net: move procfs code to net/core/net-procfs.c
[linux/fpc-iii.git] / drivers / infiniband / hw / cxgb4 / cm.c
blobc13745cde7facf26056f1d2e2ad3a25a1a428483
1 /*
2 * Copyright (c) 2009-2010 Chelsio, Inc. All rights reserved.
4 * This software is available to you under a choice of one of two
5 * licenses. You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the
8 * OpenIB.org BSD license below:
10 * Redistribution and use in source and binary forms, with or
11 * without modification, are permitted provided that the following
12 * conditions are met:
14 * - Redistributions of source code must retain the above
15 * copyright notice, this list of conditions and the following
16 * disclaimer.
18 * - Redistributions in binary form must reproduce the above
19 * copyright notice, this list of conditions and the following
20 * disclaimer in the documentation and/or other materials
21 * provided with the distribution.
23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30 * SOFTWARE.
32 #include <linux/module.h>
33 #include <linux/list.h>
34 #include <linux/workqueue.h>
35 #include <linux/skbuff.h>
36 #include <linux/timer.h>
37 #include <linux/notifier.h>
38 #include <linux/inetdevice.h>
39 #include <linux/ip.h>
40 #include <linux/tcp.h>
41 #include <linux/if_vlan.h>
43 #include <net/neighbour.h>
44 #include <net/netevent.h>
45 #include <net/route.h>
46 #include <net/tcp.h>
48 #include "iw_cxgb4.h"
50 static char *states[] = {
51 "idle",
52 "listen",
53 "connecting",
54 "mpa_wait_req",
55 "mpa_req_sent",
56 "mpa_req_rcvd",
57 "mpa_rep_sent",
58 "fpdu_mode",
59 "aborting",
60 "closing",
61 "moribund",
62 "dead",
63 NULL,
66 static int nocong;
67 module_param(nocong, int, 0644);
68 MODULE_PARM_DESC(nocong, "Turn of congestion control (default=0)");
70 static int enable_ecn;
71 module_param(enable_ecn, int, 0644);
72 MODULE_PARM_DESC(enable_ecn, "Enable ECN (default=0/disabled)");
74 static int dack_mode = 1;
75 module_param(dack_mode, int, 0644);
76 MODULE_PARM_DESC(dack_mode, "Delayed ack mode (default=1)");
78 int c4iw_max_read_depth = 8;
79 module_param(c4iw_max_read_depth, int, 0644);
80 MODULE_PARM_DESC(c4iw_max_read_depth, "Per-connection max ORD/IRD (default=8)");
82 static int enable_tcp_timestamps;
83 module_param(enable_tcp_timestamps, int, 0644);
84 MODULE_PARM_DESC(enable_tcp_timestamps, "Enable tcp timestamps (default=0)");
86 static int enable_tcp_sack;
87 module_param(enable_tcp_sack, int, 0644);
88 MODULE_PARM_DESC(enable_tcp_sack, "Enable tcp SACK (default=0)");
90 static int enable_tcp_window_scaling = 1;
91 module_param(enable_tcp_window_scaling, int, 0644);
92 MODULE_PARM_DESC(enable_tcp_window_scaling,
93 "Enable tcp window scaling (default=1)");
95 int c4iw_debug;
96 module_param(c4iw_debug, int, 0644);
97 MODULE_PARM_DESC(c4iw_debug, "Enable debug logging (default=0)");
99 static int peer2peer;
100 module_param(peer2peer, int, 0644);
101 MODULE_PARM_DESC(peer2peer, "Support peer2peer ULPs (default=0)");
103 static int p2p_type = FW_RI_INIT_P2PTYPE_READ_REQ;
104 module_param(p2p_type, int, 0644);
105 MODULE_PARM_DESC(p2p_type, "RDMAP opcode to use for the RTR message: "
106 "1=RDMA_READ 0=RDMA_WRITE (default 1)");
108 static int ep_timeout_secs = 60;
109 module_param(ep_timeout_secs, int, 0644);
110 MODULE_PARM_DESC(ep_timeout_secs, "CM Endpoint operation timeout "
111 "in seconds (default=60)");
113 static int mpa_rev = 1;
114 module_param(mpa_rev, int, 0644);
115 MODULE_PARM_DESC(mpa_rev, "MPA Revision, 0 supports amso1100, "
116 "1 is RFC0544 spec compliant, 2 is IETF MPA Peer Connect Draft"
117 " compliant (default=1)");
119 static int markers_enabled;
120 module_param(markers_enabled, int, 0644);
121 MODULE_PARM_DESC(markers_enabled, "Enable MPA MARKERS (default(0)=disabled)");
123 static int crc_enabled = 1;
124 module_param(crc_enabled, int, 0644);
125 MODULE_PARM_DESC(crc_enabled, "Enable MPA CRC (default(1)=enabled)");
127 static int rcv_win = 256 * 1024;
128 module_param(rcv_win, int, 0644);
129 MODULE_PARM_DESC(rcv_win, "TCP receive window in bytes (default=256KB)");
131 static int snd_win = 128 * 1024;
132 module_param(snd_win, int, 0644);
133 MODULE_PARM_DESC(snd_win, "TCP send window in bytes (default=128KB)");
135 static struct workqueue_struct *workq;
137 static struct sk_buff_head rxq;
139 static struct sk_buff *get_skb(struct sk_buff *skb, int len, gfp_t gfp);
140 static void ep_timeout(unsigned long arg);
141 static void connect_reply_upcall(struct c4iw_ep *ep, int status);
143 static LIST_HEAD(timeout_list);
144 static spinlock_t timeout_lock;
146 static void start_ep_timer(struct c4iw_ep *ep)
148 PDBG("%s ep %p\n", __func__, ep);
149 if (timer_pending(&ep->timer)) {
150 PDBG("%s stopped / restarted timer ep %p\n", __func__, ep);
151 del_timer_sync(&ep->timer);
152 } else
153 c4iw_get_ep(&ep->com);
154 ep->timer.expires = jiffies + ep_timeout_secs * HZ;
155 ep->timer.data = (unsigned long)ep;
156 ep->timer.function = ep_timeout;
157 add_timer(&ep->timer);
160 static void stop_ep_timer(struct c4iw_ep *ep)
162 PDBG("%s ep %p\n", __func__, ep);
163 if (!timer_pending(&ep->timer)) {
164 WARN(1, "%s timer stopped when its not running! "
165 "ep %p state %u\n", __func__, ep, ep->com.state);
166 return;
168 del_timer_sync(&ep->timer);
169 c4iw_put_ep(&ep->com);
172 static int c4iw_l2t_send(struct c4iw_rdev *rdev, struct sk_buff *skb,
173 struct l2t_entry *l2e)
175 int error = 0;
177 if (c4iw_fatal_error(rdev)) {
178 kfree_skb(skb);
179 PDBG("%s - device in error state - dropping\n", __func__);
180 return -EIO;
182 error = cxgb4_l2t_send(rdev->lldi.ports[0], skb, l2e);
183 if (error < 0)
184 kfree_skb(skb);
185 return error < 0 ? error : 0;
188 int c4iw_ofld_send(struct c4iw_rdev *rdev, struct sk_buff *skb)
190 int error = 0;
192 if (c4iw_fatal_error(rdev)) {
193 kfree_skb(skb);
194 PDBG("%s - device in error state - dropping\n", __func__);
195 return -EIO;
197 error = cxgb4_ofld_send(rdev->lldi.ports[0], skb);
198 if (error < 0)
199 kfree_skb(skb);
200 return error < 0 ? error : 0;
203 static void release_tid(struct c4iw_rdev *rdev, u32 hwtid, struct sk_buff *skb)
205 struct cpl_tid_release *req;
207 skb = get_skb(skb, sizeof *req, GFP_KERNEL);
208 if (!skb)
209 return;
210 req = (struct cpl_tid_release *) skb_put(skb, sizeof(*req));
211 INIT_TP_WR(req, hwtid);
212 OPCODE_TID(req) = cpu_to_be32(MK_OPCODE_TID(CPL_TID_RELEASE, hwtid));
213 set_wr_txq(skb, CPL_PRIORITY_SETUP, 0);
214 c4iw_ofld_send(rdev, skb);
215 return;
218 static void set_emss(struct c4iw_ep *ep, u16 opt)
220 ep->emss = ep->com.dev->rdev.lldi.mtus[GET_TCPOPT_MSS(opt)] - 40;
221 ep->mss = ep->emss;
222 if (GET_TCPOPT_TSTAMP(opt))
223 ep->emss -= 12;
224 if (ep->emss < 128)
225 ep->emss = 128;
226 PDBG("%s mss_idx %u mss %u emss=%u\n", __func__, GET_TCPOPT_MSS(opt),
227 ep->mss, ep->emss);
230 static enum c4iw_ep_state state_read(struct c4iw_ep_common *epc)
232 enum c4iw_ep_state state;
234 mutex_lock(&epc->mutex);
235 state = epc->state;
236 mutex_unlock(&epc->mutex);
237 return state;
240 static void __state_set(struct c4iw_ep_common *epc, enum c4iw_ep_state new)
242 epc->state = new;
245 static void state_set(struct c4iw_ep_common *epc, enum c4iw_ep_state new)
247 mutex_lock(&epc->mutex);
248 PDBG("%s - %s -> %s\n", __func__, states[epc->state], states[new]);
249 __state_set(epc, new);
250 mutex_unlock(&epc->mutex);
251 return;
254 static void *alloc_ep(int size, gfp_t gfp)
256 struct c4iw_ep_common *epc;
258 epc = kzalloc(size, gfp);
259 if (epc) {
260 kref_init(&epc->kref);
261 mutex_init(&epc->mutex);
262 c4iw_init_wr_wait(&epc->wr_wait);
264 PDBG("%s alloc ep %p\n", __func__, epc);
265 return epc;
268 void _c4iw_free_ep(struct kref *kref)
270 struct c4iw_ep *ep;
272 ep = container_of(kref, struct c4iw_ep, com.kref);
273 PDBG("%s ep %p state %s\n", __func__, ep, states[state_read(&ep->com)]);
274 if (test_bit(RELEASE_RESOURCES, &ep->com.flags)) {
275 cxgb4_remove_tid(ep->com.dev->rdev.lldi.tids, 0, ep->hwtid);
276 dst_release(ep->dst);
277 cxgb4_l2t_release(ep->l2t);
278 remove_handle(ep->com.dev, &ep->com.dev->hwtid_idr, ep->hwtid);
280 kfree(ep);
283 static void release_ep_resources(struct c4iw_ep *ep)
285 set_bit(RELEASE_RESOURCES, &ep->com.flags);
286 c4iw_put_ep(&ep->com);
289 static int status2errno(int status)
291 switch (status) {
292 case CPL_ERR_NONE:
293 return 0;
294 case CPL_ERR_CONN_RESET:
295 return -ECONNRESET;
296 case CPL_ERR_ARP_MISS:
297 return -EHOSTUNREACH;
298 case CPL_ERR_CONN_TIMEDOUT:
299 return -ETIMEDOUT;
300 case CPL_ERR_TCAM_FULL:
301 return -ENOMEM;
302 case CPL_ERR_CONN_EXIST:
303 return -EADDRINUSE;
304 default:
305 return -EIO;
310 * Try and reuse skbs already allocated...
312 static struct sk_buff *get_skb(struct sk_buff *skb, int len, gfp_t gfp)
314 if (skb && !skb_is_nonlinear(skb) && !skb_cloned(skb)) {
315 skb_trim(skb, 0);
316 skb_get(skb);
317 skb_reset_transport_header(skb);
318 } else {
319 skb = alloc_skb(len, gfp);
321 return skb;
324 static struct rtable *find_route(struct c4iw_dev *dev, __be32 local_ip,
325 __be32 peer_ip, __be16 local_port,
326 __be16 peer_port, u8 tos)
328 struct rtable *rt;
329 struct flowi4 fl4;
331 rt = ip_route_output_ports(&init_net, &fl4, NULL, peer_ip, local_ip,
332 peer_port, local_port, IPPROTO_TCP,
333 tos, 0);
334 if (IS_ERR(rt))
335 return NULL;
336 return rt;
339 static void arp_failure_discard(void *handle, struct sk_buff *skb)
341 PDBG("%s c4iw_dev %p\n", __func__, handle);
342 kfree_skb(skb);
346 * Handle an ARP failure for an active open.
348 static void act_open_req_arp_failure(void *handle, struct sk_buff *skb)
350 printk(KERN_ERR MOD "ARP failure duing connect\n");
351 kfree_skb(skb);
355 * Handle an ARP failure for a CPL_ABORT_REQ. Change it into a no RST variant
356 * and send it along.
358 static void abort_arp_failure(void *handle, struct sk_buff *skb)
360 struct c4iw_rdev *rdev = handle;
361 struct cpl_abort_req *req = cplhdr(skb);
363 PDBG("%s rdev %p\n", __func__, rdev);
364 req->cmd = CPL_ABORT_NO_RST;
365 c4iw_ofld_send(rdev, skb);
368 static void send_flowc(struct c4iw_ep *ep, struct sk_buff *skb)
370 unsigned int flowclen = 80;
371 struct fw_flowc_wr *flowc;
372 int i;
374 skb = get_skb(skb, flowclen, GFP_KERNEL);
375 flowc = (struct fw_flowc_wr *)__skb_put(skb, flowclen);
377 flowc->op_to_nparams = cpu_to_be32(FW_WR_OP(FW_FLOWC_WR) |
378 FW_FLOWC_WR_NPARAMS(8));
379 flowc->flowid_len16 = cpu_to_be32(FW_WR_LEN16(DIV_ROUND_UP(flowclen,
380 16)) | FW_WR_FLOWID(ep->hwtid));
382 flowc->mnemval[0].mnemonic = FW_FLOWC_MNEM_PFNVFN;
383 flowc->mnemval[0].val = cpu_to_be32(PCI_FUNC(ep->com.dev->rdev.lldi.pdev->devfn) << 8);
384 flowc->mnemval[1].mnemonic = FW_FLOWC_MNEM_CH;
385 flowc->mnemval[1].val = cpu_to_be32(ep->tx_chan);
386 flowc->mnemval[2].mnemonic = FW_FLOWC_MNEM_PORT;
387 flowc->mnemval[2].val = cpu_to_be32(ep->tx_chan);
388 flowc->mnemval[3].mnemonic = FW_FLOWC_MNEM_IQID;
389 flowc->mnemval[3].val = cpu_to_be32(ep->rss_qid);
390 flowc->mnemval[4].mnemonic = FW_FLOWC_MNEM_SNDNXT;
391 flowc->mnemval[4].val = cpu_to_be32(ep->snd_seq);
392 flowc->mnemval[5].mnemonic = FW_FLOWC_MNEM_RCVNXT;
393 flowc->mnemval[5].val = cpu_to_be32(ep->rcv_seq);
394 flowc->mnemval[6].mnemonic = FW_FLOWC_MNEM_SNDBUF;
395 flowc->mnemval[6].val = cpu_to_be32(snd_win);
396 flowc->mnemval[7].mnemonic = FW_FLOWC_MNEM_MSS;
397 flowc->mnemval[7].val = cpu_to_be32(ep->emss);
398 /* Pad WR to 16 byte boundary */
399 flowc->mnemval[8].mnemonic = 0;
400 flowc->mnemval[8].val = 0;
401 for (i = 0; i < 9; i++) {
402 flowc->mnemval[i].r4[0] = 0;
403 flowc->mnemval[i].r4[1] = 0;
404 flowc->mnemval[i].r4[2] = 0;
407 set_wr_txq(skb, CPL_PRIORITY_DATA, ep->txq_idx);
408 c4iw_ofld_send(&ep->com.dev->rdev, skb);
411 static int send_halfclose(struct c4iw_ep *ep, gfp_t gfp)
413 struct cpl_close_con_req *req;
414 struct sk_buff *skb;
415 int wrlen = roundup(sizeof *req, 16);
417 PDBG("%s ep %p tid %u\n", __func__, ep, ep->hwtid);
418 skb = get_skb(NULL, wrlen, gfp);
419 if (!skb) {
420 printk(KERN_ERR MOD "%s - failed to alloc skb\n", __func__);
421 return -ENOMEM;
423 set_wr_txq(skb, CPL_PRIORITY_DATA, ep->txq_idx);
424 t4_set_arp_err_handler(skb, NULL, arp_failure_discard);
425 req = (struct cpl_close_con_req *) skb_put(skb, wrlen);
426 memset(req, 0, wrlen);
427 INIT_TP_WR(req, ep->hwtid);
428 OPCODE_TID(req) = cpu_to_be32(MK_OPCODE_TID(CPL_CLOSE_CON_REQ,
429 ep->hwtid));
430 return c4iw_l2t_send(&ep->com.dev->rdev, skb, ep->l2t);
433 static int send_abort(struct c4iw_ep *ep, struct sk_buff *skb, gfp_t gfp)
435 struct cpl_abort_req *req;
436 int wrlen = roundup(sizeof *req, 16);
438 PDBG("%s ep %p tid %u\n", __func__, ep, ep->hwtid);
439 skb = get_skb(skb, wrlen, gfp);
440 if (!skb) {
441 printk(KERN_ERR MOD "%s - failed to alloc skb.\n",
442 __func__);
443 return -ENOMEM;
445 set_wr_txq(skb, CPL_PRIORITY_DATA, ep->txq_idx);
446 t4_set_arp_err_handler(skb, &ep->com.dev->rdev, abort_arp_failure);
447 req = (struct cpl_abort_req *) skb_put(skb, wrlen);
448 memset(req, 0, wrlen);
449 INIT_TP_WR(req, ep->hwtid);
450 OPCODE_TID(req) = cpu_to_be32(MK_OPCODE_TID(CPL_ABORT_REQ, ep->hwtid));
451 req->cmd = CPL_ABORT_SEND_RST;
452 return c4iw_l2t_send(&ep->com.dev->rdev, skb, ep->l2t);
455 #define VLAN_NONE 0xfff
456 #define FILTER_SEL_VLAN_NONE 0xffff
457 #define FILTER_SEL_WIDTH_P_FC (3+1) /* port uses 3 bits, FCoE one bit */
458 #define FILTER_SEL_WIDTH_VIN_P_FC \
459 (6 + 7 + FILTER_SEL_WIDTH_P_FC) /* 6 bits are unused, VF uses 7 bits*/
460 #define FILTER_SEL_WIDTH_TAG_P_FC \
461 (3 + FILTER_SEL_WIDTH_VIN_P_FC) /* PF uses 3 bits */
462 #define FILTER_SEL_WIDTH_VLD_TAG_P_FC (1 + FILTER_SEL_WIDTH_TAG_P_FC)
464 static unsigned int select_ntuple(struct c4iw_dev *dev, struct dst_entry *dst,
465 struct l2t_entry *l2t)
467 unsigned int ntuple = 0;
468 u32 viid;
470 switch (dev->rdev.lldi.filt_mode) {
472 /* default filter mode */
473 case HW_TPL_FR_MT_PR_IV_P_FC:
474 if (l2t->vlan == VLAN_NONE)
475 ntuple |= FILTER_SEL_VLAN_NONE << FILTER_SEL_WIDTH_P_FC;
476 else {
477 ntuple |= l2t->vlan << FILTER_SEL_WIDTH_P_FC;
478 ntuple |= 1 << FILTER_SEL_WIDTH_VLD_TAG_P_FC;
480 ntuple |= l2t->lport << S_PORT | IPPROTO_TCP <<
481 FILTER_SEL_WIDTH_VLD_TAG_P_FC;
482 break;
483 case HW_TPL_FR_MT_PR_OV_P_FC: {
484 viid = cxgb4_port_viid(l2t->neigh->dev);
486 ntuple |= FW_VIID_VIN_GET(viid) << FILTER_SEL_WIDTH_P_FC;
487 ntuple |= FW_VIID_PFN_GET(viid) << FILTER_SEL_WIDTH_VIN_P_FC;
488 ntuple |= FW_VIID_VIVLD_GET(viid) << FILTER_SEL_WIDTH_TAG_P_FC;
489 ntuple |= l2t->lport << S_PORT | IPPROTO_TCP <<
490 FILTER_SEL_WIDTH_VLD_TAG_P_FC;
491 break;
493 default:
494 break;
496 return ntuple;
499 static int send_connect(struct c4iw_ep *ep)
501 struct cpl_act_open_req *req;
502 struct sk_buff *skb;
503 u64 opt0;
504 u32 opt2;
505 unsigned int mtu_idx;
506 int wscale;
507 int wrlen = roundup(sizeof *req, 16);
509 PDBG("%s ep %p atid %u\n", __func__, ep, ep->atid);
511 skb = get_skb(NULL, wrlen, GFP_KERNEL);
512 if (!skb) {
513 printk(KERN_ERR MOD "%s - failed to alloc skb.\n",
514 __func__);
515 return -ENOMEM;
517 set_wr_txq(skb, CPL_PRIORITY_SETUP, ep->ctrlq_idx);
519 cxgb4_best_mtu(ep->com.dev->rdev.lldi.mtus, ep->mtu, &mtu_idx);
520 wscale = compute_wscale(rcv_win);
521 opt0 = (nocong ? NO_CONG(1) : 0) |
522 KEEP_ALIVE(1) |
523 DELACK(1) |
524 WND_SCALE(wscale) |
525 MSS_IDX(mtu_idx) |
526 L2T_IDX(ep->l2t->idx) |
527 TX_CHAN(ep->tx_chan) |
528 SMAC_SEL(ep->smac_idx) |
529 DSCP(ep->tos) |
530 ULP_MODE(ULP_MODE_TCPDDP) |
531 RCV_BUFSIZ(rcv_win>>10);
532 opt2 = RX_CHANNEL(0) |
533 CCTRL_ECN(enable_ecn) |
534 RSS_QUEUE_VALID | RSS_QUEUE(ep->rss_qid);
535 if (enable_tcp_timestamps)
536 opt2 |= TSTAMPS_EN(1);
537 if (enable_tcp_sack)
538 opt2 |= SACK_EN(1);
539 if (wscale && enable_tcp_window_scaling)
540 opt2 |= WND_SCALE_EN(1);
541 t4_set_arp_err_handler(skb, NULL, act_open_req_arp_failure);
543 req = (struct cpl_act_open_req *) skb_put(skb, wrlen);
544 INIT_TP_WR(req, 0);
545 OPCODE_TID(req) = cpu_to_be32(
546 MK_OPCODE_TID(CPL_ACT_OPEN_REQ, ((ep->rss_qid<<14)|ep->atid)));
547 req->local_port = ep->com.local_addr.sin_port;
548 req->peer_port = ep->com.remote_addr.sin_port;
549 req->local_ip = ep->com.local_addr.sin_addr.s_addr;
550 req->peer_ip = ep->com.remote_addr.sin_addr.s_addr;
551 req->opt0 = cpu_to_be64(opt0);
552 req->params = cpu_to_be32(select_ntuple(ep->com.dev, ep->dst, ep->l2t));
553 req->opt2 = cpu_to_be32(opt2);
554 set_bit(ACT_OPEN_REQ, &ep->com.history);
555 return c4iw_l2t_send(&ep->com.dev->rdev, skb, ep->l2t);
558 static void send_mpa_req(struct c4iw_ep *ep, struct sk_buff *skb,
559 u8 mpa_rev_to_use)
561 int mpalen, wrlen;
562 struct fw_ofld_tx_data_wr *req;
563 struct mpa_message *mpa;
564 struct mpa_v2_conn_params mpa_v2_params;
566 PDBG("%s ep %p tid %u pd_len %d\n", __func__, ep, ep->hwtid, ep->plen);
568 BUG_ON(skb_cloned(skb));
570 mpalen = sizeof(*mpa) + ep->plen;
571 if (mpa_rev_to_use == 2)
572 mpalen += sizeof(struct mpa_v2_conn_params);
573 wrlen = roundup(mpalen + sizeof *req, 16);
574 skb = get_skb(skb, wrlen, GFP_KERNEL);
575 if (!skb) {
576 connect_reply_upcall(ep, -ENOMEM);
577 return;
579 set_wr_txq(skb, CPL_PRIORITY_DATA, ep->txq_idx);
581 req = (struct fw_ofld_tx_data_wr *)skb_put(skb, wrlen);
582 memset(req, 0, wrlen);
583 req->op_to_immdlen = cpu_to_be32(
584 FW_WR_OP(FW_OFLD_TX_DATA_WR) |
585 FW_WR_COMPL(1) |
586 FW_WR_IMMDLEN(mpalen));
587 req->flowid_len16 = cpu_to_be32(
588 FW_WR_FLOWID(ep->hwtid) |
589 FW_WR_LEN16(wrlen >> 4));
590 req->plen = cpu_to_be32(mpalen);
591 req->tunnel_to_proxy = cpu_to_be32(
592 FW_OFLD_TX_DATA_WR_FLUSH(1) |
593 FW_OFLD_TX_DATA_WR_SHOVE(1));
595 mpa = (struct mpa_message *)(req + 1);
596 memcpy(mpa->key, MPA_KEY_REQ, sizeof(mpa->key));
597 mpa->flags = (crc_enabled ? MPA_CRC : 0) |
598 (markers_enabled ? MPA_MARKERS : 0) |
599 (mpa_rev_to_use == 2 ? MPA_ENHANCED_RDMA_CONN : 0);
600 mpa->private_data_size = htons(ep->plen);
601 mpa->revision = mpa_rev_to_use;
602 if (mpa_rev_to_use == 1) {
603 ep->tried_with_mpa_v1 = 1;
604 ep->retry_with_mpa_v1 = 0;
607 if (mpa_rev_to_use == 2) {
608 mpa->private_data_size = htons(ntohs(mpa->private_data_size) +
609 sizeof (struct mpa_v2_conn_params));
610 mpa_v2_params.ird = htons((u16)ep->ird);
611 mpa_v2_params.ord = htons((u16)ep->ord);
613 if (peer2peer) {
614 mpa_v2_params.ird |= htons(MPA_V2_PEER2PEER_MODEL);
615 if (p2p_type == FW_RI_INIT_P2PTYPE_RDMA_WRITE)
616 mpa_v2_params.ord |=
617 htons(MPA_V2_RDMA_WRITE_RTR);
618 else if (p2p_type == FW_RI_INIT_P2PTYPE_READ_REQ)
619 mpa_v2_params.ord |=
620 htons(MPA_V2_RDMA_READ_RTR);
622 memcpy(mpa->private_data, &mpa_v2_params,
623 sizeof(struct mpa_v2_conn_params));
625 if (ep->plen)
626 memcpy(mpa->private_data +
627 sizeof(struct mpa_v2_conn_params),
628 ep->mpa_pkt + sizeof(*mpa), ep->plen);
629 } else
630 if (ep->plen)
631 memcpy(mpa->private_data,
632 ep->mpa_pkt + sizeof(*mpa), ep->plen);
635 * Reference the mpa skb. This ensures the data area
636 * will remain in memory until the hw acks the tx.
637 * Function fw4_ack() will deref it.
639 skb_get(skb);
640 t4_set_arp_err_handler(skb, NULL, arp_failure_discard);
641 BUG_ON(ep->mpa_skb);
642 ep->mpa_skb = skb;
643 c4iw_l2t_send(&ep->com.dev->rdev, skb, ep->l2t);
644 start_ep_timer(ep);
645 state_set(&ep->com, MPA_REQ_SENT);
646 ep->mpa_attr.initiator = 1;
647 return;
650 static int send_mpa_reject(struct c4iw_ep *ep, const void *pdata, u8 plen)
652 int mpalen, wrlen;
653 struct fw_ofld_tx_data_wr *req;
654 struct mpa_message *mpa;
655 struct sk_buff *skb;
656 struct mpa_v2_conn_params mpa_v2_params;
658 PDBG("%s ep %p tid %u pd_len %d\n", __func__, ep, ep->hwtid, ep->plen);
660 mpalen = sizeof(*mpa) + plen;
661 if (ep->mpa_attr.version == 2 && ep->mpa_attr.enhanced_rdma_conn)
662 mpalen += sizeof(struct mpa_v2_conn_params);
663 wrlen = roundup(mpalen + sizeof *req, 16);
665 skb = get_skb(NULL, wrlen, GFP_KERNEL);
666 if (!skb) {
667 printk(KERN_ERR MOD "%s - cannot alloc skb!\n", __func__);
668 return -ENOMEM;
670 set_wr_txq(skb, CPL_PRIORITY_DATA, ep->txq_idx);
672 req = (struct fw_ofld_tx_data_wr *)skb_put(skb, wrlen);
673 memset(req, 0, wrlen);
674 req->op_to_immdlen = cpu_to_be32(
675 FW_WR_OP(FW_OFLD_TX_DATA_WR) |
676 FW_WR_COMPL(1) |
677 FW_WR_IMMDLEN(mpalen));
678 req->flowid_len16 = cpu_to_be32(
679 FW_WR_FLOWID(ep->hwtid) |
680 FW_WR_LEN16(wrlen >> 4));
681 req->plen = cpu_to_be32(mpalen);
682 req->tunnel_to_proxy = cpu_to_be32(
683 FW_OFLD_TX_DATA_WR_FLUSH(1) |
684 FW_OFLD_TX_DATA_WR_SHOVE(1));
686 mpa = (struct mpa_message *)(req + 1);
687 memset(mpa, 0, sizeof(*mpa));
688 memcpy(mpa->key, MPA_KEY_REP, sizeof(mpa->key));
689 mpa->flags = MPA_REJECT;
690 mpa->revision = mpa_rev;
691 mpa->private_data_size = htons(plen);
693 if (ep->mpa_attr.version == 2 && ep->mpa_attr.enhanced_rdma_conn) {
694 mpa->flags |= MPA_ENHANCED_RDMA_CONN;
695 mpa->private_data_size = htons(ntohs(mpa->private_data_size) +
696 sizeof (struct mpa_v2_conn_params));
697 mpa_v2_params.ird = htons(((u16)ep->ird) |
698 (peer2peer ? MPA_V2_PEER2PEER_MODEL :
699 0));
700 mpa_v2_params.ord = htons(((u16)ep->ord) | (peer2peer ?
701 (p2p_type ==
702 FW_RI_INIT_P2PTYPE_RDMA_WRITE ?
703 MPA_V2_RDMA_WRITE_RTR : p2p_type ==
704 FW_RI_INIT_P2PTYPE_READ_REQ ?
705 MPA_V2_RDMA_READ_RTR : 0) : 0));
706 memcpy(mpa->private_data, &mpa_v2_params,
707 sizeof(struct mpa_v2_conn_params));
709 if (ep->plen)
710 memcpy(mpa->private_data +
711 sizeof(struct mpa_v2_conn_params), pdata, plen);
712 } else
713 if (plen)
714 memcpy(mpa->private_data, pdata, plen);
717 * Reference the mpa skb again. This ensures the data area
718 * will remain in memory until the hw acks the tx.
719 * Function fw4_ack() will deref it.
721 skb_get(skb);
722 set_wr_txq(skb, CPL_PRIORITY_DATA, ep->txq_idx);
723 t4_set_arp_err_handler(skb, NULL, arp_failure_discard);
724 BUG_ON(ep->mpa_skb);
725 ep->mpa_skb = skb;
726 return c4iw_l2t_send(&ep->com.dev->rdev, skb, ep->l2t);
729 static int send_mpa_reply(struct c4iw_ep *ep, const void *pdata, u8 plen)
731 int mpalen, wrlen;
732 struct fw_ofld_tx_data_wr *req;
733 struct mpa_message *mpa;
734 struct sk_buff *skb;
735 struct mpa_v2_conn_params mpa_v2_params;
737 PDBG("%s ep %p tid %u pd_len %d\n", __func__, ep, ep->hwtid, ep->plen);
739 mpalen = sizeof(*mpa) + plen;
740 if (ep->mpa_attr.version == 2 && ep->mpa_attr.enhanced_rdma_conn)
741 mpalen += sizeof(struct mpa_v2_conn_params);
742 wrlen = roundup(mpalen + sizeof *req, 16);
744 skb = get_skb(NULL, wrlen, GFP_KERNEL);
745 if (!skb) {
746 printk(KERN_ERR MOD "%s - cannot alloc skb!\n", __func__);
747 return -ENOMEM;
749 set_wr_txq(skb, CPL_PRIORITY_DATA, ep->txq_idx);
751 req = (struct fw_ofld_tx_data_wr *) skb_put(skb, wrlen);
752 memset(req, 0, wrlen);
753 req->op_to_immdlen = cpu_to_be32(
754 FW_WR_OP(FW_OFLD_TX_DATA_WR) |
755 FW_WR_COMPL(1) |
756 FW_WR_IMMDLEN(mpalen));
757 req->flowid_len16 = cpu_to_be32(
758 FW_WR_FLOWID(ep->hwtid) |
759 FW_WR_LEN16(wrlen >> 4));
760 req->plen = cpu_to_be32(mpalen);
761 req->tunnel_to_proxy = cpu_to_be32(
762 FW_OFLD_TX_DATA_WR_FLUSH(1) |
763 FW_OFLD_TX_DATA_WR_SHOVE(1));
765 mpa = (struct mpa_message *)(req + 1);
766 memset(mpa, 0, sizeof(*mpa));
767 memcpy(mpa->key, MPA_KEY_REP, sizeof(mpa->key));
768 mpa->flags = (ep->mpa_attr.crc_enabled ? MPA_CRC : 0) |
769 (markers_enabled ? MPA_MARKERS : 0);
770 mpa->revision = ep->mpa_attr.version;
771 mpa->private_data_size = htons(plen);
773 if (ep->mpa_attr.version == 2 && ep->mpa_attr.enhanced_rdma_conn) {
774 mpa->flags |= MPA_ENHANCED_RDMA_CONN;
775 mpa->private_data_size = htons(ntohs(mpa->private_data_size) +
776 sizeof (struct mpa_v2_conn_params));
777 mpa_v2_params.ird = htons((u16)ep->ird);
778 mpa_v2_params.ord = htons((u16)ep->ord);
779 if (peer2peer && (ep->mpa_attr.p2p_type !=
780 FW_RI_INIT_P2PTYPE_DISABLED)) {
781 mpa_v2_params.ird |= htons(MPA_V2_PEER2PEER_MODEL);
783 if (p2p_type == FW_RI_INIT_P2PTYPE_RDMA_WRITE)
784 mpa_v2_params.ord |=
785 htons(MPA_V2_RDMA_WRITE_RTR);
786 else if (p2p_type == FW_RI_INIT_P2PTYPE_READ_REQ)
787 mpa_v2_params.ord |=
788 htons(MPA_V2_RDMA_READ_RTR);
791 memcpy(mpa->private_data, &mpa_v2_params,
792 sizeof(struct mpa_v2_conn_params));
794 if (ep->plen)
795 memcpy(mpa->private_data +
796 sizeof(struct mpa_v2_conn_params), pdata, plen);
797 } else
798 if (plen)
799 memcpy(mpa->private_data, pdata, plen);
802 * Reference the mpa skb. This ensures the data area
803 * will remain in memory until the hw acks the tx.
804 * Function fw4_ack() will deref it.
806 skb_get(skb);
807 t4_set_arp_err_handler(skb, NULL, arp_failure_discard);
808 ep->mpa_skb = skb;
809 state_set(&ep->com, MPA_REP_SENT);
810 return c4iw_l2t_send(&ep->com.dev->rdev, skb, ep->l2t);
813 static int act_establish(struct c4iw_dev *dev, struct sk_buff *skb)
815 struct c4iw_ep *ep;
816 struct cpl_act_establish *req = cplhdr(skb);
817 unsigned int tid = GET_TID(req);
818 unsigned int atid = GET_TID_TID(ntohl(req->tos_atid));
819 struct tid_info *t = dev->rdev.lldi.tids;
821 ep = lookup_atid(t, atid);
823 PDBG("%s ep %p tid %u snd_isn %u rcv_isn %u\n", __func__, ep, tid,
824 be32_to_cpu(req->snd_isn), be32_to_cpu(req->rcv_isn));
826 dst_confirm(ep->dst);
828 /* setup the hwtid for this connection */
829 ep->hwtid = tid;
830 cxgb4_insert_tid(t, ep, tid);
831 insert_handle(dev, &dev->hwtid_idr, ep, ep->hwtid);
833 ep->snd_seq = be32_to_cpu(req->snd_isn);
834 ep->rcv_seq = be32_to_cpu(req->rcv_isn);
836 set_emss(ep, ntohs(req->tcp_opt));
838 /* dealloc the atid */
839 remove_handle(ep->com.dev, &ep->com.dev->atid_idr, atid);
840 cxgb4_free_atid(t, atid);
841 set_bit(ACT_ESTAB, &ep->com.history);
843 /* start MPA negotiation */
844 send_flowc(ep, NULL);
845 if (ep->retry_with_mpa_v1)
846 send_mpa_req(ep, skb, 1);
847 else
848 send_mpa_req(ep, skb, mpa_rev);
850 return 0;
853 static void close_complete_upcall(struct c4iw_ep *ep)
855 struct iw_cm_event event;
857 PDBG("%s ep %p tid %u\n", __func__, ep, ep->hwtid);
858 memset(&event, 0, sizeof(event));
859 event.event = IW_CM_EVENT_CLOSE;
860 if (ep->com.cm_id) {
861 PDBG("close complete delivered ep %p cm_id %p tid %u\n",
862 ep, ep->com.cm_id, ep->hwtid);
863 ep->com.cm_id->event_handler(ep->com.cm_id, &event);
864 ep->com.cm_id->rem_ref(ep->com.cm_id);
865 ep->com.cm_id = NULL;
866 ep->com.qp = NULL;
867 set_bit(CLOSE_UPCALL, &ep->com.history);
871 static int abort_connection(struct c4iw_ep *ep, struct sk_buff *skb, gfp_t gfp)
873 PDBG("%s ep %p tid %u\n", __func__, ep, ep->hwtid);
874 close_complete_upcall(ep);
875 state_set(&ep->com, ABORTING);
876 set_bit(ABORT_CONN, &ep->com.history);
877 return send_abort(ep, skb, gfp);
880 static void peer_close_upcall(struct c4iw_ep *ep)
882 struct iw_cm_event event;
884 PDBG("%s ep %p tid %u\n", __func__, ep, ep->hwtid);
885 memset(&event, 0, sizeof(event));
886 event.event = IW_CM_EVENT_DISCONNECT;
887 if (ep->com.cm_id) {
888 PDBG("peer close delivered ep %p cm_id %p tid %u\n",
889 ep, ep->com.cm_id, ep->hwtid);
890 ep->com.cm_id->event_handler(ep->com.cm_id, &event);
891 set_bit(DISCONN_UPCALL, &ep->com.history);
895 static void peer_abort_upcall(struct c4iw_ep *ep)
897 struct iw_cm_event event;
899 PDBG("%s ep %p tid %u\n", __func__, ep, ep->hwtid);
900 memset(&event, 0, sizeof(event));
901 event.event = IW_CM_EVENT_CLOSE;
902 event.status = -ECONNRESET;
903 if (ep->com.cm_id) {
904 PDBG("abort delivered ep %p cm_id %p tid %u\n", ep,
905 ep->com.cm_id, ep->hwtid);
906 ep->com.cm_id->event_handler(ep->com.cm_id, &event);
907 ep->com.cm_id->rem_ref(ep->com.cm_id);
908 ep->com.cm_id = NULL;
909 ep->com.qp = NULL;
910 set_bit(ABORT_UPCALL, &ep->com.history);
914 static void connect_reply_upcall(struct c4iw_ep *ep, int status)
916 struct iw_cm_event event;
918 PDBG("%s ep %p tid %u status %d\n", __func__, ep, ep->hwtid, status);
919 memset(&event, 0, sizeof(event));
920 event.event = IW_CM_EVENT_CONNECT_REPLY;
921 event.status = status;
922 event.local_addr = ep->com.local_addr;
923 event.remote_addr = ep->com.remote_addr;
925 if ((status == 0) || (status == -ECONNREFUSED)) {
926 if (!ep->tried_with_mpa_v1) {
927 /* this means MPA_v2 is used */
928 event.private_data_len = ep->plen -
929 sizeof(struct mpa_v2_conn_params);
930 event.private_data = ep->mpa_pkt +
931 sizeof(struct mpa_message) +
932 sizeof(struct mpa_v2_conn_params);
933 } else {
934 /* this means MPA_v1 is used */
935 event.private_data_len = ep->plen;
936 event.private_data = ep->mpa_pkt +
937 sizeof(struct mpa_message);
941 PDBG("%s ep %p tid %u status %d\n", __func__, ep,
942 ep->hwtid, status);
943 set_bit(CONN_RPL_UPCALL, &ep->com.history);
944 ep->com.cm_id->event_handler(ep->com.cm_id, &event);
946 if (status < 0) {
947 ep->com.cm_id->rem_ref(ep->com.cm_id);
948 ep->com.cm_id = NULL;
949 ep->com.qp = NULL;
953 static void connect_request_upcall(struct c4iw_ep *ep)
955 struct iw_cm_event event;
957 PDBG("%s ep %p tid %u\n", __func__, ep, ep->hwtid);
958 memset(&event, 0, sizeof(event));
959 event.event = IW_CM_EVENT_CONNECT_REQUEST;
960 event.local_addr = ep->com.local_addr;
961 event.remote_addr = ep->com.remote_addr;
962 event.provider_data = ep;
963 if (!ep->tried_with_mpa_v1) {
964 /* this means MPA_v2 is used */
965 event.ord = ep->ord;
966 event.ird = ep->ird;
967 event.private_data_len = ep->plen -
968 sizeof(struct mpa_v2_conn_params);
969 event.private_data = ep->mpa_pkt + sizeof(struct mpa_message) +
970 sizeof(struct mpa_v2_conn_params);
971 } else {
972 /* this means MPA_v1 is used. Send max supported */
973 event.ord = c4iw_max_read_depth;
974 event.ird = c4iw_max_read_depth;
975 event.private_data_len = ep->plen;
976 event.private_data = ep->mpa_pkt + sizeof(struct mpa_message);
978 if (state_read(&ep->parent_ep->com) != DEAD) {
979 c4iw_get_ep(&ep->com);
980 ep->parent_ep->com.cm_id->event_handler(
981 ep->parent_ep->com.cm_id,
982 &event);
984 set_bit(CONNREQ_UPCALL, &ep->com.history);
985 c4iw_put_ep(&ep->parent_ep->com);
986 ep->parent_ep = NULL;
989 static void established_upcall(struct c4iw_ep *ep)
991 struct iw_cm_event event;
993 PDBG("%s ep %p tid %u\n", __func__, ep, ep->hwtid);
994 memset(&event, 0, sizeof(event));
995 event.event = IW_CM_EVENT_ESTABLISHED;
996 event.ird = ep->ird;
997 event.ord = ep->ord;
998 if (ep->com.cm_id) {
999 PDBG("%s ep %p tid %u\n", __func__, ep, ep->hwtid);
1000 ep->com.cm_id->event_handler(ep->com.cm_id, &event);
1001 set_bit(ESTAB_UPCALL, &ep->com.history);
1005 static int update_rx_credits(struct c4iw_ep *ep, u32 credits)
1007 struct cpl_rx_data_ack *req;
1008 struct sk_buff *skb;
1009 int wrlen = roundup(sizeof *req, 16);
1011 PDBG("%s ep %p tid %u credits %u\n", __func__, ep, ep->hwtid, credits);
1012 skb = get_skb(NULL, wrlen, GFP_KERNEL);
1013 if (!skb) {
1014 printk(KERN_ERR MOD "update_rx_credits - cannot alloc skb!\n");
1015 return 0;
1018 req = (struct cpl_rx_data_ack *) skb_put(skb, wrlen);
1019 memset(req, 0, wrlen);
1020 INIT_TP_WR(req, ep->hwtid);
1021 OPCODE_TID(req) = cpu_to_be32(MK_OPCODE_TID(CPL_RX_DATA_ACK,
1022 ep->hwtid));
1023 req->credit_dack = cpu_to_be32(credits | RX_FORCE_ACK(1) |
1024 F_RX_DACK_CHANGE |
1025 V_RX_DACK_MODE(dack_mode));
1026 set_wr_txq(skb, CPL_PRIORITY_ACK, ep->ctrlq_idx);
1027 c4iw_ofld_send(&ep->com.dev->rdev, skb);
1028 return credits;
1031 static void process_mpa_reply(struct c4iw_ep *ep, struct sk_buff *skb)
1033 struct mpa_message *mpa;
1034 struct mpa_v2_conn_params *mpa_v2_params;
1035 u16 plen;
1036 u16 resp_ird, resp_ord;
1037 u8 rtr_mismatch = 0, insuff_ird = 0;
1038 struct c4iw_qp_attributes attrs;
1039 enum c4iw_qp_attr_mask mask;
1040 int err;
1042 PDBG("%s ep %p tid %u\n", __func__, ep, ep->hwtid);
1045 * Stop mpa timer. If it expired, then the state has
1046 * changed and we bail since ep_timeout already aborted
1047 * the connection.
1049 stop_ep_timer(ep);
1050 if (state_read(&ep->com) != MPA_REQ_SENT)
1051 return;
1054 * If we get more than the supported amount of private data
1055 * then we must fail this connection.
1057 if (ep->mpa_pkt_len + skb->len > sizeof(ep->mpa_pkt)) {
1058 err = -EINVAL;
1059 goto err;
1063 * copy the new data into our accumulation buffer.
1065 skb_copy_from_linear_data(skb, &(ep->mpa_pkt[ep->mpa_pkt_len]),
1066 skb->len);
1067 ep->mpa_pkt_len += skb->len;
1070 * if we don't even have the mpa message, then bail.
1072 if (ep->mpa_pkt_len < sizeof(*mpa))
1073 return;
1074 mpa = (struct mpa_message *) ep->mpa_pkt;
1076 /* Validate MPA header. */
1077 if (mpa->revision > mpa_rev) {
1078 printk(KERN_ERR MOD "%s MPA version mismatch. Local = %d,"
1079 " Received = %d\n", __func__, mpa_rev, mpa->revision);
1080 err = -EPROTO;
1081 goto err;
1083 if (memcmp(mpa->key, MPA_KEY_REP, sizeof(mpa->key))) {
1084 err = -EPROTO;
1085 goto err;
1088 plen = ntohs(mpa->private_data_size);
1091 * Fail if there's too much private data.
1093 if (plen > MPA_MAX_PRIVATE_DATA) {
1094 err = -EPROTO;
1095 goto err;
1099 * If plen does not account for pkt size
1101 if (ep->mpa_pkt_len > (sizeof(*mpa) + plen)) {
1102 err = -EPROTO;
1103 goto err;
1106 ep->plen = (u8) plen;
1109 * If we don't have all the pdata yet, then bail.
1110 * We'll continue process when more data arrives.
1112 if (ep->mpa_pkt_len < (sizeof(*mpa) + plen))
1113 return;
1115 if (mpa->flags & MPA_REJECT) {
1116 err = -ECONNREFUSED;
1117 goto err;
1121 * If we get here we have accumulated the entire mpa
1122 * start reply message including private data. And
1123 * the MPA header is valid.
1125 state_set(&ep->com, FPDU_MODE);
1126 ep->mpa_attr.crc_enabled = (mpa->flags & MPA_CRC) | crc_enabled ? 1 : 0;
1127 ep->mpa_attr.recv_marker_enabled = markers_enabled;
1128 ep->mpa_attr.xmit_marker_enabled = mpa->flags & MPA_MARKERS ? 1 : 0;
1129 ep->mpa_attr.version = mpa->revision;
1130 ep->mpa_attr.p2p_type = FW_RI_INIT_P2PTYPE_DISABLED;
1132 if (mpa->revision == 2) {
1133 ep->mpa_attr.enhanced_rdma_conn =
1134 mpa->flags & MPA_ENHANCED_RDMA_CONN ? 1 : 0;
1135 if (ep->mpa_attr.enhanced_rdma_conn) {
1136 mpa_v2_params = (struct mpa_v2_conn_params *)
1137 (ep->mpa_pkt + sizeof(*mpa));
1138 resp_ird = ntohs(mpa_v2_params->ird) &
1139 MPA_V2_IRD_ORD_MASK;
1140 resp_ord = ntohs(mpa_v2_params->ord) &
1141 MPA_V2_IRD_ORD_MASK;
1144 * This is a double-check. Ideally, below checks are
1145 * not required since ird/ord stuff has been taken
1146 * care of in c4iw_accept_cr
1148 if ((ep->ird < resp_ord) || (ep->ord > resp_ird)) {
1149 err = -ENOMEM;
1150 ep->ird = resp_ord;
1151 ep->ord = resp_ird;
1152 insuff_ird = 1;
1155 if (ntohs(mpa_v2_params->ird) &
1156 MPA_V2_PEER2PEER_MODEL) {
1157 if (ntohs(mpa_v2_params->ord) &
1158 MPA_V2_RDMA_WRITE_RTR)
1159 ep->mpa_attr.p2p_type =
1160 FW_RI_INIT_P2PTYPE_RDMA_WRITE;
1161 else if (ntohs(mpa_v2_params->ord) &
1162 MPA_V2_RDMA_READ_RTR)
1163 ep->mpa_attr.p2p_type =
1164 FW_RI_INIT_P2PTYPE_READ_REQ;
1167 } else if (mpa->revision == 1)
1168 if (peer2peer)
1169 ep->mpa_attr.p2p_type = p2p_type;
1171 PDBG("%s - crc_enabled=%d, recv_marker_enabled=%d, "
1172 "xmit_marker_enabled=%d, version=%d p2p_type=%d local-p2p_type = "
1173 "%d\n", __func__, ep->mpa_attr.crc_enabled,
1174 ep->mpa_attr.recv_marker_enabled,
1175 ep->mpa_attr.xmit_marker_enabled, ep->mpa_attr.version,
1176 ep->mpa_attr.p2p_type, p2p_type);
1179 * If responder's RTR does not match with that of initiator, assign
1180 * FW_RI_INIT_P2PTYPE_DISABLED in mpa attributes so that RTR is not
1181 * generated when moving QP to RTS state.
1182 * A TERM message will be sent after QP has moved to RTS state
1184 if ((ep->mpa_attr.version == 2) && peer2peer &&
1185 (ep->mpa_attr.p2p_type != p2p_type)) {
1186 ep->mpa_attr.p2p_type = FW_RI_INIT_P2PTYPE_DISABLED;
1187 rtr_mismatch = 1;
1190 attrs.mpa_attr = ep->mpa_attr;
1191 attrs.max_ird = ep->ird;
1192 attrs.max_ord = ep->ord;
1193 attrs.llp_stream_handle = ep;
1194 attrs.next_state = C4IW_QP_STATE_RTS;
1196 mask = C4IW_QP_ATTR_NEXT_STATE |
1197 C4IW_QP_ATTR_LLP_STREAM_HANDLE | C4IW_QP_ATTR_MPA_ATTR |
1198 C4IW_QP_ATTR_MAX_IRD | C4IW_QP_ATTR_MAX_ORD;
1200 /* bind QP and TID with INIT_WR */
1201 err = c4iw_modify_qp(ep->com.qp->rhp,
1202 ep->com.qp, mask, &attrs, 1);
1203 if (err)
1204 goto err;
1207 * If responder's RTR requirement did not match with what initiator
1208 * supports, generate TERM message
1210 if (rtr_mismatch) {
1211 printk(KERN_ERR "%s: RTR mismatch, sending TERM\n", __func__);
1212 attrs.layer_etype = LAYER_MPA | DDP_LLP;
1213 attrs.ecode = MPA_NOMATCH_RTR;
1214 attrs.next_state = C4IW_QP_STATE_TERMINATE;
1215 err = c4iw_modify_qp(ep->com.qp->rhp, ep->com.qp,
1216 C4IW_QP_ATTR_NEXT_STATE, &attrs, 0);
1217 err = -ENOMEM;
1218 goto out;
1222 * Generate TERM if initiator IRD is not sufficient for responder
1223 * provided ORD. Currently, we do the same behaviour even when
1224 * responder provided IRD is also not sufficient as regards to
1225 * initiator ORD.
1227 if (insuff_ird) {
1228 printk(KERN_ERR "%s: Insufficient IRD, sending TERM\n",
1229 __func__);
1230 attrs.layer_etype = LAYER_MPA | DDP_LLP;
1231 attrs.ecode = MPA_INSUFF_IRD;
1232 attrs.next_state = C4IW_QP_STATE_TERMINATE;
1233 err = c4iw_modify_qp(ep->com.qp->rhp, ep->com.qp,
1234 C4IW_QP_ATTR_NEXT_STATE, &attrs, 0);
1235 err = -ENOMEM;
1236 goto out;
1238 goto out;
1239 err:
1240 state_set(&ep->com, ABORTING);
1241 send_abort(ep, skb, GFP_KERNEL);
1242 out:
1243 connect_reply_upcall(ep, err);
1244 return;
1247 static void process_mpa_request(struct c4iw_ep *ep, struct sk_buff *skb)
1249 struct mpa_message *mpa;
1250 struct mpa_v2_conn_params *mpa_v2_params;
1251 u16 plen;
1253 PDBG("%s ep %p tid %u\n", __func__, ep, ep->hwtid);
1255 if (state_read(&ep->com) != MPA_REQ_WAIT)
1256 return;
1259 * If we get more than the supported amount of private data
1260 * then we must fail this connection.
1262 if (ep->mpa_pkt_len + skb->len > sizeof(ep->mpa_pkt)) {
1263 stop_ep_timer(ep);
1264 abort_connection(ep, skb, GFP_KERNEL);
1265 return;
1268 PDBG("%s enter (%s line %u)\n", __func__, __FILE__, __LINE__);
1271 * Copy the new data into our accumulation buffer.
1273 skb_copy_from_linear_data(skb, &(ep->mpa_pkt[ep->mpa_pkt_len]),
1274 skb->len);
1275 ep->mpa_pkt_len += skb->len;
1278 * If we don't even have the mpa message, then bail.
1279 * We'll continue process when more data arrives.
1281 if (ep->mpa_pkt_len < sizeof(*mpa))
1282 return;
1284 PDBG("%s enter (%s line %u)\n", __func__, __FILE__, __LINE__);
1285 stop_ep_timer(ep);
1286 mpa = (struct mpa_message *) ep->mpa_pkt;
1289 * Validate MPA Header.
1291 if (mpa->revision > mpa_rev) {
1292 printk(KERN_ERR MOD "%s MPA version mismatch. Local = %d,"
1293 " Received = %d\n", __func__, mpa_rev, mpa->revision);
1294 abort_connection(ep, skb, GFP_KERNEL);
1295 return;
1298 if (memcmp(mpa->key, MPA_KEY_REQ, sizeof(mpa->key))) {
1299 abort_connection(ep, skb, GFP_KERNEL);
1300 return;
1303 plen = ntohs(mpa->private_data_size);
1306 * Fail if there's too much private data.
1308 if (plen > MPA_MAX_PRIVATE_DATA) {
1309 abort_connection(ep, skb, GFP_KERNEL);
1310 return;
1314 * If plen does not account for pkt size
1316 if (ep->mpa_pkt_len > (sizeof(*mpa) + plen)) {
1317 abort_connection(ep, skb, GFP_KERNEL);
1318 return;
1320 ep->plen = (u8) plen;
1323 * If we don't have all the pdata yet, then bail.
1325 if (ep->mpa_pkt_len < (sizeof(*mpa) + plen))
1326 return;
1329 * If we get here we have accumulated the entire mpa
1330 * start reply message including private data.
1332 ep->mpa_attr.initiator = 0;
1333 ep->mpa_attr.crc_enabled = (mpa->flags & MPA_CRC) | crc_enabled ? 1 : 0;
1334 ep->mpa_attr.recv_marker_enabled = markers_enabled;
1335 ep->mpa_attr.xmit_marker_enabled = mpa->flags & MPA_MARKERS ? 1 : 0;
1336 ep->mpa_attr.version = mpa->revision;
1337 if (mpa->revision == 1)
1338 ep->tried_with_mpa_v1 = 1;
1339 ep->mpa_attr.p2p_type = FW_RI_INIT_P2PTYPE_DISABLED;
1341 if (mpa->revision == 2) {
1342 ep->mpa_attr.enhanced_rdma_conn =
1343 mpa->flags & MPA_ENHANCED_RDMA_CONN ? 1 : 0;
1344 if (ep->mpa_attr.enhanced_rdma_conn) {
1345 mpa_v2_params = (struct mpa_v2_conn_params *)
1346 (ep->mpa_pkt + sizeof(*mpa));
1347 ep->ird = ntohs(mpa_v2_params->ird) &
1348 MPA_V2_IRD_ORD_MASK;
1349 ep->ord = ntohs(mpa_v2_params->ord) &
1350 MPA_V2_IRD_ORD_MASK;
1351 if (ntohs(mpa_v2_params->ird) & MPA_V2_PEER2PEER_MODEL)
1352 if (peer2peer) {
1353 if (ntohs(mpa_v2_params->ord) &
1354 MPA_V2_RDMA_WRITE_RTR)
1355 ep->mpa_attr.p2p_type =
1356 FW_RI_INIT_P2PTYPE_RDMA_WRITE;
1357 else if (ntohs(mpa_v2_params->ord) &
1358 MPA_V2_RDMA_READ_RTR)
1359 ep->mpa_attr.p2p_type =
1360 FW_RI_INIT_P2PTYPE_READ_REQ;
1363 } else if (mpa->revision == 1)
1364 if (peer2peer)
1365 ep->mpa_attr.p2p_type = p2p_type;
1367 PDBG("%s - crc_enabled=%d, recv_marker_enabled=%d, "
1368 "xmit_marker_enabled=%d, version=%d p2p_type=%d\n", __func__,
1369 ep->mpa_attr.crc_enabled, ep->mpa_attr.recv_marker_enabled,
1370 ep->mpa_attr.xmit_marker_enabled, ep->mpa_attr.version,
1371 ep->mpa_attr.p2p_type);
1373 state_set(&ep->com, MPA_REQ_RCVD);
1375 /* drive upcall */
1376 connect_request_upcall(ep);
1377 return;
1380 static int rx_data(struct c4iw_dev *dev, struct sk_buff *skb)
1382 struct c4iw_ep *ep;
1383 struct cpl_rx_data *hdr = cplhdr(skb);
1384 unsigned int dlen = ntohs(hdr->len);
1385 unsigned int tid = GET_TID(hdr);
1386 struct tid_info *t = dev->rdev.lldi.tids;
1387 __u8 status = hdr->status;
1389 ep = lookup_tid(t, tid);
1390 PDBG("%s ep %p tid %u dlen %u\n", __func__, ep, ep->hwtid, dlen);
1391 skb_pull(skb, sizeof(*hdr));
1392 skb_trim(skb, dlen);
1394 ep->rcv_seq += dlen;
1395 BUG_ON(ep->rcv_seq != (ntohl(hdr->seq) + dlen));
1397 /* update RX credits */
1398 update_rx_credits(ep, dlen);
1400 switch (state_read(&ep->com)) {
1401 case MPA_REQ_SENT:
1402 process_mpa_reply(ep, skb);
1403 break;
1404 case MPA_REQ_WAIT:
1405 process_mpa_request(ep, skb);
1406 break;
1407 case MPA_REP_SENT:
1408 break;
1409 default:
1410 pr_err("%s Unexpected streaming data." \
1411 " ep %p state %d tid %u status %d\n",
1412 __func__, ep, state_read(&ep->com), ep->hwtid, status);
1415 * The ep will timeout and inform the ULP of the failure.
1416 * See ep_timeout().
1418 break;
1420 return 0;
1423 static int abort_rpl(struct c4iw_dev *dev, struct sk_buff *skb)
1425 struct c4iw_ep *ep;
1426 struct cpl_abort_rpl_rss *rpl = cplhdr(skb);
1427 int release = 0;
1428 unsigned int tid = GET_TID(rpl);
1429 struct tid_info *t = dev->rdev.lldi.tids;
1431 ep = lookup_tid(t, tid);
1432 if (!ep) {
1433 printk(KERN_WARNING MOD "Abort rpl to freed endpoint\n");
1434 return 0;
1436 PDBG("%s ep %p tid %u\n", __func__, ep, ep->hwtid);
1437 mutex_lock(&ep->com.mutex);
1438 switch (ep->com.state) {
1439 case ABORTING:
1440 __state_set(&ep->com, DEAD);
1441 release = 1;
1442 break;
1443 default:
1444 printk(KERN_ERR "%s ep %p state %d\n",
1445 __func__, ep, ep->com.state);
1446 break;
1448 mutex_unlock(&ep->com.mutex);
1450 if (release)
1451 release_ep_resources(ep);
1452 return 0;
1455 static void send_fw_act_open_req(struct c4iw_ep *ep, unsigned int atid)
1457 struct sk_buff *skb;
1458 struct fw_ofld_connection_wr *req;
1459 unsigned int mtu_idx;
1460 int wscale;
1462 skb = get_skb(NULL, sizeof(*req), GFP_KERNEL);
1463 req = (struct fw_ofld_connection_wr *)__skb_put(skb, sizeof(*req));
1464 memset(req, 0, sizeof(*req));
1465 req->op_compl = htonl(V_WR_OP(FW_OFLD_CONNECTION_WR));
1466 req->len16_pkd = htonl(FW_WR_LEN16(DIV_ROUND_UP(sizeof(*req), 16)));
1467 req->le.filter = cpu_to_be32(select_ntuple(ep->com.dev, ep->dst,
1468 ep->l2t));
1469 req->le.lport = ep->com.local_addr.sin_port;
1470 req->le.pport = ep->com.remote_addr.sin_port;
1471 req->le.u.ipv4.lip = ep->com.local_addr.sin_addr.s_addr;
1472 req->le.u.ipv4.pip = ep->com.remote_addr.sin_addr.s_addr;
1473 req->tcb.t_state_to_astid =
1474 htonl(V_FW_OFLD_CONNECTION_WR_T_STATE(TCP_SYN_SENT) |
1475 V_FW_OFLD_CONNECTION_WR_ASTID(atid));
1476 req->tcb.cplrxdataack_cplpassacceptrpl =
1477 htons(F_FW_OFLD_CONNECTION_WR_CPLRXDATAACK);
1478 req->tcb.tx_max = jiffies;
1479 req->tcb.rcv_adv = htons(1);
1480 cxgb4_best_mtu(ep->com.dev->rdev.lldi.mtus, ep->mtu, &mtu_idx);
1481 wscale = compute_wscale(rcv_win);
1482 req->tcb.opt0 = TCAM_BYPASS(1) |
1483 (nocong ? NO_CONG(1) : 0) |
1484 KEEP_ALIVE(1) |
1485 DELACK(1) |
1486 WND_SCALE(wscale) |
1487 MSS_IDX(mtu_idx) |
1488 L2T_IDX(ep->l2t->idx) |
1489 TX_CHAN(ep->tx_chan) |
1490 SMAC_SEL(ep->smac_idx) |
1491 DSCP(ep->tos) |
1492 ULP_MODE(ULP_MODE_TCPDDP) |
1493 RCV_BUFSIZ(rcv_win >> 10);
1494 req->tcb.opt2 = PACE(1) |
1495 TX_QUEUE(ep->com.dev->rdev.lldi.tx_modq[ep->tx_chan]) |
1496 RX_CHANNEL(0) |
1497 CCTRL_ECN(enable_ecn) |
1498 RSS_QUEUE_VALID | RSS_QUEUE(ep->rss_qid);
1499 if (enable_tcp_timestamps)
1500 req->tcb.opt2 |= TSTAMPS_EN(1);
1501 if (enable_tcp_sack)
1502 req->tcb.opt2 |= SACK_EN(1);
1503 if (wscale && enable_tcp_window_scaling)
1504 req->tcb.opt2 |= WND_SCALE_EN(1);
1505 req->tcb.opt0 = cpu_to_be64(req->tcb.opt0);
1506 req->tcb.opt2 = cpu_to_be32(req->tcb.opt2);
1507 set_wr_txq(skb, CPL_PRIORITY_CONTROL, ep->ctrlq_idx);
1508 set_bit(ACT_OFLD_CONN, &ep->com.history);
1509 c4iw_l2t_send(&ep->com.dev->rdev, skb, ep->l2t);
1513 * Return whether a failed active open has allocated a TID
1515 static inline int act_open_has_tid(int status)
1517 return status != CPL_ERR_TCAM_FULL && status != CPL_ERR_CONN_EXIST &&
1518 status != CPL_ERR_ARP_MISS;
1521 #define ACT_OPEN_RETRY_COUNT 2
1523 static int c4iw_reconnect(struct c4iw_ep *ep)
1525 int err = 0;
1526 struct rtable *rt;
1527 struct port_info *pi;
1528 struct net_device *pdev;
1529 int step;
1530 struct neighbour *neigh;
1532 PDBG("%s qp %p cm_id %p\n", __func__, ep->com.qp, ep->com.cm_id);
1533 init_timer(&ep->timer);
1536 * Allocate an active TID to initiate a TCP connection.
1538 ep->atid = cxgb4_alloc_atid(ep->com.dev->rdev.lldi.tids, ep);
1539 if (ep->atid == -1) {
1540 pr_err("%s - cannot alloc atid.\n", __func__);
1541 err = -ENOMEM;
1542 goto fail2;
1544 insert_handle(ep->com.dev, &ep->com.dev->atid_idr, ep, ep->atid);
1546 /* find a route */
1547 rt = find_route(ep->com.dev,
1548 ep->com.cm_id->local_addr.sin_addr.s_addr,
1549 ep->com.cm_id->remote_addr.sin_addr.s_addr,
1550 ep->com.cm_id->local_addr.sin_port,
1551 ep->com.cm_id->remote_addr.sin_port, 0);
1552 if (!rt) {
1553 pr_err("%s - cannot find route.\n", __func__);
1554 err = -EHOSTUNREACH;
1555 goto fail3;
1557 ep->dst = &rt->dst;
1559 neigh = dst_neigh_lookup(ep->dst,
1560 &ep->com.cm_id->remote_addr.sin_addr.s_addr);
1561 /* get a l2t entry */
1562 if (neigh->dev->flags & IFF_LOOPBACK) {
1563 PDBG("%s LOOPBACK\n", __func__);
1564 pdev = ip_dev_find(&init_net,
1565 ep->com.cm_id->remote_addr.sin_addr.s_addr);
1566 ep->l2t = cxgb4_l2t_get(ep->com.dev->rdev.lldi.l2t,
1567 neigh, pdev, 0);
1568 pi = (struct port_info *)netdev_priv(pdev);
1569 ep->mtu = pdev->mtu;
1570 ep->tx_chan = cxgb4_port_chan(pdev);
1571 ep->smac_idx = (cxgb4_port_viid(pdev) & 0x7F) << 1;
1572 dev_put(pdev);
1573 } else {
1574 ep->l2t = cxgb4_l2t_get(ep->com.dev->rdev.lldi.l2t,
1575 neigh, neigh->dev, 0);
1576 pi = (struct port_info *)netdev_priv(neigh->dev);
1577 ep->mtu = dst_mtu(ep->dst);
1578 ep->tx_chan = cxgb4_port_chan(neigh->dev);
1579 ep->smac_idx = (cxgb4_port_viid(neigh->dev) &
1580 0x7F) << 1;
1583 step = ep->com.dev->rdev.lldi.ntxq / ep->com.dev->rdev.lldi.nchan;
1584 ep->txq_idx = pi->port_id * step;
1585 ep->ctrlq_idx = pi->port_id;
1586 step = ep->com.dev->rdev.lldi.nrxq / ep->com.dev->rdev.lldi.nchan;
1587 ep->rss_qid = ep->com.dev->rdev.lldi.rxq_ids[pi->port_id * step];
1589 if (!ep->l2t) {
1590 pr_err("%s - cannot alloc l2e.\n", __func__);
1591 err = -ENOMEM;
1592 goto fail4;
1595 PDBG("%s txq_idx %u tx_chan %u smac_idx %u rss_qid %u l2t_idx %u\n",
1596 __func__, ep->txq_idx, ep->tx_chan, ep->smac_idx, ep->rss_qid,
1597 ep->l2t->idx);
1599 state_set(&ep->com, CONNECTING);
1600 ep->tos = 0;
1602 /* send connect request to rnic */
1603 err = send_connect(ep);
1604 if (!err)
1605 goto out;
1607 cxgb4_l2t_release(ep->l2t);
1608 fail4:
1609 dst_release(ep->dst);
1610 fail3:
1611 remove_handle(ep->com.dev, &ep->com.dev->atid_idr, ep->atid);
1612 cxgb4_free_atid(ep->com.dev->rdev.lldi.tids, ep->atid);
1613 fail2:
1615 * remember to send notification to upper layer.
1616 * We are in here so the upper layer is not aware that this is
1617 * re-connect attempt and so, upper layer is still waiting for
1618 * response of 1st connect request.
1620 connect_reply_upcall(ep, -ECONNRESET);
1621 c4iw_put_ep(&ep->com);
1622 out:
1623 return err;
1626 static int act_open_rpl(struct c4iw_dev *dev, struct sk_buff *skb)
1628 struct c4iw_ep *ep;
1629 struct cpl_act_open_rpl *rpl = cplhdr(skb);
1630 unsigned int atid = GET_TID_TID(GET_AOPEN_ATID(
1631 ntohl(rpl->atid_status)));
1632 struct tid_info *t = dev->rdev.lldi.tids;
1633 int status = GET_AOPEN_STATUS(ntohl(rpl->atid_status));
1635 ep = lookup_atid(t, atid);
1637 PDBG("%s ep %p atid %u status %u errno %d\n", __func__, ep, atid,
1638 status, status2errno(status));
1640 if (status == CPL_ERR_RTX_NEG_ADVICE) {
1641 printk(KERN_WARNING MOD "Connection problems for atid %u\n",
1642 atid);
1643 return 0;
1646 set_bit(ACT_OPEN_RPL, &ep->com.history);
1649 * Log interesting failures.
1651 switch (status) {
1652 case CPL_ERR_CONN_RESET:
1653 case CPL_ERR_CONN_TIMEDOUT:
1654 break;
1655 case CPL_ERR_TCAM_FULL:
1656 if (dev->rdev.lldi.enable_fw_ofld_conn) {
1657 mutex_lock(&dev->rdev.stats.lock);
1658 dev->rdev.stats.tcam_full++;
1659 mutex_unlock(&dev->rdev.stats.lock);
1660 send_fw_act_open_req(ep,
1661 GET_TID_TID(GET_AOPEN_ATID(
1662 ntohl(rpl->atid_status))));
1663 return 0;
1665 break;
1666 case CPL_ERR_CONN_EXIST:
1667 if (ep->retry_count++ < ACT_OPEN_RETRY_COUNT) {
1668 set_bit(ACT_RETRY_INUSE, &ep->com.history);
1669 remove_handle(ep->com.dev, &ep->com.dev->atid_idr,
1670 atid);
1671 cxgb4_free_atid(t, atid);
1672 dst_release(ep->dst);
1673 cxgb4_l2t_release(ep->l2t);
1674 c4iw_reconnect(ep);
1675 return 0;
1677 break;
1678 default:
1679 printk(KERN_INFO MOD "Active open failure - "
1680 "atid %u status %u errno %d %pI4:%u->%pI4:%u\n",
1681 atid, status, status2errno(status),
1682 &ep->com.local_addr.sin_addr.s_addr,
1683 ntohs(ep->com.local_addr.sin_port),
1684 &ep->com.remote_addr.sin_addr.s_addr,
1685 ntohs(ep->com.remote_addr.sin_port));
1686 break;
1689 connect_reply_upcall(ep, status2errno(status));
1690 state_set(&ep->com, DEAD);
1692 if (status && act_open_has_tid(status))
1693 cxgb4_remove_tid(ep->com.dev->rdev.lldi.tids, 0, GET_TID(rpl));
1695 remove_handle(ep->com.dev, &ep->com.dev->atid_idr, atid);
1696 cxgb4_free_atid(t, atid);
1697 dst_release(ep->dst);
1698 cxgb4_l2t_release(ep->l2t);
1699 c4iw_put_ep(&ep->com);
1701 return 0;
1704 static int pass_open_rpl(struct c4iw_dev *dev, struct sk_buff *skb)
1706 struct cpl_pass_open_rpl *rpl = cplhdr(skb);
1707 struct tid_info *t = dev->rdev.lldi.tids;
1708 unsigned int stid = GET_TID(rpl);
1709 struct c4iw_listen_ep *ep = lookup_stid(t, stid);
1711 if (!ep) {
1712 PDBG("%s stid %d lookup failure!\n", __func__, stid);
1713 goto out;
1715 PDBG("%s ep %p status %d error %d\n", __func__, ep,
1716 rpl->status, status2errno(rpl->status));
1717 c4iw_wake_up(&ep->com.wr_wait, status2errno(rpl->status));
1719 out:
1720 return 0;
1723 static int listen_stop(struct c4iw_listen_ep *ep)
1725 struct sk_buff *skb;
1726 struct cpl_close_listsvr_req *req;
1728 PDBG("%s ep %p\n", __func__, ep);
1729 skb = get_skb(NULL, sizeof(*req), GFP_KERNEL);
1730 if (!skb) {
1731 printk(KERN_ERR MOD "%s - failed to alloc skb\n", __func__);
1732 return -ENOMEM;
1734 req = (struct cpl_close_listsvr_req *) skb_put(skb, sizeof(*req));
1735 INIT_TP_WR(req, 0);
1736 OPCODE_TID(req) = cpu_to_be32(MK_OPCODE_TID(CPL_CLOSE_LISTSRV_REQ,
1737 ep->stid));
1738 req->reply_ctrl = cpu_to_be16(
1739 QUEUENO(ep->com.dev->rdev.lldi.rxq_ids[0]));
1740 set_wr_txq(skb, CPL_PRIORITY_SETUP, 0);
1741 return c4iw_ofld_send(&ep->com.dev->rdev, skb);
1744 static int close_listsrv_rpl(struct c4iw_dev *dev, struct sk_buff *skb)
1746 struct cpl_close_listsvr_rpl *rpl = cplhdr(skb);
1747 struct tid_info *t = dev->rdev.lldi.tids;
1748 unsigned int stid = GET_TID(rpl);
1749 struct c4iw_listen_ep *ep = lookup_stid(t, stid);
1751 PDBG("%s ep %p\n", __func__, ep);
1752 c4iw_wake_up(&ep->com.wr_wait, status2errno(rpl->status));
1753 return 0;
1756 static void accept_cr(struct c4iw_ep *ep, __be32 peer_ip, struct sk_buff *skb,
1757 struct cpl_pass_accept_req *req)
1759 struct cpl_pass_accept_rpl *rpl;
1760 unsigned int mtu_idx;
1761 u64 opt0;
1762 u32 opt2;
1763 int wscale;
1765 PDBG("%s ep %p tid %u\n", __func__, ep, ep->hwtid);
1766 BUG_ON(skb_cloned(skb));
1767 skb_trim(skb, sizeof(*rpl));
1768 skb_get(skb);
1769 cxgb4_best_mtu(ep->com.dev->rdev.lldi.mtus, ep->mtu, &mtu_idx);
1770 wscale = compute_wscale(rcv_win);
1771 opt0 = (nocong ? NO_CONG(1) : 0) |
1772 KEEP_ALIVE(1) |
1773 DELACK(1) |
1774 WND_SCALE(wscale) |
1775 MSS_IDX(mtu_idx) |
1776 L2T_IDX(ep->l2t->idx) |
1777 TX_CHAN(ep->tx_chan) |
1778 SMAC_SEL(ep->smac_idx) |
1779 DSCP(ep->tos >> 2) |
1780 ULP_MODE(ULP_MODE_TCPDDP) |
1781 RCV_BUFSIZ(rcv_win>>10);
1782 opt2 = RX_CHANNEL(0) |
1783 RSS_QUEUE_VALID | RSS_QUEUE(ep->rss_qid);
1785 if (enable_tcp_timestamps && req->tcpopt.tstamp)
1786 opt2 |= TSTAMPS_EN(1);
1787 if (enable_tcp_sack && req->tcpopt.sack)
1788 opt2 |= SACK_EN(1);
1789 if (wscale && enable_tcp_window_scaling)
1790 opt2 |= WND_SCALE_EN(1);
1791 if (enable_ecn) {
1792 const struct tcphdr *tcph;
1793 u32 hlen = ntohl(req->hdr_len);
1795 tcph = (const void *)(req + 1) + G_ETH_HDR_LEN(hlen) +
1796 G_IP_HDR_LEN(hlen);
1797 if (tcph->ece && tcph->cwr)
1798 opt2 |= CCTRL_ECN(1);
1801 rpl = cplhdr(skb);
1802 INIT_TP_WR(rpl, ep->hwtid);
1803 OPCODE_TID(rpl) = cpu_to_be32(MK_OPCODE_TID(CPL_PASS_ACCEPT_RPL,
1804 ep->hwtid));
1805 rpl->opt0 = cpu_to_be64(opt0);
1806 rpl->opt2 = cpu_to_be32(opt2);
1807 set_wr_txq(skb, CPL_PRIORITY_SETUP, ep->ctrlq_idx);
1808 c4iw_l2t_send(&ep->com.dev->rdev, skb, ep->l2t);
1810 return;
1813 static void reject_cr(struct c4iw_dev *dev, u32 hwtid, __be32 peer_ip,
1814 struct sk_buff *skb)
1816 PDBG("%s c4iw_dev %p tid %u peer_ip %x\n", __func__, dev, hwtid,
1817 peer_ip);
1818 BUG_ON(skb_cloned(skb));
1819 skb_trim(skb, sizeof(struct cpl_tid_release));
1820 skb_get(skb);
1821 release_tid(&dev->rdev, hwtid, skb);
1822 return;
1825 static void get_4tuple(struct cpl_pass_accept_req *req,
1826 __be32 *local_ip, __be32 *peer_ip,
1827 __be16 *local_port, __be16 *peer_port)
1829 int eth_len = G_ETH_HDR_LEN(be32_to_cpu(req->hdr_len));
1830 int ip_len = G_IP_HDR_LEN(be32_to_cpu(req->hdr_len));
1831 struct iphdr *ip = (struct iphdr *)((u8 *)(req + 1) + eth_len);
1832 struct tcphdr *tcp = (struct tcphdr *)
1833 ((u8 *)(req + 1) + eth_len + ip_len);
1835 PDBG("%s saddr 0x%x daddr 0x%x sport %u dport %u\n", __func__,
1836 ntohl(ip->saddr), ntohl(ip->daddr), ntohs(tcp->source),
1837 ntohs(tcp->dest));
1839 *peer_ip = ip->saddr;
1840 *local_ip = ip->daddr;
1841 *peer_port = tcp->source;
1842 *local_port = tcp->dest;
1844 return;
1847 static int import_ep(struct c4iw_ep *ep, __be32 peer_ip, struct dst_entry *dst,
1848 struct c4iw_dev *cdev, bool clear_mpa_v1)
1850 struct neighbour *n;
1851 int err, step;
1853 n = dst_neigh_lookup(dst, &peer_ip);
1854 if (!n)
1855 return -ENODEV;
1857 rcu_read_lock();
1858 err = -ENOMEM;
1859 if (n->dev->flags & IFF_LOOPBACK) {
1860 struct net_device *pdev;
1862 pdev = ip_dev_find(&init_net, peer_ip);
1863 if (!pdev) {
1864 err = -ENODEV;
1865 goto out;
1867 ep->l2t = cxgb4_l2t_get(cdev->rdev.lldi.l2t,
1868 n, pdev, 0);
1869 if (!ep->l2t)
1870 goto out;
1871 ep->mtu = pdev->mtu;
1872 ep->tx_chan = cxgb4_port_chan(pdev);
1873 ep->smac_idx = (cxgb4_port_viid(pdev) & 0x7F) << 1;
1874 step = cdev->rdev.lldi.ntxq /
1875 cdev->rdev.lldi.nchan;
1876 ep->txq_idx = cxgb4_port_idx(pdev) * step;
1877 step = cdev->rdev.lldi.nrxq /
1878 cdev->rdev.lldi.nchan;
1879 ep->ctrlq_idx = cxgb4_port_idx(pdev);
1880 ep->rss_qid = cdev->rdev.lldi.rxq_ids[
1881 cxgb4_port_idx(pdev) * step];
1882 dev_put(pdev);
1883 } else {
1884 ep->l2t = cxgb4_l2t_get(cdev->rdev.lldi.l2t,
1885 n, n->dev, 0);
1886 if (!ep->l2t)
1887 goto out;
1888 ep->mtu = dst_mtu(dst);
1889 ep->tx_chan = cxgb4_port_chan(n->dev);
1890 ep->smac_idx = (cxgb4_port_viid(n->dev) & 0x7F) << 1;
1891 step = cdev->rdev.lldi.ntxq /
1892 cdev->rdev.lldi.nchan;
1893 ep->txq_idx = cxgb4_port_idx(n->dev) * step;
1894 ep->ctrlq_idx = cxgb4_port_idx(n->dev);
1895 step = cdev->rdev.lldi.nrxq /
1896 cdev->rdev.lldi.nchan;
1897 ep->rss_qid = cdev->rdev.lldi.rxq_ids[
1898 cxgb4_port_idx(n->dev) * step];
1900 if (clear_mpa_v1) {
1901 ep->retry_with_mpa_v1 = 0;
1902 ep->tried_with_mpa_v1 = 0;
1905 err = 0;
1906 out:
1907 rcu_read_unlock();
1909 neigh_release(n);
1911 return err;
1914 static int pass_accept_req(struct c4iw_dev *dev, struct sk_buff *skb)
1916 struct c4iw_ep *child_ep = NULL, *parent_ep;
1917 struct cpl_pass_accept_req *req = cplhdr(skb);
1918 unsigned int stid = GET_POPEN_TID(ntohl(req->tos_stid));
1919 struct tid_info *t = dev->rdev.lldi.tids;
1920 unsigned int hwtid = GET_TID(req);
1921 struct dst_entry *dst;
1922 struct rtable *rt;
1923 __be32 local_ip, peer_ip = 0;
1924 __be16 local_port, peer_port;
1925 int err;
1926 u16 peer_mss = ntohs(req->tcpopt.mss);
1928 parent_ep = lookup_stid(t, stid);
1929 if (!parent_ep) {
1930 PDBG("%s connect request on invalid stid %d\n", __func__, stid);
1931 goto reject;
1933 get_4tuple(req, &local_ip, &peer_ip, &local_port, &peer_port);
1935 PDBG("%s parent ep %p hwtid %u laddr 0x%x raddr 0x%x lport %d " \
1936 "rport %d peer_mss %d\n", __func__, parent_ep, hwtid,
1937 ntohl(local_ip), ntohl(peer_ip), ntohs(local_port),
1938 ntohs(peer_port), peer_mss);
1940 if (state_read(&parent_ep->com) != LISTEN) {
1941 printk(KERN_ERR "%s - listening ep not in LISTEN\n",
1942 __func__);
1943 goto reject;
1946 /* Find output route */
1947 rt = find_route(dev, local_ip, peer_ip, local_port, peer_port,
1948 GET_POPEN_TOS(ntohl(req->tos_stid)));
1949 if (!rt) {
1950 printk(KERN_ERR MOD "%s - failed to find dst entry!\n",
1951 __func__);
1952 goto reject;
1954 dst = &rt->dst;
1956 child_ep = alloc_ep(sizeof(*child_ep), GFP_KERNEL);
1957 if (!child_ep) {
1958 printk(KERN_ERR MOD "%s - failed to allocate ep entry!\n",
1959 __func__);
1960 dst_release(dst);
1961 goto reject;
1964 err = import_ep(child_ep, peer_ip, dst, dev, false);
1965 if (err) {
1966 printk(KERN_ERR MOD "%s - failed to allocate l2t entry!\n",
1967 __func__);
1968 dst_release(dst);
1969 kfree(child_ep);
1970 goto reject;
1973 if (peer_mss && child_ep->mtu > (peer_mss + 40))
1974 child_ep->mtu = peer_mss + 40;
1976 state_set(&child_ep->com, CONNECTING);
1977 child_ep->com.dev = dev;
1978 child_ep->com.cm_id = NULL;
1979 child_ep->com.local_addr.sin_family = PF_INET;
1980 child_ep->com.local_addr.sin_port = local_port;
1981 child_ep->com.local_addr.sin_addr.s_addr = local_ip;
1982 child_ep->com.remote_addr.sin_family = PF_INET;
1983 child_ep->com.remote_addr.sin_port = peer_port;
1984 child_ep->com.remote_addr.sin_addr.s_addr = peer_ip;
1985 c4iw_get_ep(&parent_ep->com);
1986 child_ep->parent_ep = parent_ep;
1987 child_ep->tos = GET_POPEN_TOS(ntohl(req->tos_stid));
1988 child_ep->dst = dst;
1989 child_ep->hwtid = hwtid;
1991 PDBG("%s tx_chan %u smac_idx %u rss_qid %u\n", __func__,
1992 child_ep->tx_chan, child_ep->smac_idx, child_ep->rss_qid);
1994 init_timer(&child_ep->timer);
1995 cxgb4_insert_tid(t, child_ep, hwtid);
1996 accept_cr(child_ep, peer_ip, skb, req);
1997 set_bit(PASS_ACCEPT_REQ, &child_ep->com.history);
1998 goto out;
1999 reject:
2000 reject_cr(dev, hwtid, peer_ip, skb);
2001 out:
2002 return 0;
2005 static int pass_establish(struct c4iw_dev *dev, struct sk_buff *skb)
2007 struct c4iw_ep *ep;
2008 struct cpl_pass_establish *req = cplhdr(skb);
2009 struct tid_info *t = dev->rdev.lldi.tids;
2010 unsigned int tid = GET_TID(req);
2012 ep = lookup_tid(t, tid);
2013 PDBG("%s ep %p tid %u\n", __func__, ep, ep->hwtid);
2014 ep->snd_seq = be32_to_cpu(req->snd_isn);
2015 ep->rcv_seq = be32_to_cpu(req->rcv_isn);
2017 PDBG("%s ep %p hwtid %u tcp_opt 0x%02x\n", __func__, ep, tid,
2018 ntohs(req->tcp_opt));
2020 set_emss(ep, ntohs(req->tcp_opt));
2021 insert_handle(dev, &dev->hwtid_idr, ep, ep->hwtid);
2023 dst_confirm(ep->dst);
2024 state_set(&ep->com, MPA_REQ_WAIT);
2025 start_ep_timer(ep);
2026 send_flowc(ep, skb);
2027 set_bit(PASS_ESTAB, &ep->com.history);
2029 return 0;
2032 static int peer_close(struct c4iw_dev *dev, struct sk_buff *skb)
2034 struct cpl_peer_close *hdr = cplhdr(skb);
2035 struct c4iw_ep *ep;
2036 struct c4iw_qp_attributes attrs;
2037 int disconnect = 1;
2038 int release = 0;
2039 struct tid_info *t = dev->rdev.lldi.tids;
2040 unsigned int tid = GET_TID(hdr);
2041 int ret;
2043 ep = lookup_tid(t, tid);
2044 PDBG("%s ep %p tid %u\n", __func__, ep, ep->hwtid);
2045 dst_confirm(ep->dst);
2047 set_bit(PEER_CLOSE, &ep->com.history);
2048 mutex_lock(&ep->com.mutex);
2049 switch (ep->com.state) {
2050 case MPA_REQ_WAIT:
2051 __state_set(&ep->com, CLOSING);
2052 break;
2053 case MPA_REQ_SENT:
2054 __state_set(&ep->com, CLOSING);
2055 connect_reply_upcall(ep, -ECONNRESET);
2056 break;
2057 case MPA_REQ_RCVD:
2060 * We're gonna mark this puppy DEAD, but keep
2061 * the reference on it until the ULP accepts or
2062 * rejects the CR. Also wake up anyone waiting
2063 * in rdma connection migration (see c4iw_accept_cr()).
2065 __state_set(&ep->com, CLOSING);
2066 PDBG("waking up ep %p tid %u\n", ep, ep->hwtid);
2067 c4iw_wake_up(&ep->com.wr_wait, -ECONNRESET);
2068 break;
2069 case MPA_REP_SENT:
2070 __state_set(&ep->com, CLOSING);
2071 PDBG("waking up ep %p tid %u\n", ep, ep->hwtid);
2072 c4iw_wake_up(&ep->com.wr_wait, -ECONNRESET);
2073 break;
2074 case FPDU_MODE:
2075 start_ep_timer(ep);
2076 __state_set(&ep->com, CLOSING);
2077 attrs.next_state = C4IW_QP_STATE_CLOSING;
2078 ret = c4iw_modify_qp(ep->com.qp->rhp, ep->com.qp,
2079 C4IW_QP_ATTR_NEXT_STATE, &attrs, 1);
2080 if (ret != -ECONNRESET) {
2081 peer_close_upcall(ep);
2082 disconnect = 1;
2084 break;
2085 case ABORTING:
2086 disconnect = 0;
2087 break;
2088 case CLOSING:
2089 __state_set(&ep->com, MORIBUND);
2090 disconnect = 0;
2091 break;
2092 case MORIBUND:
2093 stop_ep_timer(ep);
2094 if (ep->com.cm_id && ep->com.qp) {
2095 attrs.next_state = C4IW_QP_STATE_IDLE;
2096 c4iw_modify_qp(ep->com.qp->rhp, ep->com.qp,
2097 C4IW_QP_ATTR_NEXT_STATE, &attrs, 1);
2099 close_complete_upcall(ep);
2100 __state_set(&ep->com, DEAD);
2101 release = 1;
2102 disconnect = 0;
2103 break;
2104 case DEAD:
2105 disconnect = 0;
2106 break;
2107 default:
2108 BUG_ON(1);
2110 mutex_unlock(&ep->com.mutex);
2111 if (disconnect)
2112 c4iw_ep_disconnect(ep, 0, GFP_KERNEL);
2113 if (release)
2114 release_ep_resources(ep);
2115 return 0;
2119 * Returns whether an ABORT_REQ_RSS message is a negative advice.
2121 static int is_neg_adv_abort(unsigned int status)
2123 return status == CPL_ERR_RTX_NEG_ADVICE ||
2124 status == CPL_ERR_PERSIST_NEG_ADVICE;
2127 static int peer_abort(struct c4iw_dev *dev, struct sk_buff *skb)
2129 struct cpl_abort_req_rss *req = cplhdr(skb);
2130 struct c4iw_ep *ep;
2131 struct cpl_abort_rpl *rpl;
2132 struct sk_buff *rpl_skb;
2133 struct c4iw_qp_attributes attrs;
2134 int ret;
2135 int release = 0;
2136 struct tid_info *t = dev->rdev.lldi.tids;
2137 unsigned int tid = GET_TID(req);
2139 ep = lookup_tid(t, tid);
2140 if (is_neg_adv_abort(req->status)) {
2141 PDBG("%s neg_adv_abort ep %p tid %u\n", __func__, ep,
2142 ep->hwtid);
2143 return 0;
2145 PDBG("%s ep %p tid %u state %u\n", __func__, ep, ep->hwtid,
2146 ep->com.state);
2147 set_bit(PEER_ABORT, &ep->com.history);
2150 * Wake up any threads in rdma_init() or rdma_fini().
2151 * However, this is not needed if com state is just
2152 * MPA_REQ_SENT
2154 if (ep->com.state != MPA_REQ_SENT)
2155 c4iw_wake_up(&ep->com.wr_wait, -ECONNRESET);
2157 mutex_lock(&ep->com.mutex);
2158 switch (ep->com.state) {
2159 case CONNECTING:
2160 break;
2161 case MPA_REQ_WAIT:
2162 stop_ep_timer(ep);
2163 break;
2164 case MPA_REQ_SENT:
2165 stop_ep_timer(ep);
2166 if (mpa_rev == 2 && ep->tried_with_mpa_v1)
2167 connect_reply_upcall(ep, -ECONNRESET);
2168 else {
2170 * we just don't send notification upwards because we
2171 * want to retry with mpa_v1 without upper layers even
2172 * knowing it.
2174 * do some housekeeping so as to re-initiate the
2175 * connection
2177 PDBG("%s: mpa_rev=%d. Retrying with mpav1\n", __func__,
2178 mpa_rev);
2179 ep->retry_with_mpa_v1 = 1;
2181 break;
2182 case MPA_REP_SENT:
2183 break;
2184 case MPA_REQ_RCVD:
2185 break;
2186 case MORIBUND:
2187 case CLOSING:
2188 stop_ep_timer(ep);
2189 /*FALLTHROUGH*/
2190 case FPDU_MODE:
2191 if (ep->com.cm_id && ep->com.qp) {
2192 attrs.next_state = C4IW_QP_STATE_ERROR;
2193 ret = c4iw_modify_qp(ep->com.qp->rhp,
2194 ep->com.qp, C4IW_QP_ATTR_NEXT_STATE,
2195 &attrs, 1);
2196 if (ret)
2197 printk(KERN_ERR MOD
2198 "%s - qp <- error failed!\n",
2199 __func__);
2201 peer_abort_upcall(ep);
2202 break;
2203 case ABORTING:
2204 break;
2205 case DEAD:
2206 PDBG("%s PEER_ABORT IN DEAD STATE!!!!\n", __func__);
2207 mutex_unlock(&ep->com.mutex);
2208 return 0;
2209 default:
2210 BUG_ON(1);
2211 break;
2213 dst_confirm(ep->dst);
2214 if (ep->com.state != ABORTING) {
2215 __state_set(&ep->com, DEAD);
2216 /* we don't release if we want to retry with mpa_v1 */
2217 if (!ep->retry_with_mpa_v1)
2218 release = 1;
2220 mutex_unlock(&ep->com.mutex);
2222 rpl_skb = get_skb(skb, sizeof(*rpl), GFP_KERNEL);
2223 if (!rpl_skb) {
2224 printk(KERN_ERR MOD "%s - cannot allocate skb!\n",
2225 __func__);
2226 release = 1;
2227 goto out;
2229 set_wr_txq(skb, CPL_PRIORITY_DATA, ep->txq_idx);
2230 rpl = (struct cpl_abort_rpl *) skb_put(rpl_skb, sizeof(*rpl));
2231 INIT_TP_WR(rpl, ep->hwtid);
2232 OPCODE_TID(rpl) = cpu_to_be32(MK_OPCODE_TID(CPL_ABORT_RPL, ep->hwtid));
2233 rpl->cmd = CPL_ABORT_NO_RST;
2234 c4iw_ofld_send(&ep->com.dev->rdev, rpl_skb);
2235 out:
2236 if (release)
2237 release_ep_resources(ep);
2239 /* retry with mpa-v1 */
2240 if (ep && ep->retry_with_mpa_v1) {
2241 cxgb4_remove_tid(ep->com.dev->rdev.lldi.tids, 0, ep->hwtid);
2242 dst_release(ep->dst);
2243 cxgb4_l2t_release(ep->l2t);
2244 c4iw_reconnect(ep);
2247 return 0;
2250 static int close_con_rpl(struct c4iw_dev *dev, struct sk_buff *skb)
2252 struct c4iw_ep *ep;
2253 struct c4iw_qp_attributes attrs;
2254 struct cpl_close_con_rpl *rpl = cplhdr(skb);
2255 int release = 0;
2256 struct tid_info *t = dev->rdev.lldi.tids;
2257 unsigned int tid = GET_TID(rpl);
2259 ep = lookup_tid(t, tid);
2261 PDBG("%s ep %p tid %u\n", __func__, ep, ep->hwtid);
2262 BUG_ON(!ep);
2264 /* The cm_id may be null if we failed to connect */
2265 mutex_lock(&ep->com.mutex);
2266 switch (ep->com.state) {
2267 case CLOSING:
2268 __state_set(&ep->com, MORIBUND);
2269 break;
2270 case MORIBUND:
2271 stop_ep_timer(ep);
2272 if ((ep->com.cm_id) && (ep->com.qp)) {
2273 attrs.next_state = C4IW_QP_STATE_IDLE;
2274 c4iw_modify_qp(ep->com.qp->rhp,
2275 ep->com.qp,
2276 C4IW_QP_ATTR_NEXT_STATE,
2277 &attrs, 1);
2279 close_complete_upcall(ep);
2280 __state_set(&ep->com, DEAD);
2281 release = 1;
2282 break;
2283 case ABORTING:
2284 case DEAD:
2285 break;
2286 default:
2287 BUG_ON(1);
2288 break;
2290 mutex_unlock(&ep->com.mutex);
2291 if (release)
2292 release_ep_resources(ep);
2293 return 0;
2296 static int terminate(struct c4iw_dev *dev, struct sk_buff *skb)
2298 struct cpl_rdma_terminate *rpl = cplhdr(skb);
2299 struct tid_info *t = dev->rdev.lldi.tids;
2300 unsigned int tid = GET_TID(rpl);
2301 struct c4iw_ep *ep;
2302 struct c4iw_qp_attributes attrs;
2304 ep = lookup_tid(t, tid);
2305 BUG_ON(!ep);
2307 if (ep && ep->com.qp) {
2308 printk(KERN_WARNING MOD "TERM received tid %u qpid %u\n", tid,
2309 ep->com.qp->wq.sq.qid);
2310 attrs.next_state = C4IW_QP_STATE_TERMINATE;
2311 c4iw_modify_qp(ep->com.qp->rhp, ep->com.qp,
2312 C4IW_QP_ATTR_NEXT_STATE, &attrs, 1);
2313 } else
2314 printk(KERN_WARNING MOD "TERM received tid %u no ep/qp\n", tid);
2316 return 0;
2320 * Upcall from the adapter indicating data has been transmitted.
2321 * For us its just the single MPA request or reply. We can now free
2322 * the skb holding the mpa message.
2324 static int fw4_ack(struct c4iw_dev *dev, struct sk_buff *skb)
2326 struct c4iw_ep *ep;
2327 struct cpl_fw4_ack *hdr = cplhdr(skb);
2328 u8 credits = hdr->credits;
2329 unsigned int tid = GET_TID(hdr);
2330 struct tid_info *t = dev->rdev.lldi.tids;
2333 ep = lookup_tid(t, tid);
2334 PDBG("%s ep %p tid %u credits %u\n", __func__, ep, ep->hwtid, credits);
2335 if (credits == 0) {
2336 PDBG("%s 0 credit ack ep %p tid %u state %u\n",
2337 __func__, ep, ep->hwtid, state_read(&ep->com));
2338 return 0;
2341 dst_confirm(ep->dst);
2342 if (ep->mpa_skb) {
2343 PDBG("%s last streaming msg ack ep %p tid %u state %u "
2344 "initiator %u freeing skb\n", __func__, ep, ep->hwtid,
2345 state_read(&ep->com), ep->mpa_attr.initiator ? 1 : 0);
2346 kfree_skb(ep->mpa_skb);
2347 ep->mpa_skb = NULL;
2349 return 0;
2352 int c4iw_reject_cr(struct iw_cm_id *cm_id, const void *pdata, u8 pdata_len)
2354 int err;
2355 struct c4iw_ep *ep = to_ep(cm_id);
2356 PDBG("%s ep %p tid %u\n", __func__, ep, ep->hwtid);
2358 if (state_read(&ep->com) == DEAD) {
2359 c4iw_put_ep(&ep->com);
2360 return -ECONNRESET;
2362 set_bit(ULP_REJECT, &ep->com.history);
2363 BUG_ON(state_read(&ep->com) != MPA_REQ_RCVD);
2364 if (mpa_rev == 0)
2365 abort_connection(ep, NULL, GFP_KERNEL);
2366 else {
2367 err = send_mpa_reject(ep, pdata, pdata_len);
2368 err = c4iw_ep_disconnect(ep, 0, GFP_KERNEL);
2370 c4iw_put_ep(&ep->com);
2371 return 0;
2374 int c4iw_accept_cr(struct iw_cm_id *cm_id, struct iw_cm_conn_param *conn_param)
2376 int err;
2377 struct c4iw_qp_attributes attrs;
2378 enum c4iw_qp_attr_mask mask;
2379 struct c4iw_ep *ep = to_ep(cm_id);
2380 struct c4iw_dev *h = to_c4iw_dev(cm_id->device);
2381 struct c4iw_qp *qp = get_qhp(h, conn_param->qpn);
2383 PDBG("%s ep %p tid %u\n", __func__, ep, ep->hwtid);
2384 if (state_read(&ep->com) == DEAD) {
2385 err = -ECONNRESET;
2386 goto err;
2389 BUG_ON(state_read(&ep->com) != MPA_REQ_RCVD);
2390 BUG_ON(!qp);
2392 set_bit(ULP_ACCEPT, &ep->com.history);
2393 if ((conn_param->ord > c4iw_max_read_depth) ||
2394 (conn_param->ird > c4iw_max_read_depth)) {
2395 abort_connection(ep, NULL, GFP_KERNEL);
2396 err = -EINVAL;
2397 goto err;
2400 if (ep->mpa_attr.version == 2 && ep->mpa_attr.enhanced_rdma_conn) {
2401 if (conn_param->ord > ep->ird) {
2402 ep->ird = conn_param->ird;
2403 ep->ord = conn_param->ord;
2404 send_mpa_reject(ep, conn_param->private_data,
2405 conn_param->private_data_len);
2406 abort_connection(ep, NULL, GFP_KERNEL);
2407 err = -ENOMEM;
2408 goto err;
2410 if (conn_param->ird > ep->ord) {
2411 if (!ep->ord)
2412 conn_param->ird = 1;
2413 else {
2414 abort_connection(ep, NULL, GFP_KERNEL);
2415 err = -ENOMEM;
2416 goto err;
2421 ep->ird = conn_param->ird;
2422 ep->ord = conn_param->ord;
2424 if (ep->mpa_attr.version != 2)
2425 if (peer2peer && ep->ird == 0)
2426 ep->ird = 1;
2428 PDBG("%s %d ird %d ord %d\n", __func__, __LINE__, ep->ird, ep->ord);
2430 cm_id->add_ref(cm_id);
2431 ep->com.cm_id = cm_id;
2432 ep->com.qp = qp;
2434 /* bind QP to EP and move to RTS */
2435 attrs.mpa_attr = ep->mpa_attr;
2436 attrs.max_ird = ep->ird;
2437 attrs.max_ord = ep->ord;
2438 attrs.llp_stream_handle = ep;
2439 attrs.next_state = C4IW_QP_STATE_RTS;
2441 /* bind QP and TID with INIT_WR */
2442 mask = C4IW_QP_ATTR_NEXT_STATE |
2443 C4IW_QP_ATTR_LLP_STREAM_HANDLE |
2444 C4IW_QP_ATTR_MPA_ATTR |
2445 C4IW_QP_ATTR_MAX_IRD |
2446 C4IW_QP_ATTR_MAX_ORD;
2448 err = c4iw_modify_qp(ep->com.qp->rhp,
2449 ep->com.qp, mask, &attrs, 1);
2450 if (err)
2451 goto err1;
2452 err = send_mpa_reply(ep, conn_param->private_data,
2453 conn_param->private_data_len);
2454 if (err)
2455 goto err1;
2457 state_set(&ep->com, FPDU_MODE);
2458 established_upcall(ep);
2459 c4iw_put_ep(&ep->com);
2460 return 0;
2461 err1:
2462 ep->com.cm_id = NULL;
2463 ep->com.qp = NULL;
2464 cm_id->rem_ref(cm_id);
2465 err:
2466 c4iw_put_ep(&ep->com);
2467 return err;
2470 int c4iw_connect(struct iw_cm_id *cm_id, struct iw_cm_conn_param *conn_param)
2472 struct c4iw_dev *dev = to_c4iw_dev(cm_id->device);
2473 struct c4iw_ep *ep;
2474 struct rtable *rt;
2475 int err = 0;
2477 if ((conn_param->ord > c4iw_max_read_depth) ||
2478 (conn_param->ird > c4iw_max_read_depth)) {
2479 err = -EINVAL;
2480 goto out;
2482 ep = alloc_ep(sizeof(*ep), GFP_KERNEL);
2483 if (!ep) {
2484 printk(KERN_ERR MOD "%s - cannot alloc ep.\n", __func__);
2485 err = -ENOMEM;
2486 goto out;
2488 init_timer(&ep->timer);
2489 ep->plen = conn_param->private_data_len;
2490 if (ep->plen)
2491 memcpy(ep->mpa_pkt + sizeof(struct mpa_message),
2492 conn_param->private_data, ep->plen);
2493 ep->ird = conn_param->ird;
2494 ep->ord = conn_param->ord;
2496 if (peer2peer && ep->ord == 0)
2497 ep->ord = 1;
2499 cm_id->add_ref(cm_id);
2500 ep->com.dev = dev;
2501 ep->com.cm_id = cm_id;
2502 ep->com.qp = get_qhp(dev, conn_param->qpn);
2503 BUG_ON(!ep->com.qp);
2504 PDBG("%s qpn 0x%x qp %p cm_id %p\n", __func__, conn_param->qpn,
2505 ep->com.qp, cm_id);
2508 * Allocate an active TID to initiate a TCP connection.
2510 ep->atid = cxgb4_alloc_atid(dev->rdev.lldi.tids, ep);
2511 if (ep->atid == -1) {
2512 printk(KERN_ERR MOD "%s - cannot alloc atid.\n", __func__);
2513 err = -ENOMEM;
2514 goto fail2;
2516 insert_handle(dev, &dev->atid_idr, ep, ep->atid);
2518 PDBG("%s saddr 0x%x sport 0x%x raddr 0x%x rport 0x%x\n", __func__,
2519 ntohl(cm_id->local_addr.sin_addr.s_addr),
2520 ntohs(cm_id->local_addr.sin_port),
2521 ntohl(cm_id->remote_addr.sin_addr.s_addr),
2522 ntohs(cm_id->remote_addr.sin_port));
2524 /* find a route */
2525 rt = find_route(dev,
2526 cm_id->local_addr.sin_addr.s_addr,
2527 cm_id->remote_addr.sin_addr.s_addr,
2528 cm_id->local_addr.sin_port,
2529 cm_id->remote_addr.sin_port, 0);
2530 if (!rt) {
2531 printk(KERN_ERR MOD "%s - cannot find route.\n", __func__);
2532 err = -EHOSTUNREACH;
2533 goto fail3;
2535 ep->dst = &rt->dst;
2537 err = import_ep(ep, cm_id->remote_addr.sin_addr.s_addr,
2538 ep->dst, ep->com.dev, true);
2539 if (err) {
2540 printk(KERN_ERR MOD "%s - cannot alloc l2e.\n", __func__);
2541 goto fail4;
2544 PDBG("%s txq_idx %u tx_chan %u smac_idx %u rss_qid %u l2t_idx %u\n",
2545 __func__, ep->txq_idx, ep->tx_chan, ep->smac_idx, ep->rss_qid,
2546 ep->l2t->idx);
2548 state_set(&ep->com, CONNECTING);
2549 ep->tos = 0;
2550 ep->com.local_addr = cm_id->local_addr;
2551 ep->com.remote_addr = cm_id->remote_addr;
2553 /* send connect request to rnic */
2554 err = send_connect(ep);
2555 if (!err)
2556 goto out;
2558 cxgb4_l2t_release(ep->l2t);
2559 fail4:
2560 dst_release(ep->dst);
2561 fail3:
2562 remove_handle(ep->com.dev, &ep->com.dev->atid_idr, ep->atid);
2563 cxgb4_free_atid(ep->com.dev->rdev.lldi.tids, ep->atid);
2564 fail2:
2565 cm_id->rem_ref(cm_id);
2566 c4iw_put_ep(&ep->com);
2567 out:
2568 return err;
2571 int c4iw_create_listen(struct iw_cm_id *cm_id, int backlog)
2573 int err = 0;
2574 struct c4iw_dev *dev = to_c4iw_dev(cm_id->device);
2575 struct c4iw_listen_ep *ep;
2577 might_sleep();
2579 ep = alloc_ep(sizeof(*ep), GFP_KERNEL);
2580 if (!ep) {
2581 printk(KERN_ERR MOD "%s - cannot alloc ep.\n", __func__);
2582 err = -ENOMEM;
2583 goto fail1;
2585 PDBG("%s ep %p\n", __func__, ep);
2586 cm_id->add_ref(cm_id);
2587 ep->com.cm_id = cm_id;
2588 ep->com.dev = dev;
2589 ep->backlog = backlog;
2590 ep->com.local_addr = cm_id->local_addr;
2593 * Allocate a server TID.
2595 if (dev->rdev.lldi.enable_fw_ofld_conn)
2596 ep->stid = cxgb4_alloc_sftid(dev->rdev.lldi.tids, PF_INET, ep);
2597 else
2598 ep->stid = cxgb4_alloc_stid(dev->rdev.lldi.tids, PF_INET, ep);
2600 if (ep->stid == -1) {
2601 printk(KERN_ERR MOD "%s - cannot alloc stid.\n", __func__);
2602 err = -ENOMEM;
2603 goto fail2;
2605 insert_handle(dev, &dev->stid_idr, ep, ep->stid);
2606 state_set(&ep->com, LISTEN);
2607 if (dev->rdev.lldi.enable_fw_ofld_conn) {
2608 do {
2609 err = cxgb4_create_server_filter(
2610 ep->com.dev->rdev.lldi.ports[0], ep->stid,
2611 ep->com.local_addr.sin_addr.s_addr,
2612 ep->com.local_addr.sin_port,
2614 ep->com.dev->rdev.lldi.rxq_ids[0],
2617 if (err == -EBUSY) {
2618 set_current_state(TASK_UNINTERRUPTIBLE);
2619 schedule_timeout(usecs_to_jiffies(100));
2621 } while (err == -EBUSY);
2622 } else {
2623 c4iw_init_wr_wait(&ep->com.wr_wait);
2624 err = cxgb4_create_server(ep->com.dev->rdev.lldi.ports[0],
2625 ep->stid, ep->com.local_addr.sin_addr.s_addr,
2626 ep->com.local_addr.sin_port,
2628 ep->com.dev->rdev.lldi.rxq_ids[0]);
2629 if (!err)
2630 err = c4iw_wait_for_reply(&ep->com.dev->rdev,
2631 &ep->com.wr_wait,
2632 0, 0, __func__);
2634 if (!err) {
2635 cm_id->provider_data = ep;
2636 goto out;
2638 pr_err("%s cxgb4_create_server/filter failed err %d " \
2639 "stid %d laddr %08x lport %d\n", \
2640 __func__, err, ep->stid,
2641 ntohl(ep->com.local_addr.sin_addr.s_addr),
2642 ntohs(ep->com.local_addr.sin_port));
2643 cxgb4_free_stid(ep->com.dev->rdev.lldi.tids, ep->stid, PF_INET);
2644 fail2:
2645 cm_id->rem_ref(cm_id);
2646 c4iw_put_ep(&ep->com);
2647 fail1:
2648 out:
2649 return err;
2652 int c4iw_destroy_listen(struct iw_cm_id *cm_id)
2654 int err;
2655 struct c4iw_listen_ep *ep = to_listen_ep(cm_id);
2657 PDBG("%s ep %p\n", __func__, ep);
2659 might_sleep();
2660 state_set(&ep->com, DEAD);
2661 if (ep->com.dev->rdev.lldi.enable_fw_ofld_conn) {
2662 err = cxgb4_remove_server_filter(
2663 ep->com.dev->rdev.lldi.ports[0], ep->stid,
2664 ep->com.dev->rdev.lldi.rxq_ids[0], 0);
2665 } else {
2666 c4iw_init_wr_wait(&ep->com.wr_wait);
2667 err = listen_stop(ep);
2668 if (err)
2669 goto done;
2670 err = c4iw_wait_for_reply(&ep->com.dev->rdev, &ep->com.wr_wait,
2671 0, 0, __func__);
2673 remove_handle(ep->com.dev, &ep->com.dev->stid_idr, ep->stid);
2674 cxgb4_free_stid(ep->com.dev->rdev.lldi.tids, ep->stid, PF_INET);
2675 done:
2676 cm_id->rem_ref(cm_id);
2677 c4iw_put_ep(&ep->com);
2678 return err;
2681 int c4iw_ep_disconnect(struct c4iw_ep *ep, int abrupt, gfp_t gfp)
2683 int ret = 0;
2684 int close = 0;
2685 int fatal = 0;
2686 struct c4iw_rdev *rdev;
2688 mutex_lock(&ep->com.mutex);
2690 PDBG("%s ep %p state %s, abrupt %d\n", __func__, ep,
2691 states[ep->com.state], abrupt);
2693 rdev = &ep->com.dev->rdev;
2694 if (c4iw_fatal_error(rdev)) {
2695 fatal = 1;
2696 close_complete_upcall(ep);
2697 ep->com.state = DEAD;
2699 switch (ep->com.state) {
2700 case MPA_REQ_WAIT:
2701 case MPA_REQ_SENT:
2702 case MPA_REQ_RCVD:
2703 case MPA_REP_SENT:
2704 case FPDU_MODE:
2705 close = 1;
2706 if (abrupt)
2707 ep->com.state = ABORTING;
2708 else {
2709 ep->com.state = CLOSING;
2710 start_ep_timer(ep);
2712 set_bit(CLOSE_SENT, &ep->com.flags);
2713 break;
2714 case CLOSING:
2715 if (!test_and_set_bit(CLOSE_SENT, &ep->com.flags)) {
2716 close = 1;
2717 if (abrupt) {
2718 stop_ep_timer(ep);
2719 ep->com.state = ABORTING;
2720 } else
2721 ep->com.state = MORIBUND;
2723 break;
2724 case MORIBUND:
2725 case ABORTING:
2726 case DEAD:
2727 PDBG("%s ignoring disconnect ep %p state %u\n",
2728 __func__, ep, ep->com.state);
2729 break;
2730 default:
2731 BUG();
2732 break;
2735 if (close) {
2736 if (abrupt) {
2737 set_bit(EP_DISC_ABORT, &ep->com.history);
2738 close_complete_upcall(ep);
2739 ret = send_abort(ep, NULL, gfp);
2740 } else {
2741 set_bit(EP_DISC_CLOSE, &ep->com.history);
2742 ret = send_halfclose(ep, gfp);
2744 if (ret)
2745 fatal = 1;
2747 mutex_unlock(&ep->com.mutex);
2748 if (fatal)
2749 release_ep_resources(ep);
2750 return ret;
2753 static void active_ofld_conn_reply(struct c4iw_dev *dev, struct sk_buff *skb,
2754 struct cpl_fw6_msg_ofld_connection_wr_rpl *req)
2756 struct c4iw_ep *ep;
2757 int atid = be32_to_cpu(req->tid);
2759 ep = (struct c4iw_ep *)lookup_atid(dev->rdev.lldi.tids, req->tid);
2760 if (!ep)
2761 return;
2763 switch (req->retval) {
2764 case FW_ENOMEM:
2765 set_bit(ACT_RETRY_NOMEM, &ep->com.history);
2766 if (ep->retry_count++ < ACT_OPEN_RETRY_COUNT) {
2767 send_fw_act_open_req(ep, atid);
2768 return;
2770 case FW_EADDRINUSE:
2771 set_bit(ACT_RETRY_INUSE, &ep->com.history);
2772 if (ep->retry_count++ < ACT_OPEN_RETRY_COUNT) {
2773 send_fw_act_open_req(ep, atid);
2774 return;
2776 break;
2777 default:
2778 pr_info("%s unexpected ofld conn wr retval %d\n",
2779 __func__, req->retval);
2780 break;
2782 pr_err("active ofld_connect_wr failure %d atid %d\n",
2783 req->retval, atid);
2784 mutex_lock(&dev->rdev.stats.lock);
2785 dev->rdev.stats.act_ofld_conn_fails++;
2786 mutex_unlock(&dev->rdev.stats.lock);
2787 connect_reply_upcall(ep, status2errno(req->retval));
2788 state_set(&ep->com, DEAD);
2789 remove_handle(dev, &dev->atid_idr, atid);
2790 cxgb4_free_atid(dev->rdev.lldi.tids, atid);
2791 dst_release(ep->dst);
2792 cxgb4_l2t_release(ep->l2t);
2793 c4iw_put_ep(&ep->com);
2796 static void passive_ofld_conn_reply(struct c4iw_dev *dev, struct sk_buff *skb,
2797 struct cpl_fw6_msg_ofld_connection_wr_rpl *req)
2799 struct sk_buff *rpl_skb;
2800 struct cpl_pass_accept_req *cpl;
2801 int ret;
2803 rpl_skb = (struct sk_buff *)cpu_to_be64(req->cookie);
2804 BUG_ON(!rpl_skb);
2805 if (req->retval) {
2806 PDBG("%s passive open failure %d\n", __func__, req->retval);
2807 mutex_lock(&dev->rdev.stats.lock);
2808 dev->rdev.stats.pas_ofld_conn_fails++;
2809 mutex_unlock(&dev->rdev.stats.lock);
2810 kfree_skb(rpl_skb);
2811 } else {
2812 cpl = (struct cpl_pass_accept_req *)cplhdr(rpl_skb);
2813 OPCODE_TID(cpl) = htonl(MK_OPCODE_TID(CPL_PASS_ACCEPT_REQ,
2814 htonl(req->tid)));
2815 ret = pass_accept_req(dev, rpl_skb);
2816 if (!ret)
2817 kfree_skb(rpl_skb);
2819 return;
2822 static int deferred_fw6_msg(struct c4iw_dev *dev, struct sk_buff *skb)
2824 struct cpl_fw6_msg *rpl = cplhdr(skb);
2825 struct cpl_fw6_msg_ofld_connection_wr_rpl *req;
2827 switch (rpl->type) {
2828 case FW6_TYPE_CQE:
2829 c4iw_ev_dispatch(dev, (struct t4_cqe *)&rpl->data[0]);
2830 break;
2831 case FW6_TYPE_OFLD_CONNECTION_WR_RPL:
2832 req = (struct cpl_fw6_msg_ofld_connection_wr_rpl *)rpl->data;
2833 switch (req->t_state) {
2834 case TCP_SYN_SENT:
2835 active_ofld_conn_reply(dev, skb, req);
2836 break;
2837 case TCP_SYN_RECV:
2838 passive_ofld_conn_reply(dev, skb, req);
2839 break;
2840 default:
2841 pr_err("%s unexpected ofld conn wr state %d\n",
2842 __func__, req->t_state);
2843 break;
2845 break;
2847 return 0;
2850 static void build_cpl_pass_accept_req(struct sk_buff *skb, int stid , u8 tos)
2852 u32 l2info;
2853 u16 vlantag, len, hdr_len;
2854 u8 intf;
2855 struct cpl_rx_pkt *cpl = cplhdr(skb);
2856 struct cpl_pass_accept_req *req;
2857 struct tcp_options_received tmp_opt;
2859 /* Store values from cpl_rx_pkt in temporary location. */
2860 vlantag = cpl->vlan;
2861 len = cpl->len;
2862 l2info = cpl->l2info;
2863 hdr_len = cpl->hdr_len;
2864 intf = cpl->iff;
2866 __skb_pull(skb, sizeof(*req) + sizeof(struct rss_header));
2869 * We need to parse the TCP options from SYN packet.
2870 * to generate cpl_pass_accept_req.
2872 memset(&tmp_opt, 0, sizeof(tmp_opt));
2873 tcp_clear_options(&tmp_opt);
2874 tcp_parse_options(skb, &tmp_opt, 0, 0, NULL);
2876 req = (struct cpl_pass_accept_req *)__skb_push(skb, sizeof(*req));
2877 memset(req, 0, sizeof(*req));
2878 req->l2info = cpu_to_be16(V_SYN_INTF(intf) |
2879 V_SYN_MAC_IDX(G_RX_MACIDX(htonl(l2info))) |
2880 F_SYN_XACT_MATCH);
2881 req->hdr_len = cpu_to_be32(V_SYN_RX_CHAN(G_RX_CHAN(htonl(l2info))) |
2882 V_TCP_HDR_LEN(G_RX_TCPHDR_LEN(htons(hdr_len))) |
2883 V_IP_HDR_LEN(G_RX_IPHDR_LEN(htons(hdr_len))) |
2884 V_ETH_HDR_LEN(G_RX_ETHHDR_LEN(htonl(l2info))));
2885 req->vlan = vlantag;
2886 req->len = len;
2887 req->tos_stid = cpu_to_be32(PASS_OPEN_TID(stid) |
2888 PASS_OPEN_TOS(tos));
2889 req->tcpopt.mss = htons(tmp_opt.mss_clamp);
2890 if (tmp_opt.wscale_ok)
2891 req->tcpopt.wsf = tmp_opt.snd_wscale;
2892 req->tcpopt.tstamp = tmp_opt.saw_tstamp;
2893 if (tmp_opt.sack_ok)
2894 req->tcpopt.sack = 1;
2895 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_ACCEPT_REQ, 0));
2896 return;
2899 static void send_fw_pass_open_req(struct c4iw_dev *dev, struct sk_buff *skb,
2900 __be32 laddr, __be16 lport,
2901 __be32 raddr, __be16 rport,
2902 u32 rcv_isn, u32 filter, u16 window,
2903 u32 rss_qid, u8 port_id)
2905 struct sk_buff *req_skb;
2906 struct fw_ofld_connection_wr *req;
2907 struct cpl_pass_accept_req *cpl = cplhdr(skb);
2909 req_skb = alloc_skb(sizeof(struct fw_ofld_connection_wr), GFP_KERNEL);
2910 req = (struct fw_ofld_connection_wr *)__skb_put(req_skb, sizeof(*req));
2911 memset(req, 0, sizeof(*req));
2912 req->op_compl = htonl(V_WR_OP(FW_OFLD_CONNECTION_WR) | FW_WR_COMPL(1));
2913 req->len16_pkd = htonl(FW_WR_LEN16(DIV_ROUND_UP(sizeof(*req), 16)));
2914 req->le.version_cpl = htonl(F_FW_OFLD_CONNECTION_WR_CPL);
2915 req->le.filter = filter;
2916 req->le.lport = lport;
2917 req->le.pport = rport;
2918 req->le.u.ipv4.lip = laddr;
2919 req->le.u.ipv4.pip = raddr;
2920 req->tcb.rcv_nxt = htonl(rcv_isn + 1);
2921 req->tcb.rcv_adv = htons(window);
2922 req->tcb.t_state_to_astid =
2923 htonl(V_FW_OFLD_CONNECTION_WR_T_STATE(TCP_SYN_RECV) |
2924 V_FW_OFLD_CONNECTION_WR_RCV_SCALE(cpl->tcpopt.wsf) |
2925 V_FW_OFLD_CONNECTION_WR_ASTID(
2926 GET_PASS_OPEN_TID(ntohl(cpl->tos_stid))));
2929 * We store the qid in opt2 which will be used by the firmware
2930 * to send us the wr response.
2932 req->tcb.opt2 = htonl(V_RSS_QUEUE(rss_qid));
2935 * We initialize the MSS index in TCB to 0xF.
2936 * So that when driver sends cpl_pass_accept_rpl
2937 * TCB picks up the correct value. If this was 0
2938 * TP will ignore any value > 0 for MSS index.
2940 req->tcb.opt0 = cpu_to_be64(V_MSS_IDX(0xF));
2941 req->cookie = cpu_to_be64((u64)skb);
2943 set_wr_txq(req_skb, CPL_PRIORITY_CONTROL, port_id);
2944 cxgb4_ofld_send(dev->rdev.lldi.ports[0], req_skb);
2948 * Handler for CPL_RX_PKT message. Need to handle cpl_rx_pkt
2949 * messages when a filter is being used instead of server to
2950 * redirect a syn packet. When packets hit filter they are redirected
2951 * to the offload queue and driver tries to establish the connection
2952 * using firmware work request.
2954 static int rx_pkt(struct c4iw_dev *dev, struct sk_buff *skb)
2956 int stid;
2957 unsigned int filter;
2958 struct ethhdr *eh = NULL;
2959 struct vlan_ethhdr *vlan_eh = NULL;
2960 struct iphdr *iph;
2961 struct tcphdr *tcph;
2962 struct rss_header *rss = (void *)skb->data;
2963 struct cpl_rx_pkt *cpl = (void *)skb->data;
2964 struct cpl_pass_accept_req *req = (void *)(rss + 1);
2965 struct l2t_entry *e;
2966 struct dst_entry *dst;
2967 struct rtable *rt;
2968 struct c4iw_ep *lep;
2969 u16 window;
2970 struct port_info *pi;
2971 struct net_device *pdev;
2972 u16 rss_qid;
2973 int step;
2974 u32 tx_chan;
2975 struct neighbour *neigh;
2977 /* Drop all non-SYN packets */
2978 if (!(cpl->l2info & cpu_to_be32(F_RXF_SYN)))
2979 goto reject;
2982 * Drop all packets which did not hit the filter.
2983 * Unlikely to happen.
2985 if (!(rss->filter_hit && rss->filter_tid))
2986 goto reject;
2989 * Calculate the server tid from filter hit index from cpl_rx_pkt.
2991 stid = cpu_to_be32(rss->hash_val) - dev->rdev.lldi.tids->sftid_base
2992 + dev->rdev.lldi.tids->nstids;
2994 lep = (struct c4iw_ep *)lookup_stid(dev->rdev.lldi.tids, stid);
2995 if (!lep) {
2996 PDBG("%s connect request on invalid stid %d\n", __func__, stid);
2997 goto reject;
3000 if (G_RX_ETHHDR_LEN(ntohl(cpl->l2info)) == ETH_HLEN) {
3001 eh = (struct ethhdr *)(req + 1);
3002 iph = (struct iphdr *)(eh + 1);
3003 } else {
3004 vlan_eh = (struct vlan_ethhdr *)(req + 1);
3005 iph = (struct iphdr *)(vlan_eh + 1);
3006 skb->vlan_tci = ntohs(cpl->vlan);
3009 if (iph->version != 0x4)
3010 goto reject;
3012 tcph = (struct tcphdr *)(iph + 1);
3013 skb_set_network_header(skb, (void *)iph - (void *)rss);
3014 skb_set_transport_header(skb, (void *)tcph - (void *)rss);
3015 skb_get(skb);
3017 PDBG("%s lip 0x%x lport %u pip 0x%x pport %u tos %d\n", __func__,
3018 ntohl(iph->daddr), ntohs(tcph->dest), ntohl(iph->saddr),
3019 ntohs(tcph->source), iph->tos);
3021 rt = find_route(dev, iph->daddr, iph->saddr, tcph->dest, tcph->source,
3022 iph->tos);
3023 if (!rt) {
3024 pr_err("%s - failed to find dst entry!\n",
3025 __func__);
3026 goto reject;
3028 dst = &rt->dst;
3029 neigh = dst_neigh_lookup_skb(dst, skb);
3031 if (neigh->dev->flags & IFF_LOOPBACK) {
3032 pdev = ip_dev_find(&init_net, iph->daddr);
3033 e = cxgb4_l2t_get(dev->rdev.lldi.l2t, neigh,
3034 pdev, 0);
3035 pi = (struct port_info *)netdev_priv(pdev);
3036 tx_chan = cxgb4_port_chan(pdev);
3037 dev_put(pdev);
3038 } else {
3039 e = cxgb4_l2t_get(dev->rdev.lldi.l2t, neigh,
3040 neigh->dev, 0);
3041 pi = (struct port_info *)netdev_priv(neigh->dev);
3042 tx_chan = cxgb4_port_chan(neigh->dev);
3044 if (!e) {
3045 pr_err("%s - failed to allocate l2t entry!\n",
3046 __func__);
3047 goto free_dst;
3050 step = dev->rdev.lldi.nrxq / dev->rdev.lldi.nchan;
3051 rss_qid = dev->rdev.lldi.rxq_ids[pi->port_id * step];
3052 window = htons(tcph->window);
3054 /* Calcuate filter portion for LE region. */
3055 filter = cpu_to_be32(select_ntuple(dev, dst, e));
3058 * Synthesize the cpl_pass_accept_req. We have everything except the
3059 * TID. Once firmware sends a reply with TID we update the TID field
3060 * in cpl and pass it through the regular cpl_pass_accept_req path.
3062 build_cpl_pass_accept_req(skb, stid, iph->tos);
3063 send_fw_pass_open_req(dev, skb, iph->daddr, tcph->dest, iph->saddr,
3064 tcph->source, ntohl(tcph->seq), filter, window,
3065 rss_qid, pi->port_id);
3066 cxgb4_l2t_release(e);
3067 free_dst:
3068 dst_release(dst);
3069 reject:
3070 return 0;
3074 * These are the real handlers that are called from a
3075 * work queue.
3077 static c4iw_handler_func work_handlers[NUM_CPL_CMDS] = {
3078 [CPL_ACT_ESTABLISH] = act_establish,
3079 [CPL_ACT_OPEN_RPL] = act_open_rpl,
3080 [CPL_RX_DATA] = rx_data,
3081 [CPL_ABORT_RPL_RSS] = abort_rpl,
3082 [CPL_ABORT_RPL] = abort_rpl,
3083 [CPL_PASS_OPEN_RPL] = pass_open_rpl,
3084 [CPL_CLOSE_LISTSRV_RPL] = close_listsrv_rpl,
3085 [CPL_PASS_ACCEPT_REQ] = pass_accept_req,
3086 [CPL_PASS_ESTABLISH] = pass_establish,
3087 [CPL_PEER_CLOSE] = peer_close,
3088 [CPL_ABORT_REQ_RSS] = peer_abort,
3089 [CPL_CLOSE_CON_RPL] = close_con_rpl,
3090 [CPL_RDMA_TERMINATE] = terminate,
3091 [CPL_FW4_ACK] = fw4_ack,
3092 [CPL_FW6_MSG] = deferred_fw6_msg,
3093 [CPL_RX_PKT] = rx_pkt
3096 static void process_timeout(struct c4iw_ep *ep)
3098 struct c4iw_qp_attributes attrs;
3099 int abort = 1;
3101 mutex_lock(&ep->com.mutex);
3102 PDBG("%s ep %p tid %u state %d\n", __func__, ep, ep->hwtid,
3103 ep->com.state);
3104 set_bit(TIMEDOUT, &ep->com.history);
3105 switch (ep->com.state) {
3106 case MPA_REQ_SENT:
3107 __state_set(&ep->com, ABORTING);
3108 connect_reply_upcall(ep, -ETIMEDOUT);
3109 break;
3110 case MPA_REQ_WAIT:
3111 __state_set(&ep->com, ABORTING);
3112 break;
3113 case CLOSING:
3114 case MORIBUND:
3115 if (ep->com.cm_id && ep->com.qp) {
3116 attrs.next_state = C4IW_QP_STATE_ERROR;
3117 c4iw_modify_qp(ep->com.qp->rhp,
3118 ep->com.qp, C4IW_QP_ATTR_NEXT_STATE,
3119 &attrs, 1);
3121 __state_set(&ep->com, ABORTING);
3122 break;
3123 default:
3124 WARN(1, "%s unexpected state ep %p tid %u state %u\n",
3125 __func__, ep, ep->hwtid, ep->com.state);
3126 abort = 0;
3128 mutex_unlock(&ep->com.mutex);
3129 if (abort)
3130 abort_connection(ep, NULL, GFP_KERNEL);
3131 c4iw_put_ep(&ep->com);
3134 static void process_timedout_eps(void)
3136 struct c4iw_ep *ep;
3138 spin_lock_irq(&timeout_lock);
3139 while (!list_empty(&timeout_list)) {
3140 struct list_head *tmp;
3142 tmp = timeout_list.next;
3143 list_del(tmp);
3144 spin_unlock_irq(&timeout_lock);
3145 ep = list_entry(tmp, struct c4iw_ep, entry);
3146 process_timeout(ep);
3147 spin_lock_irq(&timeout_lock);
3149 spin_unlock_irq(&timeout_lock);
3152 static void process_work(struct work_struct *work)
3154 struct sk_buff *skb = NULL;
3155 struct c4iw_dev *dev;
3156 struct cpl_act_establish *rpl;
3157 unsigned int opcode;
3158 int ret;
3160 while ((skb = skb_dequeue(&rxq))) {
3161 rpl = cplhdr(skb);
3162 dev = *((struct c4iw_dev **) (skb->cb + sizeof(void *)));
3163 opcode = rpl->ot.opcode;
3165 BUG_ON(!work_handlers[opcode]);
3166 ret = work_handlers[opcode](dev, skb);
3167 if (!ret)
3168 kfree_skb(skb);
3170 process_timedout_eps();
3173 static DECLARE_WORK(skb_work, process_work);
3175 static void ep_timeout(unsigned long arg)
3177 struct c4iw_ep *ep = (struct c4iw_ep *)arg;
3179 spin_lock(&timeout_lock);
3180 list_add_tail(&ep->entry, &timeout_list);
3181 spin_unlock(&timeout_lock);
3182 queue_work(workq, &skb_work);
3186 * All the CM events are handled on a work queue to have a safe context.
3188 static int sched(struct c4iw_dev *dev, struct sk_buff *skb)
3192 * Save dev in the skb->cb area.
3194 *((struct c4iw_dev **) (skb->cb + sizeof(void *))) = dev;
3197 * Queue the skb and schedule the worker thread.
3199 skb_queue_tail(&rxq, skb);
3200 queue_work(workq, &skb_work);
3201 return 0;
3204 static int set_tcb_rpl(struct c4iw_dev *dev, struct sk_buff *skb)
3206 struct cpl_set_tcb_rpl *rpl = cplhdr(skb);
3208 if (rpl->status != CPL_ERR_NONE) {
3209 printk(KERN_ERR MOD "Unexpected SET_TCB_RPL status %u "
3210 "for tid %u\n", rpl->status, GET_TID(rpl));
3212 kfree_skb(skb);
3213 return 0;
3216 static int fw6_msg(struct c4iw_dev *dev, struct sk_buff *skb)
3218 struct cpl_fw6_msg *rpl = cplhdr(skb);
3219 struct c4iw_wr_wait *wr_waitp;
3220 int ret;
3222 PDBG("%s type %u\n", __func__, rpl->type);
3224 switch (rpl->type) {
3225 case FW6_TYPE_WR_RPL:
3226 ret = (int)((be64_to_cpu(rpl->data[0]) >> 8) & 0xff);
3227 wr_waitp = (struct c4iw_wr_wait *)(__force unsigned long) rpl->data[1];
3228 PDBG("%s wr_waitp %p ret %u\n", __func__, wr_waitp, ret);
3229 if (wr_waitp)
3230 c4iw_wake_up(wr_waitp, ret ? -ret : 0);
3231 kfree_skb(skb);
3232 break;
3233 case FW6_TYPE_CQE:
3234 case FW6_TYPE_OFLD_CONNECTION_WR_RPL:
3235 sched(dev, skb);
3236 break;
3237 default:
3238 printk(KERN_ERR MOD "%s unexpected fw6 msg type %u\n", __func__,
3239 rpl->type);
3240 kfree_skb(skb);
3241 break;
3243 return 0;
3246 static int peer_abort_intr(struct c4iw_dev *dev, struct sk_buff *skb)
3248 struct cpl_abort_req_rss *req = cplhdr(skb);
3249 struct c4iw_ep *ep;
3250 struct tid_info *t = dev->rdev.lldi.tids;
3251 unsigned int tid = GET_TID(req);
3253 ep = lookup_tid(t, tid);
3254 if (!ep) {
3255 printk(KERN_WARNING MOD
3256 "Abort on non-existent endpoint, tid %d\n", tid);
3257 kfree_skb(skb);
3258 return 0;
3260 if (is_neg_adv_abort(req->status)) {
3261 PDBG("%s neg_adv_abort ep %p tid %u\n", __func__, ep,
3262 ep->hwtid);
3263 kfree_skb(skb);
3264 return 0;
3266 PDBG("%s ep %p tid %u state %u\n", __func__, ep, ep->hwtid,
3267 ep->com.state);
3270 * Wake up any threads in rdma_init() or rdma_fini().
3272 c4iw_wake_up(&ep->com.wr_wait, -ECONNRESET);
3273 sched(dev, skb);
3274 return 0;
3278 * Most upcalls from the T4 Core go to sched() to
3279 * schedule the processing on a work queue.
3281 c4iw_handler_func c4iw_handlers[NUM_CPL_CMDS] = {
3282 [CPL_ACT_ESTABLISH] = sched,
3283 [CPL_ACT_OPEN_RPL] = sched,
3284 [CPL_RX_DATA] = sched,
3285 [CPL_ABORT_RPL_RSS] = sched,
3286 [CPL_ABORT_RPL] = sched,
3287 [CPL_PASS_OPEN_RPL] = sched,
3288 [CPL_CLOSE_LISTSRV_RPL] = sched,
3289 [CPL_PASS_ACCEPT_REQ] = sched,
3290 [CPL_PASS_ESTABLISH] = sched,
3291 [CPL_PEER_CLOSE] = sched,
3292 [CPL_CLOSE_CON_RPL] = sched,
3293 [CPL_ABORT_REQ_RSS] = peer_abort_intr,
3294 [CPL_RDMA_TERMINATE] = sched,
3295 [CPL_FW4_ACK] = sched,
3296 [CPL_SET_TCB_RPL] = set_tcb_rpl,
3297 [CPL_FW6_MSG] = fw6_msg,
3298 [CPL_RX_PKT] = sched
3301 int __init c4iw_cm_init(void)
3303 spin_lock_init(&timeout_lock);
3304 skb_queue_head_init(&rxq);
3306 workq = create_singlethread_workqueue("iw_cxgb4");
3307 if (!workq)
3308 return -ENOMEM;
3310 return 0;
3313 void __exit c4iw_cm_term(void)
3315 WARN_ON(!list_empty(&timeout_list));
3316 flush_workqueue(workq);
3317 destroy_workqueue(workq);