2 * linux/fs/ext4/inode.c
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
11 * linux/fs/minix/inode.c
13 * Copyright (C) 1991, 1992 Linus Torvalds
15 * 64-bit file support on 64-bit platforms by Jakub Jelinek
16 * (jj@sunsite.ms.mff.cuni.cz)
18 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
22 #include <linux/time.h>
23 #include <linux/jbd2.h>
24 #include <linux/highuid.h>
25 #include <linux/pagemap.h>
26 #include <linux/quotaops.h>
27 #include <linux/string.h>
28 #include <linux/buffer_head.h>
29 #include <linux/writeback.h>
30 #include <linux/pagevec.h>
31 #include <linux/mpage.h>
32 #include <linux/namei.h>
33 #include <linux/uio.h>
34 #include <linux/bio.h>
35 #include <linux/workqueue.h>
36 #include <linux/kernel.h>
37 #include <linux/printk.h>
38 #include <linux/slab.h>
39 #include <linux/ratelimit.h>
41 #include "ext4_jbd2.h"
46 #include <trace/events/ext4.h>
48 #define MPAGE_DA_EXTENT_TAIL 0x01
50 static __u32
ext4_inode_csum(struct inode
*inode
, struct ext4_inode
*raw
,
51 struct ext4_inode_info
*ei
)
53 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
58 csum_lo
= raw
->i_checksum_lo
;
59 raw
->i_checksum_lo
= 0;
60 if (EXT4_INODE_SIZE(inode
->i_sb
) > EXT4_GOOD_OLD_INODE_SIZE
&&
61 EXT4_FITS_IN_INODE(raw
, ei
, i_checksum_hi
)) {
62 csum_hi
= raw
->i_checksum_hi
;
63 raw
->i_checksum_hi
= 0;
66 csum
= ext4_chksum(sbi
, ei
->i_csum_seed
, (__u8
*)raw
,
67 EXT4_INODE_SIZE(inode
->i_sb
));
69 raw
->i_checksum_lo
= csum_lo
;
70 if (EXT4_INODE_SIZE(inode
->i_sb
) > EXT4_GOOD_OLD_INODE_SIZE
&&
71 EXT4_FITS_IN_INODE(raw
, ei
, i_checksum_hi
))
72 raw
->i_checksum_hi
= csum_hi
;
77 static int ext4_inode_csum_verify(struct inode
*inode
, struct ext4_inode
*raw
,
78 struct ext4_inode_info
*ei
)
80 __u32 provided
, calculated
;
82 if (EXT4_SB(inode
->i_sb
)->s_es
->s_creator_os
!=
83 cpu_to_le32(EXT4_OS_LINUX
) ||
84 !EXT4_HAS_RO_COMPAT_FEATURE(inode
->i_sb
,
85 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM
))
88 provided
= le16_to_cpu(raw
->i_checksum_lo
);
89 calculated
= ext4_inode_csum(inode
, raw
, ei
);
90 if (EXT4_INODE_SIZE(inode
->i_sb
) > EXT4_GOOD_OLD_INODE_SIZE
&&
91 EXT4_FITS_IN_INODE(raw
, ei
, i_checksum_hi
))
92 provided
|= ((__u32
)le16_to_cpu(raw
->i_checksum_hi
)) << 16;
96 return provided
== calculated
;
99 static void ext4_inode_csum_set(struct inode
*inode
, struct ext4_inode
*raw
,
100 struct ext4_inode_info
*ei
)
104 if (EXT4_SB(inode
->i_sb
)->s_es
->s_creator_os
!=
105 cpu_to_le32(EXT4_OS_LINUX
) ||
106 !EXT4_HAS_RO_COMPAT_FEATURE(inode
->i_sb
,
107 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM
))
110 csum
= ext4_inode_csum(inode
, raw
, ei
);
111 raw
->i_checksum_lo
= cpu_to_le16(csum
& 0xFFFF);
112 if (EXT4_INODE_SIZE(inode
->i_sb
) > EXT4_GOOD_OLD_INODE_SIZE
&&
113 EXT4_FITS_IN_INODE(raw
, ei
, i_checksum_hi
))
114 raw
->i_checksum_hi
= cpu_to_le16(csum
>> 16);
117 static inline int ext4_begin_ordered_truncate(struct inode
*inode
,
120 trace_ext4_begin_ordered_truncate(inode
, new_size
);
122 * If jinode is zero, then we never opened the file for
123 * writing, so there's no need to call
124 * jbd2_journal_begin_ordered_truncate() since there's no
125 * outstanding writes we need to flush.
127 if (!EXT4_I(inode
)->jinode
)
129 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode
),
130 EXT4_I(inode
)->jinode
,
134 static void ext4_invalidatepage(struct page
*page
, unsigned long offset
);
135 static int noalloc_get_block_write(struct inode
*inode
, sector_t iblock
,
136 struct buffer_head
*bh_result
, int create
);
137 static int ext4_set_bh_endio(struct buffer_head
*bh
, struct inode
*inode
);
138 static void ext4_end_io_buffer_write(struct buffer_head
*bh
, int uptodate
);
139 static int __ext4_journalled_writepage(struct page
*page
, unsigned int len
);
140 static int ext4_bh_delay_or_unwritten(handle_t
*handle
, struct buffer_head
*bh
);
141 static int ext4_discard_partial_page_buffers_no_lock(handle_t
*handle
,
142 struct inode
*inode
, struct page
*page
, loff_t from
,
143 loff_t length
, int flags
);
146 * Test whether an inode is a fast symlink.
148 static int ext4_inode_is_fast_symlink(struct inode
*inode
)
150 int ea_blocks
= EXT4_I(inode
)->i_file_acl
?
151 (inode
->i_sb
->s_blocksize
>> 9) : 0;
153 return (S_ISLNK(inode
->i_mode
) && inode
->i_blocks
- ea_blocks
== 0);
157 * Restart the transaction associated with *handle. This does a commit,
158 * so before we call here everything must be consistently dirtied against
161 int ext4_truncate_restart_trans(handle_t
*handle
, struct inode
*inode
,
167 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this
168 * moment, get_block can be called only for blocks inside i_size since
169 * page cache has been already dropped and writes are blocked by
170 * i_mutex. So we can safely drop the i_data_sem here.
172 BUG_ON(EXT4_JOURNAL(inode
) == NULL
);
173 jbd_debug(2, "restarting handle %p\n", handle
);
174 up_write(&EXT4_I(inode
)->i_data_sem
);
175 ret
= ext4_journal_restart(handle
, nblocks
);
176 down_write(&EXT4_I(inode
)->i_data_sem
);
177 ext4_discard_preallocations(inode
);
183 * Called at the last iput() if i_nlink is zero.
185 void ext4_evict_inode(struct inode
*inode
)
190 trace_ext4_evict_inode(inode
);
192 ext4_ioend_wait(inode
);
194 if (inode
->i_nlink
) {
196 * When journalling data dirty buffers are tracked only in the
197 * journal. So although mm thinks everything is clean and
198 * ready for reaping the inode might still have some pages to
199 * write in the running transaction or waiting to be
200 * checkpointed. Thus calling jbd2_journal_invalidatepage()
201 * (via truncate_inode_pages()) to discard these buffers can
202 * cause data loss. Also even if we did not discard these
203 * buffers, we would have no way to find them after the inode
204 * is reaped and thus user could see stale data if he tries to
205 * read them before the transaction is checkpointed. So be
206 * careful and force everything to disk here... We use
207 * ei->i_datasync_tid to store the newest transaction
208 * containing inode's data.
210 * Note that directories do not have this problem because they
211 * don't use page cache.
213 if (ext4_should_journal_data(inode
) &&
214 (S_ISLNK(inode
->i_mode
) || S_ISREG(inode
->i_mode
))) {
215 journal_t
*journal
= EXT4_SB(inode
->i_sb
)->s_journal
;
216 tid_t commit_tid
= EXT4_I(inode
)->i_datasync_tid
;
218 jbd2_log_start_commit(journal
, commit_tid
);
219 jbd2_log_wait_commit(journal
, commit_tid
);
220 filemap_write_and_wait(&inode
->i_data
);
222 truncate_inode_pages(&inode
->i_data
, 0);
226 if (!is_bad_inode(inode
))
227 dquot_initialize(inode
);
229 if (ext4_should_order_data(inode
))
230 ext4_begin_ordered_truncate(inode
, 0);
231 truncate_inode_pages(&inode
->i_data
, 0);
233 if (is_bad_inode(inode
))
237 * Protect us against freezing - iput() caller didn't have to have any
238 * protection against it
240 sb_start_intwrite(inode
->i_sb
);
241 handle
= ext4_journal_start(inode
, ext4_blocks_for_truncate(inode
)+3);
242 if (IS_ERR(handle
)) {
243 ext4_std_error(inode
->i_sb
, PTR_ERR(handle
));
245 * If we're going to skip the normal cleanup, we still need to
246 * make sure that the in-core orphan linked list is properly
249 ext4_orphan_del(NULL
, inode
);
250 sb_end_intwrite(inode
->i_sb
);
255 ext4_handle_sync(handle
);
257 err
= ext4_mark_inode_dirty(handle
, inode
);
259 ext4_warning(inode
->i_sb
,
260 "couldn't mark inode dirty (err %d)", err
);
264 ext4_truncate(inode
);
267 * ext4_ext_truncate() doesn't reserve any slop when it
268 * restarts journal transactions; therefore there may not be
269 * enough credits left in the handle to remove the inode from
270 * the orphan list and set the dtime field.
272 if (!ext4_handle_has_enough_credits(handle
, 3)) {
273 err
= ext4_journal_extend(handle
, 3);
275 err
= ext4_journal_restart(handle
, 3);
277 ext4_warning(inode
->i_sb
,
278 "couldn't extend journal (err %d)", err
);
280 ext4_journal_stop(handle
);
281 ext4_orphan_del(NULL
, inode
);
282 sb_end_intwrite(inode
->i_sb
);
288 * Kill off the orphan record which ext4_truncate created.
289 * AKPM: I think this can be inside the above `if'.
290 * Note that ext4_orphan_del() has to be able to cope with the
291 * deletion of a non-existent orphan - this is because we don't
292 * know if ext4_truncate() actually created an orphan record.
293 * (Well, we could do this if we need to, but heck - it works)
295 ext4_orphan_del(handle
, inode
);
296 EXT4_I(inode
)->i_dtime
= get_seconds();
299 * One subtle ordering requirement: if anything has gone wrong
300 * (transaction abort, IO errors, whatever), then we can still
301 * do these next steps (the fs will already have been marked as
302 * having errors), but we can't free the inode if the mark_dirty
305 if (ext4_mark_inode_dirty(handle
, inode
))
306 /* If that failed, just do the required in-core inode clear. */
307 ext4_clear_inode(inode
);
309 ext4_free_inode(handle
, inode
);
310 ext4_journal_stop(handle
);
311 sb_end_intwrite(inode
->i_sb
);
314 ext4_clear_inode(inode
); /* We must guarantee clearing of inode... */
318 qsize_t
*ext4_get_reserved_space(struct inode
*inode
)
320 return &EXT4_I(inode
)->i_reserved_quota
;
325 * Calculate the number of metadata blocks need to reserve
326 * to allocate a block located at @lblock
328 static int ext4_calc_metadata_amount(struct inode
*inode
, ext4_lblk_t lblock
)
330 if (ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
))
331 return ext4_ext_calc_metadata_amount(inode
, lblock
);
333 return ext4_ind_calc_metadata_amount(inode
, lblock
);
337 * Called with i_data_sem down, which is important since we can call
338 * ext4_discard_preallocations() from here.
340 void ext4_da_update_reserve_space(struct inode
*inode
,
341 int used
, int quota_claim
)
343 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
344 struct ext4_inode_info
*ei
= EXT4_I(inode
);
346 spin_lock(&ei
->i_block_reservation_lock
);
347 trace_ext4_da_update_reserve_space(inode
, used
, quota_claim
);
348 if (unlikely(used
> ei
->i_reserved_data_blocks
)) {
349 ext4_msg(inode
->i_sb
, KERN_NOTICE
, "%s: ino %lu, used %d "
350 "with only %d reserved data blocks",
351 __func__
, inode
->i_ino
, used
,
352 ei
->i_reserved_data_blocks
);
354 used
= ei
->i_reserved_data_blocks
;
357 if (unlikely(ei
->i_allocated_meta_blocks
> ei
->i_reserved_meta_blocks
)) {
358 ext4_msg(inode
->i_sb
, KERN_NOTICE
, "%s: ino %lu, allocated %d "
359 "with only %d reserved metadata blocks\n", __func__
,
360 inode
->i_ino
, ei
->i_allocated_meta_blocks
,
361 ei
->i_reserved_meta_blocks
);
363 ei
->i_allocated_meta_blocks
= ei
->i_reserved_meta_blocks
;
366 /* Update per-inode reservations */
367 ei
->i_reserved_data_blocks
-= used
;
368 ei
->i_reserved_meta_blocks
-= ei
->i_allocated_meta_blocks
;
369 percpu_counter_sub(&sbi
->s_dirtyclusters_counter
,
370 used
+ ei
->i_allocated_meta_blocks
);
371 ei
->i_allocated_meta_blocks
= 0;
373 if (ei
->i_reserved_data_blocks
== 0) {
375 * We can release all of the reserved metadata blocks
376 * only when we have written all of the delayed
379 percpu_counter_sub(&sbi
->s_dirtyclusters_counter
,
380 ei
->i_reserved_meta_blocks
);
381 ei
->i_reserved_meta_blocks
= 0;
382 ei
->i_da_metadata_calc_len
= 0;
384 spin_unlock(&EXT4_I(inode
)->i_block_reservation_lock
);
386 /* Update quota subsystem for data blocks */
388 dquot_claim_block(inode
, EXT4_C2B(sbi
, used
));
391 * We did fallocate with an offset that is already delayed
392 * allocated. So on delayed allocated writeback we should
393 * not re-claim the quota for fallocated blocks.
395 dquot_release_reservation_block(inode
, EXT4_C2B(sbi
, used
));
399 * If we have done all the pending block allocations and if
400 * there aren't any writers on the inode, we can discard the
401 * inode's preallocations.
403 if ((ei
->i_reserved_data_blocks
== 0) &&
404 (atomic_read(&inode
->i_writecount
) == 0))
405 ext4_discard_preallocations(inode
);
408 static int __check_block_validity(struct inode
*inode
, const char *func
,
410 struct ext4_map_blocks
*map
)
412 if (!ext4_data_block_valid(EXT4_SB(inode
->i_sb
), map
->m_pblk
,
414 ext4_error_inode(inode
, func
, line
, map
->m_pblk
,
415 "lblock %lu mapped to illegal pblock "
416 "(length %d)", (unsigned long) map
->m_lblk
,
423 #define check_block_validity(inode, map) \
424 __check_block_validity((inode), __func__, __LINE__, (map))
427 * Return the number of contiguous dirty pages in a given inode
428 * starting at page frame idx.
430 static pgoff_t
ext4_num_dirty_pages(struct inode
*inode
, pgoff_t idx
,
431 unsigned int max_pages
)
433 struct address_space
*mapping
= inode
->i_mapping
;
437 int i
, nr_pages
, done
= 0;
441 pagevec_init(&pvec
, 0);
444 nr_pages
= pagevec_lookup_tag(&pvec
, mapping
, &index
,
446 (pgoff_t
)PAGEVEC_SIZE
);
449 for (i
= 0; i
< nr_pages
; i
++) {
450 struct page
*page
= pvec
.pages
[i
];
451 struct buffer_head
*bh
, *head
;
454 if (unlikely(page
->mapping
!= mapping
) ||
456 PageWriteback(page
) ||
457 page
->index
!= idx
) {
462 if (page_has_buffers(page
)) {
463 bh
= head
= page_buffers(page
);
465 if (!buffer_delay(bh
) &&
466 !buffer_unwritten(bh
))
468 bh
= bh
->b_this_page
;
469 } while (!done
&& (bh
!= head
));
476 if (num
>= max_pages
) {
481 pagevec_release(&pvec
);
487 * The ext4_map_blocks() function tries to look up the requested blocks,
488 * and returns if the blocks are already mapped.
490 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
491 * and store the allocated blocks in the result buffer head and mark it
494 * If file type is extents based, it will call ext4_ext_map_blocks(),
495 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
498 * On success, it returns the number of blocks being mapped or allocate.
499 * if create==0 and the blocks are pre-allocated and uninitialized block,
500 * the result buffer head is unmapped. If the create ==1, it will make sure
501 * the buffer head is mapped.
503 * It returns 0 if plain look up failed (blocks have not been allocated), in
504 * that case, buffer head is unmapped
506 * It returns the error in case of allocation failure.
508 int ext4_map_blocks(handle_t
*handle
, struct inode
*inode
,
509 struct ext4_map_blocks
*map
, int flags
)
514 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
515 "logical block %lu\n", inode
->i_ino
, flags
, map
->m_len
,
516 (unsigned long) map
->m_lblk
);
518 * Try to see if we can get the block without requesting a new
521 if (!(flags
& EXT4_GET_BLOCKS_NO_LOCK
))
522 down_read((&EXT4_I(inode
)->i_data_sem
));
523 if (ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
)) {
524 retval
= ext4_ext_map_blocks(handle
, inode
, map
, flags
&
525 EXT4_GET_BLOCKS_KEEP_SIZE
);
527 retval
= ext4_ind_map_blocks(handle
, inode
, map
, flags
&
528 EXT4_GET_BLOCKS_KEEP_SIZE
);
530 if (!(flags
& EXT4_GET_BLOCKS_NO_LOCK
))
531 up_read((&EXT4_I(inode
)->i_data_sem
));
533 if (retval
> 0 && map
->m_flags
& EXT4_MAP_MAPPED
) {
535 if (flags
& EXT4_GET_BLOCKS_DELALLOC_RESERVE
) {
536 /* delayed alloc may be allocated by fallocate and
537 * coverted to initialized by directIO.
538 * we need to handle delayed extent here.
540 down_write((&EXT4_I(inode
)->i_data_sem
));
543 ret
= check_block_validity(inode
, map
);
548 /* If it is only a block(s) look up */
549 if ((flags
& EXT4_GET_BLOCKS_CREATE
) == 0)
553 * Returns if the blocks have already allocated
555 * Note that if blocks have been preallocated
556 * ext4_ext_get_block() returns the create = 0
557 * with buffer head unmapped.
559 if (retval
> 0 && map
->m_flags
& EXT4_MAP_MAPPED
)
563 * When we call get_blocks without the create flag, the
564 * BH_Unwritten flag could have gotten set if the blocks
565 * requested were part of a uninitialized extent. We need to
566 * clear this flag now that we are committed to convert all or
567 * part of the uninitialized extent to be an initialized
568 * extent. This is because we need to avoid the combination
569 * of BH_Unwritten and BH_Mapped flags being simultaneously
570 * set on the buffer_head.
572 map
->m_flags
&= ~EXT4_MAP_UNWRITTEN
;
575 * New blocks allocate and/or writing to uninitialized extent
576 * will possibly result in updating i_data, so we take
577 * the write lock of i_data_sem, and call get_blocks()
578 * with create == 1 flag.
580 down_write((&EXT4_I(inode
)->i_data_sem
));
583 * if the caller is from delayed allocation writeout path
584 * we have already reserved fs blocks for allocation
585 * let the underlying get_block() function know to
586 * avoid double accounting
588 if (flags
& EXT4_GET_BLOCKS_DELALLOC_RESERVE
)
589 ext4_set_inode_state(inode
, EXT4_STATE_DELALLOC_RESERVED
);
591 * We need to check for EXT4 here because migrate
592 * could have changed the inode type in between
594 if (ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
)) {
595 retval
= ext4_ext_map_blocks(handle
, inode
, map
, flags
);
597 retval
= ext4_ind_map_blocks(handle
, inode
, map
, flags
);
599 if (retval
> 0 && map
->m_flags
& EXT4_MAP_NEW
) {
601 * We allocated new blocks which will result in
602 * i_data's format changing. Force the migrate
603 * to fail by clearing migrate flags
605 ext4_clear_inode_state(inode
, EXT4_STATE_EXT_MIGRATE
);
609 * Update reserved blocks/metadata blocks after successful
610 * block allocation which had been deferred till now. We don't
611 * support fallocate for non extent files. So we can update
612 * reserve space here.
615 (flags
& EXT4_GET_BLOCKS_DELALLOC_RESERVE
))
616 ext4_da_update_reserve_space(inode
, retval
, 1);
618 if (flags
& EXT4_GET_BLOCKS_DELALLOC_RESERVE
) {
619 ext4_clear_inode_state(inode
, EXT4_STATE_DELALLOC_RESERVED
);
621 if (retval
> 0 && map
->m_flags
& EXT4_MAP_MAPPED
) {
624 /* delayed allocation blocks has been allocated */
625 ret
= ext4_es_remove_extent(inode
, map
->m_lblk
,
632 up_write((&EXT4_I(inode
)->i_data_sem
));
633 if (retval
> 0 && map
->m_flags
& EXT4_MAP_MAPPED
) {
634 int ret
= check_block_validity(inode
, map
);
641 /* Maximum number of blocks we map for direct IO at once. */
642 #define DIO_MAX_BLOCKS 4096
644 static int _ext4_get_block(struct inode
*inode
, sector_t iblock
,
645 struct buffer_head
*bh
, int flags
)
647 handle_t
*handle
= ext4_journal_current_handle();
648 struct ext4_map_blocks map
;
649 int ret
= 0, started
= 0;
652 if (ext4_has_inline_data(inode
))
656 map
.m_len
= bh
->b_size
>> inode
->i_blkbits
;
658 if (flags
&& !(flags
& EXT4_GET_BLOCKS_NO_LOCK
) && !handle
) {
659 /* Direct IO write... */
660 if (map
.m_len
> DIO_MAX_BLOCKS
)
661 map
.m_len
= DIO_MAX_BLOCKS
;
662 dio_credits
= ext4_chunk_trans_blocks(inode
, map
.m_len
);
663 handle
= ext4_journal_start(inode
, dio_credits
);
664 if (IS_ERR(handle
)) {
665 ret
= PTR_ERR(handle
);
671 ret
= ext4_map_blocks(handle
, inode
, &map
, flags
);
673 map_bh(bh
, inode
->i_sb
, map
.m_pblk
);
674 bh
->b_state
= (bh
->b_state
& ~EXT4_MAP_FLAGS
) | map
.m_flags
;
675 bh
->b_size
= inode
->i_sb
->s_blocksize
* map
.m_len
;
679 ext4_journal_stop(handle
);
683 int ext4_get_block(struct inode
*inode
, sector_t iblock
,
684 struct buffer_head
*bh
, int create
)
686 return _ext4_get_block(inode
, iblock
, bh
,
687 create
? EXT4_GET_BLOCKS_CREATE
: 0);
691 * `handle' can be NULL if create is zero
693 struct buffer_head
*ext4_getblk(handle_t
*handle
, struct inode
*inode
,
694 ext4_lblk_t block
, int create
, int *errp
)
696 struct ext4_map_blocks map
;
697 struct buffer_head
*bh
;
700 J_ASSERT(handle
!= NULL
|| create
== 0);
704 err
= ext4_map_blocks(handle
, inode
, &map
,
705 create
? EXT4_GET_BLOCKS_CREATE
: 0);
707 /* ensure we send some value back into *errp */
715 bh
= sb_getblk(inode
->i_sb
, map
.m_pblk
);
720 if (map
.m_flags
& EXT4_MAP_NEW
) {
721 J_ASSERT(create
!= 0);
722 J_ASSERT(handle
!= NULL
);
725 * Now that we do not always journal data, we should
726 * keep in mind whether this should always journal the
727 * new buffer as metadata. For now, regular file
728 * writes use ext4_get_block instead, so it's not a
732 BUFFER_TRACE(bh
, "call get_create_access");
733 fatal
= ext4_journal_get_create_access(handle
, bh
);
734 if (!fatal
&& !buffer_uptodate(bh
)) {
735 memset(bh
->b_data
, 0, inode
->i_sb
->s_blocksize
);
736 set_buffer_uptodate(bh
);
739 BUFFER_TRACE(bh
, "call ext4_handle_dirty_metadata");
740 err
= ext4_handle_dirty_metadata(handle
, inode
, bh
);
744 BUFFER_TRACE(bh
, "not a new buffer");
754 struct buffer_head
*ext4_bread(handle_t
*handle
, struct inode
*inode
,
755 ext4_lblk_t block
, int create
, int *err
)
757 struct buffer_head
*bh
;
759 bh
= ext4_getblk(handle
, inode
, block
, create
, err
);
762 if (buffer_uptodate(bh
))
764 ll_rw_block(READ
| REQ_META
| REQ_PRIO
, 1, &bh
);
766 if (buffer_uptodate(bh
))
773 int ext4_walk_page_buffers(handle_t
*handle
,
774 struct buffer_head
*head
,
778 int (*fn
)(handle_t
*handle
,
779 struct buffer_head
*bh
))
781 struct buffer_head
*bh
;
782 unsigned block_start
, block_end
;
783 unsigned blocksize
= head
->b_size
;
785 struct buffer_head
*next
;
787 for (bh
= head
, block_start
= 0;
788 ret
== 0 && (bh
!= head
|| !block_start
);
789 block_start
= block_end
, bh
= next
) {
790 next
= bh
->b_this_page
;
791 block_end
= block_start
+ blocksize
;
792 if (block_end
<= from
|| block_start
>= to
) {
793 if (partial
&& !buffer_uptodate(bh
))
797 err
= (*fn
)(handle
, bh
);
805 * To preserve ordering, it is essential that the hole instantiation and
806 * the data write be encapsulated in a single transaction. We cannot
807 * close off a transaction and start a new one between the ext4_get_block()
808 * and the commit_write(). So doing the jbd2_journal_start at the start of
809 * prepare_write() is the right place.
811 * Also, this function can nest inside ext4_writepage() ->
812 * block_write_full_page(). In that case, we *know* that ext4_writepage()
813 * has generated enough buffer credits to do the whole page. So we won't
814 * block on the journal in that case, which is good, because the caller may
817 * By accident, ext4 can be reentered when a transaction is open via
818 * quota file writes. If we were to commit the transaction while thus
819 * reentered, there can be a deadlock - we would be holding a quota
820 * lock, and the commit would never complete if another thread had a
821 * transaction open and was blocking on the quota lock - a ranking
824 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
825 * will _not_ run commit under these circumstances because handle->h_ref
826 * is elevated. We'll still have enough credits for the tiny quotafile
829 int do_journal_get_write_access(handle_t
*handle
,
830 struct buffer_head
*bh
)
832 int dirty
= buffer_dirty(bh
);
835 if (!buffer_mapped(bh
) || buffer_freed(bh
))
838 * __block_write_begin() could have dirtied some buffers. Clean
839 * the dirty bit as jbd2_journal_get_write_access() could complain
840 * otherwise about fs integrity issues. Setting of the dirty bit
841 * by __block_write_begin() isn't a real problem here as we clear
842 * the bit before releasing a page lock and thus writeback cannot
843 * ever write the buffer.
846 clear_buffer_dirty(bh
);
847 ret
= ext4_journal_get_write_access(handle
, bh
);
849 ret
= ext4_handle_dirty_metadata(handle
, NULL
, bh
);
853 static int ext4_get_block_write_nolock(struct inode
*inode
, sector_t iblock
,
854 struct buffer_head
*bh_result
, int create
);
855 static int ext4_write_begin(struct file
*file
, struct address_space
*mapping
,
856 loff_t pos
, unsigned len
, unsigned flags
,
857 struct page
**pagep
, void **fsdata
)
859 struct inode
*inode
= mapping
->host
;
860 int ret
, needed_blocks
;
867 trace_ext4_write_begin(inode
, pos
, len
, flags
);
869 * Reserve one block more for addition to orphan list in case
870 * we allocate blocks but write fails for some reason
872 needed_blocks
= ext4_writepage_trans_blocks(inode
) + 1;
873 index
= pos
>> PAGE_CACHE_SHIFT
;
874 from
= pos
& (PAGE_CACHE_SIZE
- 1);
877 if (ext4_test_inode_state(inode
, EXT4_STATE_MAY_INLINE_DATA
)) {
878 ret
= ext4_try_to_write_inline_data(mapping
, inode
, pos
, len
,
889 handle
= ext4_journal_start(inode
, needed_blocks
);
890 if (IS_ERR(handle
)) {
891 ret
= PTR_ERR(handle
);
895 /* We cannot recurse into the filesystem as the transaction is already
897 flags
|= AOP_FLAG_NOFS
;
899 page
= grab_cache_page_write_begin(mapping
, index
, flags
);
901 ext4_journal_stop(handle
);
908 if (ext4_should_dioread_nolock(inode
))
909 ret
= __block_write_begin(page
, pos
, len
, ext4_get_block_write
);
911 ret
= __block_write_begin(page
, pos
, len
, ext4_get_block
);
913 if (!ret
&& ext4_should_journal_data(inode
)) {
914 ret
= ext4_walk_page_buffers(handle
, page_buffers(page
),
916 do_journal_get_write_access
);
921 page_cache_release(page
);
923 * __block_write_begin may have instantiated a few blocks
924 * outside i_size. Trim these off again. Don't need
925 * i_size_read because we hold i_mutex.
927 * Add inode to orphan list in case we crash before
930 if (pos
+ len
> inode
->i_size
&& ext4_can_truncate(inode
))
931 ext4_orphan_add(handle
, inode
);
933 ext4_journal_stop(handle
);
934 if (pos
+ len
> inode
->i_size
) {
935 ext4_truncate_failed_write(inode
);
937 * If truncate failed early the inode might
938 * still be on the orphan list; we need to
939 * make sure the inode is removed from the
940 * orphan list in that case.
943 ext4_orphan_del(NULL
, inode
);
947 if (ret
== -ENOSPC
&& ext4_should_retry_alloc(inode
->i_sb
, &retries
))
953 /* For write_end() in data=journal mode */
954 static int write_end_fn(handle_t
*handle
, struct buffer_head
*bh
)
956 if (!buffer_mapped(bh
) || buffer_freed(bh
))
958 set_buffer_uptodate(bh
);
959 return ext4_handle_dirty_metadata(handle
, NULL
, bh
);
962 static int ext4_generic_write_end(struct file
*file
,
963 struct address_space
*mapping
,
964 loff_t pos
, unsigned len
, unsigned copied
,
965 struct page
*page
, void *fsdata
)
967 int i_size_changed
= 0;
968 struct inode
*inode
= mapping
->host
;
969 handle_t
*handle
= ext4_journal_current_handle();
971 if (ext4_has_inline_data(inode
))
972 copied
= ext4_write_inline_data_end(inode
, pos
, len
,
975 copied
= block_write_end(file
, mapping
, pos
,
976 len
, copied
, page
, fsdata
);
979 * No need to use i_size_read() here, the i_size
980 * cannot change under us because we hold i_mutex.
982 * But it's important to update i_size while still holding page lock:
983 * page writeout could otherwise come in and zero beyond i_size.
985 if (pos
+ copied
> inode
->i_size
) {
986 i_size_write(inode
, pos
+ copied
);
990 if (pos
+ copied
> EXT4_I(inode
)->i_disksize
) {
991 /* We need to mark inode dirty even if
992 * new_i_size is less that inode->i_size
993 * bu greater than i_disksize.(hint delalloc)
995 ext4_update_i_disksize(inode
, (pos
+ copied
));
999 page_cache_release(page
);
1002 * Don't mark the inode dirty under page lock. First, it unnecessarily
1003 * makes the holding time of page lock longer. Second, it forces lock
1004 * ordering of page lock and transaction start for journaling
1008 ext4_mark_inode_dirty(handle
, inode
);
1014 * We need to pick up the new inode size which generic_commit_write gave us
1015 * `file' can be NULL - eg, when called from page_symlink().
1017 * ext4 never places buffers on inode->i_mapping->private_list. metadata
1018 * buffers are managed internally.
1020 static int ext4_ordered_write_end(struct file
*file
,
1021 struct address_space
*mapping
,
1022 loff_t pos
, unsigned len
, unsigned copied
,
1023 struct page
*page
, void *fsdata
)
1025 handle_t
*handle
= ext4_journal_current_handle();
1026 struct inode
*inode
= mapping
->host
;
1029 trace_ext4_ordered_write_end(inode
, pos
, len
, copied
);
1030 ret
= ext4_jbd2_file_inode(handle
, inode
);
1033 ret2
= ext4_generic_write_end(file
, mapping
, pos
, len
, copied
,
1036 if (pos
+ len
> inode
->i_size
&& ext4_can_truncate(inode
))
1037 /* if we have allocated more blocks and copied
1038 * less. We will have blocks allocated outside
1039 * inode->i_size. So truncate them
1041 ext4_orphan_add(handle
, inode
);
1046 page_cache_release(page
);
1049 ret2
= ext4_journal_stop(handle
);
1053 if (pos
+ len
> inode
->i_size
) {
1054 ext4_truncate_failed_write(inode
);
1056 * If truncate failed early the inode might still be
1057 * on the orphan list; we need to make sure the inode
1058 * is removed from the orphan list in that case.
1061 ext4_orphan_del(NULL
, inode
);
1065 return ret
? ret
: copied
;
1068 static int ext4_writeback_write_end(struct file
*file
,
1069 struct address_space
*mapping
,
1070 loff_t pos
, unsigned len
, unsigned copied
,
1071 struct page
*page
, void *fsdata
)
1073 handle_t
*handle
= ext4_journal_current_handle();
1074 struct inode
*inode
= mapping
->host
;
1077 trace_ext4_writeback_write_end(inode
, pos
, len
, copied
);
1078 ret2
= ext4_generic_write_end(file
, mapping
, pos
, len
, copied
,
1081 if (pos
+ len
> inode
->i_size
&& ext4_can_truncate(inode
))
1082 /* if we have allocated more blocks and copied
1083 * less. We will have blocks allocated outside
1084 * inode->i_size. So truncate them
1086 ext4_orphan_add(handle
, inode
);
1091 ret2
= ext4_journal_stop(handle
);
1095 if (pos
+ len
> inode
->i_size
) {
1096 ext4_truncate_failed_write(inode
);
1098 * If truncate failed early the inode might still be
1099 * on the orphan list; we need to make sure the inode
1100 * is removed from the orphan list in that case.
1103 ext4_orphan_del(NULL
, inode
);
1106 return ret
? ret
: copied
;
1109 static int ext4_journalled_write_end(struct file
*file
,
1110 struct address_space
*mapping
,
1111 loff_t pos
, unsigned len
, unsigned copied
,
1112 struct page
*page
, void *fsdata
)
1114 handle_t
*handle
= ext4_journal_current_handle();
1115 struct inode
*inode
= mapping
->host
;
1121 trace_ext4_journalled_write_end(inode
, pos
, len
, copied
);
1122 from
= pos
& (PAGE_CACHE_SIZE
- 1);
1125 BUG_ON(!ext4_handle_valid(handle
));
1127 if (ext4_has_inline_data(inode
))
1128 copied
= ext4_write_inline_data_end(inode
, pos
, len
,
1132 if (!PageUptodate(page
))
1134 page_zero_new_buffers(page
, from
+copied
, to
);
1137 ret
= ext4_walk_page_buffers(handle
, page_buffers(page
), from
,
1138 to
, &partial
, write_end_fn
);
1140 SetPageUptodate(page
);
1142 new_i_size
= pos
+ copied
;
1143 if (new_i_size
> inode
->i_size
)
1144 i_size_write(inode
, pos
+copied
);
1145 ext4_set_inode_state(inode
, EXT4_STATE_JDATA
);
1146 EXT4_I(inode
)->i_datasync_tid
= handle
->h_transaction
->t_tid
;
1147 if (new_i_size
> EXT4_I(inode
)->i_disksize
) {
1148 ext4_update_i_disksize(inode
, new_i_size
);
1149 ret2
= ext4_mark_inode_dirty(handle
, inode
);
1155 page_cache_release(page
);
1156 if (pos
+ len
> inode
->i_size
&& ext4_can_truncate(inode
))
1157 /* if we have allocated more blocks and copied
1158 * less. We will have blocks allocated outside
1159 * inode->i_size. So truncate them
1161 ext4_orphan_add(handle
, inode
);
1163 ret2
= ext4_journal_stop(handle
);
1166 if (pos
+ len
> inode
->i_size
) {
1167 ext4_truncate_failed_write(inode
);
1169 * If truncate failed early the inode might still be
1170 * on the orphan list; we need to make sure the inode
1171 * is removed from the orphan list in that case.
1174 ext4_orphan_del(NULL
, inode
);
1177 return ret
? ret
: copied
;
1181 * Reserve a single cluster located at lblock
1183 static int ext4_da_reserve_space(struct inode
*inode
, ext4_lblk_t lblock
)
1186 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
1187 struct ext4_inode_info
*ei
= EXT4_I(inode
);
1188 unsigned int md_needed
;
1190 ext4_lblk_t save_last_lblock
;
1194 * We will charge metadata quota at writeout time; this saves
1195 * us from metadata over-estimation, though we may go over by
1196 * a small amount in the end. Here we just reserve for data.
1198 ret
= dquot_reserve_block(inode
, EXT4_C2B(sbi
, 1));
1203 * recalculate the amount of metadata blocks to reserve
1204 * in order to allocate nrblocks
1205 * worse case is one extent per block
1208 spin_lock(&ei
->i_block_reservation_lock
);
1210 * ext4_calc_metadata_amount() has side effects, which we have
1211 * to be prepared undo if we fail to claim space.
1213 save_len
= ei
->i_da_metadata_calc_len
;
1214 save_last_lblock
= ei
->i_da_metadata_calc_last_lblock
;
1215 md_needed
= EXT4_NUM_B2C(sbi
,
1216 ext4_calc_metadata_amount(inode
, lblock
));
1217 trace_ext4_da_reserve_space(inode
, md_needed
);
1220 * We do still charge estimated metadata to the sb though;
1221 * we cannot afford to run out of free blocks.
1223 if (ext4_claim_free_clusters(sbi
, md_needed
+ 1, 0)) {
1224 ei
->i_da_metadata_calc_len
= save_len
;
1225 ei
->i_da_metadata_calc_last_lblock
= save_last_lblock
;
1226 spin_unlock(&ei
->i_block_reservation_lock
);
1227 if (ext4_should_retry_alloc(inode
->i_sb
, &retries
)) {
1231 dquot_release_reservation_block(inode
, EXT4_C2B(sbi
, 1));
1234 ei
->i_reserved_data_blocks
++;
1235 ei
->i_reserved_meta_blocks
+= md_needed
;
1236 spin_unlock(&ei
->i_block_reservation_lock
);
1238 return 0; /* success */
1241 static void ext4_da_release_space(struct inode
*inode
, int to_free
)
1243 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
1244 struct ext4_inode_info
*ei
= EXT4_I(inode
);
1247 return; /* Nothing to release, exit */
1249 spin_lock(&EXT4_I(inode
)->i_block_reservation_lock
);
1251 trace_ext4_da_release_space(inode
, to_free
);
1252 if (unlikely(to_free
> ei
->i_reserved_data_blocks
)) {
1254 * if there aren't enough reserved blocks, then the
1255 * counter is messed up somewhere. Since this
1256 * function is called from invalidate page, it's
1257 * harmless to return without any action.
1259 ext4_msg(inode
->i_sb
, KERN_NOTICE
, "ext4_da_release_space: "
1260 "ino %lu, to_free %d with only %d reserved "
1261 "data blocks", inode
->i_ino
, to_free
,
1262 ei
->i_reserved_data_blocks
);
1264 to_free
= ei
->i_reserved_data_blocks
;
1266 ei
->i_reserved_data_blocks
-= to_free
;
1268 if (ei
->i_reserved_data_blocks
== 0) {
1270 * We can release all of the reserved metadata blocks
1271 * only when we have written all of the delayed
1272 * allocation blocks.
1273 * Note that in case of bigalloc, i_reserved_meta_blocks,
1274 * i_reserved_data_blocks, etc. refer to number of clusters.
1276 percpu_counter_sub(&sbi
->s_dirtyclusters_counter
,
1277 ei
->i_reserved_meta_blocks
);
1278 ei
->i_reserved_meta_blocks
= 0;
1279 ei
->i_da_metadata_calc_len
= 0;
1282 /* update fs dirty data blocks counter */
1283 percpu_counter_sub(&sbi
->s_dirtyclusters_counter
, to_free
);
1285 spin_unlock(&EXT4_I(inode
)->i_block_reservation_lock
);
1287 dquot_release_reservation_block(inode
, EXT4_C2B(sbi
, to_free
));
1290 static void ext4_da_page_release_reservation(struct page
*page
,
1291 unsigned long offset
)
1294 struct buffer_head
*head
, *bh
;
1295 unsigned int curr_off
= 0;
1296 struct inode
*inode
= page
->mapping
->host
;
1297 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
1301 head
= page_buffers(page
);
1304 unsigned int next_off
= curr_off
+ bh
->b_size
;
1306 if ((offset
<= curr_off
) && (buffer_delay(bh
))) {
1308 clear_buffer_delay(bh
);
1310 curr_off
= next_off
;
1311 } while ((bh
= bh
->b_this_page
) != head
);
1314 lblk
= page
->index
<< (PAGE_CACHE_SHIFT
- inode
->i_blkbits
);
1315 ext4_es_remove_extent(inode
, lblk
, to_release
);
1318 /* If we have released all the blocks belonging to a cluster, then we
1319 * need to release the reserved space for that cluster. */
1320 num_clusters
= EXT4_NUM_B2C(sbi
, to_release
);
1321 while (num_clusters
> 0) {
1322 lblk
= (page
->index
<< (PAGE_CACHE_SHIFT
- inode
->i_blkbits
)) +
1323 ((num_clusters
- 1) << sbi
->s_cluster_bits
);
1324 if (sbi
->s_cluster_ratio
== 1 ||
1325 !ext4_find_delalloc_cluster(inode
, lblk
))
1326 ext4_da_release_space(inode
, 1);
1333 * Delayed allocation stuff
1337 * mpage_da_submit_io - walks through extent of pages and try to write
1338 * them with writepage() call back
1340 * @mpd->inode: inode
1341 * @mpd->first_page: first page of the extent
1342 * @mpd->next_page: page after the last page of the extent
1344 * By the time mpage_da_submit_io() is called we expect all blocks
1345 * to be allocated. this may be wrong if allocation failed.
1347 * As pages are already locked by write_cache_pages(), we can't use it
1349 static int mpage_da_submit_io(struct mpage_da_data
*mpd
,
1350 struct ext4_map_blocks
*map
)
1352 struct pagevec pvec
;
1353 unsigned long index
, end
;
1354 int ret
= 0, err
, nr_pages
, i
;
1355 struct inode
*inode
= mpd
->inode
;
1356 struct address_space
*mapping
= inode
->i_mapping
;
1357 loff_t size
= i_size_read(inode
);
1358 unsigned int len
, block_start
;
1359 struct buffer_head
*bh
, *page_bufs
= NULL
;
1360 int journal_data
= ext4_should_journal_data(inode
);
1361 sector_t pblock
= 0, cur_logical
= 0;
1362 struct ext4_io_submit io_submit
;
1364 BUG_ON(mpd
->next_page
<= mpd
->first_page
);
1365 memset(&io_submit
, 0, sizeof(io_submit
));
1367 * We need to start from the first_page to the next_page - 1
1368 * to make sure we also write the mapped dirty buffer_heads.
1369 * If we look at mpd->b_blocknr we would only be looking
1370 * at the currently mapped buffer_heads.
1372 index
= mpd
->first_page
;
1373 end
= mpd
->next_page
- 1;
1375 pagevec_init(&pvec
, 0);
1376 while (index
<= end
) {
1377 nr_pages
= pagevec_lookup(&pvec
, mapping
, index
, PAGEVEC_SIZE
);
1380 for (i
= 0; i
< nr_pages
; i
++) {
1381 int commit_write
= 0, skip_page
= 0;
1382 struct page
*page
= pvec
.pages
[i
];
1384 index
= page
->index
;
1388 if (index
== size
>> PAGE_CACHE_SHIFT
)
1389 len
= size
& ~PAGE_CACHE_MASK
;
1391 len
= PAGE_CACHE_SIZE
;
1393 cur_logical
= index
<< (PAGE_CACHE_SHIFT
-
1395 pblock
= map
->m_pblk
+ (cur_logical
-
1400 BUG_ON(!PageLocked(page
));
1401 BUG_ON(PageWriteback(page
));
1404 * If the page does not have buffers (for
1405 * whatever reason), try to create them using
1406 * __block_write_begin. If this fails,
1407 * skip the page and move on.
1409 if (!page_has_buffers(page
)) {
1410 if (__block_write_begin(page
, 0, len
,
1411 noalloc_get_block_write
)) {
1419 bh
= page_bufs
= page_buffers(page
);
1424 if (map
&& (cur_logical
>= map
->m_lblk
) &&
1425 (cur_logical
<= (map
->m_lblk
+
1426 (map
->m_len
- 1)))) {
1427 if (buffer_delay(bh
)) {
1428 clear_buffer_delay(bh
);
1429 bh
->b_blocknr
= pblock
;
1431 if (buffer_unwritten(bh
) ||
1433 BUG_ON(bh
->b_blocknr
!= pblock
);
1434 if (map
->m_flags
& EXT4_MAP_UNINIT
)
1435 set_buffer_uninit(bh
);
1436 clear_buffer_unwritten(bh
);
1440 * skip page if block allocation undone and
1443 if (ext4_bh_delay_or_unwritten(NULL
, bh
))
1445 bh
= bh
->b_this_page
;
1446 block_start
+= bh
->b_size
;
1449 } while (bh
!= page_bufs
);
1455 /* mark the buffer_heads as dirty & uptodate */
1456 block_commit_write(page
, 0, len
);
1458 clear_page_dirty_for_io(page
);
1460 * Delalloc doesn't support data journalling,
1461 * but eventually maybe we'll lift this
1464 if (unlikely(journal_data
&& PageChecked(page
)))
1465 err
= __ext4_journalled_writepage(page
, len
);
1466 else if (test_opt(inode
->i_sb
, MBLK_IO_SUBMIT
))
1467 err
= ext4_bio_write_page(&io_submit
, page
,
1469 else if (buffer_uninit(page_bufs
)) {
1470 ext4_set_bh_endio(page_bufs
, inode
);
1471 err
= block_write_full_page_endio(page
,
1472 noalloc_get_block_write
,
1473 mpd
->wbc
, ext4_end_io_buffer_write
);
1475 err
= block_write_full_page(page
,
1476 noalloc_get_block_write
, mpd
->wbc
);
1479 mpd
->pages_written
++;
1481 * In error case, we have to continue because
1482 * remaining pages are still locked
1487 pagevec_release(&pvec
);
1489 ext4_io_submit(&io_submit
);
1493 static void ext4_da_block_invalidatepages(struct mpage_da_data
*mpd
)
1497 struct pagevec pvec
;
1498 struct inode
*inode
= mpd
->inode
;
1499 struct address_space
*mapping
= inode
->i_mapping
;
1500 ext4_lblk_t start
, last
;
1502 index
= mpd
->first_page
;
1503 end
= mpd
->next_page
- 1;
1505 start
= index
<< (PAGE_CACHE_SHIFT
- inode
->i_blkbits
);
1506 last
= end
<< (PAGE_CACHE_SHIFT
- inode
->i_blkbits
);
1507 ext4_es_remove_extent(inode
, start
, last
- start
+ 1);
1509 pagevec_init(&pvec
, 0);
1510 while (index
<= end
) {
1511 nr_pages
= pagevec_lookup(&pvec
, mapping
, index
, PAGEVEC_SIZE
);
1514 for (i
= 0; i
< nr_pages
; i
++) {
1515 struct page
*page
= pvec
.pages
[i
];
1516 if (page
->index
> end
)
1518 BUG_ON(!PageLocked(page
));
1519 BUG_ON(PageWriteback(page
));
1520 block_invalidatepage(page
, 0);
1521 ClearPageUptodate(page
);
1524 index
= pvec
.pages
[nr_pages
- 1]->index
+ 1;
1525 pagevec_release(&pvec
);
1530 static void ext4_print_free_blocks(struct inode
*inode
)
1532 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
1533 struct super_block
*sb
= inode
->i_sb
;
1535 ext4_msg(sb
, KERN_CRIT
, "Total free blocks count %lld",
1536 EXT4_C2B(EXT4_SB(inode
->i_sb
),
1537 ext4_count_free_clusters(inode
->i_sb
)));
1538 ext4_msg(sb
, KERN_CRIT
, "Free/Dirty block details");
1539 ext4_msg(sb
, KERN_CRIT
, "free_blocks=%lld",
1540 (long long) EXT4_C2B(EXT4_SB(inode
->i_sb
),
1541 percpu_counter_sum(&sbi
->s_freeclusters_counter
)));
1542 ext4_msg(sb
, KERN_CRIT
, "dirty_blocks=%lld",
1543 (long long) EXT4_C2B(EXT4_SB(inode
->i_sb
),
1544 percpu_counter_sum(&sbi
->s_dirtyclusters_counter
)));
1545 ext4_msg(sb
, KERN_CRIT
, "Block reservation details");
1546 ext4_msg(sb
, KERN_CRIT
, "i_reserved_data_blocks=%u",
1547 EXT4_I(inode
)->i_reserved_data_blocks
);
1548 ext4_msg(sb
, KERN_CRIT
, "i_reserved_meta_blocks=%u",
1549 EXT4_I(inode
)->i_reserved_meta_blocks
);
1554 * mpage_da_map_and_submit - go through given space, map them
1555 * if necessary, and then submit them for I/O
1557 * @mpd - bh describing space
1559 * The function skips space we know is already mapped to disk blocks.
1562 static void mpage_da_map_and_submit(struct mpage_da_data
*mpd
)
1564 int err
, blks
, get_blocks_flags
;
1565 struct ext4_map_blocks map
, *mapp
= NULL
;
1566 sector_t next
= mpd
->b_blocknr
;
1567 unsigned max_blocks
= mpd
->b_size
>> mpd
->inode
->i_blkbits
;
1568 loff_t disksize
= EXT4_I(mpd
->inode
)->i_disksize
;
1569 handle_t
*handle
= NULL
;
1572 * If the blocks are mapped already, or we couldn't accumulate
1573 * any blocks, then proceed immediately to the submission stage.
1575 if ((mpd
->b_size
== 0) ||
1576 ((mpd
->b_state
& (1 << BH_Mapped
)) &&
1577 !(mpd
->b_state
& (1 << BH_Delay
)) &&
1578 !(mpd
->b_state
& (1 << BH_Unwritten
))))
1581 handle
= ext4_journal_current_handle();
1585 * Call ext4_map_blocks() to allocate any delayed allocation
1586 * blocks, or to convert an uninitialized extent to be
1587 * initialized (in the case where we have written into
1588 * one or more preallocated blocks).
1590 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
1591 * indicate that we are on the delayed allocation path. This
1592 * affects functions in many different parts of the allocation
1593 * call path. This flag exists primarily because we don't
1594 * want to change *many* call functions, so ext4_map_blocks()
1595 * will set the EXT4_STATE_DELALLOC_RESERVED flag once the
1596 * inode's allocation semaphore is taken.
1598 * If the blocks in questions were delalloc blocks, set
1599 * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
1600 * variables are updated after the blocks have been allocated.
1603 map
.m_len
= max_blocks
;
1604 get_blocks_flags
= EXT4_GET_BLOCKS_CREATE
;
1605 if (ext4_should_dioread_nolock(mpd
->inode
))
1606 get_blocks_flags
|= EXT4_GET_BLOCKS_IO_CREATE_EXT
;
1607 if (mpd
->b_state
& (1 << BH_Delay
))
1608 get_blocks_flags
|= EXT4_GET_BLOCKS_DELALLOC_RESERVE
;
1610 blks
= ext4_map_blocks(handle
, mpd
->inode
, &map
, get_blocks_flags
);
1612 struct super_block
*sb
= mpd
->inode
->i_sb
;
1616 * If get block returns EAGAIN or ENOSPC and there
1617 * appears to be free blocks we will just let
1618 * mpage_da_submit_io() unlock all of the pages.
1623 if (err
== -ENOSPC
&& ext4_count_free_clusters(sb
)) {
1629 * get block failure will cause us to loop in
1630 * writepages, because a_ops->writepage won't be able
1631 * to make progress. The page will be redirtied by
1632 * writepage and writepages will again try to write
1635 if (!(EXT4_SB(sb
)->s_mount_flags
& EXT4_MF_FS_ABORTED
)) {
1636 ext4_msg(sb
, KERN_CRIT
,
1637 "delayed block allocation failed for inode %lu "
1638 "at logical offset %llu with max blocks %zd "
1639 "with error %d", mpd
->inode
->i_ino
,
1640 (unsigned long long) next
,
1641 mpd
->b_size
>> mpd
->inode
->i_blkbits
, err
);
1642 ext4_msg(sb
, KERN_CRIT
,
1643 "This should not happen!! Data will be lost\n");
1645 ext4_print_free_blocks(mpd
->inode
);
1647 /* invalidate all the pages */
1648 ext4_da_block_invalidatepages(mpd
);
1650 /* Mark this page range as having been completed */
1657 if (map
.m_flags
& EXT4_MAP_NEW
) {
1658 struct block_device
*bdev
= mpd
->inode
->i_sb
->s_bdev
;
1661 for (i
= 0; i
< map
.m_len
; i
++)
1662 unmap_underlying_metadata(bdev
, map
.m_pblk
+ i
);
1666 * Update on-disk size along with block allocation.
1668 disksize
= ((loff_t
) next
+ blks
) << mpd
->inode
->i_blkbits
;
1669 if (disksize
> i_size_read(mpd
->inode
))
1670 disksize
= i_size_read(mpd
->inode
);
1671 if (disksize
> EXT4_I(mpd
->inode
)->i_disksize
) {
1672 ext4_update_i_disksize(mpd
->inode
, disksize
);
1673 err
= ext4_mark_inode_dirty(handle
, mpd
->inode
);
1675 ext4_error(mpd
->inode
->i_sb
,
1676 "Failed to mark inode %lu dirty",
1681 mpage_da_submit_io(mpd
, mapp
);
1685 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
1686 (1 << BH_Delay) | (1 << BH_Unwritten))
1689 * mpage_add_bh_to_extent - try to add one more block to extent of blocks
1691 * @mpd->lbh - extent of blocks
1692 * @logical - logical number of the block in the file
1693 * @bh - bh of the block (used to access block's state)
1695 * the function is used to collect contig. blocks in same state
1697 static void mpage_add_bh_to_extent(struct mpage_da_data
*mpd
,
1698 sector_t logical
, size_t b_size
,
1699 unsigned long b_state
)
1702 int nrblocks
= mpd
->b_size
>> mpd
->inode
->i_blkbits
;
1705 * XXX Don't go larger than mballoc is willing to allocate
1706 * This is a stopgap solution. We eventually need to fold
1707 * mpage_da_submit_io() into this function and then call
1708 * ext4_map_blocks() multiple times in a loop
1710 if (nrblocks
>= 8*1024*1024/mpd
->inode
->i_sb
->s_blocksize
)
1713 /* check if thereserved journal credits might overflow */
1714 if (!(ext4_test_inode_flag(mpd
->inode
, EXT4_INODE_EXTENTS
))) {
1715 if (nrblocks
>= EXT4_MAX_TRANS_DATA
) {
1717 * With non-extent format we are limited by the journal
1718 * credit available. Total credit needed to insert
1719 * nrblocks contiguous blocks is dependent on the
1720 * nrblocks. So limit nrblocks.
1723 } else if ((nrblocks
+ (b_size
>> mpd
->inode
->i_blkbits
)) >
1724 EXT4_MAX_TRANS_DATA
) {
1726 * Adding the new buffer_head would make it cross the
1727 * allowed limit for which we have journal credit
1728 * reserved. So limit the new bh->b_size
1730 b_size
= (EXT4_MAX_TRANS_DATA
- nrblocks
) <<
1731 mpd
->inode
->i_blkbits
;
1732 /* we will do mpage_da_submit_io in the next loop */
1736 * First block in the extent
1738 if (mpd
->b_size
== 0) {
1739 mpd
->b_blocknr
= logical
;
1740 mpd
->b_size
= b_size
;
1741 mpd
->b_state
= b_state
& BH_FLAGS
;
1745 next
= mpd
->b_blocknr
+ nrblocks
;
1747 * Can we merge the block to our big extent?
1749 if (logical
== next
&& (b_state
& BH_FLAGS
) == mpd
->b_state
) {
1750 mpd
->b_size
+= b_size
;
1756 * We couldn't merge the block to our extent, so we
1757 * need to flush current extent and start new one
1759 mpage_da_map_and_submit(mpd
);
1763 static int ext4_bh_delay_or_unwritten(handle_t
*handle
, struct buffer_head
*bh
)
1765 return (buffer_delay(bh
) || buffer_unwritten(bh
)) && buffer_dirty(bh
);
1769 * This function is grabs code from the very beginning of
1770 * ext4_map_blocks, but assumes that the caller is from delayed write
1771 * time. This function looks up the requested blocks and sets the
1772 * buffer delay bit under the protection of i_data_sem.
1774 static int ext4_da_map_blocks(struct inode
*inode
, sector_t iblock
,
1775 struct ext4_map_blocks
*map
,
1776 struct buffer_head
*bh
)
1779 sector_t invalid_block
= ~((sector_t
) 0xffff);
1781 if (invalid_block
< ext4_blocks_count(EXT4_SB(inode
->i_sb
)->s_es
))
1785 ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1786 "logical block %lu\n", inode
->i_ino
, map
->m_len
,
1787 (unsigned long) map
->m_lblk
);
1789 * Try to see if we can get the block without requesting a new
1790 * file system block.
1792 down_read((&EXT4_I(inode
)->i_data_sem
));
1793 if (ext4_has_inline_data(inode
)) {
1795 * We will soon create blocks for this page, and let
1796 * us pretend as if the blocks aren't allocated yet.
1797 * In case of clusters, we have to handle the work
1798 * of mapping from cluster so that the reserved space
1799 * is calculated properly.
1801 if ((EXT4_SB(inode
->i_sb
)->s_cluster_ratio
> 1) &&
1802 ext4_find_delalloc_cluster(inode
, map
->m_lblk
))
1803 map
->m_flags
|= EXT4_MAP_FROM_CLUSTER
;
1805 } else if (ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
))
1806 retval
= ext4_ext_map_blocks(NULL
, inode
, map
, 0);
1808 retval
= ext4_ind_map_blocks(NULL
, inode
, map
, 0);
1812 * XXX: __block_prepare_write() unmaps passed block,
1815 /* If the block was allocated from previously allocated cluster,
1816 * then we dont need to reserve it again. */
1817 if (!(map
->m_flags
& EXT4_MAP_FROM_CLUSTER
)) {
1818 retval
= ext4_da_reserve_space(inode
, iblock
);
1820 /* not enough space to reserve */
1824 retval
= ext4_es_insert_extent(inode
, map
->m_lblk
, map
->m_len
);
1828 /* Clear EXT4_MAP_FROM_CLUSTER flag since its purpose is served
1829 * and it should not appear on the bh->b_state.
1831 map
->m_flags
&= ~EXT4_MAP_FROM_CLUSTER
;
1833 map_bh(bh
, inode
->i_sb
, invalid_block
);
1835 set_buffer_delay(bh
);
1839 up_read((&EXT4_I(inode
)->i_data_sem
));
1845 * This is a special get_blocks_t callback which is used by
1846 * ext4_da_write_begin(). It will either return mapped block or
1847 * reserve space for a single block.
1849 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1850 * We also have b_blocknr = -1 and b_bdev initialized properly
1852 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1853 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1854 * initialized properly.
1856 int ext4_da_get_block_prep(struct inode
*inode
, sector_t iblock
,
1857 struct buffer_head
*bh
, int create
)
1859 struct ext4_map_blocks map
;
1862 BUG_ON(create
== 0);
1863 BUG_ON(bh
->b_size
!= inode
->i_sb
->s_blocksize
);
1865 map
.m_lblk
= iblock
;
1869 * first, we need to know whether the block is allocated already
1870 * preallocated blocks are unmapped but should treated
1871 * the same as allocated blocks.
1873 ret
= ext4_da_map_blocks(inode
, iblock
, &map
, bh
);
1877 map_bh(bh
, inode
->i_sb
, map
.m_pblk
);
1878 bh
->b_state
= (bh
->b_state
& ~EXT4_MAP_FLAGS
) | map
.m_flags
;
1880 if (buffer_unwritten(bh
)) {
1881 /* A delayed write to unwritten bh should be marked
1882 * new and mapped. Mapped ensures that we don't do
1883 * get_block multiple times when we write to the same
1884 * offset and new ensures that we do proper zero out
1885 * for partial write.
1888 set_buffer_mapped(bh
);
1894 * This function is used as a standard get_block_t calback function
1895 * when there is no desire to allocate any blocks. It is used as a
1896 * callback function for block_write_begin() and block_write_full_page().
1897 * These functions should only try to map a single block at a time.
1899 * Since this function doesn't do block allocations even if the caller
1900 * requests it by passing in create=1, it is critically important that
1901 * any caller checks to make sure that any buffer heads are returned
1902 * by this function are either all already mapped or marked for
1903 * delayed allocation before calling block_write_full_page(). Otherwise,
1904 * b_blocknr could be left unitialized, and the page write functions will
1905 * be taken by surprise.
1907 static int noalloc_get_block_write(struct inode
*inode
, sector_t iblock
,
1908 struct buffer_head
*bh_result
, int create
)
1910 BUG_ON(bh_result
->b_size
!= inode
->i_sb
->s_blocksize
);
1911 return _ext4_get_block(inode
, iblock
, bh_result
, 0);
1914 static int bget_one(handle_t
*handle
, struct buffer_head
*bh
)
1920 static int bput_one(handle_t
*handle
, struct buffer_head
*bh
)
1926 static int __ext4_journalled_writepage(struct page
*page
,
1929 struct address_space
*mapping
= page
->mapping
;
1930 struct inode
*inode
= mapping
->host
;
1931 struct buffer_head
*page_bufs
= NULL
;
1932 handle_t
*handle
= NULL
;
1933 int ret
= 0, err
= 0;
1934 int inline_data
= ext4_has_inline_data(inode
);
1935 struct buffer_head
*inode_bh
= NULL
;
1937 ClearPageChecked(page
);
1940 BUG_ON(page
->index
!= 0);
1941 BUG_ON(len
> ext4_get_max_inline_size(inode
));
1942 inode_bh
= ext4_journalled_write_inline_data(inode
, len
, page
);
1943 if (inode_bh
== NULL
)
1946 page_bufs
= page_buffers(page
);
1951 ext4_walk_page_buffers(handle
, page_bufs
, 0, len
,
1954 /* As soon as we unlock the page, it can go away, but we have
1955 * references to buffers so we are safe */
1958 handle
= ext4_journal_start(inode
, ext4_writepage_trans_blocks(inode
));
1959 if (IS_ERR(handle
)) {
1960 ret
= PTR_ERR(handle
);
1964 BUG_ON(!ext4_handle_valid(handle
));
1967 ret
= ext4_journal_get_write_access(handle
, inode_bh
);
1969 err
= ext4_handle_dirty_metadata(handle
, inode
, inode_bh
);
1972 ret
= ext4_walk_page_buffers(handle
, page_bufs
, 0, len
, NULL
,
1973 do_journal_get_write_access
);
1975 err
= ext4_walk_page_buffers(handle
, page_bufs
, 0, len
, NULL
,
1980 EXT4_I(inode
)->i_datasync_tid
= handle
->h_transaction
->t_tid
;
1981 err
= ext4_journal_stop(handle
);
1985 if (!ext4_has_inline_data(inode
))
1986 ext4_walk_page_buffers(handle
, page_bufs
, 0, len
,
1988 ext4_set_inode_state(inode
, EXT4_STATE_JDATA
);
1995 * Note that we don't need to start a transaction unless we're journaling data
1996 * because we should have holes filled from ext4_page_mkwrite(). We even don't
1997 * need to file the inode to the transaction's list in ordered mode because if
1998 * we are writing back data added by write(), the inode is already there and if
1999 * we are writing back data modified via mmap(), no one guarantees in which
2000 * transaction the data will hit the disk. In case we are journaling data, we
2001 * cannot start transaction directly because transaction start ranks above page
2002 * lock so we have to do some magic.
2004 * This function can get called via...
2005 * - ext4_da_writepages after taking page lock (have journal handle)
2006 * - journal_submit_inode_data_buffers (no journal handle)
2007 * - shrink_page_list via the kswapd/direct reclaim (no journal handle)
2008 * - grab_page_cache when doing write_begin (have journal handle)
2010 * We don't do any block allocation in this function. If we have page with
2011 * multiple blocks we need to write those buffer_heads that are mapped. This
2012 * is important for mmaped based write. So if we do with blocksize 1K
2013 * truncate(f, 1024);
2014 * a = mmap(f, 0, 4096);
2016 * truncate(f, 4096);
2017 * we have in the page first buffer_head mapped via page_mkwrite call back
2018 * but other buffer_heads would be unmapped but dirty (dirty done via the
2019 * do_wp_page). So writepage should write the first block. If we modify
2020 * the mmap area beyond 1024 we will again get a page_fault and the
2021 * page_mkwrite callback will do the block allocation and mark the
2022 * buffer_heads mapped.
2024 * We redirty the page if we have any buffer_heads that is either delay or
2025 * unwritten in the page.
2027 * We can get recursively called as show below.
2029 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2032 * But since we don't do any block allocation we should not deadlock.
2033 * Page also have the dirty flag cleared so we don't get recurive page_lock.
2035 static int ext4_writepage(struct page
*page
,
2036 struct writeback_control
*wbc
)
2038 int ret
= 0, commit_write
= 0;
2041 struct buffer_head
*page_bufs
= NULL
;
2042 struct inode
*inode
= page
->mapping
->host
;
2044 trace_ext4_writepage(page
);
2045 size
= i_size_read(inode
);
2046 if (page
->index
== size
>> PAGE_CACHE_SHIFT
)
2047 len
= size
& ~PAGE_CACHE_MASK
;
2049 len
= PAGE_CACHE_SIZE
;
2052 * If the page does not have buffers (for whatever reason),
2053 * try to create them using __block_write_begin. If this
2054 * fails, redirty the page and move on.
2056 if (!page_has_buffers(page
)) {
2057 if (__block_write_begin(page
, 0, len
,
2058 noalloc_get_block_write
)) {
2060 redirty_page_for_writepage(wbc
, page
);
2066 page_bufs
= page_buffers(page
);
2067 if (ext4_walk_page_buffers(NULL
, page_bufs
, 0, len
, NULL
,
2068 ext4_bh_delay_or_unwritten
)) {
2070 * We don't want to do block allocation, so redirty
2071 * the page and return. We may reach here when we do
2072 * a journal commit via journal_submit_inode_data_buffers.
2073 * We can also reach here via shrink_page_list but it
2074 * should never be for direct reclaim so warn if that
2077 WARN_ON_ONCE((current
->flags
& (PF_MEMALLOC
|PF_KSWAPD
)) ==
2082 /* now mark the buffer_heads as dirty and uptodate */
2083 block_commit_write(page
, 0, len
);
2085 if (PageChecked(page
) && ext4_should_journal_data(inode
))
2087 * It's mmapped pagecache. Add buffers and journal it. There
2088 * doesn't seem much point in redirtying the page here.
2090 return __ext4_journalled_writepage(page
, len
);
2092 if (buffer_uninit(page_bufs
)) {
2093 ext4_set_bh_endio(page_bufs
, inode
);
2094 ret
= block_write_full_page_endio(page
, noalloc_get_block_write
,
2095 wbc
, ext4_end_io_buffer_write
);
2097 ret
= block_write_full_page(page
, noalloc_get_block_write
,
2104 * This is called via ext4_da_writepages() to
2105 * calculate the total number of credits to reserve to fit
2106 * a single extent allocation into a single transaction,
2107 * ext4_da_writpeages() will loop calling this before
2108 * the block allocation.
2111 static int ext4_da_writepages_trans_blocks(struct inode
*inode
)
2113 int max_blocks
= EXT4_I(inode
)->i_reserved_data_blocks
;
2116 * With non-extent format the journal credit needed to
2117 * insert nrblocks contiguous block is dependent on
2118 * number of contiguous block. So we will limit
2119 * number of contiguous block to a sane value
2121 if (!(ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
)) &&
2122 (max_blocks
> EXT4_MAX_TRANS_DATA
))
2123 max_blocks
= EXT4_MAX_TRANS_DATA
;
2125 return ext4_chunk_trans_blocks(inode
, max_blocks
);
2129 * write_cache_pages_da - walk the list of dirty pages of the given
2130 * address space and accumulate pages that need writing, and call
2131 * mpage_da_map_and_submit to map a single contiguous memory region
2132 * and then write them.
2134 static int write_cache_pages_da(handle_t
*handle
,
2135 struct address_space
*mapping
,
2136 struct writeback_control
*wbc
,
2137 struct mpage_da_data
*mpd
,
2138 pgoff_t
*done_index
)
2140 struct buffer_head
*bh
, *head
;
2141 struct inode
*inode
= mapping
->host
;
2142 struct pagevec pvec
;
2143 unsigned int nr_pages
;
2146 long nr_to_write
= wbc
->nr_to_write
;
2147 int i
, tag
, ret
= 0;
2149 memset(mpd
, 0, sizeof(struct mpage_da_data
));
2152 pagevec_init(&pvec
, 0);
2153 index
= wbc
->range_start
>> PAGE_CACHE_SHIFT
;
2154 end
= wbc
->range_end
>> PAGE_CACHE_SHIFT
;
2156 if (wbc
->sync_mode
== WB_SYNC_ALL
|| wbc
->tagged_writepages
)
2157 tag
= PAGECACHE_TAG_TOWRITE
;
2159 tag
= PAGECACHE_TAG_DIRTY
;
2161 *done_index
= index
;
2162 while (index
<= end
) {
2163 nr_pages
= pagevec_lookup_tag(&pvec
, mapping
, &index
, tag
,
2164 min(end
- index
, (pgoff_t
)PAGEVEC_SIZE
-1) + 1);
2168 for (i
= 0; i
< nr_pages
; i
++) {
2169 struct page
*page
= pvec
.pages
[i
];
2172 * At this point, the page may be truncated or
2173 * invalidated (changing page->mapping to NULL), or
2174 * even swizzled back from swapper_space to tmpfs file
2175 * mapping. However, page->index will not change
2176 * because we have a reference on the page.
2178 if (page
->index
> end
)
2181 *done_index
= page
->index
+ 1;
2184 * If we can't merge this page, and we have
2185 * accumulated an contiguous region, write it
2187 if ((mpd
->next_page
!= page
->index
) &&
2188 (mpd
->next_page
!= mpd
->first_page
)) {
2189 mpage_da_map_and_submit(mpd
);
2190 goto ret_extent_tail
;
2196 * If the page is no longer dirty, or its
2197 * mapping no longer corresponds to inode we
2198 * are writing (which means it has been
2199 * truncated or invalidated), or the page is
2200 * already under writeback and we are not
2201 * doing a data integrity writeback, skip the page
2203 if (!PageDirty(page
) ||
2204 (PageWriteback(page
) &&
2205 (wbc
->sync_mode
== WB_SYNC_NONE
)) ||
2206 unlikely(page
->mapping
!= mapping
)) {
2211 wait_on_page_writeback(page
);
2212 BUG_ON(PageWriteback(page
));
2215 * If we have inline data and arrive here, it means that
2216 * we will soon create the block for the 1st page, so
2217 * we'd better clear the inline data here.
2219 if (ext4_has_inline_data(inode
)) {
2220 BUG_ON(ext4_test_inode_state(inode
,
2221 EXT4_STATE_MAY_INLINE_DATA
));
2222 ext4_destroy_inline_data(handle
, inode
);
2225 if (mpd
->next_page
!= page
->index
)
2226 mpd
->first_page
= page
->index
;
2227 mpd
->next_page
= page
->index
+ 1;
2228 logical
= (sector_t
) page
->index
<<
2229 (PAGE_CACHE_SHIFT
- inode
->i_blkbits
);
2231 if (!page_has_buffers(page
)) {
2232 mpage_add_bh_to_extent(mpd
, logical
,
2234 (1 << BH_Dirty
) | (1 << BH_Uptodate
));
2236 goto ret_extent_tail
;
2239 * Page with regular buffer heads,
2240 * just add all dirty ones
2242 head
= page_buffers(page
);
2245 BUG_ON(buffer_locked(bh
));
2247 * We need to try to allocate
2248 * unmapped blocks in the same page.
2249 * Otherwise we won't make progress
2250 * with the page in ext4_writepage
2252 if (ext4_bh_delay_or_unwritten(NULL
, bh
)) {
2253 mpage_add_bh_to_extent(mpd
, logical
,
2257 goto ret_extent_tail
;
2258 } else if (buffer_dirty(bh
) && (buffer_mapped(bh
))) {
2260 * mapped dirty buffer. We need
2261 * to update the b_state
2262 * because we look at b_state
2263 * in mpage_da_map_blocks. We
2264 * don't update b_size because
2265 * if we find an unmapped
2266 * buffer_head later we need to
2267 * use the b_state flag of that
2270 if (mpd
->b_size
== 0)
2271 mpd
->b_state
= bh
->b_state
& BH_FLAGS
;
2274 } while ((bh
= bh
->b_this_page
) != head
);
2277 if (nr_to_write
> 0) {
2279 if (nr_to_write
== 0 &&
2280 wbc
->sync_mode
== WB_SYNC_NONE
)
2282 * We stop writing back only if we are
2283 * not doing integrity sync. In case of
2284 * integrity sync we have to keep going
2285 * because someone may be concurrently
2286 * dirtying pages, and we might have
2287 * synced a lot of newly appeared dirty
2288 * pages, but have not synced all of the
2294 pagevec_release(&pvec
);
2299 ret
= MPAGE_DA_EXTENT_TAIL
;
2301 pagevec_release(&pvec
);
2307 static int ext4_da_writepages(struct address_space
*mapping
,
2308 struct writeback_control
*wbc
)
2311 int range_whole
= 0;
2312 handle_t
*handle
= NULL
;
2313 struct mpage_da_data mpd
;
2314 struct inode
*inode
= mapping
->host
;
2315 int pages_written
= 0;
2316 unsigned int max_pages
;
2317 int range_cyclic
, cycled
= 1, io_done
= 0;
2318 int needed_blocks
, ret
= 0;
2319 long desired_nr_to_write
, nr_to_writebump
= 0;
2320 loff_t range_start
= wbc
->range_start
;
2321 struct ext4_sb_info
*sbi
= EXT4_SB(mapping
->host
->i_sb
);
2322 pgoff_t done_index
= 0;
2324 struct blk_plug plug
;
2326 trace_ext4_da_writepages(inode
, wbc
);
2329 * No pages to write? This is mainly a kludge to avoid starting
2330 * a transaction for special inodes like journal inode on last iput()
2331 * because that could violate lock ordering on umount
2333 if (!mapping
->nrpages
|| !mapping_tagged(mapping
, PAGECACHE_TAG_DIRTY
))
2337 * If the filesystem has aborted, it is read-only, so return
2338 * right away instead of dumping stack traces later on that
2339 * will obscure the real source of the problem. We test
2340 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2341 * the latter could be true if the filesystem is mounted
2342 * read-only, and in that case, ext4_da_writepages should
2343 * *never* be called, so if that ever happens, we would want
2346 if (unlikely(sbi
->s_mount_flags
& EXT4_MF_FS_ABORTED
))
2349 if (wbc
->range_start
== 0 && wbc
->range_end
== LLONG_MAX
)
2352 range_cyclic
= wbc
->range_cyclic
;
2353 if (wbc
->range_cyclic
) {
2354 index
= mapping
->writeback_index
;
2357 wbc
->range_start
= index
<< PAGE_CACHE_SHIFT
;
2358 wbc
->range_end
= LLONG_MAX
;
2359 wbc
->range_cyclic
= 0;
2362 index
= wbc
->range_start
>> PAGE_CACHE_SHIFT
;
2363 end
= wbc
->range_end
>> PAGE_CACHE_SHIFT
;
2367 * This works around two forms of stupidity. The first is in
2368 * the writeback code, which caps the maximum number of pages
2369 * written to be 1024 pages. This is wrong on multiple
2370 * levels; different architectues have a different page size,
2371 * which changes the maximum amount of data which gets
2372 * written. Secondly, 4 megabytes is way too small. XFS
2373 * forces this value to be 16 megabytes by multiplying
2374 * nr_to_write parameter by four, and then relies on its
2375 * allocator to allocate larger extents to make them
2376 * contiguous. Unfortunately this brings us to the second
2377 * stupidity, which is that ext4's mballoc code only allocates
2378 * at most 2048 blocks. So we force contiguous writes up to
2379 * the number of dirty blocks in the inode, or
2380 * sbi->max_writeback_mb_bump whichever is smaller.
2382 max_pages
= sbi
->s_max_writeback_mb_bump
<< (20 - PAGE_CACHE_SHIFT
);
2383 if (!range_cyclic
&& range_whole
) {
2384 if (wbc
->nr_to_write
== LONG_MAX
)
2385 desired_nr_to_write
= wbc
->nr_to_write
;
2387 desired_nr_to_write
= wbc
->nr_to_write
* 8;
2389 desired_nr_to_write
= ext4_num_dirty_pages(inode
, index
,
2391 if (desired_nr_to_write
> max_pages
)
2392 desired_nr_to_write
= max_pages
;
2394 if (wbc
->nr_to_write
< desired_nr_to_write
) {
2395 nr_to_writebump
= desired_nr_to_write
- wbc
->nr_to_write
;
2396 wbc
->nr_to_write
= desired_nr_to_write
;
2400 if (wbc
->sync_mode
== WB_SYNC_ALL
|| wbc
->tagged_writepages
)
2401 tag_pages_for_writeback(mapping
, index
, end
);
2403 blk_start_plug(&plug
);
2404 while (!ret
&& wbc
->nr_to_write
> 0) {
2407 * we insert one extent at a time. So we need
2408 * credit needed for single extent allocation.
2409 * journalled mode is currently not supported
2412 BUG_ON(ext4_should_journal_data(inode
));
2413 needed_blocks
= ext4_da_writepages_trans_blocks(inode
);
2415 /* start a new transaction*/
2416 handle
= ext4_journal_start(inode
, needed_blocks
);
2417 if (IS_ERR(handle
)) {
2418 ret
= PTR_ERR(handle
);
2419 ext4_msg(inode
->i_sb
, KERN_CRIT
, "%s: jbd2_start: "
2420 "%ld pages, ino %lu; err %d", __func__
,
2421 wbc
->nr_to_write
, inode
->i_ino
, ret
);
2422 blk_finish_plug(&plug
);
2423 goto out_writepages
;
2427 * Now call write_cache_pages_da() to find the next
2428 * contiguous region of logical blocks that need
2429 * blocks to be allocated by ext4 and submit them.
2431 ret
= write_cache_pages_da(handle
, mapping
,
2432 wbc
, &mpd
, &done_index
);
2434 * If we have a contiguous extent of pages and we
2435 * haven't done the I/O yet, map the blocks and submit
2438 if (!mpd
.io_done
&& mpd
.next_page
!= mpd
.first_page
) {
2439 mpage_da_map_and_submit(&mpd
);
2440 ret
= MPAGE_DA_EXTENT_TAIL
;
2442 trace_ext4_da_write_pages(inode
, &mpd
);
2443 wbc
->nr_to_write
-= mpd
.pages_written
;
2445 ext4_journal_stop(handle
);
2447 if ((mpd
.retval
== -ENOSPC
) && sbi
->s_journal
) {
2448 /* commit the transaction which would
2449 * free blocks released in the transaction
2452 jbd2_journal_force_commit_nested(sbi
->s_journal
);
2454 } else if (ret
== MPAGE_DA_EXTENT_TAIL
) {
2456 * Got one extent now try with rest of the pages.
2457 * If mpd.retval is set -EIO, journal is aborted.
2458 * So we don't need to write any more.
2460 pages_written
+= mpd
.pages_written
;
2463 } else if (wbc
->nr_to_write
)
2465 * There is no more writeout needed
2466 * or we requested for a noblocking writeout
2467 * and we found the device congested
2471 blk_finish_plug(&plug
);
2472 if (!io_done
&& !cycled
) {
2475 wbc
->range_start
= index
<< PAGE_CACHE_SHIFT
;
2476 wbc
->range_end
= mapping
->writeback_index
- 1;
2481 wbc
->range_cyclic
= range_cyclic
;
2482 if (wbc
->range_cyclic
|| (range_whole
&& wbc
->nr_to_write
> 0))
2484 * set the writeback_index so that range_cyclic
2485 * mode will write it back later
2487 mapping
->writeback_index
= done_index
;
2490 wbc
->nr_to_write
-= nr_to_writebump
;
2491 wbc
->range_start
= range_start
;
2492 trace_ext4_da_writepages_result(inode
, wbc
, ret
, pages_written
);
2496 static int ext4_nonda_switch(struct super_block
*sb
)
2498 s64 free_blocks
, dirty_blocks
;
2499 struct ext4_sb_info
*sbi
= EXT4_SB(sb
);
2502 * switch to non delalloc mode if we are running low
2503 * on free block. The free block accounting via percpu
2504 * counters can get slightly wrong with percpu_counter_batch getting
2505 * accumulated on each CPU without updating global counters
2506 * Delalloc need an accurate free block accounting. So switch
2507 * to non delalloc when we are near to error range.
2509 free_blocks
= EXT4_C2B(sbi
,
2510 percpu_counter_read_positive(&sbi
->s_freeclusters_counter
));
2511 dirty_blocks
= percpu_counter_read_positive(&sbi
->s_dirtyclusters_counter
);
2513 * Start pushing delalloc when 1/2 of free blocks are dirty.
2515 if (dirty_blocks
&& (free_blocks
< 2 * dirty_blocks
) &&
2516 !writeback_in_progress(sb
->s_bdi
) &&
2517 down_read_trylock(&sb
->s_umount
)) {
2518 writeback_inodes_sb(sb
, WB_REASON_FS_FREE_SPACE
);
2519 up_read(&sb
->s_umount
);
2522 if (2 * free_blocks
< 3 * dirty_blocks
||
2523 free_blocks
< (dirty_blocks
+ EXT4_FREECLUSTERS_WATERMARK
)) {
2525 * free block count is less than 150% of dirty blocks
2526 * or free blocks is less than watermark
2533 static int ext4_da_write_begin(struct file
*file
, struct address_space
*mapping
,
2534 loff_t pos
, unsigned len
, unsigned flags
,
2535 struct page
**pagep
, void **fsdata
)
2537 int ret
, retries
= 0;
2540 struct inode
*inode
= mapping
->host
;
2543 index
= pos
>> PAGE_CACHE_SHIFT
;
2545 if (ext4_nonda_switch(inode
->i_sb
)) {
2546 *fsdata
= (void *)FALL_BACK_TO_NONDELALLOC
;
2547 return ext4_write_begin(file
, mapping
, pos
,
2548 len
, flags
, pagep
, fsdata
);
2550 *fsdata
= (void *)0;
2551 trace_ext4_da_write_begin(inode
, pos
, len
, flags
);
2553 if (ext4_test_inode_state(inode
, EXT4_STATE_MAY_INLINE_DATA
)) {
2554 ret
= ext4_da_write_inline_data_begin(mapping
, inode
,
2567 * With delayed allocation, we don't log the i_disksize update
2568 * if there is delayed block allocation. But we still need
2569 * to journalling the i_disksize update if writes to the end
2570 * of file which has an already mapped buffer.
2572 handle
= ext4_journal_start(inode
, 1);
2573 if (IS_ERR(handle
)) {
2574 ret
= PTR_ERR(handle
);
2577 /* We cannot recurse into the filesystem as the transaction is already
2579 flags
|= AOP_FLAG_NOFS
;
2581 page
= grab_cache_page_write_begin(mapping
, index
, flags
);
2583 ext4_journal_stop(handle
);
2589 ret
= __block_write_begin(page
, pos
, len
, ext4_da_get_block_prep
);
2592 ext4_journal_stop(handle
);
2593 page_cache_release(page
);
2595 * block_write_begin may have instantiated a few blocks
2596 * outside i_size. Trim these off again. Don't need
2597 * i_size_read because we hold i_mutex.
2599 if (pos
+ len
> inode
->i_size
)
2600 ext4_truncate_failed_write(inode
);
2603 if (ret
== -ENOSPC
&& ext4_should_retry_alloc(inode
->i_sb
, &retries
))
2610 * Check if we should update i_disksize
2611 * when write to the end of file but not require block allocation
2613 static int ext4_da_should_update_i_disksize(struct page
*page
,
2614 unsigned long offset
)
2616 struct buffer_head
*bh
;
2617 struct inode
*inode
= page
->mapping
->host
;
2621 bh
= page_buffers(page
);
2622 idx
= offset
>> inode
->i_blkbits
;
2624 for (i
= 0; i
< idx
; i
++)
2625 bh
= bh
->b_this_page
;
2627 if (!buffer_mapped(bh
) || (buffer_delay(bh
)) || buffer_unwritten(bh
))
2632 static int ext4_da_write_end(struct file
*file
,
2633 struct address_space
*mapping
,
2634 loff_t pos
, unsigned len
, unsigned copied
,
2635 struct page
*page
, void *fsdata
)
2637 struct inode
*inode
= mapping
->host
;
2639 handle_t
*handle
= ext4_journal_current_handle();
2641 unsigned long start
, end
;
2642 int write_mode
= (int)(unsigned long)fsdata
;
2644 if (write_mode
== FALL_BACK_TO_NONDELALLOC
) {
2645 switch (ext4_inode_journal_mode(inode
)) {
2646 case EXT4_INODE_ORDERED_DATA_MODE
:
2647 return ext4_ordered_write_end(file
, mapping
, pos
,
2648 len
, copied
, page
, fsdata
);
2649 case EXT4_INODE_WRITEBACK_DATA_MODE
:
2650 return ext4_writeback_write_end(file
, mapping
, pos
,
2651 len
, copied
, page
, fsdata
);
2657 trace_ext4_da_write_end(inode
, pos
, len
, copied
);
2658 start
= pos
& (PAGE_CACHE_SIZE
- 1);
2659 end
= start
+ copied
- 1;
2662 * generic_write_end() will run mark_inode_dirty() if i_size
2663 * changes. So let's piggyback the i_disksize mark_inode_dirty
2666 new_i_size
= pos
+ copied
;
2667 if (copied
&& new_i_size
> EXT4_I(inode
)->i_disksize
) {
2668 if (ext4_has_inline_data(inode
) ||
2669 ext4_da_should_update_i_disksize(page
, end
)) {
2670 down_write(&EXT4_I(inode
)->i_data_sem
);
2671 if (new_i_size
> EXT4_I(inode
)->i_disksize
)
2672 EXT4_I(inode
)->i_disksize
= new_i_size
;
2673 up_write(&EXT4_I(inode
)->i_data_sem
);
2674 /* We need to mark inode dirty even if
2675 * new_i_size is less that inode->i_size
2676 * bu greater than i_disksize.(hint delalloc)
2678 ext4_mark_inode_dirty(handle
, inode
);
2682 if (write_mode
!= CONVERT_INLINE_DATA
&&
2683 ext4_test_inode_state(inode
, EXT4_STATE_MAY_INLINE_DATA
) &&
2684 ext4_has_inline_data(inode
))
2685 ret2
= ext4_da_write_inline_data_end(inode
, pos
, len
, copied
,
2688 ret2
= generic_write_end(file
, mapping
, pos
, len
, copied
,
2694 ret2
= ext4_journal_stop(handle
);
2698 return ret
? ret
: copied
;
2701 static void ext4_da_invalidatepage(struct page
*page
, unsigned long offset
)
2704 * Drop reserved blocks
2706 BUG_ON(!PageLocked(page
));
2707 if (!page_has_buffers(page
))
2710 ext4_da_page_release_reservation(page
, offset
);
2713 ext4_invalidatepage(page
, offset
);
2719 * Force all delayed allocation blocks to be allocated for a given inode.
2721 int ext4_alloc_da_blocks(struct inode
*inode
)
2723 trace_ext4_alloc_da_blocks(inode
);
2725 if (!EXT4_I(inode
)->i_reserved_data_blocks
&&
2726 !EXT4_I(inode
)->i_reserved_meta_blocks
)
2730 * We do something simple for now. The filemap_flush() will
2731 * also start triggering a write of the data blocks, which is
2732 * not strictly speaking necessary (and for users of
2733 * laptop_mode, not even desirable). However, to do otherwise
2734 * would require replicating code paths in:
2736 * ext4_da_writepages() ->
2737 * write_cache_pages() ---> (via passed in callback function)
2738 * __mpage_da_writepage() -->
2739 * mpage_add_bh_to_extent()
2740 * mpage_da_map_blocks()
2742 * The problem is that write_cache_pages(), located in
2743 * mm/page-writeback.c, marks pages clean in preparation for
2744 * doing I/O, which is not desirable if we're not planning on
2747 * We could call write_cache_pages(), and then redirty all of
2748 * the pages by calling redirty_page_for_writepage() but that
2749 * would be ugly in the extreme. So instead we would need to
2750 * replicate parts of the code in the above functions,
2751 * simplifying them because we wouldn't actually intend to
2752 * write out the pages, but rather only collect contiguous
2753 * logical block extents, call the multi-block allocator, and
2754 * then update the buffer heads with the block allocations.
2756 * For now, though, we'll cheat by calling filemap_flush(),
2757 * which will map the blocks, and start the I/O, but not
2758 * actually wait for the I/O to complete.
2760 return filemap_flush(inode
->i_mapping
);
2764 * bmap() is special. It gets used by applications such as lilo and by
2765 * the swapper to find the on-disk block of a specific piece of data.
2767 * Naturally, this is dangerous if the block concerned is still in the
2768 * journal. If somebody makes a swapfile on an ext4 data-journaling
2769 * filesystem and enables swap, then they may get a nasty shock when the
2770 * data getting swapped to that swapfile suddenly gets overwritten by
2771 * the original zero's written out previously to the journal and
2772 * awaiting writeback in the kernel's buffer cache.
2774 * So, if we see any bmap calls here on a modified, data-journaled file,
2775 * take extra steps to flush any blocks which might be in the cache.
2777 static sector_t
ext4_bmap(struct address_space
*mapping
, sector_t block
)
2779 struct inode
*inode
= mapping
->host
;
2784 * We can get here for an inline file via the FIBMAP ioctl
2786 if (ext4_has_inline_data(inode
))
2789 if (mapping_tagged(mapping
, PAGECACHE_TAG_DIRTY
) &&
2790 test_opt(inode
->i_sb
, DELALLOC
)) {
2792 * With delalloc we want to sync the file
2793 * so that we can make sure we allocate
2796 filemap_write_and_wait(mapping
);
2799 if (EXT4_JOURNAL(inode
) &&
2800 ext4_test_inode_state(inode
, EXT4_STATE_JDATA
)) {
2802 * This is a REALLY heavyweight approach, but the use of
2803 * bmap on dirty files is expected to be extremely rare:
2804 * only if we run lilo or swapon on a freshly made file
2805 * do we expect this to happen.
2807 * (bmap requires CAP_SYS_RAWIO so this does not
2808 * represent an unprivileged user DOS attack --- we'd be
2809 * in trouble if mortal users could trigger this path at
2812 * NB. EXT4_STATE_JDATA is not set on files other than
2813 * regular files. If somebody wants to bmap a directory
2814 * or symlink and gets confused because the buffer
2815 * hasn't yet been flushed to disk, they deserve
2816 * everything they get.
2819 ext4_clear_inode_state(inode
, EXT4_STATE_JDATA
);
2820 journal
= EXT4_JOURNAL(inode
);
2821 jbd2_journal_lock_updates(journal
);
2822 err
= jbd2_journal_flush(journal
);
2823 jbd2_journal_unlock_updates(journal
);
2829 return generic_block_bmap(mapping
, block
, ext4_get_block
);
2832 static int ext4_readpage(struct file
*file
, struct page
*page
)
2835 struct inode
*inode
= page
->mapping
->host
;
2837 trace_ext4_readpage(page
);
2839 if (ext4_has_inline_data(inode
))
2840 ret
= ext4_readpage_inline(inode
, page
);
2843 return mpage_readpage(page
, ext4_get_block
);
2849 ext4_readpages(struct file
*file
, struct address_space
*mapping
,
2850 struct list_head
*pages
, unsigned nr_pages
)
2852 struct inode
*inode
= mapping
->host
;
2854 /* If the file has inline data, no need to do readpages. */
2855 if (ext4_has_inline_data(inode
))
2858 return mpage_readpages(mapping
, pages
, nr_pages
, ext4_get_block
);
2861 static void ext4_invalidatepage_free_endio(struct page
*page
, unsigned long offset
)
2863 struct buffer_head
*head
, *bh
;
2864 unsigned int curr_off
= 0;
2866 if (!page_has_buffers(page
))
2868 head
= bh
= page_buffers(page
);
2870 if (offset
<= curr_off
&& test_clear_buffer_uninit(bh
)
2872 ext4_free_io_end(bh
->b_private
);
2873 bh
->b_private
= NULL
;
2874 bh
->b_end_io
= NULL
;
2876 curr_off
= curr_off
+ bh
->b_size
;
2877 bh
= bh
->b_this_page
;
2878 } while (bh
!= head
);
2881 static void ext4_invalidatepage(struct page
*page
, unsigned long offset
)
2883 trace_ext4_invalidatepage(page
, offset
);
2886 * free any io_end structure allocated for buffers to be discarded
2888 if (ext4_should_dioread_nolock(page
->mapping
->host
))
2889 ext4_invalidatepage_free_endio(page
, offset
);
2891 /* No journalling happens on data buffers when this function is used */
2892 WARN_ON(page_has_buffers(page
) && buffer_jbd(page_buffers(page
)));
2894 block_invalidatepage(page
, offset
);
2897 static int __ext4_journalled_invalidatepage(struct page
*page
,
2898 unsigned long offset
)
2900 journal_t
*journal
= EXT4_JOURNAL(page
->mapping
->host
);
2902 trace_ext4_journalled_invalidatepage(page
, offset
);
2905 * If it's a full truncate we just forget about the pending dirtying
2908 ClearPageChecked(page
);
2910 return jbd2_journal_invalidatepage(journal
, page
, offset
);
2913 /* Wrapper for aops... */
2914 static void ext4_journalled_invalidatepage(struct page
*page
,
2915 unsigned long offset
)
2917 WARN_ON(__ext4_journalled_invalidatepage(page
, offset
) < 0);
2920 static int ext4_releasepage(struct page
*page
, gfp_t wait
)
2922 journal_t
*journal
= EXT4_JOURNAL(page
->mapping
->host
);
2924 trace_ext4_releasepage(page
);
2926 WARN_ON(PageChecked(page
));
2927 if (!page_has_buffers(page
))
2930 return jbd2_journal_try_to_free_buffers(journal
, page
, wait
);
2932 return try_to_free_buffers(page
);
2936 * ext4_get_block used when preparing for a DIO write or buffer write.
2937 * We allocate an uinitialized extent if blocks haven't been allocated.
2938 * The extent will be converted to initialized after the IO is complete.
2940 int ext4_get_block_write(struct inode
*inode
, sector_t iblock
,
2941 struct buffer_head
*bh_result
, int create
)
2943 ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
2944 inode
->i_ino
, create
);
2945 return _ext4_get_block(inode
, iblock
, bh_result
,
2946 EXT4_GET_BLOCKS_IO_CREATE_EXT
);
2949 static int ext4_get_block_write_nolock(struct inode
*inode
, sector_t iblock
,
2950 struct buffer_head
*bh_result
, int create
)
2952 ext4_debug("ext4_get_block_write_nolock: inode %lu, create flag %d\n",
2953 inode
->i_ino
, create
);
2954 return _ext4_get_block(inode
, iblock
, bh_result
,
2955 EXT4_GET_BLOCKS_NO_LOCK
);
2958 static void ext4_end_io_dio(struct kiocb
*iocb
, loff_t offset
,
2959 ssize_t size
, void *private, int ret
,
2962 struct inode
*inode
= iocb
->ki_filp
->f_path
.dentry
->d_inode
;
2963 ext4_io_end_t
*io_end
= iocb
->private;
2965 /* if not async direct IO or dio with 0 bytes write, just return */
2966 if (!io_end
|| !size
)
2969 ext_debug("ext4_end_io_dio(): io_end 0x%p "
2970 "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
2971 iocb
->private, io_end
->inode
->i_ino
, iocb
, offset
,
2974 iocb
->private = NULL
;
2976 /* if not aio dio with unwritten extents, just free io and return */
2977 if (!(io_end
->flag
& EXT4_IO_END_UNWRITTEN
)) {
2978 ext4_free_io_end(io_end
);
2981 aio_complete(iocb
, ret
, 0);
2982 inode_dio_done(inode
);
2986 io_end
->offset
= offset
;
2987 io_end
->size
= size
;
2989 io_end
->iocb
= iocb
;
2990 io_end
->result
= ret
;
2993 ext4_add_complete_io(io_end
);
2996 static void ext4_end_io_buffer_write(struct buffer_head
*bh
, int uptodate
)
2998 ext4_io_end_t
*io_end
= bh
->b_private
;
2999 struct inode
*inode
;
3001 if (!test_clear_buffer_uninit(bh
) || !io_end
)
3004 if (!(io_end
->inode
->i_sb
->s_flags
& MS_ACTIVE
)) {
3005 ext4_msg(io_end
->inode
->i_sb
, KERN_INFO
,
3006 "sb umounted, discard end_io request for inode %lu",
3007 io_end
->inode
->i_ino
);
3008 ext4_free_io_end(io_end
);
3013 * It may be over-defensive here to check EXT4_IO_END_UNWRITTEN now,
3014 * but being more careful is always safe for the future change.
3016 inode
= io_end
->inode
;
3017 ext4_set_io_unwritten_flag(inode
, io_end
);
3018 ext4_add_complete_io(io_end
);
3020 bh
->b_private
= NULL
;
3021 bh
->b_end_io
= NULL
;
3022 clear_buffer_uninit(bh
);
3023 end_buffer_async_write(bh
, uptodate
);
3026 static int ext4_set_bh_endio(struct buffer_head
*bh
, struct inode
*inode
)
3028 ext4_io_end_t
*io_end
;
3029 struct page
*page
= bh
->b_page
;
3030 loff_t offset
= (sector_t
)page
->index
<< PAGE_CACHE_SHIFT
;
3031 size_t size
= bh
->b_size
;
3034 io_end
= ext4_init_io_end(inode
, GFP_ATOMIC
);
3036 pr_warn_ratelimited("%s: allocation fail\n", __func__
);
3040 io_end
->offset
= offset
;
3041 io_end
->size
= size
;
3043 * We need to hold a reference to the page to make sure it
3044 * doesn't get evicted before ext4_end_io_work() has a chance
3045 * to convert the extent from written to unwritten.
3047 io_end
->page
= page
;
3048 get_page(io_end
->page
);
3050 bh
->b_private
= io_end
;
3051 bh
->b_end_io
= ext4_end_io_buffer_write
;
3056 * For ext4 extent files, ext4 will do direct-io write to holes,
3057 * preallocated extents, and those write extend the file, no need to
3058 * fall back to buffered IO.
3060 * For holes, we fallocate those blocks, mark them as uninitialized
3061 * If those blocks were preallocated, we mark sure they are split, but
3062 * still keep the range to write as uninitialized.
3064 * The unwritten extents will be converted to written when DIO is completed.
3065 * For async direct IO, since the IO may still pending when return, we
3066 * set up an end_io call back function, which will do the conversion
3067 * when async direct IO completed.
3069 * If the O_DIRECT write will extend the file then add this inode to the
3070 * orphan list. So recovery will truncate it back to the original size
3071 * if the machine crashes during the write.
3074 static ssize_t
ext4_ext_direct_IO(int rw
, struct kiocb
*iocb
,
3075 const struct iovec
*iov
, loff_t offset
,
3076 unsigned long nr_segs
)
3078 struct file
*file
= iocb
->ki_filp
;
3079 struct inode
*inode
= file
->f_mapping
->host
;
3081 size_t count
= iov_length(iov
, nr_segs
);
3083 get_block_t
*get_block_func
= NULL
;
3085 loff_t final_size
= offset
+ count
;
3087 /* Use the old path for reads and writes beyond i_size. */
3088 if (rw
!= WRITE
|| final_size
> inode
->i_size
)
3089 return ext4_ind_direct_IO(rw
, iocb
, iov
, offset
, nr_segs
);
3091 BUG_ON(iocb
->private == NULL
);
3093 /* If we do a overwrite dio, i_mutex locking can be released */
3094 overwrite
= *((int *)iocb
->private);
3097 atomic_inc(&inode
->i_dio_count
);
3098 down_read(&EXT4_I(inode
)->i_data_sem
);
3099 mutex_unlock(&inode
->i_mutex
);
3103 * We could direct write to holes and fallocate.
3105 * Allocated blocks to fill the hole are marked as
3106 * uninitialized to prevent parallel buffered read to expose
3107 * the stale data before DIO complete the data IO.
3109 * As to previously fallocated extents, ext4 get_block will
3110 * just simply mark the buffer mapped but still keep the
3111 * extents uninitialized.
3113 * For non AIO case, we will convert those unwritten extents
3114 * to written after return back from blockdev_direct_IO.
3116 * For async DIO, the conversion needs to be deferred when the
3117 * IO is completed. The ext4 end_io callback function will be
3118 * called to take care of the conversion work. Here for async
3119 * case, we allocate an io_end structure to hook to the iocb.
3121 iocb
->private = NULL
;
3122 ext4_inode_aio_set(inode
, NULL
);
3123 if (!is_sync_kiocb(iocb
)) {
3124 ext4_io_end_t
*io_end
= ext4_init_io_end(inode
, GFP_NOFS
);
3129 io_end
->flag
|= EXT4_IO_END_DIRECT
;
3130 iocb
->private = io_end
;
3132 * we save the io structure for current async direct
3133 * IO, so that later ext4_map_blocks() could flag the
3134 * io structure whether there is a unwritten extents
3135 * needs to be converted when IO is completed.
3137 ext4_inode_aio_set(inode
, io_end
);
3141 get_block_func
= ext4_get_block_write_nolock
;
3143 get_block_func
= ext4_get_block_write
;
3144 dio_flags
= DIO_LOCKING
;
3146 ret
= __blockdev_direct_IO(rw
, iocb
, inode
,
3147 inode
->i_sb
->s_bdev
, iov
,
3155 ext4_inode_aio_set(inode
, NULL
);
3157 * The io_end structure takes a reference to the inode, that
3158 * structure needs to be destroyed and the reference to the
3159 * inode need to be dropped, when IO is complete, even with 0
3160 * byte write, or failed.
3162 * In the successful AIO DIO case, the io_end structure will
3163 * be destroyed and the reference to the inode will be dropped
3164 * after the end_io call back function is called.
3166 * In the case there is 0 byte write, or error case, since VFS
3167 * direct IO won't invoke the end_io call back function, we
3168 * need to free the end_io structure here.
3170 if (ret
!= -EIOCBQUEUED
&& ret
<= 0 && iocb
->private) {
3171 ext4_free_io_end(iocb
->private);
3172 iocb
->private = NULL
;
3173 } else if (ret
> 0 && !overwrite
&& ext4_test_inode_state(inode
,
3174 EXT4_STATE_DIO_UNWRITTEN
)) {
3177 * for non AIO case, since the IO is already
3178 * completed, we could do the conversion right here
3180 err
= ext4_convert_unwritten_extents(inode
,
3184 ext4_clear_inode_state(inode
, EXT4_STATE_DIO_UNWRITTEN
);
3188 /* take i_mutex locking again if we do a ovewrite dio */
3190 inode_dio_done(inode
);
3191 up_read(&EXT4_I(inode
)->i_data_sem
);
3192 mutex_lock(&inode
->i_mutex
);
3198 static ssize_t
ext4_direct_IO(int rw
, struct kiocb
*iocb
,
3199 const struct iovec
*iov
, loff_t offset
,
3200 unsigned long nr_segs
)
3202 struct file
*file
= iocb
->ki_filp
;
3203 struct inode
*inode
= file
->f_mapping
->host
;
3207 * If we are doing data journalling we don't support O_DIRECT
3209 if (ext4_should_journal_data(inode
))
3212 /* Let buffer I/O handle the inline data case. */
3213 if (ext4_has_inline_data(inode
))
3216 trace_ext4_direct_IO_enter(inode
, offset
, iov_length(iov
, nr_segs
), rw
);
3217 if (ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
))
3218 ret
= ext4_ext_direct_IO(rw
, iocb
, iov
, offset
, nr_segs
);
3220 ret
= ext4_ind_direct_IO(rw
, iocb
, iov
, offset
, nr_segs
);
3221 trace_ext4_direct_IO_exit(inode
, offset
,
3222 iov_length(iov
, nr_segs
), rw
, ret
);
3227 * Pages can be marked dirty completely asynchronously from ext4's journalling
3228 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
3229 * much here because ->set_page_dirty is called under VFS locks. The page is
3230 * not necessarily locked.
3232 * We cannot just dirty the page and leave attached buffers clean, because the
3233 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
3234 * or jbddirty because all the journalling code will explode.
3236 * So what we do is to mark the page "pending dirty" and next time writepage
3237 * is called, propagate that into the buffers appropriately.
3239 static int ext4_journalled_set_page_dirty(struct page
*page
)
3241 SetPageChecked(page
);
3242 return __set_page_dirty_nobuffers(page
);
3245 static const struct address_space_operations ext4_ordered_aops
= {
3246 .readpage
= ext4_readpage
,
3247 .readpages
= ext4_readpages
,
3248 .writepage
= ext4_writepage
,
3249 .write_begin
= ext4_write_begin
,
3250 .write_end
= ext4_ordered_write_end
,
3252 .invalidatepage
= ext4_invalidatepage
,
3253 .releasepage
= ext4_releasepage
,
3254 .direct_IO
= ext4_direct_IO
,
3255 .migratepage
= buffer_migrate_page
,
3256 .is_partially_uptodate
= block_is_partially_uptodate
,
3257 .error_remove_page
= generic_error_remove_page
,
3260 static const struct address_space_operations ext4_writeback_aops
= {
3261 .readpage
= ext4_readpage
,
3262 .readpages
= ext4_readpages
,
3263 .writepage
= ext4_writepage
,
3264 .write_begin
= ext4_write_begin
,
3265 .write_end
= ext4_writeback_write_end
,
3267 .invalidatepage
= ext4_invalidatepage
,
3268 .releasepage
= ext4_releasepage
,
3269 .direct_IO
= ext4_direct_IO
,
3270 .migratepage
= buffer_migrate_page
,
3271 .is_partially_uptodate
= block_is_partially_uptodate
,
3272 .error_remove_page
= generic_error_remove_page
,
3275 static const struct address_space_operations ext4_journalled_aops
= {
3276 .readpage
= ext4_readpage
,
3277 .readpages
= ext4_readpages
,
3278 .writepage
= ext4_writepage
,
3279 .write_begin
= ext4_write_begin
,
3280 .write_end
= ext4_journalled_write_end
,
3281 .set_page_dirty
= ext4_journalled_set_page_dirty
,
3283 .invalidatepage
= ext4_journalled_invalidatepage
,
3284 .releasepage
= ext4_releasepage
,
3285 .direct_IO
= ext4_direct_IO
,
3286 .is_partially_uptodate
= block_is_partially_uptodate
,
3287 .error_remove_page
= generic_error_remove_page
,
3290 static const struct address_space_operations ext4_da_aops
= {
3291 .readpage
= ext4_readpage
,
3292 .readpages
= ext4_readpages
,
3293 .writepage
= ext4_writepage
,
3294 .writepages
= ext4_da_writepages
,
3295 .write_begin
= ext4_da_write_begin
,
3296 .write_end
= ext4_da_write_end
,
3298 .invalidatepage
= ext4_da_invalidatepage
,
3299 .releasepage
= ext4_releasepage
,
3300 .direct_IO
= ext4_direct_IO
,
3301 .migratepage
= buffer_migrate_page
,
3302 .is_partially_uptodate
= block_is_partially_uptodate
,
3303 .error_remove_page
= generic_error_remove_page
,
3306 void ext4_set_aops(struct inode
*inode
)
3308 switch (ext4_inode_journal_mode(inode
)) {
3309 case EXT4_INODE_ORDERED_DATA_MODE
:
3310 if (test_opt(inode
->i_sb
, DELALLOC
))
3311 inode
->i_mapping
->a_ops
= &ext4_da_aops
;
3313 inode
->i_mapping
->a_ops
= &ext4_ordered_aops
;
3315 case EXT4_INODE_WRITEBACK_DATA_MODE
:
3316 if (test_opt(inode
->i_sb
, DELALLOC
))
3317 inode
->i_mapping
->a_ops
= &ext4_da_aops
;
3319 inode
->i_mapping
->a_ops
= &ext4_writeback_aops
;
3321 case EXT4_INODE_JOURNAL_DATA_MODE
:
3322 inode
->i_mapping
->a_ops
= &ext4_journalled_aops
;
3331 * ext4_discard_partial_page_buffers()
3332 * Wrapper function for ext4_discard_partial_page_buffers_no_lock.
3333 * This function finds and locks the page containing the offset
3334 * "from" and passes it to ext4_discard_partial_page_buffers_no_lock.
3335 * Calling functions that already have the page locked should call
3336 * ext4_discard_partial_page_buffers_no_lock directly.
3338 int ext4_discard_partial_page_buffers(handle_t
*handle
,
3339 struct address_space
*mapping
, loff_t from
,
3340 loff_t length
, int flags
)
3342 struct inode
*inode
= mapping
->host
;
3346 page
= find_or_create_page(mapping
, from
>> PAGE_CACHE_SHIFT
,
3347 mapping_gfp_mask(mapping
) & ~__GFP_FS
);
3351 err
= ext4_discard_partial_page_buffers_no_lock(handle
, inode
, page
,
3352 from
, length
, flags
);
3355 page_cache_release(page
);
3360 * ext4_discard_partial_page_buffers_no_lock()
3361 * Zeros a page range of length 'length' starting from offset 'from'.
3362 * Buffer heads that correspond to the block aligned regions of the
3363 * zeroed range will be unmapped. Unblock aligned regions
3364 * will have the corresponding buffer head mapped if needed so that
3365 * that region of the page can be updated with the partial zero out.
3367 * This function assumes that the page has already been locked. The
3368 * The range to be discarded must be contained with in the given page.
3369 * If the specified range exceeds the end of the page it will be shortened
3370 * to the end of the page that corresponds to 'from'. This function is
3371 * appropriate for updating a page and it buffer heads to be unmapped and
3372 * zeroed for blocks that have been either released, or are going to be
3375 * handle: The journal handle
3376 * inode: The files inode
3377 * page: A locked page that contains the offset "from"
3378 * from: The starting byte offset (from the beginning of the file)
3379 * to begin discarding
3380 * len: The length of bytes to discard
3381 * flags: Optional flags that may be used:
3383 * EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED
3384 * Only zero the regions of the page whose buffer heads
3385 * have already been unmapped. This flag is appropriate
3386 * for updating the contents of a page whose blocks may
3387 * have already been released, and we only want to zero
3388 * out the regions that correspond to those released blocks.
3390 * Returns zero on success or negative on failure.
3392 static int ext4_discard_partial_page_buffers_no_lock(handle_t
*handle
,
3393 struct inode
*inode
, struct page
*page
, loff_t from
,
3394 loff_t length
, int flags
)
3396 ext4_fsblk_t index
= from
>> PAGE_CACHE_SHIFT
;
3397 unsigned int offset
= from
& (PAGE_CACHE_SIZE
-1);
3398 unsigned int blocksize
, max
, pos
;
3400 struct buffer_head
*bh
;
3403 blocksize
= inode
->i_sb
->s_blocksize
;
3404 max
= PAGE_CACHE_SIZE
- offset
;
3406 if (index
!= page
->index
)
3410 * correct length if it does not fall between
3411 * 'from' and the end of the page
3413 if (length
> max
|| length
< 0)
3416 iblock
= index
<< (PAGE_CACHE_SHIFT
- inode
->i_sb
->s_blocksize_bits
);
3418 if (!page_has_buffers(page
))
3419 create_empty_buffers(page
, blocksize
, 0);
3421 /* Find the buffer that contains "offset" */
3422 bh
= page_buffers(page
);
3424 while (offset
>= pos
) {
3425 bh
= bh
->b_this_page
;
3431 while (pos
< offset
+ length
) {
3432 unsigned int end_of_block
, range_to_discard
;
3436 /* The length of space left to zero and unmap */
3437 range_to_discard
= offset
+ length
- pos
;
3439 /* The length of space until the end of the block */
3440 end_of_block
= blocksize
- (pos
& (blocksize
-1));
3443 * Do not unmap or zero past end of block
3444 * for this buffer head
3446 if (range_to_discard
> end_of_block
)
3447 range_to_discard
= end_of_block
;
3451 * Skip this buffer head if we are only zeroing unampped
3452 * regions of the page
3454 if (flags
& EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED
&&
3458 /* If the range is block aligned, unmap */
3459 if (range_to_discard
== blocksize
) {
3460 clear_buffer_dirty(bh
);
3462 clear_buffer_mapped(bh
);
3463 clear_buffer_req(bh
);
3464 clear_buffer_new(bh
);
3465 clear_buffer_delay(bh
);
3466 clear_buffer_unwritten(bh
);
3467 clear_buffer_uptodate(bh
);
3468 zero_user(page
, pos
, range_to_discard
);
3469 BUFFER_TRACE(bh
, "Buffer discarded");
3474 * If this block is not completely contained in the range
3475 * to be discarded, then it is not going to be released. Because
3476 * we need to keep this block, we need to make sure this part
3477 * of the page is uptodate before we modify it by writeing
3478 * partial zeros on it.
3480 if (!buffer_mapped(bh
)) {
3482 * Buffer head must be mapped before we can read
3485 BUFFER_TRACE(bh
, "unmapped");
3486 ext4_get_block(inode
, iblock
, bh
, 0);
3487 /* unmapped? It's a hole - nothing to do */
3488 if (!buffer_mapped(bh
)) {
3489 BUFFER_TRACE(bh
, "still unmapped");
3494 /* Ok, it's mapped. Make sure it's up-to-date */
3495 if (PageUptodate(page
))
3496 set_buffer_uptodate(bh
);
3498 if (!buffer_uptodate(bh
)) {
3500 ll_rw_block(READ
, 1, &bh
);
3502 /* Uhhuh. Read error. Complain and punt.*/
3503 if (!buffer_uptodate(bh
))
3507 if (ext4_should_journal_data(inode
)) {
3508 BUFFER_TRACE(bh
, "get write access");
3509 err
= ext4_journal_get_write_access(handle
, bh
);
3514 zero_user(page
, pos
, range_to_discard
);
3517 if (ext4_should_journal_data(inode
)) {
3518 err
= ext4_handle_dirty_metadata(handle
, inode
, bh
);
3520 mark_buffer_dirty(bh
);
3522 BUFFER_TRACE(bh
, "Partial buffer zeroed");
3524 bh
= bh
->b_this_page
;
3526 pos
+= range_to_discard
;
3532 int ext4_can_truncate(struct inode
*inode
)
3534 if (S_ISREG(inode
->i_mode
))
3536 if (S_ISDIR(inode
->i_mode
))
3538 if (S_ISLNK(inode
->i_mode
))
3539 return !ext4_inode_is_fast_symlink(inode
);
3544 * ext4_punch_hole: punches a hole in a file by releaseing the blocks
3545 * associated with the given offset and length
3547 * @inode: File inode
3548 * @offset: The offset where the hole will begin
3549 * @len: The length of the hole
3551 * Returns: 0 on success or negative on failure
3554 int ext4_punch_hole(struct file
*file
, loff_t offset
, loff_t length
)
3556 struct inode
*inode
= file
->f_path
.dentry
->d_inode
;
3557 if (!S_ISREG(inode
->i_mode
))
3560 if (!ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
)) {
3561 /* TODO: Add support for non extent hole punching */
3565 if (EXT4_SB(inode
->i_sb
)->s_cluster_ratio
> 1) {
3566 /* TODO: Add support for bigalloc file systems */
3570 return ext4_ext_punch_hole(file
, offset
, length
);
3576 * We block out ext4_get_block() block instantiations across the entire
3577 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3578 * simultaneously on behalf of the same inode.
3580 * As we work through the truncate and commit bits of it to the journal there
3581 * is one core, guiding principle: the file's tree must always be consistent on
3582 * disk. We must be able to restart the truncate after a crash.
3584 * The file's tree may be transiently inconsistent in memory (although it
3585 * probably isn't), but whenever we close off and commit a journal transaction,
3586 * the contents of (the filesystem + the journal) must be consistent and
3587 * restartable. It's pretty simple, really: bottom up, right to left (although
3588 * left-to-right works OK too).
3590 * Note that at recovery time, journal replay occurs *before* the restart of
3591 * truncate against the orphan inode list.
3593 * The committed inode has the new, desired i_size (which is the same as
3594 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
3595 * that this inode's truncate did not complete and it will again call
3596 * ext4_truncate() to have another go. So there will be instantiated blocks
3597 * to the right of the truncation point in a crashed ext4 filesystem. But
3598 * that's fine - as long as they are linked from the inode, the post-crash
3599 * ext4_truncate() run will find them and release them.
3601 void ext4_truncate(struct inode
*inode
)
3603 trace_ext4_truncate_enter(inode
);
3605 if (!ext4_can_truncate(inode
))
3608 ext4_clear_inode_flag(inode
, EXT4_INODE_EOFBLOCKS
);
3610 if (inode
->i_size
== 0 && !test_opt(inode
->i_sb
, NO_AUTO_DA_ALLOC
))
3611 ext4_set_inode_state(inode
, EXT4_STATE_DA_ALLOC_CLOSE
);
3613 if (ext4_has_inline_data(inode
)) {
3616 ext4_inline_data_truncate(inode
, &has_inline
);
3621 if (ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
))
3622 ext4_ext_truncate(inode
);
3624 ext4_ind_truncate(inode
);
3626 trace_ext4_truncate_exit(inode
);
3630 * ext4_get_inode_loc returns with an extra refcount against the inode's
3631 * underlying buffer_head on success. If 'in_mem' is true, we have all
3632 * data in memory that is needed to recreate the on-disk version of this
3635 static int __ext4_get_inode_loc(struct inode
*inode
,
3636 struct ext4_iloc
*iloc
, int in_mem
)
3638 struct ext4_group_desc
*gdp
;
3639 struct buffer_head
*bh
;
3640 struct super_block
*sb
= inode
->i_sb
;
3642 int inodes_per_block
, inode_offset
;
3645 if (!ext4_valid_inum(sb
, inode
->i_ino
))
3648 iloc
->block_group
= (inode
->i_ino
- 1) / EXT4_INODES_PER_GROUP(sb
);
3649 gdp
= ext4_get_group_desc(sb
, iloc
->block_group
, NULL
);
3654 * Figure out the offset within the block group inode table
3656 inodes_per_block
= EXT4_SB(sb
)->s_inodes_per_block
;
3657 inode_offset
= ((inode
->i_ino
- 1) %
3658 EXT4_INODES_PER_GROUP(sb
));
3659 block
= ext4_inode_table(sb
, gdp
) + (inode_offset
/ inodes_per_block
);
3660 iloc
->offset
= (inode_offset
% inodes_per_block
) * EXT4_INODE_SIZE(sb
);
3662 bh
= sb_getblk(sb
, block
);
3664 EXT4_ERROR_INODE_BLOCK(inode
, block
,
3665 "unable to read itable block");
3668 if (!buffer_uptodate(bh
)) {
3672 * If the buffer has the write error flag, we have failed
3673 * to write out another inode in the same block. In this
3674 * case, we don't have to read the block because we may
3675 * read the old inode data successfully.
3677 if (buffer_write_io_error(bh
) && !buffer_uptodate(bh
))
3678 set_buffer_uptodate(bh
);
3680 if (buffer_uptodate(bh
)) {
3681 /* someone brought it uptodate while we waited */
3687 * If we have all information of the inode in memory and this
3688 * is the only valid inode in the block, we need not read the
3692 struct buffer_head
*bitmap_bh
;
3695 start
= inode_offset
& ~(inodes_per_block
- 1);
3697 /* Is the inode bitmap in cache? */
3698 bitmap_bh
= sb_getblk(sb
, ext4_inode_bitmap(sb
, gdp
));
3703 * If the inode bitmap isn't in cache then the
3704 * optimisation may end up performing two reads instead
3705 * of one, so skip it.
3707 if (!buffer_uptodate(bitmap_bh
)) {
3711 for (i
= start
; i
< start
+ inodes_per_block
; i
++) {
3712 if (i
== inode_offset
)
3714 if (ext4_test_bit(i
, bitmap_bh
->b_data
))
3718 if (i
== start
+ inodes_per_block
) {
3719 /* all other inodes are free, so skip I/O */
3720 memset(bh
->b_data
, 0, bh
->b_size
);
3721 set_buffer_uptodate(bh
);
3729 * If we need to do any I/O, try to pre-readahead extra
3730 * blocks from the inode table.
3732 if (EXT4_SB(sb
)->s_inode_readahead_blks
) {
3733 ext4_fsblk_t b
, end
, table
;
3736 table
= ext4_inode_table(sb
, gdp
);
3737 /* s_inode_readahead_blks is always a power of 2 */
3738 b
= block
& ~(EXT4_SB(sb
)->s_inode_readahead_blks
-1);
3741 end
= b
+ EXT4_SB(sb
)->s_inode_readahead_blks
;
3742 num
= EXT4_INODES_PER_GROUP(sb
);
3743 if (ext4_has_group_desc_csum(sb
))
3744 num
-= ext4_itable_unused_count(sb
, gdp
);
3745 table
+= num
/ inodes_per_block
;
3749 sb_breadahead(sb
, b
++);
3753 * There are other valid inodes in the buffer, this inode
3754 * has in-inode xattrs, or we don't have this inode in memory.
3755 * Read the block from disk.
3757 trace_ext4_load_inode(inode
);
3759 bh
->b_end_io
= end_buffer_read_sync
;
3760 submit_bh(READ
| REQ_META
| REQ_PRIO
, bh
);
3762 if (!buffer_uptodate(bh
)) {
3763 EXT4_ERROR_INODE_BLOCK(inode
, block
,
3764 "unable to read itable block");
3774 int ext4_get_inode_loc(struct inode
*inode
, struct ext4_iloc
*iloc
)
3776 /* We have all inode data except xattrs in memory here. */
3777 return __ext4_get_inode_loc(inode
, iloc
,
3778 !ext4_test_inode_state(inode
, EXT4_STATE_XATTR
));
3781 void ext4_set_inode_flags(struct inode
*inode
)
3783 unsigned int flags
= EXT4_I(inode
)->i_flags
;
3785 inode
->i_flags
&= ~(S_SYNC
|S_APPEND
|S_IMMUTABLE
|S_NOATIME
|S_DIRSYNC
);
3786 if (flags
& EXT4_SYNC_FL
)
3787 inode
->i_flags
|= S_SYNC
;
3788 if (flags
& EXT4_APPEND_FL
)
3789 inode
->i_flags
|= S_APPEND
;
3790 if (flags
& EXT4_IMMUTABLE_FL
)
3791 inode
->i_flags
|= S_IMMUTABLE
;
3792 if (flags
& EXT4_NOATIME_FL
)
3793 inode
->i_flags
|= S_NOATIME
;
3794 if (flags
& EXT4_DIRSYNC_FL
)
3795 inode
->i_flags
|= S_DIRSYNC
;
3798 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
3799 void ext4_get_inode_flags(struct ext4_inode_info
*ei
)
3801 unsigned int vfs_fl
;
3802 unsigned long old_fl
, new_fl
;
3805 vfs_fl
= ei
->vfs_inode
.i_flags
;
3806 old_fl
= ei
->i_flags
;
3807 new_fl
= old_fl
& ~(EXT4_SYNC_FL
|EXT4_APPEND_FL
|
3808 EXT4_IMMUTABLE_FL
|EXT4_NOATIME_FL
|
3810 if (vfs_fl
& S_SYNC
)
3811 new_fl
|= EXT4_SYNC_FL
;
3812 if (vfs_fl
& S_APPEND
)
3813 new_fl
|= EXT4_APPEND_FL
;
3814 if (vfs_fl
& S_IMMUTABLE
)
3815 new_fl
|= EXT4_IMMUTABLE_FL
;
3816 if (vfs_fl
& S_NOATIME
)
3817 new_fl
|= EXT4_NOATIME_FL
;
3818 if (vfs_fl
& S_DIRSYNC
)
3819 new_fl
|= EXT4_DIRSYNC_FL
;
3820 } while (cmpxchg(&ei
->i_flags
, old_fl
, new_fl
) != old_fl
);
3823 static blkcnt_t
ext4_inode_blocks(struct ext4_inode
*raw_inode
,
3824 struct ext4_inode_info
*ei
)
3827 struct inode
*inode
= &(ei
->vfs_inode
);
3828 struct super_block
*sb
= inode
->i_sb
;
3830 if (EXT4_HAS_RO_COMPAT_FEATURE(sb
,
3831 EXT4_FEATURE_RO_COMPAT_HUGE_FILE
)) {
3832 /* we are using combined 48 bit field */
3833 i_blocks
= ((u64
)le16_to_cpu(raw_inode
->i_blocks_high
)) << 32 |
3834 le32_to_cpu(raw_inode
->i_blocks_lo
);
3835 if (ext4_test_inode_flag(inode
, EXT4_INODE_HUGE_FILE
)) {
3836 /* i_blocks represent file system block size */
3837 return i_blocks
<< (inode
->i_blkbits
- 9);
3842 return le32_to_cpu(raw_inode
->i_blocks_lo
);
3846 static inline void ext4_iget_extra_inode(struct inode
*inode
,
3847 struct ext4_inode
*raw_inode
,
3848 struct ext4_inode_info
*ei
)
3850 __le32
*magic
= (void *)raw_inode
+
3851 EXT4_GOOD_OLD_INODE_SIZE
+ ei
->i_extra_isize
;
3852 if (*magic
== cpu_to_le32(EXT4_XATTR_MAGIC
)) {
3853 ext4_set_inode_state(inode
, EXT4_STATE_XATTR
);
3854 ext4_find_inline_data_nolock(inode
);
3856 EXT4_I(inode
)->i_inline_off
= 0;
3859 struct inode
*ext4_iget(struct super_block
*sb
, unsigned long ino
)
3861 struct ext4_iloc iloc
;
3862 struct ext4_inode
*raw_inode
;
3863 struct ext4_inode_info
*ei
;
3864 struct inode
*inode
;
3865 journal_t
*journal
= EXT4_SB(sb
)->s_journal
;
3871 inode
= iget_locked(sb
, ino
);
3873 return ERR_PTR(-ENOMEM
);
3874 if (!(inode
->i_state
& I_NEW
))
3880 ret
= __ext4_get_inode_loc(inode
, &iloc
, 0);
3883 raw_inode
= ext4_raw_inode(&iloc
);
3885 if (EXT4_INODE_SIZE(inode
->i_sb
) > EXT4_GOOD_OLD_INODE_SIZE
) {
3886 ei
->i_extra_isize
= le16_to_cpu(raw_inode
->i_extra_isize
);
3887 if (EXT4_GOOD_OLD_INODE_SIZE
+ ei
->i_extra_isize
>
3888 EXT4_INODE_SIZE(inode
->i_sb
)) {
3889 EXT4_ERROR_INODE(inode
, "bad extra_isize (%u != %u)",
3890 EXT4_GOOD_OLD_INODE_SIZE
+ ei
->i_extra_isize
,
3891 EXT4_INODE_SIZE(inode
->i_sb
));
3896 ei
->i_extra_isize
= 0;
3898 /* Precompute checksum seed for inode metadata */
3899 if (EXT4_HAS_RO_COMPAT_FEATURE(sb
,
3900 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM
)) {
3901 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
3903 __le32 inum
= cpu_to_le32(inode
->i_ino
);
3904 __le32 gen
= raw_inode
->i_generation
;
3905 csum
= ext4_chksum(sbi
, sbi
->s_csum_seed
, (__u8
*)&inum
,
3907 ei
->i_csum_seed
= ext4_chksum(sbi
, csum
, (__u8
*)&gen
,
3911 if (!ext4_inode_csum_verify(inode
, raw_inode
, ei
)) {
3912 EXT4_ERROR_INODE(inode
, "checksum invalid");
3917 inode
->i_mode
= le16_to_cpu(raw_inode
->i_mode
);
3918 i_uid
= (uid_t
)le16_to_cpu(raw_inode
->i_uid_low
);
3919 i_gid
= (gid_t
)le16_to_cpu(raw_inode
->i_gid_low
);
3920 if (!(test_opt(inode
->i_sb
, NO_UID32
))) {
3921 i_uid
|= le16_to_cpu(raw_inode
->i_uid_high
) << 16;
3922 i_gid
|= le16_to_cpu(raw_inode
->i_gid_high
) << 16;
3924 i_uid_write(inode
, i_uid
);
3925 i_gid_write(inode
, i_gid
);
3926 set_nlink(inode
, le16_to_cpu(raw_inode
->i_links_count
));
3928 ext4_clear_state_flags(ei
); /* Only relevant on 32-bit archs */
3929 ei
->i_inline_off
= 0;
3930 ei
->i_dir_start_lookup
= 0;
3931 ei
->i_dtime
= le32_to_cpu(raw_inode
->i_dtime
);
3932 /* We now have enough fields to check if the inode was active or not.
3933 * This is needed because nfsd might try to access dead inodes
3934 * the test is that same one that e2fsck uses
3935 * NeilBrown 1999oct15
3937 if (inode
->i_nlink
== 0) {
3938 if (inode
->i_mode
== 0 ||
3939 !(EXT4_SB(inode
->i_sb
)->s_mount_state
& EXT4_ORPHAN_FS
)) {
3940 /* this inode is deleted */
3944 /* The only unlinked inodes we let through here have
3945 * valid i_mode and are being read by the orphan
3946 * recovery code: that's fine, we're about to complete
3947 * the process of deleting those. */
3949 ei
->i_flags
= le32_to_cpu(raw_inode
->i_flags
);
3950 inode
->i_blocks
= ext4_inode_blocks(raw_inode
, ei
);
3951 ei
->i_file_acl
= le32_to_cpu(raw_inode
->i_file_acl_lo
);
3952 if (EXT4_HAS_INCOMPAT_FEATURE(sb
, EXT4_FEATURE_INCOMPAT_64BIT
))
3954 ((__u64
)le16_to_cpu(raw_inode
->i_file_acl_high
)) << 32;
3955 inode
->i_size
= ext4_isize(raw_inode
);
3956 ei
->i_disksize
= inode
->i_size
;
3958 ei
->i_reserved_quota
= 0;
3960 inode
->i_generation
= le32_to_cpu(raw_inode
->i_generation
);
3961 ei
->i_block_group
= iloc
.block_group
;
3962 ei
->i_last_alloc_group
= ~0;
3964 * NOTE! The in-memory inode i_data array is in little-endian order
3965 * even on big-endian machines: we do NOT byteswap the block numbers!
3967 for (block
= 0; block
< EXT4_N_BLOCKS
; block
++)
3968 ei
->i_data
[block
] = raw_inode
->i_block
[block
];
3969 INIT_LIST_HEAD(&ei
->i_orphan
);
3972 * Set transaction id's of transactions that have to be committed
3973 * to finish f[data]sync. We set them to currently running transaction
3974 * as we cannot be sure that the inode or some of its metadata isn't
3975 * part of the transaction - the inode could have been reclaimed and
3976 * now it is reread from disk.
3979 transaction_t
*transaction
;
3982 read_lock(&journal
->j_state_lock
);
3983 if (journal
->j_running_transaction
)
3984 transaction
= journal
->j_running_transaction
;
3986 transaction
= journal
->j_committing_transaction
;
3988 tid
= transaction
->t_tid
;
3990 tid
= journal
->j_commit_sequence
;
3991 read_unlock(&journal
->j_state_lock
);
3992 ei
->i_sync_tid
= tid
;
3993 ei
->i_datasync_tid
= tid
;
3996 if (EXT4_INODE_SIZE(inode
->i_sb
) > EXT4_GOOD_OLD_INODE_SIZE
) {
3997 if (ei
->i_extra_isize
== 0) {
3998 /* The extra space is currently unused. Use it. */
3999 ei
->i_extra_isize
= sizeof(struct ext4_inode
) -
4000 EXT4_GOOD_OLD_INODE_SIZE
;
4002 ext4_iget_extra_inode(inode
, raw_inode
, ei
);
4006 EXT4_INODE_GET_XTIME(i_ctime
, inode
, raw_inode
);
4007 EXT4_INODE_GET_XTIME(i_mtime
, inode
, raw_inode
);
4008 EXT4_INODE_GET_XTIME(i_atime
, inode
, raw_inode
);
4009 EXT4_EINODE_GET_XTIME(i_crtime
, ei
, raw_inode
);
4011 inode
->i_version
= le32_to_cpu(raw_inode
->i_disk_version
);
4012 if (EXT4_INODE_SIZE(inode
->i_sb
) > EXT4_GOOD_OLD_INODE_SIZE
) {
4013 if (EXT4_FITS_IN_INODE(raw_inode
, ei
, i_version_hi
))
4015 (__u64
)(le32_to_cpu(raw_inode
->i_version_hi
)) << 32;
4019 if (ei
->i_file_acl
&&
4020 !ext4_data_block_valid(EXT4_SB(sb
), ei
->i_file_acl
, 1)) {
4021 EXT4_ERROR_INODE(inode
, "bad extended attribute block %llu",
4025 } else if (!ext4_has_inline_data(inode
)) {
4026 if (ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
)) {
4027 if ((S_ISREG(inode
->i_mode
) || S_ISDIR(inode
->i_mode
) ||
4028 (S_ISLNK(inode
->i_mode
) &&
4029 !ext4_inode_is_fast_symlink(inode
))))
4030 /* Validate extent which is part of inode */
4031 ret
= ext4_ext_check_inode(inode
);
4032 } else if (S_ISREG(inode
->i_mode
) || S_ISDIR(inode
->i_mode
) ||
4033 (S_ISLNK(inode
->i_mode
) &&
4034 !ext4_inode_is_fast_symlink(inode
))) {
4035 /* Validate block references which are part of inode */
4036 ret
= ext4_ind_check_inode(inode
);
4042 if (S_ISREG(inode
->i_mode
)) {
4043 inode
->i_op
= &ext4_file_inode_operations
;
4044 inode
->i_fop
= &ext4_file_operations
;
4045 ext4_set_aops(inode
);
4046 } else if (S_ISDIR(inode
->i_mode
)) {
4047 inode
->i_op
= &ext4_dir_inode_operations
;
4048 inode
->i_fop
= &ext4_dir_operations
;
4049 } else if (S_ISLNK(inode
->i_mode
)) {
4050 if (ext4_inode_is_fast_symlink(inode
)) {
4051 inode
->i_op
= &ext4_fast_symlink_inode_operations
;
4052 nd_terminate_link(ei
->i_data
, inode
->i_size
,
4053 sizeof(ei
->i_data
) - 1);
4055 inode
->i_op
= &ext4_symlink_inode_operations
;
4056 ext4_set_aops(inode
);
4058 } else if (S_ISCHR(inode
->i_mode
) || S_ISBLK(inode
->i_mode
) ||
4059 S_ISFIFO(inode
->i_mode
) || S_ISSOCK(inode
->i_mode
)) {
4060 inode
->i_op
= &ext4_special_inode_operations
;
4061 if (raw_inode
->i_block
[0])
4062 init_special_inode(inode
, inode
->i_mode
,
4063 old_decode_dev(le32_to_cpu(raw_inode
->i_block
[0])));
4065 init_special_inode(inode
, inode
->i_mode
,
4066 new_decode_dev(le32_to_cpu(raw_inode
->i_block
[1])));
4069 EXT4_ERROR_INODE(inode
, "bogus i_mode (%o)", inode
->i_mode
);
4073 ext4_set_inode_flags(inode
);
4074 unlock_new_inode(inode
);
4080 return ERR_PTR(ret
);
4083 static int ext4_inode_blocks_set(handle_t
*handle
,
4084 struct ext4_inode
*raw_inode
,
4085 struct ext4_inode_info
*ei
)
4087 struct inode
*inode
= &(ei
->vfs_inode
);
4088 u64 i_blocks
= inode
->i_blocks
;
4089 struct super_block
*sb
= inode
->i_sb
;
4091 if (i_blocks
<= ~0U) {
4093 * i_blocks can be represented in a 32 bit variable
4094 * as multiple of 512 bytes
4096 raw_inode
->i_blocks_lo
= cpu_to_le32(i_blocks
);
4097 raw_inode
->i_blocks_high
= 0;
4098 ext4_clear_inode_flag(inode
, EXT4_INODE_HUGE_FILE
);
4101 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb
, EXT4_FEATURE_RO_COMPAT_HUGE_FILE
))
4104 if (i_blocks
<= 0xffffffffffffULL
) {
4106 * i_blocks can be represented in a 48 bit variable
4107 * as multiple of 512 bytes
4109 raw_inode
->i_blocks_lo
= cpu_to_le32(i_blocks
);
4110 raw_inode
->i_blocks_high
= cpu_to_le16(i_blocks
>> 32);
4111 ext4_clear_inode_flag(inode
, EXT4_INODE_HUGE_FILE
);
4113 ext4_set_inode_flag(inode
, EXT4_INODE_HUGE_FILE
);
4114 /* i_block is stored in file system block size */
4115 i_blocks
= i_blocks
>> (inode
->i_blkbits
- 9);
4116 raw_inode
->i_blocks_lo
= cpu_to_le32(i_blocks
);
4117 raw_inode
->i_blocks_high
= cpu_to_le16(i_blocks
>> 32);
4123 * Post the struct inode info into an on-disk inode location in the
4124 * buffer-cache. This gobbles the caller's reference to the
4125 * buffer_head in the inode location struct.
4127 * The caller must have write access to iloc->bh.
4129 static int ext4_do_update_inode(handle_t
*handle
,
4130 struct inode
*inode
,
4131 struct ext4_iloc
*iloc
)
4133 struct ext4_inode
*raw_inode
= ext4_raw_inode(iloc
);
4134 struct ext4_inode_info
*ei
= EXT4_I(inode
);
4135 struct buffer_head
*bh
= iloc
->bh
;
4136 int err
= 0, rc
, block
;
4137 int need_datasync
= 0;
4141 /* For fields not not tracking in the in-memory inode,
4142 * initialise them to zero for new inodes. */
4143 if (ext4_test_inode_state(inode
, EXT4_STATE_NEW
))
4144 memset(raw_inode
, 0, EXT4_SB(inode
->i_sb
)->s_inode_size
);
4146 ext4_get_inode_flags(ei
);
4147 raw_inode
->i_mode
= cpu_to_le16(inode
->i_mode
);
4148 i_uid
= i_uid_read(inode
);
4149 i_gid
= i_gid_read(inode
);
4150 if (!(test_opt(inode
->i_sb
, NO_UID32
))) {
4151 raw_inode
->i_uid_low
= cpu_to_le16(low_16_bits(i_uid
));
4152 raw_inode
->i_gid_low
= cpu_to_le16(low_16_bits(i_gid
));
4154 * Fix up interoperability with old kernels. Otherwise, old inodes get
4155 * re-used with the upper 16 bits of the uid/gid intact
4158 raw_inode
->i_uid_high
=
4159 cpu_to_le16(high_16_bits(i_uid
));
4160 raw_inode
->i_gid_high
=
4161 cpu_to_le16(high_16_bits(i_gid
));
4163 raw_inode
->i_uid_high
= 0;
4164 raw_inode
->i_gid_high
= 0;
4167 raw_inode
->i_uid_low
= cpu_to_le16(fs_high2lowuid(i_uid
));
4168 raw_inode
->i_gid_low
= cpu_to_le16(fs_high2lowgid(i_gid
));
4169 raw_inode
->i_uid_high
= 0;
4170 raw_inode
->i_gid_high
= 0;
4172 raw_inode
->i_links_count
= cpu_to_le16(inode
->i_nlink
);
4174 EXT4_INODE_SET_XTIME(i_ctime
, inode
, raw_inode
);
4175 EXT4_INODE_SET_XTIME(i_mtime
, inode
, raw_inode
);
4176 EXT4_INODE_SET_XTIME(i_atime
, inode
, raw_inode
);
4177 EXT4_EINODE_SET_XTIME(i_crtime
, ei
, raw_inode
);
4179 if (ext4_inode_blocks_set(handle
, raw_inode
, ei
))
4181 raw_inode
->i_dtime
= cpu_to_le32(ei
->i_dtime
);
4182 raw_inode
->i_flags
= cpu_to_le32(ei
->i_flags
& 0xFFFFFFFF);
4183 if (EXT4_SB(inode
->i_sb
)->s_es
->s_creator_os
!=
4184 cpu_to_le32(EXT4_OS_HURD
))
4185 raw_inode
->i_file_acl_high
=
4186 cpu_to_le16(ei
->i_file_acl
>> 32);
4187 raw_inode
->i_file_acl_lo
= cpu_to_le32(ei
->i_file_acl
);
4188 if (ei
->i_disksize
!= ext4_isize(raw_inode
)) {
4189 ext4_isize_set(raw_inode
, ei
->i_disksize
);
4192 if (ei
->i_disksize
> 0x7fffffffULL
) {
4193 struct super_block
*sb
= inode
->i_sb
;
4194 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb
,
4195 EXT4_FEATURE_RO_COMPAT_LARGE_FILE
) ||
4196 EXT4_SB(sb
)->s_es
->s_rev_level
==
4197 cpu_to_le32(EXT4_GOOD_OLD_REV
)) {
4198 /* If this is the first large file
4199 * created, add a flag to the superblock.
4201 err
= ext4_journal_get_write_access(handle
,
4202 EXT4_SB(sb
)->s_sbh
);
4205 ext4_update_dynamic_rev(sb
);
4206 EXT4_SET_RO_COMPAT_FEATURE(sb
,
4207 EXT4_FEATURE_RO_COMPAT_LARGE_FILE
);
4208 ext4_handle_sync(handle
);
4209 err
= ext4_handle_dirty_super(handle
, sb
);
4212 raw_inode
->i_generation
= cpu_to_le32(inode
->i_generation
);
4213 if (S_ISCHR(inode
->i_mode
) || S_ISBLK(inode
->i_mode
)) {
4214 if (old_valid_dev(inode
->i_rdev
)) {
4215 raw_inode
->i_block
[0] =
4216 cpu_to_le32(old_encode_dev(inode
->i_rdev
));
4217 raw_inode
->i_block
[1] = 0;
4219 raw_inode
->i_block
[0] = 0;
4220 raw_inode
->i_block
[1] =
4221 cpu_to_le32(new_encode_dev(inode
->i_rdev
));
4222 raw_inode
->i_block
[2] = 0;
4224 } else if (!ext4_has_inline_data(inode
)) {
4225 for (block
= 0; block
< EXT4_N_BLOCKS
; block
++)
4226 raw_inode
->i_block
[block
] = ei
->i_data
[block
];
4229 raw_inode
->i_disk_version
= cpu_to_le32(inode
->i_version
);
4230 if (ei
->i_extra_isize
) {
4231 if (EXT4_FITS_IN_INODE(raw_inode
, ei
, i_version_hi
))
4232 raw_inode
->i_version_hi
=
4233 cpu_to_le32(inode
->i_version
>> 32);
4234 raw_inode
->i_extra_isize
= cpu_to_le16(ei
->i_extra_isize
);
4237 ext4_inode_csum_set(inode
, raw_inode
, ei
);
4239 BUFFER_TRACE(bh
, "call ext4_handle_dirty_metadata");
4240 rc
= ext4_handle_dirty_metadata(handle
, NULL
, bh
);
4243 ext4_clear_inode_state(inode
, EXT4_STATE_NEW
);
4245 ext4_update_inode_fsync_trans(handle
, inode
, need_datasync
);
4248 ext4_std_error(inode
->i_sb
, err
);
4253 * ext4_write_inode()
4255 * We are called from a few places:
4257 * - Within generic_file_write() for O_SYNC files.
4258 * Here, there will be no transaction running. We wait for any running
4259 * transaction to commit.
4261 * - Within sys_sync(), kupdate and such.
4262 * We wait on commit, if tol to.
4264 * - Within prune_icache() (PF_MEMALLOC == true)
4265 * Here we simply return. We can't afford to block kswapd on the
4268 * In all cases it is actually safe for us to return without doing anything,
4269 * because the inode has been copied into a raw inode buffer in
4270 * ext4_mark_inode_dirty(). This is a correctness thing for O_SYNC and for
4273 * Note that we are absolutely dependent upon all inode dirtiers doing the
4274 * right thing: they *must* call mark_inode_dirty() after dirtying info in
4275 * which we are interested.
4277 * It would be a bug for them to not do this. The code:
4279 * mark_inode_dirty(inode)
4281 * inode->i_size = expr;
4283 * is in error because a kswapd-driven write_inode() could occur while
4284 * `stuff()' is running, and the new i_size will be lost. Plus the inode
4285 * will no longer be on the superblock's dirty inode list.
4287 int ext4_write_inode(struct inode
*inode
, struct writeback_control
*wbc
)
4291 if (current
->flags
& PF_MEMALLOC
)
4294 if (EXT4_SB(inode
->i_sb
)->s_journal
) {
4295 if (ext4_journal_current_handle()) {
4296 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4301 if (wbc
->sync_mode
!= WB_SYNC_ALL
)
4304 err
= ext4_force_commit(inode
->i_sb
);
4306 struct ext4_iloc iloc
;
4308 err
= __ext4_get_inode_loc(inode
, &iloc
, 0);
4311 if (wbc
->sync_mode
== WB_SYNC_ALL
)
4312 sync_dirty_buffer(iloc
.bh
);
4313 if (buffer_req(iloc
.bh
) && !buffer_uptodate(iloc
.bh
)) {
4314 EXT4_ERROR_INODE_BLOCK(inode
, iloc
.bh
->b_blocknr
,
4315 "IO error syncing inode");
4324 * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
4325 * buffers that are attached to a page stradding i_size and are undergoing
4326 * commit. In that case we have to wait for commit to finish and try again.
4328 static void ext4_wait_for_tail_page_commit(struct inode
*inode
)
4332 journal_t
*journal
= EXT4_SB(inode
->i_sb
)->s_journal
;
4333 tid_t commit_tid
= 0;
4336 offset
= inode
->i_size
& (PAGE_CACHE_SIZE
- 1);
4338 * All buffers in the last page remain valid? Then there's nothing to
4339 * do. We do the check mainly to optimize the common PAGE_CACHE_SIZE ==
4342 if (offset
> PAGE_CACHE_SIZE
- (1 << inode
->i_blkbits
))
4345 page
= find_lock_page(inode
->i_mapping
,
4346 inode
->i_size
>> PAGE_CACHE_SHIFT
);
4349 ret
= __ext4_journalled_invalidatepage(page
, offset
);
4351 page_cache_release(page
);
4355 read_lock(&journal
->j_state_lock
);
4356 if (journal
->j_committing_transaction
)
4357 commit_tid
= journal
->j_committing_transaction
->t_tid
;
4358 read_unlock(&journal
->j_state_lock
);
4360 jbd2_log_wait_commit(journal
, commit_tid
);
4367 * Called from notify_change.
4369 * We want to trap VFS attempts to truncate the file as soon as
4370 * possible. In particular, we want to make sure that when the VFS
4371 * shrinks i_size, we put the inode on the orphan list and modify
4372 * i_disksize immediately, so that during the subsequent flushing of
4373 * dirty pages and freeing of disk blocks, we can guarantee that any
4374 * commit will leave the blocks being flushed in an unused state on
4375 * disk. (On recovery, the inode will get truncated and the blocks will
4376 * be freed, so we have a strong guarantee that no future commit will
4377 * leave these blocks visible to the user.)
4379 * Another thing we have to assure is that if we are in ordered mode
4380 * and inode is still attached to the committing transaction, we must
4381 * we start writeout of all the dirty pages which are being truncated.
4382 * This way we are sure that all the data written in the previous
4383 * transaction are already on disk (truncate waits for pages under
4386 * Called with inode->i_mutex down.
4388 int ext4_setattr(struct dentry
*dentry
, struct iattr
*attr
)
4390 struct inode
*inode
= dentry
->d_inode
;
4393 const unsigned int ia_valid
= attr
->ia_valid
;
4395 error
= inode_change_ok(inode
, attr
);
4399 if (is_quota_modification(inode
, attr
))
4400 dquot_initialize(inode
);
4401 if ((ia_valid
& ATTR_UID
&& !uid_eq(attr
->ia_uid
, inode
->i_uid
)) ||
4402 (ia_valid
& ATTR_GID
&& !gid_eq(attr
->ia_gid
, inode
->i_gid
))) {
4405 /* (user+group)*(old+new) structure, inode write (sb,
4406 * inode block, ? - but truncate inode update has it) */
4407 handle
= ext4_journal_start(inode
, (EXT4_MAXQUOTAS_INIT_BLOCKS(inode
->i_sb
)+
4408 EXT4_MAXQUOTAS_DEL_BLOCKS(inode
->i_sb
))+3);
4409 if (IS_ERR(handle
)) {
4410 error
= PTR_ERR(handle
);
4413 error
= dquot_transfer(inode
, attr
);
4415 ext4_journal_stop(handle
);
4418 /* Update corresponding info in inode so that everything is in
4419 * one transaction */
4420 if (attr
->ia_valid
& ATTR_UID
)
4421 inode
->i_uid
= attr
->ia_uid
;
4422 if (attr
->ia_valid
& ATTR_GID
)
4423 inode
->i_gid
= attr
->ia_gid
;
4424 error
= ext4_mark_inode_dirty(handle
, inode
);
4425 ext4_journal_stop(handle
);
4428 if (attr
->ia_valid
& ATTR_SIZE
) {
4430 if (!(ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
))) {
4431 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
4433 if (attr
->ia_size
> sbi
->s_bitmap_maxbytes
)
4438 if (S_ISREG(inode
->i_mode
) &&
4439 attr
->ia_valid
& ATTR_SIZE
&&
4440 (attr
->ia_size
< inode
->i_size
)) {
4443 handle
= ext4_journal_start(inode
, 3);
4444 if (IS_ERR(handle
)) {
4445 error
= PTR_ERR(handle
);
4448 if (ext4_handle_valid(handle
)) {
4449 error
= ext4_orphan_add(handle
, inode
);
4452 EXT4_I(inode
)->i_disksize
= attr
->ia_size
;
4453 rc
= ext4_mark_inode_dirty(handle
, inode
);
4456 ext4_journal_stop(handle
);
4458 if (ext4_should_order_data(inode
)) {
4459 error
= ext4_begin_ordered_truncate(inode
,
4462 /* Do as much error cleanup as possible */
4463 handle
= ext4_journal_start(inode
, 3);
4464 if (IS_ERR(handle
)) {
4465 ext4_orphan_del(NULL
, inode
);
4468 ext4_orphan_del(handle
, inode
);
4470 ext4_journal_stop(handle
);
4476 if (attr
->ia_valid
& ATTR_SIZE
) {
4477 if (attr
->ia_size
!= inode
->i_size
) {
4478 loff_t oldsize
= inode
->i_size
;
4480 i_size_write(inode
, attr
->ia_size
);
4482 * Blocks are going to be removed from the inode. Wait
4483 * for dio in flight. Temporarily disable
4484 * dioread_nolock to prevent livelock.
4487 if (!ext4_should_journal_data(inode
)) {
4488 ext4_inode_block_unlocked_dio(inode
);
4489 inode_dio_wait(inode
);
4490 ext4_inode_resume_unlocked_dio(inode
);
4492 ext4_wait_for_tail_page_commit(inode
);
4495 * Truncate pagecache after we've waited for commit
4496 * in data=journal mode to make pages freeable.
4498 truncate_pagecache(inode
, oldsize
, inode
->i_size
);
4500 ext4_truncate(inode
);
4504 setattr_copy(inode
, attr
);
4505 mark_inode_dirty(inode
);
4509 * If the call to ext4_truncate failed to get a transaction handle at
4510 * all, we need to clean up the in-core orphan list manually.
4512 if (orphan
&& inode
->i_nlink
)
4513 ext4_orphan_del(NULL
, inode
);
4515 if (!rc
&& (ia_valid
& ATTR_MODE
))
4516 rc
= ext4_acl_chmod(inode
);
4519 ext4_std_error(inode
->i_sb
, error
);
4525 int ext4_getattr(struct vfsmount
*mnt
, struct dentry
*dentry
,
4528 struct inode
*inode
;
4529 unsigned long delalloc_blocks
;
4531 inode
= dentry
->d_inode
;
4532 generic_fillattr(inode
, stat
);
4535 * We can't update i_blocks if the block allocation is delayed
4536 * otherwise in the case of system crash before the real block
4537 * allocation is done, we will have i_blocks inconsistent with
4538 * on-disk file blocks.
4539 * We always keep i_blocks updated together with real
4540 * allocation. But to not confuse with user, stat
4541 * will return the blocks that include the delayed allocation
4542 * blocks for this file.
4544 delalloc_blocks
= EXT4_C2B(EXT4_SB(inode
->i_sb
),
4545 EXT4_I(inode
)->i_reserved_data_blocks
);
4547 stat
->blocks
+= (delalloc_blocks
<< inode
->i_sb
->s_blocksize_bits
)>>9;
4551 static int ext4_index_trans_blocks(struct inode
*inode
, int nrblocks
, int chunk
)
4553 if (!(ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
)))
4554 return ext4_ind_trans_blocks(inode
, nrblocks
, chunk
);
4555 return ext4_ext_index_trans_blocks(inode
, nrblocks
, chunk
);
4559 * Account for index blocks, block groups bitmaps and block group
4560 * descriptor blocks if modify datablocks and index blocks
4561 * worse case, the indexs blocks spread over different block groups
4563 * If datablocks are discontiguous, they are possible to spread over
4564 * different block groups too. If they are contiguous, with flexbg,
4565 * they could still across block group boundary.
4567 * Also account for superblock, inode, quota and xattr blocks
4569 static int ext4_meta_trans_blocks(struct inode
*inode
, int nrblocks
, int chunk
)
4571 ext4_group_t groups
, ngroups
= ext4_get_groups_count(inode
->i_sb
);
4577 * How many index blocks need to touch to modify nrblocks?
4578 * The "Chunk" flag indicating whether the nrblocks is
4579 * physically contiguous on disk
4581 * For Direct IO and fallocate, they calls get_block to allocate
4582 * one single extent at a time, so they could set the "Chunk" flag
4584 idxblocks
= ext4_index_trans_blocks(inode
, nrblocks
, chunk
);
4589 * Now let's see how many group bitmaps and group descriptors need
4599 if (groups
> ngroups
)
4601 if (groups
> EXT4_SB(inode
->i_sb
)->s_gdb_count
)
4602 gdpblocks
= EXT4_SB(inode
->i_sb
)->s_gdb_count
;
4604 /* bitmaps and block group descriptor blocks */
4605 ret
+= groups
+ gdpblocks
;
4607 /* Blocks for super block, inode, quota and xattr blocks */
4608 ret
+= EXT4_META_TRANS_BLOCKS(inode
->i_sb
);
4614 * Calculate the total number of credits to reserve to fit
4615 * the modification of a single pages into a single transaction,
4616 * which may include multiple chunks of block allocations.
4618 * This could be called via ext4_write_begin()
4620 * We need to consider the worse case, when
4621 * one new block per extent.
4623 int ext4_writepage_trans_blocks(struct inode
*inode
)
4625 int bpp
= ext4_journal_blocks_per_page(inode
);
4628 ret
= ext4_meta_trans_blocks(inode
, bpp
, 0);
4630 /* Account for data blocks for journalled mode */
4631 if (ext4_should_journal_data(inode
))
4637 * Calculate the journal credits for a chunk of data modification.
4639 * This is called from DIO, fallocate or whoever calling
4640 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
4642 * journal buffers for data blocks are not included here, as DIO
4643 * and fallocate do no need to journal data buffers.
4645 int ext4_chunk_trans_blocks(struct inode
*inode
, int nrblocks
)
4647 return ext4_meta_trans_blocks(inode
, nrblocks
, 1);
4651 * The caller must have previously called ext4_reserve_inode_write().
4652 * Give this, we know that the caller already has write access to iloc->bh.
4654 int ext4_mark_iloc_dirty(handle_t
*handle
,
4655 struct inode
*inode
, struct ext4_iloc
*iloc
)
4659 if (IS_I_VERSION(inode
))
4660 inode_inc_iversion(inode
);
4662 /* the do_update_inode consumes one bh->b_count */
4665 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4666 err
= ext4_do_update_inode(handle
, inode
, iloc
);
4672 * On success, We end up with an outstanding reference count against
4673 * iloc->bh. This _must_ be cleaned up later.
4677 ext4_reserve_inode_write(handle_t
*handle
, struct inode
*inode
,
4678 struct ext4_iloc
*iloc
)
4682 err
= ext4_get_inode_loc(inode
, iloc
);
4684 BUFFER_TRACE(iloc
->bh
, "get_write_access");
4685 err
= ext4_journal_get_write_access(handle
, iloc
->bh
);
4691 ext4_std_error(inode
->i_sb
, err
);
4696 * Expand an inode by new_extra_isize bytes.
4697 * Returns 0 on success or negative error number on failure.
4699 static int ext4_expand_extra_isize(struct inode
*inode
,
4700 unsigned int new_extra_isize
,
4701 struct ext4_iloc iloc
,
4704 struct ext4_inode
*raw_inode
;
4705 struct ext4_xattr_ibody_header
*header
;
4707 if (EXT4_I(inode
)->i_extra_isize
>= new_extra_isize
)
4710 raw_inode
= ext4_raw_inode(&iloc
);
4712 header
= IHDR(inode
, raw_inode
);
4714 /* No extended attributes present */
4715 if (!ext4_test_inode_state(inode
, EXT4_STATE_XATTR
) ||
4716 header
->h_magic
!= cpu_to_le32(EXT4_XATTR_MAGIC
)) {
4717 memset((void *)raw_inode
+ EXT4_GOOD_OLD_INODE_SIZE
, 0,
4719 EXT4_I(inode
)->i_extra_isize
= new_extra_isize
;
4723 /* try to expand with EAs present */
4724 return ext4_expand_extra_isize_ea(inode
, new_extra_isize
,
4729 * What we do here is to mark the in-core inode as clean with respect to inode
4730 * dirtiness (it may still be data-dirty).
4731 * This means that the in-core inode may be reaped by prune_icache
4732 * without having to perform any I/O. This is a very good thing,
4733 * because *any* task may call prune_icache - even ones which
4734 * have a transaction open against a different journal.
4736 * Is this cheating? Not really. Sure, we haven't written the
4737 * inode out, but prune_icache isn't a user-visible syncing function.
4738 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
4739 * we start and wait on commits.
4741 int ext4_mark_inode_dirty(handle_t
*handle
, struct inode
*inode
)
4743 struct ext4_iloc iloc
;
4744 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
4745 static unsigned int mnt_count
;
4749 trace_ext4_mark_inode_dirty(inode
, _RET_IP_
);
4750 err
= ext4_reserve_inode_write(handle
, inode
, &iloc
);
4751 if (ext4_handle_valid(handle
) &&
4752 EXT4_I(inode
)->i_extra_isize
< sbi
->s_want_extra_isize
&&
4753 !ext4_test_inode_state(inode
, EXT4_STATE_NO_EXPAND
)) {
4755 * We need extra buffer credits since we may write into EA block
4756 * with this same handle. If journal_extend fails, then it will
4757 * only result in a minor loss of functionality for that inode.
4758 * If this is felt to be critical, then e2fsck should be run to
4759 * force a large enough s_min_extra_isize.
4761 if ((jbd2_journal_extend(handle
,
4762 EXT4_DATA_TRANS_BLOCKS(inode
->i_sb
))) == 0) {
4763 ret
= ext4_expand_extra_isize(inode
,
4764 sbi
->s_want_extra_isize
,
4767 ext4_set_inode_state(inode
,
4768 EXT4_STATE_NO_EXPAND
);
4770 le16_to_cpu(sbi
->s_es
->s_mnt_count
)) {
4771 ext4_warning(inode
->i_sb
,
4772 "Unable to expand inode %lu. Delete"
4773 " some EAs or run e2fsck.",
4776 le16_to_cpu(sbi
->s_es
->s_mnt_count
);
4782 err
= ext4_mark_iloc_dirty(handle
, inode
, &iloc
);
4787 * ext4_dirty_inode() is called from __mark_inode_dirty()
4789 * We're really interested in the case where a file is being extended.
4790 * i_size has been changed by generic_commit_write() and we thus need
4791 * to include the updated inode in the current transaction.
4793 * Also, dquot_alloc_block() will always dirty the inode when blocks
4794 * are allocated to the file.
4796 * If the inode is marked synchronous, we don't honour that here - doing
4797 * so would cause a commit on atime updates, which we don't bother doing.
4798 * We handle synchronous inodes at the highest possible level.
4800 void ext4_dirty_inode(struct inode
*inode
, int flags
)
4804 handle
= ext4_journal_start(inode
, 2);
4808 ext4_mark_inode_dirty(handle
, inode
);
4810 ext4_journal_stop(handle
);
4817 * Bind an inode's backing buffer_head into this transaction, to prevent
4818 * it from being flushed to disk early. Unlike
4819 * ext4_reserve_inode_write, this leaves behind no bh reference and
4820 * returns no iloc structure, so the caller needs to repeat the iloc
4821 * lookup to mark the inode dirty later.
4823 static int ext4_pin_inode(handle_t
*handle
, struct inode
*inode
)
4825 struct ext4_iloc iloc
;
4829 err
= ext4_get_inode_loc(inode
, &iloc
);
4831 BUFFER_TRACE(iloc
.bh
, "get_write_access");
4832 err
= jbd2_journal_get_write_access(handle
, iloc
.bh
);
4834 err
= ext4_handle_dirty_metadata(handle
,
4840 ext4_std_error(inode
->i_sb
, err
);
4845 int ext4_change_inode_journal_flag(struct inode
*inode
, int val
)
4852 * We have to be very careful here: changing a data block's
4853 * journaling status dynamically is dangerous. If we write a
4854 * data block to the journal, change the status and then delete
4855 * that block, we risk forgetting to revoke the old log record
4856 * from the journal and so a subsequent replay can corrupt data.
4857 * So, first we make sure that the journal is empty and that
4858 * nobody is changing anything.
4861 journal
= EXT4_JOURNAL(inode
);
4864 if (is_journal_aborted(journal
))
4866 /* We have to allocate physical blocks for delalloc blocks
4867 * before flushing journal. otherwise delalloc blocks can not
4868 * be allocated any more. even more truncate on delalloc blocks
4869 * could trigger BUG by flushing delalloc blocks in journal.
4870 * There is no delalloc block in non-journal data mode.
4872 if (val
&& test_opt(inode
->i_sb
, DELALLOC
)) {
4873 err
= ext4_alloc_da_blocks(inode
);
4878 /* Wait for all existing dio workers */
4879 ext4_inode_block_unlocked_dio(inode
);
4880 inode_dio_wait(inode
);
4882 jbd2_journal_lock_updates(journal
);
4885 * OK, there are no updates running now, and all cached data is
4886 * synced to disk. We are now in a completely consistent state
4887 * which doesn't have anything in the journal, and we know that
4888 * no filesystem updates are running, so it is safe to modify
4889 * the inode's in-core data-journaling state flag now.
4893 ext4_set_inode_flag(inode
, EXT4_INODE_JOURNAL_DATA
);
4895 jbd2_journal_flush(journal
);
4896 ext4_clear_inode_flag(inode
, EXT4_INODE_JOURNAL_DATA
);
4898 ext4_set_aops(inode
);
4900 jbd2_journal_unlock_updates(journal
);
4901 ext4_inode_resume_unlocked_dio(inode
);
4903 /* Finally we can mark the inode as dirty. */
4905 handle
= ext4_journal_start(inode
, 1);
4907 return PTR_ERR(handle
);
4909 err
= ext4_mark_inode_dirty(handle
, inode
);
4910 ext4_handle_sync(handle
);
4911 ext4_journal_stop(handle
);
4912 ext4_std_error(inode
->i_sb
, err
);
4917 static int ext4_bh_unmapped(handle_t
*handle
, struct buffer_head
*bh
)
4919 return !buffer_mapped(bh
);
4922 int ext4_page_mkwrite(struct vm_area_struct
*vma
, struct vm_fault
*vmf
)
4924 struct page
*page
= vmf
->page
;
4928 struct file
*file
= vma
->vm_file
;
4929 struct inode
*inode
= file
->f_path
.dentry
->d_inode
;
4930 struct address_space
*mapping
= inode
->i_mapping
;
4932 get_block_t
*get_block
;
4935 sb_start_pagefault(inode
->i_sb
);
4936 file_update_time(vma
->vm_file
);
4937 /* Delalloc case is easy... */
4938 if (test_opt(inode
->i_sb
, DELALLOC
) &&
4939 !ext4_should_journal_data(inode
) &&
4940 !ext4_nonda_switch(inode
->i_sb
)) {
4942 ret
= __block_page_mkwrite(vma
, vmf
,
4943 ext4_da_get_block_prep
);
4944 } while (ret
== -ENOSPC
&&
4945 ext4_should_retry_alloc(inode
->i_sb
, &retries
));
4950 size
= i_size_read(inode
);
4951 /* Page got truncated from under us? */
4952 if (page
->mapping
!= mapping
|| page_offset(page
) > size
) {
4954 ret
= VM_FAULT_NOPAGE
;
4958 if (page
->index
== size
>> PAGE_CACHE_SHIFT
)
4959 len
= size
& ~PAGE_CACHE_MASK
;
4961 len
= PAGE_CACHE_SIZE
;
4963 * Return if we have all the buffers mapped. This avoids the need to do
4964 * journal_start/journal_stop which can block and take a long time
4966 if (page_has_buffers(page
)) {
4967 if (!ext4_walk_page_buffers(NULL
, page_buffers(page
),
4969 ext4_bh_unmapped
)) {
4970 /* Wait so that we don't change page under IO */
4971 wait_on_page_writeback(page
);
4972 ret
= VM_FAULT_LOCKED
;
4977 /* OK, we need to fill the hole... */
4978 if (ext4_should_dioread_nolock(inode
))
4979 get_block
= ext4_get_block_write
;
4981 get_block
= ext4_get_block
;
4983 handle
= ext4_journal_start(inode
, ext4_writepage_trans_blocks(inode
));
4984 if (IS_ERR(handle
)) {
4985 ret
= VM_FAULT_SIGBUS
;
4988 ret
= __block_page_mkwrite(vma
, vmf
, get_block
);
4989 if (!ret
&& ext4_should_journal_data(inode
)) {
4990 if (ext4_walk_page_buffers(handle
, page_buffers(page
), 0,
4991 PAGE_CACHE_SIZE
, NULL
, do_journal_get_write_access
)) {
4993 ret
= VM_FAULT_SIGBUS
;
4994 ext4_journal_stop(handle
);
4997 ext4_set_inode_state(inode
, EXT4_STATE_JDATA
);
4999 ext4_journal_stop(handle
);
5000 if (ret
== -ENOSPC
&& ext4_should_retry_alloc(inode
->i_sb
, &retries
))
5003 ret
= block_page_mkwrite_return(ret
);
5005 sb_end_pagefault(inode
->i_sb
);