2 * Generic hugetlb support.
3 * (C) Nadia Yvette Chambers, April 2004
5 #include <linux/list.h>
6 #include <linux/init.h>
7 #include <linux/module.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/cpuset.h>
17 #include <linux/mutex.h>
18 #include <linux/bootmem.h>
19 #include <linux/sysfs.h>
20 #include <linux/slab.h>
21 #include <linux/rmap.h>
22 #include <linux/swap.h>
23 #include <linux/swapops.h>
24 #include <linux/page-isolation.h>
25 #include <linux/jhash.h>
28 #include <asm/pgtable.h>
32 #include <linux/hugetlb.h>
33 #include <linux/hugetlb_cgroup.h>
34 #include <linux/node.h>
37 const unsigned long hugetlb_zero
= 0, hugetlb_infinity
= ~0UL;
38 unsigned long hugepages_treat_as_movable
;
40 int hugetlb_max_hstate __read_mostly
;
41 unsigned int default_hstate_idx
;
42 struct hstate hstates
[HUGE_MAX_HSTATE
];
44 __initdata
LIST_HEAD(huge_boot_pages
);
46 /* for command line parsing */
47 static struct hstate
* __initdata parsed_hstate
;
48 static unsigned long __initdata default_hstate_max_huge_pages
;
49 static unsigned long __initdata default_hstate_size
;
52 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
53 * free_huge_pages, and surplus_huge_pages.
55 DEFINE_SPINLOCK(hugetlb_lock
);
58 * Serializes faults on the same logical page. This is used to
59 * prevent spurious OOMs when the hugepage pool is fully utilized.
61 static int num_fault_mutexes
;
62 static struct mutex
*htlb_fault_mutex_table ____cacheline_aligned_in_smp
;
64 static inline void unlock_or_release_subpool(struct hugepage_subpool
*spool
)
66 bool free
= (spool
->count
== 0) && (spool
->used_hpages
== 0);
68 spin_unlock(&spool
->lock
);
70 /* If no pages are used, and no other handles to the subpool
71 * remain, free the subpool the subpool remain */
76 struct hugepage_subpool
*hugepage_new_subpool(long nr_blocks
)
78 struct hugepage_subpool
*spool
;
80 spool
= kmalloc(sizeof(*spool
), GFP_KERNEL
);
84 spin_lock_init(&spool
->lock
);
86 spool
->max_hpages
= nr_blocks
;
87 spool
->used_hpages
= 0;
92 void hugepage_put_subpool(struct hugepage_subpool
*spool
)
94 spin_lock(&spool
->lock
);
95 BUG_ON(!spool
->count
);
97 unlock_or_release_subpool(spool
);
100 static int hugepage_subpool_get_pages(struct hugepage_subpool
*spool
,
108 spin_lock(&spool
->lock
);
109 if ((spool
->used_hpages
+ delta
) <= spool
->max_hpages
) {
110 spool
->used_hpages
+= delta
;
114 spin_unlock(&spool
->lock
);
119 static void hugepage_subpool_put_pages(struct hugepage_subpool
*spool
,
125 spin_lock(&spool
->lock
);
126 spool
->used_hpages
-= delta
;
127 /* If hugetlbfs_put_super couldn't free spool due to
128 * an outstanding quota reference, free it now. */
129 unlock_or_release_subpool(spool
);
132 static inline struct hugepage_subpool
*subpool_inode(struct inode
*inode
)
134 return HUGETLBFS_SB(inode
->i_sb
)->spool
;
137 static inline struct hugepage_subpool
*subpool_vma(struct vm_area_struct
*vma
)
139 return subpool_inode(file_inode(vma
->vm_file
));
143 * Region tracking -- allows tracking of reservations and instantiated pages
144 * across the pages in a mapping.
146 * The region data structures are embedded into a resv_map and
147 * protected by a resv_map's lock
150 struct list_head link
;
155 static long region_add(struct resv_map
*resv
, long f
, long t
)
157 struct list_head
*head
= &resv
->regions
;
158 struct file_region
*rg
, *nrg
, *trg
;
160 spin_lock(&resv
->lock
);
161 /* Locate the region we are either in or before. */
162 list_for_each_entry(rg
, head
, link
)
166 /* Round our left edge to the current segment if it encloses us. */
170 /* Check for and consume any regions we now overlap with. */
172 list_for_each_entry_safe(rg
, trg
, rg
->link
.prev
, link
) {
173 if (&rg
->link
== head
)
178 /* If this area reaches higher then extend our area to
179 * include it completely. If this is not the first area
180 * which we intend to reuse, free it. */
190 spin_unlock(&resv
->lock
);
194 static long region_chg(struct resv_map
*resv
, long f
, long t
)
196 struct list_head
*head
= &resv
->regions
;
197 struct file_region
*rg
, *nrg
= NULL
;
201 spin_lock(&resv
->lock
);
202 /* Locate the region we are before or in. */
203 list_for_each_entry(rg
, head
, link
)
207 /* If we are below the current region then a new region is required.
208 * Subtle, allocate a new region at the position but make it zero
209 * size such that we can guarantee to record the reservation. */
210 if (&rg
->link
== head
|| t
< rg
->from
) {
212 spin_unlock(&resv
->lock
);
213 nrg
= kmalloc(sizeof(*nrg
), GFP_KERNEL
);
219 INIT_LIST_HEAD(&nrg
->link
);
223 list_add(&nrg
->link
, rg
->link
.prev
);
228 /* Round our left edge to the current segment if it encloses us. */
233 /* Check for and consume any regions we now overlap with. */
234 list_for_each_entry(rg
, rg
->link
.prev
, link
) {
235 if (&rg
->link
== head
)
240 /* We overlap with this area, if it extends further than
241 * us then we must extend ourselves. Account for its
242 * existing reservation. */
247 chg
-= rg
->to
- rg
->from
;
251 spin_unlock(&resv
->lock
);
252 /* We already know we raced and no longer need the new region */
256 spin_unlock(&resv
->lock
);
260 static long region_truncate(struct resv_map
*resv
, long end
)
262 struct list_head
*head
= &resv
->regions
;
263 struct file_region
*rg
, *trg
;
266 spin_lock(&resv
->lock
);
267 /* Locate the region we are either in or before. */
268 list_for_each_entry(rg
, head
, link
)
271 if (&rg
->link
== head
)
274 /* If we are in the middle of a region then adjust it. */
275 if (end
> rg
->from
) {
278 rg
= list_entry(rg
->link
.next
, typeof(*rg
), link
);
281 /* Drop any remaining regions. */
282 list_for_each_entry_safe(rg
, trg
, rg
->link
.prev
, link
) {
283 if (&rg
->link
== head
)
285 chg
+= rg
->to
- rg
->from
;
291 spin_unlock(&resv
->lock
);
295 static long region_count(struct resv_map
*resv
, long f
, long t
)
297 struct list_head
*head
= &resv
->regions
;
298 struct file_region
*rg
;
301 spin_lock(&resv
->lock
);
302 /* Locate each segment we overlap with, and count that overlap. */
303 list_for_each_entry(rg
, head
, link
) {
312 seg_from
= max(rg
->from
, f
);
313 seg_to
= min(rg
->to
, t
);
315 chg
+= seg_to
- seg_from
;
317 spin_unlock(&resv
->lock
);
323 * Convert the address within this vma to the page offset within
324 * the mapping, in pagecache page units; huge pages here.
326 static pgoff_t
vma_hugecache_offset(struct hstate
*h
,
327 struct vm_area_struct
*vma
, unsigned long address
)
329 return ((address
- vma
->vm_start
) >> huge_page_shift(h
)) +
330 (vma
->vm_pgoff
>> huge_page_order(h
));
333 pgoff_t
linear_hugepage_index(struct vm_area_struct
*vma
,
334 unsigned long address
)
336 return vma_hugecache_offset(hstate_vma(vma
), vma
, address
);
340 * Return the size of the pages allocated when backing a VMA. In the majority
341 * cases this will be same size as used by the page table entries.
343 unsigned long vma_kernel_pagesize(struct vm_area_struct
*vma
)
345 struct hstate
*hstate
;
347 if (!is_vm_hugetlb_page(vma
))
350 hstate
= hstate_vma(vma
);
352 return 1UL << huge_page_shift(hstate
);
354 EXPORT_SYMBOL_GPL(vma_kernel_pagesize
);
357 * Return the page size being used by the MMU to back a VMA. In the majority
358 * of cases, the page size used by the kernel matches the MMU size. On
359 * architectures where it differs, an architecture-specific version of this
360 * function is required.
362 #ifndef vma_mmu_pagesize
363 unsigned long vma_mmu_pagesize(struct vm_area_struct
*vma
)
365 return vma_kernel_pagesize(vma
);
370 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
371 * bits of the reservation map pointer, which are always clear due to
374 #define HPAGE_RESV_OWNER (1UL << 0)
375 #define HPAGE_RESV_UNMAPPED (1UL << 1)
376 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
379 * These helpers are used to track how many pages are reserved for
380 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
381 * is guaranteed to have their future faults succeed.
383 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
384 * the reserve counters are updated with the hugetlb_lock held. It is safe
385 * to reset the VMA at fork() time as it is not in use yet and there is no
386 * chance of the global counters getting corrupted as a result of the values.
388 * The private mapping reservation is represented in a subtly different
389 * manner to a shared mapping. A shared mapping has a region map associated
390 * with the underlying file, this region map represents the backing file
391 * pages which have ever had a reservation assigned which this persists even
392 * after the page is instantiated. A private mapping has a region map
393 * associated with the original mmap which is attached to all VMAs which
394 * reference it, this region map represents those offsets which have consumed
395 * reservation ie. where pages have been instantiated.
397 static unsigned long get_vma_private_data(struct vm_area_struct
*vma
)
399 return (unsigned long)vma
->vm_private_data
;
402 static void set_vma_private_data(struct vm_area_struct
*vma
,
405 vma
->vm_private_data
= (void *)value
;
408 struct resv_map
*resv_map_alloc(void)
410 struct resv_map
*resv_map
= kmalloc(sizeof(*resv_map
), GFP_KERNEL
);
414 kref_init(&resv_map
->refs
);
415 spin_lock_init(&resv_map
->lock
);
416 INIT_LIST_HEAD(&resv_map
->regions
);
421 void resv_map_release(struct kref
*ref
)
423 struct resv_map
*resv_map
= container_of(ref
, struct resv_map
, refs
);
425 /* Clear out any active regions before we release the map. */
426 region_truncate(resv_map
, 0);
430 static inline struct resv_map
*inode_resv_map(struct inode
*inode
)
432 return inode
->i_mapping
->private_data
;
435 static struct resv_map
*vma_resv_map(struct vm_area_struct
*vma
)
437 VM_BUG_ON(!is_vm_hugetlb_page(vma
));
438 if (vma
->vm_flags
& VM_MAYSHARE
) {
439 struct address_space
*mapping
= vma
->vm_file
->f_mapping
;
440 struct inode
*inode
= mapping
->host
;
442 return inode_resv_map(inode
);
445 return (struct resv_map
*)(get_vma_private_data(vma
) &
450 static void set_vma_resv_map(struct vm_area_struct
*vma
, struct resv_map
*map
)
452 VM_BUG_ON(!is_vm_hugetlb_page(vma
));
453 VM_BUG_ON(vma
->vm_flags
& VM_MAYSHARE
);
455 set_vma_private_data(vma
, (get_vma_private_data(vma
) &
456 HPAGE_RESV_MASK
) | (unsigned long)map
);
459 static void set_vma_resv_flags(struct vm_area_struct
*vma
, unsigned long flags
)
461 VM_BUG_ON(!is_vm_hugetlb_page(vma
));
462 VM_BUG_ON(vma
->vm_flags
& VM_MAYSHARE
);
464 set_vma_private_data(vma
, get_vma_private_data(vma
) | flags
);
467 static int is_vma_resv_set(struct vm_area_struct
*vma
, unsigned long flag
)
469 VM_BUG_ON(!is_vm_hugetlb_page(vma
));
471 return (get_vma_private_data(vma
) & flag
) != 0;
474 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
475 void reset_vma_resv_huge_pages(struct vm_area_struct
*vma
)
477 VM_BUG_ON(!is_vm_hugetlb_page(vma
));
478 if (!(vma
->vm_flags
& VM_MAYSHARE
))
479 vma
->vm_private_data
= (void *)0;
482 /* Returns true if the VMA has associated reserve pages */
483 static int vma_has_reserves(struct vm_area_struct
*vma
, long chg
)
485 if (vma
->vm_flags
& VM_NORESERVE
) {
487 * This address is already reserved by other process(chg == 0),
488 * so, we should decrement reserved count. Without decrementing,
489 * reserve count remains after releasing inode, because this
490 * allocated page will go into page cache and is regarded as
491 * coming from reserved pool in releasing step. Currently, we
492 * don't have any other solution to deal with this situation
493 * properly, so add work-around here.
495 if (vma
->vm_flags
& VM_MAYSHARE
&& chg
== 0)
501 /* Shared mappings always use reserves */
502 if (vma
->vm_flags
& VM_MAYSHARE
)
506 * Only the process that called mmap() has reserves for
509 if (is_vma_resv_set(vma
, HPAGE_RESV_OWNER
))
515 static void enqueue_huge_page(struct hstate
*h
, struct page
*page
)
517 int nid
= page_to_nid(page
);
518 list_move(&page
->lru
, &h
->hugepage_freelists
[nid
]);
519 h
->free_huge_pages
++;
520 h
->free_huge_pages_node
[nid
]++;
523 static struct page
*dequeue_huge_page_node(struct hstate
*h
, int nid
)
527 list_for_each_entry(page
, &h
->hugepage_freelists
[nid
], lru
)
528 if (!is_migrate_isolate_page(page
))
531 * if 'non-isolated free hugepage' not found on the list,
532 * the allocation fails.
534 if (&h
->hugepage_freelists
[nid
] == &page
->lru
)
536 list_move(&page
->lru
, &h
->hugepage_activelist
);
537 set_page_refcounted(page
);
538 h
->free_huge_pages
--;
539 h
->free_huge_pages_node
[nid
]--;
543 /* Movability of hugepages depends on migration support. */
544 static inline gfp_t
htlb_alloc_mask(struct hstate
*h
)
546 if (hugepages_treat_as_movable
|| hugepage_migration_support(h
))
547 return GFP_HIGHUSER_MOVABLE
;
552 static struct page
*dequeue_huge_page_vma(struct hstate
*h
,
553 struct vm_area_struct
*vma
,
554 unsigned long address
, int avoid_reserve
,
557 struct page
*page
= NULL
;
558 struct mempolicy
*mpol
;
559 nodemask_t
*nodemask
;
560 struct zonelist
*zonelist
;
563 unsigned int cpuset_mems_cookie
;
566 * A child process with MAP_PRIVATE mappings created by their parent
567 * have no page reserves. This check ensures that reservations are
568 * not "stolen". The child may still get SIGKILLed
570 if (!vma_has_reserves(vma
, chg
) &&
571 h
->free_huge_pages
- h
->resv_huge_pages
== 0)
574 /* If reserves cannot be used, ensure enough pages are in the pool */
575 if (avoid_reserve
&& h
->free_huge_pages
- h
->resv_huge_pages
== 0)
579 cpuset_mems_cookie
= read_mems_allowed_begin();
580 zonelist
= huge_zonelist(vma
, address
,
581 htlb_alloc_mask(h
), &mpol
, &nodemask
);
583 for_each_zone_zonelist_nodemask(zone
, z
, zonelist
,
584 MAX_NR_ZONES
- 1, nodemask
) {
585 if (cpuset_zone_allowed_softwall(zone
, htlb_alloc_mask(h
))) {
586 page
= dequeue_huge_page_node(h
, zone_to_nid(zone
));
590 if (!vma_has_reserves(vma
, chg
))
593 SetPagePrivate(page
);
594 h
->resv_huge_pages
--;
601 if (unlikely(!page
&& read_mems_allowed_retry(cpuset_mems_cookie
)))
609 static void update_and_free_page(struct hstate
*h
, struct page
*page
)
613 VM_BUG_ON(h
->order
>= MAX_ORDER
);
616 h
->nr_huge_pages_node
[page_to_nid(page
)]--;
617 for (i
= 0; i
< pages_per_huge_page(h
); i
++) {
618 page
[i
].flags
&= ~(1 << PG_locked
| 1 << PG_error
|
619 1 << PG_referenced
| 1 << PG_dirty
|
620 1 << PG_active
| 1 << PG_reserved
|
621 1 << PG_private
| 1 << PG_writeback
);
623 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page
), page
);
624 set_compound_page_dtor(page
, NULL
);
625 set_page_refcounted(page
);
626 arch_release_hugepage(page
);
627 __free_pages(page
, huge_page_order(h
));
630 struct hstate
*size_to_hstate(unsigned long size
)
635 if (huge_page_size(h
) == size
)
641 static void free_huge_page(struct page
*page
)
644 * Can't pass hstate in here because it is called from the
645 * compound page destructor.
647 struct hstate
*h
= page_hstate(page
);
648 int nid
= page_to_nid(page
);
649 struct hugepage_subpool
*spool
=
650 (struct hugepage_subpool
*)page_private(page
);
651 bool restore_reserve
;
653 set_page_private(page
, 0);
654 page
->mapping
= NULL
;
655 BUG_ON(page_count(page
));
656 BUG_ON(page_mapcount(page
));
657 restore_reserve
= PagePrivate(page
);
658 ClearPagePrivate(page
);
660 spin_lock(&hugetlb_lock
);
661 hugetlb_cgroup_uncharge_page(hstate_index(h
),
662 pages_per_huge_page(h
), page
);
664 h
->resv_huge_pages
++;
666 if (h
->surplus_huge_pages_node
[nid
] && huge_page_order(h
) < MAX_ORDER
) {
667 /* remove the page from active list */
668 list_del(&page
->lru
);
669 update_and_free_page(h
, page
);
670 h
->surplus_huge_pages
--;
671 h
->surplus_huge_pages_node
[nid
]--;
673 arch_clear_hugepage_flags(page
);
674 enqueue_huge_page(h
, page
);
676 spin_unlock(&hugetlb_lock
);
677 hugepage_subpool_put_pages(spool
, 1);
680 static void prep_new_huge_page(struct hstate
*h
, struct page
*page
, int nid
)
682 INIT_LIST_HEAD(&page
->lru
);
683 set_compound_page_dtor(page
, free_huge_page
);
684 spin_lock(&hugetlb_lock
);
685 set_hugetlb_cgroup(page
, NULL
);
687 h
->nr_huge_pages_node
[nid
]++;
688 spin_unlock(&hugetlb_lock
);
689 put_page(page
); /* free it into the hugepage allocator */
692 static void __init
prep_compound_gigantic_page(struct page
*page
,
696 int nr_pages
= 1 << order
;
697 struct page
*p
= page
+ 1;
699 /* we rely on prep_new_huge_page to set the destructor */
700 set_compound_order(page
, order
);
702 __ClearPageReserved(page
);
703 for (i
= 1; i
< nr_pages
; i
++, p
= mem_map_next(p
, page
, i
)) {
706 * For gigantic hugepages allocated through bootmem at
707 * boot, it's safer to be consistent with the not-gigantic
708 * hugepages and clear the PG_reserved bit from all tail pages
709 * too. Otherwse drivers using get_user_pages() to access tail
710 * pages may get the reference counting wrong if they see
711 * PG_reserved set on a tail page (despite the head page not
712 * having PG_reserved set). Enforcing this consistency between
713 * head and tail pages allows drivers to optimize away a check
714 * on the head page when they need know if put_page() is needed
715 * after get_user_pages().
717 __ClearPageReserved(p
);
718 set_page_count(p
, 0);
719 p
->first_page
= page
;
724 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
725 * transparent huge pages. See the PageTransHuge() documentation for more
728 int PageHuge(struct page
*page
)
730 if (!PageCompound(page
))
733 page
= compound_head(page
);
734 return get_compound_page_dtor(page
) == free_huge_page
;
736 EXPORT_SYMBOL_GPL(PageHuge
);
739 * PageHeadHuge() only returns true for hugetlbfs head page, but not for
740 * normal or transparent huge pages.
742 int PageHeadHuge(struct page
*page_head
)
744 if (!PageHead(page_head
))
747 return get_compound_page_dtor(page_head
) == free_huge_page
;
750 pgoff_t
__basepage_index(struct page
*page
)
752 struct page
*page_head
= compound_head(page
);
753 pgoff_t index
= page_index(page_head
);
754 unsigned long compound_idx
;
756 if (!PageHuge(page_head
))
757 return page_index(page
);
759 if (compound_order(page_head
) >= MAX_ORDER
)
760 compound_idx
= page_to_pfn(page
) - page_to_pfn(page_head
);
762 compound_idx
= page
- page_head
;
764 return (index
<< compound_order(page_head
)) + compound_idx
;
767 static struct page
*alloc_fresh_huge_page_node(struct hstate
*h
, int nid
)
771 if (h
->order
>= MAX_ORDER
)
774 page
= alloc_pages_exact_node(nid
,
775 htlb_alloc_mask(h
)|__GFP_COMP
|__GFP_THISNODE
|
776 __GFP_REPEAT
|__GFP_NOWARN
,
779 if (arch_prepare_hugepage(page
)) {
780 __free_pages(page
, huge_page_order(h
));
783 prep_new_huge_page(h
, page
, nid
);
790 * common helper functions for hstate_next_node_to_{alloc|free}.
791 * We may have allocated or freed a huge page based on a different
792 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
793 * be outside of *nodes_allowed. Ensure that we use an allowed
794 * node for alloc or free.
796 static int next_node_allowed(int nid
, nodemask_t
*nodes_allowed
)
798 nid
= next_node(nid
, *nodes_allowed
);
799 if (nid
== MAX_NUMNODES
)
800 nid
= first_node(*nodes_allowed
);
801 VM_BUG_ON(nid
>= MAX_NUMNODES
);
806 static int get_valid_node_allowed(int nid
, nodemask_t
*nodes_allowed
)
808 if (!node_isset(nid
, *nodes_allowed
))
809 nid
= next_node_allowed(nid
, nodes_allowed
);
814 * returns the previously saved node ["this node"] from which to
815 * allocate a persistent huge page for the pool and advance the
816 * next node from which to allocate, handling wrap at end of node
819 static int hstate_next_node_to_alloc(struct hstate
*h
,
820 nodemask_t
*nodes_allowed
)
824 VM_BUG_ON(!nodes_allowed
);
826 nid
= get_valid_node_allowed(h
->next_nid_to_alloc
, nodes_allowed
);
827 h
->next_nid_to_alloc
= next_node_allowed(nid
, nodes_allowed
);
833 * helper for free_pool_huge_page() - return the previously saved
834 * node ["this node"] from which to free a huge page. Advance the
835 * next node id whether or not we find a free huge page to free so
836 * that the next attempt to free addresses the next node.
838 static int hstate_next_node_to_free(struct hstate
*h
, nodemask_t
*nodes_allowed
)
842 VM_BUG_ON(!nodes_allowed
);
844 nid
= get_valid_node_allowed(h
->next_nid_to_free
, nodes_allowed
);
845 h
->next_nid_to_free
= next_node_allowed(nid
, nodes_allowed
);
850 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \
851 for (nr_nodes = nodes_weight(*mask); \
853 ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \
856 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \
857 for (nr_nodes = nodes_weight(*mask); \
859 ((node = hstate_next_node_to_free(hs, mask)) || 1); \
862 static int alloc_fresh_huge_page(struct hstate
*h
, nodemask_t
*nodes_allowed
)
868 for_each_node_mask_to_alloc(h
, nr_nodes
, node
, nodes_allowed
) {
869 page
= alloc_fresh_huge_page_node(h
, node
);
877 count_vm_event(HTLB_BUDDY_PGALLOC
);
879 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL
);
885 * Free huge page from pool from next node to free.
886 * Attempt to keep persistent huge pages more or less
887 * balanced over allowed nodes.
888 * Called with hugetlb_lock locked.
890 static int free_pool_huge_page(struct hstate
*h
, nodemask_t
*nodes_allowed
,
896 for_each_node_mask_to_free(h
, nr_nodes
, node
, nodes_allowed
) {
898 * If we're returning unused surplus pages, only examine
899 * nodes with surplus pages.
901 if ((!acct_surplus
|| h
->surplus_huge_pages_node
[node
]) &&
902 !list_empty(&h
->hugepage_freelists
[node
])) {
904 list_entry(h
->hugepage_freelists
[node
].next
,
906 list_del(&page
->lru
);
907 h
->free_huge_pages
--;
908 h
->free_huge_pages_node
[node
]--;
910 h
->surplus_huge_pages
--;
911 h
->surplus_huge_pages_node
[node
]--;
913 update_and_free_page(h
, page
);
923 * Dissolve a given free hugepage into free buddy pages. This function does
924 * nothing for in-use (including surplus) hugepages.
926 static void dissolve_free_huge_page(struct page
*page
)
928 spin_lock(&hugetlb_lock
);
929 if (PageHuge(page
) && !page_count(page
)) {
930 struct hstate
*h
= page_hstate(page
);
931 int nid
= page_to_nid(page
);
932 list_del(&page
->lru
);
933 h
->free_huge_pages
--;
934 h
->free_huge_pages_node
[nid
]--;
935 update_and_free_page(h
, page
);
937 spin_unlock(&hugetlb_lock
);
941 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
942 * make specified memory blocks removable from the system.
943 * Note that start_pfn should aligned with (minimum) hugepage size.
945 void dissolve_free_huge_pages(unsigned long start_pfn
, unsigned long end_pfn
)
947 unsigned int order
= 8 * sizeof(void *);
951 /* Set scan step to minimum hugepage size */
953 if (order
> huge_page_order(h
))
954 order
= huge_page_order(h
);
955 VM_BUG_ON(!IS_ALIGNED(start_pfn
, 1 << order
));
956 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
+= 1 << order
)
957 dissolve_free_huge_page(pfn_to_page(pfn
));
960 static struct page
*alloc_buddy_huge_page(struct hstate
*h
, int nid
)
965 if (h
->order
>= MAX_ORDER
)
969 * Assume we will successfully allocate the surplus page to
970 * prevent racing processes from causing the surplus to exceed
973 * This however introduces a different race, where a process B
974 * tries to grow the static hugepage pool while alloc_pages() is
975 * called by process A. B will only examine the per-node
976 * counters in determining if surplus huge pages can be
977 * converted to normal huge pages in adjust_pool_surplus(). A
978 * won't be able to increment the per-node counter, until the
979 * lock is dropped by B, but B doesn't drop hugetlb_lock until
980 * no more huge pages can be converted from surplus to normal
981 * state (and doesn't try to convert again). Thus, we have a
982 * case where a surplus huge page exists, the pool is grown, and
983 * the surplus huge page still exists after, even though it
984 * should just have been converted to a normal huge page. This
985 * does not leak memory, though, as the hugepage will be freed
986 * once it is out of use. It also does not allow the counters to
987 * go out of whack in adjust_pool_surplus() as we don't modify
988 * the node values until we've gotten the hugepage and only the
989 * per-node value is checked there.
991 spin_lock(&hugetlb_lock
);
992 if (h
->surplus_huge_pages
>= h
->nr_overcommit_huge_pages
) {
993 spin_unlock(&hugetlb_lock
);
997 h
->surplus_huge_pages
++;
999 spin_unlock(&hugetlb_lock
);
1001 if (nid
== NUMA_NO_NODE
)
1002 page
= alloc_pages(htlb_alloc_mask(h
)|__GFP_COMP
|
1003 __GFP_REPEAT
|__GFP_NOWARN
,
1004 huge_page_order(h
));
1006 page
= alloc_pages_exact_node(nid
,
1007 htlb_alloc_mask(h
)|__GFP_COMP
|__GFP_THISNODE
|
1008 __GFP_REPEAT
|__GFP_NOWARN
, huge_page_order(h
));
1010 if (page
&& arch_prepare_hugepage(page
)) {
1011 __free_pages(page
, huge_page_order(h
));
1015 spin_lock(&hugetlb_lock
);
1017 INIT_LIST_HEAD(&page
->lru
);
1018 r_nid
= page_to_nid(page
);
1019 set_compound_page_dtor(page
, free_huge_page
);
1020 set_hugetlb_cgroup(page
, NULL
);
1022 * We incremented the global counters already
1024 h
->nr_huge_pages_node
[r_nid
]++;
1025 h
->surplus_huge_pages_node
[r_nid
]++;
1026 __count_vm_event(HTLB_BUDDY_PGALLOC
);
1029 h
->surplus_huge_pages
--;
1030 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL
);
1032 spin_unlock(&hugetlb_lock
);
1038 * This allocation function is useful in the context where vma is irrelevant.
1039 * E.g. soft-offlining uses this function because it only cares physical
1040 * address of error page.
1042 struct page
*alloc_huge_page_node(struct hstate
*h
, int nid
)
1044 struct page
*page
= NULL
;
1046 spin_lock(&hugetlb_lock
);
1047 if (h
->free_huge_pages
- h
->resv_huge_pages
> 0)
1048 page
= dequeue_huge_page_node(h
, nid
);
1049 spin_unlock(&hugetlb_lock
);
1052 page
= alloc_buddy_huge_page(h
, nid
);
1058 * Increase the hugetlb pool such that it can accommodate a reservation
1061 static int gather_surplus_pages(struct hstate
*h
, int delta
)
1063 struct list_head surplus_list
;
1064 struct page
*page
, *tmp
;
1066 int needed
, allocated
;
1067 bool alloc_ok
= true;
1069 needed
= (h
->resv_huge_pages
+ delta
) - h
->free_huge_pages
;
1071 h
->resv_huge_pages
+= delta
;
1076 INIT_LIST_HEAD(&surplus_list
);
1080 spin_unlock(&hugetlb_lock
);
1081 for (i
= 0; i
< needed
; i
++) {
1082 page
= alloc_buddy_huge_page(h
, NUMA_NO_NODE
);
1087 list_add(&page
->lru
, &surplus_list
);
1092 * After retaking hugetlb_lock, we need to recalculate 'needed'
1093 * because either resv_huge_pages or free_huge_pages may have changed.
1095 spin_lock(&hugetlb_lock
);
1096 needed
= (h
->resv_huge_pages
+ delta
) -
1097 (h
->free_huge_pages
+ allocated
);
1102 * We were not able to allocate enough pages to
1103 * satisfy the entire reservation so we free what
1104 * we've allocated so far.
1109 * The surplus_list now contains _at_least_ the number of extra pages
1110 * needed to accommodate the reservation. Add the appropriate number
1111 * of pages to the hugetlb pool and free the extras back to the buddy
1112 * allocator. Commit the entire reservation here to prevent another
1113 * process from stealing the pages as they are added to the pool but
1114 * before they are reserved.
1116 needed
+= allocated
;
1117 h
->resv_huge_pages
+= delta
;
1120 /* Free the needed pages to the hugetlb pool */
1121 list_for_each_entry_safe(page
, tmp
, &surplus_list
, lru
) {
1125 * This page is now managed by the hugetlb allocator and has
1126 * no users -- drop the buddy allocator's reference.
1128 put_page_testzero(page
);
1129 VM_BUG_ON_PAGE(page_count(page
), page
);
1130 enqueue_huge_page(h
, page
);
1133 spin_unlock(&hugetlb_lock
);
1135 /* Free unnecessary surplus pages to the buddy allocator */
1136 list_for_each_entry_safe(page
, tmp
, &surplus_list
, lru
)
1138 spin_lock(&hugetlb_lock
);
1144 * When releasing a hugetlb pool reservation, any surplus pages that were
1145 * allocated to satisfy the reservation must be explicitly freed if they were
1147 * Called with hugetlb_lock held.
1149 static void return_unused_surplus_pages(struct hstate
*h
,
1150 unsigned long unused_resv_pages
)
1152 unsigned long nr_pages
;
1154 /* Uncommit the reservation */
1155 h
->resv_huge_pages
-= unused_resv_pages
;
1157 /* Cannot return gigantic pages currently */
1158 if (h
->order
>= MAX_ORDER
)
1161 nr_pages
= min(unused_resv_pages
, h
->surplus_huge_pages
);
1164 * We want to release as many surplus pages as possible, spread
1165 * evenly across all nodes with memory. Iterate across these nodes
1166 * until we can no longer free unreserved surplus pages. This occurs
1167 * when the nodes with surplus pages have no free pages.
1168 * free_pool_huge_page() will balance the the freed pages across the
1169 * on-line nodes with memory and will handle the hstate accounting.
1171 while (nr_pages
--) {
1172 if (!free_pool_huge_page(h
, &node_states
[N_MEMORY
], 1))
1178 * Determine if the huge page at addr within the vma has an associated
1179 * reservation. Where it does not we will need to logically increase
1180 * reservation and actually increase subpool usage before an allocation
1181 * can occur. Where any new reservation would be required the
1182 * reservation change is prepared, but not committed. Once the page
1183 * has been allocated from the subpool and instantiated the change should
1184 * be committed via vma_commit_reservation. No action is required on
1187 static long vma_needs_reservation(struct hstate
*h
,
1188 struct vm_area_struct
*vma
, unsigned long addr
)
1190 struct resv_map
*resv
;
1194 resv
= vma_resv_map(vma
);
1198 idx
= vma_hugecache_offset(h
, vma
, addr
);
1199 chg
= region_chg(resv
, idx
, idx
+ 1);
1201 if (vma
->vm_flags
& VM_MAYSHARE
)
1204 return chg
< 0 ? chg
: 0;
1206 static void vma_commit_reservation(struct hstate
*h
,
1207 struct vm_area_struct
*vma
, unsigned long addr
)
1209 struct resv_map
*resv
;
1212 resv
= vma_resv_map(vma
);
1216 idx
= vma_hugecache_offset(h
, vma
, addr
);
1217 region_add(resv
, idx
, idx
+ 1);
1220 static struct page
*alloc_huge_page(struct vm_area_struct
*vma
,
1221 unsigned long addr
, int avoid_reserve
)
1223 struct hugepage_subpool
*spool
= subpool_vma(vma
);
1224 struct hstate
*h
= hstate_vma(vma
);
1228 struct hugetlb_cgroup
*h_cg
;
1230 idx
= hstate_index(h
);
1232 * Processes that did not create the mapping will have no
1233 * reserves and will not have accounted against subpool
1234 * limit. Check that the subpool limit can be made before
1235 * satisfying the allocation MAP_NORESERVE mappings may also
1236 * need pages and subpool limit allocated allocated if no reserve
1239 chg
= vma_needs_reservation(h
, vma
, addr
);
1241 return ERR_PTR(-ENOMEM
);
1242 if (chg
|| avoid_reserve
)
1243 if (hugepage_subpool_get_pages(spool
, 1))
1244 return ERR_PTR(-ENOSPC
);
1246 ret
= hugetlb_cgroup_charge_cgroup(idx
, pages_per_huge_page(h
), &h_cg
);
1248 if (chg
|| avoid_reserve
)
1249 hugepage_subpool_put_pages(spool
, 1);
1250 return ERR_PTR(-ENOSPC
);
1252 spin_lock(&hugetlb_lock
);
1253 page
= dequeue_huge_page_vma(h
, vma
, addr
, avoid_reserve
, chg
);
1255 spin_unlock(&hugetlb_lock
);
1256 page
= alloc_buddy_huge_page(h
, NUMA_NO_NODE
);
1258 hugetlb_cgroup_uncharge_cgroup(idx
,
1259 pages_per_huge_page(h
),
1261 if (chg
|| avoid_reserve
)
1262 hugepage_subpool_put_pages(spool
, 1);
1263 return ERR_PTR(-ENOSPC
);
1265 spin_lock(&hugetlb_lock
);
1266 list_move(&page
->lru
, &h
->hugepage_activelist
);
1269 hugetlb_cgroup_commit_charge(idx
, pages_per_huge_page(h
), h_cg
, page
);
1270 spin_unlock(&hugetlb_lock
);
1272 set_page_private(page
, (unsigned long)spool
);
1274 vma_commit_reservation(h
, vma
, addr
);
1279 * alloc_huge_page()'s wrapper which simply returns the page if allocation
1280 * succeeds, otherwise NULL. This function is called from new_vma_page(),
1281 * where no ERR_VALUE is expected to be returned.
1283 struct page
*alloc_huge_page_noerr(struct vm_area_struct
*vma
,
1284 unsigned long addr
, int avoid_reserve
)
1286 struct page
*page
= alloc_huge_page(vma
, addr
, avoid_reserve
);
1292 int __weak
alloc_bootmem_huge_page(struct hstate
*h
)
1294 struct huge_bootmem_page
*m
;
1297 for_each_node_mask_to_alloc(h
, nr_nodes
, node
, &node_states
[N_MEMORY
]) {
1300 addr
= memblock_virt_alloc_try_nid_nopanic(
1301 huge_page_size(h
), huge_page_size(h
),
1302 0, BOOTMEM_ALLOC_ACCESSIBLE
, node
);
1305 * Use the beginning of the huge page to store the
1306 * huge_bootmem_page struct (until gather_bootmem
1307 * puts them into the mem_map).
1316 BUG_ON((unsigned long)virt_to_phys(m
) & (huge_page_size(h
) - 1));
1317 /* Put them into a private list first because mem_map is not up yet */
1318 list_add(&m
->list
, &huge_boot_pages
);
1323 static void __init
prep_compound_huge_page(struct page
*page
, int order
)
1325 if (unlikely(order
> (MAX_ORDER
- 1)))
1326 prep_compound_gigantic_page(page
, order
);
1328 prep_compound_page(page
, order
);
1331 /* Put bootmem huge pages into the standard lists after mem_map is up */
1332 static void __init
gather_bootmem_prealloc(void)
1334 struct huge_bootmem_page
*m
;
1336 list_for_each_entry(m
, &huge_boot_pages
, list
) {
1337 struct hstate
*h
= m
->hstate
;
1340 #ifdef CONFIG_HIGHMEM
1341 page
= pfn_to_page(m
->phys
>> PAGE_SHIFT
);
1342 memblock_free_late(__pa(m
),
1343 sizeof(struct huge_bootmem_page
));
1345 page
= virt_to_page(m
);
1347 WARN_ON(page_count(page
) != 1);
1348 prep_compound_huge_page(page
, h
->order
);
1349 WARN_ON(PageReserved(page
));
1350 prep_new_huge_page(h
, page
, page_to_nid(page
));
1352 * If we had gigantic hugepages allocated at boot time, we need
1353 * to restore the 'stolen' pages to totalram_pages in order to
1354 * fix confusing memory reports from free(1) and another
1355 * side-effects, like CommitLimit going negative.
1357 if (h
->order
> (MAX_ORDER
- 1))
1358 adjust_managed_page_count(page
, 1 << h
->order
);
1362 static void __init
hugetlb_hstate_alloc_pages(struct hstate
*h
)
1366 for (i
= 0; i
< h
->max_huge_pages
; ++i
) {
1367 if (h
->order
>= MAX_ORDER
) {
1368 if (!alloc_bootmem_huge_page(h
))
1370 } else if (!alloc_fresh_huge_page(h
,
1371 &node_states
[N_MEMORY
]))
1374 h
->max_huge_pages
= i
;
1377 static void __init
hugetlb_init_hstates(void)
1381 for_each_hstate(h
) {
1382 /* oversize hugepages were init'ed in early boot */
1383 if (h
->order
< MAX_ORDER
)
1384 hugetlb_hstate_alloc_pages(h
);
1388 static char * __init
memfmt(char *buf
, unsigned long n
)
1390 if (n
>= (1UL << 30))
1391 sprintf(buf
, "%lu GB", n
>> 30);
1392 else if (n
>= (1UL << 20))
1393 sprintf(buf
, "%lu MB", n
>> 20);
1395 sprintf(buf
, "%lu KB", n
>> 10);
1399 static void __init
report_hugepages(void)
1403 for_each_hstate(h
) {
1405 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
1406 memfmt(buf
, huge_page_size(h
)),
1407 h
->free_huge_pages
);
1411 #ifdef CONFIG_HIGHMEM
1412 static void try_to_free_low(struct hstate
*h
, unsigned long count
,
1413 nodemask_t
*nodes_allowed
)
1417 if (h
->order
>= MAX_ORDER
)
1420 for_each_node_mask(i
, *nodes_allowed
) {
1421 struct page
*page
, *next
;
1422 struct list_head
*freel
= &h
->hugepage_freelists
[i
];
1423 list_for_each_entry_safe(page
, next
, freel
, lru
) {
1424 if (count
>= h
->nr_huge_pages
)
1426 if (PageHighMem(page
))
1428 list_del(&page
->lru
);
1429 update_and_free_page(h
, page
);
1430 h
->free_huge_pages
--;
1431 h
->free_huge_pages_node
[page_to_nid(page
)]--;
1436 static inline void try_to_free_low(struct hstate
*h
, unsigned long count
,
1437 nodemask_t
*nodes_allowed
)
1443 * Increment or decrement surplus_huge_pages. Keep node-specific counters
1444 * balanced by operating on them in a round-robin fashion.
1445 * Returns 1 if an adjustment was made.
1447 static int adjust_pool_surplus(struct hstate
*h
, nodemask_t
*nodes_allowed
,
1452 VM_BUG_ON(delta
!= -1 && delta
!= 1);
1455 for_each_node_mask_to_alloc(h
, nr_nodes
, node
, nodes_allowed
) {
1456 if (h
->surplus_huge_pages_node
[node
])
1460 for_each_node_mask_to_free(h
, nr_nodes
, node
, nodes_allowed
) {
1461 if (h
->surplus_huge_pages_node
[node
] <
1462 h
->nr_huge_pages_node
[node
])
1469 h
->surplus_huge_pages
+= delta
;
1470 h
->surplus_huge_pages_node
[node
] += delta
;
1474 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
1475 static unsigned long set_max_huge_pages(struct hstate
*h
, unsigned long count
,
1476 nodemask_t
*nodes_allowed
)
1478 unsigned long min_count
, ret
;
1480 if (h
->order
>= MAX_ORDER
)
1481 return h
->max_huge_pages
;
1484 * Increase the pool size
1485 * First take pages out of surplus state. Then make up the
1486 * remaining difference by allocating fresh huge pages.
1488 * We might race with alloc_buddy_huge_page() here and be unable
1489 * to convert a surplus huge page to a normal huge page. That is
1490 * not critical, though, it just means the overall size of the
1491 * pool might be one hugepage larger than it needs to be, but
1492 * within all the constraints specified by the sysctls.
1494 spin_lock(&hugetlb_lock
);
1495 while (h
->surplus_huge_pages
&& count
> persistent_huge_pages(h
)) {
1496 if (!adjust_pool_surplus(h
, nodes_allowed
, -1))
1500 while (count
> persistent_huge_pages(h
)) {
1502 * If this allocation races such that we no longer need the
1503 * page, free_huge_page will handle it by freeing the page
1504 * and reducing the surplus.
1506 spin_unlock(&hugetlb_lock
);
1507 ret
= alloc_fresh_huge_page(h
, nodes_allowed
);
1508 spin_lock(&hugetlb_lock
);
1512 /* Bail for signals. Probably ctrl-c from user */
1513 if (signal_pending(current
))
1518 * Decrease the pool size
1519 * First return free pages to the buddy allocator (being careful
1520 * to keep enough around to satisfy reservations). Then place
1521 * pages into surplus state as needed so the pool will shrink
1522 * to the desired size as pages become free.
1524 * By placing pages into the surplus state independent of the
1525 * overcommit value, we are allowing the surplus pool size to
1526 * exceed overcommit. There are few sane options here. Since
1527 * alloc_buddy_huge_page() is checking the global counter,
1528 * though, we'll note that we're not allowed to exceed surplus
1529 * and won't grow the pool anywhere else. Not until one of the
1530 * sysctls are changed, or the surplus pages go out of use.
1532 min_count
= h
->resv_huge_pages
+ h
->nr_huge_pages
- h
->free_huge_pages
;
1533 min_count
= max(count
, min_count
);
1534 try_to_free_low(h
, min_count
, nodes_allowed
);
1535 while (min_count
< persistent_huge_pages(h
)) {
1536 if (!free_pool_huge_page(h
, nodes_allowed
, 0))
1539 while (count
< persistent_huge_pages(h
)) {
1540 if (!adjust_pool_surplus(h
, nodes_allowed
, 1))
1544 ret
= persistent_huge_pages(h
);
1545 spin_unlock(&hugetlb_lock
);
1549 #define HSTATE_ATTR_RO(_name) \
1550 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
1552 #define HSTATE_ATTR(_name) \
1553 static struct kobj_attribute _name##_attr = \
1554 __ATTR(_name, 0644, _name##_show, _name##_store)
1556 static struct kobject
*hugepages_kobj
;
1557 static struct kobject
*hstate_kobjs
[HUGE_MAX_HSTATE
];
1559 static struct hstate
*kobj_to_node_hstate(struct kobject
*kobj
, int *nidp
);
1561 static struct hstate
*kobj_to_hstate(struct kobject
*kobj
, int *nidp
)
1565 for (i
= 0; i
< HUGE_MAX_HSTATE
; i
++)
1566 if (hstate_kobjs
[i
] == kobj
) {
1568 *nidp
= NUMA_NO_NODE
;
1572 return kobj_to_node_hstate(kobj
, nidp
);
1575 static ssize_t
nr_hugepages_show_common(struct kobject
*kobj
,
1576 struct kobj_attribute
*attr
, char *buf
)
1579 unsigned long nr_huge_pages
;
1582 h
= kobj_to_hstate(kobj
, &nid
);
1583 if (nid
== NUMA_NO_NODE
)
1584 nr_huge_pages
= h
->nr_huge_pages
;
1586 nr_huge_pages
= h
->nr_huge_pages_node
[nid
];
1588 return sprintf(buf
, "%lu\n", nr_huge_pages
);
1591 static ssize_t
nr_hugepages_store_common(bool obey_mempolicy
,
1592 struct kobject
*kobj
, struct kobj_attribute
*attr
,
1593 const char *buf
, size_t len
)
1597 unsigned long count
;
1599 NODEMASK_ALLOC(nodemask_t
, nodes_allowed
, GFP_KERNEL
| __GFP_NORETRY
);
1601 err
= kstrtoul(buf
, 10, &count
);
1605 h
= kobj_to_hstate(kobj
, &nid
);
1606 if (h
->order
>= MAX_ORDER
) {
1611 if (nid
== NUMA_NO_NODE
) {
1613 * global hstate attribute
1615 if (!(obey_mempolicy
&&
1616 init_nodemask_of_mempolicy(nodes_allowed
))) {
1617 NODEMASK_FREE(nodes_allowed
);
1618 nodes_allowed
= &node_states
[N_MEMORY
];
1620 } else if (nodes_allowed
) {
1622 * per node hstate attribute: adjust count to global,
1623 * but restrict alloc/free to the specified node.
1625 count
+= h
->nr_huge_pages
- h
->nr_huge_pages_node
[nid
];
1626 init_nodemask_of_node(nodes_allowed
, nid
);
1628 nodes_allowed
= &node_states
[N_MEMORY
];
1630 h
->max_huge_pages
= set_max_huge_pages(h
, count
, nodes_allowed
);
1632 if (nodes_allowed
!= &node_states
[N_MEMORY
])
1633 NODEMASK_FREE(nodes_allowed
);
1637 NODEMASK_FREE(nodes_allowed
);
1641 static ssize_t
nr_hugepages_show(struct kobject
*kobj
,
1642 struct kobj_attribute
*attr
, char *buf
)
1644 return nr_hugepages_show_common(kobj
, attr
, buf
);
1647 static ssize_t
nr_hugepages_store(struct kobject
*kobj
,
1648 struct kobj_attribute
*attr
, const char *buf
, size_t len
)
1650 return nr_hugepages_store_common(false, kobj
, attr
, buf
, len
);
1652 HSTATE_ATTR(nr_hugepages
);
1657 * hstate attribute for optionally mempolicy-based constraint on persistent
1658 * huge page alloc/free.
1660 static ssize_t
nr_hugepages_mempolicy_show(struct kobject
*kobj
,
1661 struct kobj_attribute
*attr
, char *buf
)
1663 return nr_hugepages_show_common(kobj
, attr
, buf
);
1666 static ssize_t
nr_hugepages_mempolicy_store(struct kobject
*kobj
,
1667 struct kobj_attribute
*attr
, const char *buf
, size_t len
)
1669 return nr_hugepages_store_common(true, kobj
, attr
, buf
, len
);
1671 HSTATE_ATTR(nr_hugepages_mempolicy
);
1675 static ssize_t
nr_overcommit_hugepages_show(struct kobject
*kobj
,
1676 struct kobj_attribute
*attr
, char *buf
)
1678 struct hstate
*h
= kobj_to_hstate(kobj
, NULL
);
1679 return sprintf(buf
, "%lu\n", h
->nr_overcommit_huge_pages
);
1682 static ssize_t
nr_overcommit_hugepages_store(struct kobject
*kobj
,
1683 struct kobj_attribute
*attr
, const char *buf
, size_t count
)
1686 unsigned long input
;
1687 struct hstate
*h
= kobj_to_hstate(kobj
, NULL
);
1689 if (h
->order
>= MAX_ORDER
)
1692 err
= kstrtoul(buf
, 10, &input
);
1696 spin_lock(&hugetlb_lock
);
1697 h
->nr_overcommit_huge_pages
= input
;
1698 spin_unlock(&hugetlb_lock
);
1702 HSTATE_ATTR(nr_overcommit_hugepages
);
1704 static ssize_t
free_hugepages_show(struct kobject
*kobj
,
1705 struct kobj_attribute
*attr
, char *buf
)
1708 unsigned long free_huge_pages
;
1711 h
= kobj_to_hstate(kobj
, &nid
);
1712 if (nid
== NUMA_NO_NODE
)
1713 free_huge_pages
= h
->free_huge_pages
;
1715 free_huge_pages
= h
->free_huge_pages_node
[nid
];
1717 return sprintf(buf
, "%lu\n", free_huge_pages
);
1719 HSTATE_ATTR_RO(free_hugepages
);
1721 static ssize_t
resv_hugepages_show(struct kobject
*kobj
,
1722 struct kobj_attribute
*attr
, char *buf
)
1724 struct hstate
*h
= kobj_to_hstate(kobj
, NULL
);
1725 return sprintf(buf
, "%lu\n", h
->resv_huge_pages
);
1727 HSTATE_ATTR_RO(resv_hugepages
);
1729 static ssize_t
surplus_hugepages_show(struct kobject
*kobj
,
1730 struct kobj_attribute
*attr
, char *buf
)
1733 unsigned long surplus_huge_pages
;
1736 h
= kobj_to_hstate(kobj
, &nid
);
1737 if (nid
== NUMA_NO_NODE
)
1738 surplus_huge_pages
= h
->surplus_huge_pages
;
1740 surplus_huge_pages
= h
->surplus_huge_pages_node
[nid
];
1742 return sprintf(buf
, "%lu\n", surplus_huge_pages
);
1744 HSTATE_ATTR_RO(surplus_hugepages
);
1746 static struct attribute
*hstate_attrs
[] = {
1747 &nr_hugepages_attr
.attr
,
1748 &nr_overcommit_hugepages_attr
.attr
,
1749 &free_hugepages_attr
.attr
,
1750 &resv_hugepages_attr
.attr
,
1751 &surplus_hugepages_attr
.attr
,
1753 &nr_hugepages_mempolicy_attr
.attr
,
1758 static struct attribute_group hstate_attr_group
= {
1759 .attrs
= hstate_attrs
,
1762 static int hugetlb_sysfs_add_hstate(struct hstate
*h
, struct kobject
*parent
,
1763 struct kobject
**hstate_kobjs
,
1764 struct attribute_group
*hstate_attr_group
)
1767 int hi
= hstate_index(h
);
1769 hstate_kobjs
[hi
] = kobject_create_and_add(h
->name
, parent
);
1770 if (!hstate_kobjs
[hi
])
1773 retval
= sysfs_create_group(hstate_kobjs
[hi
], hstate_attr_group
);
1775 kobject_put(hstate_kobjs
[hi
]);
1780 static void __init
hugetlb_sysfs_init(void)
1785 hugepages_kobj
= kobject_create_and_add("hugepages", mm_kobj
);
1786 if (!hugepages_kobj
)
1789 for_each_hstate(h
) {
1790 err
= hugetlb_sysfs_add_hstate(h
, hugepages_kobj
,
1791 hstate_kobjs
, &hstate_attr_group
);
1793 pr_err("Hugetlb: Unable to add hstate %s", h
->name
);
1800 * node_hstate/s - associate per node hstate attributes, via their kobjects,
1801 * with node devices in node_devices[] using a parallel array. The array
1802 * index of a node device or _hstate == node id.
1803 * This is here to avoid any static dependency of the node device driver, in
1804 * the base kernel, on the hugetlb module.
1806 struct node_hstate
{
1807 struct kobject
*hugepages_kobj
;
1808 struct kobject
*hstate_kobjs
[HUGE_MAX_HSTATE
];
1810 struct node_hstate node_hstates
[MAX_NUMNODES
];
1813 * A subset of global hstate attributes for node devices
1815 static struct attribute
*per_node_hstate_attrs
[] = {
1816 &nr_hugepages_attr
.attr
,
1817 &free_hugepages_attr
.attr
,
1818 &surplus_hugepages_attr
.attr
,
1822 static struct attribute_group per_node_hstate_attr_group
= {
1823 .attrs
= per_node_hstate_attrs
,
1827 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
1828 * Returns node id via non-NULL nidp.
1830 static struct hstate
*kobj_to_node_hstate(struct kobject
*kobj
, int *nidp
)
1834 for (nid
= 0; nid
< nr_node_ids
; nid
++) {
1835 struct node_hstate
*nhs
= &node_hstates
[nid
];
1837 for (i
= 0; i
< HUGE_MAX_HSTATE
; i
++)
1838 if (nhs
->hstate_kobjs
[i
] == kobj
) {
1850 * Unregister hstate attributes from a single node device.
1851 * No-op if no hstate attributes attached.
1853 static void hugetlb_unregister_node(struct node
*node
)
1856 struct node_hstate
*nhs
= &node_hstates
[node
->dev
.id
];
1858 if (!nhs
->hugepages_kobj
)
1859 return; /* no hstate attributes */
1861 for_each_hstate(h
) {
1862 int idx
= hstate_index(h
);
1863 if (nhs
->hstate_kobjs
[idx
]) {
1864 kobject_put(nhs
->hstate_kobjs
[idx
]);
1865 nhs
->hstate_kobjs
[idx
] = NULL
;
1869 kobject_put(nhs
->hugepages_kobj
);
1870 nhs
->hugepages_kobj
= NULL
;
1874 * hugetlb module exit: unregister hstate attributes from node devices
1877 static void hugetlb_unregister_all_nodes(void)
1882 * disable node device registrations.
1884 register_hugetlbfs_with_node(NULL
, NULL
);
1887 * remove hstate attributes from any nodes that have them.
1889 for (nid
= 0; nid
< nr_node_ids
; nid
++)
1890 hugetlb_unregister_node(node_devices
[nid
]);
1894 * Register hstate attributes for a single node device.
1895 * No-op if attributes already registered.
1897 static void hugetlb_register_node(struct node
*node
)
1900 struct node_hstate
*nhs
= &node_hstates
[node
->dev
.id
];
1903 if (nhs
->hugepages_kobj
)
1904 return; /* already allocated */
1906 nhs
->hugepages_kobj
= kobject_create_and_add("hugepages",
1908 if (!nhs
->hugepages_kobj
)
1911 for_each_hstate(h
) {
1912 err
= hugetlb_sysfs_add_hstate(h
, nhs
->hugepages_kobj
,
1914 &per_node_hstate_attr_group
);
1916 pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
1917 h
->name
, node
->dev
.id
);
1918 hugetlb_unregister_node(node
);
1925 * hugetlb init time: register hstate attributes for all registered node
1926 * devices of nodes that have memory. All on-line nodes should have
1927 * registered their associated device by this time.
1929 static void hugetlb_register_all_nodes(void)
1933 for_each_node_state(nid
, N_MEMORY
) {
1934 struct node
*node
= node_devices
[nid
];
1935 if (node
->dev
.id
== nid
)
1936 hugetlb_register_node(node
);
1940 * Let the node device driver know we're here so it can
1941 * [un]register hstate attributes on node hotplug.
1943 register_hugetlbfs_with_node(hugetlb_register_node
,
1944 hugetlb_unregister_node
);
1946 #else /* !CONFIG_NUMA */
1948 static struct hstate
*kobj_to_node_hstate(struct kobject
*kobj
, int *nidp
)
1956 static void hugetlb_unregister_all_nodes(void) { }
1958 static void hugetlb_register_all_nodes(void) { }
1962 static void __exit
hugetlb_exit(void)
1966 hugetlb_unregister_all_nodes();
1968 for_each_hstate(h
) {
1969 kobject_put(hstate_kobjs
[hstate_index(h
)]);
1972 kobject_put(hugepages_kobj
);
1973 kfree(htlb_fault_mutex_table
);
1975 module_exit(hugetlb_exit
);
1977 static int __init
hugetlb_init(void)
1981 /* Some platform decide whether they support huge pages at boot
1982 * time. On these, such as powerpc, HPAGE_SHIFT is set to 0 when
1983 * there is no such support
1985 if (HPAGE_SHIFT
== 0)
1988 if (!size_to_hstate(default_hstate_size
)) {
1989 default_hstate_size
= HPAGE_SIZE
;
1990 if (!size_to_hstate(default_hstate_size
))
1991 hugetlb_add_hstate(HUGETLB_PAGE_ORDER
);
1993 default_hstate_idx
= hstate_index(size_to_hstate(default_hstate_size
));
1994 if (default_hstate_max_huge_pages
)
1995 default_hstate
.max_huge_pages
= default_hstate_max_huge_pages
;
1997 hugetlb_init_hstates();
1998 gather_bootmem_prealloc();
2001 hugetlb_sysfs_init();
2002 hugetlb_register_all_nodes();
2003 hugetlb_cgroup_file_init();
2006 num_fault_mutexes
= roundup_pow_of_two(8 * num_possible_cpus());
2008 num_fault_mutexes
= 1;
2010 htlb_fault_mutex_table
=
2011 kmalloc(sizeof(struct mutex
) * num_fault_mutexes
, GFP_KERNEL
);
2012 BUG_ON(!htlb_fault_mutex_table
);
2014 for (i
= 0; i
< num_fault_mutexes
; i
++)
2015 mutex_init(&htlb_fault_mutex_table
[i
]);
2018 module_init(hugetlb_init
);
2020 /* Should be called on processing a hugepagesz=... option */
2021 void __init
hugetlb_add_hstate(unsigned order
)
2026 if (size_to_hstate(PAGE_SIZE
<< order
)) {
2027 pr_warning("hugepagesz= specified twice, ignoring\n");
2030 BUG_ON(hugetlb_max_hstate
>= HUGE_MAX_HSTATE
);
2032 h
= &hstates
[hugetlb_max_hstate
++];
2034 h
->mask
= ~((1ULL << (order
+ PAGE_SHIFT
)) - 1);
2035 h
->nr_huge_pages
= 0;
2036 h
->free_huge_pages
= 0;
2037 for (i
= 0; i
< MAX_NUMNODES
; ++i
)
2038 INIT_LIST_HEAD(&h
->hugepage_freelists
[i
]);
2039 INIT_LIST_HEAD(&h
->hugepage_activelist
);
2040 h
->next_nid_to_alloc
= first_node(node_states
[N_MEMORY
]);
2041 h
->next_nid_to_free
= first_node(node_states
[N_MEMORY
]);
2042 snprintf(h
->name
, HSTATE_NAME_LEN
, "hugepages-%lukB",
2043 huge_page_size(h
)/1024);
2048 static int __init
hugetlb_nrpages_setup(char *s
)
2051 static unsigned long *last_mhp
;
2054 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
2055 * so this hugepages= parameter goes to the "default hstate".
2057 if (!hugetlb_max_hstate
)
2058 mhp
= &default_hstate_max_huge_pages
;
2060 mhp
= &parsed_hstate
->max_huge_pages
;
2062 if (mhp
== last_mhp
) {
2063 pr_warning("hugepages= specified twice without "
2064 "interleaving hugepagesz=, ignoring\n");
2068 if (sscanf(s
, "%lu", mhp
) <= 0)
2072 * Global state is always initialized later in hugetlb_init.
2073 * But we need to allocate >= MAX_ORDER hstates here early to still
2074 * use the bootmem allocator.
2076 if (hugetlb_max_hstate
&& parsed_hstate
->order
>= MAX_ORDER
)
2077 hugetlb_hstate_alloc_pages(parsed_hstate
);
2083 __setup("hugepages=", hugetlb_nrpages_setup
);
2085 static int __init
hugetlb_default_setup(char *s
)
2087 default_hstate_size
= memparse(s
, &s
);
2090 __setup("default_hugepagesz=", hugetlb_default_setup
);
2092 static unsigned int cpuset_mems_nr(unsigned int *array
)
2095 unsigned int nr
= 0;
2097 for_each_node_mask(node
, cpuset_current_mems_allowed
)
2103 #ifdef CONFIG_SYSCTL
2104 static int hugetlb_sysctl_handler_common(bool obey_mempolicy
,
2105 struct ctl_table
*table
, int write
,
2106 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
2108 struct hstate
*h
= &default_hstate
;
2112 tmp
= h
->max_huge_pages
;
2114 if (write
&& h
->order
>= MAX_ORDER
)
2118 table
->maxlen
= sizeof(unsigned long);
2119 ret
= proc_doulongvec_minmax(table
, write
, buffer
, length
, ppos
);
2124 NODEMASK_ALLOC(nodemask_t
, nodes_allowed
,
2125 GFP_KERNEL
| __GFP_NORETRY
);
2126 if (!(obey_mempolicy
&&
2127 init_nodemask_of_mempolicy(nodes_allowed
))) {
2128 NODEMASK_FREE(nodes_allowed
);
2129 nodes_allowed
= &node_states
[N_MEMORY
];
2131 h
->max_huge_pages
= set_max_huge_pages(h
, tmp
, nodes_allowed
);
2133 if (nodes_allowed
!= &node_states
[N_MEMORY
])
2134 NODEMASK_FREE(nodes_allowed
);
2140 int hugetlb_sysctl_handler(struct ctl_table
*table
, int write
,
2141 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
2144 return hugetlb_sysctl_handler_common(false, table
, write
,
2145 buffer
, length
, ppos
);
2149 int hugetlb_mempolicy_sysctl_handler(struct ctl_table
*table
, int write
,
2150 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
2152 return hugetlb_sysctl_handler_common(true, table
, write
,
2153 buffer
, length
, ppos
);
2155 #endif /* CONFIG_NUMA */
2157 int hugetlb_overcommit_handler(struct ctl_table
*table
, int write
,
2158 void __user
*buffer
,
2159 size_t *length
, loff_t
*ppos
)
2161 struct hstate
*h
= &default_hstate
;
2165 tmp
= h
->nr_overcommit_huge_pages
;
2167 if (write
&& h
->order
>= MAX_ORDER
)
2171 table
->maxlen
= sizeof(unsigned long);
2172 ret
= proc_doulongvec_minmax(table
, write
, buffer
, length
, ppos
);
2177 spin_lock(&hugetlb_lock
);
2178 h
->nr_overcommit_huge_pages
= tmp
;
2179 spin_unlock(&hugetlb_lock
);
2185 #endif /* CONFIG_SYSCTL */
2187 void hugetlb_report_meminfo(struct seq_file
*m
)
2189 struct hstate
*h
= &default_hstate
;
2191 "HugePages_Total: %5lu\n"
2192 "HugePages_Free: %5lu\n"
2193 "HugePages_Rsvd: %5lu\n"
2194 "HugePages_Surp: %5lu\n"
2195 "Hugepagesize: %8lu kB\n",
2199 h
->surplus_huge_pages
,
2200 1UL << (huge_page_order(h
) + PAGE_SHIFT
- 10));
2203 int hugetlb_report_node_meminfo(int nid
, char *buf
)
2205 struct hstate
*h
= &default_hstate
;
2207 "Node %d HugePages_Total: %5u\n"
2208 "Node %d HugePages_Free: %5u\n"
2209 "Node %d HugePages_Surp: %5u\n",
2210 nid
, h
->nr_huge_pages_node
[nid
],
2211 nid
, h
->free_huge_pages_node
[nid
],
2212 nid
, h
->surplus_huge_pages_node
[nid
]);
2215 void hugetlb_show_meminfo(void)
2220 for_each_node_state(nid
, N_MEMORY
)
2222 pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
2224 h
->nr_huge_pages_node
[nid
],
2225 h
->free_huge_pages_node
[nid
],
2226 h
->surplus_huge_pages_node
[nid
],
2227 1UL << (huge_page_order(h
) + PAGE_SHIFT
- 10));
2230 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
2231 unsigned long hugetlb_total_pages(void)
2234 unsigned long nr_total_pages
= 0;
2237 nr_total_pages
+= h
->nr_huge_pages
* pages_per_huge_page(h
);
2238 return nr_total_pages
;
2241 static int hugetlb_acct_memory(struct hstate
*h
, long delta
)
2245 spin_lock(&hugetlb_lock
);
2247 * When cpuset is configured, it breaks the strict hugetlb page
2248 * reservation as the accounting is done on a global variable. Such
2249 * reservation is completely rubbish in the presence of cpuset because
2250 * the reservation is not checked against page availability for the
2251 * current cpuset. Application can still potentially OOM'ed by kernel
2252 * with lack of free htlb page in cpuset that the task is in.
2253 * Attempt to enforce strict accounting with cpuset is almost
2254 * impossible (or too ugly) because cpuset is too fluid that
2255 * task or memory node can be dynamically moved between cpusets.
2257 * The change of semantics for shared hugetlb mapping with cpuset is
2258 * undesirable. However, in order to preserve some of the semantics,
2259 * we fall back to check against current free page availability as
2260 * a best attempt and hopefully to minimize the impact of changing
2261 * semantics that cpuset has.
2264 if (gather_surplus_pages(h
, delta
) < 0)
2267 if (delta
> cpuset_mems_nr(h
->free_huge_pages_node
)) {
2268 return_unused_surplus_pages(h
, delta
);
2275 return_unused_surplus_pages(h
, (unsigned long) -delta
);
2278 spin_unlock(&hugetlb_lock
);
2282 static void hugetlb_vm_op_open(struct vm_area_struct
*vma
)
2284 struct resv_map
*resv
= vma_resv_map(vma
);
2287 * This new VMA should share its siblings reservation map if present.
2288 * The VMA will only ever have a valid reservation map pointer where
2289 * it is being copied for another still existing VMA. As that VMA
2290 * has a reference to the reservation map it cannot disappear until
2291 * after this open call completes. It is therefore safe to take a
2292 * new reference here without additional locking.
2294 if (resv
&& is_vma_resv_set(vma
, HPAGE_RESV_OWNER
))
2295 kref_get(&resv
->refs
);
2298 static void hugetlb_vm_op_close(struct vm_area_struct
*vma
)
2300 struct hstate
*h
= hstate_vma(vma
);
2301 struct resv_map
*resv
= vma_resv_map(vma
);
2302 struct hugepage_subpool
*spool
= subpool_vma(vma
);
2303 unsigned long reserve
, start
, end
;
2305 if (!resv
|| !is_vma_resv_set(vma
, HPAGE_RESV_OWNER
))
2308 start
= vma_hugecache_offset(h
, vma
, vma
->vm_start
);
2309 end
= vma_hugecache_offset(h
, vma
, vma
->vm_end
);
2311 reserve
= (end
- start
) - region_count(resv
, start
, end
);
2313 kref_put(&resv
->refs
, resv_map_release
);
2316 hugetlb_acct_memory(h
, -reserve
);
2317 hugepage_subpool_put_pages(spool
, reserve
);
2322 * We cannot handle pagefaults against hugetlb pages at all. They cause
2323 * handle_mm_fault() to try to instantiate regular-sized pages in the
2324 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
2327 static int hugetlb_vm_op_fault(struct vm_area_struct
*vma
, struct vm_fault
*vmf
)
2333 const struct vm_operations_struct hugetlb_vm_ops
= {
2334 .fault
= hugetlb_vm_op_fault
,
2335 .open
= hugetlb_vm_op_open
,
2336 .close
= hugetlb_vm_op_close
,
2339 static pte_t
make_huge_pte(struct vm_area_struct
*vma
, struct page
*page
,
2345 entry
= huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page
,
2346 vma
->vm_page_prot
)));
2348 entry
= huge_pte_wrprotect(mk_huge_pte(page
,
2349 vma
->vm_page_prot
));
2351 entry
= pte_mkyoung(entry
);
2352 entry
= pte_mkhuge(entry
);
2353 entry
= arch_make_huge_pte(entry
, vma
, page
, writable
);
2358 static void set_huge_ptep_writable(struct vm_area_struct
*vma
,
2359 unsigned long address
, pte_t
*ptep
)
2363 entry
= huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep
)));
2364 if (huge_ptep_set_access_flags(vma
, address
, ptep
, entry
, 1))
2365 update_mmu_cache(vma
, address
, ptep
);
2369 int copy_hugetlb_page_range(struct mm_struct
*dst
, struct mm_struct
*src
,
2370 struct vm_area_struct
*vma
)
2372 pte_t
*src_pte
, *dst_pte
, entry
;
2373 struct page
*ptepage
;
2376 struct hstate
*h
= hstate_vma(vma
);
2377 unsigned long sz
= huge_page_size(h
);
2378 unsigned long mmun_start
; /* For mmu_notifiers */
2379 unsigned long mmun_end
; /* For mmu_notifiers */
2382 cow
= (vma
->vm_flags
& (VM_SHARED
| VM_MAYWRITE
)) == VM_MAYWRITE
;
2384 mmun_start
= vma
->vm_start
;
2385 mmun_end
= vma
->vm_end
;
2387 mmu_notifier_invalidate_range_start(src
, mmun_start
, mmun_end
);
2389 for (addr
= vma
->vm_start
; addr
< vma
->vm_end
; addr
+= sz
) {
2390 spinlock_t
*src_ptl
, *dst_ptl
;
2391 src_pte
= huge_pte_offset(src
, addr
);
2394 dst_pte
= huge_pte_alloc(dst
, addr
, sz
);
2400 /* If the pagetables are shared don't copy or take references */
2401 if (dst_pte
== src_pte
)
2404 dst_ptl
= huge_pte_lock(h
, dst
, dst_pte
);
2405 src_ptl
= huge_pte_lockptr(h
, src
, src_pte
);
2406 spin_lock_nested(src_ptl
, SINGLE_DEPTH_NESTING
);
2407 if (!huge_pte_none(huge_ptep_get(src_pte
))) {
2409 huge_ptep_set_wrprotect(src
, addr
, src_pte
);
2410 entry
= huge_ptep_get(src_pte
);
2411 ptepage
= pte_page(entry
);
2413 page_dup_rmap(ptepage
);
2414 set_huge_pte_at(dst
, addr
, dst_pte
, entry
);
2416 spin_unlock(src_ptl
);
2417 spin_unlock(dst_ptl
);
2421 mmu_notifier_invalidate_range_end(src
, mmun_start
, mmun_end
);
2426 static int is_hugetlb_entry_migration(pte_t pte
)
2430 if (huge_pte_none(pte
) || pte_present(pte
))
2432 swp
= pte_to_swp_entry(pte
);
2433 if (non_swap_entry(swp
) && is_migration_entry(swp
))
2439 static int is_hugetlb_entry_hwpoisoned(pte_t pte
)
2443 if (huge_pte_none(pte
) || pte_present(pte
))
2445 swp
= pte_to_swp_entry(pte
);
2446 if (non_swap_entry(swp
) && is_hwpoison_entry(swp
))
2452 void __unmap_hugepage_range(struct mmu_gather
*tlb
, struct vm_area_struct
*vma
,
2453 unsigned long start
, unsigned long end
,
2454 struct page
*ref_page
)
2456 int force_flush
= 0;
2457 struct mm_struct
*mm
= vma
->vm_mm
;
2458 unsigned long address
;
2463 struct hstate
*h
= hstate_vma(vma
);
2464 unsigned long sz
= huge_page_size(h
);
2465 const unsigned long mmun_start
= start
; /* For mmu_notifiers */
2466 const unsigned long mmun_end
= end
; /* For mmu_notifiers */
2468 WARN_ON(!is_vm_hugetlb_page(vma
));
2469 BUG_ON(start
& ~huge_page_mask(h
));
2470 BUG_ON(end
& ~huge_page_mask(h
));
2472 tlb_start_vma(tlb
, vma
);
2473 mmu_notifier_invalidate_range_start(mm
, mmun_start
, mmun_end
);
2475 for (address
= start
; address
< end
; address
+= sz
) {
2476 ptep
= huge_pte_offset(mm
, address
);
2480 ptl
= huge_pte_lock(h
, mm
, ptep
);
2481 if (huge_pmd_unshare(mm
, &address
, ptep
))
2484 pte
= huge_ptep_get(ptep
);
2485 if (huge_pte_none(pte
))
2489 * HWPoisoned hugepage is already unmapped and dropped reference
2491 if (unlikely(is_hugetlb_entry_hwpoisoned(pte
))) {
2492 huge_pte_clear(mm
, address
, ptep
);
2496 page
= pte_page(pte
);
2498 * If a reference page is supplied, it is because a specific
2499 * page is being unmapped, not a range. Ensure the page we
2500 * are about to unmap is the actual page of interest.
2503 if (page
!= ref_page
)
2507 * Mark the VMA as having unmapped its page so that
2508 * future faults in this VMA will fail rather than
2509 * looking like data was lost
2511 set_vma_resv_flags(vma
, HPAGE_RESV_UNMAPPED
);
2514 pte
= huge_ptep_get_and_clear(mm
, address
, ptep
);
2515 tlb_remove_tlb_entry(tlb
, ptep
, address
);
2516 if (huge_pte_dirty(pte
))
2517 set_page_dirty(page
);
2519 page_remove_rmap(page
);
2520 force_flush
= !__tlb_remove_page(tlb
, page
);
2525 /* Bail out after unmapping reference page if supplied */
2534 * mmu_gather ran out of room to batch pages, we break out of
2535 * the PTE lock to avoid doing the potential expensive TLB invalidate
2536 * and page-free while holding it.
2541 if (address
< end
&& !ref_page
)
2544 mmu_notifier_invalidate_range_end(mm
, mmun_start
, mmun_end
);
2545 tlb_end_vma(tlb
, vma
);
2548 void __unmap_hugepage_range_final(struct mmu_gather
*tlb
,
2549 struct vm_area_struct
*vma
, unsigned long start
,
2550 unsigned long end
, struct page
*ref_page
)
2552 __unmap_hugepage_range(tlb
, vma
, start
, end
, ref_page
);
2555 * Clear this flag so that x86's huge_pmd_share page_table_shareable
2556 * test will fail on a vma being torn down, and not grab a page table
2557 * on its way out. We're lucky that the flag has such an appropriate
2558 * name, and can in fact be safely cleared here. We could clear it
2559 * before the __unmap_hugepage_range above, but all that's necessary
2560 * is to clear it before releasing the i_mmap_mutex. This works
2561 * because in the context this is called, the VMA is about to be
2562 * destroyed and the i_mmap_mutex is held.
2564 vma
->vm_flags
&= ~VM_MAYSHARE
;
2567 void unmap_hugepage_range(struct vm_area_struct
*vma
, unsigned long start
,
2568 unsigned long end
, struct page
*ref_page
)
2570 struct mm_struct
*mm
;
2571 struct mmu_gather tlb
;
2575 tlb_gather_mmu(&tlb
, mm
, start
, end
);
2576 __unmap_hugepage_range(&tlb
, vma
, start
, end
, ref_page
);
2577 tlb_finish_mmu(&tlb
, start
, end
);
2581 * This is called when the original mapper is failing to COW a MAP_PRIVATE
2582 * mappping it owns the reserve page for. The intention is to unmap the page
2583 * from other VMAs and let the children be SIGKILLed if they are faulting the
2586 static int unmap_ref_private(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2587 struct page
*page
, unsigned long address
)
2589 struct hstate
*h
= hstate_vma(vma
);
2590 struct vm_area_struct
*iter_vma
;
2591 struct address_space
*mapping
;
2595 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
2596 * from page cache lookup which is in HPAGE_SIZE units.
2598 address
= address
& huge_page_mask(h
);
2599 pgoff
= ((address
- vma
->vm_start
) >> PAGE_SHIFT
) +
2601 mapping
= file_inode(vma
->vm_file
)->i_mapping
;
2604 * Take the mapping lock for the duration of the table walk. As
2605 * this mapping should be shared between all the VMAs,
2606 * __unmap_hugepage_range() is called as the lock is already held
2608 mutex_lock(&mapping
->i_mmap_mutex
);
2609 vma_interval_tree_foreach(iter_vma
, &mapping
->i_mmap
, pgoff
, pgoff
) {
2610 /* Do not unmap the current VMA */
2611 if (iter_vma
== vma
)
2615 * Unmap the page from other VMAs without their own reserves.
2616 * They get marked to be SIGKILLed if they fault in these
2617 * areas. This is because a future no-page fault on this VMA
2618 * could insert a zeroed page instead of the data existing
2619 * from the time of fork. This would look like data corruption
2621 if (!is_vma_resv_set(iter_vma
, HPAGE_RESV_OWNER
))
2622 unmap_hugepage_range(iter_vma
, address
,
2623 address
+ huge_page_size(h
), page
);
2625 mutex_unlock(&mapping
->i_mmap_mutex
);
2631 * Hugetlb_cow() should be called with page lock of the original hugepage held.
2632 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
2633 * cannot race with other handlers or page migration.
2634 * Keep the pte_same checks anyway to make transition from the mutex easier.
2636 static int hugetlb_cow(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2637 unsigned long address
, pte_t
*ptep
, pte_t pte
,
2638 struct page
*pagecache_page
, spinlock_t
*ptl
)
2640 struct hstate
*h
= hstate_vma(vma
);
2641 struct page
*old_page
, *new_page
;
2642 int outside_reserve
= 0;
2643 unsigned long mmun_start
; /* For mmu_notifiers */
2644 unsigned long mmun_end
; /* For mmu_notifiers */
2646 old_page
= pte_page(pte
);
2649 /* If no-one else is actually using this page, avoid the copy
2650 * and just make the page writable */
2651 if (page_mapcount(old_page
) == 1 && PageAnon(old_page
)) {
2652 page_move_anon_rmap(old_page
, vma
, address
);
2653 set_huge_ptep_writable(vma
, address
, ptep
);
2658 * If the process that created a MAP_PRIVATE mapping is about to
2659 * perform a COW due to a shared page count, attempt to satisfy
2660 * the allocation without using the existing reserves. The pagecache
2661 * page is used to determine if the reserve at this address was
2662 * consumed or not. If reserves were used, a partial faulted mapping
2663 * at the time of fork() could consume its reserves on COW instead
2664 * of the full address range.
2666 if (is_vma_resv_set(vma
, HPAGE_RESV_OWNER
) &&
2667 old_page
!= pagecache_page
)
2668 outside_reserve
= 1;
2670 page_cache_get(old_page
);
2672 /* Drop page table lock as buddy allocator may be called */
2674 new_page
= alloc_huge_page(vma
, address
, outside_reserve
);
2676 if (IS_ERR(new_page
)) {
2677 long err
= PTR_ERR(new_page
);
2678 page_cache_release(old_page
);
2681 * If a process owning a MAP_PRIVATE mapping fails to COW,
2682 * it is due to references held by a child and an insufficient
2683 * huge page pool. To guarantee the original mappers
2684 * reliability, unmap the page from child processes. The child
2685 * may get SIGKILLed if it later faults.
2687 if (outside_reserve
) {
2688 BUG_ON(huge_pte_none(pte
));
2689 if (unmap_ref_private(mm
, vma
, old_page
, address
)) {
2690 BUG_ON(huge_pte_none(pte
));
2692 ptep
= huge_pte_offset(mm
, address
& huge_page_mask(h
));
2693 if (likely(pte_same(huge_ptep_get(ptep
), pte
)))
2694 goto retry_avoidcopy
;
2696 * race occurs while re-acquiring page table
2697 * lock, and our job is done.
2704 /* Caller expects lock to be held */
2707 return VM_FAULT_OOM
;
2709 return VM_FAULT_SIGBUS
;
2713 * When the original hugepage is shared one, it does not have
2714 * anon_vma prepared.
2716 if (unlikely(anon_vma_prepare(vma
))) {
2717 page_cache_release(new_page
);
2718 page_cache_release(old_page
);
2719 /* Caller expects lock to be held */
2721 return VM_FAULT_OOM
;
2724 copy_user_huge_page(new_page
, old_page
, address
, vma
,
2725 pages_per_huge_page(h
));
2726 __SetPageUptodate(new_page
);
2728 mmun_start
= address
& huge_page_mask(h
);
2729 mmun_end
= mmun_start
+ huge_page_size(h
);
2730 mmu_notifier_invalidate_range_start(mm
, mmun_start
, mmun_end
);
2732 * Retake the page table lock to check for racing updates
2733 * before the page tables are altered
2736 ptep
= huge_pte_offset(mm
, address
& huge_page_mask(h
));
2737 if (likely(pte_same(huge_ptep_get(ptep
), pte
))) {
2738 ClearPagePrivate(new_page
);
2741 huge_ptep_clear_flush(vma
, address
, ptep
);
2742 set_huge_pte_at(mm
, address
, ptep
,
2743 make_huge_pte(vma
, new_page
, 1));
2744 page_remove_rmap(old_page
);
2745 hugepage_add_new_anon_rmap(new_page
, vma
, address
);
2746 /* Make the old page be freed below */
2747 new_page
= old_page
;
2750 mmu_notifier_invalidate_range_end(mm
, mmun_start
, mmun_end
);
2751 page_cache_release(new_page
);
2752 page_cache_release(old_page
);
2754 /* Caller expects lock to be held */
2759 /* Return the pagecache page at a given address within a VMA */
2760 static struct page
*hugetlbfs_pagecache_page(struct hstate
*h
,
2761 struct vm_area_struct
*vma
, unsigned long address
)
2763 struct address_space
*mapping
;
2766 mapping
= vma
->vm_file
->f_mapping
;
2767 idx
= vma_hugecache_offset(h
, vma
, address
);
2769 return find_lock_page(mapping
, idx
);
2773 * Return whether there is a pagecache page to back given address within VMA.
2774 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
2776 static bool hugetlbfs_pagecache_present(struct hstate
*h
,
2777 struct vm_area_struct
*vma
, unsigned long address
)
2779 struct address_space
*mapping
;
2783 mapping
= vma
->vm_file
->f_mapping
;
2784 idx
= vma_hugecache_offset(h
, vma
, address
);
2786 page
= find_get_page(mapping
, idx
);
2789 return page
!= NULL
;
2792 static int hugetlb_no_page(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2793 struct address_space
*mapping
, pgoff_t idx
,
2794 unsigned long address
, pte_t
*ptep
, unsigned int flags
)
2796 struct hstate
*h
= hstate_vma(vma
);
2797 int ret
= VM_FAULT_SIGBUS
;
2805 * Currently, we are forced to kill the process in the event the
2806 * original mapper has unmapped pages from the child due to a failed
2807 * COW. Warn that such a situation has occurred as it may not be obvious
2809 if (is_vma_resv_set(vma
, HPAGE_RESV_UNMAPPED
)) {
2810 pr_warning("PID %d killed due to inadequate hugepage pool\n",
2816 * Use page lock to guard against racing truncation
2817 * before we get page_table_lock.
2820 page
= find_lock_page(mapping
, idx
);
2822 size
= i_size_read(mapping
->host
) >> huge_page_shift(h
);
2825 page
= alloc_huge_page(vma
, address
, 0);
2827 ret
= PTR_ERR(page
);
2831 ret
= VM_FAULT_SIGBUS
;
2834 clear_huge_page(page
, address
, pages_per_huge_page(h
));
2835 __SetPageUptodate(page
);
2837 if (vma
->vm_flags
& VM_MAYSHARE
) {
2839 struct inode
*inode
= mapping
->host
;
2841 err
= add_to_page_cache(page
, mapping
, idx
, GFP_KERNEL
);
2848 ClearPagePrivate(page
);
2850 spin_lock(&inode
->i_lock
);
2851 inode
->i_blocks
+= blocks_per_huge_page(h
);
2852 spin_unlock(&inode
->i_lock
);
2855 if (unlikely(anon_vma_prepare(vma
))) {
2857 goto backout_unlocked
;
2863 * If memory error occurs between mmap() and fault, some process
2864 * don't have hwpoisoned swap entry for errored virtual address.
2865 * So we need to block hugepage fault by PG_hwpoison bit check.
2867 if (unlikely(PageHWPoison(page
))) {
2868 ret
= VM_FAULT_HWPOISON
|
2869 VM_FAULT_SET_HINDEX(hstate_index(h
));
2870 goto backout_unlocked
;
2875 * If we are going to COW a private mapping later, we examine the
2876 * pending reservations for this page now. This will ensure that
2877 * any allocations necessary to record that reservation occur outside
2880 if ((flags
& FAULT_FLAG_WRITE
) && !(vma
->vm_flags
& VM_SHARED
))
2881 if (vma_needs_reservation(h
, vma
, address
) < 0) {
2883 goto backout_unlocked
;
2886 ptl
= huge_pte_lockptr(h
, mm
, ptep
);
2888 size
= i_size_read(mapping
->host
) >> huge_page_shift(h
);
2893 if (!huge_pte_none(huge_ptep_get(ptep
)))
2897 ClearPagePrivate(page
);
2898 hugepage_add_new_anon_rmap(page
, vma
, address
);
2901 page_dup_rmap(page
);
2902 new_pte
= make_huge_pte(vma
, page
, ((vma
->vm_flags
& VM_WRITE
)
2903 && (vma
->vm_flags
& VM_SHARED
)));
2904 set_huge_pte_at(mm
, address
, ptep
, new_pte
);
2906 if ((flags
& FAULT_FLAG_WRITE
) && !(vma
->vm_flags
& VM_SHARED
)) {
2907 /* Optimization, do the COW without a second fault */
2908 ret
= hugetlb_cow(mm
, vma
, address
, ptep
, new_pte
, page
, ptl
);
2925 static u32
fault_mutex_hash(struct hstate
*h
, struct mm_struct
*mm
,
2926 struct vm_area_struct
*vma
,
2927 struct address_space
*mapping
,
2928 pgoff_t idx
, unsigned long address
)
2930 unsigned long key
[2];
2933 if (vma
->vm_flags
& VM_SHARED
) {
2934 key
[0] = (unsigned long) mapping
;
2937 key
[0] = (unsigned long) mm
;
2938 key
[1] = address
>> huge_page_shift(h
);
2941 hash
= jhash2((u32
*)&key
, sizeof(key
)/sizeof(u32
), 0);
2943 return hash
& (num_fault_mutexes
- 1);
2947 * For uniprocesor systems we always use a single mutex, so just
2948 * return 0 and avoid the hashing overhead.
2950 static u32
fault_mutex_hash(struct hstate
*h
, struct mm_struct
*mm
,
2951 struct vm_area_struct
*vma
,
2952 struct address_space
*mapping
,
2953 pgoff_t idx
, unsigned long address
)
2959 int hugetlb_fault(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2960 unsigned long address
, unsigned int flags
)
2967 struct page
*page
= NULL
;
2968 struct page
*pagecache_page
= NULL
;
2969 struct hstate
*h
= hstate_vma(vma
);
2970 struct address_space
*mapping
;
2972 address
&= huge_page_mask(h
);
2974 ptep
= huge_pte_offset(mm
, address
);
2976 entry
= huge_ptep_get(ptep
);
2977 if (unlikely(is_hugetlb_entry_migration(entry
))) {
2978 migration_entry_wait_huge(vma
, mm
, ptep
);
2980 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry
)))
2981 return VM_FAULT_HWPOISON_LARGE
|
2982 VM_FAULT_SET_HINDEX(hstate_index(h
));
2985 ptep
= huge_pte_alloc(mm
, address
, huge_page_size(h
));
2987 return VM_FAULT_OOM
;
2989 mapping
= vma
->vm_file
->f_mapping
;
2990 idx
= vma_hugecache_offset(h
, vma
, address
);
2993 * Serialize hugepage allocation and instantiation, so that we don't
2994 * get spurious allocation failures if two CPUs race to instantiate
2995 * the same page in the page cache.
2997 hash
= fault_mutex_hash(h
, mm
, vma
, mapping
, idx
, address
);
2998 mutex_lock(&htlb_fault_mutex_table
[hash
]);
3000 entry
= huge_ptep_get(ptep
);
3001 if (huge_pte_none(entry
)) {
3002 ret
= hugetlb_no_page(mm
, vma
, mapping
, idx
, address
, ptep
, flags
);
3009 * If we are going to COW the mapping later, we examine the pending
3010 * reservations for this page now. This will ensure that any
3011 * allocations necessary to record that reservation occur outside the
3012 * spinlock. For private mappings, we also lookup the pagecache
3013 * page now as it is used to determine if a reservation has been
3016 if ((flags
& FAULT_FLAG_WRITE
) && !huge_pte_write(entry
)) {
3017 if (vma_needs_reservation(h
, vma
, address
) < 0) {
3022 if (!(vma
->vm_flags
& VM_MAYSHARE
))
3023 pagecache_page
= hugetlbfs_pagecache_page(h
,
3028 * hugetlb_cow() requires page locks of pte_page(entry) and
3029 * pagecache_page, so here we need take the former one
3030 * when page != pagecache_page or !pagecache_page.
3031 * Note that locking order is always pagecache_page -> page,
3032 * so no worry about deadlock.
3034 page
= pte_page(entry
);
3036 if (page
!= pagecache_page
)
3039 ptl
= huge_pte_lockptr(h
, mm
, ptep
);
3041 /* Check for a racing update before calling hugetlb_cow */
3042 if (unlikely(!pte_same(entry
, huge_ptep_get(ptep
))))
3046 if (flags
& FAULT_FLAG_WRITE
) {
3047 if (!huge_pte_write(entry
)) {
3048 ret
= hugetlb_cow(mm
, vma
, address
, ptep
, entry
,
3049 pagecache_page
, ptl
);
3052 entry
= huge_pte_mkdirty(entry
);
3054 entry
= pte_mkyoung(entry
);
3055 if (huge_ptep_set_access_flags(vma
, address
, ptep
, entry
,
3056 flags
& FAULT_FLAG_WRITE
))
3057 update_mmu_cache(vma
, address
, ptep
);
3062 if (pagecache_page
) {
3063 unlock_page(pagecache_page
);
3064 put_page(pagecache_page
);
3066 if (page
!= pagecache_page
)
3071 mutex_unlock(&htlb_fault_mutex_table
[hash
]);
3075 long follow_hugetlb_page(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
3076 struct page
**pages
, struct vm_area_struct
**vmas
,
3077 unsigned long *position
, unsigned long *nr_pages
,
3078 long i
, unsigned int flags
)
3080 unsigned long pfn_offset
;
3081 unsigned long vaddr
= *position
;
3082 unsigned long remainder
= *nr_pages
;
3083 struct hstate
*h
= hstate_vma(vma
);
3085 while (vaddr
< vma
->vm_end
&& remainder
) {
3087 spinlock_t
*ptl
= NULL
;
3092 * Some archs (sparc64, sh*) have multiple pte_ts to
3093 * each hugepage. We have to make sure we get the
3094 * first, for the page indexing below to work.
3096 * Note that page table lock is not held when pte is null.
3098 pte
= huge_pte_offset(mm
, vaddr
& huge_page_mask(h
));
3100 ptl
= huge_pte_lock(h
, mm
, pte
);
3101 absent
= !pte
|| huge_pte_none(huge_ptep_get(pte
));
3104 * When coredumping, it suits get_dump_page if we just return
3105 * an error where there's an empty slot with no huge pagecache
3106 * to back it. This way, we avoid allocating a hugepage, and
3107 * the sparse dumpfile avoids allocating disk blocks, but its
3108 * huge holes still show up with zeroes where they need to be.
3110 if (absent
&& (flags
& FOLL_DUMP
) &&
3111 !hugetlbfs_pagecache_present(h
, vma
, vaddr
)) {
3119 * We need call hugetlb_fault for both hugepages under migration
3120 * (in which case hugetlb_fault waits for the migration,) and
3121 * hwpoisoned hugepages (in which case we need to prevent the
3122 * caller from accessing to them.) In order to do this, we use
3123 * here is_swap_pte instead of is_hugetlb_entry_migration and
3124 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
3125 * both cases, and because we can't follow correct pages
3126 * directly from any kind of swap entries.
3128 if (absent
|| is_swap_pte(huge_ptep_get(pte
)) ||
3129 ((flags
& FOLL_WRITE
) &&
3130 !huge_pte_write(huge_ptep_get(pte
)))) {
3135 ret
= hugetlb_fault(mm
, vma
, vaddr
,
3136 (flags
& FOLL_WRITE
) ? FAULT_FLAG_WRITE
: 0);
3137 if (!(ret
& VM_FAULT_ERROR
))
3144 pfn_offset
= (vaddr
& ~huge_page_mask(h
)) >> PAGE_SHIFT
;
3145 page
= pte_page(huge_ptep_get(pte
));
3148 pages
[i
] = mem_map_offset(page
, pfn_offset
);
3149 get_page_foll(pages
[i
]);
3159 if (vaddr
< vma
->vm_end
&& remainder
&&
3160 pfn_offset
< pages_per_huge_page(h
)) {
3162 * We use pfn_offset to avoid touching the pageframes
3163 * of this compound page.
3169 *nr_pages
= remainder
;
3172 return i
? i
: -EFAULT
;
3175 unsigned long hugetlb_change_protection(struct vm_area_struct
*vma
,
3176 unsigned long address
, unsigned long end
, pgprot_t newprot
)
3178 struct mm_struct
*mm
= vma
->vm_mm
;
3179 unsigned long start
= address
;
3182 struct hstate
*h
= hstate_vma(vma
);
3183 unsigned long pages
= 0;
3185 BUG_ON(address
>= end
);
3186 flush_cache_range(vma
, address
, end
);
3188 mutex_lock(&vma
->vm_file
->f_mapping
->i_mmap_mutex
);
3189 for (; address
< end
; address
+= huge_page_size(h
)) {
3191 ptep
= huge_pte_offset(mm
, address
);
3194 ptl
= huge_pte_lock(h
, mm
, ptep
);
3195 if (huge_pmd_unshare(mm
, &address
, ptep
)) {
3200 if (!huge_pte_none(huge_ptep_get(ptep
))) {
3201 pte
= huge_ptep_get_and_clear(mm
, address
, ptep
);
3202 pte
= pte_mkhuge(huge_pte_modify(pte
, newprot
));
3203 pte
= arch_make_huge_pte(pte
, vma
, NULL
, 0);
3204 set_huge_pte_at(mm
, address
, ptep
, pte
);
3210 * Must flush TLB before releasing i_mmap_mutex: x86's huge_pmd_unshare
3211 * may have cleared our pud entry and done put_page on the page table:
3212 * once we release i_mmap_mutex, another task can do the final put_page
3213 * and that page table be reused and filled with junk.
3215 flush_tlb_range(vma
, start
, end
);
3216 mutex_unlock(&vma
->vm_file
->f_mapping
->i_mmap_mutex
);
3218 return pages
<< h
->order
;
3221 int hugetlb_reserve_pages(struct inode
*inode
,
3223 struct vm_area_struct
*vma
,
3224 vm_flags_t vm_flags
)
3227 struct hstate
*h
= hstate_inode(inode
);
3228 struct hugepage_subpool
*spool
= subpool_inode(inode
);
3229 struct resv_map
*resv_map
;
3232 * Only apply hugepage reservation if asked. At fault time, an
3233 * attempt will be made for VM_NORESERVE to allocate a page
3234 * without using reserves
3236 if (vm_flags
& VM_NORESERVE
)
3240 * Shared mappings base their reservation on the number of pages that
3241 * are already allocated on behalf of the file. Private mappings need
3242 * to reserve the full area even if read-only as mprotect() may be
3243 * called to make the mapping read-write. Assume !vma is a shm mapping
3245 if (!vma
|| vma
->vm_flags
& VM_MAYSHARE
) {
3246 resv_map
= inode_resv_map(inode
);
3248 chg
= region_chg(resv_map
, from
, to
);
3251 resv_map
= resv_map_alloc();
3257 set_vma_resv_map(vma
, resv_map
);
3258 set_vma_resv_flags(vma
, HPAGE_RESV_OWNER
);
3266 /* There must be enough pages in the subpool for the mapping */
3267 if (hugepage_subpool_get_pages(spool
, chg
)) {
3273 * Check enough hugepages are available for the reservation.
3274 * Hand the pages back to the subpool if there are not
3276 ret
= hugetlb_acct_memory(h
, chg
);
3278 hugepage_subpool_put_pages(spool
, chg
);
3283 * Account for the reservations made. Shared mappings record regions
3284 * that have reservations as they are shared by multiple VMAs.
3285 * When the last VMA disappears, the region map says how much
3286 * the reservation was and the page cache tells how much of
3287 * the reservation was consumed. Private mappings are per-VMA and
3288 * only the consumed reservations are tracked. When the VMA
3289 * disappears, the original reservation is the VMA size and the
3290 * consumed reservations are stored in the map. Hence, nothing
3291 * else has to be done for private mappings here
3293 if (!vma
|| vma
->vm_flags
& VM_MAYSHARE
)
3294 region_add(resv_map
, from
, to
);
3297 if (vma
&& is_vma_resv_set(vma
, HPAGE_RESV_OWNER
))
3298 kref_put(&resv_map
->refs
, resv_map_release
);
3302 void hugetlb_unreserve_pages(struct inode
*inode
, long offset
, long freed
)
3304 struct hstate
*h
= hstate_inode(inode
);
3305 struct resv_map
*resv_map
= inode_resv_map(inode
);
3307 struct hugepage_subpool
*spool
= subpool_inode(inode
);
3310 chg
= region_truncate(resv_map
, offset
);
3311 spin_lock(&inode
->i_lock
);
3312 inode
->i_blocks
-= (blocks_per_huge_page(h
) * freed
);
3313 spin_unlock(&inode
->i_lock
);
3315 hugepage_subpool_put_pages(spool
, (chg
- freed
));
3316 hugetlb_acct_memory(h
, -(chg
- freed
));
3319 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
3320 static unsigned long page_table_shareable(struct vm_area_struct
*svma
,
3321 struct vm_area_struct
*vma
,
3322 unsigned long addr
, pgoff_t idx
)
3324 unsigned long saddr
= ((idx
- svma
->vm_pgoff
) << PAGE_SHIFT
) +
3326 unsigned long sbase
= saddr
& PUD_MASK
;
3327 unsigned long s_end
= sbase
+ PUD_SIZE
;
3329 /* Allow segments to share if only one is marked locked */
3330 unsigned long vm_flags
= vma
->vm_flags
& ~VM_LOCKED
;
3331 unsigned long svm_flags
= svma
->vm_flags
& ~VM_LOCKED
;
3334 * match the virtual addresses, permission and the alignment of the
3337 if (pmd_index(addr
) != pmd_index(saddr
) ||
3338 vm_flags
!= svm_flags
||
3339 sbase
< svma
->vm_start
|| svma
->vm_end
< s_end
)
3345 static int vma_shareable(struct vm_area_struct
*vma
, unsigned long addr
)
3347 unsigned long base
= addr
& PUD_MASK
;
3348 unsigned long end
= base
+ PUD_SIZE
;
3351 * check on proper vm_flags and page table alignment
3353 if (vma
->vm_flags
& VM_MAYSHARE
&&
3354 vma
->vm_start
<= base
&& end
<= vma
->vm_end
)
3360 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
3361 * and returns the corresponding pte. While this is not necessary for the
3362 * !shared pmd case because we can allocate the pmd later as well, it makes the
3363 * code much cleaner. pmd allocation is essential for the shared case because
3364 * pud has to be populated inside the same i_mmap_mutex section - otherwise
3365 * racing tasks could either miss the sharing (see huge_pte_offset) or select a
3366 * bad pmd for sharing.
3368 pte_t
*huge_pmd_share(struct mm_struct
*mm
, unsigned long addr
, pud_t
*pud
)
3370 struct vm_area_struct
*vma
= find_vma(mm
, addr
);
3371 struct address_space
*mapping
= vma
->vm_file
->f_mapping
;
3372 pgoff_t idx
= ((addr
- vma
->vm_start
) >> PAGE_SHIFT
) +
3374 struct vm_area_struct
*svma
;
3375 unsigned long saddr
;
3380 if (!vma_shareable(vma
, addr
))
3381 return (pte_t
*)pmd_alloc(mm
, pud
, addr
);
3383 mutex_lock(&mapping
->i_mmap_mutex
);
3384 vma_interval_tree_foreach(svma
, &mapping
->i_mmap
, idx
, idx
) {
3388 saddr
= page_table_shareable(svma
, vma
, addr
, idx
);
3390 spte
= huge_pte_offset(svma
->vm_mm
, saddr
);
3392 get_page(virt_to_page(spte
));
3401 ptl
= huge_pte_lockptr(hstate_vma(vma
), mm
, spte
);
3404 pud_populate(mm
, pud
,
3405 (pmd_t
*)((unsigned long)spte
& PAGE_MASK
));
3407 put_page(virt_to_page(spte
));
3410 pte
= (pte_t
*)pmd_alloc(mm
, pud
, addr
);
3411 mutex_unlock(&mapping
->i_mmap_mutex
);
3416 * unmap huge page backed by shared pte.
3418 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared
3419 * indicated by page_count > 1, unmap is achieved by clearing pud and
3420 * decrementing the ref count. If count == 1, the pte page is not shared.
3422 * called with page table lock held.
3424 * returns: 1 successfully unmapped a shared pte page
3425 * 0 the underlying pte page is not shared, or it is the last user
3427 int huge_pmd_unshare(struct mm_struct
*mm
, unsigned long *addr
, pte_t
*ptep
)
3429 pgd_t
*pgd
= pgd_offset(mm
, *addr
);
3430 pud_t
*pud
= pud_offset(pgd
, *addr
);
3432 BUG_ON(page_count(virt_to_page(ptep
)) == 0);
3433 if (page_count(virt_to_page(ptep
)) == 1)
3437 put_page(virt_to_page(ptep
));
3438 *addr
= ALIGN(*addr
, HPAGE_SIZE
* PTRS_PER_PTE
) - HPAGE_SIZE
;
3441 #define want_pmd_share() (1)
3442 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
3443 pte_t
*huge_pmd_share(struct mm_struct
*mm
, unsigned long addr
, pud_t
*pud
)
3447 #define want_pmd_share() (0)
3448 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
3450 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
3451 pte_t
*huge_pte_alloc(struct mm_struct
*mm
,
3452 unsigned long addr
, unsigned long sz
)
3458 pgd
= pgd_offset(mm
, addr
);
3459 pud
= pud_alloc(mm
, pgd
, addr
);
3461 if (sz
== PUD_SIZE
) {
3464 BUG_ON(sz
!= PMD_SIZE
);
3465 if (want_pmd_share() && pud_none(*pud
))
3466 pte
= huge_pmd_share(mm
, addr
, pud
);
3468 pte
= (pte_t
*)pmd_alloc(mm
, pud
, addr
);
3471 BUG_ON(pte
&& !pte_none(*pte
) && !pte_huge(*pte
));
3476 pte_t
*huge_pte_offset(struct mm_struct
*mm
, unsigned long addr
)
3482 pgd
= pgd_offset(mm
, addr
);
3483 if (pgd_present(*pgd
)) {
3484 pud
= pud_offset(pgd
, addr
);
3485 if (pud_present(*pud
)) {
3487 return (pte_t
*)pud
;
3488 pmd
= pmd_offset(pud
, addr
);
3491 return (pte_t
*) pmd
;
3495 follow_huge_pmd(struct mm_struct
*mm
, unsigned long address
,
3496 pmd_t
*pmd
, int write
)
3500 page
= pte_page(*(pte_t
*)pmd
);
3502 page
+= ((address
& ~PMD_MASK
) >> PAGE_SHIFT
);
3507 follow_huge_pud(struct mm_struct
*mm
, unsigned long address
,
3508 pud_t
*pud
, int write
)
3512 page
= pte_page(*(pte_t
*)pud
);
3514 page
+= ((address
& ~PUD_MASK
) >> PAGE_SHIFT
);
3518 #else /* !CONFIG_ARCH_WANT_GENERAL_HUGETLB */
3520 /* Can be overriden by architectures */
3521 __attribute__((weak
)) struct page
*
3522 follow_huge_pud(struct mm_struct
*mm
, unsigned long address
,
3523 pud_t
*pud
, int write
)
3529 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
3531 #ifdef CONFIG_MEMORY_FAILURE
3533 /* Should be called in hugetlb_lock */
3534 static int is_hugepage_on_freelist(struct page
*hpage
)
3538 struct hstate
*h
= page_hstate(hpage
);
3539 int nid
= page_to_nid(hpage
);
3541 list_for_each_entry_safe(page
, tmp
, &h
->hugepage_freelists
[nid
], lru
)
3548 * This function is called from memory failure code.
3549 * Assume the caller holds page lock of the head page.
3551 int dequeue_hwpoisoned_huge_page(struct page
*hpage
)
3553 struct hstate
*h
= page_hstate(hpage
);
3554 int nid
= page_to_nid(hpage
);
3557 spin_lock(&hugetlb_lock
);
3558 if (is_hugepage_on_freelist(hpage
)) {
3560 * Hwpoisoned hugepage isn't linked to activelist or freelist,
3561 * but dangling hpage->lru can trigger list-debug warnings
3562 * (this happens when we call unpoison_memory() on it),
3563 * so let it point to itself with list_del_init().
3565 list_del_init(&hpage
->lru
);
3566 set_page_refcounted(hpage
);
3567 h
->free_huge_pages
--;
3568 h
->free_huge_pages_node
[nid
]--;
3571 spin_unlock(&hugetlb_lock
);
3576 bool isolate_huge_page(struct page
*page
, struct list_head
*list
)
3578 VM_BUG_ON_PAGE(!PageHead(page
), page
);
3579 if (!get_page_unless_zero(page
))
3581 spin_lock(&hugetlb_lock
);
3582 list_move_tail(&page
->lru
, list
);
3583 spin_unlock(&hugetlb_lock
);
3587 void putback_active_hugepage(struct page
*page
)
3589 VM_BUG_ON_PAGE(!PageHead(page
), page
);
3590 spin_lock(&hugetlb_lock
);
3591 list_move_tail(&page
->lru
, &(page_hstate(page
))->hugepage_activelist
);
3592 spin_unlock(&hugetlb_lock
);
3596 bool is_hugepage_active(struct page
*page
)
3598 VM_BUG_ON_PAGE(!PageHuge(page
), page
);
3600 * This function can be called for a tail page because the caller,
3601 * scan_movable_pages, scans through a given pfn-range which typically
3602 * covers one memory block. In systems using gigantic hugepage (1GB
3603 * for x86_64,) a hugepage is larger than a memory block, and we don't
3604 * support migrating such large hugepages for now, so return false
3605 * when called for tail pages.
3610 * Refcount of a hwpoisoned hugepages is 1, but they are not active,
3611 * so we should return false for them.
3613 if (unlikely(PageHWPoison(page
)))
3615 return page_count(page
) > 0;