usb: ohci-at91: use descriptor-based gpio APIs correctly
[linux/fpc-iii.git] / fs / f2fs / node.c
blobb9078fdb37437bff3e6e46ca4f72f4680cb9109f
1 /*
2 * fs/f2fs/node.c
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
11 #include <linux/fs.h>
12 #include <linux/f2fs_fs.h>
13 #include <linux/mpage.h>
14 #include <linux/backing-dev.h>
15 #include <linux/blkdev.h>
16 #include <linux/pagevec.h>
17 #include <linux/swap.h>
19 #include "f2fs.h"
20 #include "node.h"
21 #include "segment.h"
22 #include "trace.h"
23 #include <trace/events/f2fs.h>
25 #define on_build_free_nids(nmi) mutex_is_locked(&nm_i->build_lock)
27 static struct kmem_cache *nat_entry_slab;
28 static struct kmem_cache *free_nid_slab;
29 static struct kmem_cache *nat_entry_set_slab;
31 bool available_free_memory(struct f2fs_sb_info *sbi, int type)
33 struct f2fs_nm_info *nm_i = NM_I(sbi);
34 struct sysinfo val;
35 unsigned long avail_ram;
36 unsigned long mem_size = 0;
37 bool res = false;
39 si_meminfo(&val);
41 /* only uses low memory */
42 avail_ram = val.totalram - val.totalhigh;
45 * give 25%, 25%, 50%, 50%, 50% memory for each components respectively
47 if (type == FREE_NIDS) {
48 mem_size = (nm_i->nid_cnt[FREE_NID_LIST] *
49 sizeof(struct free_nid)) >> PAGE_SHIFT;
50 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
51 } else if (type == NAT_ENTRIES) {
52 mem_size = (nm_i->nat_cnt * sizeof(struct nat_entry)) >>
53 PAGE_SHIFT;
54 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
55 if (excess_cached_nats(sbi))
56 res = false;
57 } else if (type == DIRTY_DENTS) {
58 if (sbi->sb->s_bdi->wb.dirty_exceeded)
59 return false;
60 mem_size = get_pages(sbi, F2FS_DIRTY_DENTS);
61 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
62 } else if (type == INO_ENTRIES) {
63 int i;
65 for (i = 0; i <= UPDATE_INO; i++)
66 mem_size += (sbi->im[i].ino_num *
67 sizeof(struct ino_entry)) >> PAGE_SHIFT;
68 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
69 } else if (type == EXTENT_CACHE) {
70 mem_size = (atomic_read(&sbi->total_ext_tree) *
71 sizeof(struct extent_tree) +
72 atomic_read(&sbi->total_ext_node) *
73 sizeof(struct extent_node)) >> PAGE_SHIFT;
74 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
75 } else {
76 if (!sbi->sb->s_bdi->wb.dirty_exceeded)
77 return true;
79 return res;
82 static void clear_node_page_dirty(struct page *page)
84 struct address_space *mapping = page->mapping;
85 unsigned int long flags;
87 if (PageDirty(page)) {
88 spin_lock_irqsave(&mapping->tree_lock, flags);
89 radix_tree_tag_clear(&mapping->page_tree,
90 page_index(page),
91 PAGECACHE_TAG_DIRTY);
92 spin_unlock_irqrestore(&mapping->tree_lock, flags);
94 clear_page_dirty_for_io(page);
95 dec_page_count(F2FS_M_SB(mapping), F2FS_DIRTY_NODES);
97 ClearPageUptodate(page);
100 static struct page *get_current_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
102 pgoff_t index = current_nat_addr(sbi, nid);
103 return get_meta_page(sbi, index);
106 static struct page *get_next_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
108 struct page *src_page;
109 struct page *dst_page;
110 pgoff_t src_off;
111 pgoff_t dst_off;
112 void *src_addr;
113 void *dst_addr;
114 struct f2fs_nm_info *nm_i = NM_I(sbi);
116 src_off = current_nat_addr(sbi, nid);
117 dst_off = next_nat_addr(sbi, src_off);
119 /* get current nat block page with lock */
120 src_page = get_meta_page(sbi, src_off);
121 dst_page = grab_meta_page(sbi, dst_off);
122 f2fs_bug_on(sbi, PageDirty(src_page));
124 src_addr = page_address(src_page);
125 dst_addr = page_address(dst_page);
126 memcpy(dst_addr, src_addr, PAGE_SIZE);
127 set_page_dirty(dst_page);
128 f2fs_put_page(src_page, 1);
130 set_to_next_nat(nm_i, nid);
132 return dst_page;
135 static struct nat_entry *__lookup_nat_cache(struct f2fs_nm_info *nm_i, nid_t n)
137 return radix_tree_lookup(&nm_i->nat_root, n);
140 static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info *nm_i,
141 nid_t start, unsigned int nr, struct nat_entry **ep)
143 return radix_tree_gang_lookup(&nm_i->nat_root, (void **)ep, start, nr);
146 static void __del_from_nat_cache(struct f2fs_nm_info *nm_i, struct nat_entry *e)
148 list_del(&e->list);
149 radix_tree_delete(&nm_i->nat_root, nat_get_nid(e));
150 nm_i->nat_cnt--;
151 kmem_cache_free(nat_entry_slab, e);
154 static void __set_nat_cache_dirty(struct f2fs_nm_info *nm_i,
155 struct nat_entry *ne)
157 nid_t set = NAT_BLOCK_OFFSET(ne->ni.nid);
158 struct nat_entry_set *head;
160 if (get_nat_flag(ne, IS_DIRTY))
161 return;
163 head = radix_tree_lookup(&nm_i->nat_set_root, set);
164 if (!head) {
165 head = f2fs_kmem_cache_alloc(nat_entry_set_slab, GFP_NOFS);
167 INIT_LIST_HEAD(&head->entry_list);
168 INIT_LIST_HEAD(&head->set_list);
169 head->set = set;
170 head->entry_cnt = 0;
171 f2fs_radix_tree_insert(&nm_i->nat_set_root, set, head);
173 list_move_tail(&ne->list, &head->entry_list);
174 nm_i->dirty_nat_cnt++;
175 head->entry_cnt++;
176 set_nat_flag(ne, IS_DIRTY, true);
179 static void __clear_nat_cache_dirty(struct f2fs_nm_info *nm_i,
180 struct nat_entry *ne)
182 nid_t set = NAT_BLOCK_OFFSET(ne->ni.nid);
183 struct nat_entry_set *head;
185 head = radix_tree_lookup(&nm_i->nat_set_root, set);
186 if (head) {
187 list_move_tail(&ne->list, &nm_i->nat_entries);
188 set_nat_flag(ne, IS_DIRTY, false);
189 head->entry_cnt--;
190 nm_i->dirty_nat_cnt--;
194 static unsigned int __gang_lookup_nat_set(struct f2fs_nm_info *nm_i,
195 nid_t start, unsigned int nr, struct nat_entry_set **ep)
197 return radix_tree_gang_lookup(&nm_i->nat_set_root, (void **)ep,
198 start, nr);
201 int need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid)
203 struct f2fs_nm_info *nm_i = NM_I(sbi);
204 struct nat_entry *e;
205 bool need = false;
207 down_read(&nm_i->nat_tree_lock);
208 e = __lookup_nat_cache(nm_i, nid);
209 if (e) {
210 if (!get_nat_flag(e, IS_CHECKPOINTED) &&
211 !get_nat_flag(e, HAS_FSYNCED_INODE))
212 need = true;
214 up_read(&nm_i->nat_tree_lock);
215 return need;
218 bool is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid)
220 struct f2fs_nm_info *nm_i = NM_I(sbi);
221 struct nat_entry *e;
222 bool is_cp = true;
224 down_read(&nm_i->nat_tree_lock);
225 e = __lookup_nat_cache(nm_i, nid);
226 if (e && !get_nat_flag(e, IS_CHECKPOINTED))
227 is_cp = false;
228 up_read(&nm_i->nat_tree_lock);
229 return is_cp;
232 bool need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino)
234 struct f2fs_nm_info *nm_i = NM_I(sbi);
235 struct nat_entry *e;
236 bool need_update = true;
238 down_read(&nm_i->nat_tree_lock);
239 e = __lookup_nat_cache(nm_i, ino);
240 if (e && get_nat_flag(e, HAS_LAST_FSYNC) &&
241 (get_nat_flag(e, IS_CHECKPOINTED) ||
242 get_nat_flag(e, HAS_FSYNCED_INODE)))
243 need_update = false;
244 up_read(&nm_i->nat_tree_lock);
245 return need_update;
248 static struct nat_entry *grab_nat_entry(struct f2fs_nm_info *nm_i, nid_t nid)
250 struct nat_entry *new;
252 new = f2fs_kmem_cache_alloc(nat_entry_slab, GFP_NOFS);
253 f2fs_radix_tree_insert(&nm_i->nat_root, nid, new);
254 memset(new, 0, sizeof(struct nat_entry));
255 nat_set_nid(new, nid);
256 nat_reset_flag(new);
257 list_add_tail(&new->list, &nm_i->nat_entries);
258 nm_i->nat_cnt++;
259 return new;
262 static void cache_nat_entry(struct f2fs_sb_info *sbi, nid_t nid,
263 struct f2fs_nat_entry *ne)
265 struct f2fs_nm_info *nm_i = NM_I(sbi);
266 struct nat_entry *e;
268 e = __lookup_nat_cache(nm_i, nid);
269 if (!e) {
270 e = grab_nat_entry(nm_i, nid);
271 node_info_from_raw_nat(&e->ni, ne);
272 } else {
273 f2fs_bug_on(sbi, nat_get_ino(e) != le32_to_cpu(ne->ino) ||
274 nat_get_blkaddr(e) !=
275 le32_to_cpu(ne->block_addr) ||
276 nat_get_version(e) != ne->version);
280 static void set_node_addr(struct f2fs_sb_info *sbi, struct node_info *ni,
281 block_t new_blkaddr, bool fsync_done)
283 struct f2fs_nm_info *nm_i = NM_I(sbi);
284 struct nat_entry *e;
286 down_write(&nm_i->nat_tree_lock);
287 e = __lookup_nat_cache(nm_i, ni->nid);
288 if (!e) {
289 e = grab_nat_entry(nm_i, ni->nid);
290 copy_node_info(&e->ni, ni);
291 f2fs_bug_on(sbi, ni->blk_addr == NEW_ADDR);
292 } else if (new_blkaddr == NEW_ADDR) {
294 * when nid is reallocated,
295 * previous nat entry can be remained in nat cache.
296 * So, reinitialize it with new information.
298 copy_node_info(&e->ni, ni);
299 f2fs_bug_on(sbi, ni->blk_addr != NULL_ADDR);
302 /* sanity check */
303 f2fs_bug_on(sbi, nat_get_blkaddr(e) != ni->blk_addr);
304 f2fs_bug_on(sbi, nat_get_blkaddr(e) == NULL_ADDR &&
305 new_blkaddr == NULL_ADDR);
306 f2fs_bug_on(sbi, nat_get_blkaddr(e) == NEW_ADDR &&
307 new_blkaddr == NEW_ADDR);
308 f2fs_bug_on(sbi, nat_get_blkaddr(e) != NEW_ADDR &&
309 nat_get_blkaddr(e) != NULL_ADDR &&
310 new_blkaddr == NEW_ADDR);
312 /* increment version no as node is removed */
313 if (nat_get_blkaddr(e) != NEW_ADDR && new_blkaddr == NULL_ADDR) {
314 unsigned char version = nat_get_version(e);
315 nat_set_version(e, inc_node_version(version));
317 /* in order to reuse the nid */
318 if (nm_i->next_scan_nid > ni->nid)
319 nm_i->next_scan_nid = ni->nid;
322 /* change address */
323 nat_set_blkaddr(e, new_blkaddr);
324 if (new_blkaddr == NEW_ADDR || new_blkaddr == NULL_ADDR)
325 set_nat_flag(e, IS_CHECKPOINTED, false);
326 __set_nat_cache_dirty(nm_i, e);
328 /* update fsync_mark if its inode nat entry is still alive */
329 if (ni->nid != ni->ino)
330 e = __lookup_nat_cache(nm_i, ni->ino);
331 if (e) {
332 if (fsync_done && ni->nid == ni->ino)
333 set_nat_flag(e, HAS_FSYNCED_INODE, true);
334 set_nat_flag(e, HAS_LAST_FSYNC, fsync_done);
336 up_write(&nm_i->nat_tree_lock);
339 int try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink)
341 struct f2fs_nm_info *nm_i = NM_I(sbi);
342 int nr = nr_shrink;
344 if (!down_write_trylock(&nm_i->nat_tree_lock))
345 return 0;
347 while (nr_shrink && !list_empty(&nm_i->nat_entries)) {
348 struct nat_entry *ne;
349 ne = list_first_entry(&nm_i->nat_entries,
350 struct nat_entry, list);
351 __del_from_nat_cache(nm_i, ne);
352 nr_shrink--;
354 up_write(&nm_i->nat_tree_lock);
355 return nr - nr_shrink;
359 * This function always returns success
361 void get_node_info(struct f2fs_sb_info *sbi, nid_t nid, struct node_info *ni)
363 struct f2fs_nm_info *nm_i = NM_I(sbi);
364 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
365 struct f2fs_journal *journal = curseg->journal;
366 nid_t start_nid = START_NID(nid);
367 struct f2fs_nat_block *nat_blk;
368 struct page *page = NULL;
369 struct f2fs_nat_entry ne;
370 struct nat_entry *e;
371 int i;
373 ni->nid = nid;
375 /* Check nat cache */
376 down_read(&nm_i->nat_tree_lock);
377 e = __lookup_nat_cache(nm_i, nid);
378 if (e) {
379 ni->ino = nat_get_ino(e);
380 ni->blk_addr = nat_get_blkaddr(e);
381 ni->version = nat_get_version(e);
382 up_read(&nm_i->nat_tree_lock);
383 return;
386 memset(&ne, 0, sizeof(struct f2fs_nat_entry));
388 /* Check current segment summary */
389 down_read(&curseg->journal_rwsem);
390 i = lookup_journal_in_cursum(journal, NAT_JOURNAL, nid, 0);
391 if (i >= 0) {
392 ne = nat_in_journal(journal, i);
393 node_info_from_raw_nat(ni, &ne);
395 up_read(&curseg->journal_rwsem);
396 if (i >= 0)
397 goto cache;
399 /* Fill node_info from nat page */
400 page = get_current_nat_page(sbi, start_nid);
401 nat_blk = (struct f2fs_nat_block *)page_address(page);
402 ne = nat_blk->entries[nid - start_nid];
403 node_info_from_raw_nat(ni, &ne);
404 f2fs_put_page(page, 1);
405 cache:
406 up_read(&nm_i->nat_tree_lock);
407 /* cache nat entry */
408 down_write(&nm_i->nat_tree_lock);
409 cache_nat_entry(sbi, nid, &ne);
410 up_write(&nm_i->nat_tree_lock);
414 * readahead MAX_RA_NODE number of node pages.
416 static void ra_node_pages(struct page *parent, int start, int n)
418 struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
419 struct blk_plug plug;
420 int i, end;
421 nid_t nid;
423 blk_start_plug(&plug);
425 /* Then, try readahead for siblings of the desired node */
426 end = start + n;
427 end = min(end, NIDS_PER_BLOCK);
428 for (i = start; i < end; i++) {
429 nid = get_nid(parent, i, false);
430 ra_node_page(sbi, nid);
433 blk_finish_plug(&plug);
436 pgoff_t get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs)
438 const long direct_index = ADDRS_PER_INODE(dn->inode);
439 const long direct_blks = ADDRS_PER_BLOCK;
440 const long indirect_blks = ADDRS_PER_BLOCK * NIDS_PER_BLOCK;
441 unsigned int skipped_unit = ADDRS_PER_BLOCK;
442 int cur_level = dn->cur_level;
443 int max_level = dn->max_level;
444 pgoff_t base = 0;
446 if (!dn->max_level)
447 return pgofs + 1;
449 while (max_level-- > cur_level)
450 skipped_unit *= NIDS_PER_BLOCK;
452 switch (dn->max_level) {
453 case 3:
454 base += 2 * indirect_blks;
455 case 2:
456 base += 2 * direct_blks;
457 case 1:
458 base += direct_index;
459 break;
460 default:
461 f2fs_bug_on(F2FS_I_SB(dn->inode), 1);
464 return ((pgofs - base) / skipped_unit + 1) * skipped_unit + base;
468 * The maximum depth is four.
469 * Offset[0] will have raw inode offset.
471 static int get_node_path(struct inode *inode, long block,
472 int offset[4], unsigned int noffset[4])
474 const long direct_index = ADDRS_PER_INODE(inode);
475 const long direct_blks = ADDRS_PER_BLOCK;
476 const long dptrs_per_blk = NIDS_PER_BLOCK;
477 const long indirect_blks = ADDRS_PER_BLOCK * NIDS_PER_BLOCK;
478 const long dindirect_blks = indirect_blks * NIDS_PER_BLOCK;
479 int n = 0;
480 int level = 0;
482 noffset[0] = 0;
484 if (block < direct_index) {
485 offset[n] = block;
486 goto got;
488 block -= direct_index;
489 if (block < direct_blks) {
490 offset[n++] = NODE_DIR1_BLOCK;
491 noffset[n] = 1;
492 offset[n] = block;
493 level = 1;
494 goto got;
496 block -= direct_blks;
497 if (block < direct_blks) {
498 offset[n++] = NODE_DIR2_BLOCK;
499 noffset[n] = 2;
500 offset[n] = block;
501 level = 1;
502 goto got;
504 block -= direct_blks;
505 if (block < indirect_blks) {
506 offset[n++] = NODE_IND1_BLOCK;
507 noffset[n] = 3;
508 offset[n++] = block / direct_blks;
509 noffset[n] = 4 + offset[n - 1];
510 offset[n] = block % direct_blks;
511 level = 2;
512 goto got;
514 block -= indirect_blks;
515 if (block < indirect_blks) {
516 offset[n++] = NODE_IND2_BLOCK;
517 noffset[n] = 4 + dptrs_per_blk;
518 offset[n++] = block / direct_blks;
519 noffset[n] = 5 + dptrs_per_blk + offset[n - 1];
520 offset[n] = block % direct_blks;
521 level = 2;
522 goto got;
524 block -= indirect_blks;
525 if (block < dindirect_blks) {
526 offset[n++] = NODE_DIND_BLOCK;
527 noffset[n] = 5 + (dptrs_per_blk * 2);
528 offset[n++] = block / indirect_blks;
529 noffset[n] = 6 + (dptrs_per_blk * 2) +
530 offset[n - 1] * (dptrs_per_blk + 1);
531 offset[n++] = (block / direct_blks) % dptrs_per_blk;
532 noffset[n] = 7 + (dptrs_per_blk * 2) +
533 offset[n - 2] * (dptrs_per_blk + 1) +
534 offset[n - 1];
535 offset[n] = block % direct_blks;
536 level = 3;
537 goto got;
538 } else {
539 BUG();
541 got:
542 return level;
546 * Caller should call f2fs_put_dnode(dn).
547 * Also, it should grab and release a rwsem by calling f2fs_lock_op() and
548 * f2fs_unlock_op() only if ro is not set RDONLY_NODE.
549 * In the case of RDONLY_NODE, we don't need to care about mutex.
551 int get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode)
553 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
554 struct page *npage[4];
555 struct page *parent = NULL;
556 int offset[4];
557 unsigned int noffset[4];
558 nid_t nids[4];
559 int level, i = 0;
560 int err = 0;
562 level = get_node_path(dn->inode, index, offset, noffset);
564 nids[0] = dn->inode->i_ino;
565 npage[0] = dn->inode_page;
567 if (!npage[0]) {
568 npage[0] = get_node_page(sbi, nids[0]);
569 if (IS_ERR(npage[0]))
570 return PTR_ERR(npage[0]);
573 /* if inline_data is set, should not report any block indices */
574 if (f2fs_has_inline_data(dn->inode) && index) {
575 err = -ENOENT;
576 f2fs_put_page(npage[0], 1);
577 goto release_out;
580 parent = npage[0];
581 if (level != 0)
582 nids[1] = get_nid(parent, offset[0], true);
583 dn->inode_page = npage[0];
584 dn->inode_page_locked = true;
586 /* get indirect or direct nodes */
587 for (i = 1; i <= level; i++) {
588 bool done = false;
590 if (!nids[i] && mode == ALLOC_NODE) {
591 /* alloc new node */
592 if (!alloc_nid(sbi, &(nids[i]))) {
593 err = -ENOSPC;
594 goto release_pages;
597 dn->nid = nids[i];
598 npage[i] = new_node_page(dn, noffset[i], NULL);
599 if (IS_ERR(npage[i])) {
600 alloc_nid_failed(sbi, nids[i]);
601 err = PTR_ERR(npage[i]);
602 goto release_pages;
605 set_nid(parent, offset[i - 1], nids[i], i == 1);
606 alloc_nid_done(sbi, nids[i]);
607 done = true;
608 } else if (mode == LOOKUP_NODE_RA && i == level && level > 1) {
609 npage[i] = get_node_page_ra(parent, offset[i - 1]);
610 if (IS_ERR(npage[i])) {
611 err = PTR_ERR(npage[i]);
612 goto release_pages;
614 done = true;
616 if (i == 1) {
617 dn->inode_page_locked = false;
618 unlock_page(parent);
619 } else {
620 f2fs_put_page(parent, 1);
623 if (!done) {
624 npage[i] = get_node_page(sbi, nids[i]);
625 if (IS_ERR(npage[i])) {
626 err = PTR_ERR(npage[i]);
627 f2fs_put_page(npage[0], 0);
628 goto release_out;
631 if (i < level) {
632 parent = npage[i];
633 nids[i + 1] = get_nid(parent, offset[i], false);
636 dn->nid = nids[level];
637 dn->ofs_in_node = offset[level];
638 dn->node_page = npage[level];
639 dn->data_blkaddr = datablock_addr(dn->node_page, dn->ofs_in_node);
640 return 0;
642 release_pages:
643 f2fs_put_page(parent, 1);
644 if (i > 1)
645 f2fs_put_page(npage[0], 0);
646 release_out:
647 dn->inode_page = NULL;
648 dn->node_page = NULL;
649 if (err == -ENOENT) {
650 dn->cur_level = i;
651 dn->max_level = level;
652 dn->ofs_in_node = offset[level];
654 return err;
657 static void truncate_node(struct dnode_of_data *dn)
659 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
660 struct node_info ni;
662 get_node_info(sbi, dn->nid, &ni);
663 if (dn->inode->i_blocks == 0) {
664 f2fs_bug_on(sbi, ni.blk_addr != NULL_ADDR);
665 goto invalidate;
667 f2fs_bug_on(sbi, ni.blk_addr == NULL_ADDR);
669 /* Deallocate node address */
670 invalidate_blocks(sbi, ni.blk_addr);
671 dec_valid_node_count(sbi, dn->inode);
672 set_node_addr(sbi, &ni, NULL_ADDR, false);
674 if (dn->nid == dn->inode->i_ino) {
675 remove_orphan_inode(sbi, dn->nid);
676 dec_valid_inode_count(sbi);
677 f2fs_inode_synced(dn->inode);
679 invalidate:
680 clear_node_page_dirty(dn->node_page);
681 set_sbi_flag(sbi, SBI_IS_DIRTY);
683 f2fs_put_page(dn->node_page, 1);
685 invalidate_mapping_pages(NODE_MAPPING(sbi),
686 dn->node_page->index, dn->node_page->index);
688 dn->node_page = NULL;
689 trace_f2fs_truncate_node(dn->inode, dn->nid, ni.blk_addr);
692 static int truncate_dnode(struct dnode_of_data *dn)
694 struct page *page;
696 if (dn->nid == 0)
697 return 1;
699 /* get direct node */
700 page = get_node_page(F2FS_I_SB(dn->inode), dn->nid);
701 if (IS_ERR(page) && PTR_ERR(page) == -ENOENT)
702 return 1;
703 else if (IS_ERR(page))
704 return PTR_ERR(page);
706 /* Make dnode_of_data for parameter */
707 dn->node_page = page;
708 dn->ofs_in_node = 0;
709 truncate_data_blocks(dn);
710 truncate_node(dn);
711 return 1;
714 static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs,
715 int ofs, int depth)
717 struct dnode_of_data rdn = *dn;
718 struct page *page;
719 struct f2fs_node *rn;
720 nid_t child_nid;
721 unsigned int child_nofs;
722 int freed = 0;
723 int i, ret;
725 if (dn->nid == 0)
726 return NIDS_PER_BLOCK + 1;
728 trace_f2fs_truncate_nodes_enter(dn->inode, dn->nid, dn->data_blkaddr);
730 page = get_node_page(F2FS_I_SB(dn->inode), dn->nid);
731 if (IS_ERR(page)) {
732 trace_f2fs_truncate_nodes_exit(dn->inode, PTR_ERR(page));
733 return PTR_ERR(page);
736 ra_node_pages(page, ofs, NIDS_PER_BLOCK);
738 rn = F2FS_NODE(page);
739 if (depth < 3) {
740 for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) {
741 child_nid = le32_to_cpu(rn->in.nid[i]);
742 if (child_nid == 0)
743 continue;
744 rdn.nid = child_nid;
745 ret = truncate_dnode(&rdn);
746 if (ret < 0)
747 goto out_err;
748 if (set_nid(page, i, 0, false))
749 dn->node_changed = true;
751 } else {
752 child_nofs = nofs + ofs * (NIDS_PER_BLOCK + 1) + 1;
753 for (i = ofs; i < NIDS_PER_BLOCK; i++) {
754 child_nid = le32_to_cpu(rn->in.nid[i]);
755 if (child_nid == 0) {
756 child_nofs += NIDS_PER_BLOCK + 1;
757 continue;
759 rdn.nid = child_nid;
760 ret = truncate_nodes(&rdn, child_nofs, 0, depth - 1);
761 if (ret == (NIDS_PER_BLOCK + 1)) {
762 if (set_nid(page, i, 0, false))
763 dn->node_changed = true;
764 child_nofs += ret;
765 } else if (ret < 0 && ret != -ENOENT) {
766 goto out_err;
769 freed = child_nofs;
772 if (!ofs) {
773 /* remove current indirect node */
774 dn->node_page = page;
775 truncate_node(dn);
776 freed++;
777 } else {
778 f2fs_put_page(page, 1);
780 trace_f2fs_truncate_nodes_exit(dn->inode, freed);
781 return freed;
783 out_err:
784 f2fs_put_page(page, 1);
785 trace_f2fs_truncate_nodes_exit(dn->inode, ret);
786 return ret;
789 static int truncate_partial_nodes(struct dnode_of_data *dn,
790 struct f2fs_inode *ri, int *offset, int depth)
792 struct page *pages[2];
793 nid_t nid[3];
794 nid_t child_nid;
795 int err = 0;
796 int i;
797 int idx = depth - 2;
799 nid[0] = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
800 if (!nid[0])
801 return 0;
803 /* get indirect nodes in the path */
804 for (i = 0; i < idx + 1; i++) {
805 /* reference count'll be increased */
806 pages[i] = get_node_page(F2FS_I_SB(dn->inode), nid[i]);
807 if (IS_ERR(pages[i])) {
808 err = PTR_ERR(pages[i]);
809 idx = i - 1;
810 goto fail;
812 nid[i + 1] = get_nid(pages[i], offset[i + 1], false);
815 ra_node_pages(pages[idx], offset[idx + 1], NIDS_PER_BLOCK);
817 /* free direct nodes linked to a partial indirect node */
818 for (i = offset[idx + 1]; i < NIDS_PER_BLOCK; i++) {
819 child_nid = get_nid(pages[idx], i, false);
820 if (!child_nid)
821 continue;
822 dn->nid = child_nid;
823 err = truncate_dnode(dn);
824 if (err < 0)
825 goto fail;
826 if (set_nid(pages[idx], i, 0, false))
827 dn->node_changed = true;
830 if (offset[idx + 1] == 0) {
831 dn->node_page = pages[idx];
832 dn->nid = nid[idx];
833 truncate_node(dn);
834 } else {
835 f2fs_put_page(pages[idx], 1);
837 offset[idx]++;
838 offset[idx + 1] = 0;
839 idx--;
840 fail:
841 for (i = idx; i >= 0; i--)
842 f2fs_put_page(pages[i], 1);
844 trace_f2fs_truncate_partial_nodes(dn->inode, nid, depth, err);
846 return err;
850 * All the block addresses of data and nodes should be nullified.
852 int truncate_inode_blocks(struct inode *inode, pgoff_t from)
854 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
855 int err = 0, cont = 1;
856 int level, offset[4], noffset[4];
857 unsigned int nofs = 0;
858 struct f2fs_inode *ri;
859 struct dnode_of_data dn;
860 struct page *page;
862 trace_f2fs_truncate_inode_blocks_enter(inode, from);
864 level = get_node_path(inode, from, offset, noffset);
866 page = get_node_page(sbi, inode->i_ino);
867 if (IS_ERR(page)) {
868 trace_f2fs_truncate_inode_blocks_exit(inode, PTR_ERR(page));
869 return PTR_ERR(page);
872 set_new_dnode(&dn, inode, page, NULL, 0);
873 unlock_page(page);
875 ri = F2FS_INODE(page);
876 switch (level) {
877 case 0:
878 case 1:
879 nofs = noffset[1];
880 break;
881 case 2:
882 nofs = noffset[1];
883 if (!offset[level - 1])
884 goto skip_partial;
885 err = truncate_partial_nodes(&dn, ri, offset, level);
886 if (err < 0 && err != -ENOENT)
887 goto fail;
888 nofs += 1 + NIDS_PER_BLOCK;
889 break;
890 case 3:
891 nofs = 5 + 2 * NIDS_PER_BLOCK;
892 if (!offset[level - 1])
893 goto skip_partial;
894 err = truncate_partial_nodes(&dn, ri, offset, level);
895 if (err < 0 && err != -ENOENT)
896 goto fail;
897 break;
898 default:
899 BUG();
902 skip_partial:
903 while (cont) {
904 dn.nid = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
905 switch (offset[0]) {
906 case NODE_DIR1_BLOCK:
907 case NODE_DIR2_BLOCK:
908 err = truncate_dnode(&dn);
909 break;
911 case NODE_IND1_BLOCK:
912 case NODE_IND2_BLOCK:
913 err = truncate_nodes(&dn, nofs, offset[1], 2);
914 break;
916 case NODE_DIND_BLOCK:
917 err = truncate_nodes(&dn, nofs, offset[1], 3);
918 cont = 0;
919 break;
921 default:
922 BUG();
924 if (err < 0 && err != -ENOENT)
925 goto fail;
926 if (offset[1] == 0 &&
927 ri->i_nid[offset[0] - NODE_DIR1_BLOCK]) {
928 lock_page(page);
929 BUG_ON(page->mapping != NODE_MAPPING(sbi));
930 f2fs_wait_on_page_writeback(page, NODE, true);
931 ri->i_nid[offset[0] - NODE_DIR1_BLOCK] = 0;
932 set_page_dirty(page);
933 unlock_page(page);
935 offset[1] = 0;
936 offset[0]++;
937 nofs += err;
939 fail:
940 f2fs_put_page(page, 0);
941 trace_f2fs_truncate_inode_blocks_exit(inode, err);
942 return err > 0 ? 0 : err;
945 int truncate_xattr_node(struct inode *inode, struct page *page)
947 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
948 nid_t nid = F2FS_I(inode)->i_xattr_nid;
949 struct dnode_of_data dn;
950 struct page *npage;
952 if (!nid)
953 return 0;
955 npage = get_node_page(sbi, nid);
956 if (IS_ERR(npage))
957 return PTR_ERR(npage);
959 f2fs_i_xnid_write(inode, 0);
961 /* need to do checkpoint during fsync */
962 F2FS_I(inode)->xattr_ver = cur_cp_version(F2FS_CKPT(sbi));
964 set_new_dnode(&dn, inode, page, npage, nid);
966 if (page)
967 dn.inode_page_locked = true;
968 truncate_node(&dn);
969 return 0;
973 * Caller should grab and release a rwsem by calling f2fs_lock_op() and
974 * f2fs_unlock_op().
976 int remove_inode_page(struct inode *inode)
978 struct dnode_of_data dn;
979 int err;
981 set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
982 err = get_dnode_of_data(&dn, 0, LOOKUP_NODE);
983 if (err)
984 return err;
986 err = truncate_xattr_node(inode, dn.inode_page);
987 if (err) {
988 f2fs_put_dnode(&dn);
989 return err;
992 /* remove potential inline_data blocks */
993 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
994 S_ISLNK(inode->i_mode))
995 truncate_data_blocks_range(&dn, 1);
997 /* 0 is possible, after f2fs_new_inode() has failed */
998 f2fs_bug_on(F2FS_I_SB(inode),
999 inode->i_blocks != 0 && inode->i_blocks != 1);
1001 /* will put inode & node pages */
1002 truncate_node(&dn);
1003 return 0;
1006 struct page *new_inode_page(struct inode *inode)
1008 struct dnode_of_data dn;
1010 /* allocate inode page for new inode */
1011 set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
1013 /* caller should f2fs_put_page(page, 1); */
1014 return new_node_page(&dn, 0, NULL);
1017 struct page *new_node_page(struct dnode_of_data *dn,
1018 unsigned int ofs, struct page *ipage)
1020 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1021 struct node_info old_ni, new_ni;
1022 struct page *page;
1023 int err;
1025 if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1026 return ERR_PTR(-EPERM);
1028 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), dn->nid, false);
1029 if (!page)
1030 return ERR_PTR(-ENOMEM);
1032 if (unlikely(!inc_valid_node_count(sbi, dn->inode))) {
1033 err = -ENOSPC;
1034 goto fail;
1037 get_node_info(sbi, dn->nid, &old_ni);
1039 /* Reinitialize old_ni with new node page */
1040 f2fs_bug_on(sbi, old_ni.blk_addr != NULL_ADDR);
1041 new_ni = old_ni;
1042 new_ni.ino = dn->inode->i_ino;
1043 set_node_addr(sbi, &new_ni, NEW_ADDR, false);
1045 f2fs_wait_on_page_writeback(page, NODE, true);
1046 fill_node_footer(page, dn->nid, dn->inode->i_ino, ofs, true);
1047 set_cold_node(dn->inode, page);
1048 if (!PageUptodate(page))
1049 SetPageUptodate(page);
1050 if (set_page_dirty(page))
1051 dn->node_changed = true;
1053 if (f2fs_has_xattr_block(ofs))
1054 f2fs_i_xnid_write(dn->inode, dn->nid);
1056 if (ofs == 0)
1057 inc_valid_inode_count(sbi);
1058 return page;
1060 fail:
1061 clear_node_page_dirty(page);
1062 f2fs_put_page(page, 1);
1063 return ERR_PTR(err);
1067 * Caller should do after getting the following values.
1068 * 0: f2fs_put_page(page, 0)
1069 * LOCKED_PAGE or error: f2fs_put_page(page, 1)
1071 static int read_node_page(struct page *page, int op_flags)
1073 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1074 struct node_info ni;
1075 struct f2fs_io_info fio = {
1076 .sbi = sbi,
1077 .type = NODE,
1078 .op = REQ_OP_READ,
1079 .op_flags = op_flags,
1080 .page = page,
1081 .encrypted_page = NULL,
1084 if (PageUptodate(page))
1085 return LOCKED_PAGE;
1087 get_node_info(sbi, page->index, &ni);
1089 if (unlikely(ni.blk_addr == NULL_ADDR)) {
1090 ClearPageUptodate(page);
1091 return -ENOENT;
1094 fio.new_blkaddr = fio.old_blkaddr = ni.blk_addr;
1095 return f2fs_submit_page_bio(&fio);
1099 * Readahead a node page
1101 void ra_node_page(struct f2fs_sb_info *sbi, nid_t nid)
1103 struct page *apage;
1104 int err;
1106 if (!nid)
1107 return;
1108 f2fs_bug_on(sbi, check_nid_range(sbi, nid));
1110 rcu_read_lock();
1111 apage = radix_tree_lookup(&NODE_MAPPING(sbi)->page_tree, nid);
1112 rcu_read_unlock();
1113 if (apage)
1114 return;
1116 apage = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
1117 if (!apage)
1118 return;
1120 err = read_node_page(apage, REQ_RAHEAD);
1121 f2fs_put_page(apage, err ? 1 : 0);
1124 static struct page *__get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid,
1125 struct page *parent, int start)
1127 struct page *page;
1128 int err;
1130 if (!nid)
1131 return ERR_PTR(-ENOENT);
1132 f2fs_bug_on(sbi, check_nid_range(sbi, nid));
1133 repeat:
1134 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
1135 if (!page)
1136 return ERR_PTR(-ENOMEM);
1138 err = read_node_page(page, 0);
1139 if (err < 0) {
1140 f2fs_put_page(page, 1);
1141 return ERR_PTR(err);
1142 } else if (err == LOCKED_PAGE) {
1143 goto page_hit;
1146 if (parent)
1147 ra_node_pages(parent, start + 1, MAX_RA_NODE);
1149 lock_page(page);
1151 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1152 f2fs_put_page(page, 1);
1153 goto repeat;
1156 if (unlikely(!PageUptodate(page)))
1157 goto out_err;
1158 page_hit:
1159 if(unlikely(nid != nid_of_node(page))) {
1160 f2fs_bug_on(sbi, 1);
1161 ClearPageUptodate(page);
1162 out_err:
1163 f2fs_put_page(page, 1);
1164 return ERR_PTR(-EIO);
1166 return page;
1169 struct page *get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid)
1171 return __get_node_page(sbi, nid, NULL, 0);
1174 struct page *get_node_page_ra(struct page *parent, int start)
1176 struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
1177 nid_t nid = get_nid(parent, start, false);
1179 return __get_node_page(sbi, nid, parent, start);
1182 static void flush_inline_data(struct f2fs_sb_info *sbi, nid_t ino)
1184 struct inode *inode;
1185 struct page *page;
1186 int ret;
1188 /* should flush inline_data before evict_inode */
1189 inode = ilookup(sbi->sb, ino);
1190 if (!inode)
1191 return;
1193 page = pagecache_get_page(inode->i_mapping, 0, FGP_LOCK|FGP_NOWAIT, 0);
1194 if (!page)
1195 goto iput_out;
1197 if (!PageUptodate(page))
1198 goto page_out;
1200 if (!PageDirty(page))
1201 goto page_out;
1203 if (!clear_page_dirty_for_io(page))
1204 goto page_out;
1206 ret = f2fs_write_inline_data(inode, page);
1207 inode_dec_dirty_pages(inode);
1208 remove_dirty_inode(inode);
1209 if (ret)
1210 set_page_dirty(page);
1211 page_out:
1212 f2fs_put_page(page, 1);
1213 iput_out:
1214 iput(inode);
1217 void move_node_page(struct page *node_page, int gc_type)
1219 if (gc_type == FG_GC) {
1220 struct f2fs_sb_info *sbi = F2FS_P_SB(node_page);
1221 struct writeback_control wbc = {
1222 .sync_mode = WB_SYNC_ALL,
1223 .nr_to_write = 1,
1224 .for_reclaim = 0,
1227 set_page_dirty(node_page);
1228 f2fs_wait_on_page_writeback(node_page, NODE, true);
1230 f2fs_bug_on(sbi, PageWriteback(node_page));
1231 if (!clear_page_dirty_for_io(node_page))
1232 goto out_page;
1234 if (NODE_MAPPING(sbi)->a_ops->writepage(node_page, &wbc))
1235 unlock_page(node_page);
1236 goto release_page;
1237 } else {
1238 /* set page dirty and write it */
1239 if (!PageWriteback(node_page))
1240 set_page_dirty(node_page);
1242 out_page:
1243 unlock_page(node_page);
1244 release_page:
1245 f2fs_put_page(node_page, 0);
1248 static struct page *last_fsync_dnode(struct f2fs_sb_info *sbi, nid_t ino)
1250 pgoff_t index, end;
1251 struct pagevec pvec;
1252 struct page *last_page = NULL;
1254 pagevec_init(&pvec, 0);
1255 index = 0;
1256 end = ULONG_MAX;
1258 while (index <= end) {
1259 int i, nr_pages;
1260 nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1261 PAGECACHE_TAG_DIRTY,
1262 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1263 if (nr_pages == 0)
1264 break;
1266 for (i = 0; i < nr_pages; i++) {
1267 struct page *page = pvec.pages[i];
1269 if (unlikely(f2fs_cp_error(sbi))) {
1270 f2fs_put_page(last_page, 0);
1271 pagevec_release(&pvec);
1272 return ERR_PTR(-EIO);
1275 if (!IS_DNODE(page) || !is_cold_node(page))
1276 continue;
1277 if (ino_of_node(page) != ino)
1278 continue;
1280 lock_page(page);
1282 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1283 continue_unlock:
1284 unlock_page(page);
1285 continue;
1287 if (ino_of_node(page) != ino)
1288 goto continue_unlock;
1290 if (!PageDirty(page)) {
1291 /* someone wrote it for us */
1292 goto continue_unlock;
1295 if (last_page)
1296 f2fs_put_page(last_page, 0);
1298 get_page(page);
1299 last_page = page;
1300 unlock_page(page);
1302 pagevec_release(&pvec);
1303 cond_resched();
1305 return last_page;
1308 int fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
1309 struct writeback_control *wbc, bool atomic)
1311 pgoff_t index, end;
1312 struct pagevec pvec;
1313 int ret = 0;
1314 struct page *last_page = NULL;
1315 bool marked = false;
1316 nid_t ino = inode->i_ino;
1317 int nwritten = 0;
1319 if (atomic) {
1320 last_page = last_fsync_dnode(sbi, ino);
1321 if (IS_ERR_OR_NULL(last_page))
1322 return PTR_ERR_OR_ZERO(last_page);
1324 retry:
1325 pagevec_init(&pvec, 0);
1326 index = 0;
1327 end = ULONG_MAX;
1329 while (index <= end) {
1330 int i, nr_pages;
1331 nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1332 PAGECACHE_TAG_DIRTY,
1333 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1334 if (nr_pages == 0)
1335 break;
1337 for (i = 0; i < nr_pages; i++) {
1338 struct page *page = pvec.pages[i];
1340 if (unlikely(f2fs_cp_error(sbi))) {
1341 f2fs_put_page(last_page, 0);
1342 pagevec_release(&pvec);
1343 ret = -EIO;
1344 goto out;
1347 if (!IS_DNODE(page) || !is_cold_node(page))
1348 continue;
1349 if (ino_of_node(page) != ino)
1350 continue;
1352 lock_page(page);
1354 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1355 continue_unlock:
1356 unlock_page(page);
1357 continue;
1359 if (ino_of_node(page) != ino)
1360 goto continue_unlock;
1362 if (!PageDirty(page) && page != last_page) {
1363 /* someone wrote it for us */
1364 goto continue_unlock;
1367 f2fs_wait_on_page_writeback(page, NODE, true);
1368 BUG_ON(PageWriteback(page));
1370 if (!atomic || page == last_page) {
1371 set_fsync_mark(page, 1);
1372 if (IS_INODE(page)) {
1373 if (is_inode_flag_set(inode,
1374 FI_DIRTY_INODE))
1375 update_inode(inode, page);
1376 set_dentry_mark(page,
1377 need_dentry_mark(sbi, ino));
1379 /* may be written by other thread */
1380 if (!PageDirty(page))
1381 set_page_dirty(page);
1384 if (!clear_page_dirty_for_io(page))
1385 goto continue_unlock;
1387 ret = NODE_MAPPING(sbi)->a_ops->writepage(page, wbc);
1388 if (ret) {
1389 unlock_page(page);
1390 f2fs_put_page(last_page, 0);
1391 break;
1392 } else {
1393 nwritten++;
1396 if (page == last_page) {
1397 f2fs_put_page(page, 0);
1398 marked = true;
1399 break;
1402 pagevec_release(&pvec);
1403 cond_resched();
1405 if (ret || marked)
1406 break;
1408 if (!ret && atomic && !marked) {
1409 f2fs_msg(sbi->sb, KERN_DEBUG,
1410 "Retry to write fsync mark: ino=%u, idx=%lx",
1411 ino, last_page->index);
1412 lock_page(last_page);
1413 f2fs_wait_on_page_writeback(last_page, NODE, true);
1414 set_page_dirty(last_page);
1415 unlock_page(last_page);
1416 goto retry;
1418 out:
1419 if (nwritten)
1420 f2fs_submit_merged_bio_cond(sbi, NULL, NULL, ino, NODE, WRITE);
1421 return ret ? -EIO: 0;
1424 int sync_node_pages(struct f2fs_sb_info *sbi, struct writeback_control *wbc)
1426 pgoff_t index, end;
1427 struct pagevec pvec;
1428 int step = 0;
1429 int nwritten = 0;
1430 int ret = 0;
1432 pagevec_init(&pvec, 0);
1434 next_step:
1435 index = 0;
1436 end = ULONG_MAX;
1438 while (index <= end) {
1439 int i, nr_pages;
1440 nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1441 PAGECACHE_TAG_DIRTY,
1442 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1443 if (nr_pages == 0)
1444 break;
1446 for (i = 0; i < nr_pages; i++) {
1447 struct page *page = pvec.pages[i];
1449 if (unlikely(f2fs_cp_error(sbi))) {
1450 pagevec_release(&pvec);
1451 ret = -EIO;
1452 goto out;
1456 * flushing sequence with step:
1457 * 0. indirect nodes
1458 * 1. dentry dnodes
1459 * 2. file dnodes
1461 if (step == 0 && IS_DNODE(page))
1462 continue;
1463 if (step == 1 && (!IS_DNODE(page) ||
1464 is_cold_node(page)))
1465 continue;
1466 if (step == 2 && (!IS_DNODE(page) ||
1467 !is_cold_node(page)))
1468 continue;
1469 lock_node:
1470 if (!trylock_page(page))
1471 continue;
1473 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1474 continue_unlock:
1475 unlock_page(page);
1476 continue;
1479 if (!PageDirty(page)) {
1480 /* someone wrote it for us */
1481 goto continue_unlock;
1484 /* flush inline_data */
1485 if (is_inline_node(page)) {
1486 clear_inline_node(page);
1487 unlock_page(page);
1488 flush_inline_data(sbi, ino_of_node(page));
1489 goto lock_node;
1492 f2fs_wait_on_page_writeback(page, NODE, true);
1494 BUG_ON(PageWriteback(page));
1495 if (!clear_page_dirty_for_io(page))
1496 goto continue_unlock;
1498 set_fsync_mark(page, 0);
1499 set_dentry_mark(page, 0);
1501 if (NODE_MAPPING(sbi)->a_ops->writepage(page, wbc))
1502 unlock_page(page);
1503 else
1504 nwritten++;
1506 if (--wbc->nr_to_write == 0)
1507 break;
1509 pagevec_release(&pvec);
1510 cond_resched();
1512 if (wbc->nr_to_write == 0) {
1513 step = 2;
1514 break;
1518 if (step < 2) {
1519 step++;
1520 goto next_step;
1522 out:
1523 if (nwritten)
1524 f2fs_submit_merged_bio(sbi, NODE, WRITE);
1525 return ret;
1528 int wait_on_node_pages_writeback(struct f2fs_sb_info *sbi, nid_t ino)
1530 pgoff_t index = 0, end = ULONG_MAX;
1531 struct pagevec pvec;
1532 int ret2, ret = 0;
1534 pagevec_init(&pvec, 0);
1536 while (index <= end) {
1537 int i, nr_pages;
1538 nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1539 PAGECACHE_TAG_WRITEBACK,
1540 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1541 if (nr_pages == 0)
1542 break;
1544 for (i = 0; i < nr_pages; i++) {
1545 struct page *page = pvec.pages[i];
1547 /* until radix tree lookup accepts end_index */
1548 if (unlikely(page->index > end))
1549 continue;
1551 if (ino && ino_of_node(page) == ino) {
1552 f2fs_wait_on_page_writeback(page, NODE, true);
1553 if (TestClearPageError(page))
1554 ret = -EIO;
1557 pagevec_release(&pvec);
1558 cond_resched();
1561 ret2 = filemap_check_errors(NODE_MAPPING(sbi));
1562 if (!ret)
1563 ret = ret2;
1564 return ret;
1567 static int f2fs_write_node_page(struct page *page,
1568 struct writeback_control *wbc)
1570 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1571 nid_t nid;
1572 struct node_info ni;
1573 struct f2fs_io_info fio = {
1574 .sbi = sbi,
1575 .type = NODE,
1576 .op = REQ_OP_WRITE,
1577 .op_flags = wbc_to_write_flags(wbc),
1578 .page = page,
1579 .encrypted_page = NULL,
1582 trace_f2fs_writepage(page, NODE);
1584 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1585 goto redirty_out;
1586 if (unlikely(f2fs_cp_error(sbi)))
1587 goto redirty_out;
1589 /* get old block addr of this node page */
1590 nid = nid_of_node(page);
1591 f2fs_bug_on(sbi, page->index != nid);
1593 if (wbc->for_reclaim) {
1594 if (!down_read_trylock(&sbi->node_write))
1595 goto redirty_out;
1596 } else {
1597 down_read(&sbi->node_write);
1600 get_node_info(sbi, nid, &ni);
1602 /* This page is already truncated */
1603 if (unlikely(ni.blk_addr == NULL_ADDR)) {
1604 ClearPageUptodate(page);
1605 dec_page_count(sbi, F2FS_DIRTY_NODES);
1606 up_read(&sbi->node_write);
1607 unlock_page(page);
1608 return 0;
1611 set_page_writeback(page);
1612 fio.old_blkaddr = ni.blk_addr;
1613 write_node_page(nid, &fio);
1614 set_node_addr(sbi, &ni, fio.new_blkaddr, is_fsync_dnode(page));
1615 dec_page_count(sbi, F2FS_DIRTY_NODES);
1616 up_read(&sbi->node_write);
1618 if (wbc->for_reclaim)
1619 f2fs_submit_merged_bio_cond(sbi, NULL, page, 0, NODE, WRITE);
1621 unlock_page(page);
1623 if (unlikely(f2fs_cp_error(sbi)))
1624 f2fs_submit_merged_bio(sbi, NODE, WRITE);
1626 return 0;
1628 redirty_out:
1629 redirty_page_for_writepage(wbc, page);
1630 return AOP_WRITEPAGE_ACTIVATE;
1633 static int f2fs_write_node_pages(struct address_space *mapping,
1634 struct writeback_control *wbc)
1636 struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
1637 struct blk_plug plug;
1638 long diff;
1640 /* balancing f2fs's metadata in background */
1641 f2fs_balance_fs_bg(sbi);
1643 /* collect a number of dirty node pages and write together */
1644 if (get_pages(sbi, F2FS_DIRTY_NODES) < nr_pages_to_skip(sbi, NODE))
1645 goto skip_write;
1647 trace_f2fs_writepages(mapping->host, wbc, NODE);
1649 diff = nr_pages_to_write(sbi, NODE, wbc);
1650 wbc->sync_mode = WB_SYNC_NONE;
1651 blk_start_plug(&plug);
1652 sync_node_pages(sbi, wbc);
1653 blk_finish_plug(&plug);
1654 wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff);
1655 return 0;
1657 skip_write:
1658 wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_NODES);
1659 trace_f2fs_writepages(mapping->host, wbc, NODE);
1660 return 0;
1663 static int f2fs_set_node_page_dirty(struct page *page)
1665 trace_f2fs_set_page_dirty(page, NODE);
1667 if (!PageUptodate(page))
1668 SetPageUptodate(page);
1669 if (!PageDirty(page)) {
1670 f2fs_set_page_dirty_nobuffers(page);
1671 inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES);
1672 SetPagePrivate(page);
1673 f2fs_trace_pid(page);
1674 return 1;
1676 return 0;
1680 * Structure of the f2fs node operations
1682 const struct address_space_operations f2fs_node_aops = {
1683 .writepage = f2fs_write_node_page,
1684 .writepages = f2fs_write_node_pages,
1685 .set_page_dirty = f2fs_set_node_page_dirty,
1686 .invalidatepage = f2fs_invalidate_page,
1687 .releasepage = f2fs_release_page,
1688 #ifdef CONFIG_MIGRATION
1689 .migratepage = f2fs_migrate_page,
1690 #endif
1693 static struct free_nid *__lookup_free_nid_list(struct f2fs_nm_info *nm_i,
1694 nid_t n)
1696 return radix_tree_lookup(&nm_i->free_nid_root, n);
1699 static int __insert_nid_to_list(struct f2fs_sb_info *sbi,
1700 struct free_nid *i, enum nid_list list, bool new)
1702 struct f2fs_nm_info *nm_i = NM_I(sbi);
1704 if (new) {
1705 int err = radix_tree_insert(&nm_i->free_nid_root, i->nid, i);
1706 if (err)
1707 return err;
1710 f2fs_bug_on(sbi, list == FREE_NID_LIST ? i->state != NID_NEW :
1711 i->state != NID_ALLOC);
1712 nm_i->nid_cnt[list]++;
1713 list_add_tail(&i->list, &nm_i->nid_list[list]);
1714 return 0;
1717 static void __remove_nid_from_list(struct f2fs_sb_info *sbi,
1718 struct free_nid *i, enum nid_list list, bool reuse)
1720 struct f2fs_nm_info *nm_i = NM_I(sbi);
1722 f2fs_bug_on(sbi, list == FREE_NID_LIST ? i->state != NID_NEW :
1723 i->state != NID_ALLOC);
1724 nm_i->nid_cnt[list]--;
1725 list_del(&i->list);
1726 if (!reuse)
1727 radix_tree_delete(&nm_i->free_nid_root, i->nid);
1730 static int add_free_nid(struct f2fs_sb_info *sbi, nid_t nid, bool build)
1732 struct f2fs_nm_info *nm_i = NM_I(sbi);
1733 struct free_nid *i;
1734 struct nat_entry *ne;
1735 int err;
1737 /* 0 nid should not be used */
1738 if (unlikely(nid == 0))
1739 return 0;
1741 if (build) {
1742 /* do not add allocated nids */
1743 ne = __lookup_nat_cache(nm_i, nid);
1744 if (ne && (!get_nat_flag(ne, IS_CHECKPOINTED) ||
1745 nat_get_blkaddr(ne) != NULL_ADDR))
1746 return 0;
1749 i = f2fs_kmem_cache_alloc(free_nid_slab, GFP_NOFS);
1750 i->nid = nid;
1751 i->state = NID_NEW;
1753 if (radix_tree_preload(GFP_NOFS)) {
1754 kmem_cache_free(free_nid_slab, i);
1755 return 0;
1758 spin_lock(&nm_i->nid_list_lock);
1759 err = __insert_nid_to_list(sbi, i, FREE_NID_LIST, true);
1760 spin_unlock(&nm_i->nid_list_lock);
1761 radix_tree_preload_end();
1762 if (err) {
1763 kmem_cache_free(free_nid_slab, i);
1764 return 0;
1766 return 1;
1769 static void remove_free_nid(struct f2fs_sb_info *sbi, nid_t nid)
1771 struct f2fs_nm_info *nm_i = NM_I(sbi);
1772 struct free_nid *i;
1773 bool need_free = false;
1775 spin_lock(&nm_i->nid_list_lock);
1776 i = __lookup_free_nid_list(nm_i, nid);
1777 if (i && i->state == NID_NEW) {
1778 __remove_nid_from_list(sbi, i, FREE_NID_LIST, false);
1779 need_free = true;
1781 spin_unlock(&nm_i->nid_list_lock);
1783 if (need_free)
1784 kmem_cache_free(free_nid_slab, i);
1787 static void scan_nat_page(struct f2fs_sb_info *sbi,
1788 struct page *nat_page, nid_t start_nid)
1790 struct f2fs_nm_info *nm_i = NM_I(sbi);
1791 struct f2fs_nat_block *nat_blk = page_address(nat_page);
1792 block_t blk_addr;
1793 int i;
1795 i = start_nid % NAT_ENTRY_PER_BLOCK;
1797 for (; i < NAT_ENTRY_PER_BLOCK; i++, start_nid++) {
1799 if (unlikely(start_nid >= nm_i->max_nid))
1800 break;
1802 blk_addr = le32_to_cpu(nat_blk->entries[i].block_addr);
1803 f2fs_bug_on(sbi, blk_addr == NEW_ADDR);
1804 if (blk_addr == NULL_ADDR)
1805 add_free_nid(sbi, start_nid, true);
1809 static void __build_free_nids(struct f2fs_sb_info *sbi, bool sync)
1811 struct f2fs_nm_info *nm_i = NM_I(sbi);
1812 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
1813 struct f2fs_journal *journal = curseg->journal;
1814 int i = 0;
1815 nid_t nid = nm_i->next_scan_nid;
1817 /* Enough entries */
1818 if (nm_i->nid_cnt[FREE_NID_LIST] >= NAT_ENTRY_PER_BLOCK)
1819 return;
1821 if (!sync && !available_free_memory(sbi, FREE_NIDS))
1822 return;
1824 /* readahead nat pages to be scanned */
1825 ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), FREE_NID_PAGES,
1826 META_NAT, true);
1828 down_read(&nm_i->nat_tree_lock);
1830 while (1) {
1831 struct page *page = get_current_nat_page(sbi, nid);
1833 scan_nat_page(sbi, page, nid);
1834 f2fs_put_page(page, 1);
1836 nid += (NAT_ENTRY_PER_BLOCK - (nid % NAT_ENTRY_PER_BLOCK));
1837 if (unlikely(nid >= nm_i->max_nid))
1838 nid = 0;
1840 if (++i >= FREE_NID_PAGES)
1841 break;
1844 /* go to the next free nat pages to find free nids abundantly */
1845 nm_i->next_scan_nid = nid;
1847 /* find free nids from current sum_pages */
1848 down_read(&curseg->journal_rwsem);
1849 for (i = 0; i < nats_in_cursum(journal); i++) {
1850 block_t addr;
1852 addr = le32_to_cpu(nat_in_journal(journal, i).block_addr);
1853 nid = le32_to_cpu(nid_in_journal(journal, i));
1854 if (addr == NULL_ADDR)
1855 add_free_nid(sbi, nid, true);
1856 else
1857 remove_free_nid(sbi, nid);
1859 up_read(&curseg->journal_rwsem);
1860 up_read(&nm_i->nat_tree_lock);
1862 ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nm_i->next_scan_nid),
1863 nm_i->ra_nid_pages, META_NAT, false);
1866 void build_free_nids(struct f2fs_sb_info *sbi, bool sync)
1868 mutex_lock(&NM_I(sbi)->build_lock);
1869 __build_free_nids(sbi, sync);
1870 mutex_unlock(&NM_I(sbi)->build_lock);
1874 * If this function returns success, caller can obtain a new nid
1875 * from second parameter of this function.
1876 * The returned nid could be used ino as well as nid when inode is created.
1878 bool alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid)
1880 struct f2fs_nm_info *nm_i = NM_I(sbi);
1881 struct free_nid *i = NULL;
1882 retry:
1883 #ifdef CONFIG_F2FS_FAULT_INJECTION
1884 if (time_to_inject(sbi, FAULT_ALLOC_NID))
1885 return false;
1886 #endif
1887 spin_lock(&nm_i->nid_list_lock);
1889 if (unlikely(nm_i->available_nids == 0)) {
1890 spin_unlock(&nm_i->nid_list_lock);
1891 return false;
1894 /* We should not use stale free nids created by build_free_nids */
1895 if (nm_i->nid_cnt[FREE_NID_LIST] && !on_build_free_nids(nm_i)) {
1896 f2fs_bug_on(sbi, list_empty(&nm_i->nid_list[FREE_NID_LIST]));
1897 i = list_first_entry(&nm_i->nid_list[FREE_NID_LIST],
1898 struct free_nid, list);
1899 *nid = i->nid;
1901 __remove_nid_from_list(sbi, i, FREE_NID_LIST, true);
1902 i->state = NID_ALLOC;
1903 __insert_nid_to_list(sbi, i, ALLOC_NID_LIST, false);
1904 nm_i->available_nids--;
1905 spin_unlock(&nm_i->nid_list_lock);
1906 return true;
1908 spin_unlock(&nm_i->nid_list_lock);
1910 /* Let's scan nat pages and its caches to get free nids */
1911 build_free_nids(sbi, true);
1912 goto retry;
1916 * alloc_nid() should be called prior to this function.
1918 void alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid)
1920 struct f2fs_nm_info *nm_i = NM_I(sbi);
1921 struct free_nid *i;
1923 spin_lock(&nm_i->nid_list_lock);
1924 i = __lookup_free_nid_list(nm_i, nid);
1925 f2fs_bug_on(sbi, !i);
1926 __remove_nid_from_list(sbi, i, ALLOC_NID_LIST, false);
1927 spin_unlock(&nm_i->nid_list_lock);
1929 kmem_cache_free(free_nid_slab, i);
1933 * alloc_nid() should be called prior to this function.
1935 void alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid)
1937 struct f2fs_nm_info *nm_i = NM_I(sbi);
1938 struct free_nid *i;
1939 bool need_free = false;
1941 if (!nid)
1942 return;
1944 spin_lock(&nm_i->nid_list_lock);
1945 i = __lookup_free_nid_list(nm_i, nid);
1946 f2fs_bug_on(sbi, !i);
1948 if (!available_free_memory(sbi, FREE_NIDS)) {
1949 __remove_nid_from_list(sbi, i, ALLOC_NID_LIST, false);
1950 need_free = true;
1951 } else {
1952 __remove_nid_from_list(sbi, i, ALLOC_NID_LIST, true);
1953 i->state = NID_NEW;
1954 __insert_nid_to_list(sbi, i, FREE_NID_LIST, false);
1957 nm_i->available_nids++;
1959 spin_unlock(&nm_i->nid_list_lock);
1961 if (need_free)
1962 kmem_cache_free(free_nid_slab, i);
1965 int try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink)
1967 struct f2fs_nm_info *nm_i = NM_I(sbi);
1968 struct free_nid *i, *next;
1969 int nr = nr_shrink;
1971 if (nm_i->nid_cnt[FREE_NID_LIST] <= MAX_FREE_NIDS)
1972 return 0;
1974 if (!mutex_trylock(&nm_i->build_lock))
1975 return 0;
1977 spin_lock(&nm_i->nid_list_lock);
1978 list_for_each_entry_safe(i, next, &nm_i->nid_list[FREE_NID_LIST],
1979 list) {
1980 if (nr_shrink <= 0 ||
1981 nm_i->nid_cnt[FREE_NID_LIST] <= MAX_FREE_NIDS)
1982 break;
1984 __remove_nid_from_list(sbi, i, FREE_NID_LIST, false);
1985 kmem_cache_free(free_nid_slab, i);
1986 nr_shrink--;
1988 spin_unlock(&nm_i->nid_list_lock);
1989 mutex_unlock(&nm_i->build_lock);
1991 return nr - nr_shrink;
1994 void recover_inline_xattr(struct inode *inode, struct page *page)
1996 void *src_addr, *dst_addr;
1997 size_t inline_size;
1998 struct page *ipage;
1999 struct f2fs_inode *ri;
2001 ipage = get_node_page(F2FS_I_SB(inode), inode->i_ino);
2002 f2fs_bug_on(F2FS_I_SB(inode), IS_ERR(ipage));
2004 ri = F2FS_INODE(page);
2005 if (!(ri->i_inline & F2FS_INLINE_XATTR)) {
2006 clear_inode_flag(inode, FI_INLINE_XATTR);
2007 goto update_inode;
2010 dst_addr = inline_xattr_addr(ipage);
2011 src_addr = inline_xattr_addr(page);
2012 inline_size = inline_xattr_size(inode);
2014 f2fs_wait_on_page_writeback(ipage, NODE, true);
2015 memcpy(dst_addr, src_addr, inline_size);
2016 update_inode:
2017 update_inode(inode, ipage);
2018 f2fs_put_page(ipage, 1);
2021 void recover_xattr_data(struct inode *inode, struct page *page, block_t blkaddr)
2023 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2024 nid_t prev_xnid = F2FS_I(inode)->i_xattr_nid;
2025 nid_t new_xnid = nid_of_node(page);
2026 struct node_info ni;
2028 /* 1: invalidate the previous xattr nid */
2029 if (!prev_xnid)
2030 goto recover_xnid;
2032 /* Deallocate node address */
2033 get_node_info(sbi, prev_xnid, &ni);
2034 f2fs_bug_on(sbi, ni.blk_addr == NULL_ADDR);
2035 invalidate_blocks(sbi, ni.blk_addr);
2036 dec_valid_node_count(sbi, inode);
2037 set_node_addr(sbi, &ni, NULL_ADDR, false);
2039 recover_xnid:
2040 /* 2: allocate new xattr nid */
2041 if (unlikely(!inc_valid_node_count(sbi, inode)))
2042 f2fs_bug_on(sbi, 1);
2044 remove_free_nid(sbi, new_xnid);
2045 get_node_info(sbi, new_xnid, &ni);
2046 ni.ino = inode->i_ino;
2047 set_node_addr(sbi, &ni, NEW_ADDR, false);
2048 f2fs_i_xnid_write(inode, new_xnid);
2050 /* 3: update xattr blkaddr */
2051 refresh_sit_entry(sbi, NEW_ADDR, blkaddr);
2052 set_node_addr(sbi, &ni, blkaddr, false);
2055 int recover_inode_page(struct f2fs_sb_info *sbi, struct page *page)
2057 struct f2fs_inode *src, *dst;
2058 nid_t ino = ino_of_node(page);
2059 struct node_info old_ni, new_ni;
2060 struct page *ipage;
2062 get_node_info(sbi, ino, &old_ni);
2064 if (unlikely(old_ni.blk_addr != NULL_ADDR))
2065 return -EINVAL;
2066 retry:
2067 ipage = f2fs_grab_cache_page(NODE_MAPPING(sbi), ino, false);
2068 if (!ipage) {
2069 congestion_wait(BLK_RW_ASYNC, HZ/50);
2070 goto retry;
2073 /* Should not use this inode from free nid list */
2074 remove_free_nid(sbi, ino);
2076 if (!PageUptodate(ipage))
2077 SetPageUptodate(ipage);
2078 fill_node_footer(ipage, ino, ino, 0, true);
2080 src = F2FS_INODE(page);
2081 dst = F2FS_INODE(ipage);
2083 memcpy(dst, src, (unsigned long)&src->i_ext - (unsigned long)src);
2084 dst->i_size = 0;
2085 dst->i_blocks = cpu_to_le64(1);
2086 dst->i_links = cpu_to_le32(1);
2087 dst->i_xattr_nid = 0;
2088 dst->i_inline = src->i_inline & F2FS_INLINE_XATTR;
2090 new_ni = old_ni;
2091 new_ni.ino = ino;
2093 if (unlikely(!inc_valid_node_count(sbi, NULL)))
2094 WARN_ON(1);
2095 set_node_addr(sbi, &new_ni, NEW_ADDR, false);
2096 inc_valid_inode_count(sbi);
2097 set_page_dirty(ipage);
2098 f2fs_put_page(ipage, 1);
2099 return 0;
2102 int restore_node_summary(struct f2fs_sb_info *sbi,
2103 unsigned int segno, struct f2fs_summary_block *sum)
2105 struct f2fs_node *rn;
2106 struct f2fs_summary *sum_entry;
2107 block_t addr;
2108 int i, idx, last_offset, nrpages;
2110 /* scan the node segment */
2111 last_offset = sbi->blocks_per_seg;
2112 addr = START_BLOCK(sbi, segno);
2113 sum_entry = &sum->entries[0];
2115 for (i = 0; i < last_offset; i += nrpages, addr += nrpages) {
2116 nrpages = min(last_offset - i, BIO_MAX_PAGES);
2118 /* readahead node pages */
2119 ra_meta_pages(sbi, addr, nrpages, META_POR, true);
2121 for (idx = addr; idx < addr + nrpages; idx++) {
2122 struct page *page = get_tmp_page(sbi, idx);
2124 rn = F2FS_NODE(page);
2125 sum_entry->nid = rn->footer.nid;
2126 sum_entry->version = 0;
2127 sum_entry->ofs_in_node = 0;
2128 sum_entry++;
2129 f2fs_put_page(page, 1);
2132 invalidate_mapping_pages(META_MAPPING(sbi), addr,
2133 addr + nrpages);
2135 return 0;
2138 static void remove_nats_in_journal(struct f2fs_sb_info *sbi)
2140 struct f2fs_nm_info *nm_i = NM_I(sbi);
2141 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2142 struct f2fs_journal *journal = curseg->journal;
2143 int i;
2145 down_write(&curseg->journal_rwsem);
2146 for (i = 0; i < nats_in_cursum(journal); i++) {
2147 struct nat_entry *ne;
2148 struct f2fs_nat_entry raw_ne;
2149 nid_t nid = le32_to_cpu(nid_in_journal(journal, i));
2151 raw_ne = nat_in_journal(journal, i);
2153 ne = __lookup_nat_cache(nm_i, nid);
2154 if (!ne) {
2155 ne = grab_nat_entry(nm_i, nid);
2156 node_info_from_raw_nat(&ne->ni, &raw_ne);
2160 * if a free nat in journal has not been used after last
2161 * checkpoint, we should remove it from available nids,
2162 * since later we will add it again.
2164 if (!get_nat_flag(ne, IS_DIRTY) &&
2165 le32_to_cpu(raw_ne.block_addr) == NULL_ADDR) {
2166 spin_lock(&nm_i->nid_list_lock);
2167 nm_i->available_nids--;
2168 spin_unlock(&nm_i->nid_list_lock);
2171 __set_nat_cache_dirty(nm_i, ne);
2173 update_nats_in_cursum(journal, -i);
2174 up_write(&curseg->journal_rwsem);
2177 static void __adjust_nat_entry_set(struct nat_entry_set *nes,
2178 struct list_head *head, int max)
2180 struct nat_entry_set *cur;
2182 if (nes->entry_cnt >= max)
2183 goto add_out;
2185 list_for_each_entry(cur, head, set_list) {
2186 if (cur->entry_cnt >= nes->entry_cnt) {
2187 list_add(&nes->set_list, cur->set_list.prev);
2188 return;
2191 add_out:
2192 list_add_tail(&nes->set_list, head);
2195 static void __flush_nat_entry_set(struct f2fs_sb_info *sbi,
2196 struct nat_entry_set *set)
2198 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2199 struct f2fs_journal *journal = curseg->journal;
2200 nid_t start_nid = set->set * NAT_ENTRY_PER_BLOCK;
2201 bool to_journal = true;
2202 struct f2fs_nat_block *nat_blk;
2203 struct nat_entry *ne, *cur;
2204 struct page *page = NULL;
2207 * there are two steps to flush nat entries:
2208 * #1, flush nat entries to journal in current hot data summary block.
2209 * #2, flush nat entries to nat page.
2211 if (!__has_cursum_space(journal, set->entry_cnt, NAT_JOURNAL))
2212 to_journal = false;
2214 if (to_journal) {
2215 down_write(&curseg->journal_rwsem);
2216 } else {
2217 page = get_next_nat_page(sbi, start_nid);
2218 nat_blk = page_address(page);
2219 f2fs_bug_on(sbi, !nat_blk);
2222 /* flush dirty nats in nat entry set */
2223 list_for_each_entry_safe(ne, cur, &set->entry_list, list) {
2224 struct f2fs_nat_entry *raw_ne;
2225 nid_t nid = nat_get_nid(ne);
2226 int offset;
2228 if (nat_get_blkaddr(ne) == NEW_ADDR)
2229 continue;
2231 if (to_journal) {
2232 offset = lookup_journal_in_cursum(journal,
2233 NAT_JOURNAL, nid, 1);
2234 f2fs_bug_on(sbi, offset < 0);
2235 raw_ne = &nat_in_journal(journal, offset);
2236 nid_in_journal(journal, offset) = cpu_to_le32(nid);
2237 } else {
2238 raw_ne = &nat_blk->entries[nid - start_nid];
2240 raw_nat_from_node_info(raw_ne, &ne->ni);
2241 nat_reset_flag(ne);
2242 __clear_nat_cache_dirty(NM_I(sbi), ne);
2243 if (nat_get_blkaddr(ne) == NULL_ADDR) {
2244 add_free_nid(sbi, nid, false);
2245 spin_lock(&NM_I(sbi)->nid_list_lock);
2246 NM_I(sbi)->available_nids++;
2247 spin_unlock(&NM_I(sbi)->nid_list_lock);
2251 if (to_journal)
2252 up_write(&curseg->journal_rwsem);
2253 else
2254 f2fs_put_page(page, 1);
2256 f2fs_bug_on(sbi, set->entry_cnt);
2258 radix_tree_delete(&NM_I(sbi)->nat_set_root, set->set);
2259 kmem_cache_free(nat_entry_set_slab, set);
2263 * This function is called during the checkpointing process.
2265 void flush_nat_entries(struct f2fs_sb_info *sbi)
2267 struct f2fs_nm_info *nm_i = NM_I(sbi);
2268 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2269 struct f2fs_journal *journal = curseg->journal;
2270 struct nat_entry_set *setvec[SETVEC_SIZE];
2271 struct nat_entry_set *set, *tmp;
2272 unsigned int found;
2273 nid_t set_idx = 0;
2274 LIST_HEAD(sets);
2276 if (!nm_i->dirty_nat_cnt)
2277 return;
2279 down_write(&nm_i->nat_tree_lock);
2282 * if there are no enough space in journal to store dirty nat
2283 * entries, remove all entries from journal and merge them
2284 * into nat entry set.
2286 if (!__has_cursum_space(journal, nm_i->dirty_nat_cnt, NAT_JOURNAL))
2287 remove_nats_in_journal(sbi);
2289 while ((found = __gang_lookup_nat_set(nm_i,
2290 set_idx, SETVEC_SIZE, setvec))) {
2291 unsigned idx;
2292 set_idx = setvec[found - 1]->set + 1;
2293 for (idx = 0; idx < found; idx++)
2294 __adjust_nat_entry_set(setvec[idx], &sets,
2295 MAX_NAT_JENTRIES(journal));
2298 /* flush dirty nats in nat entry set */
2299 list_for_each_entry_safe(set, tmp, &sets, set_list)
2300 __flush_nat_entry_set(sbi, set);
2302 up_write(&nm_i->nat_tree_lock);
2304 f2fs_bug_on(sbi, nm_i->dirty_nat_cnt);
2307 static int init_node_manager(struct f2fs_sb_info *sbi)
2309 struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi);
2310 struct f2fs_nm_info *nm_i = NM_I(sbi);
2311 unsigned char *version_bitmap;
2312 unsigned int nat_segs, nat_blocks;
2314 nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr);
2316 /* segment_count_nat includes pair segment so divide to 2. */
2317 nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1;
2318 nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg);
2320 nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nat_blocks;
2322 /* not used nids: 0, node, meta, (and root counted as valid node) */
2323 nm_i->available_nids = nm_i->max_nid - sbi->total_valid_node_count -
2324 F2FS_RESERVED_NODE_NUM;
2325 nm_i->nid_cnt[FREE_NID_LIST] = 0;
2326 nm_i->nid_cnt[ALLOC_NID_LIST] = 0;
2327 nm_i->nat_cnt = 0;
2328 nm_i->ram_thresh = DEF_RAM_THRESHOLD;
2329 nm_i->ra_nid_pages = DEF_RA_NID_PAGES;
2330 nm_i->dirty_nats_ratio = DEF_DIRTY_NAT_RATIO_THRESHOLD;
2332 INIT_RADIX_TREE(&nm_i->free_nid_root, GFP_ATOMIC);
2333 INIT_LIST_HEAD(&nm_i->nid_list[FREE_NID_LIST]);
2334 INIT_LIST_HEAD(&nm_i->nid_list[ALLOC_NID_LIST]);
2335 INIT_RADIX_TREE(&nm_i->nat_root, GFP_NOIO);
2336 INIT_RADIX_TREE(&nm_i->nat_set_root, GFP_NOIO);
2337 INIT_LIST_HEAD(&nm_i->nat_entries);
2339 mutex_init(&nm_i->build_lock);
2340 spin_lock_init(&nm_i->nid_list_lock);
2341 init_rwsem(&nm_i->nat_tree_lock);
2343 nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid);
2344 nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP);
2345 version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP);
2346 if (!version_bitmap)
2347 return -EFAULT;
2349 nm_i->nat_bitmap = kmemdup(version_bitmap, nm_i->bitmap_size,
2350 GFP_KERNEL);
2351 if (!nm_i->nat_bitmap)
2352 return -ENOMEM;
2353 return 0;
2356 int build_node_manager(struct f2fs_sb_info *sbi)
2358 int err;
2360 sbi->nm_info = kzalloc(sizeof(struct f2fs_nm_info), GFP_KERNEL);
2361 if (!sbi->nm_info)
2362 return -ENOMEM;
2364 err = init_node_manager(sbi);
2365 if (err)
2366 return err;
2368 build_free_nids(sbi, true);
2369 return 0;
2372 void destroy_node_manager(struct f2fs_sb_info *sbi)
2374 struct f2fs_nm_info *nm_i = NM_I(sbi);
2375 struct free_nid *i, *next_i;
2376 struct nat_entry *natvec[NATVEC_SIZE];
2377 struct nat_entry_set *setvec[SETVEC_SIZE];
2378 nid_t nid = 0;
2379 unsigned int found;
2381 if (!nm_i)
2382 return;
2384 /* destroy free nid list */
2385 spin_lock(&nm_i->nid_list_lock);
2386 list_for_each_entry_safe(i, next_i, &nm_i->nid_list[FREE_NID_LIST],
2387 list) {
2388 __remove_nid_from_list(sbi, i, FREE_NID_LIST, false);
2389 spin_unlock(&nm_i->nid_list_lock);
2390 kmem_cache_free(free_nid_slab, i);
2391 spin_lock(&nm_i->nid_list_lock);
2393 f2fs_bug_on(sbi, nm_i->nid_cnt[FREE_NID_LIST]);
2394 f2fs_bug_on(sbi, nm_i->nid_cnt[ALLOC_NID_LIST]);
2395 f2fs_bug_on(sbi, !list_empty(&nm_i->nid_list[ALLOC_NID_LIST]));
2396 spin_unlock(&nm_i->nid_list_lock);
2398 /* destroy nat cache */
2399 down_write(&nm_i->nat_tree_lock);
2400 while ((found = __gang_lookup_nat_cache(nm_i,
2401 nid, NATVEC_SIZE, natvec))) {
2402 unsigned idx;
2404 nid = nat_get_nid(natvec[found - 1]) + 1;
2405 for (idx = 0; idx < found; idx++)
2406 __del_from_nat_cache(nm_i, natvec[idx]);
2408 f2fs_bug_on(sbi, nm_i->nat_cnt);
2410 /* destroy nat set cache */
2411 nid = 0;
2412 while ((found = __gang_lookup_nat_set(nm_i,
2413 nid, SETVEC_SIZE, setvec))) {
2414 unsigned idx;
2416 nid = setvec[found - 1]->set + 1;
2417 for (idx = 0; idx < found; idx++) {
2418 /* entry_cnt is not zero, when cp_error was occurred */
2419 f2fs_bug_on(sbi, !list_empty(&setvec[idx]->entry_list));
2420 radix_tree_delete(&nm_i->nat_set_root, setvec[idx]->set);
2421 kmem_cache_free(nat_entry_set_slab, setvec[idx]);
2424 up_write(&nm_i->nat_tree_lock);
2426 kfree(nm_i->nat_bitmap);
2427 sbi->nm_info = NULL;
2428 kfree(nm_i);
2431 int __init create_node_manager_caches(void)
2433 nat_entry_slab = f2fs_kmem_cache_create("nat_entry",
2434 sizeof(struct nat_entry));
2435 if (!nat_entry_slab)
2436 goto fail;
2438 free_nid_slab = f2fs_kmem_cache_create("free_nid",
2439 sizeof(struct free_nid));
2440 if (!free_nid_slab)
2441 goto destroy_nat_entry;
2443 nat_entry_set_slab = f2fs_kmem_cache_create("nat_entry_set",
2444 sizeof(struct nat_entry_set));
2445 if (!nat_entry_set_slab)
2446 goto destroy_free_nid;
2447 return 0;
2449 destroy_free_nid:
2450 kmem_cache_destroy(free_nid_slab);
2451 destroy_nat_entry:
2452 kmem_cache_destroy(nat_entry_slab);
2453 fail:
2454 return -ENOMEM;
2457 void destroy_node_manager_caches(void)
2459 kmem_cache_destroy(nat_entry_set_slab);
2460 kmem_cache_destroy(free_nid_slab);
2461 kmem_cache_destroy(nat_entry_slab);