_node_page(struct f2fs_sb_info
*sbi
, nid_t nid
)
1108 f2fs_bug_on(sbi
, check_nid_range(sbi
, nid
));
1111 apage
= radix_tree_lookup(&NODE_MAPPING(sbi
)->page_tree
, nid
);
1116 apage
= f2fs_grab_cache_page(NODE_MAPPING(sbi
), nid
, false);
1120 err
= read_node_page(apage
, REQ_RAHEAD
);
1121 f2fs_put_page(apage
, err
? 1 : 0);
1124 static struct page
*__get_node_page(struct f2fs_sb_info
*sbi
, pgoff_t nid
,
1125 struct page
*parent
, int start
)
1131 return ERR_PTR(-ENOENT
);
1132 f2fs_bug_on(sbi
, check_nid_range(sbi
, nid
));
1134 page
= f2fs_grab_cache_page(NODE_MAPPING(sbi
), nid
, false);
1136 return ERR_PTR(-ENOMEM
);
1138 err
= read_node_page(page
, 0);
1140 f2fs_put_page(page
, 1);
1141 return ERR_PTR(err
);
1142 } else if (err
== LOCKED_PAGE
) {
1147 ra_node_pages(parent
, start
+ 1, MAX_RA_NODE
);
1151 if (unlikely(page
->mapping
!= NODE_MAPPING(sbi
))) {
1152 f2fs_put_page(page
, 1);
1156 if (unlikely(!PageUptodate(page
)))
1159 if(unlikely(nid
!= nid_of_node(page
))) {
1160 f2fs_bug_on(sbi
, 1);
1161 ClearPageUptodate(page
);
1163 f2fs_put_page(page
, 1);
1164 return ERR_PTR(-EIO
);
1169 struct page
*get_node_page(struct f2fs_sb_info
*sbi
, pgoff_t nid
)
1171 return __get_node_page(sbi
, nid
, NULL
, 0);
1174 struct page
*get_node_page_ra(struct page
*parent
, int start
)
1176 struct f2fs_sb_info
*sbi
= F2FS_P_SB(parent
);
1177 nid_t nid
= get_nid(parent
, start
, false);
1179 return __get_node_page(sbi
, nid
, parent
, start
);
1182 static void flush_inline_data(struct f2fs_sb_info
*sbi
, nid_t ino
)
1184 struct inode
*inode
;
1188 /* should flush inline_data before evict_inode */
1189 inode
= ilookup(sbi
->sb
, ino
);
1193 page
= pagecache_get_page(inode
->i_mapping
, 0, FGP_LOCK
|FGP_NOWAIT
, 0);
1197 if (!PageUptodate(page
))
1200 if (!PageDirty(page
))
1203 if (!clear_page_dirty_for_io(page
))
1206 ret
= f2fs_write_inline_data(inode
, page
);
1207 inode_dec_dirty_pages(inode
);
1208 remove_dirty_inode(inode
);
1210 set_page_dirty(page
);
1212 f2fs_put_page(page
, 1);
1217 void move_node_page(struct page
*node_page
, int gc_type
)
1219 if (gc_type
== FG_GC
) {
1220 struct f2fs_sb_info
*sbi
= F2FS_P_SB(node_page
);
1221 struct writeback_control wbc
= {
1222 .sync_mode
= WB_SYNC_ALL
,
1227 set_page_dirty(node_page
);
1228 f2fs_wait_on_page_writeback(node_page
, NODE
, true);
1230 f2fs_bug_on(sbi
, PageWriteback(node_page
));
1231 if (!clear_page_dirty_for_io(node_page
))
1234 if (NODE_MAPPING(sbi
)->a_ops
->writepage(node_page
, &wbc
))
1235 unlock_page(node_page
);
1238 /* set page dirty and write it */
1239 if (!PageWriteback(node_page
))
1240 set_page_dirty(node_page
);
1243 unlock_page(node_page
);
1245 f2fs_put_page(node_page
, 0);
1248 static struct page
*last_fsync_dnode(struct f2fs_sb_info
*sbi
, nid_t ino
)
1251 struct pagevec pvec
;
1252 struct page
*last_page
= NULL
;
1254 pagevec_init(&pvec
, 0);
1258 while (index
<= end
) {
1260 nr_pages
= pagevec_lookup_tag(&pvec
, NODE_MAPPING(sbi
), &index
,
1261 PAGECACHE_TAG_DIRTY
,
1262 min(end
- index
, (pgoff_t
)PAGEVEC_SIZE
-1) + 1);
1266 for (i
= 0; i
< nr_pages
; i
++) {
1267 struct page
*page
= pvec
.pages
[i
];
1269 if (unlikely(f2fs_cp_error(sbi
))) {
1270 f2fs_put_page(last_page
, 0);
1271 pagevec_release(&pvec
);
1272 return ERR_PTR(-EIO
);
1275 if (!IS_DNODE(page
) || !is_cold_node(page
))
1277 if (ino_of_node(page
) != ino
)
1282 if (unlikely(page
->mapping
!= NODE_MAPPING(sbi
))) {
1287 if (ino_of_node(page
) != ino
)
1288 goto continue_unlock
;
1290 if (!PageDirty(page
)) {
1291 /* someone wrote it for us */
1292 goto continue_unlock
;
1296 f2fs_put_page(last_page
, 0);
1302 pagevec_release(&pvec
);
1308 int fsync_node_pages(struct f2fs_sb_info
*sbi
, struct inode
*inode
,
1309 struct writeback_control
*wbc
, bool atomic
)
1312 struct pagevec pvec
;
1314 struct page
*last_page
= NULL
;
1315 bool marked
= false;
1316 nid_t ino
= inode
->i_ino
;
1320 last_page
= last_fsync_dnode(sbi
, ino
);
1321 if (IS_ERR_OR_NULL(last_page
))
1322 return PTR_ERR_OR_ZERO(last_page
);
1325 pagevec_init(&pvec
, 0);
1329 while (index
<= end
) {
1331 nr_pages
= pagevec_lookup_tag(&pvec
, NODE_MAPPING(sbi
), &index
,
1332 PAGECACHE_TAG_DIRTY
,
1333 min(end
- index
, (pgoff_t
)PAGEVEC_SIZE
-1) + 1);
1337 for (i
= 0; i
< nr_pages
; i
++) {
1338 struct page
*page
= pvec
.pages
[i
];
1340 if (unlikely(f2fs_cp_error(sbi
))) {
1341 f2fs_put_page(last_page
, 0);
1342 pagevec_release(&pvec
);
1347 if (!IS_DNODE(page
) || !is_cold_node(page
))
1349 if (ino_of_node(page
) != ino
)
1354 if (unlikely(page
->mapping
!= NODE_MAPPING(sbi
))) {
1359 if (ino_of_node(page
) != ino
)
1360 goto continue_unlock
;
1362 if (!PageDirty(page
) && page
!= last_page
) {
1363 /* someone wrote it for us */
1364 goto continue_unlock
;
1367 f2fs_wait_on_page_writeback(page
, NODE
, true);
1368 BUG_ON(PageWriteback(page
));
1370 if (!atomic
|| page
== last_page
) {
1371 set_fsync_mark(page
, 1);
1372 if (IS_INODE(page
)) {
1373 if (is_inode_flag_set(inode
,
1375 update_inode(inode
, page
);
1376 set_dentry_mark(page
,
1377 need_dentry_mark(sbi
, ino
));
1379 /* may be written by other thread */
1380 if (!PageDirty(page
))
1381 set_page_dirty(page
);
1384 if (!clear_page_dirty_for_io(page
))
1385 goto continue_unlock
;
1387 ret
= NODE_MAPPING(sbi
)->a_ops
->writepage(page
, wbc
);
1390 f2fs_put_page(last_page
, 0);
1396 if (page
== last_page
) {
1397 f2fs_put_page(page
, 0);
1402 pagevec_release(&pvec
);
1408 if (!ret
&& atomic
&& !marked
) {
1409 f2fs_msg(sbi
->sb
, KERN_DEBUG
,
1410 "Retry to write fsync mark: ino=%u, idx=%lx",
1411 ino
, last_page
->index
);
1412 lock_page(last_page
);
1413 f2fs_wait_on_page_writeback(last_page
, NODE
, true);
1414 set_page_dirty(last_page
);
1415 unlock_page(last_page
);
1420 f2fs_submit_merged_bio_cond(sbi
, NULL
, NULL
, ino
, NODE
, WRITE
);
1421 return ret
? -EIO
: 0;
1424 int sync_node_pages(struct f2fs_sb_info
*sbi
, struct writeback_control
*wbc
)
1427 struct pagevec pvec
;
1432 pagevec_init(&pvec
, 0);
1438 while (index
<= end
) {
1440 nr_pages
= pagevec_lookup_tag(&pvec
, NODE_MAPPING(sbi
), &index
,
1441 PAGECACHE_TAG_DIRTY
,
1442 min(end
- index
, (pgoff_t
)PAGEVEC_SIZE
-1) + 1);
1446 for (i
= 0; i
< nr_pages
; i
++) {
1447 struct page
*page
= pvec
.pages
[i
];
1449 if (unlikely(f2fs_cp_error(sbi
))) {
1450 pagevec_release(&pvec
);
1456 * flushing sequence with step:
1461 if (step
== 0 && IS_DNODE(page
))
1463 if (step
== 1 && (!IS_DNODE(page
) ||
1464 is_cold_node(page
)))
1466 if (step
== 2 && (!IS_DNODE(page
) ||
1467 !is_cold_node(page
)))
1470 if (!trylock_page(page
))
1473 if (unlikely(page
->mapping
!= NODE_MAPPING(sbi
))) {
1479 if (!PageDirty(page
)) {
1480 /* someone wrote it for us */
1481 goto continue_unlock
;
1484 /* flush inline_data */
1485 if (is_inline_node(page
)) {
1486 clear_inline_node(page
);
1488 flush_inline_data(sbi
, ino_of_node(page
));
1492 f2fs_wait_on_page_writeback(page
, NODE
, true);
1494 BUG_ON(PageWriteback(page
));
1495 if (!clear_page_dirty_for_io(page
))
1496 goto continue_unlock
;
1498 set_fsync_mark(page
, 0);
1499 set_dentry_mark(page
, 0);
1501 if (NODE_MAPPING(sbi
)->a_ops
->writepage(page
, wbc
))
1506 if (--wbc
->nr_to_write
== 0)
1509 pagevec_release(&pvec
);
1512 if (wbc
->nr_to_write
== 0) {
1524 f2fs_submit_merged_bio(sbi
, NODE
, WRITE
);
1528 int wait_on_node_pages_writeback(struct f2fs_sb_info
*sbi
, nid_t ino
)
1530 pgoff_t index
= 0, end
= ULONG_MAX
;
1531 struct pagevec pvec
;
1534 pagevec_init(&pvec
, 0);
1536 while (index
<= end
) {
1538 nr_pages
= pagevec_lookup_tag(&pvec
, NODE_MAPPING(sbi
), &index
,
1539 PAGECACHE_TAG_WRITEBACK
,
1540 min(end
- index
, (pgoff_t
)PAGEVEC_SIZE
-1) + 1);
1544 for (i
= 0; i
< nr_pages
; i
++) {
1545 struct page
*page
= pvec
.pages
[i
];
1547 /* until radix tree lookup accepts end_index */
1548 if (unlikely(page
->index
> end
))
1551 if (ino
&& ino_of_node(page
) == ino
) {
1552 f2fs_wait_on_page_writeback(page
, NODE
, true);
1553 if (TestClearPageError(page
))
1557 pagevec_release(&pvec
);
1561 ret2
= filemap_check_errors(NODE_MAPPING(sbi
));
1567 static int f2fs_write_node_page(struct page
*page
,
1568 struct writeback_control
*wbc
)
1570 struct f2fs_sb_info
*sbi
= F2FS_P_SB(page
);
1572 struct node_info ni
;
1573 struct f2fs_io_info fio
= {
1577 .op_flags
= wbc_to_write_flags(wbc
),
1579 .encrypted_page
= NULL
,
1582 trace_f2fs_writepage(page
, NODE
);
1584 if (unlikely(is_sbi_flag_set(sbi
, SBI_POR_DOING
)))
1586 if (unlikely(f2fs_cp_error(sbi
)))
1589 /* get old block addr of this node page */
1590 nid
= nid_of_node(page
);
1591 f2fs_bug_on(sbi
, page
->index
!= nid
);
1593 if (wbc
->for_reclaim
) {
1594 if (!down_read_trylock(&sbi
->node_write
))
1597 down_read(&sbi
->node_write
);
1600 get_node_info(sbi
, nid
, &ni
);
1602 /* This page is already truncated */
1603 if (unlikely(ni
.blk_addr
== NULL_ADDR
)) {
1604 ClearPageUptodate(page
);
1605 dec_page_count(sbi
, F2FS_DIRTY_NODES
);
1606 up_read(&sbi
->node_write
);
1611 set_page_writeback(page
);
1612 fio
.old_blkaddr
= ni
.blk_addr
;
1613 write_node_page(nid
, &fio
);
1614 set_node_addr(sbi
, &ni
, fio
.new_blkaddr
, is_fsync_dnode(page
));
1615 dec_page_count(sbi
, F2FS_DIRTY_NODES
);
1616 up_read(&sbi
->node_write
);
1618 if (wbc
->for_reclaim
)
1619 f2fs_submit_merged_bio_cond(sbi
, NULL
, page
, 0, NODE
, WRITE
);
1623 if (unlikely(f2fs_cp_error(sbi
)))
1624 f2fs_submit_merged_bio(sbi
, NODE
, WRITE
);
1629 redirty_page_for_writepage(wbc
, page
);
1630 return AOP_WRITEPAGE_ACTIVATE
;
1633 static int f2fs_write_node_pages(struct address_space
*mapping
,
1634 struct writeback_control
*wbc
)
1636 struct f2fs_sb_info
*sbi
= F2FS_M_SB(mapping
);
1637 struct blk_plug plug
;
1640 /* balancing f2fs's metadata in background */
1641 f2fs_balance_fs_bg(sbi
);
1643 /* collect a number of dirty node pages and write together */
1644 if (get_pages(sbi
, F2FS_DIRTY_NODES
) < nr_pages_to_skip(sbi
, NODE
))
1647 trace_f2fs_writepages(mapping
->host
, wbc
, NODE
);
1649 diff
= nr_pages_to_write(sbi
, NODE
, wbc
);
1650 wbc
->sync_mode
= WB_SYNC_NONE
;
1651 blk_start_plug(&plug
);
1652 sync_node_pages(sbi
, wbc
);
1653 blk_finish_plug(&plug
);
1654 wbc
->nr_to_write
= max((long)0, wbc
->nr_to_write
- diff
);
1658 wbc
->pages_skipped
+= get_pages(sbi
, F2FS_DIRTY_NODES
);
1659 trace_f2fs_writepages(mapping
->host
, wbc
, NODE
);
1663 static int f2fs_set_node_page_dirty(struct page
*page
)
1665 trace_f2fs_set_page_dirty(page
, NODE
);
1667 if (!PageUptodate(page
))
1668 SetPageUptodate(page
);
1669 if (!PageDirty(page
)) {
1670 f2fs_set_page_dirty_nobuffers(page
);
1671 inc_page_count(F2FS_P_SB(page
), F2FS_DIRTY_NODES
);
1672 SetPagePrivate(page
);
1673 f2fs_trace_pid(page
);
1680 * Structure of the f2fs node operations
1682 const struct address_space_operations f2fs_node_aops
= {
1683 .writepage
= f2fs_write_node_page
,
1684 .writepages
= f2fs_write_node_pages
,
1685 .set_page_dirty
= f2fs_set_node_page_dirty
,
1686 .invalidatepage
= f2fs_invalidate_page
,
1687 .releasepage
= f2fs_release_page
,
1688 #ifdef CONFIG_MIGRATION
1689 .migratepage
= f2fs_migrate_page
,
1693 static struct free_nid
*__lookup_free_nid_list(struct f2fs_nm_info
*nm_i
,
1696 return radix_tree_lookup(&nm_i
->free_nid_root
, n
);
1699 static int __insert_nid_to_list(struct f2fs_sb_info
*sbi
,
1700 struct free_nid
*i
, enum nid_list list
, bool new)
1702 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
1705 int err
= radix_tree_insert(&nm_i
->free_nid_root
, i
->nid
, i
);
1710 f2fs_bug_on(sbi
, list
== FREE_NID_LIST
? i
->state
!= NID_NEW
:
1711 i
->state
!= NID_ALLOC
);
1712 nm_i
->nid_cnt
[list
]++;
1713 list_add_tail(&i
->list
, &nm_i
->nid_list
[list
]);
1717 static void __remove_nid_from_list(struct f2fs_sb_info
*sbi
,
1718 struct free_nid
*i
, enum nid_list list
, bool reuse
)
1720 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
1722 f2fs_bug_on(sbi
, list
== FREE_NID_LIST
? i
->state
!= NID_NEW
:
1723 i
->state
!= NID_ALLOC
);
1724 nm_i
->nid_cnt
[list
]--;
1727 radix_tree_delete(&nm_i
->free_nid_root
, i
->nid
);
1730 static int add_free_nid(struct f2fs_sb_info
*sbi
, nid_t nid
, bool build
)
1732 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
1734 struct nat_entry
*ne
;
1737 /* 0 nid should not be used */
1738 if (unlikely(nid
== 0))
1742 /* do not add allocated nids */
1743 ne
= __lookup_nat_cache(nm_i
, nid
);
1744 if (ne
&& (!get_nat_flag(ne
, IS_CHECKPOINTED
) ||
1745 nat_get_blkaddr(ne
) != NULL_ADDR
))
1749 i
= f2fs_kmem_cache_alloc(free_nid_slab
, GFP_NOFS
);
1753 if (radix_tree_preload(GFP_NOFS
)) {
1754 kmem_cache_free(free_nid_slab
, i
);
1758 spin_lock(&nm_i
->nid_list_lock
);
1759 err
= __insert_nid_to_list(sbi
, i
, FREE_NID_LIST
, true);
1760 spin_unlock(&nm_i
->nid_list_lock
);
1761 radix_tree_preload_end();
1763 kmem_cache_free(free_nid_slab
, i
);
1769 static void remove_free_nid(struct f2fs_sb_info
*sbi
, nid_t nid
)
1771 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
1773 bool need_free
= false;
1775 spin_lock(&nm_i
->nid_list_lock
);
1776 i
= __lookup_free_nid_list(nm_i
, nid
);
1777 if (i
&& i
->state
== NID_NEW
) {
1778 __remove_nid_from_list(sbi
, i
, FREE_NID_LIST
, false);
1781 spin_unlock(&nm_i
->nid_list_lock
);
1784 kmem_cache_free(free_nid_slab
, i
);
1787 static void scan_nat_page(struct f2fs_sb_info
*sbi
,
1788 struct page
*nat_page
, nid_t start_nid
)
1790 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
1791 struct f2fs_nat_block
*nat_blk
= page_address(nat_page
);
1795 i
= start_nid
% NAT_ENTRY_PER_BLOCK
;
1797 for (; i
< NAT_ENTRY_PER_BLOCK
; i
++, start_nid
++) {
1799 if (unlikely(start_nid
>= nm_i
->max_nid
))
1802 blk_addr
= le32_to_cpu(nat_blk
->entries
[i
].block_addr
);
1803 f2fs_bug_on(sbi
, blk_addr
== NEW_ADDR
);
1804 if (blk_addr
== NULL_ADDR
)
1805 add_free_nid(sbi
, start_nid
, true);
1809 static void __build_free_nids(struct f2fs_sb_info
*sbi
, bool sync
)
1811 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
1812 struct curseg_info
*curseg
= CURSEG_I(sbi
, CURSEG_HOT_DATA
);
1813 struct f2fs_journal
*journal
= curseg
->journal
;
1815 nid_t nid
= nm_i
->next_scan_nid
;
1817 /* Enough entries */
1818 if (nm_i
->nid_cnt
[FREE_NID_LIST
] >= NAT_ENTRY_PER_BLOCK
)
1821 if (!sync
&& !available_free_memory(sbi
, FREE_NIDS
))
1824 /* readahead nat pages to be scanned */
1825 ra_meta_pages(sbi
, NAT_BLOCK_OFFSET(nid
), FREE_NID_PAGES
,
1828 down_read(&nm_i
->nat_tree_lock
);
1831 struct page
*page
= get_current_nat_page(sbi
, nid
);
1833 scan_nat_page(sbi
, page
, nid
);
1834 f2fs_put_page(page
, 1);
1836 nid
+= (NAT_ENTRY_PER_BLOCK
- (nid
% NAT_ENTRY_PER_BLOCK
));
1837 if (unlikely(nid
>= nm_i
->max_nid
))
1840 if (++i
>= FREE_NID_PAGES
)
1844 /* go to the next free nat pages to find free nids abundantly */
1845 nm_i
->next_scan_nid
= nid
;
1847 /* find free nids from current sum_pages */
1848 down_read(&curseg
->journal_rwsem
);
1849 for (i
= 0; i
< nats_in_cursum(journal
); i
++) {
1852 addr
= le32_to_cpu(nat_in_journal(journal
, i
).block_addr
);
1853 nid
= le32_to_cpu(nid_in_journal(journal
, i
));
1854 if (addr
== NULL_ADDR
)
1855 add_free_nid(sbi
, nid
, true);
1857 remove_free_nid(sbi
, nid
);
1859 up_read(&curseg
->journal_rwsem
);
1860 up_read(&nm_i
->nat_tree_lock
);
1862 ra_meta_pages(sbi
, NAT_BLOCK_OFFSET(nm_i
->next_scan_nid
),
1863 nm_i
->ra_nid_pages
, META_NAT
, false);
1866 void build_free_nids(struct f2fs_sb_info
*sbi
, bool sync
)
1868 mutex_lock(&NM_I(sbi
)->build_lock
);
1869 __build_free_nids(sbi
, sync
);
1870 mutex_unlock(&NM_I(sbi
)->build_lock
);
1874 * If this function returns success, caller can obtain a new nid
1875 * from second parameter of this function.
1876 * The returned nid could be used ino as well as nid when inode is created.
1878 bool alloc_nid(struct f2fs_sb_info
*sbi
, nid_t
*nid
)
1880 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
1881 struct free_nid
*i
= NULL
;
1883 #ifdef CONFIG_F2FS_FAULT_INJECTION
1884 if (time_to_inject(sbi
, FAULT_ALLOC_NID
))
1887 spin_lock(&nm_i
->nid_list_lock
);
1889 if (unlikely(nm_i
->available_nids
== 0)) {
1890 spin_unlock(&nm_i
->nid_list_lock
);
1894 /* We should not use stale free nids created by build_free_nids */
1895 if (nm_i
->nid_cnt
[FREE_NID_LIST
] && !on_build_free_nids(nm_i
)) {
1896 f2fs_bug_on(sbi
, list_empty(&nm_i
->nid_list
[FREE_NID_LIST
]));
1897 i
= list_first_entry(&nm_i
->nid_list
[FREE_NID_LIST
],
1898 struct free_nid
, list
);
1901 __remove_nid_from_list(sbi
, i
, FREE_NID_LIST
, true);
1902 i
->state
= NID_ALLOC
;
1903 __insert_nid_to_list(sbi
, i
, ALLOC_NID_LIST
, false);
1904 nm_i
->available_nids
--;
1905 spin_unlock(&nm_i
->nid_list_lock
);
1908 spin_unlock(&nm_i
->nid_list_lock
);
1910 /* Let's scan nat pages and its caches to get free nids */
1911 build_free_nids(sbi
, true);
1916 * alloc_nid() should be called prior to this function.
1918 void alloc_nid_done(struct f2fs_sb_info
*sbi
, nid_t nid
)
1920 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
1923 spin_lock(&nm_i
->nid_list_lock
);
1924 i
= __lookup_free_nid_list(nm_i
, nid
);
1925 f2fs_bug_on(sbi
, !i
);
1926 __remove_nid_from_list(sbi
, i
, ALLOC_NID_LIST
, false);
1927 spin_unlock(&nm_i
->nid_list_lock
);
1929 kmem_cache_free(free_nid_slab
, i
);
1933 * alloc_nid() should be called prior to this function.
1935 void alloc_nid_failed(struct f2fs_sb_info
*sbi
, nid_t nid
)
1937 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
1939 bool need_free
= false;
1944 spin_lock(&nm_i
->nid_list_lock
);
1945 i
= __lookup_free_nid_list(nm_i
, nid
);
1946 f2fs_bug_on(sbi
, !i
);
1948 if (!available_free_memory(sbi
, FREE_NIDS
)) {
1949 __remove_nid_from_list(sbi
, i
, ALLOC_NID_LIST
, false);
1952 __remove_nid_from_list(sbi
, i
, ALLOC_NID_LIST
, true);
1954 __insert_nid_to_list(sbi
, i
, FREE_NID_LIST
, false);
1957 nm_i
->available_nids
++;
1959 spin_unlock(&nm_i
->nid_list_lock
);
1962 kmem_cache_free(free_nid_slab
, i
);
1965 int try_to_free_nids(struct f2fs_sb_info
*sbi
, int nr_shrink
)
1967 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
1968 struct free_nid
*i
, *next
;
1971 if (nm_i
->nid_cnt
[FREE_NID_LIST
] <= MAX_FREE_NIDS
)
1974 if (!mutex_trylock(&nm_i
->build_lock
))
1977 spin_lock(&nm_i
->nid_list_lock
);
1978 list_for_each_entry_safe(i
, next
, &nm_i
->nid_list
[FREE_NID_LIST
],
1980 if (nr_shrink
<= 0 ||
1981 nm_i
->nid_cnt
[FREE_NID_LIST
] <= MAX_FREE_NIDS
)
1984 __remove_nid_from_list(sbi
, i
, FREE_NID_LIST
, false);
1985 kmem_cache_free(free_nid_slab
, i
);
1988 spin_unlock(&nm_i
->nid_list_lock
);
1989 mutex_unlock(&nm_i
->build_lock
);
1991 return nr
- nr_shrink
;
1994 void recover_inline_xattr(struct inode
*inode
, struct page
*page
)
1996 void *src_addr
, *dst_addr
;
1999 struct f2fs_inode
*ri
;
2001 ipage
= get_node_page(F2FS_I_SB(inode
), inode
->i_ino
);
2002 f2fs_bug_on(F2FS_I_SB(inode
), IS_ERR(ipage
));
2004 ri
= F2FS_INODE(page
);
2005 if (!(ri
->i_inline
& F2FS_INLINE_XATTR
)) {
2006 clear_inode_flag(inode
, FI_INLINE_XATTR
);
2010 dst_addr
= inline_xattr_addr(ipage
);
2011 src_addr
= inline_xattr_addr(page
);
2012 inline_size
= inline_xattr_size(inode
);
2014 f2fs_wait_on_page_writeback(ipage
, NODE
, true);
2015 memcpy(dst_addr
, src_addr
, inline_size
);
2017 update_inode(inode
, ipage
);
2018 f2fs_put_page(ipage
, 1);
2021 void recover_xattr_data(struct inode
*inode
, struct page
*page
, block_t blkaddr
)
2023 struct f2fs_sb_info
*sbi
= F2FS_I_SB(inode
);
2024 nid_t prev_xnid
= F2FS_I(inode
)->i_xattr_nid
;
2025 nid_t new_xnid
= nid_of_node(page
);
2026 struct node_info ni
;
2028 /* 1: invalidate the previous xattr nid */
2032 /* Deallocate node address */
2033 get_node_info(sbi
, prev_xnid
, &ni
);
2034 f2fs_bug_on(sbi
, ni
.blk_addr
== NULL_ADDR
);
2035 invalidate_blocks(sbi
, ni
.blk_addr
);
2036 dec_valid_node_count(sbi
, inode
);
2037 set_node_addr(sbi
, &ni
, NULL_ADDR
, false);
2040 /* 2: allocate new xattr nid */
2041 if (unlikely(!inc_valid_node_count(sbi
, inode
)))
2042 f2fs_bug_on(sbi
, 1);
2044 remove_free_nid(sbi
, new_xnid
);
2045 get_node_info(sbi
, new_xnid
, &ni
);
2046 ni
.ino
= inode
->i_ino
;
2047 set_node_addr(sbi
, &ni
, NEW_ADDR
, false);
2048 f2fs_i_xnid_write(inode
, new_xnid
);
2050 /* 3: update xattr blkaddr */
2051 refresh_sit_entry(sbi
, NEW_ADDR
, blkaddr
);
2052 set_node_addr(sbi
, &ni
, blkaddr
, false);
2055 int recover_inode_page(struct f2fs_sb_info
*sbi
, struct page
*page
)
2057 struct f2fs_inode
*src
, *dst
;
2058 nid_t ino
= ino_of_node(page
);
2059 struct node_info old_ni
, new_ni
;
2062 get_node_info(sbi
, ino
, &old_ni
);
2064 if (unlikely(old_ni
.blk_addr
!= NULL_ADDR
))
2067 ipage
= f2fs_grab_cache_page(NODE_MAPPING(sbi
), ino
, false);
2069 congestion_wait(BLK_RW_ASYNC
, HZ
/50);
2073 /* Should not use this inode from free nid list */
2074 remove_free_nid(sbi
, ino
);
2076 if (!PageUptodate(ipage
))
2077 SetPageUptodate(ipage
);
2078 fill_node_footer(ipage
, ino
, ino
, 0, true);
2080 src
= F2FS_INODE(page
);
2081 dst
= F2FS_INODE(ipage
);
2083 memcpy(dst
, src
, (unsigned long)&src
->i_ext
- (unsigned long)src
);
2085 dst
->i_blocks
= cpu_to_le64(1);
2086 dst
->i_links
= cpu_to_le32(1);
2087 dst
->i_xattr_nid
= 0;
2088 dst
->i_inline
= src
->i_inline
& F2FS_INLINE_XATTR
;
2093 if (unlikely(!inc_valid_node_count(sbi
, NULL
)))
2095 set_node_addr(sbi
, &new_ni
, NEW_ADDR
, false);
2096 inc_valid_inode_count(sbi
);
2097 set_page_dirty(ipage
);
2098 f2fs_put_page(ipage
, 1);
2102 int restore_node_summary(struct f2fs_sb_info
*sbi
,
2103 unsigned int segno
, struct f2fs_summary_block
*sum
)
2105 struct f2fs_node
*rn
;
2106 struct f2fs_summary
*sum_entry
;
2108 int i
, idx
, last_offset
, nrpages
;
2110 /* scan the node segment */
2111 last_offset
= sbi
->blocks_per_seg
;
2112 addr
= START_BLOCK(sbi
, segno
);
2113 sum_entry
= &sum
->entries
[0];
2115 for (i
= 0; i
< last_offset
; i
+= nrpages
, addr
+= nrpages
) {
2116 nrpages
= min(last_offset
- i
, BIO_MAX_PAGES
);
2118 /* readahead node pages */
2119 ra_meta_pages(sbi
, addr
, nrpages
, META_POR
, true);
2121 for (idx
= addr
; idx
< addr
+ nrpages
; idx
++) {
2122 struct page
*page
= get_tmp_page(sbi
, idx
);
2124 rn
= F2FS_NODE(page
);
2125 sum_entry
->nid
= rn
->footer
.nid
;
2126 sum_entry
->version
= 0;
2127 sum_entry
->ofs_in_node
= 0;
2129 f2fs_put_page(page
, 1);
2132 invalidate_mapping_pages(META_MAPPING(sbi
), addr
,
2138 static void remove_nats_in_journal(struct f2fs_sb_info
*sbi
)
2140 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
2141 struct curseg_info
*curseg
= CURSEG_I(sbi
, CURSEG_HOT_DATA
);
2142 struct f2fs_journal
*journal
= curseg
->journal
;
2145 down_write(&curseg
->journal_rwsem
);
2146 for (i
= 0; i
< nats_in_cursum(journal
); i
++) {
2147 struct nat_entry
*ne
;
2148 struct f2fs_nat_entry raw_ne
;
2149 nid_t nid
= le32_to_cpu(nid_in_journal(journal
, i
));
2151 raw_ne
= nat_in_journal(journal
, i
);
2153 ne
= __lookup_nat_cache(nm_i
, nid
);
2155 ne
= grab_nat_entry(nm_i
, nid
);
2156 node_info_from_raw_nat(&ne
->ni
, &raw_ne
);
2160 * if a free nat in journal has not been used after last
2161 * checkpoint, we should remove it from available nids,
2162 * since later we will add it again.
2164 if (!get_nat_flag(ne
, IS_DIRTY
) &&
2165 le32_to_cpu(raw_ne
.block_addr
) == NULL_ADDR
) {
2166 spin_lock(&nm_i
->nid_list_lock
);
2167 nm_i
->available_nids
--;
2168 spin_unlock(&nm_i
->nid_list_lock
);
2171 __set_nat_cache_dirty(nm_i
, ne
);
2173 update_nats_in_cursum(journal
, -i
);
2174 up_write(&curseg
->journal_rwsem
);
2177 static void __adjust_nat_entry_set(struct nat_entry_set
*nes
,
2178 struct list_head
*head
, int max
)
2180 struct nat_entry_set
*cur
;
2182 if (nes
->entry_cnt
>= max
)
2185 list_for_each_entry(cur
, head
, set_list
) {
2186 if (cur
->entry_cnt
>= nes
->entry_cnt
) {
2187 list_add(&nes
->set_list
, cur
->set_list
.prev
);
2192 list_add_tail(&nes
->set_list
, head
);
2195 static void __flush_nat_entry_set(struct f2fs_sb_info
*sbi
,
2196 struct nat_entry_set
*set
)
2198 struct curseg_info
*curseg
= CURSEG_I(sbi
, CURSEG_HOT_DATA
);
2199 struct f2fs_journal
*journal
= curseg
->journal
;
2200 nid_t start_nid
= set
->set
* NAT_ENTRY_PER_BLOCK
;
2201 bool to_journal
= true;
2202 struct f2fs_nat_block
*nat_blk
;
2203 struct nat_entry
*ne
, *cur
;
2204 struct page
*page
= NULL
;
2207 * there are two steps to flush nat entries:
2208 * #1, flush nat entries to journal in current hot data summary block.
2209 * #2, flush nat entries to nat page.
2211 if (!__has_cursum_space(journal
, set
->entry_cnt
, NAT_JOURNAL
))
2215 down_write(&curseg
->journal_rwsem
);
2217 page
= get_next_nat_page(sbi
, start_nid
);
2218 nat_blk
= page_address(page
);
2219 f2fs_bug_on(sbi
, !nat_blk
);
2222 /* flush dirty nats in nat entry set */
2223 list_for_each_entry_safe(ne
, cur
, &set
->entry_list
, list
) {
2224 struct f2fs_nat_entry
*raw_ne
;
2225 nid_t nid
= nat_get_nid(ne
);
2228 if (nat_get_blkaddr(ne
) == NEW_ADDR
)
2232 offset
= lookup_journal_in_cursum(journal
,
2233 NAT_JOURNAL
, nid
, 1);
2234 f2fs_bug_on(sbi
, offset
< 0);
2235 raw_ne
= &nat_in_journal(journal
, offset
);
2236 nid_in_journal(journal
, offset
) = cpu_to_le32(nid
);
2238 raw_ne
= &nat_blk
->entries
[nid
- start_nid
];
2240 raw_nat_from_node_info(raw_ne
, &ne
->ni
);
2242 __clear_nat_cache_dirty(NM_I(sbi
), ne
);
2243 if (nat_get_blkaddr(ne
) == NULL_ADDR
) {
2244 add_free_nid(sbi
, nid
, false);
2245 spin_lock(&NM_I(sbi
)->nid_list_lock
);
2246 NM_I(sbi
)->available_nids
++;
2247 spin_unlock(&NM_I(sbi
)->nid_list_lock
);
2252 up_write(&curseg
->journal_rwsem
);
2254 f2fs_put_page(page
, 1);
2256 f2fs_bug_on(sbi
, set
->entry_cnt
);
2258 radix_tree_delete(&NM_I(sbi
)->nat_set_root
, set
->set
);
2259 kmem_cache_free(nat_entry_set_slab
, set
);
2263 * This function is called during the checkpointing process.
2265 void flush_nat_entries(struct f2fs_sb_info
*sbi
)
2267 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
2268 struct curseg_info
*curseg
= CURSEG_I(sbi
, CURSEG_HOT_DATA
);
2269 struct f2fs_journal
*journal
= curseg
->journal
;
2270 struct nat_entry_set
*setvec
[SETVEC_SIZE
];
2271 struct nat_entry_set
*set
, *tmp
;
2276 if (!nm_i
->dirty_nat_cnt
)
2279 down_write(&nm_i
->nat_tree_lock
);
2282 * if there are no enough space in journal to store dirty nat
2283 * entries, remove all entries from journal and merge them
2284 * into nat entry set.
2286 if (!__has_cursum_space(journal
, nm_i
->dirty_nat_cnt
, NAT_JOURNAL
))
2287 remove_nats_in_journal(sbi
);
2289 while ((found
= __gang_lookup_nat_set(nm_i
,
2290 set_idx
, SETVEC_SIZE
, setvec
))) {
2292 set_idx
= setvec
[found
- 1]->set
+ 1;
2293 for (idx
= 0; idx
< found
; idx
++)
2294 __adjust_nat_entry_set(setvec
[idx
], &sets
,
2295 MAX_NAT_JENTRIES(journal
));
2298 /* flush dirty nats in nat entry set */
2299 list_for_each_entry_safe(set
, tmp
, &sets
, set_list
)
2300 __flush_nat_entry_set(sbi
, set
);
2302 up_write(&nm_i
->nat_tree_lock
);
2304 f2fs_bug_on(sbi
, nm_i
->dirty_nat_cnt
);
2307 static int init_node_manager(struct f2fs_sb_info
*sbi
)
2309 struct f2fs_super_block
*sb_raw
= F2FS_RAW_SUPER(sbi
);
2310 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
2311 unsigned char *version_bitmap
;
2312 unsigned int nat_segs
, nat_blocks
;
2314 nm_i
->nat_blkaddr
= le32_to_cpu(sb_raw
->nat_blkaddr
);
2316 /* segment_count_nat includes pair segment so divide to 2. */
2317 nat_segs
= le32_to_cpu(sb_raw
->segment_count_nat
) >> 1;
2318 nat_blocks
= nat_segs
<< le32_to_cpu(sb_raw
->log_blocks_per_seg
);
2320 nm_i
->max_nid
= NAT_ENTRY_PER_BLOCK
* nat_blocks
;
2322 /* not used nids: 0, node, meta, (and root counted as valid node) */
2323 nm_i
->available_nids
= nm_i
->max_nid
- sbi
->total_valid_node_count
-
2324 F2FS_RESERVED_NODE_NUM
;
2325 nm_i
->nid_cnt
[FREE_NID_LIST
] = 0;
2326 nm_i
->nid_cnt
[ALLOC_NID_LIST
] = 0;
2328 nm_i
->ram_thresh
= DEF_RAM_THRESHOLD
;
2329 nm_i
->ra_nid_pages
= DEF_RA_NID_PAGES
;
2330 nm_i
->dirty_nats_ratio
= DEF_DIRTY_NAT_RATIO_THRESHOLD
;
2332 INIT_RADIX_TREE(&nm_i
->free_nid_root
, GFP_ATOMIC
);
2333 INIT_LIST_HEAD(&nm_i
->nid_list
[FREE_NID_LIST
]);
2334 INIT_LIST_HEAD(&nm_i
->nid_list
[ALLOC_NID_LIST
]);
2335 INIT_RADIX_TREE(&nm_i
->nat_root
, GFP_NOIO
);
2336 INIT_RADIX_TREE(&nm_i
->nat_set_root
, GFP_NOIO
);
2337 INIT_LIST_HEAD(&nm_i
->nat_entries
);
2339 mutex_init(&nm_i
->build_lock
);
2340 spin_lock_init(&nm_i
->nid_list_lock
);
2341 init_rwsem(&nm_i
->nat_tree_lock
);
2343 nm_i
->next_scan_nid
= le32_to_cpu(sbi
->ckpt
->next_free_nid
);
2344 nm_i
->bitmap_size
= __bitmap_size(sbi
, NAT_BITMAP
);
2345 version_bitmap
= __bitmap_ptr(sbi
, NAT_BITMAP
);
2346 if (!version_bitmap
)
2349 nm_i
->nat_bitmap
= kmemdup(version_bitmap
, nm_i
->bitmap_size
,
2351 if (!nm_i
->nat_bitmap
)
2356 int build_node_manager(struct f2fs_sb_info
*sbi
)
2360 sbi
->nm_info
= kzalloc(sizeof(struct f2fs_nm_info
), GFP_KERNEL
);
2364 err
= init_node_manager(sbi
);
2368 build_free_nids(sbi
, true);
2372 void destroy_node_manager(struct f2fs_sb_info
*sbi
)
2374 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
2375 struct free_nid
*i
, *next_i
;
2376 struct nat_entry
*natvec
[NATVEC_SIZE
];
2377 struct nat_entry_set
*setvec
[SETVEC_SIZE
];
2384 /* destroy free nid list */
2385 spin_lock(&nm_i
->nid_list_lock
);
2386 list_for_each_entry_safe(i
, next_i
, &nm_i
->nid_list
[FREE_NID_LIST
],
2388 __remove_nid_from_list(sbi
, i
, FREE_NID_LIST
, false);
2389 spin_unlock(&nm_i
->nid_list_lock
);
2390 kmem_cache_free(free_nid_slab
, i
);
2391 spin_lock(&nm_i
->nid_list_lock
);
2393 f2fs_bug_on(sbi
, nm_i
->nid_cnt
[FREE_NID_LIST
]);
2394 f2fs_bug_on(sbi
, nm_i
->nid_cnt
[ALLOC_NID_LIST
]);
2395 f2fs_bug_on(sbi
, !list_empty(&nm_i
->nid_list
[ALLOC_NID_LIST
]));
2396 spin_unlock(&nm_i
->nid_list_lock
);
2398 /* destroy nat cache */
2399 down_write(&nm_i
->nat_tree_lock
);
2400 while ((found
= __gang_lookup_nat_cache(nm_i
,
2401 nid
, NATVEC_SIZE
, natvec
))) {
2404 nid
= nat_get_nid(natvec
[found
- 1]) + 1;
2405 for (idx
= 0; idx
< found
; idx
++)
2406 __del_from_nat_cache(nm_i
, natvec
[idx
]);
2408 f2fs_bug_on(sbi
, nm_i
->nat_cnt
);
2410 /* destroy nat set cache */
2412 while ((found
= __gang_lookup_nat_set(nm_i
,
2413 nid
, SETVEC_SIZE
, setvec
))) {
2416 nid
= setvec
[found
- 1]->set
+ 1;
2417 for (idx
= 0; idx
< found
; idx
++) {
2418 /* entry_cnt is not zero, when cp_error was occurred */
2419 f2fs_bug_on(sbi
, !list_empty(&setvec
[idx
]->entry_list
));
2420 radix_tree_delete(&nm_i
->nat_set_root
, setvec
[idx
]->set
);
2421 kmem_cache_free(nat_entry_set_slab
, setvec
[idx
]);
2424 up_write(&nm_i
->nat_tree_lock
);
2426 kfree(nm_i
->nat_bitmap
);
2427 sbi
->nm_info
= NULL
;
2431 int __init
create_node_manager_caches(void)
2433 nat_entry_slab
= f2fs_kmem_cache_create("nat_entry",
2434 sizeof(struct nat_entry
));
2435 if (!nat_entry_slab
)
2438 free_nid_slab
= f2fs_kmem_cache_create("free_nid",
2439 sizeof(struct free_nid
));
2441 goto destroy_nat_entry
;
2443 nat_entry_set_slab
= f2fs_kmem_cache_create("nat_entry_set",
2444 sizeof(struct nat_entry_set
));
2445 if (!nat_entry_set_slab
)
2446 goto destroy_free_nid
;
2450 kmem_cache_destroy(free_nid_slab
);
2452 kmem_cache_destroy(nat_entry_slab
);
2457 void destroy_node_manager_caches(void)
2459 kmem_cache_destroy(nat_entry_set_slab
);
2460 kmem_cache_destroy(free_nid_slab
);
2461 kmem_cache_destroy(nat_entry_slab
);