xfs: split and cleanup xfs_log_reserve
[linux/fpc-iii.git] / fs / xfs / xfs_trans.c
blob103b00c90004940e40c8b62fe83af2c9f3e93443
1 /*
2 * Copyright (c) 2000-2003,2005 Silicon Graphics, Inc.
3 * Copyright (C) 2010 Red Hat, Inc.
4 * All Rights Reserved.
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License as
8 * published by the Free Software Foundation.
10 * This program is distributed in the hope that it would be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
19 #include "xfs.h"
20 #include "xfs_fs.h"
21 #include "xfs_types.h"
22 #include "xfs_bit.h"
23 #include "xfs_log.h"
24 #include "xfs_inum.h"
25 #include "xfs_trans.h"
26 #include "xfs_sb.h"
27 #include "xfs_ag.h"
28 #include "xfs_mount.h"
29 #include "xfs_error.h"
30 #include "xfs_da_btree.h"
31 #include "xfs_bmap_btree.h"
32 #include "xfs_alloc_btree.h"
33 #include "xfs_ialloc_btree.h"
34 #include "xfs_dinode.h"
35 #include "xfs_inode.h"
36 #include "xfs_btree.h"
37 #include "xfs_ialloc.h"
38 #include "xfs_alloc.h"
39 #include "xfs_bmap.h"
40 #include "xfs_quota.h"
41 #include "xfs_trans_priv.h"
42 #include "xfs_trans_space.h"
43 #include "xfs_inode_item.h"
44 #include "xfs_trace.h"
46 kmem_zone_t *xfs_trans_zone;
47 kmem_zone_t *xfs_log_item_desc_zone;
51 * Various log reservation values.
53 * These are based on the size of the file system block because that is what
54 * most transactions manipulate. Each adds in an additional 128 bytes per
55 * item logged to try to account for the overhead of the transaction mechanism.
57 * Note: Most of the reservations underestimate the number of allocation
58 * groups into which they could free extents in the xfs_bmap_finish() call.
59 * This is because the number in the worst case is quite high and quite
60 * unusual. In order to fix this we need to change xfs_bmap_finish() to free
61 * extents in only a single AG at a time. This will require changes to the
62 * EFI code as well, however, so that the EFI for the extents not freed is
63 * logged again in each transaction. See SGI PV #261917.
65 * Reservation functions here avoid a huge stack in xfs_trans_init due to
66 * register overflow from temporaries in the calculations.
71 * In a write transaction we can allocate a maximum of 2
72 * extents. This gives:
73 * the inode getting the new extents: inode size
74 * the inode's bmap btree: max depth * block size
75 * the agfs of the ags from which the extents are allocated: 2 * sector
76 * the superblock free block counter: sector size
77 * the allocation btrees: 2 exts * 2 trees * (2 * max depth - 1) * block size
78 * And the bmap_finish transaction can free bmap blocks in a join:
79 * the agfs of the ags containing the blocks: 2 * sector size
80 * the agfls of the ags containing the blocks: 2 * sector size
81 * the super block free block counter: sector size
82 * the allocation btrees: 2 exts * 2 trees * (2 * max depth - 1) * block size
84 STATIC uint
85 xfs_calc_write_reservation(
86 struct xfs_mount *mp)
88 return XFS_DQUOT_LOGRES(mp) +
89 MAX((mp->m_sb.sb_inodesize +
90 XFS_FSB_TO_B(mp, XFS_BM_MAXLEVELS(mp, XFS_DATA_FORK)) +
91 2 * mp->m_sb.sb_sectsize +
92 mp->m_sb.sb_sectsize +
93 XFS_ALLOCFREE_LOG_RES(mp, 2) +
94 128 * (4 + XFS_BM_MAXLEVELS(mp, XFS_DATA_FORK) +
95 XFS_ALLOCFREE_LOG_COUNT(mp, 2))),
96 (2 * mp->m_sb.sb_sectsize +
97 2 * mp->m_sb.sb_sectsize +
98 mp->m_sb.sb_sectsize +
99 XFS_ALLOCFREE_LOG_RES(mp, 2) +
100 128 * (5 + XFS_ALLOCFREE_LOG_COUNT(mp, 2))));
104 * In truncating a file we free up to two extents at once. We can modify:
105 * the inode being truncated: inode size
106 * the inode's bmap btree: (max depth + 1) * block size
107 * And the bmap_finish transaction can free the blocks and bmap blocks:
108 * the agf for each of the ags: 4 * sector size
109 * the agfl for each of the ags: 4 * sector size
110 * the super block to reflect the freed blocks: sector size
111 * worst case split in allocation btrees per extent assuming 4 extents:
112 * 4 exts * 2 trees * (2 * max depth - 1) * block size
113 * the inode btree: max depth * blocksize
114 * the allocation btrees: 2 trees * (max depth - 1) * block size
116 STATIC uint
117 xfs_calc_itruncate_reservation(
118 struct xfs_mount *mp)
120 return XFS_DQUOT_LOGRES(mp) +
121 MAX((mp->m_sb.sb_inodesize +
122 XFS_FSB_TO_B(mp, XFS_BM_MAXLEVELS(mp, XFS_DATA_FORK) + 1) +
123 128 * (2 + XFS_BM_MAXLEVELS(mp, XFS_DATA_FORK))),
124 (4 * mp->m_sb.sb_sectsize +
125 4 * mp->m_sb.sb_sectsize +
126 mp->m_sb.sb_sectsize +
127 XFS_ALLOCFREE_LOG_RES(mp, 4) +
128 128 * (9 + XFS_ALLOCFREE_LOG_COUNT(mp, 4)) +
129 128 * 5 +
130 XFS_ALLOCFREE_LOG_RES(mp, 1) +
131 128 * (2 + XFS_IALLOC_BLOCKS(mp) + mp->m_in_maxlevels +
132 XFS_ALLOCFREE_LOG_COUNT(mp, 1))));
136 * In renaming a files we can modify:
137 * the four inodes involved: 4 * inode size
138 * the two directory btrees: 2 * (max depth + v2) * dir block size
139 * the two directory bmap btrees: 2 * max depth * block size
140 * And the bmap_finish transaction can free dir and bmap blocks (two sets
141 * of bmap blocks) giving:
142 * the agf for the ags in which the blocks live: 3 * sector size
143 * the agfl for the ags in which the blocks live: 3 * sector size
144 * the superblock for the free block count: sector size
145 * the allocation btrees: 3 exts * 2 trees * (2 * max depth - 1) * block size
147 STATIC uint
148 xfs_calc_rename_reservation(
149 struct xfs_mount *mp)
151 return XFS_DQUOT_LOGRES(mp) +
152 MAX((4 * mp->m_sb.sb_inodesize +
153 2 * XFS_DIROP_LOG_RES(mp) +
154 128 * (4 + 2 * XFS_DIROP_LOG_COUNT(mp))),
155 (3 * mp->m_sb.sb_sectsize +
156 3 * mp->m_sb.sb_sectsize +
157 mp->m_sb.sb_sectsize +
158 XFS_ALLOCFREE_LOG_RES(mp, 3) +
159 128 * (7 + XFS_ALLOCFREE_LOG_COUNT(mp, 3))));
163 * For creating a link to an inode:
164 * the parent directory inode: inode size
165 * the linked inode: inode size
166 * the directory btree could split: (max depth + v2) * dir block size
167 * the directory bmap btree could join or split: (max depth + v2) * blocksize
168 * And the bmap_finish transaction can free some bmap blocks giving:
169 * the agf for the ag in which the blocks live: sector size
170 * the agfl for the ag in which the blocks live: sector size
171 * the superblock for the free block count: sector size
172 * the allocation btrees: 2 trees * (2 * max depth - 1) * block size
174 STATIC uint
175 xfs_calc_link_reservation(
176 struct xfs_mount *mp)
178 return XFS_DQUOT_LOGRES(mp) +
179 MAX((mp->m_sb.sb_inodesize +
180 mp->m_sb.sb_inodesize +
181 XFS_DIROP_LOG_RES(mp) +
182 128 * (2 + XFS_DIROP_LOG_COUNT(mp))),
183 (mp->m_sb.sb_sectsize +
184 mp->m_sb.sb_sectsize +
185 mp->m_sb.sb_sectsize +
186 XFS_ALLOCFREE_LOG_RES(mp, 1) +
187 128 * (3 + XFS_ALLOCFREE_LOG_COUNT(mp, 1))));
191 * For removing a directory entry we can modify:
192 * the parent directory inode: inode size
193 * the removed inode: inode size
194 * the directory btree could join: (max depth + v2) * dir block size
195 * the directory bmap btree could join or split: (max depth + v2) * blocksize
196 * And the bmap_finish transaction can free the dir and bmap blocks giving:
197 * the agf for the ag in which the blocks live: 2 * sector size
198 * the agfl for the ag in which the blocks live: 2 * sector size
199 * the superblock for the free block count: sector size
200 * the allocation btrees: 2 exts * 2 trees * (2 * max depth - 1) * block size
202 STATIC uint
203 xfs_calc_remove_reservation(
204 struct xfs_mount *mp)
206 return XFS_DQUOT_LOGRES(mp) +
207 MAX((mp->m_sb.sb_inodesize +
208 mp->m_sb.sb_inodesize +
209 XFS_DIROP_LOG_RES(mp) +
210 128 * (2 + XFS_DIROP_LOG_COUNT(mp))),
211 (2 * mp->m_sb.sb_sectsize +
212 2 * mp->m_sb.sb_sectsize +
213 mp->m_sb.sb_sectsize +
214 XFS_ALLOCFREE_LOG_RES(mp, 2) +
215 128 * (5 + XFS_ALLOCFREE_LOG_COUNT(mp, 2))));
219 * For symlink we can modify:
220 * the parent directory inode: inode size
221 * the new inode: inode size
222 * the inode btree entry: 1 block
223 * the directory btree: (max depth + v2) * dir block size
224 * the directory inode's bmap btree: (max depth + v2) * block size
225 * the blocks for the symlink: 1 kB
226 * Or in the first xact we allocate some inodes giving:
227 * the agi and agf of the ag getting the new inodes: 2 * sectorsize
228 * the inode blocks allocated: XFS_IALLOC_BLOCKS * blocksize
229 * the inode btree: max depth * blocksize
230 * the allocation btrees: 2 trees * (2 * max depth - 1) * block size
232 STATIC uint
233 xfs_calc_symlink_reservation(
234 struct xfs_mount *mp)
236 return XFS_DQUOT_LOGRES(mp) +
237 MAX((mp->m_sb.sb_inodesize +
238 mp->m_sb.sb_inodesize +
239 XFS_FSB_TO_B(mp, 1) +
240 XFS_DIROP_LOG_RES(mp) +
241 1024 +
242 128 * (4 + XFS_DIROP_LOG_COUNT(mp))),
243 (2 * mp->m_sb.sb_sectsize +
244 XFS_FSB_TO_B(mp, XFS_IALLOC_BLOCKS(mp)) +
245 XFS_FSB_TO_B(mp, mp->m_in_maxlevels) +
246 XFS_ALLOCFREE_LOG_RES(mp, 1) +
247 128 * (2 + XFS_IALLOC_BLOCKS(mp) + mp->m_in_maxlevels +
248 XFS_ALLOCFREE_LOG_COUNT(mp, 1))));
252 * For create we can modify:
253 * the parent directory inode: inode size
254 * the new inode: inode size
255 * the inode btree entry: block size
256 * the superblock for the nlink flag: sector size
257 * the directory btree: (max depth + v2) * dir block size
258 * the directory inode's bmap btree: (max depth + v2) * block size
259 * Or in the first xact we allocate some inodes giving:
260 * the agi and agf of the ag getting the new inodes: 2 * sectorsize
261 * the superblock for the nlink flag: sector size
262 * the inode blocks allocated: XFS_IALLOC_BLOCKS * blocksize
263 * the inode btree: max depth * blocksize
264 * the allocation btrees: 2 trees * (max depth - 1) * block size
266 STATIC uint
267 xfs_calc_create_reservation(
268 struct xfs_mount *mp)
270 return XFS_DQUOT_LOGRES(mp) +
271 MAX((mp->m_sb.sb_inodesize +
272 mp->m_sb.sb_inodesize +
273 mp->m_sb.sb_sectsize +
274 XFS_FSB_TO_B(mp, 1) +
275 XFS_DIROP_LOG_RES(mp) +
276 128 * (3 + XFS_DIROP_LOG_COUNT(mp))),
277 (3 * mp->m_sb.sb_sectsize +
278 XFS_FSB_TO_B(mp, XFS_IALLOC_BLOCKS(mp)) +
279 XFS_FSB_TO_B(mp, mp->m_in_maxlevels) +
280 XFS_ALLOCFREE_LOG_RES(mp, 1) +
281 128 * (2 + XFS_IALLOC_BLOCKS(mp) + mp->m_in_maxlevels +
282 XFS_ALLOCFREE_LOG_COUNT(mp, 1))));
286 * Making a new directory is the same as creating a new file.
288 STATIC uint
289 xfs_calc_mkdir_reservation(
290 struct xfs_mount *mp)
292 return xfs_calc_create_reservation(mp);
296 * In freeing an inode we can modify:
297 * the inode being freed: inode size
298 * the super block free inode counter: sector size
299 * the agi hash list and counters: sector size
300 * the inode btree entry: block size
301 * the on disk inode before ours in the agi hash list: inode cluster size
302 * the inode btree: max depth * blocksize
303 * the allocation btrees: 2 trees * (max depth - 1) * block size
305 STATIC uint
306 xfs_calc_ifree_reservation(
307 struct xfs_mount *mp)
309 return XFS_DQUOT_LOGRES(mp) +
310 mp->m_sb.sb_inodesize +
311 mp->m_sb.sb_sectsize +
312 mp->m_sb.sb_sectsize +
313 XFS_FSB_TO_B(mp, 1) +
314 MAX((__uint16_t)XFS_FSB_TO_B(mp, 1),
315 XFS_INODE_CLUSTER_SIZE(mp)) +
316 128 * 5 +
317 XFS_ALLOCFREE_LOG_RES(mp, 1) +
318 128 * (2 + XFS_IALLOC_BLOCKS(mp) + mp->m_in_maxlevels +
319 XFS_ALLOCFREE_LOG_COUNT(mp, 1));
323 * When only changing the inode we log the inode and possibly the superblock
324 * We also add a bit of slop for the transaction stuff.
326 STATIC uint
327 xfs_calc_ichange_reservation(
328 struct xfs_mount *mp)
330 return XFS_DQUOT_LOGRES(mp) +
331 mp->m_sb.sb_inodesize +
332 mp->m_sb.sb_sectsize +
333 512;
338 * Growing the data section of the filesystem.
339 * superblock
340 * agi and agf
341 * allocation btrees
343 STATIC uint
344 xfs_calc_growdata_reservation(
345 struct xfs_mount *mp)
347 return mp->m_sb.sb_sectsize * 3 +
348 XFS_ALLOCFREE_LOG_RES(mp, 1) +
349 128 * (3 + XFS_ALLOCFREE_LOG_COUNT(mp, 1));
353 * Growing the rt section of the filesystem.
354 * In the first set of transactions (ALLOC) we allocate space to the
355 * bitmap or summary files.
356 * superblock: sector size
357 * agf of the ag from which the extent is allocated: sector size
358 * bmap btree for bitmap/summary inode: max depth * blocksize
359 * bitmap/summary inode: inode size
360 * allocation btrees for 1 block alloc: 2 * (2 * maxdepth - 1) * blocksize
362 STATIC uint
363 xfs_calc_growrtalloc_reservation(
364 struct xfs_mount *mp)
366 return 2 * mp->m_sb.sb_sectsize +
367 XFS_FSB_TO_B(mp, XFS_BM_MAXLEVELS(mp, XFS_DATA_FORK)) +
368 mp->m_sb.sb_inodesize +
369 XFS_ALLOCFREE_LOG_RES(mp, 1) +
370 128 * (3 + XFS_BM_MAXLEVELS(mp, XFS_DATA_FORK) +
371 XFS_ALLOCFREE_LOG_COUNT(mp, 1));
375 * Growing the rt section of the filesystem.
376 * In the second set of transactions (ZERO) we zero the new metadata blocks.
377 * one bitmap/summary block: blocksize
379 STATIC uint
380 xfs_calc_growrtzero_reservation(
381 struct xfs_mount *mp)
383 return mp->m_sb.sb_blocksize + 128;
387 * Growing the rt section of the filesystem.
388 * In the third set of transactions (FREE) we update metadata without
389 * allocating any new blocks.
390 * superblock: sector size
391 * bitmap inode: inode size
392 * summary inode: inode size
393 * one bitmap block: blocksize
394 * summary blocks: new summary size
396 STATIC uint
397 xfs_calc_growrtfree_reservation(
398 struct xfs_mount *mp)
400 return mp->m_sb.sb_sectsize +
401 2 * mp->m_sb.sb_inodesize +
402 mp->m_sb.sb_blocksize +
403 mp->m_rsumsize +
404 128 * 5;
408 * Logging the inode modification timestamp on a synchronous write.
409 * inode
411 STATIC uint
412 xfs_calc_swrite_reservation(
413 struct xfs_mount *mp)
415 return mp->m_sb.sb_inodesize + 128;
419 * Logging the inode mode bits when writing a setuid/setgid file
420 * inode
422 STATIC uint
423 xfs_calc_writeid_reservation(xfs_mount_t *mp)
425 return mp->m_sb.sb_inodesize + 128;
429 * Converting the inode from non-attributed to attributed.
430 * the inode being converted: inode size
431 * agf block and superblock (for block allocation)
432 * the new block (directory sized)
433 * bmap blocks for the new directory block
434 * allocation btrees
436 STATIC uint
437 xfs_calc_addafork_reservation(
438 struct xfs_mount *mp)
440 return XFS_DQUOT_LOGRES(mp) +
441 mp->m_sb.sb_inodesize +
442 mp->m_sb.sb_sectsize * 2 +
443 mp->m_dirblksize +
444 XFS_FSB_TO_B(mp, XFS_DAENTER_BMAP1B(mp, XFS_DATA_FORK) + 1) +
445 XFS_ALLOCFREE_LOG_RES(mp, 1) +
446 128 * (4 + XFS_DAENTER_BMAP1B(mp, XFS_DATA_FORK) + 1 +
447 XFS_ALLOCFREE_LOG_COUNT(mp, 1));
451 * Removing the attribute fork of a file
452 * the inode being truncated: inode size
453 * the inode's bmap btree: max depth * block size
454 * And the bmap_finish transaction can free the blocks and bmap blocks:
455 * the agf for each of the ags: 4 * sector size
456 * the agfl for each of the ags: 4 * sector size
457 * the super block to reflect the freed blocks: sector size
458 * worst case split in allocation btrees per extent assuming 4 extents:
459 * 4 exts * 2 trees * (2 * max depth - 1) * block size
461 STATIC uint
462 xfs_calc_attrinval_reservation(
463 struct xfs_mount *mp)
465 return MAX((mp->m_sb.sb_inodesize +
466 XFS_FSB_TO_B(mp, XFS_BM_MAXLEVELS(mp, XFS_ATTR_FORK)) +
467 128 * (1 + XFS_BM_MAXLEVELS(mp, XFS_ATTR_FORK))),
468 (4 * mp->m_sb.sb_sectsize +
469 4 * mp->m_sb.sb_sectsize +
470 mp->m_sb.sb_sectsize +
471 XFS_ALLOCFREE_LOG_RES(mp, 4) +
472 128 * (9 + XFS_ALLOCFREE_LOG_COUNT(mp, 4))));
476 * Setting an attribute.
477 * the inode getting the attribute
478 * the superblock for allocations
479 * the agfs extents are allocated from
480 * the attribute btree * max depth
481 * the inode allocation btree
482 * Since attribute transaction space is dependent on the size of the attribute,
483 * the calculation is done partially at mount time and partially at runtime.
485 STATIC uint
486 xfs_calc_attrset_reservation(
487 struct xfs_mount *mp)
489 return XFS_DQUOT_LOGRES(mp) +
490 mp->m_sb.sb_inodesize +
491 mp->m_sb.sb_sectsize +
492 XFS_FSB_TO_B(mp, XFS_DA_NODE_MAXDEPTH) +
493 128 * (2 + XFS_DA_NODE_MAXDEPTH);
497 * Removing an attribute.
498 * the inode: inode size
499 * the attribute btree could join: max depth * block size
500 * the inode bmap btree could join or split: max depth * block size
501 * And the bmap_finish transaction can free the attr blocks freed giving:
502 * the agf for the ag in which the blocks live: 2 * sector size
503 * the agfl for the ag in which the blocks live: 2 * sector size
504 * the superblock for the free block count: sector size
505 * the allocation btrees: 2 exts * 2 trees * (2 * max depth - 1) * block size
507 STATIC uint
508 xfs_calc_attrrm_reservation(
509 struct xfs_mount *mp)
511 return XFS_DQUOT_LOGRES(mp) +
512 MAX((mp->m_sb.sb_inodesize +
513 XFS_FSB_TO_B(mp, XFS_DA_NODE_MAXDEPTH) +
514 XFS_FSB_TO_B(mp, XFS_BM_MAXLEVELS(mp, XFS_ATTR_FORK)) +
515 128 * (1 + XFS_DA_NODE_MAXDEPTH +
516 XFS_BM_MAXLEVELS(mp, XFS_DATA_FORK))),
517 (2 * mp->m_sb.sb_sectsize +
518 2 * mp->m_sb.sb_sectsize +
519 mp->m_sb.sb_sectsize +
520 XFS_ALLOCFREE_LOG_RES(mp, 2) +
521 128 * (5 + XFS_ALLOCFREE_LOG_COUNT(mp, 2))));
525 * Clearing a bad agino number in an agi hash bucket.
527 STATIC uint
528 xfs_calc_clear_agi_bucket_reservation(
529 struct xfs_mount *mp)
531 return mp->m_sb.sb_sectsize + 128;
535 * Initialize the precomputed transaction reservation values
536 * in the mount structure.
538 void
539 xfs_trans_init(
540 struct xfs_mount *mp)
542 struct xfs_trans_reservations *resp = &mp->m_reservations;
544 resp->tr_write = xfs_calc_write_reservation(mp);
545 resp->tr_itruncate = xfs_calc_itruncate_reservation(mp);
546 resp->tr_rename = xfs_calc_rename_reservation(mp);
547 resp->tr_link = xfs_calc_link_reservation(mp);
548 resp->tr_remove = xfs_calc_remove_reservation(mp);
549 resp->tr_symlink = xfs_calc_symlink_reservation(mp);
550 resp->tr_create = xfs_calc_create_reservation(mp);
551 resp->tr_mkdir = xfs_calc_mkdir_reservation(mp);
552 resp->tr_ifree = xfs_calc_ifree_reservation(mp);
553 resp->tr_ichange = xfs_calc_ichange_reservation(mp);
554 resp->tr_growdata = xfs_calc_growdata_reservation(mp);
555 resp->tr_swrite = xfs_calc_swrite_reservation(mp);
556 resp->tr_writeid = xfs_calc_writeid_reservation(mp);
557 resp->tr_addafork = xfs_calc_addafork_reservation(mp);
558 resp->tr_attrinval = xfs_calc_attrinval_reservation(mp);
559 resp->tr_attrset = xfs_calc_attrset_reservation(mp);
560 resp->tr_attrrm = xfs_calc_attrrm_reservation(mp);
561 resp->tr_clearagi = xfs_calc_clear_agi_bucket_reservation(mp);
562 resp->tr_growrtalloc = xfs_calc_growrtalloc_reservation(mp);
563 resp->tr_growrtzero = xfs_calc_growrtzero_reservation(mp);
564 resp->tr_growrtfree = xfs_calc_growrtfree_reservation(mp);
568 * This routine is called to allocate a transaction structure.
569 * The type parameter indicates the type of the transaction. These
570 * are enumerated in xfs_trans.h.
572 * Dynamically allocate the transaction structure from the transaction
573 * zone, initialize it, and return it to the caller.
575 xfs_trans_t *
576 xfs_trans_alloc(
577 xfs_mount_t *mp,
578 uint type)
580 xfs_wait_for_freeze(mp, SB_FREEZE_TRANS);
581 return _xfs_trans_alloc(mp, type, KM_SLEEP);
584 xfs_trans_t *
585 _xfs_trans_alloc(
586 xfs_mount_t *mp,
587 uint type,
588 uint memflags)
590 xfs_trans_t *tp;
592 atomic_inc(&mp->m_active_trans);
594 tp = kmem_zone_zalloc(xfs_trans_zone, memflags);
595 tp->t_magic = XFS_TRANS_MAGIC;
596 tp->t_type = type;
597 tp->t_mountp = mp;
598 INIT_LIST_HEAD(&tp->t_items);
599 INIT_LIST_HEAD(&tp->t_busy);
600 return tp;
604 * Free the transaction structure. If there is more clean up
605 * to do when the structure is freed, add it here.
607 STATIC void
608 xfs_trans_free(
609 struct xfs_trans *tp)
611 xfs_alloc_busy_sort(&tp->t_busy);
612 xfs_alloc_busy_clear(tp->t_mountp, &tp->t_busy, false);
614 atomic_dec(&tp->t_mountp->m_active_trans);
615 xfs_trans_free_dqinfo(tp);
616 kmem_zone_free(xfs_trans_zone, tp);
620 * This is called to create a new transaction which will share the
621 * permanent log reservation of the given transaction. The remaining
622 * unused block and rt extent reservations are also inherited. This
623 * implies that the original transaction is no longer allowed to allocate
624 * blocks. Locks and log items, however, are no inherited. They must
625 * be added to the new transaction explicitly.
627 xfs_trans_t *
628 xfs_trans_dup(
629 xfs_trans_t *tp)
631 xfs_trans_t *ntp;
633 ntp = kmem_zone_zalloc(xfs_trans_zone, KM_SLEEP);
636 * Initialize the new transaction structure.
638 ntp->t_magic = XFS_TRANS_MAGIC;
639 ntp->t_type = tp->t_type;
640 ntp->t_mountp = tp->t_mountp;
641 INIT_LIST_HEAD(&ntp->t_items);
642 INIT_LIST_HEAD(&ntp->t_busy);
644 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
645 ASSERT(tp->t_ticket != NULL);
647 ntp->t_flags = XFS_TRANS_PERM_LOG_RES | (tp->t_flags & XFS_TRANS_RESERVE);
648 ntp->t_ticket = xfs_log_ticket_get(tp->t_ticket);
649 ntp->t_blk_res = tp->t_blk_res - tp->t_blk_res_used;
650 tp->t_blk_res = tp->t_blk_res_used;
651 ntp->t_rtx_res = tp->t_rtx_res - tp->t_rtx_res_used;
652 tp->t_rtx_res = tp->t_rtx_res_used;
653 ntp->t_pflags = tp->t_pflags;
655 xfs_trans_dup_dqinfo(tp, ntp);
657 atomic_inc(&tp->t_mountp->m_active_trans);
658 return ntp;
662 * This is called to reserve free disk blocks and log space for the
663 * given transaction. This must be done before allocating any resources
664 * within the transaction.
666 * This will return ENOSPC if there are not enough blocks available.
667 * It will sleep waiting for available log space.
668 * The only valid value for the flags parameter is XFS_RES_LOG_PERM, which
669 * is used by long running transactions. If any one of the reservations
670 * fails then they will all be backed out.
672 * This does not do quota reservations. That typically is done by the
673 * caller afterwards.
676 xfs_trans_reserve(
677 xfs_trans_t *tp,
678 uint blocks,
679 uint logspace,
680 uint rtextents,
681 uint flags,
682 uint logcount)
684 int error = 0;
685 int rsvd = (tp->t_flags & XFS_TRANS_RESERVE) != 0;
687 /* Mark this thread as being in a transaction */
688 current_set_flags_nested(&tp->t_pflags, PF_FSTRANS);
691 * Attempt to reserve the needed disk blocks by decrementing
692 * the number needed from the number available. This will
693 * fail if the count would go below zero.
695 if (blocks > 0) {
696 error = xfs_icsb_modify_counters(tp->t_mountp, XFS_SBS_FDBLOCKS,
697 -((int64_t)blocks), rsvd);
698 if (error != 0) {
699 current_restore_flags_nested(&tp->t_pflags, PF_FSTRANS);
700 return (XFS_ERROR(ENOSPC));
702 tp->t_blk_res += blocks;
706 * Reserve the log space needed for this transaction.
708 if (logspace > 0) {
709 bool permanent = false;
711 ASSERT(tp->t_log_res == 0 || tp->t_log_res == logspace);
712 ASSERT(tp->t_log_count == 0 || tp->t_log_count == logcount);
714 if (flags & XFS_TRANS_PERM_LOG_RES) {
715 tp->t_flags |= XFS_TRANS_PERM_LOG_RES;
716 permanent = true;
717 } else {
718 ASSERT(tp->t_ticket == NULL);
719 ASSERT(!(tp->t_flags & XFS_TRANS_PERM_LOG_RES));
722 if (tp->t_ticket != NULL) {
723 ASSERT(flags & XFS_TRANS_PERM_LOG_RES);
724 error = xfs_log_regrant(tp->t_mountp, tp->t_ticket);
725 } else {
726 error = xfs_log_reserve(tp->t_mountp, logspace,
727 logcount, &tp->t_ticket,
728 XFS_TRANSACTION, permanent,
729 tp->t_type);
732 if (error)
733 goto undo_blocks;
735 tp->t_log_res = logspace;
736 tp->t_log_count = logcount;
740 * Attempt to reserve the needed realtime extents by decrementing
741 * the number needed from the number available. This will
742 * fail if the count would go below zero.
744 if (rtextents > 0) {
745 error = xfs_mod_incore_sb(tp->t_mountp, XFS_SBS_FREXTENTS,
746 -((int64_t)rtextents), rsvd);
747 if (error) {
748 error = XFS_ERROR(ENOSPC);
749 goto undo_log;
751 tp->t_rtx_res += rtextents;
754 return 0;
757 * Error cases jump to one of these labels to undo any
758 * reservations which have already been performed.
760 undo_log:
761 if (logspace > 0) {
762 int log_flags;
764 if (flags & XFS_TRANS_PERM_LOG_RES) {
765 log_flags = XFS_LOG_REL_PERM_RESERV;
766 } else {
767 log_flags = 0;
769 xfs_log_done(tp->t_mountp, tp->t_ticket, NULL, log_flags);
770 tp->t_ticket = NULL;
771 tp->t_log_res = 0;
772 tp->t_flags &= ~XFS_TRANS_PERM_LOG_RES;
775 undo_blocks:
776 if (blocks > 0) {
777 xfs_icsb_modify_counters(tp->t_mountp, XFS_SBS_FDBLOCKS,
778 (int64_t)blocks, rsvd);
779 tp->t_blk_res = 0;
782 current_restore_flags_nested(&tp->t_pflags, PF_FSTRANS);
784 return error;
788 * Record the indicated change to the given field for application
789 * to the file system's superblock when the transaction commits.
790 * For now, just store the change in the transaction structure.
792 * Mark the transaction structure to indicate that the superblock
793 * needs to be updated before committing.
795 * Because we may not be keeping track of allocated/free inodes and
796 * used filesystem blocks in the superblock, we do not mark the
797 * superblock dirty in this transaction if we modify these fields.
798 * We still need to update the transaction deltas so that they get
799 * applied to the incore superblock, but we don't want them to
800 * cause the superblock to get locked and logged if these are the
801 * only fields in the superblock that the transaction modifies.
803 void
804 xfs_trans_mod_sb(
805 xfs_trans_t *tp,
806 uint field,
807 int64_t delta)
809 uint32_t flags = (XFS_TRANS_DIRTY|XFS_TRANS_SB_DIRTY);
810 xfs_mount_t *mp = tp->t_mountp;
812 switch (field) {
813 case XFS_TRANS_SB_ICOUNT:
814 tp->t_icount_delta += delta;
815 if (xfs_sb_version_haslazysbcount(&mp->m_sb))
816 flags &= ~XFS_TRANS_SB_DIRTY;
817 break;
818 case XFS_TRANS_SB_IFREE:
819 tp->t_ifree_delta += delta;
820 if (xfs_sb_version_haslazysbcount(&mp->m_sb))
821 flags &= ~XFS_TRANS_SB_DIRTY;
822 break;
823 case XFS_TRANS_SB_FDBLOCKS:
825 * Track the number of blocks allocated in the
826 * transaction. Make sure it does not exceed the
827 * number reserved.
829 if (delta < 0) {
830 tp->t_blk_res_used += (uint)-delta;
831 ASSERT(tp->t_blk_res_used <= tp->t_blk_res);
833 tp->t_fdblocks_delta += delta;
834 if (xfs_sb_version_haslazysbcount(&mp->m_sb))
835 flags &= ~XFS_TRANS_SB_DIRTY;
836 break;
837 case XFS_TRANS_SB_RES_FDBLOCKS:
839 * The allocation has already been applied to the
840 * in-core superblock's counter. This should only
841 * be applied to the on-disk superblock.
843 ASSERT(delta < 0);
844 tp->t_res_fdblocks_delta += delta;
845 if (xfs_sb_version_haslazysbcount(&mp->m_sb))
846 flags &= ~XFS_TRANS_SB_DIRTY;
847 break;
848 case XFS_TRANS_SB_FREXTENTS:
850 * Track the number of blocks allocated in the
851 * transaction. Make sure it does not exceed the
852 * number reserved.
854 if (delta < 0) {
855 tp->t_rtx_res_used += (uint)-delta;
856 ASSERT(tp->t_rtx_res_used <= tp->t_rtx_res);
858 tp->t_frextents_delta += delta;
859 break;
860 case XFS_TRANS_SB_RES_FREXTENTS:
862 * The allocation has already been applied to the
863 * in-core superblock's counter. This should only
864 * be applied to the on-disk superblock.
866 ASSERT(delta < 0);
867 tp->t_res_frextents_delta += delta;
868 break;
869 case XFS_TRANS_SB_DBLOCKS:
870 ASSERT(delta > 0);
871 tp->t_dblocks_delta += delta;
872 break;
873 case XFS_TRANS_SB_AGCOUNT:
874 ASSERT(delta > 0);
875 tp->t_agcount_delta += delta;
876 break;
877 case XFS_TRANS_SB_IMAXPCT:
878 tp->t_imaxpct_delta += delta;
879 break;
880 case XFS_TRANS_SB_REXTSIZE:
881 tp->t_rextsize_delta += delta;
882 break;
883 case XFS_TRANS_SB_RBMBLOCKS:
884 tp->t_rbmblocks_delta += delta;
885 break;
886 case XFS_TRANS_SB_RBLOCKS:
887 tp->t_rblocks_delta += delta;
888 break;
889 case XFS_TRANS_SB_REXTENTS:
890 tp->t_rextents_delta += delta;
891 break;
892 case XFS_TRANS_SB_REXTSLOG:
893 tp->t_rextslog_delta += delta;
894 break;
895 default:
896 ASSERT(0);
897 return;
900 tp->t_flags |= flags;
904 * xfs_trans_apply_sb_deltas() is called from the commit code
905 * to bring the superblock buffer into the current transaction
906 * and modify it as requested by earlier calls to xfs_trans_mod_sb().
908 * For now we just look at each field allowed to change and change
909 * it if necessary.
911 STATIC void
912 xfs_trans_apply_sb_deltas(
913 xfs_trans_t *tp)
915 xfs_dsb_t *sbp;
916 xfs_buf_t *bp;
917 int whole = 0;
919 bp = xfs_trans_getsb(tp, tp->t_mountp, 0);
920 sbp = XFS_BUF_TO_SBP(bp);
923 * Check that superblock mods match the mods made to AGF counters.
925 ASSERT((tp->t_fdblocks_delta + tp->t_res_fdblocks_delta) ==
926 (tp->t_ag_freeblks_delta + tp->t_ag_flist_delta +
927 tp->t_ag_btree_delta));
930 * Only update the superblock counters if we are logging them
932 if (!xfs_sb_version_haslazysbcount(&(tp->t_mountp->m_sb))) {
933 if (tp->t_icount_delta)
934 be64_add_cpu(&sbp->sb_icount, tp->t_icount_delta);
935 if (tp->t_ifree_delta)
936 be64_add_cpu(&sbp->sb_ifree, tp->t_ifree_delta);
937 if (tp->t_fdblocks_delta)
938 be64_add_cpu(&sbp->sb_fdblocks, tp->t_fdblocks_delta);
939 if (tp->t_res_fdblocks_delta)
940 be64_add_cpu(&sbp->sb_fdblocks, tp->t_res_fdblocks_delta);
943 if (tp->t_frextents_delta)
944 be64_add_cpu(&sbp->sb_frextents, tp->t_frextents_delta);
945 if (tp->t_res_frextents_delta)
946 be64_add_cpu(&sbp->sb_frextents, tp->t_res_frextents_delta);
948 if (tp->t_dblocks_delta) {
949 be64_add_cpu(&sbp->sb_dblocks, tp->t_dblocks_delta);
950 whole = 1;
952 if (tp->t_agcount_delta) {
953 be32_add_cpu(&sbp->sb_agcount, tp->t_agcount_delta);
954 whole = 1;
956 if (tp->t_imaxpct_delta) {
957 sbp->sb_imax_pct += tp->t_imaxpct_delta;
958 whole = 1;
960 if (tp->t_rextsize_delta) {
961 be32_add_cpu(&sbp->sb_rextsize, tp->t_rextsize_delta);
962 whole = 1;
964 if (tp->t_rbmblocks_delta) {
965 be32_add_cpu(&sbp->sb_rbmblocks, tp->t_rbmblocks_delta);
966 whole = 1;
968 if (tp->t_rblocks_delta) {
969 be64_add_cpu(&sbp->sb_rblocks, tp->t_rblocks_delta);
970 whole = 1;
972 if (tp->t_rextents_delta) {
973 be64_add_cpu(&sbp->sb_rextents, tp->t_rextents_delta);
974 whole = 1;
976 if (tp->t_rextslog_delta) {
977 sbp->sb_rextslog += tp->t_rextslog_delta;
978 whole = 1;
981 if (whole)
983 * Log the whole thing, the fields are noncontiguous.
985 xfs_trans_log_buf(tp, bp, 0, sizeof(xfs_dsb_t) - 1);
986 else
988 * Since all the modifiable fields are contiguous, we
989 * can get away with this.
991 xfs_trans_log_buf(tp, bp, offsetof(xfs_dsb_t, sb_icount),
992 offsetof(xfs_dsb_t, sb_frextents) +
993 sizeof(sbp->sb_frextents) - 1);
997 * xfs_trans_unreserve_and_mod_sb() is called to release unused reservations
998 * and apply superblock counter changes to the in-core superblock. The
999 * t_res_fdblocks_delta and t_res_frextents_delta fields are explicitly NOT
1000 * applied to the in-core superblock. The idea is that that has already been
1001 * done.
1003 * This is done efficiently with a single call to xfs_mod_incore_sb_batch().
1004 * However, we have to ensure that we only modify each superblock field only
1005 * once because the application of the delta values may not be atomic. That can
1006 * lead to ENOSPC races occurring if we have two separate modifcations of the
1007 * free space counter to put back the entire reservation and then take away
1008 * what we used.
1010 * If we are not logging superblock counters, then the inode allocated/free and
1011 * used block counts are not updated in the on disk superblock. In this case,
1012 * XFS_TRANS_SB_DIRTY will not be set when the transaction is updated but we
1013 * still need to update the incore superblock with the changes.
1015 void
1016 xfs_trans_unreserve_and_mod_sb(
1017 xfs_trans_t *tp)
1019 xfs_mod_sb_t msb[9]; /* If you add cases, add entries */
1020 xfs_mod_sb_t *msbp;
1021 xfs_mount_t *mp = tp->t_mountp;
1022 /* REFERENCED */
1023 int error;
1024 int rsvd;
1025 int64_t blkdelta = 0;
1026 int64_t rtxdelta = 0;
1027 int64_t idelta = 0;
1028 int64_t ifreedelta = 0;
1030 msbp = msb;
1031 rsvd = (tp->t_flags & XFS_TRANS_RESERVE) != 0;
1033 /* calculate deltas */
1034 if (tp->t_blk_res > 0)
1035 blkdelta = tp->t_blk_res;
1036 if ((tp->t_fdblocks_delta != 0) &&
1037 (xfs_sb_version_haslazysbcount(&mp->m_sb) ||
1038 (tp->t_flags & XFS_TRANS_SB_DIRTY)))
1039 blkdelta += tp->t_fdblocks_delta;
1041 if (tp->t_rtx_res > 0)
1042 rtxdelta = tp->t_rtx_res;
1043 if ((tp->t_frextents_delta != 0) &&
1044 (tp->t_flags & XFS_TRANS_SB_DIRTY))
1045 rtxdelta += tp->t_frextents_delta;
1047 if (xfs_sb_version_haslazysbcount(&mp->m_sb) ||
1048 (tp->t_flags & XFS_TRANS_SB_DIRTY)) {
1049 idelta = tp->t_icount_delta;
1050 ifreedelta = tp->t_ifree_delta;
1053 /* apply the per-cpu counters */
1054 if (blkdelta) {
1055 error = xfs_icsb_modify_counters(mp, XFS_SBS_FDBLOCKS,
1056 blkdelta, rsvd);
1057 if (error)
1058 goto out;
1061 if (idelta) {
1062 error = xfs_icsb_modify_counters(mp, XFS_SBS_ICOUNT,
1063 idelta, rsvd);
1064 if (error)
1065 goto out_undo_fdblocks;
1068 if (ifreedelta) {
1069 error = xfs_icsb_modify_counters(mp, XFS_SBS_IFREE,
1070 ifreedelta, rsvd);
1071 if (error)
1072 goto out_undo_icount;
1075 /* apply remaining deltas */
1076 if (rtxdelta != 0) {
1077 msbp->msb_field = XFS_SBS_FREXTENTS;
1078 msbp->msb_delta = rtxdelta;
1079 msbp++;
1082 if (tp->t_flags & XFS_TRANS_SB_DIRTY) {
1083 if (tp->t_dblocks_delta != 0) {
1084 msbp->msb_field = XFS_SBS_DBLOCKS;
1085 msbp->msb_delta = tp->t_dblocks_delta;
1086 msbp++;
1088 if (tp->t_agcount_delta != 0) {
1089 msbp->msb_field = XFS_SBS_AGCOUNT;
1090 msbp->msb_delta = tp->t_agcount_delta;
1091 msbp++;
1093 if (tp->t_imaxpct_delta != 0) {
1094 msbp->msb_field = XFS_SBS_IMAX_PCT;
1095 msbp->msb_delta = tp->t_imaxpct_delta;
1096 msbp++;
1098 if (tp->t_rextsize_delta != 0) {
1099 msbp->msb_field = XFS_SBS_REXTSIZE;
1100 msbp->msb_delta = tp->t_rextsize_delta;
1101 msbp++;
1103 if (tp->t_rbmblocks_delta != 0) {
1104 msbp->msb_field = XFS_SBS_RBMBLOCKS;
1105 msbp->msb_delta = tp->t_rbmblocks_delta;
1106 msbp++;
1108 if (tp->t_rblocks_delta != 0) {
1109 msbp->msb_field = XFS_SBS_RBLOCKS;
1110 msbp->msb_delta = tp->t_rblocks_delta;
1111 msbp++;
1113 if (tp->t_rextents_delta != 0) {
1114 msbp->msb_field = XFS_SBS_REXTENTS;
1115 msbp->msb_delta = tp->t_rextents_delta;
1116 msbp++;
1118 if (tp->t_rextslog_delta != 0) {
1119 msbp->msb_field = XFS_SBS_REXTSLOG;
1120 msbp->msb_delta = tp->t_rextslog_delta;
1121 msbp++;
1126 * If we need to change anything, do it.
1128 if (msbp > msb) {
1129 error = xfs_mod_incore_sb_batch(tp->t_mountp, msb,
1130 (uint)(msbp - msb), rsvd);
1131 if (error)
1132 goto out_undo_ifreecount;
1135 return;
1137 out_undo_ifreecount:
1138 if (ifreedelta)
1139 xfs_icsb_modify_counters(mp, XFS_SBS_IFREE, -ifreedelta, rsvd);
1140 out_undo_icount:
1141 if (idelta)
1142 xfs_icsb_modify_counters(mp, XFS_SBS_ICOUNT, -idelta, rsvd);
1143 out_undo_fdblocks:
1144 if (blkdelta)
1145 xfs_icsb_modify_counters(mp, XFS_SBS_FDBLOCKS, -blkdelta, rsvd);
1146 out:
1147 ASSERT(error == 0);
1148 return;
1152 * Add the given log item to the transaction's list of log items.
1154 * The log item will now point to its new descriptor with its li_desc field.
1156 void
1157 xfs_trans_add_item(
1158 struct xfs_trans *tp,
1159 struct xfs_log_item *lip)
1161 struct xfs_log_item_desc *lidp;
1163 ASSERT(lip->li_mountp == tp->t_mountp);
1164 ASSERT(lip->li_ailp == tp->t_mountp->m_ail);
1166 lidp = kmem_zone_zalloc(xfs_log_item_desc_zone, KM_SLEEP | KM_NOFS);
1168 lidp->lid_item = lip;
1169 lidp->lid_flags = 0;
1170 list_add_tail(&lidp->lid_trans, &tp->t_items);
1172 lip->li_desc = lidp;
1175 STATIC void
1176 xfs_trans_free_item_desc(
1177 struct xfs_log_item_desc *lidp)
1179 list_del_init(&lidp->lid_trans);
1180 kmem_zone_free(xfs_log_item_desc_zone, lidp);
1184 * Unlink and free the given descriptor.
1186 void
1187 xfs_trans_del_item(
1188 struct xfs_log_item *lip)
1190 xfs_trans_free_item_desc(lip->li_desc);
1191 lip->li_desc = NULL;
1195 * Unlock all of the items of a transaction and free all the descriptors
1196 * of that transaction.
1198 void
1199 xfs_trans_free_items(
1200 struct xfs_trans *tp,
1201 xfs_lsn_t commit_lsn,
1202 int flags)
1204 struct xfs_log_item_desc *lidp, *next;
1206 list_for_each_entry_safe(lidp, next, &tp->t_items, lid_trans) {
1207 struct xfs_log_item *lip = lidp->lid_item;
1209 lip->li_desc = NULL;
1211 if (commit_lsn != NULLCOMMITLSN)
1212 IOP_COMMITTING(lip, commit_lsn);
1213 if (flags & XFS_TRANS_ABORT)
1214 lip->li_flags |= XFS_LI_ABORTED;
1215 IOP_UNLOCK(lip);
1217 xfs_trans_free_item_desc(lidp);
1221 static inline void
1222 xfs_log_item_batch_insert(
1223 struct xfs_ail *ailp,
1224 struct xfs_ail_cursor *cur,
1225 struct xfs_log_item **log_items,
1226 int nr_items,
1227 xfs_lsn_t commit_lsn)
1229 int i;
1231 spin_lock(&ailp->xa_lock);
1232 /* xfs_trans_ail_update_bulk drops ailp->xa_lock */
1233 xfs_trans_ail_update_bulk(ailp, cur, log_items, nr_items, commit_lsn);
1235 for (i = 0; i < nr_items; i++)
1236 IOP_UNPIN(log_items[i], 0);
1240 * Bulk operation version of xfs_trans_committed that takes a log vector of
1241 * items to insert into the AIL. This uses bulk AIL insertion techniques to
1242 * minimise lock traffic.
1244 * If we are called with the aborted flag set, it is because a log write during
1245 * a CIL checkpoint commit has failed. In this case, all the items in the
1246 * checkpoint have already gone through IOP_COMMITED and IOP_UNLOCK, which
1247 * means that checkpoint commit abort handling is treated exactly the same
1248 * as an iclog write error even though we haven't started any IO yet. Hence in
1249 * this case all we need to do is IOP_COMMITTED processing, followed by an
1250 * IOP_UNPIN(aborted) call.
1252 * The AIL cursor is used to optimise the insert process. If commit_lsn is not
1253 * at the end of the AIL, the insert cursor avoids the need to walk
1254 * the AIL to find the insertion point on every xfs_log_item_batch_insert()
1255 * call. This saves a lot of needless list walking and is a net win, even
1256 * though it slightly increases that amount of AIL lock traffic to set it up
1257 * and tear it down.
1259 void
1260 xfs_trans_committed_bulk(
1261 struct xfs_ail *ailp,
1262 struct xfs_log_vec *log_vector,
1263 xfs_lsn_t commit_lsn,
1264 int aborted)
1266 #define LOG_ITEM_BATCH_SIZE 32
1267 struct xfs_log_item *log_items[LOG_ITEM_BATCH_SIZE];
1268 struct xfs_log_vec *lv;
1269 struct xfs_ail_cursor cur;
1270 int i = 0;
1272 spin_lock(&ailp->xa_lock);
1273 xfs_trans_ail_cursor_last(ailp, &cur, commit_lsn);
1274 spin_unlock(&ailp->xa_lock);
1276 /* unpin all the log items */
1277 for (lv = log_vector; lv; lv = lv->lv_next ) {
1278 struct xfs_log_item *lip = lv->lv_item;
1279 xfs_lsn_t item_lsn;
1281 if (aborted)
1282 lip->li_flags |= XFS_LI_ABORTED;
1283 item_lsn = IOP_COMMITTED(lip, commit_lsn);
1285 /* item_lsn of -1 means the item needs no further processing */
1286 if (XFS_LSN_CMP(item_lsn, (xfs_lsn_t)-1) == 0)
1287 continue;
1290 * if we are aborting the operation, no point in inserting the
1291 * object into the AIL as we are in a shutdown situation.
1293 if (aborted) {
1294 ASSERT(XFS_FORCED_SHUTDOWN(ailp->xa_mount));
1295 IOP_UNPIN(lip, 1);
1296 continue;
1299 if (item_lsn != commit_lsn) {
1302 * Not a bulk update option due to unusual item_lsn.
1303 * Push into AIL immediately, rechecking the lsn once
1304 * we have the ail lock. Then unpin the item. This does
1305 * not affect the AIL cursor the bulk insert path is
1306 * using.
1308 spin_lock(&ailp->xa_lock);
1309 if (XFS_LSN_CMP(item_lsn, lip->li_lsn) > 0)
1310 xfs_trans_ail_update(ailp, lip, item_lsn);
1311 else
1312 spin_unlock(&ailp->xa_lock);
1313 IOP_UNPIN(lip, 0);
1314 continue;
1317 /* Item is a candidate for bulk AIL insert. */
1318 log_items[i++] = lv->lv_item;
1319 if (i >= LOG_ITEM_BATCH_SIZE) {
1320 xfs_log_item_batch_insert(ailp, &cur, log_items,
1321 LOG_ITEM_BATCH_SIZE, commit_lsn);
1322 i = 0;
1326 /* make sure we insert the remainder! */
1327 if (i)
1328 xfs_log_item_batch_insert(ailp, &cur, log_items, i, commit_lsn);
1330 spin_lock(&ailp->xa_lock);
1331 xfs_trans_ail_cursor_done(ailp, &cur);
1332 spin_unlock(&ailp->xa_lock);
1336 * Commit the given transaction to the log.
1338 * XFS disk error handling mechanism is not based on a typical
1339 * transaction abort mechanism. Logically after the filesystem
1340 * gets marked 'SHUTDOWN', we can't let any new transactions
1341 * be durable - ie. committed to disk - because some metadata might
1342 * be inconsistent. In such cases, this returns an error, and the
1343 * caller may assume that all locked objects joined to the transaction
1344 * have already been unlocked as if the commit had succeeded.
1345 * Do not reference the transaction structure after this call.
1348 xfs_trans_commit(
1349 struct xfs_trans *tp,
1350 uint flags)
1352 struct xfs_mount *mp = tp->t_mountp;
1353 xfs_lsn_t commit_lsn = -1;
1354 int error = 0;
1355 int log_flags = 0;
1356 int sync = tp->t_flags & XFS_TRANS_SYNC;
1359 * Determine whether this commit is releasing a permanent
1360 * log reservation or not.
1362 if (flags & XFS_TRANS_RELEASE_LOG_RES) {
1363 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
1364 log_flags = XFS_LOG_REL_PERM_RESERV;
1368 * If there is nothing to be logged by the transaction,
1369 * then unlock all of the items associated with the
1370 * transaction and free the transaction structure.
1371 * Also make sure to return any reserved blocks to
1372 * the free pool.
1374 if (!(tp->t_flags & XFS_TRANS_DIRTY))
1375 goto out_unreserve;
1377 if (XFS_FORCED_SHUTDOWN(mp)) {
1378 error = XFS_ERROR(EIO);
1379 goto out_unreserve;
1382 ASSERT(tp->t_ticket != NULL);
1385 * If we need to update the superblock, then do it now.
1387 if (tp->t_flags & XFS_TRANS_SB_DIRTY)
1388 xfs_trans_apply_sb_deltas(tp);
1389 xfs_trans_apply_dquot_deltas(tp);
1391 error = xfs_log_commit_cil(mp, tp, &commit_lsn, flags);
1392 if (error == ENOMEM) {
1393 xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR);
1394 error = XFS_ERROR(EIO);
1395 goto out_unreserve;
1398 current_restore_flags_nested(&tp->t_pflags, PF_FSTRANS);
1399 xfs_trans_free(tp);
1402 * If the transaction needs to be synchronous, then force the
1403 * log out now and wait for it.
1405 if (sync) {
1406 if (!error) {
1407 error = _xfs_log_force_lsn(mp, commit_lsn,
1408 XFS_LOG_SYNC, NULL);
1410 XFS_STATS_INC(xs_trans_sync);
1411 } else {
1412 XFS_STATS_INC(xs_trans_async);
1415 return error;
1417 out_unreserve:
1418 xfs_trans_unreserve_and_mod_sb(tp);
1421 * It is indeed possible for the transaction to be not dirty but
1422 * the dqinfo portion to be. All that means is that we have some
1423 * (non-persistent) quota reservations that need to be unreserved.
1425 xfs_trans_unreserve_and_mod_dquots(tp);
1426 if (tp->t_ticket) {
1427 commit_lsn = xfs_log_done(mp, tp->t_ticket, NULL, log_flags);
1428 if (commit_lsn == -1 && !error)
1429 error = XFS_ERROR(EIO);
1431 current_restore_flags_nested(&tp->t_pflags, PF_FSTRANS);
1432 xfs_trans_free_items(tp, NULLCOMMITLSN, error ? XFS_TRANS_ABORT : 0);
1433 xfs_trans_free(tp);
1435 XFS_STATS_INC(xs_trans_empty);
1436 return error;
1440 * Unlock all of the transaction's items and free the transaction.
1441 * The transaction must not have modified any of its items, because
1442 * there is no way to restore them to their previous state.
1444 * If the transaction has made a log reservation, make sure to release
1445 * it as well.
1447 void
1448 xfs_trans_cancel(
1449 xfs_trans_t *tp,
1450 int flags)
1452 int log_flags;
1453 xfs_mount_t *mp = tp->t_mountp;
1456 * See if the caller is being too lazy to figure out if
1457 * the transaction really needs an abort.
1459 if ((flags & XFS_TRANS_ABORT) && !(tp->t_flags & XFS_TRANS_DIRTY))
1460 flags &= ~XFS_TRANS_ABORT;
1462 * See if the caller is relying on us to shut down the
1463 * filesystem. This happens in paths where we detect
1464 * corruption and decide to give up.
1466 if ((tp->t_flags & XFS_TRANS_DIRTY) && !XFS_FORCED_SHUTDOWN(mp)) {
1467 XFS_ERROR_REPORT("xfs_trans_cancel", XFS_ERRLEVEL_LOW, mp);
1468 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
1470 #ifdef DEBUG
1471 if (!(flags & XFS_TRANS_ABORT) && !XFS_FORCED_SHUTDOWN(mp)) {
1472 struct xfs_log_item_desc *lidp;
1474 list_for_each_entry(lidp, &tp->t_items, lid_trans)
1475 ASSERT(!(lidp->lid_item->li_type == XFS_LI_EFD));
1477 #endif
1478 xfs_trans_unreserve_and_mod_sb(tp);
1479 xfs_trans_unreserve_and_mod_dquots(tp);
1481 if (tp->t_ticket) {
1482 if (flags & XFS_TRANS_RELEASE_LOG_RES) {
1483 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
1484 log_flags = XFS_LOG_REL_PERM_RESERV;
1485 } else {
1486 log_flags = 0;
1488 xfs_log_done(mp, tp->t_ticket, NULL, log_flags);
1491 /* mark this thread as no longer being in a transaction */
1492 current_restore_flags_nested(&tp->t_pflags, PF_FSTRANS);
1494 xfs_trans_free_items(tp, NULLCOMMITLSN, flags);
1495 xfs_trans_free(tp);
1499 * Roll from one trans in the sequence of PERMANENT transactions to
1500 * the next: permanent transactions are only flushed out when
1501 * committed with XFS_TRANS_RELEASE_LOG_RES, but we still want as soon
1502 * as possible to let chunks of it go to the log. So we commit the
1503 * chunk we've been working on and get a new transaction to continue.
1506 xfs_trans_roll(
1507 struct xfs_trans **tpp,
1508 struct xfs_inode *dp)
1510 struct xfs_trans *trans;
1511 unsigned int logres, count;
1512 int error;
1515 * Ensure that the inode is always logged.
1517 trans = *tpp;
1518 xfs_trans_log_inode(trans, dp, XFS_ILOG_CORE);
1521 * Copy the critical parameters from one trans to the next.
1523 logres = trans->t_log_res;
1524 count = trans->t_log_count;
1525 *tpp = xfs_trans_dup(trans);
1528 * Commit the current transaction.
1529 * If this commit failed, then it'd just unlock those items that
1530 * are not marked ihold. That also means that a filesystem shutdown
1531 * is in progress. The caller takes the responsibility to cancel
1532 * the duplicate transaction that gets returned.
1534 error = xfs_trans_commit(trans, 0);
1535 if (error)
1536 return (error);
1538 trans = *tpp;
1541 * transaction commit worked ok so we can drop the extra ticket
1542 * reference that we gained in xfs_trans_dup()
1544 xfs_log_ticket_put(trans->t_ticket);
1548 * Reserve space in the log for th next transaction.
1549 * This also pushes items in the "AIL", the list of logged items,
1550 * out to disk if they are taking up space at the tail of the log
1551 * that we want to use. This requires that either nothing be locked
1552 * across this call, or that anything that is locked be logged in
1553 * the prior and the next transactions.
1555 error = xfs_trans_reserve(trans, 0, logres, 0,
1556 XFS_TRANS_PERM_LOG_RES, count);
1558 * Ensure that the inode is in the new transaction and locked.
1560 if (error)
1561 return error;
1563 xfs_trans_ijoin(trans, dp, 0);
1564 return 0;