2 * linux/fs/ext4/ialloc.c
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
9 * BSD ufs-inspired inode and directory allocation by
10 * Stephen Tweedie (sct@redhat.com), 1993
11 * Big-endian to little-endian byte-swapping/bitmaps by
12 * David S. Miller (davem@caip.rutgers.edu), 1995
15 #include <linux/time.h>
17 #include <linux/jbd2.h>
18 #include <linux/stat.h>
19 #include <linux/string.h>
20 #include <linux/quotaops.h>
21 #include <linux/buffer_head.h>
22 #include <linux/random.h>
23 #include <linux/bitops.h>
24 #include <linux/blkdev.h>
25 #include <asm/byteorder.h>
28 #include "ext4_jbd2.h"
32 #include <trace/events/ext4.h>
35 * ialloc.c contains the inodes allocation and deallocation routines
39 * The free inodes are managed by bitmaps. A file system contains several
40 * blocks groups. Each group contains 1 bitmap block for blocks, 1 bitmap
41 * block for inodes, N blocks for the inode table and data blocks.
43 * The file system contains group descriptors which are located after the
44 * super block. Each descriptor contains the number of the bitmap block and
45 * the free blocks count in the block.
49 * To avoid calling the atomic setbit hundreds or thousands of times, we only
50 * need to use it within a single byte (to ensure we get endianness right).
51 * We can use memset for the rest of the bitmap as there are no other users.
53 void ext4_mark_bitmap_end(int start_bit
, int end_bit
, char *bitmap
)
57 if (start_bit
>= end_bit
)
60 ext4_debug("mark end bits +%d through +%d used\n", start_bit
, end_bit
);
61 for (i
= start_bit
; i
< ((start_bit
+ 7) & ~7UL); i
++)
62 ext4_set_bit(i
, bitmap
);
64 memset(bitmap
+ (i
>> 3), 0xff, (end_bit
- i
) >> 3);
67 /* Initializes an uninitialized inode bitmap */
68 static unsigned ext4_init_inode_bitmap(struct super_block
*sb
,
69 struct buffer_head
*bh
,
70 ext4_group_t block_group
,
71 struct ext4_group_desc
*gdp
)
73 J_ASSERT_BH(bh
, buffer_locked(bh
));
75 /* If checksum is bad mark all blocks and inodes use to prevent
76 * allocation, essentially implementing a per-group read-only flag. */
77 if (!ext4_group_desc_csum_verify(sb
, block_group
, gdp
)) {
78 ext4_error(sb
, "Checksum bad for group %u", block_group
);
79 ext4_free_group_clusters_set(sb
, gdp
, 0);
80 ext4_free_inodes_set(sb
, gdp
, 0);
81 ext4_itable_unused_set(sb
, gdp
, 0);
82 memset(bh
->b_data
, 0xff, sb
->s_blocksize
);
83 ext4_inode_bitmap_csum_set(sb
, block_group
, gdp
, bh
,
84 EXT4_INODES_PER_GROUP(sb
) / 8);
88 memset(bh
->b_data
, 0, (EXT4_INODES_PER_GROUP(sb
) + 7) / 8);
89 ext4_mark_bitmap_end(EXT4_INODES_PER_GROUP(sb
), sb
->s_blocksize
* 8,
91 ext4_inode_bitmap_csum_set(sb
, block_group
, gdp
, bh
,
92 EXT4_INODES_PER_GROUP(sb
) / 8);
93 ext4_group_desc_csum_set(sb
, block_group
, gdp
);
95 return EXT4_INODES_PER_GROUP(sb
);
98 void ext4_end_bitmap_read(struct buffer_head
*bh
, int uptodate
)
101 set_buffer_uptodate(bh
);
102 set_bitmap_uptodate(bh
);
109 * Read the inode allocation bitmap for a given block_group, reading
110 * into the specified slot in the superblock's bitmap cache.
112 * Return buffer_head of bitmap on success or NULL.
114 static struct buffer_head
*
115 ext4_read_inode_bitmap(struct super_block
*sb
, ext4_group_t block_group
)
117 struct ext4_group_desc
*desc
;
118 struct buffer_head
*bh
= NULL
;
119 ext4_fsblk_t bitmap_blk
;
121 desc
= ext4_get_group_desc(sb
, block_group
, NULL
);
125 bitmap_blk
= ext4_inode_bitmap(sb
, desc
);
126 bh
= sb_getblk(sb
, bitmap_blk
);
128 ext4_error(sb
, "Cannot read inode bitmap - "
129 "block_group = %u, inode_bitmap = %llu",
130 block_group
, bitmap_blk
);
133 if (bitmap_uptodate(bh
))
137 if (bitmap_uptodate(bh
)) {
142 ext4_lock_group(sb
, block_group
);
143 if (desc
->bg_flags
& cpu_to_le16(EXT4_BG_INODE_UNINIT
)) {
144 ext4_init_inode_bitmap(sb
, bh
, block_group
, desc
);
145 set_bitmap_uptodate(bh
);
146 set_buffer_uptodate(bh
);
147 set_buffer_verified(bh
);
148 ext4_unlock_group(sb
, block_group
);
152 ext4_unlock_group(sb
, block_group
);
154 if (buffer_uptodate(bh
)) {
156 * if not uninit if bh is uptodate,
157 * bitmap is also uptodate
159 set_bitmap_uptodate(bh
);
164 * submit the buffer_head for reading
166 trace_ext4_load_inode_bitmap(sb
, block_group
);
167 bh
->b_end_io
= ext4_end_bitmap_read
;
171 if (!buffer_uptodate(bh
)) {
173 ext4_error(sb
, "Cannot read inode bitmap - "
174 "block_group = %u, inode_bitmap = %llu",
175 block_group
, bitmap_blk
);
180 ext4_lock_group(sb
, block_group
);
181 if (!buffer_verified(bh
) &&
182 !ext4_inode_bitmap_csum_verify(sb
, block_group
, desc
, bh
,
183 EXT4_INODES_PER_GROUP(sb
) / 8)) {
184 ext4_unlock_group(sb
, block_group
);
186 ext4_error(sb
, "Corrupt inode bitmap - block_group = %u, "
187 "inode_bitmap = %llu", block_group
, bitmap_blk
);
190 ext4_unlock_group(sb
, block_group
);
191 set_buffer_verified(bh
);
196 * NOTE! When we get the inode, we're the only people
197 * that have access to it, and as such there are no
198 * race conditions we have to worry about. The inode
199 * is not on the hash-lists, and it cannot be reached
200 * through the filesystem because the directory entry
201 * has been deleted earlier.
203 * HOWEVER: we must make sure that we get no aliases,
204 * which means that we have to call "clear_inode()"
205 * _before_ we mark the inode not in use in the inode
206 * bitmaps. Otherwise a newly created file might use
207 * the same inode number (not actually the same pointer
208 * though), and then we'd have two inodes sharing the
209 * same inode number and space on the harddisk.
211 void ext4_free_inode(handle_t
*handle
, struct inode
*inode
)
213 struct super_block
*sb
= inode
->i_sb
;
216 struct buffer_head
*bitmap_bh
= NULL
;
217 struct buffer_head
*bh2
;
218 ext4_group_t block_group
;
220 struct ext4_group_desc
*gdp
;
221 struct ext4_super_block
*es
;
222 struct ext4_sb_info
*sbi
;
223 int fatal
= 0, err
, count
, cleared
;
226 printk(KERN_ERR
"EXT4-fs: %s:%d: inode on "
227 "nonexistent device\n", __func__
, __LINE__
);
230 if (atomic_read(&inode
->i_count
) > 1) {
231 ext4_msg(sb
, KERN_ERR
, "%s:%d: inode #%lu: count=%d",
232 __func__
, __LINE__
, inode
->i_ino
,
233 atomic_read(&inode
->i_count
));
236 if (inode
->i_nlink
) {
237 ext4_msg(sb
, KERN_ERR
, "%s:%d: inode #%lu: nlink=%d\n",
238 __func__
, __LINE__
, inode
->i_ino
, inode
->i_nlink
);
244 ext4_debug("freeing inode %lu\n", ino
);
245 trace_ext4_free_inode(inode
);
248 * Note: we must free any quota before locking the superblock,
249 * as writing the quota to disk may need the lock as well.
251 dquot_initialize(inode
);
252 ext4_xattr_delete_inode(handle
, inode
);
253 dquot_free_inode(inode
);
256 is_directory
= S_ISDIR(inode
->i_mode
);
258 /* Do this BEFORE marking the inode not in use or returning an error */
259 ext4_clear_inode(inode
);
261 es
= EXT4_SB(sb
)->s_es
;
262 if (ino
< EXT4_FIRST_INO(sb
) || ino
> le32_to_cpu(es
->s_inodes_count
)) {
263 ext4_error(sb
, "reserved or nonexistent inode %lu", ino
);
266 block_group
= (ino
- 1) / EXT4_INODES_PER_GROUP(sb
);
267 bit
= (ino
- 1) % EXT4_INODES_PER_GROUP(sb
);
268 bitmap_bh
= ext4_read_inode_bitmap(sb
, block_group
);
272 BUFFER_TRACE(bitmap_bh
, "get_write_access");
273 fatal
= ext4_journal_get_write_access(handle
, bitmap_bh
);
278 gdp
= ext4_get_group_desc(sb
, block_group
, &bh2
);
280 BUFFER_TRACE(bh2
, "get_write_access");
281 fatal
= ext4_journal_get_write_access(handle
, bh2
);
283 ext4_lock_group(sb
, block_group
);
284 cleared
= ext4_test_and_clear_bit(bit
, bitmap_bh
->b_data
);
285 if (fatal
|| !cleared
) {
286 ext4_unlock_group(sb
, block_group
);
290 count
= ext4_free_inodes_count(sb
, gdp
) + 1;
291 ext4_free_inodes_set(sb
, gdp
, count
);
293 count
= ext4_used_dirs_count(sb
, gdp
) - 1;
294 ext4_used_dirs_set(sb
, gdp
, count
);
295 percpu_counter_dec(&sbi
->s_dirs_counter
);
297 ext4_inode_bitmap_csum_set(sb
, block_group
, gdp
, bitmap_bh
,
298 EXT4_INODES_PER_GROUP(sb
) / 8);
299 ext4_group_desc_csum_set(sb
, block_group
, gdp
);
300 ext4_unlock_group(sb
, block_group
);
302 percpu_counter_inc(&sbi
->s_freeinodes_counter
);
303 if (sbi
->s_log_groups_per_flex
) {
304 ext4_group_t f
= ext4_flex_group(sbi
, block_group
);
306 atomic_inc(&sbi
->s_flex_groups
[f
].free_inodes
);
308 atomic_dec(&sbi
->s_flex_groups
[f
].used_dirs
);
310 BUFFER_TRACE(bh2
, "call ext4_handle_dirty_metadata");
311 fatal
= ext4_handle_dirty_metadata(handle
, NULL
, bh2
);
314 BUFFER_TRACE(bitmap_bh
, "call ext4_handle_dirty_metadata");
315 err
= ext4_handle_dirty_metadata(handle
, NULL
, bitmap_bh
);
319 ext4_error(sb
, "bit already cleared for inode %lu", ino
);
323 ext4_std_error(sb
, fatal
);
333 * Helper function for Orlov's allocator; returns critical information
334 * for a particular block group or flex_bg. If flex_size is 1, then g
335 * is a block group number; otherwise it is flex_bg number.
337 static void get_orlov_stats(struct super_block
*sb
, ext4_group_t g
,
338 int flex_size
, struct orlov_stats
*stats
)
340 struct ext4_group_desc
*desc
;
341 struct flex_groups
*flex_group
= EXT4_SB(sb
)->s_flex_groups
;
344 stats
->free_inodes
= atomic_read(&flex_group
[g
].free_inodes
);
345 stats
->free_clusters
= atomic_read(&flex_group
[g
].free_clusters
);
346 stats
->used_dirs
= atomic_read(&flex_group
[g
].used_dirs
);
350 desc
= ext4_get_group_desc(sb
, g
, NULL
);
352 stats
->free_inodes
= ext4_free_inodes_count(sb
, desc
);
353 stats
->free_clusters
= ext4_free_group_clusters(sb
, desc
);
354 stats
->used_dirs
= ext4_used_dirs_count(sb
, desc
);
356 stats
->free_inodes
= 0;
357 stats
->free_clusters
= 0;
358 stats
->used_dirs
= 0;
363 * Orlov's allocator for directories.
365 * We always try to spread first-level directories.
367 * If there are blockgroups with both free inodes and free blocks counts
368 * not worse than average we return one with smallest directory count.
369 * Otherwise we simply return a random group.
371 * For the rest rules look so:
373 * It's OK to put directory into a group unless
374 * it has too many directories already (max_dirs) or
375 * it has too few free inodes left (min_inodes) or
376 * it has too few free blocks left (min_blocks) or
377 * Parent's group is preferred, if it doesn't satisfy these
378 * conditions we search cyclically through the rest. If none
379 * of the groups look good we just look for a group with more
380 * free inodes than average (starting at parent's group).
383 static int find_group_orlov(struct super_block
*sb
, struct inode
*parent
,
384 ext4_group_t
*group
, umode_t mode
,
385 const struct qstr
*qstr
)
387 ext4_group_t parent_group
= EXT4_I(parent
)->i_block_group
;
388 struct ext4_sb_info
*sbi
= EXT4_SB(sb
);
389 ext4_group_t real_ngroups
= ext4_get_groups_count(sb
);
390 int inodes_per_group
= EXT4_INODES_PER_GROUP(sb
);
391 unsigned int freei
, avefreei
, grp_free
;
392 ext4_fsblk_t freeb
, avefreec
;
394 int max_dirs
, min_inodes
;
395 ext4_grpblk_t min_clusters
;
396 ext4_group_t i
, grp
, g
, ngroups
;
397 struct ext4_group_desc
*desc
;
398 struct orlov_stats stats
;
399 int flex_size
= ext4_flex_bg_size(sbi
);
400 struct dx_hash_info hinfo
;
402 ngroups
= real_ngroups
;
404 ngroups
= (real_ngroups
+ flex_size
- 1) >>
405 sbi
->s_log_groups_per_flex
;
406 parent_group
>>= sbi
->s_log_groups_per_flex
;
409 freei
= percpu_counter_read_positive(&sbi
->s_freeinodes_counter
);
410 avefreei
= freei
/ ngroups
;
411 freeb
= EXT4_C2B(sbi
,
412 percpu_counter_read_positive(&sbi
->s_freeclusters_counter
));
414 do_div(avefreec
, ngroups
);
415 ndirs
= percpu_counter_read_positive(&sbi
->s_dirs_counter
);
418 ((parent
== sb
->s_root
->d_inode
) ||
419 (ext4_test_inode_flag(parent
, EXT4_INODE_TOPDIR
)))) {
420 int best_ndir
= inodes_per_group
;
424 hinfo
.hash_version
= DX_HASH_HALF_MD4
;
425 hinfo
.seed
= sbi
->s_hash_seed
;
426 ext4fs_dirhash(qstr
->name
, qstr
->len
, &hinfo
);
429 get_random_bytes(&grp
, sizeof(grp
));
430 parent_group
= (unsigned)grp
% ngroups
;
431 for (i
= 0; i
< ngroups
; i
++) {
432 g
= (parent_group
+ i
) % ngroups
;
433 get_orlov_stats(sb
, g
, flex_size
, &stats
);
434 if (!stats
.free_inodes
)
436 if (stats
.used_dirs
>= best_ndir
)
438 if (stats
.free_inodes
< avefreei
)
440 if (stats
.free_clusters
< avefreec
)
444 best_ndir
= stats
.used_dirs
;
449 if (flex_size
== 1) {
455 * We pack inodes at the beginning of the flexgroup's
456 * inode tables. Block allocation decisions will do
457 * something similar, although regular files will
458 * start at 2nd block group of the flexgroup. See
459 * ext4_ext_find_goal() and ext4_find_near().
462 for (i
= 0; i
< flex_size
; i
++) {
463 if (grp
+i
>= real_ngroups
)
465 desc
= ext4_get_group_desc(sb
, grp
+i
, NULL
);
466 if (desc
&& ext4_free_inodes_count(sb
, desc
)) {
474 max_dirs
= ndirs
/ ngroups
+ inodes_per_group
/ 16;
475 min_inodes
= avefreei
- inodes_per_group
*flex_size
/ 4;
478 min_clusters
= avefreec
- EXT4_CLUSTERS_PER_GROUP(sb
)*flex_size
/ 4;
481 * Start looking in the flex group where we last allocated an
482 * inode for this parent directory
484 if (EXT4_I(parent
)->i_last_alloc_group
!= ~0) {
485 parent_group
= EXT4_I(parent
)->i_last_alloc_group
;
487 parent_group
>>= sbi
->s_log_groups_per_flex
;
490 for (i
= 0; i
< ngroups
; i
++) {
491 grp
= (parent_group
+ i
) % ngroups
;
492 get_orlov_stats(sb
, grp
, flex_size
, &stats
);
493 if (stats
.used_dirs
>= max_dirs
)
495 if (stats
.free_inodes
< min_inodes
)
497 if (stats
.free_clusters
< min_clusters
)
503 ngroups
= real_ngroups
;
504 avefreei
= freei
/ ngroups
;
506 parent_group
= EXT4_I(parent
)->i_block_group
;
507 for (i
= 0; i
< ngroups
; i
++) {
508 grp
= (parent_group
+ i
) % ngroups
;
509 desc
= ext4_get_group_desc(sb
, grp
, NULL
);
511 grp_free
= ext4_free_inodes_count(sb
, desc
);
512 if (grp_free
&& grp_free
>= avefreei
) {
521 * The free-inodes counter is approximate, and for really small
522 * filesystems the above test can fail to find any blockgroups
531 static int find_group_other(struct super_block
*sb
, struct inode
*parent
,
532 ext4_group_t
*group
, umode_t mode
)
534 ext4_group_t parent_group
= EXT4_I(parent
)->i_block_group
;
535 ext4_group_t i
, last
, ngroups
= ext4_get_groups_count(sb
);
536 struct ext4_group_desc
*desc
;
537 int flex_size
= ext4_flex_bg_size(EXT4_SB(sb
));
540 * Try to place the inode is the same flex group as its
541 * parent. If we can't find space, use the Orlov algorithm to
542 * find another flex group, and store that information in the
543 * parent directory's inode information so that use that flex
544 * group for future allocations.
550 parent_group
&= ~(flex_size
-1);
551 last
= parent_group
+ flex_size
;
554 for (i
= parent_group
; i
< last
; i
++) {
555 desc
= ext4_get_group_desc(sb
, i
, NULL
);
556 if (desc
&& ext4_free_inodes_count(sb
, desc
)) {
561 if (!retry
&& EXT4_I(parent
)->i_last_alloc_group
!= ~0) {
563 parent_group
= EXT4_I(parent
)->i_last_alloc_group
;
567 * If this didn't work, use the Orlov search algorithm
568 * to find a new flex group; we pass in the mode to
569 * avoid the topdir algorithms.
571 *group
= parent_group
+ flex_size
;
572 if (*group
> ngroups
)
574 return find_group_orlov(sb
, parent
, group
, mode
, NULL
);
578 * Try to place the inode in its parent directory
580 *group
= parent_group
;
581 desc
= ext4_get_group_desc(sb
, *group
, NULL
);
582 if (desc
&& ext4_free_inodes_count(sb
, desc
) &&
583 ext4_free_group_clusters(sb
, desc
))
587 * We're going to place this inode in a different blockgroup from its
588 * parent. We want to cause files in a common directory to all land in
589 * the same blockgroup. But we want files which are in a different
590 * directory which shares a blockgroup with our parent to land in a
591 * different blockgroup.
593 * So add our directory's i_ino into the starting point for the hash.
595 *group
= (*group
+ parent
->i_ino
) % ngroups
;
598 * Use a quadratic hash to find a group with a free inode and some free
601 for (i
= 1; i
< ngroups
; i
<<= 1) {
603 if (*group
>= ngroups
)
605 desc
= ext4_get_group_desc(sb
, *group
, NULL
);
606 if (desc
&& ext4_free_inodes_count(sb
, desc
) &&
607 ext4_free_group_clusters(sb
, desc
))
612 * That failed: try linear search for a free inode, even if that group
613 * has no free blocks.
615 *group
= parent_group
;
616 for (i
= 0; i
< ngroups
; i
++) {
617 if (++*group
>= ngroups
)
619 desc
= ext4_get_group_desc(sb
, *group
, NULL
);
620 if (desc
&& ext4_free_inodes_count(sb
, desc
))
628 * There are two policies for allocating an inode. If the new inode is
629 * a directory, then a forward search is made for a block group with both
630 * free space and a low directory-to-inode ratio; if that fails, then of
631 * the groups with above-average free space, that group with the fewest
632 * directories already is chosen.
634 * For other inodes, search forward from the parent directory's block
635 * group to find a free inode.
637 struct inode
*ext4_new_inode(handle_t
*handle
, struct inode
*dir
, umode_t mode
,
638 const struct qstr
*qstr
, __u32 goal
, uid_t
*owner
)
640 struct super_block
*sb
;
641 struct buffer_head
*inode_bitmap_bh
= NULL
;
642 struct buffer_head
*group_desc_bh
;
643 ext4_group_t ngroups
, group
= 0;
644 unsigned long ino
= 0;
646 struct ext4_group_desc
*gdp
= NULL
;
647 struct ext4_inode_info
*ei
;
648 struct ext4_sb_info
*sbi
;
652 ext4_group_t flex_group
;
654 /* Cannot create files in a deleted directory */
655 if (!dir
|| !dir
->i_nlink
)
656 return ERR_PTR(-EPERM
);
659 ngroups
= ext4_get_groups_count(sb
);
660 trace_ext4_request_inode(dir
, mode
);
661 inode
= new_inode(sb
);
663 return ERR_PTR(-ENOMEM
);
668 goal
= sbi
->s_inode_goal
;
670 if (goal
&& goal
<= le32_to_cpu(sbi
->s_es
->s_inodes_count
)) {
671 group
= (goal
- 1) / EXT4_INODES_PER_GROUP(sb
);
672 ino
= (goal
- 1) % EXT4_INODES_PER_GROUP(sb
);
678 ret2
= find_group_orlov(sb
, dir
, &group
, mode
, qstr
);
680 ret2
= find_group_other(sb
, dir
, &group
, mode
);
683 EXT4_I(dir
)->i_last_alloc_group
= group
;
689 * Normally we will only go through one pass of this loop,
690 * unless we get unlucky and it turns out the group we selected
691 * had its last inode grabbed by someone else.
693 for (i
= 0; i
< ngroups
; i
++, ino
= 0) {
696 gdp
= ext4_get_group_desc(sb
, group
, &group_desc_bh
);
701 * Check free inodes count before loading bitmap.
703 if (ext4_free_inodes_count(sb
, gdp
) == 0) {
704 if (++group
== ngroups
)
709 brelse(inode_bitmap_bh
);
710 inode_bitmap_bh
= ext4_read_inode_bitmap(sb
, group
);
711 if (!inode_bitmap_bh
)
714 repeat_in_this_group
:
715 ino
= ext4_find_next_zero_bit((unsigned long *)
716 inode_bitmap_bh
->b_data
,
717 EXT4_INODES_PER_GROUP(sb
), ino
);
718 if (ino
>= EXT4_INODES_PER_GROUP(sb
)) {
719 if (++group
== ngroups
)
723 if (group
== 0 && (ino
+1) < EXT4_FIRST_INO(sb
)) {
724 ext4_error(sb
, "reserved inode found cleared - "
725 "inode=%lu", ino
+ 1);
728 BUFFER_TRACE(inode_bitmap_bh
, "get_write_access");
729 err
= ext4_journal_get_write_access(handle
, inode_bitmap_bh
);
732 ext4_lock_group(sb
, group
);
733 ret2
= ext4_test_and_set_bit(ino
, inode_bitmap_bh
->b_data
);
734 ext4_unlock_group(sb
, group
);
735 ino
++; /* the inode bitmap is zero-based */
737 goto got
; /* we grabbed the inode! */
738 if (ino
< EXT4_INODES_PER_GROUP(sb
))
739 goto repeat_in_this_group
;
745 BUFFER_TRACE(inode_bitmap_bh
, "call ext4_handle_dirty_metadata");
746 err
= ext4_handle_dirty_metadata(handle
, NULL
, inode_bitmap_bh
);
750 /* We may have to initialize the block bitmap if it isn't already */
751 if (ext4_has_group_desc_csum(sb
) &&
752 gdp
->bg_flags
& cpu_to_le16(EXT4_BG_BLOCK_UNINIT
)) {
753 struct buffer_head
*block_bitmap_bh
;
755 block_bitmap_bh
= ext4_read_block_bitmap(sb
, group
);
756 BUFFER_TRACE(block_bitmap_bh
, "get block bitmap access");
757 err
= ext4_journal_get_write_access(handle
, block_bitmap_bh
);
759 brelse(block_bitmap_bh
);
763 BUFFER_TRACE(block_bitmap_bh
, "dirty block bitmap");
764 err
= ext4_handle_dirty_metadata(handle
, NULL
, block_bitmap_bh
);
766 /* recheck and clear flag under lock if we still need to */
767 ext4_lock_group(sb
, group
);
768 if (gdp
->bg_flags
& cpu_to_le16(EXT4_BG_BLOCK_UNINIT
)) {
769 gdp
->bg_flags
&= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT
);
770 ext4_free_group_clusters_set(sb
, gdp
,
771 ext4_free_clusters_after_init(sb
, group
, gdp
));
772 ext4_block_bitmap_csum_set(sb
, group
, gdp
,
774 ext4_group_desc_csum_set(sb
, group
, gdp
);
776 ext4_unlock_group(sb
, group
);
777 brelse(block_bitmap_bh
);
783 BUFFER_TRACE(group_desc_bh
, "get_write_access");
784 err
= ext4_journal_get_write_access(handle
, group_desc_bh
);
788 /* Update the relevant bg descriptor fields */
789 if (ext4_has_group_desc_csum(sb
)) {
791 struct ext4_group_info
*grp
= ext4_get_group_info(sb
, group
);
793 down_read(&grp
->alloc_sem
); /* protect vs itable lazyinit */
794 ext4_lock_group(sb
, group
); /* while we modify the bg desc */
795 free
= EXT4_INODES_PER_GROUP(sb
) -
796 ext4_itable_unused_count(sb
, gdp
);
797 if (gdp
->bg_flags
& cpu_to_le16(EXT4_BG_INODE_UNINIT
)) {
798 gdp
->bg_flags
&= cpu_to_le16(~EXT4_BG_INODE_UNINIT
);
802 * Check the relative inode number against the last used
803 * relative inode number in this group. if it is greater
804 * we need to update the bg_itable_unused count
807 ext4_itable_unused_set(sb
, gdp
,
808 (EXT4_INODES_PER_GROUP(sb
) - ino
));
809 up_read(&grp
->alloc_sem
);
811 ext4_lock_group(sb
, group
);
814 ext4_free_inodes_set(sb
, gdp
, ext4_free_inodes_count(sb
, gdp
) - 1);
816 ext4_used_dirs_set(sb
, gdp
, ext4_used_dirs_count(sb
, gdp
) + 1);
817 if (sbi
->s_log_groups_per_flex
) {
818 ext4_group_t f
= ext4_flex_group(sbi
, group
);
820 atomic_inc(&sbi
->s_flex_groups
[f
].used_dirs
);
823 if (ext4_has_group_desc_csum(sb
)) {
824 ext4_inode_bitmap_csum_set(sb
, group
, gdp
, inode_bitmap_bh
,
825 EXT4_INODES_PER_GROUP(sb
) / 8);
826 ext4_group_desc_csum_set(sb
, group
, gdp
);
828 ext4_unlock_group(sb
, group
);
830 BUFFER_TRACE(group_desc_bh
, "call ext4_handle_dirty_metadata");
831 err
= ext4_handle_dirty_metadata(handle
, NULL
, group_desc_bh
);
835 percpu_counter_dec(&sbi
->s_freeinodes_counter
);
837 percpu_counter_inc(&sbi
->s_dirs_counter
);
839 if (sbi
->s_log_groups_per_flex
) {
840 flex_group
= ext4_flex_group(sbi
, group
);
841 atomic_dec(&sbi
->s_flex_groups
[flex_group
].free_inodes
);
844 inode
->i_mode
= mode
;
845 i_uid_write(inode
, owner
[0]);
846 i_gid_write(inode
, owner
[1]);
847 } else if (test_opt(sb
, GRPID
)) {
848 inode
->i_mode
= mode
;
849 inode
->i_uid
= current_fsuid();
850 inode
->i_gid
= dir
->i_gid
;
852 inode_init_owner(inode
, dir
, mode
);
854 inode
->i_ino
= ino
+ group
* EXT4_INODES_PER_GROUP(sb
);
855 /* This is the optimal IO size (for stat), not the fs block size */
857 inode
->i_mtime
= inode
->i_atime
= inode
->i_ctime
= ei
->i_crtime
=
858 ext4_current_time(inode
);
860 memset(ei
->i_data
, 0, sizeof(ei
->i_data
));
861 ei
->i_dir_start_lookup
= 0;
864 /* Don't inherit extent flag from directory, amongst others. */
866 ext4_mask_flags(mode
, EXT4_I(dir
)->i_flags
& EXT4_FL_INHERITED
);
869 ei
->i_block_group
= group
;
870 ei
->i_last_alloc_group
= ~0;
872 ext4_set_inode_flags(inode
);
873 if (IS_DIRSYNC(inode
))
874 ext4_handle_sync(handle
);
875 if (insert_inode_locked(inode
) < 0) {
877 * Likely a bitmap corruption causing inode to be allocated
883 spin_lock(&sbi
->s_next_gen_lock
);
884 inode
->i_generation
= sbi
->s_next_generation
++;
885 spin_unlock(&sbi
->s_next_gen_lock
);
887 /* Precompute checksum seed for inode metadata */
888 if (EXT4_HAS_RO_COMPAT_FEATURE(sb
,
889 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM
)) {
891 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
892 __le32 inum
= cpu_to_le32(inode
->i_ino
);
893 __le32 gen
= cpu_to_le32(inode
->i_generation
);
894 csum
= ext4_chksum(sbi
, sbi
->s_csum_seed
, (__u8
*)&inum
,
896 ei
->i_csum_seed
= ext4_chksum(sbi
, csum
, (__u8
*)&gen
,
900 ext4_clear_state_flags(ei
); /* Only relevant on 32-bit archs */
901 ext4_set_inode_state(inode
, EXT4_STATE_NEW
);
903 ei
->i_extra_isize
= EXT4_SB(sb
)->s_want_extra_isize
;
905 ei
->i_inline_off
= 0;
906 if (EXT4_HAS_INCOMPAT_FEATURE(sb
, EXT4_FEATURE_INCOMPAT_INLINE_DATA
))
907 ext4_set_inode_state(inode
, EXT4_STATE_MAY_INLINE_DATA
);
910 dquot_initialize(inode
);
911 err
= dquot_alloc_inode(inode
);
915 err
= ext4_init_acl(handle
, inode
, dir
);
919 err
= ext4_init_security(handle
, inode
, dir
, qstr
);
923 if (EXT4_HAS_INCOMPAT_FEATURE(sb
, EXT4_FEATURE_INCOMPAT_EXTENTS
)) {
924 /* set extent flag only for directory, file and normal symlink*/
925 if (S_ISDIR(mode
) || S_ISREG(mode
) || S_ISLNK(mode
)) {
926 ext4_set_inode_flag(inode
, EXT4_INODE_EXTENTS
);
927 ext4_ext_tree_init(handle
, inode
);
931 if (ext4_handle_valid(handle
)) {
932 ei
->i_sync_tid
= handle
->h_transaction
->t_tid
;
933 ei
->i_datasync_tid
= handle
->h_transaction
->t_tid
;
936 err
= ext4_mark_inode_dirty(handle
, inode
);
938 ext4_std_error(sb
, err
);
942 ext4_debug("allocating inode %lu\n", inode
->i_ino
);
943 trace_ext4_allocate_inode(inode
, dir
, mode
);
946 ext4_std_error(sb
, err
);
951 brelse(inode_bitmap_bh
);
955 dquot_free_inode(inode
);
959 inode
->i_flags
|= S_NOQUOTA
;
961 unlock_new_inode(inode
);
963 brelse(inode_bitmap_bh
);
967 /* Verify that we are loading a valid orphan from disk */
968 struct inode
*ext4_orphan_get(struct super_block
*sb
, unsigned long ino
)
970 unsigned long max_ino
= le32_to_cpu(EXT4_SB(sb
)->s_es
->s_inodes_count
);
971 ext4_group_t block_group
;
973 struct buffer_head
*bitmap_bh
;
974 struct inode
*inode
= NULL
;
977 /* Error cases - e2fsck has already cleaned up for us */
979 ext4_warning(sb
, "bad orphan ino %lu! e2fsck was run?", ino
);
983 block_group
= (ino
- 1) / EXT4_INODES_PER_GROUP(sb
);
984 bit
= (ino
- 1) % EXT4_INODES_PER_GROUP(sb
);
985 bitmap_bh
= ext4_read_inode_bitmap(sb
, block_group
);
987 ext4_warning(sb
, "inode bitmap error for orphan %lu", ino
);
991 /* Having the inode bit set should be a 100% indicator that this
992 * is a valid orphan (no e2fsck run on fs). Orphans also include
993 * inodes that were being truncated, so we can't check i_nlink==0.
995 if (!ext4_test_bit(bit
, bitmap_bh
->b_data
))
998 inode
= ext4_iget(sb
, ino
);
1003 * If the orphans has i_nlinks > 0 then it should be able to be
1004 * truncated, otherwise it won't be removed from the orphan list
1005 * during processing and an infinite loop will result.
1007 if (inode
->i_nlink
&& !ext4_can_truncate(inode
))
1010 if (NEXT_ORPHAN(inode
) > max_ino
)
1016 err
= PTR_ERR(inode
);
1019 ext4_warning(sb
, "bad orphan inode %lu! e2fsck was run?", ino
);
1020 printk(KERN_NOTICE
"ext4_test_bit(bit=%d, block=%llu) = %d\n",
1021 bit
, (unsigned long long)bitmap_bh
->b_blocknr
,
1022 ext4_test_bit(bit
, bitmap_bh
->b_data
));
1023 printk(KERN_NOTICE
"inode=%p\n", inode
);
1025 printk(KERN_NOTICE
"is_bad_inode(inode)=%d\n",
1026 is_bad_inode(inode
));
1027 printk(KERN_NOTICE
"NEXT_ORPHAN(inode)=%u\n",
1028 NEXT_ORPHAN(inode
));
1029 printk(KERN_NOTICE
"max_ino=%lu\n", max_ino
);
1030 printk(KERN_NOTICE
"i_nlink=%u\n", inode
->i_nlink
);
1031 /* Avoid freeing blocks if we got a bad deleted inode */
1032 if (inode
->i_nlink
== 0)
1033 inode
->i_blocks
= 0;
1038 return ERR_PTR(err
);
1041 unsigned long ext4_count_free_inodes(struct super_block
*sb
)
1043 unsigned long desc_count
;
1044 struct ext4_group_desc
*gdp
;
1045 ext4_group_t i
, ngroups
= ext4_get_groups_count(sb
);
1047 struct ext4_super_block
*es
;
1048 unsigned long bitmap_count
, x
;
1049 struct buffer_head
*bitmap_bh
= NULL
;
1051 es
= EXT4_SB(sb
)->s_es
;
1055 for (i
= 0; i
< ngroups
; i
++) {
1056 gdp
= ext4_get_group_desc(sb
, i
, NULL
);
1059 desc_count
+= ext4_free_inodes_count(sb
, gdp
);
1061 bitmap_bh
= ext4_read_inode_bitmap(sb
, i
);
1065 x
= ext4_count_free(bitmap_bh
->b_data
,
1066 EXT4_INODES_PER_GROUP(sb
) / 8);
1067 printk(KERN_DEBUG
"group %lu: stored = %d, counted = %lu\n",
1068 (unsigned long) i
, ext4_free_inodes_count(sb
, gdp
), x
);
1072 printk(KERN_DEBUG
"ext4_count_free_inodes: "
1073 "stored = %u, computed = %lu, %lu\n",
1074 le32_to_cpu(es
->s_free_inodes_count
), desc_count
, bitmap_count
);
1078 for (i
= 0; i
< ngroups
; i
++) {
1079 gdp
= ext4_get_group_desc(sb
, i
, NULL
);
1082 desc_count
+= ext4_free_inodes_count(sb
, gdp
);
1089 /* Called at mount-time, super-block is locked */
1090 unsigned long ext4_count_dirs(struct super_block
* sb
)
1092 unsigned long count
= 0;
1093 ext4_group_t i
, ngroups
= ext4_get_groups_count(sb
);
1095 for (i
= 0; i
< ngroups
; i
++) {
1096 struct ext4_group_desc
*gdp
= ext4_get_group_desc(sb
, i
, NULL
);
1099 count
+= ext4_used_dirs_count(sb
, gdp
);
1105 * Zeroes not yet zeroed inode table - just write zeroes through the whole
1106 * inode table. Must be called without any spinlock held. The only place
1107 * where it is called from on active part of filesystem is ext4lazyinit
1108 * thread, so we do not need any special locks, however we have to prevent
1109 * inode allocation from the current group, so we take alloc_sem lock, to
1110 * block ext4_new_inode() until we are finished.
1112 int ext4_init_inode_table(struct super_block
*sb
, ext4_group_t group
,
1115 struct ext4_group_info
*grp
= ext4_get_group_info(sb
, group
);
1116 struct ext4_sb_info
*sbi
= EXT4_SB(sb
);
1117 struct ext4_group_desc
*gdp
= NULL
;
1118 struct buffer_head
*group_desc_bh
;
1121 int num
, ret
= 0, used_blks
= 0;
1123 /* This should not happen, but just to be sure check this */
1124 if (sb
->s_flags
& MS_RDONLY
) {
1129 gdp
= ext4_get_group_desc(sb
, group
, &group_desc_bh
);
1134 * We do not need to lock this, because we are the only one
1135 * handling this flag.
1137 if (gdp
->bg_flags
& cpu_to_le16(EXT4_BG_INODE_ZEROED
))
1140 handle
= ext4_journal_start_sb(sb
, 1);
1141 if (IS_ERR(handle
)) {
1142 ret
= PTR_ERR(handle
);
1146 down_write(&grp
->alloc_sem
);
1148 * If inode bitmap was already initialized there may be some
1149 * used inodes so we need to skip blocks with used inodes in
1152 if (!(gdp
->bg_flags
& cpu_to_le16(EXT4_BG_INODE_UNINIT
)))
1153 used_blks
= DIV_ROUND_UP((EXT4_INODES_PER_GROUP(sb
) -
1154 ext4_itable_unused_count(sb
, gdp
)),
1155 sbi
->s_inodes_per_block
);
1157 if ((used_blks
< 0) || (used_blks
> sbi
->s_itb_per_group
)) {
1158 ext4_error(sb
, "Something is wrong with group %u: "
1159 "used itable blocks: %d; "
1160 "itable unused count: %u",
1162 ext4_itable_unused_count(sb
, gdp
));
1167 blk
= ext4_inode_table(sb
, gdp
) + used_blks
;
1168 num
= sbi
->s_itb_per_group
- used_blks
;
1170 BUFFER_TRACE(group_desc_bh
, "get_write_access");
1171 ret
= ext4_journal_get_write_access(handle
,
1177 * Skip zeroout if the inode table is full. But we set the ZEROED
1178 * flag anyway, because obviously, when it is full it does not need
1181 if (unlikely(num
== 0))
1184 ext4_debug("going to zero out inode table in group %d\n",
1186 ret
= sb_issue_zeroout(sb
, blk
, num
, GFP_NOFS
);
1190 blkdev_issue_flush(sb
->s_bdev
, GFP_NOFS
, NULL
);
1193 ext4_lock_group(sb
, group
);
1194 gdp
->bg_flags
|= cpu_to_le16(EXT4_BG_INODE_ZEROED
);
1195 ext4_group_desc_csum_set(sb
, group
, gdp
);
1196 ext4_unlock_group(sb
, group
);
1198 BUFFER_TRACE(group_desc_bh
,
1199 "call ext4_handle_dirty_metadata");
1200 ret
= ext4_handle_dirty_metadata(handle
, NULL
,
1204 up_write(&grp
->alloc_sem
);
1205 ext4_journal_stop(handle
);