net: move procfs code to net/core/net-procfs.c
[linux/fpc-iii.git] / fs / reiserfs / inode.c
blob95d7680ead47a8c6379629614eadb0fdbf233fe0
1 /*
2 * Copyright 2000 by Hans Reiser, licensing governed by reiserfs/README
3 */
5 #include <linux/time.h>
6 #include <linux/fs.h>
7 #include "reiserfs.h"
8 #include "acl.h"
9 #include "xattr.h"
10 #include <linux/exportfs.h>
11 #include <linux/pagemap.h>
12 #include <linux/highmem.h>
13 #include <linux/slab.h>
14 #include <asm/uaccess.h>
15 #include <asm/unaligned.h>
16 #include <linux/buffer_head.h>
17 #include <linux/mpage.h>
18 #include <linux/writeback.h>
19 #include <linux/quotaops.h>
20 #include <linux/swap.h>
22 int reiserfs_commit_write(struct file *f, struct page *page,
23 unsigned from, unsigned to);
25 void reiserfs_evict_inode(struct inode *inode)
27 /* We need blocks for transaction + (user+group) quota update (possibly delete) */
28 int jbegin_count =
29 JOURNAL_PER_BALANCE_CNT * 2 +
30 2 * REISERFS_QUOTA_INIT_BLOCKS(inode->i_sb);
31 struct reiserfs_transaction_handle th;
32 int depth;
33 int err;
35 if (!inode->i_nlink && !is_bad_inode(inode))
36 dquot_initialize(inode);
38 truncate_inode_pages(&inode->i_data, 0);
39 if (inode->i_nlink)
40 goto no_delete;
42 depth = reiserfs_write_lock_once(inode->i_sb);
44 /* The = 0 happens when we abort creating a new inode for some reason like lack of space.. */
45 if (!(inode->i_state & I_NEW) && INODE_PKEY(inode)->k_objectid != 0) { /* also handles bad_inode case */
46 reiserfs_delete_xattrs(inode);
48 if (journal_begin(&th, inode->i_sb, jbegin_count))
49 goto out;
50 reiserfs_update_inode_transaction(inode);
52 reiserfs_discard_prealloc(&th, inode);
54 err = reiserfs_delete_object(&th, inode);
56 /* Do quota update inside a transaction for journaled quotas. We must do that
57 * after delete_object so that quota updates go into the same transaction as
58 * stat data deletion */
59 if (!err)
60 dquot_free_inode(inode);
62 if (journal_end(&th, inode->i_sb, jbegin_count))
63 goto out;
65 /* check return value from reiserfs_delete_object after
66 * ending the transaction
68 if (err)
69 goto out;
71 /* all items of file are deleted, so we can remove "save" link */
72 remove_save_link(inode, 0 /* not truncate */ ); /* we can't do anything
73 * about an error here */
74 } else {
75 /* no object items are in the tree */
78 out:
79 reiserfs_write_unlock_once(inode->i_sb, depth);
80 clear_inode(inode); /* note this must go after the journal_end to prevent deadlock */
81 dquot_drop(inode);
82 inode->i_blocks = 0;
83 return;
85 no_delete:
86 clear_inode(inode);
87 dquot_drop(inode);
90 static void _make_cpu_key(struct cpu_key *key, int version, __u32 dirid,
91 __u32 objectid, loff_t offset, int type, int length)
93 key->version = version;
95 key->on_disk_key.k_dir_id = dirid;
96 key->on_disk_key.k_objectid = objectid;
97 set_cpu_key_k_offset(key, offset);
98 set_cpu_key_k_type(key, type);
99 key->key_length = length;
102 /* take base of inode_key (it comes from inode always) (dirid, objectid) and version from an inode, set
103 offset and type of key */
104 void make_cpu_key(struct cpu_key *key, struct inode *inode, loff_t offset,
105 int type, int length)
107 _make_cpu_key(key, get_inode_item_key_version(inode),
108 le32_to_cpu(INODE_PKEY(inode)->k_dir_id),
109 le32_to_cpu(INODE_PKEY(inode)->k_objectid), offset, type,
110 length);
114 // when key is 0, do not set version and short key
116 inline void make_le_item_head(struct item_head *ih, const struct cpu_key *key,
117 int version,
118 loff_t offset, int type, int length,
119 int entry_count /*or ih_free_space */ )
121 if (key) {
122 ih->ih_key.k_dir_id = cpu_to_le32(key->on_disk_key.k_dir_id);
123 ih->ih_key.k_objectid =
124 cpu_to_le32(key->on_disk_key.k_objectid);
126 put_ih_version(ih, version);
127 set_le_ih_k_offset(ih, offset);
128 set_le_ih_k_type(ih, type);
129 put_ih_item_len(ih, length);
130 /* set_ih_free_space (ih, 0); */
131 // for directory items it is entry count, for directs and stat
132 // datas - 0xffff, for indirects - 0
133 put_ih_entry_count(ih, entry_count);
137 // FIXME: we might cache recently accessed indirect item
139 // Ugh. Not too eager for that....
140 // I cut the code until such time as I see a convincing argument (benchmark).
141 // I don't want a bloated inode struct..., and I don't like code complexity....
143 /* cutting the code is fine, since it really isn't in use yet and is easy
144 ** to add back in. But, Vladimir has a really good idea here. Think
145 ** about what happens for reading a file. For each page,
146 ** The VFS layer calls reiserfs_readpage, who searches the tree to find
147 ** an indirect item. This indirect item has X number of pointers, where
148 ** X is a big number if we've done the block allocation right. But,
149 ** we only use one or two of these pointers during each call to readpage,
150 ** needlessly researching again later on.
152 ** The size of the cache could be dynamic based on the size of the file.
154 ** I'd also like to see us cache the location the stat data item, since
155 ** we are needlessly researching for that frequently.
157 ** --chris
160 /* If this page has a file tail in it, and
161 ** it was read in by get_block_create_0, the page data is valid,
162 ** but tail is still sitting in a direct item, and we can't write to
163 ** it. So, look through this page, and check all the mapped buffers
164 ** to make sure they have valid block numbers. Any that don't need
165 ** to be unmapped, so that __block_write_begin will correctly call
166 ** reiserfs_get_block to convert the tail into an unformatted node
168 static inline void fix_tail_page_for_writing(struct page *page)
170 struct buffer_head *head, *next, *bh;
172 if (page && page_has_buffers(page)) {
173 head = page_buffers(page);
174 bh = head;
175 do {
176 next = bh->b_this_page;
177 if (buffer_mapped(bh) && bh->b_blocknr == 0) {
178 reiserfs_unmap_buffer(bh);
180 bh = next;
181 } while (bh != head);
185 /* reiserfs_get_block does not need to allocate a block only if it has been
186 done already or non-hole position has been found in the indirect item */
187 static inline int allocation_needed(int retval, b_blocknr_t allocated,
188 struct item_head *ih,
189 __le32 * item, int pos_in_item)
191 if (allocated)
192 return 0;
193 if (retval == POSITION_FOUND && is_indirect_le_ih(ih) &&
194 get_block_num(item, pos_in_item))
195 return 0;
196 return 1;
199 static inline int indirect_item_found(int retval, struct item_head *ih)
201 return (retval == POSITION_FOUND) && is_indirect_le_ih(ih);
204 static inline void set_block_dev_mapped(struct buffer_head *bh,
205 b_blocknr_t block, struct inode *inode)
207 map_bh(bh, inode->i_sb, block);
211 // files which were created in the earlier version can not be longer,
212 // than 2 gb
214 static int file_capable(struct inode *inode, sector_t block)
216 if (get_inode_item_key_version(inode) != KEY_FORMAT_3_5 || // it is new file.
217 block < (1 << (31 - inode->i_sb->s_blocksize_bits))) // old file, but 'block' is inside of 2gb
218 return 1;
220 return 0;
223 static int restart_transaction(struct reiserfs_transaction_handle *th,
224 struct inode *inode, struct treepath *path)
226 struct super_block *s = th->t_super;
227 int len = th->t_blocks_allocated;
228 int err;
230 BUG_ON(!th->t_trans_id);
231 BUG_ON(!th->t_refcount);
233 pathrelse(path);
235 /* we cannot restart while nested */
236 if (th->t_refcount > 1) {
237 return 0;
239 reiserfs_update_sd(th, inode);
240 err = journal_end(th, s, len);
241 if (!err) {
242 err = journal_begin(th, s, JOURNAL_PER_BALANCE_CNT * 6);
243 if (!err)
244 reiserfs_update_inode_transaction(inode);
246 return err;
249 // it is called by get_block when create == 0. Returns block number
250 // for 'block'-th logical block of file. When it hits direct item it
251 // returns 0 (being called from bmap) or read direct item into piece
252 // of page (bh_result)
254 // Please improve the english/clarity in the comment above, as it is
255 // hard to understand.
257 static int _get_block_create_0(struct inode *inode, sector_t block,
258 struct buffer_head *bh_result, int args)
260 INITIALIZE_PATH(path);
261 struct cpu_key key;
262 struct buffer_head *bh;
263 struct item_head *ih, tmp_ih;
264 b_blocknr_t blocknr;
265 char *p = NULL;
266 int chars;
267 int ret;
268 int result;
269 int done = 0;
270 unsigned long offset;
272 // prepare the key to look for the 'block'-th block of file
273 make_cpu_key(&key, inode,
274 (loff_t) block * inode->i_sb->s_blocksize + 1, TYPE_ANY,
277 result = search_for_position_by_key(inode->i_sb, &key, &path);
278 if (result != POSITION_FOUND) {
279 pathrelse(&path);
280 if (p)
281 kunmap(bh_result->b_page);
282 if (result == IO_ERROR)
283 return -EIO;
284 // We do not return -ENOENT if there is a hole but page is uptodate, because it means
285 // That there is some MMAPED data associated with it that is yet to be written to disk.
286 if ((args & GET_BLOCK_NO_HOLE)
287 && !PageUptodate(bh_result->b_page)) {
288 return -ENOENT;
290 return 0;
293 bh = get_last_bh(&path);
294 ih = get_ih(&path);
295 if (is_indirect_le_ih(ih)) {
296 __le32 *ind_item = (__le32 *) B_I_PITEM(bh, ih);
298 /* FIXME: here we could cache indirect item or part of it in
299 the inode to avoid search_by_key in case of subsequent
300 access to file */
301 blocknr = get_block_num(ind_item, path.pos_in_item);
302 ret = 0;
303 if (blocknr) {
304 map_bh(bh_result, inode->i_sb, blocknr);
305 if (path.pos_in_item ==
306 ((ih_item_len(ih) / UNFM_P_SIZE) - 1)) {
307 set_buffer_boundary(bh_result);
309 } else
310 // We do not return -ENOENT if there is a hole but page is uptodate, because it means
311 // That there is some MMAPED data associated with it that is yet to be written to disk.
312 if ((args & GET_BLOCK_NO_HOLE)
313 && !PageUptodate(bh_result->b_page)) {
314 ret = -ENOENT;
317 pathrelse(&path);
318 if (p)
319 kunmap(bh_result->b_page);
320 return ret;
322 // requested data are in direct item(s)
323 if (!(args & GET_BLOCK_READ_DIRECT)) {
324 // we are called by bmap. FIXME: we can not map block of file
325 // when it is stored in direct item(s)
326 pathrelse(&path);
327 if (p)
328 kunmap(bh_result->b_page);
329 return -ENOENT;
332 /* if we've got a direct item, and the buffer or page was uptodate,
333 ** we don't want to pull data off disk again. skip to the
334 ** end, where we map the buffer and return
336 if (buffer_uptodate(bh_result)) {
337 goto finished;
338 } else
340 ** grab_tail_page can trigger calls to reiserfs_get_block on up to date
341 ** pages without any buffers. If the page is up to date, we don't want
342 ** read old data off disk. Set the up to date bit on the buffer instead
343 ** and jump to the end
345 if (!bh_result->b_page || PageUptodate(bh_result->b_page)) {
346 set_buffer_uptodate(bh_result);
347 goto finished;
349 // read file tail into part of page
350 offset = (cpu_key_k_offset(&key) - 1) & (PAGE_CACHE_SIZE - 1);
351 copy_item_head(&tmp_ih, ih);
353 /* we only want to kmap if we are reading the tail into the page.
354 ** this is not the common case, so we don't kmap until we are
355 ** sure we need to. But, this means the item might move if
356 ** kmap schedules
358 if (!p)
359 p = (char *)kmap(bh_result->b_page);
361 p += offset;
362 memset(p, 0, inode->i_sb->s_blocksize);
363 do {
364 if (!is_direct_le_ih(ih)) {
365 BUG();
367 /* make sure we don't read more bytes than actually exist in
368 ** the file. This can happen in odd cases where i_size isn't
369 ** correct, and when direct item padding results in a few
370 ** extra bytes at the end of the direct item
372 if ((le_ih_k_offset(ih) + path.pos_in_item) > inode->i_size)
373 break;
374 if ((le_ih_k_offset(ih) - 1 + ih_item_len(ih)) > inode->i_size) {
375 chars =
376 inode->i_size - (le_ih_k_offset(ih) - 1) -
377 path.pos_in_item;
378 done = 1;
379 } else {
380 chars = ih_item_len(ih) - path.pos_in_item;
382 memcpy(p, B_I_PITEM(bh, ih) + path.pos_in_item, chars);
384 if (done)
385 break;
387 p += chars;
389 if (PATH_LAST_POSITION(&path) != (B_NR_ITEMS(bh) - 1))
390 // we done, if read direct item is not the last item of
391 // node FIXME: we could try to check right delimiting key
392 // to see whether direct item continues in the right
393 // neighbor or rely on i_size
394 break;
396 // update key to look for the next piece
397 set_cpu_key_k_offset(&key, cpu_key_k_offset(&key) + chars);
398 result = search_for_position_by_key(inode->i_sb, &key, &path);
399 if (result != POSITION_FOUND)
400 // i/o error most likely
401 break;
402 bh = get_last_bh(&path);
403 ih = get_ih(&path);
404 } while (1);
406 flush_dcache_page(bh_result->b_page);
407 kunmap(bh_result->b_page);
409 finished:
410 pathrelse(&path);
412 if (result == IO_ERROR)
413 return -EIO;
415 /* this buffer has valid data, but isn't valid for io. mapping it to
416 * block #0 tells the rest of reiserfs it just has a tail in it
418 map_bh(bh_result, inode->i_sb, 0);
419 set_buffer_uptodate(bh_result);
420 return 0;
423 // this is called to create file map. So, _get_block_create_0 will not
424 // read direct item
425 static int reiserfs_bmap(struct inode *inode, sector_t block,
426 struct buffer_head *bh_result, int create)
428 if (!file_capable(inode, block))
429 return -EFBIG;
431 reiserfs_write_lock(inode->i_sb);
432 /* do not read the direct item */
433 _get_block_create_0(inode, block, bh_result, 0);
434 reiserfs_write_unlock(inode->i_sb);
435 return 0;
438 /* special version of get_block that is only used by grab_tail_page right
439 ** now. It is sent to __block_write_begin, and when you try to get a
440 ** block past the end of the file (or a block from a hole) it returns
441 ** -ENOENT instead of a valid buffer. __block_write_begin expects to
442 ** be able to do i/o on the buffers returned, unless an error value
443 ** is also returned.
445 ** So, this allows __block_write_begin to be used for reading a single block
446 ** in a page. Where it does not produce a valid page for holes, or past the
447 ** end of the file. This turns out to be exactly what we need for reading
448 ** tails for conversion.
450 ** The point of the wrapper is forcing a certain value for create, even
451 ** though the VFS layer is calling this function with create==1. If you
452 ** don't want to send create == GET_BLOCK_NO_HOLE to reiserfs_get_block,
453 ** don't use this function.
455 static int reiserfs_get_block_create_0(struct inode *inode, sector_t block,
456 struct buffer_head *bh_result,
457 int create)
459 return reiserfs_get_block(inode, block, bh_result, GET_BLOCK_NO_HOLE);
462 /* This is special helper for reiserfs_get_block in case we are executing
463 direct_IO request. */
464 static int reiserfs_get_blocks_direct_io(struct inode *inode,
465 sector_t iblock,
466 struct buffer_head *bh_result,
467 int create)
469 int ret;
471 bh_result->b_page = NULL;
473 /* We set the b_size before reiserfs_get_block call since it is
474 referenced in convert_tail_for_hole() that may be called from
475 reiserfs_get_block() */
476 bh_result->b_size = (1 << inode->i_blkbits);
478 ret = reiserfs_get_block(inode, iblock, bh_result,
479 create | GET_BLOCK_NO_DANGLE);
480 if (ret)
481 goto out;
483 /* don't allow direct io onto tail pages */
484 if (buffer_mapped(bh_result) && bh_result->b_blocknr == 0) {
485 /* make sure future calls to the direct io funcs for this offset
486 ** in the file fail by unmapping the buffer
488 clear_buffer_mapped(bh_result);
489 ret = -EINVAL;
491 /* Possible unpacked tail. Flush the data before pages have
492 disappeared */
493 if (REISERFS_I(inode)->i_flags & i_pack_on_close_mask) {
494 int err;
496 reiserfs_write_lock(inode->i_sb);
498 err = reiserfs_commit_for_inode(inode);
499 REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask;
501 reiserfs_write_unlock(inode->i_sb);
503 if (err < 0)
504 ret = err;
506 out:
507 return ret;
511 ** helper function for when reiserfs_get_block is called for a hole
512 ** but the file tail is still in a direct item
513 ** bh_result is the buffer head for the hole
514 ** tail_offset is the offset of the start of the tail in the file
516 ** This calls prepare_write, which will start a new transaction
517 ** you should not be in a transaction, or have any paths held when you
518 ** call this.
520 static int convert_tail_for_hole(struct inode *inode,
521 struct buffer_head *bh_result,
522 loff_t tail_offset)
524 unsigned long index;
525 unsigned long tail_end;
526 unsigned long tail_start;
527 struct page *tail_page;
528 struct page *hole_page = bh_result->b_page;
529 int retval = 0;
531 if ((tail_offset & (bh_result->b_size - 1)) != 1)
532 return -EIO;
534 /* always try to read until the end of the block */
535 tail_start = tail_offset & (PAGE_CACHE_SIZE - 1);
536 tail_end = (tail_start | (bh_result->b_size - 1)) + 1;
538 index = tail_offset >> PAGE_CACHE_SHIFT;
539 /* hole_page can be zero in case of direct_io, we are sure
540 that we cannot get here if we write with O_DIRECT into
541 tail page */
542 if (!hole_page || index != hole_page->index) {
543 tail_page = grab_cache_page(inode->i_mapping, index);
544 retval = -ENOMEM;
545 if (!tail_page) {
546 goto out;
548 } else {
549 tail_page = hole_page;
552 /* we don't have to make sure the conversion did not happen while
553 ** we were locking the page because anyone that could convert
554 ** must first take i_mutex.
556 ** We must fix the tail page for writing because it might have buffers
557 ** that are mapped, but have a block number of 0. This indicates tail
558 ** data that has been read directly into the page, and
559 ** __block_write_begin won't trigger a get_block in this case.
561 fix_tail_page_for_writing(tail_page);
562 retval = __reiserfs_write_begin(tail_page, tail_start,
563 tail_end - tail_start);
564 if (retval)
565 goto unlock;
567 /* tail conversion might change the data in the page */
568 flush_dcache_page(tail_page);
570 retval = reiserfs_commit_write(NULL, tail_page, tail_start, tail_end);
572 unlock:
573 if (tail_page != hole_page) {
574 unlock_page(tail_page);
575 page_cache_release(tail_page);
577 out:
578 return retval;
581 static inline int _allocate_block(struct reiserfs_transaction_handle *th,
582 sector_t block,
583 struct inode *inode,
584 b_blocknr_t * allocated_block_nr,
585 struct treepath *path, int flags)
587 BUG_ON(!th->t_trans_id);
589 #ifdef REISERFS_PREALLOCATE
590 if (!(flags & GET_BLOCK_NO_IMUX)) {
591 return reiserfs_new_unf_blocknrs2(th, inode, allocated_block_nr,
592 path, block);
594 #endif
595 return reiserfs_new_unf_blocknrs(th, inode, allocated_block_nr, path,
596 block);
599 int reiserfs_get_block(struct inode *inode, sector_t block,
600 struct buffer_head *bh_result, int create)
602 int repeat, retval = 0;
603 b_blocknr_t allocated_block_nr = 0; // b_blocknr_t is (unsigned) 32 bit int
604 INITIALIZE_PATH(path);
605 int pos_in_item;
606 struct cpu_key key;
607 struct buffer_head *bh, *unbh = NULL;
608 struct item_head *ih, tmp_ih;
609 __le32 *item;
610 int done;
611 int fs_gen;
612 int lock_depth;
613 struct reiserfs_transaction_handle *th = NULL;
614 /* space reserved in transaction batch:
615 . 3 balancings in direct->indirect conversion
616 . 1 block involved into reiserfs_update_sd()
617 XXX in practically impossible worst case direct2indirect()
618 can incur (much) more than 3 balancings.
619 quota update for user, group */
620 int jbegin_count =
621 JOURNAL_PER_BALANCE_CNT * 3 + 1 +
622 2 * REISERFS_QUOTA_TRANS_BLOCKS(inode->i_sb);
623 int version;
624 int dangle = 1;
625 loff_t new_offset =
626 (((loff_t) block) << inode->i_sb->s_blocksize_bits) + 1;
628 lock_depth = reiserfs_write_lock_once(inode->i_sb);
629 version = get_inode_item_key_version(inode);
631 if (!file_capable(inode, block)) {
632 reiserfs_write_unlock_once(inode->i_sb, lock_depth);
633 return -EFBIG;
636 /* if !create, we aren't changing the FS, so we don't need to
637 ** log anything, so we don't need to start a transaction
639 if (!(create & GET_BLOCK_CREATE)) {
640 int ret;
641 /* find number of block-th logical block of the file */
642 ret = _get_block_create_0(inode, block, bh_result,
643 create | GET_BLOCK_READ_DIRECT);
644 reiserfs_write_unlock_once(inode->i_sb, lock_depth);
645 return ret;
648 * if we're already in a transaction, make sure to close
649 * any new transactions we start in this func
651 if ((create & GET_BLOCK_NO_DANGLE) ||
652 reiserfs_transaction_running(inode->i_sb))
653 dangle = 0;
655 /* If file is of such a size, that it might have a tail and tails are enabled
656 ** we should mark it as possibly needing tail packing on close
658 if ((have_large_tails(inode->i_sb)
659 && inode->i_size < i_block_size(inode) * 4)
660 || (have_small_tails(inode->i_sb)
661 && inode->i_size < i_block_size(inode)))
662 REISERFS_I(inode)->i_flags |= i_pack_on_close_mask;
664 /* set the key of the first byte in the 'block'-th block of file */
665 make_cpu_key(&key, inode, new_offset, TYPE_ANY, 3 /*key length */ );
666 if ((new_offset + inode->i_sb->s_blocksize - 1) > inode->i_size) {
667 start_trans:
668 th = reiserfs_persistent_transaction(inode->i_sb, jbegin_count);
669 if (!th) {
670 retval = -ENOMEM;
671 goto failure;
673 reiserfs_update_inode_transaction(inode);
675 research:
677 retval = search_for_position_by_key(inode->i_sb, &key, &path);
678 if (retval == IO_ERROR) {
679 retval = -EIO;
680 goto failure;
683 bh = get_last_bh(&path);
684 ih = get_ih(&path);
685 item = get_item(&path);
686 pos_in_item = path.pos_in_item;
688 fs_gen = get_generation(inode->i_sb);
689 copy_item_head(&tmp_ih, ih);
691 if (allocation_needed
692 (retval, allocated_block_nr, ih, item, pos_in_item)) {
693 /* we have to allocate block for the unformatted node */
694 if (!th) {
695 pathrelse(&path);
696 goto start_trans;
699 repeat =
700 _allocate_block(th, block, inode, &allocated_block_nr,
701 &path, create);
703 if (repeat == NO_DISK_SPACE || repeat == QUOTA_EXCEEDED) {
704 /* restart the transaction to give the journal a chance to free
705 ** some blocks. releases the path, so we have to go back to
706 ** research if we succeed on the second try
708 SB_JOURNAL(inode->i_sb)->j_next_async_flush = 1;
709 retval = restart_transaction(th, inode, &path);
710 if (retval)
711 goto failure;
712 repeat =
713 _allocate_block(th, block, inode,
714 &allocated_block_nr, NULL, create);
716 if (repeat != NO_DISK_SPACE && repeat != QUOTA_EXCEEDED) {
717 goto research;
719 if (repeat == QUOTA_EXCEEDED)
720 retval = -EDQUOT;
721 else
722 retval = -ENOSPC;
723 goto failure;
726 if (fs_changed(fs_gen, inode->i_sb)
727 && item_moved(&tmp_ih, &path)) {
728 goto research;
732 if (indirect_item_found(retval, ih)) {
733 b_blocknr_t unfm_ptr;
734 /* 'block'-th block is in the file already (there is
735 corresponding cell in some indirect item). But it may be
736 zero unformatted node pointer (hole) */
737 unfm_ptr = get_block_num(item, pos_in_item);
738 if (unfm_ptr == 0) {
739 /* use allocated block to plug the hole */
740 reiserfs_prepare_for_journal(inode->i_sb, bh, 1);
741 if (fs_changed(fs_gen, inode->i_sb)
742 && item_moved(&tmp_ih, &path)) {
743 reiserfs_restore_prepared_buffer(inode->i_sb,
744 bh);
745 goto research;
747 set_buffer_new(bh_result);
748 if (buffer_dirty(bh_result)
749 && reiserfs_data_ordered(inode->i_sb))
750 reiserfs_add_ordered_list(inode, bh_result);
751 put_block_num(item, pos_in_item, allocated_block_nr);
752 unfm_ptr = allocated_block_nr;
753 journal_mark_dirty(th, inode->i_sb, bh);
754 reiserfs_update_sd(th, inode);
756 set_block_dev_mapped(bh_result, unfm_ptr, inode);
757 pathrelse(&path);
758 retval = 0;
759 if (!dangle && th)
760 retval = reiserfs_end_persistent_transaction(th);
762 reiserfs_write_unlock_once(inode->i_sb, lock_depth);
764 /* the item was found, so new blocks were not added to the file
765 ** there is no need to make sure the inode is updated with this
766 ** transaction
768 return retval;
771 if (!th) {
772 pathrelse(&path);
773 goto start_trans;
776 /* desired position is not found or is in the direct item. We have
777 to append file with holes up to 'block'-th block converting
778 direct items to indirect one if necessary */
779 done = 0;
780 do {
781 if (is_statdata_le_ih(ih)) {
782 __le32 unp = 0;
783 struct cpu_key tmp_key;
785 /* indirect item has to be inserted */
786 make_le_item_head(&tmp_ih, &key, version, 1,
787 TYPE_INDIRECT, UNFM_P_SIZE,
788 0 /* free_space */ );
790 if (cpu_key_k_offset(&key) == 1) {
791 /* we are going to add 'block'-th block to the file. Use
792 allocated block for that */
793 unp = cpu_to_le32(allocated_block_nr);
794 set_block_dev_mapped(bh_result,
795 allocated_block_nr, inode);
796 set_buffer_new(bh_result);
797 done = 1;
799 tmp_key = key; // ;)
800 set_cpu_key_k_offset(&tmp_key, 1);
801 PATH_LAST_POSITION(&path)++;
803 retval =
804 reiserfs_insert_item(th, &path, &tmp_key, &tmp_ih,
805 inode, (char *)&unp);
806 if (retval) {
807 reiserfs_free_block(th, inode,
808 allocated_block_nr, 1);
809 goto failure; // retval == -ENOSPC, -EDQUOT or -EIO or -EEXIST
811 //mark_tail_converted (inode);
812 } else if (is_direct_le_ih(ih)) {
813 /* direct item has to be converted */
814 loff_t tail_offset;
816 tail_offset =
817 ((le_ih_k_offset(ih) -
818 1) & ~(inode->i_sb->s_blocksize - 1)) + 1;
819 if (tail_offset == cpu_key_k_offset(&key)) {
820 /* direct item we just found fits into block we have
821 to map. Convert it into unformatted node: use
822 bh_result for the conversion */
823 set_block_dev_mapped(bh_result,
824 allocated_block_nr, inode);
825 unbh = bh_result;
826 done = 1;
827 } else {
828 /* we have to padd file tail stored in direct item(s)
829 up to block size and convert it to unformatted
830 node. FIXME: this should also get into page cache */
832 pathrelse(&path);
834 * ugly, but we can only end the transaction if
835 * we aren't nested
837 BUG_ON(!th->t_refcount);
838 if (th->t_refcount == 1) {
839 retval =
840 reiserfs_end_persistent_transaction
841 (th);
842 th = NULL;
843 if (retval)
844 goto failure;
847 retval =
848 convert_tail_for_hole(inode, bh_result,
849 tail_offset);
850 if (retval) {
851 if (retval != -ENOSPC)
852 reiserfs_error(inode->i_sb,
853 "clm-6004",
854 "convert tail failed "
855 "inode %lu, error %d",
856 inode->i_ino,
857 retval);
858 if (allocated_block_nr) {
859 /* the bitmap, the super, and the stat data == 3 */
860 if (!th)
861 th = reiserfs_persistent_transaction(inode->i_sb, 3);
862 if (th)
863 reiserfs_free_block(th,
864 inode,
865 allocated_block_nr,
868 goto failure;
870 goto research;
872 retval =
873 direct2indirect(th, inode, &path, unbh,
874 tail_offset);
875 if (retval) {
876 reiserfs_unmap_buffer(unbh);
877 reiserfs_free_block(th, inode,
878 allocated_block_nr, 1);
879 goto failure;
881 /* it is important the set_buffer_uptodate is done after
882 ** the direct2indirect. The buffer might contain valid
883 ** data newer than the data on disk (read by readpage, changed,
884 ** and then sent here by writepage). direct2indirect needs
885 ** to know if unbh was already up to date, so it can decide
886 ** if the data in unbh needs to be replaced with data from
887 ** the disk
889 set_buffer_uptodate(unbh);
891 /* unbh->b_page == NULL in case of DIRECT_IO request, this means
892 buffer will disappear shortly, so it should not be added to
894 if (unbh->b_page) {
895 /* we've converted the tail, so we must
896 ** flush unbh before the transaction commits
898 reiserfs_add_tail_list(inode, unbh);
900 /* mark it dirty now to prevent commit_write from adding
901 ** this buffer to the inode's dirty buffer list
904 * AKPM: changed __mark_buffer_dirty to mark_buffer_dirty().
905 * It's still atomic, but it sets the page dirty too,
906 * which makes it eligible for writeback at any time by the
907 * VM (which was also the case with __mark_buffer_dirty())
909 mark_buffer_dirty(unbh);
911 } else {
912 /* append indirect item with holes if needed, when appending
913 pointer to 'block'-th block use block, which is already
914 allocated */
915 struct cpu_key tmp_key;
916 unp_t unf_single = 0; // We use this in case we need to allocate only
917 // one block which is a fastpath
918 unp_t *un;
919 __u64 max_to_insert =
920 MAX_ITEM_LEN(inode->i_sb->s_blocksize) /
921 UNFM_P_SIZE;
922 __u64 blocks_needed;
924 RFALSE(pos_in_item != ih_item_len(ih) / UNFM_P_SIZE,
925 "vs-804: invalid position for append");
926 /* indirect item has to be appended, set up key of that position */
927 make_cpu_key(&tmp_key, inode,
928 le_key_k_offset(version,
929 &(ih->ih_key)) +
930 op_bytes_number(ih,
931 inode->i_sb->s_blocksize),
932 //pos_in_item * inode->i_sb->s_blocksize,
933 TYPE_INDIRECT, 3); // key type is unimportant
935 RFALSE(cpu_key_k_offset(&tmp_key) > cpu_key_k_offset(&key),
936 "green-805: invalid offset");
937 blocks_needed =
939 ((cpu_key_k_offset(&key) -
940 cpu_key_k_offset(&tmp_key)) >> inode->i_sb->
941 s_blocksize_bits);
943 if (blocks_needed == 1) {
944 un = &unf_single;
945 } else {
946 un = kzalloc(min(blocks_needed, max_to_insert) * UNFM_P_SIZE, GFP_NOFS);
947 if (!un) {
948 un = &unf_single;
949 blocks_needed = 1;
950 max_to_insert = 0;
953 if (blocks_needed <= max_to_insert) {
954 /* we are going to add target block to the file. Use allocated
955 block for that */
956 un[blocks_needed - 1] =
957 cpu_to_le32(allocated_block_nr);
958 set_block_dev_mapped(bh_result,
959 allocated_block_nr, inode);
960 set_buffer_new(bh_result);
961 done = 1;
962 } else {
963 /* paste hole to the indirect item */
964 /* If kmalloc failed, max_to_insert becomes zero and it means we
965 only have space for one block */
966 blocks_needed =
967 max_to_insert ? max_to_insert : 1;
969 retval =
970 reiserfs_paste_into_item(th, &path, &tmp_key, inode,
971 (char *)un,
972 UNFM_P_SIZE *
973 blocks_needed);
975 if (blocks_needed != 1)
976 kfree(un);
978 if (retval) {
979 reiserfs_free_block(th, inode,
980 allocated_block_nr, 1);
981 goto failure;
983 if (!done) {
984 /* We need to mark new file size in case this function will be
985 interrupted/aborted later on. And we may do this only for
986 holes. */
987 inode->i_size +=
988 inode->i_sb->s_blocksize * blocks_needed;
992 if (done == 1)
993 break;
995 /* this loop could log more blocks than we had originally asked
996 ** for. So, we have to allow the transaction to end if it is
997 ** too big or too full. Update the inode so things are
998 ** consistent if we crash before the function returns
1000 ** release the path so that anybody waiting on the path before
1001 ** ending their transaction will be able to continue.
1003 if (journal_transaction_should_end(th, th->t_blocks_allocated)) {
1004 retval = restart_transaction(th, inode, &path);
1005 if (retval)
1006 goto failure;
1009 * inserting indirect pointers for a hole can take a
1010 * long time. reschedule if needed and also release the write
1011 * lock for others.
1013 if (need_resched()) {
1014 reiserfs_write_unlock_once(inode->i_sb, lock_depth);
1015 schedule();
1016 lock_depth = reiserfs_write_lock_once(inode->i_sb);
1019 retval = search_for_position_by_key(inode->i_sb, &key, &path);
1020 if (retval == IO_ERROR) {
1021 retval = -EIO;
1022 goto failure;
1024 if (retval == POSITION_FOUND) {
1025 reiserfs_warning(inode->i_sb, "vs-825",
1026 "%K should not be found", &key);
1027 retval = -EEXIST;
1028 if (allocated_block_nr)
1029 reiserfs_free_block(th, inode,
1030 allocated_block_nr, 1);
1031 pathrelse(&path);
1032 goto failure;
1034 bh = get_last_bh(&path);
1035 ih = get_ih(&path);
1036 item = get_item(&path);
1037 pos_in_item = path.pos_in_item;
1038 } while (1);
1040 retval = 0;
1042 failure:
1043 if (th && (!dangle || (retval && !th->t_trans_id))) {
1044 int err;
1045 if (th->t_trans_id)
1046 reiserfs_update_sd(th, inode);
1047 err = reiserfs_end_persistent_transaction(th);
1048 if (err)
1049 retval = err;
1052 reiserfs_write_unlock_once(inode->i_sb, lock_depth);
1053 reiserfs_check_path(&path);
1054 return retval;
1057 static int
1058 reiserfs_readpages(struct file *file, struct address_space *mapping,
1059 struct list_head *pages, unsigned nr_pages)
1061 return mpage_readpages(mapping, pages, nr_pages, reiserfs_get_block);
1064 /* Compute real number of used bytes by file
1065 * Following three functions can go away when we'll have enough space in stat item
1067 static int real_space_diff(struct inode *inode, int sd_size)
1069 int bytes;
1070 loff_t blocksize = inode->i_sb->s_blocksize;
1072 if (S_ISLNK(inode->i_mode) || S_ISDIR(inode->i_mode))
1073 return sd_size;
1075 /* End of file is also in full block with indirect reference, so round
1076 ** up to the next block.
1078 ** there is just no way to know if the tail is actually packed
1079 ** on the file, so we have to assume it isn't. When we pack the
1080 ** tail, we add 4 bytes to pretend there really is an unformatted
1081 ** node pointer
1083 bytes =
1084 ((inode->i_size +
1085 (blocksize - 1)) >> inode->i_sb->s_blocksize_bits) * UNFM_P_SIZE +
1086 sd_size;
1087 return bytes;
1090 static inline loff_t to_real_used_space(struct inode *inode, ulong blocks,
1091 int sd_size)
1093 if (S_ISLNK(inode->i_mode) || S_ISDIR(inode->i_mode)) {
1094 return inode->i_size +
1095 (loff_t) (real_space_diff(inode, sd_size));
1097 return ((loff_t) real_space_diff(inode, sd_size)) +
1098 (((loff_t) blocks) << 9);
1101 /* Compute number of blocks used by file in ReiserFS counting */
1102 static inline ulong to_fake_used_blocks(struct inode *inode, int sd_size)
1104 loff_t bytes = inode_get_bytes(inode);
1105 loff_t real_space = real_space_diff(inode, sd_size);
1107 /* keeps fsck and non-quota versions of reiserfs happy */
1108 if (S_ISLNK(inode->i_mode) || S_ISDIR(inode->i_mode)) {
1109 bytes += (loff_t) 511;
1112 /* files from before the quota patch might i_blocks such that
1113 ** bytes < real_space. Deal with that here to prevent it from
1114 ** going negative.
1116 if (bytes < real_space)
1117 return 0;
1118 return (bytes - real_space) >> 9;
1122 // BAD: new directories have stat data of new type and all other items
1123 // of old type. Version stored in the inode says about body items, so
1124 // in update_stat_data we can not rely on inode, but have to check
1125 // item version directly
1128 // called by read_locked_inode
1129 static void init_inode(struct inode *inode, struct treepath *path)
1131 struct buffer_head *bh;
1132 struct item_head *ih;
1133 __u32 rdev;
1134 //int version = ITEM_VERSION_1;
1136 bh = PATH_PLAST_BUFFER(path);
1137 ih = PATH_PITEM_HEAD(path);
1139 copy_key(INODE_PKEY(inode), &(ih->ih_key));
1141 INIT_LIST_HEAD(&(REISERFS_I(inode)->i_prealloc_list));
1142 REISERFS_I(inode)->i_flags = 0;
1143 REISERFS_I(inode)->i_prealloc_block = 0;
1144 REISERFS_I(inode)->i_prealloc_count = 0;
1145 REISERFS_I(inode)->i_trans_id = 0;
1146 REISERFS_I(inode)->i_jl = NULL;
1147 reiserfs_init_xattr_rwsem(inode);
1149 if (stat_data_v1(ih)) {
1150 struct stat_data_v1 *sd =
1151 (struct stat_data_v1 *)B_I_PITEM(bh, ih);
1152 unsigned long blocks;
1154 set_inode_item_key_version(inode, KEY_FORMAT_3_5);
1155 set_inode_sd_version(inode, STAT_DATA_V1);
1156 inode->i_mode = sd_v1_mode(sd);
1157 set_nlink(inode, sd_v1_nlink(sd));
1158 i_uid_write(inode, sd_v1_uid(sd));
1159 i_gid_write(inode, sd_v1_gid(sd));
1160 inode->i_size = sd_v1_size(sd);
1161 inode->i_atime.tv_sec = sd_v1_atime(sd);
1162 inode->i_mtime.tv_sec = sd_v1_mtime(sd);
1163 inode->i_ctime.tv_sec = sd_v1_ctime(sd);
1164 inode->i_atime.tv_nsec = 0;
1165 inode->i_ctime.tv_nsec = 0;
1166 inode->i_mtime.tv_nsec = 0;
1168 inode->i_blocks = sd_v1_blocks(sd);
1169 inode->i_generation = le32_to_cpu(INODE_PKEY(inode)->k_dir_id);
1170 blocks = (inode->i_size + 511) >> 9;
1171 blocks = _ROUND_UP(blocks, inode->i_sb->s_blocksize >> 9);
1172 if (inode->i_blocks > blocks) {
1173 // there was a bug in <=3.5.23 when i_blocks could take negative
1174 // values. Starting from 3.5.17 this value could even be stored in
1175 // stat data. For such files we set i_blocks based on file
1176 // size. Just 2 notes: this can be wrong for sparce files. On-disk value will be
1177 // only updated if file's inode will ever change
1178 inode->i_blocks = blocks;
1181 rdev = sd_v1_rdev(sd);
1182 REISERFS_I(inode)->i_first_direct_byte =
1183 sd_v1_first_direct_byte(sd);
1184 /* an early bug in the quota code can give us an odd number for the
1185 ** block count. This is incorrect, fix it here.
1187 if (inode->i_blocks & 1) {
1188 inode->i_blocks++;
1190 inode_set_bytes(inode,
1191 to_real_used_space(inode, inode->i_blocks,
1192 SD_V1_SIZE));
1193 /* nopack is initially zero for v1 objects. For v2 objects,
1194 nopack is initialised from sd_attrs */
1195 REISERFS_I(inode)->i_flags &= ~i_nopack_mask;
1196 } else {
1197 // new stat data found, but object may have old items
1198 // (directories and symlinks)
1199 struct stat_data *sd = (struct stat_data *)B_I_PITEM(bh, ih);
1201 inode->i_mode = sd_v2_mode(sd);
1202 set_nlink(inode, sd_v2_nlink(sd));
1203 i_uid_write(inode, sd_v2_uid(sd));
1204 inode->i_size = sd_v2_size(sd);
1205 i_gid_write(inode, sd_v2_gid(sd));
1206 inode->i_mtime.tv_sec = sd_v2_mtime(sd);
1207 inode->i_atime.tv_sec = sd_v2_atime(sd);
1208 inode->i_ctime.tv_sec = sd_v2_ctime(sd);
1209 inode->i_ctime.tv_nsec = 0;
1210 inode->i_mtime.tv_nsec = 0;
1211 inode->i_atime.tv_nsec = 0;
1212 inode->i_blocks = sd_v2_blocks(sd);
1213 rdev = sd_v2_rdev(sd);
1214 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode))
1215 inode->i_generation =
1216 le32_to_cpu(INODE_PKEY(inode)->k_dir_id);
1217 else
1218 inode->i_generation = sd_v2_generation(sd);
1220 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
1221 set_inode_item_key_version(inode, KEY_FORMAT_3_5);
1222 else
1223 set_inode_item_key_version(inode, KEY_FORMAT_3_6);
1224 REISERFS_I(inode)->i_first_direct_byte = 0;
1225 set_inode_sd_version(inode, STAT_DATA_V2);
1226 inode_set_bytes(inode,
1227 to_real_used_space(inode, inode->i_blocks,
1228 SD_V2_SIZE));
1229 /* read persistent inode attributes from sd and initialise
1230 generic inode flags from them */
1231 REISERFS_I(inode)->i_attrs = sd_v2_attrs(sd);
1232 sd_attrs_to_i_attrs(sd_v2_attrs(sd), inode);
1235 pathrelse(path);
1236 if (S_ISREG(inode->i_mode)) {
1237 inode->i_op = &reiserfs_file_inode_operations;
1238 inode->i_fop = &reiserfs_file_operations;
1239 inode->i_mapping->a_ops = &reiserfs_address_space_operations;
1240 } else if (S_ISDIR(inode->i_mode)) {
1241 inode->i_op = &reiserfs_dir_inode_operations;
1242 inode->i_fop = &reiserfs_dir_operations;
1243 } else if (S_ISLNK(inode->i_mode)) {
1244 inode->i_op = &reiserfs_symlink_inode_operations;
1245 inode->i_mapping->a_ops = &reiserfs_address_space_operations;
1246 } else {
1247 inode->i_blocks = 0;
1248 inode->i_op = &reiserfs_special_inode_operations;
1249 init_special_inode(inode, inode->i_mode, new_decode_dev(rdev));
1253 // update new stat data with inode fields
1254 static void inode2sd(void *sd, struct inode *inode, loff_t size)
1256 struct stat_data *sd_v2 = (struct stat_data *)sd;
1257 __u16 flags;
1259 set_sd_v2_mode(sd_v2, inode->i_mode);
1260 set_sd_v2_nlink(sd_v2, inode->i_nlink);
1261 set_sd_v2_uid(sd_v2, i_uid_read(inode));
1262 set_sd_v2_size(sd_v2, size);
1263 set_sd_v2_gid(sd_v2, i_gid_read(inode));
1264 set_sd_v2_mtime(sd_v2, inode->i_mtime.tv_sec);
1265 set_sd_v2_atime(sd_v2, inode->i_atime.tv_sec);
1266 set_sd_v2_ctime(sd_v2, inode->i_ctime.tv_sec);
1267 set_sd_v2_blocks(sd_v2, to_fake_used_blocks(inode, SD_V2_SIZE));
1268 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode))
1269 set_sd_v2_rdev(sd_v2, new_encode_dev(inode->i_rdev));
1270 else
1271 set_sd_v2_generation(sd_v2, inode->i_generation);
1272 flags = REISERFS_I(inode)->i_attrs;
1273 i_attrs_to_sd_attrs(inode, &flags);
1274 set_sd_v2_attrs(sd_v2, flags);
1277 // used to copy inode's fields to old stat data
1278 static void inode2sd_v1(void *sd, struct inode *inode, loff_t size)
1280 struct stat_data_v1 *sd_v1 = (struct stat_data_v1 *)sd;
1282 set_sd_v1_mode(sd_v1, inode->i_mode);
1283 set_sd_v1_uid(sd_v1, i_uid_read(inode));
1284 set_sd_v1_gid(sd_v1, i_gid_read(inode));
1285 set_sd_v1_nlink(sd_v1, inode->i_nlink);
1286 set_sd_v1_size(sd_v1, size);
1287 set_sd_v1_atime(sd_v1, inode->i_atime.tv_sec);
1288 set_sd_v1_ctime(sd_v1, inode->i_ctime.tv_sec);
1289 set_sd_v1_mtime(sd_v1, inode->i_mtime.tv_sec);
1291 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode))
1292 set_sd_v1_rdev(sd_v1, new_encode_dev(inode->i_rdev));
1293 else
1294 set_sd_v1_blocks(sd_v1, to_fake_used_blocks(inode, SD_V1_SIZE));
1296 // Sigh. i_first_direct_byte is back
1297 set_sd_v1_first_direct_byte(sd_v1,
1298 REISERFS_I(inode)->i_first_direct_byte);
1301 /* NOTE, you must prepare the buffer head before sending it here,
1302 ** and then log it after the call
1304 static void update_stat_data(struct treepath *path, struct inode *inode,
1305 loff_t size)
1307 struct buffer_head *bh;
1308 struct item_head *ih;
1310 bh = PATH_PLAST_BUFFER(path);
1311 ih = PATH_PITEM_HEAD(path);
1313 if (!is_statdata_le_ih(ih))
1314 reiserfs_panic(inode->i_sb, "vs-13065", "key %k, found item %h",
1315 INODE_PKEY(inode), ih);
1317 if (stat_data_v1(ih)) {
1318 // path points to old stat data
1319 inode2sd_v1(B_I_PITEM(bh, ih), inode, size);
1320 } else {
1321 inode2sd(B_I_PITEM(bh, ih), inode, size);
1324 return;
1327 void reiserfs_update_sd_size(struct reiserfs_transaction_handle *th,
1328 struct inode *inode, loff_t size)
1330 struct cpu_key key;
1331 INITIALIZE_PATH(path);
1332 struct buffer_head *bh;
1333 int fs_gen;
1334 struct item_head *ih, tmp_ih;
1335 int retval;
1337 BUG_ON(!th->t_trans_id);
1339 make_cpu_key(&key, inode, SD_OFFSET, TYPE_STAT_DATA, 3); //key type is unimportant
1341 for (;;) {
1342 int pos;
1343 /* look for the object's stat data */
1344 retval = search_item(inode->i_sb, &key, &path);
1345 if (retval == IO_ERROR) {
1346 reiserfs_error(inode->i_sb, "vs-13050",
1347 "i/o failure occurred trying to "
1348 "update %K stat data", &key);
1349 return;
1351 if (retval == ITEM_NOT_FOUND) {
1352 pos = PATH_LAST_POSITION(&path);
1353 pathrelse(&path);
1354 if (inode->i_nlink == 0) {
1355 /*reiserfs_warning (inode->i_sb, "vs-13050: reiserfs_update_sd: i_nlink == 0, stat data not found"); */
1356 return;
1358 reiserfs_warning(inode->i_sb, "vs-13060",
1359 "stat data of object %k (nlink == %d) "
1360 "not found (pos %d)",
1361 INODE_PKEY(inode), inode->i_nlink,
1362 pos);
1363 reiserfs_check_path(&path);
1364 return;
1367 /* sigh, prepare_for_journal might schedule. When it schedules the
1368 ** FS might change. We have to detect that, and loop back to the
1369 ** search if the stat data item has moved
1371 bh = get_last_bh(&path);
1372 ih = get_ih(&path);
1373 copy_item_head(&tmp_ih, ih);
1374 fs_gen = get_generation(inode->i_sb);
1375 reiserfs_prepare_for_journal(inode->i_sb, bh, 1);
1376 if (fs_changed(fs_gen, inode->i_sb)
1377 && item_moved(&tmp_ih, &path)) {
1378 reiserfs_restore_prepared_buffer(inode->i_sb, bh);
1379 continue; /* Stat_data item has been moved after scheduling. */
1381 break;
1383 update_stat_data(&path, inode, size);
1384 journal_mark_dirty(th, th->t_super, bh);
1385 pathrelse(&path);
1386 return;
1389 /* reiserfs_read_locked_inode is called to read the inode off disk, and it
1390 ** does a make_bad_inode when things go wrong. But, we need to make sure
1391 ** and clear the key in the private portion of the inode, otherwise a
1392 ** corresponding iput might try to delete whatever object the inode last
1393 ** represented.
1395 static void reiserfs_make_bad_inode(struct inode *inode)
1397 memset(INODE_PKEY(inode), 0, KEY_SIZE);
1398 make_bad_inode(inode);
1402 // initially this function was derived from minix or ext2's analog and
1403 // evolved as the prototype did
1406 int reiserfs_init_locked_inode(struct inode *inode, void *p)
1408 struct reiserfs_iget_args *args = (struct reiserfs_iget_args *)p;
1409 inode->i_ino = args->objectid;
1410 INODE_PKEY(inode)->k_dir_id = cpu_to_le32(args->dirid);
1411 return 0;
1414 /* looks for stat data in the tree, and fills up the fields of in-core
1415 inode stat data fields */
1416 void reiserfs_read_locked_inode(struct inode *inode,
1417 struct reiserfs_iget_args *args)
1419 INITIALIZE_PATH(path_to_sd);
1420 struct cpu_key key;
1421 unsigned long dirino;
1422 int retval;
1424 dirino = args->dirid;
1426 /* set version 1, version 2 could be used too, because stat data
1427 key is the same in both versions */
1428 key.version = KEY_FORMAT_3_5;
1429 key.on_disk_key.k_dir_id = dirino;
1430 key.on_disk_key.k_objectid = inode->i_ino;
1431 key.on_disk_key.k_offset = 0;
1432 key.on_disk_key.k_type = 0;
1434 /* look for the object's stat data */
1435 retval = search_item(inode->i_sb, &key, &path_to_sd);
1436 if (retval == IO_ERROR) {
1437 reiserfs_error(inode->i_sb, "vs-13070",
1438 "i/o failure occurred trying to find "
1439 "stat data of %K", &key);
1440 reiserfs_make_bad_inode(inode);
1441 return;
1443 if (retval != ITEM_FOUND) {
1444 /* a stale NFS handle can trigger this without it being an error */
1445 pathrelse(&path_to_sd);
1446 reiserfs_make_bad_inode(inode);
1447 clear_nlink(inode);
1448 return;
1451 init_inode(inode, &path_to_sd);
1453 /* It is possible that knfsd is trying to access inode of a file
1454 that is being removed from the disk by some other thread. As we
1455 update sd on unlink all that is required is to check for nlink
1456 here. This bug was first found by Sizif when debugging
1457 SquidNG/Butterfly, forgotten, and found again after Philippe
1458 Gramoulle <philippe.gramoulle@mmania.com> reproduced it.
1460 More logical fix would require changes in fs/inode.c:iput() to
1461 remove inode from hash-table _after_ fs cleaned disk stuff up and
1462 in iget() to return NULL if I_FREEING inode is found in
1463 hash-table. */
1464 /* Currently there is one place where it's ok to meet inode with
1465 nlink==0: processing of open-unlinked and half-truncated files
1466 during mount (fs/reiserfs/super.c:finish_unfinished()). */
1467 if ((inode->i_nlink == 0) &&
1468 !REISERFS_SB(inode->i_sb)->s_is_unlinked_ok) {
1469 reiserfs_warning(inode->i_sb, "vs-13075",
1470 "dead inode read from disk %K. "
1471 "This is likely to be race with knfsd. Ignore",
1472 &key);
1473 reiserfs_make_bad_inode(inode);
1476 reiserfs_check_path(&path_to_sd); /* init inode should be relsing */
1479 * Stat data v1 doesn't support ACLs.
1481 if (get_inode_sd_version(inode) == STAT_DATA_V1)
1482 cache_no_acl(inode);
1486 * reiserfs_find_actor() - "find actor" reiserfs supplies to iget5_locked().
1488 * @inode: inode from hash table to check
1489 * @opaque: "cookie" passed to iget5_locked(). This is &reiserfs_iget_args.
1491 * This function is called by iget5_locked() to distinguish reiserfs inodes
1492 * having the same inode numbers. Such inodes can only exist due to some
1493 * error condition. One of them should be bad. Inodes with identical
1494 * inode numbers (objectids) are distinguished by parent directory ids.
1497 int reiserfs_find_actor(struct inode *inode, void *opaque)
1499 struct reiserfs_iget_args *args;
1501 args = opaque;
1502 /* args is already in CPU order */
1503 return (inode->i_ino == args->objectid) &&
1504 (le32_to_cpu(INODE_PKEY(inode)->k_dir_id) == args->dirid);
1507 struct inode *reiserfs_iget(struct super_block *s, const struct cpu_key *key)
1509 struct inode *inode;
1510 struct reiserfs_iget_args args;
1512 args.objectid = key->on_disk_key.k_objectid;
1513 args.dirid = key->on_disk_key.k_dir_id;
1514 reiserfs_write_unlock(s);
1515 inode = iget5_locked(s, key->on_disk_key.k_objectid,
1516 reiserfs_find_actor, reiserfs_init_locked_inode,
1517 (void *)(&args));
1518 reiserfs_write_lock(s);
1519 if (!inode)
1520 return ERR_PTR(-ENOMEM);
1522 if (inode->i_state & I_NEW) {
1523 reiserfs_read_locked_inode(inode, &args);
1524 unlock_new_inode(inode);
1527 if (comp_short_keys(INODE_PKEY(inode), key) || is_bad_inode(inode)) {
1528 /* either due to i/o error or a stale NFS handle */
1529 iput(inode);
1530 inode = NULL;
1532 return inode;
1535 static struct dentry *reiserfs_get_dentry(struct super_block *sb,
1536 u32 objectid, u32 dir_id, u32 generation)
1539 struct cpu_key key;
1540 struct inode *inode;
1542 key.on_disk_key.k_objectid = objectid;
1543 key.on_disk_key.k_dir_id = dir_id;
1544 reiserfs_write_lock(sb);
1545 inode = reiserfs_iget(sb, &key);
1546 if (inode && !IS_ERR(inode) && generation != 0 &&
1547 generation != inode->i_generation) {
1548 iput(inode);
1549 inode = NULL;
1551 reiserfs_write_unlock(sb);
1553 return d_obtain_alias(inode);
1556 struct dentry *reiserfs_fh_to_dentry(struct super_block *sb, struct fid *fid,
1557 int fh_len, int fh_type)
1559 /* fhtype happens to reflect the number of u32s encoded.
1560 * due to a bug in earlier code, fhtype might indicate there
1561 * are more u32s then actually fitted.
1562 * so if fhtype seems to be more than len, reduce fhtype.
1563 * Valid types are:
1564 * 2 - objectid + dir_id - legacy support
1565 * 3 - objectid + dir_id + generation
1566 * 4 - objectid + dir_id + objectid and dirid of parent - legacy
1567 * 5 - objectid + dir_id + generation + objectid and dirid of parent
1568 * 6 - as above plus generation of directory
1569 * 6 does not fit in NFSv2 handles
1571 if (fh_type > fh_len) {
1572 if (fh_type != 6 || fh_len != 5)
1573 reiserfs_warning(sb, "reiserfs-13077",
1574 "nfsd/reiserfs, fhtype=%d, len=%d - odd",
1575 fh_type, fh_len);
1576 fh_type = fh_len;
1578 if (fh_len < 2)
1579 return NULL;
1581 return reiserfs_get_dentry(sb, fid->raw[0], fid->raw[1],
1582 (fh_type == 3 || fh_type >= 5) ? fid->raw[2] : 0);
1585 struct dentry *reiserfs_fh_to_parent(struct super_block *sb, struct fid *fid,
1586 int fh_len, int fh_type)
1588 if (fh_type > fh_len)
1589 fh_type = fh_len;
1590 if (fh_type < 4)
1591 return NULL;
1593 return reiserfs_get_dentry(sb,
1594 (fh_type >= 5) ? fid->raw[3] : fid->raw[2],
1595 (fh_type >= 5) ? fid->raw[4] : fid->raw[3],
1596 (fh_type == 6) ? fid->raw[5] : 0);
1599 int reiserfs_encode_fh(struct inode *inode, __u32 * data, int *lenp,
1600 struct inode *parent)
1602 int maxlen = *lenp;
1604 if (parent && (maxlen < 5)) {
1605 *lenp = 5;
1606 return 255;
1607 } else if (maxlen < 3) {
1608 *lenp = 3;
1609 return 255;
1612 data[0] = inode->i_ino;
1613 data[1] = le32_to_cpu(INODE_PKEY(inode)->k_dir_id);
1614 data[2] = inode->i_generation;
1615 *lenp = 3;
1616 if (parent) {
1617 data[3] = parent->i_ino;
1618 data[4] = le32_to_cpu(INODE_PKEY(parent)->k_dir_id);
1619 *lenp = 5;
1620 if (maxlen >= 6) {
1621 data[5] = parent->i_generation;
1622 *lenp = 6;
1625 return *lenp;
1628 /* looks for stat data, then copies fields to it, marks the buffer
1629 containing stat data as dirty */
1630 /* reiserfs inodes are never really dirty, since the dirty inode call
1631 ** always logs them. This call allows the VFS inode marking routines
1632 ** to properly mark inodes for datasync and such, but only actually
1633 ** does something when called for a synchronous update.
1635 int reiserfs_write_inode(struct inode *inode, struct writeback_control *wbc)
1637 struct reiserfs_transaction_handle th;
1638 int jbegin_count = 1;
1640 if (inode->i_sb->s_flags & MS_RDONLY)
1641 return -EROFS;
1642 /* memory pressure can sometimes initiate write_inode calls with sync == 1,
1643 ** these cases are just when the system needs ram, not when the
1644 ** inode needs to reach disk for safety, and they can safely be
1645 ** ignored because the altered inode has already been logged.
1647 if (wbc->sync_mode == WB_SYNC_ALL && !(current->flags & PF_MEMALLOC)) {
1648 reiserfs_write_lock(inode->i_sb);
1649 if (!journal_begin(&th, inode->i_sb, jbegin_count)) {
1650 reiserfs_update_sd(&th, inode);
1651 journal_end_sync(&th, inode->i_sb, jbegin_count);
1653 reiserfs_write_unlock(inode->i_sb);
1655 return 0;
1658 /* stat data of new object is inserted already, this inserts the item
1659 containing "." and ".." entries */
1660 static int reiserfs_new_directory(struct reiserfs_transaction_handle *th,
1661 struct inode *inode,
1662 struct item_head *ih, struct treepath *path,
1663 struct inode *dir)
1665 struct super_block *sb = th->t_super;
1666 char empty_dir[EMPTY_DIR_SIZE];
1667 char *body = empty_dir;
1668 struct cpu_key key;
1669 int retval;
1671 BUG_ON(!th->t_trans_id);
1673 _make_cpu_key(&key, KEY_FORMAT_3_5, le32_to_cpu(ih->ih_key.k_dir_id),
1674 le32_to_cpu(ih->ih_key.k_objectid), DOT_OFFSET,
1675 TYPE_DIRENTRY, 3 /*key length */ );
1677 /* compose item head for new item. Directories consist of items of
1678 old type (ITEM_VERSION_1). Do not set key (second arg is 0), it
1679 is done by reiserfs_new_inode */
1680 if (old_format_only(sb)) {
1681 make_le_item_head(ih, NULL, KEY_FORMAT_3_5, DOT_OFFSET,
1682 TYPE_DIRENTRY, EMPTY_DIR_SIZE_V1, 2);
1684 make_empty_dir_item_v1(body, ih->ih_key.k_dir_id,
1685 ih->ih_key.k_objectid,
1686 INODE_PKEY(dir)->k_dir_id,
1687 INODE_PKEY(dir)->k_objectid);
1688 } else {
1689 make_le_item_head(ih, NULL, KEY_FORMAT_3_5, DOT_OFFSET,
1690 TYPE_DIRENTRY, EMPTY_DIR_SIZE, 2);
1692 make_empty_dir_item(body, ih->ih_key.k_dir_id,
1693 ih->ih_key.k_objectid,
1694 INODE_PKEY(dir)->k_dir_id,
1695 INODE_PKEY(dir)->k_objectid);
1698 /* look for place in the tree for new item */
1699 retval = search_item(sb, &key, path);
1700 if (retval == IO_ERROR) {
1701 reiserfs_error(sb, "vs-13080",
1702 "i/o failure occurred creating new directory");
1703 return -EIO;
1705 if (retval == ITEM_FOUND) {
1706 pathrelse(path);
1707 reiserfs_warning(sb, "vs-13070",
1708 "object with this key exists (%k)",
1709 &(ih->ih_key));
1710 return -EEXIST;
1713 /* insert item, that is empty directory item */
1714 return reiserfs_insert_item(th, path, &key, ih, inode, body);
1717 /* stat data of object has been inserted, this inserts the item
1718 containing the body of symlink */
1719 static int reiserfs_new_symlink(struct reiserfs_transaction_handle *th, struct inode *inode, /* Inode of symlink */
1720 struct item_head *ih,
1721 struct treepath *path, const char *symname,
1722 int item_len)
1724 struct super_block *sb = th->t_super;
1725 struct cpu_key key;
1726 int retval;
1728 BUG_ON(!th->t_trans_id);
1730 _make_cpu_key(&key, KEY_FORMAT_3_5,
1731 le32_to_cpu(ih->ih_key.k_dir_id),
1732 le32_to_cpu(ih->ih_key.k_objectid),
1733 1, TYPE_DIRECT, 3 /*key length */ );
1735 make_le_item_head(ih, NULL, KEY_FORMAT_3_5, 1, TYPE_DIRECT, item_len,
1736 0 /*free_space */ );
1738 /* look for place in the tree for new item */
1739 retval = search_item(sb, &key, path);
1740 if (retval == IO_ERROR) {
1741 reiserfs_error(sb, "vs-13080",
1742 "i/o failure occurred creating new symlink");
1743 return -EIO;
1745 if (retval == ITEM_FOUND) {
1746 pathrelse(path);
1747 reiserfs_warning(sb, "vs-13080",
1748 "object with this key exists (%k)",
1749 &(ih->ih_key));
1750 return -EEXIST;
1753 /* insert item, that is body of symlink */
1754 return reiserfs_insert_item(th, path, &key, ih, inode, symname);
1757 /* inserts the stat data into the tree, and then calls
1758 reiserfs_new_directory (to insert ".", ".." item if new object is
1759 directory) or reiserfs_new_symlink (to insert symlink body if new
1760 object is symlink) or nothing (if new object is regular file)
1762 NOTE! uid and gid must already be set in the inode. If we return
1763 non-zero due to an error, we have to drop the quota previously allocated
1764 for the fresh inode. This can only be done outside a transaction, so
1765 if we return non-zero, we also end the transaction. */
1766 int reiserfs_new_inode(struct reiserfs_transaction_handle *th,
1767 struct inode *dir, umode_t mode, const char *symname,
1768 /* 0 for regular, EMTRY_DIR_SIZE for dirs,
1769 strlen (symname) for symlinks) */
1770 loff_t i_size, struct dentry *dentry,
1771 struct inode *inode,
1772 struct reiserfs_security_handle *security)
1774 struct super_block *sb;
1775 struct reiserfs_iget_args args;
1776 INITIALIZE_PATH(path_to_key);
1777 struct cpu_key key;
1778 struct item_head ih;
1779 struct stat_data sd;
1780 int retval;
1781 int err;
1783 BUG_ON(!th->t_trans_id);
1785 reiserfs_write_unlock(inode->i_sb);
1786 err = dquot_alloc_inode(inode);
1787 reiserfs_write_lock(inode->i_sb);
1788 if (err)
1789 goto out_end_trans;
1790 if (!dir->i_nlink) {
1791 err = -EPERM;
1792 goto out_bad_inode;
1795 sb = dir->i_sb;
1797 /* item head of new item */
1798 ih.ih_key.k_dir_id = reiserfs_choose_packing(dir);
1799 ih.ih_key.k_objectid = cpu_to_le32(reiserfs_get_unused_objectid(th));
1800 if (!ih.ih_key.k_objectid) {
1801 err = -ENOMEM;
1802 goto out_bad_inode;
1804 args.objectid = inode->i_ino = le32_to_cpu(ih.ih_key.k_objectid);
1805 if (old_format_only(sb))
1806 make_le_item_head(&ih, NULL, KEY_FORMAT_3_5, SD_OFFSET,
1807 TYPE_STAT_DATA, SD_V1_SIZE, MAX_US_INT);
1808 else
1809 make_le_item_head(&ih, NULL, KEY_FORMAT_3_6, SD_OFFSET,
1810 TYPE_STAT_DATA, SD_SIZE, MAX_US_INT);
1811 memcpy(INODE_PKEY(inode), &(ih.ih_key), KEY_SIZE);
1812 args.dirid = le32_to_cpu(ih.ih_key.k_dir_id);
1813 if (insert_inode_locked4(inode, args.objectid,
1814 reiserfs_find_actor, &args) < 0) {
1815 err = -EINVAL;
1816 goto out_bad_inode;
1818 if (old_format_only(sb))
1819 /* not a perfect generation count, as object ids can be reused, but
1820 ** this is as good as reiserfs can do right now.
1821 ** note that the private part of inode isn't filled in yet, we have
1822 ** to use the directory.
1824 inode->i_generation = le32_to_cpu(INODE_PKEY(dir)->k_objectid);
1825 else
1826 #if defined( USE_INODE_GENERATION_COUNTER )
1827 inode->i_generation =
1828 le32_to_cpu(REISERFS_SB(sb)->s_rs->s_inode_generation);
1829 #else
1830 inode->i_generation = ++event;
1831 #endif
1833 /* fill stat data */
1834 set_nlink(inode, (S_ISDIR(mode) ? 2 : 1));
1836 /* uid and gid must already be set by the caller for quota init */
1838 /* symlink cannot be immutable or append only, right? */
1839 if (S_ISLNK(inode->i_mode))
1840 inode->i_flags &= ~(S_IMMUTABLE | S_APPEND);
1842 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME_SEC;
1843 inode->i_size = i_size;
1844 inode->i_blocks = 0;
1845 inode->i_bytes = 0;
1846 REISERFS_I(inode)->i_first_direct_byte = S_ISLNK(mode) ? 1 :
1847 U32_MAX /*NO_BYTES_IN_DIRECT_ITEM */ ;
1849 INIT_LIST_HEAD(&(REISERFS_I(inode)->i_prealloc_list));
1850 REISERFS_I(inode)->i_flags = 0;
1851 REISERFS_I(inode)->i_prealloc_block = 0;
1852 REISERFS_I(inode)->i_prealloc_count = 0;
1853 REISERFS_I(inode)->i_trans_id = 0;
1854 REISERFS_I(inode)->i_jl = NULL;
1855 REISERFS_I(inode)->i_attrs =
1856 REISERFS_I(dir)->i_attrs & REISERFS_INHERIT_MASK;
1857 sd_attrs_to_i_attrs(REISERFS_I(inode)->i_attrs, inode);
1858 reiserfs_init_xattr_rwsem(inode);
1860 /* key to search for correct place for new stat data */
1861 _make_cpu_key(&key, KEY_FORMAT_3_6, le32_to_cpu(ih.ih_key.k_dir_id),
1862 le32_to_cpu(ih.ih_key.k_objectid), SD_OFFSET,
1863 TYPE_STAT_DATA, 3 /*key length */ );
1865 /* find proper place for inserting of stat data */
1866 retval = search_item(sb, &key, &path_to_key);
1867 if (retval == IO_ERROR) {
1868 err = -EIO;
1869 goto out_bad_inode;
1871 if (retval == ITEM_FOUND) {
1872 pathrelse(&path_to_key);
1873 err = -EEXIST;
1874 goto out_bad_inode;
1876 if (old_format_only(sb)) {
1877 if (i_uid_read(inode) & ~0xffff || i_gid_read(inode) & ~0xffff) {
1878 pathrelse(&path_to_key);
1879 /* i_uid or i_gid is too big to be stored in stat data v3.5 */
1880 err = -EINVAL;
1881 goto out_bad_inode;
1883 inode2sd_v1(&sd, inode, inode->i_size);
1884 } else {
1885 inode2sd(&sd, inode, inode->i_size);
1887 // store in in-core inode the key of stat data and version all
1888 // object items will have (directory items will have old offset
1889 // format, other new objects will consist of new items)
1890 if (old_format_only(sb) || S_ISDIR(mode) || S_ISLNK(mode))
1891 set_inode_item_key_version(inode, KEY_FORMAT_3_5);
1892 else
1893 set_inode_item_key_version(inode, KEY_FORMAT_3_6);
1894 if (old_format_only(sb))
1895 set_inode_sd_version(inode, STAT_DATA_V1);
1896 else
1897 set_inode_sd_version(inode, STAT_DATA_V2);
1899 /* insert the stat data into the tree */
1900 #ifdef DISPLACE_NEW_PACKING_LOCALITIES
1901 if (REISERFS_I(dir)->new_packing_locality)
1902 th->displace_new_blocks = 1;
1903 #endif
1904 retval =
1905 reiserfs_insert_item(th, &path_to_key, &key, &ih, inode,
1906 (char *)(&sd));
1907 if (retval) {
1908 err = retval;
1909 reiserfs_check_path(&path_to_key);
1910 goto out_bad_inode;
1912 #ifdef DISPLACE_NEW_PACKING_LOCALITIES
1913 if (!th->displace_new_blocks)
1914 REISERFS_I(dir)->new_packing_locality = 0;
1915 #endif
1916 if (S_ISDIR(mode)) {
1917 /* insert item with "." and ".." */
1918 retval =
1919 reiserfs_new_directory(th, inode, &ih, &path_to_key, dir);
1922 if (S_ISLNK(mode)) {
1923 /* insert body of symlink */
1924 if (!old_format_only(sb))
1925 i_size = ROUND_UP(i_size);
1926 retval =
1927 reiserfs_new_symlink(th, inode, &ih, &path_to_key, symname,
1928 i_size);
1930 if (retval) {
1931 err = retval;
1932 reiserfs_check_path(&path_to_key);
1933 journal_end(th, th->t_super, th->t_blocks_allocated);
1934 goto out_inserted_sd;
1937 if (reiserfs_posixacl(inode->i_sb)) {
1938 retval = reiserfs_inherit_default_acl(th, dir, dentry, inode);
1939 if (retval) {
1940 err = retval;
1941 reiserfs_check_path(&path_to_key);
1942 journal_end(th, th->t_super, th->t_blocks_allocated);
1943 goto out_inserted_sd;
1945 } else if (inode->i_sb->s_flags & MS_POSIXACL) {
1946 reiserfs_warning(inode->i_sb, "jdm-13090",
1947 "ACLs aren't enabled in the fs, "
1948 "but vfs thinks they are!");
1949 } else if (IS_PRIVATE(dir))
1950 inode->i_flags |= S_PRIVATE;
1952 if (security->name) {
1953 retval = reiserfs_security_write(th, inode, security);
1954 if (retval) {
1955 err = retval;
1956 reiserfs_check_path(&path_to_key);
1957 retval = journal_end(th, th->t_super,
1958 th->t_blocks_allocated);
1959 if (retval)
1960 err = retval;
1961 goto out_inserted_sd;
1965 reiserfs_update_sd(th, inode);
1966 reiserfs_check_path(&path_to_key);
1968 return 0;
1970 /* it looks like you can easily compress these two goto targets into
1971 * one. Keeping it like this doesn't actually hurt anything, and they
1972 * are place holders for what the quota code actually needs.
1974 out_bad_inode:
1975 /* Invalidate the object, nothing was inserted yet */
1976 INODE_PKEY(inode)->k_objectid = 0;
1978 /* Quota change must be inside a transaction for journaling */
1979 dquot_free_inode(inode);
1981 out_end_trans:
1982 journal_end(th, th->t_super, th->t_blocks_allocated);
1983 reiserfs_write_unlock(inode->i_sb);
1984 /* Drop can be outside and it needs more credits so it's better to have it outside */
1985 dquot_drop(inode);
1986 reiserfs_write_lock(inode->i_sb);
1987 inode->i_flags |= S_NOQUOTA;
1988 make_bad_inode(inode);
1990 out_inserted_sd:
1991 clear_nlink(inode);
1992 th->t_trans_id = 0; /* so the caller can't use this handle later */
1993 unlock_new_inode(inode); /* OK to do even if we hadn't locked it */
1994 iput(inode);
1995 return err;
1999 ** finds the tail page in the page cache,
2000 ** reads the last block in.
2002 ** On success, page_result is set to a locked, pinned page, and bh_result
2003 ** is set to an up to date buffer for the last block in the file. returns 0.
2005 ** tail conversion is not done, so bh_result might not be valid for writing
2006 ** check buffer_mapped(bh_result) and bh_result->b_blocknr != 0 before
2007 ** trying to write the block.
2009 ** on failure, nonzero is returned, page_result and bh_result are untouched.
2011 static int grab_tail_page(struct inode *inode,
2012 struct page **page_result,
2013 struct buffer_head **bh_result)
2016 /* we want the page with the last byte in the file,
2017 ** not the page that will hold the next byte for appending
2019 unsigned long index = (inode->i_size - 1) >> PAGE_CACHE_SHIFT;
2020 unsigned long pos = 0;
2021 unsigned long start = 0;
2022 unsigned long blocksize = inode->i_sb->s_blocksize;
2023 unsigned long offset = (inode->i_size) & (PAGE_CACHE_SIZE - 1);
2024 struct buffer_head *bh;
2025 struct buffer_head *head;
2026 struct page *page;
2027 int error;
2029 /* we know that we are only called with inode->i_size > 0.
2030 ** we also know that a file tail can never be as big as a block
2031 ** If i_size % blocksize == 0, our file is currently block aligned
2032 ** and it won't need converting or zeroing after a truncate.
2034 if ((offset & (blocksize - 1)) == 0) {
2035 return -ENOENT;
2037 page = grab_cache_page(inode->i_mapping, index);
2038 error = -ENOMEM;
2039 if (!page) {
2040 goto out;
2042 /* start within the page of the last block in the file */
2043 start = (offset / blocksize) * blocksize;
2045 error = __block_write_begin(page, start, offset - start,
2046 reiserfs_get_block_create_0);
2047 if (error)
2048 goto unlock;
2050 head = page_buffers(page);
2051 bh = head;
2052 do {
2053 if (pos >= start) {
2054 break;
2056 bh = bh->b_this_page;
2057 pos += blocksize;
2058 } while (bh != head);
2060 if (!buffer_uptodate(bh)) {
2061 /* note, this should never happen, prepare_write should
2062 ** be taking care of this for us. If the buffer isn't up to date,
2063 ** I've screwed up the code to find the buffer, or the code to
2064 ** call prepare_write
2066 reiserfs_error(inode->i_sb, "clm-6000",
2067 "error reading block %lu", bh->b_blocknr);
2068 error = -EIO;
2069 goto unlock;
2071 *bh_result = bh;
2072 *page_result = page;
2074 out:
2075 return error;
2077 unlock:
2078 unlock_page(page);
2079 page_cache_release(page);
2080 return error;
2084 ** vfs version of truncate file. Must NOT be called with
2085 ** a transaction already started.
2087 ** some code taken from block_truncate_page
2089 int reiserfs_truncate_file(struct inode *inode, int update_timestamps)
2091 struct reiserfs_transaction_handle th;
2092 /* we want the offset for the first byte after the end of the file */
2093 unsigned long offset = inode->i_size & (PAGE_CACHE_SIZE - 1);
2094 unsigned blocksize = inode->i_sb->s_blocksize;
2095 unsigned length;
2096 struct page *page = NULL;
2097 int error;
2098 struct buffer_head *bh = NULL;
2099 int err2;
2100 int lock_depth;
2102 lock_depth = reiserfs_write_lock_once(inode->i_sb);
2104 if (inode->i_size > 0) {
2105 error = grab_tail_page(inode, &page, &bh);
2106 if (error) {
2107 // -ENOENT means we truncated past the end of the file,
2108 // and get_block_create_0 could not find a block to read in,
2109 // which is ok.
2110 if (error != -ENOENT)
2111 reiserfs_error(inode->i_sb, "clm-6001",
2112 "grab_tail_page failed %d",
2113 error);
2114 page = NULL;
2115 bh = NULL;
2119 /* so, if page != NULL, we have a buffer head for the offset at
2120 ** the end of the file. if the bh is mapped, and bh->b_blocknr != 0,
2121 ** then we have an unformatted node. Otherwise, we have a direct item,
2122 ** and no zeroing is required on disk. We zero after the truncate,
2123 ** because the truncate might pack the item anyway
2124 ** (it will unmap bh if it packs).
2126 /* it is enough to reserve space in transaction for 2 balancings:
2127 one for "save" link adding and another for the first
2128 cut_from_item. 1 is for update_sd */
2129 error = journal_begin(&th, inode->i_sb,
2130 JOURNAL_PER_BALANCE_CNT * 2 + 1);
2131 if (error)
2132 goto out;
2133 reiserfs_update_inode_transaction(inode);
2134 if (update_timestamps)
2135 /* we are doing real truncate: if the system crashes before the last
2136 transaction of truncating gets committed - on reboot the file
2137 either appears truncated properly or not truncated at all */
2138 add_save_link(&th, inode, 1);
2139 err2 = reiserfs_do_truncate(&th, inode, page, update_timestamps);
2140 error =
2141 journal_end(&th, inode->i_sb, JOURNAL_PER_BALANCE_CNT * 2 + 1);
2142 if (error)
2143 goto out;
2145 /* check reiserfs_do_truncate after ending the transaction */
2146 if (err2) {
2147 error = err2;
2148 goto out;
2151 if (update_timestamps) {
2152 error = remove_save_link(inode, 1 /* truncate */);
2153 if (error)
2154 goto out;
2157 if (page) {
2158 length = offset & (blocksize - 1);
2159 /* if we are not on a block boundary */
2160 if (length) {
2161 length = blocksize - length;
2162 zero_user(page, offset, length);
2163 if (buffer_mapped(bh) && bh->b_blocknr != 0) {
2164 mark_buffer_dirty(bh);
2167 unlock_page(page);
2168 page_cache_release(page);
2171 reiserfs_write_unlock_once(inode->i_sb, lock_depth);
2173 return 0;
2174 out:
2175 if (page) {
2176 unlock_page(page);
2177 page_cache_release(page);
2180 reiserfs_write_unlock_once(inode->i_sb, lock_depth);
2182 return error;
2185 static int map_block_for_writepage(struct inode *inode,
2186 struct buffer_head *bh_result,
2187 unsigned long block)
2189 struct reiserfs_transaction_handle th;
2190 int fs_gen;
2191 struct item_head tmp_ih;
2192 struct item_head *ih;
2193 struct buffer_head *bh;
2194 __le32 *item;
2195 struct cpu_key key;
2196 INITIALIZE_PATH(path);
2197 int pos_in_item;
2198 int jbegin_count = JOURNAL_PER_BALANCE_CNT;
2199 loff_t byte_offset = ((loff_t)block << inode->i_sb->s_blocksize_bits)+1;
2200 int retval;
2201 int use_get_block = 0;
2202 int bytes_copied = 0;
2203 int copy_size;
2204 int trans_running = 0;
2206 /* catch places below that try to log something without starting a trans */
2207 th.t_trans_id = 0;
2209 if (!buffer_uptodate(bh_result)) {
2210 return -EIO;
2213 kmap(bh_result->b_page);
2214 start_over:
2215 reiserfs_write_lock(inode->i_sb);
2216 make_cpu_key(&key, inode, byte_offset, TYPE_ANY, 3);
2218 research:
2219 retval = search_for_position_by_key(inode->i_sb, &key, &path);
2220 if (retval != POSITION_FOUND) {
2221 use_get_block = 1;
2222 goto out;
2225 bh = get_last_bh(&path);
2226 ih = get_ih(&path);
2227 item = get_item(&path);
2228 pos_in_item = path.pos_in_item;
2230 /* we've found an unformatted node */
2231 if (indirect_item_found(retval, ih)) {
2232 if (bytes_copied > 0) {
2233 reiserfs_warning(inode->i_sb, "clm-6002",
2234 "bytes_copied %d", bytes_copied);
2236 if (!get_block_num(item, pos_in_item)) {
2237 /* crap, we are writing to a hole */
2238 use_get_block = 1;
2239 goto out;
2241 set_block_dev_mapped(bh_result,
2242 get_block_num(item, pos_in_item), inode);
2243 } else if (is_direct_le_ih(ih)) {
2244 char *p;
2245 p = page_address(bh_result->b_page);
2246 p += (byte_offset - 1) & (PAGE_CACHE_SIZE - 1);
2247 copy_size = ih_item_len(ih) - pos_in_item;
2249 fs_gen = get_generation(inode->i_sb);
2250 copy_item_head(&tmp_ih, ih);
2252 if (!trans_running) {
2253 /* vs-3050 is gone, no need to drop the path */
2254 retval = journal_begin(&th, inode->i_sb, jbegin_count);
2255 if (retval)
2256 goto out;
2257 reiserfs_update_inode_transaction(inode);
2258 trans_running = 1;
2259 if (fs_changed(fs_gen, inode->i_sb)
2260 && item_moved(&tmp_ih, &path)) {
2261 reiserfs_restore_prepared_buffer(inode->i_sb,
2262 bh);
2263 goto research;
2267 reiserfs_prepare_for_journal(inode->i_sb, bh, 1);
2269 if (fs_changed(fs_gen, inode->i_sb)
2270 && item_moved(&tmp_ih, &path)) {
2271 reiserfs_restore_prepared_buffer(inode->i_sb, bh);
2272 goto research;
2275 memcpy(B_I_PITEM(bh, ih) + pos_in_item, p + bytes_copied,
2276 copy_size);
2278 journal_mark_dirty(&th, inode->i_sb, bh);
2279 bytes_copied += copy_size;
2280 set_block_dev_mapped(bh_result, 0, inode);
2282 /* are there still bytes left? */
2283 if (bytes_copied < bh_result->b_size &&
2284 (byte_offset + bytes_copied) < inode->i_size) {
2285 set_cpu_key_k_offset(&key,
2286 cpu_key_k_offset(&key) +
2287 copy_size);
2288 goto research;
2290 } else {
2291 reiserfs_warning(inode->i_sb, "clm-6003",
2292 "bad item inode %lu", inode->i_ino);
2293 retval = -EIO;
2294 goto out;
2296 retval = 0;
2298 out:
2299 pathrelse(&path);
2300 if (trans_running) {
2301 int err = journal_end(&th, inode->i_sb, jbegin_count);
2302 if (err)
2303 retval = err;
2304 trans_running = 0;
2306 reiserfs_write_unlock(inode->i_sb);
2308 /* this is where we fill in holes in the file. */
2309 if (use_get_block) {
2310 retval = reiserfs_get_block(inode, block, bh_result,
2311 GET_BLOCK_CREATE | GET_BLOCK_NO_IMUX
2312 | GET_BLOCK_NO_DANGLE);
2313 if (!retval) {
2314 if (!buffer_mapped(bh_result)
2315 || bh_result->b_blocknr == 0) {
2316 /* get_block failed to find a mapped unformatted node. */
2317 use_get_block = 0;
2318 goto start_over;
2322 kunmap(bh_result->b_page);
2324 if (!retval && buffer_mapped(bh_result) && bh_result->b_blocknr == 0) {
2325 /* we've copied data from the page into the direct item, so the
2326 * buffer in the page is now clean, mark it to reflect that.
2328 lock_buffer(bh_result);
2329 clear_buffer_dirty(bh_result);
2330 unlock_buffer(bh_result);
2332 return retval;
2336 * mason@suse.com: updated in 2.5.54 to follow the same general io
2337 * start/recovery path as __block_write_full_page, along with special
2338 * code to handle reiserfs tails.
2340 static int reiserfs_write_full_page(struct page *page,
2341 struct writeback_control *wbc)
2343 struct inode *inode = page->mapping->host;
2344 unsigned long end_index = inode->i_size >> PAGE_CACHE_SHIFT;
2345 int error = 0;
2346 unsigned long block;
2347 sector_t last_block;
2348 struct buffer_head *head, *bh;
2349 int partial = 0;
2350 int nr = 0;
2351 int checked = PageChecked(page);
2352 struct reiserfs_transaction_handle th;
2353 struct super_block *s = inode->i_sb;
2354 int bh_per_page = PAGE_CACHE_SIZE / s->s_blocksize;
2355 th.t_trans_id = 0;
2357 /* no logging allowed when nonblocking or from PF_MEMALLOC */
2358 if (checked && (current->flags & PF_MEMALLOC)) {
2359 redirty_page_for_writepage(wbc, page);
2360 unlock_page(page);
2361 return 0;
2364 /* The page dirty bit is cleared before writepage is called, which
2365 * means we have to tell create_empty_buffers to make dirty buffers
2366 * The page really should be up to date at this point, so tossing
2367 * in the BH_Uptodate is just a sanity check.
2369 if (!page_has_buffers(page)) {
2370 create_empty_buffers(page, s->s_blocksize,
2371 (1 << BH_Dirty) | (1 << BH_Uptodate));
2373 head = page_buffers(page);
2375 /* last page in the file, zero out any contents past the
2376 ** last byte in the file
2378 if (page->index >= end_index) {
2379 unsigned last_offset;
2381 last_offset = inode->i_size & (PAGE_CACHE_SIZE - 1);
2382 /* no file contents in this page */
2383 if (page->index >= end_index + 1 || !last_offset) {
2384 unlock_page(page);
2385 return 0;
2387 zero_user_segment(page, last_offset, PAGE_CACHE_SIZE);
2389 bh = head;
2390 block = page->index << (PAGE_CACHE_SHIFT - s->s_blocksize_bits);
2391 last_block = (i_size_read(inode) - 1) >> inode->i_blkbits;
2392 /* first map all the buffers, logging any direct items we find */
2393 do {
2394 if (block > last_block) {
2396 * This can happen when the block size is less than
2397 * the page size. The corresponding bytes in the page
2398 * were zero filled above
2400 clear_buffer_dirty(bh);
2401 set_buffer_uptodate(bh);
2402 } else if ((checked || buffer_dirty(bh)) &&
2403 (!buffer_mapped(bh) || (buffer_mapped(bh)
2404 && bh->b_blocknr ==
2405 0))) {
2406 /* not mapped yet, or it points to a direct item, search
2407 * the btree for the mapping info, and log any direct
2408 * items found
2410 if ((error = map_block_for_writepage(inode, bh, block))) {
2411 goto fail;
2414 bh = bh->b_this_page;
2415 block++;
2416 } while (bh != head);
2419 * we start the transaction after map_block_for_writepage,
2420 * because it can create holes in the file (an unbounded operation).
2421 * starting it here, we can make a reliable estimate for how many
2422 * blocks we're going to log
2424 if (checked) {
2425 ClearPageChecked(page);
2426 reiserfs_write_lock(s);
2427 error = journal_begin(&th, s, bh_per_page + 1);
2428 if (error) {
2429 reiserfs_write_unlock(s);
2430 goto fail;
2432 reiserfs_update_inode_transaction(inode);
2434 /* now go through and lock any dirty buffers on the page */
2435 do {
2436 get_bh(bh);
2437 if (!buffer_mapped(bh))
2438 continue;
2439 if (buffer_mapped(bh) && bh->b_blocknr == 0)
2440 continue;
2442 if (checked) {
2443 reiserfs_prepare_for_journal(s, bh, 1);
2444 journal_mark_dirty(&th, s, bh);
2445 continue;
2447 /* from this point on, we know the buffer is mapped to a
2448 * real block and not a direct item
2450 if (wbc->sync_mode != WB_SYNC_NONE) {
2451 lock_buffer(bh);
2452 } else {
2453 if (!trylock_buffer(bh)) {
2454 redirty_page_for_writepage(wbc, page);
2455 continue;
2458 if (test_clear_buffer_dirty(bh)) {
2459 mark_buffer_async_write(bh);
2460 } else {
2461 unlock_buffer(bh);
2463 } while ((bh = bh->b_this_page) != head);
2465 if (checked) {
2466 error = journal_end(&th, s, bh_per_page + 1);
2467 reiserfs_write_unlock(s);
2468 if (error)
2469 goto fail;
2471 BUG_ON(PageWriteback(page));
2472 set_page_writeback(page);
2473 unlock_page(page);
2476 * since any buffer might be the only dirty buffer on the page,
2477 * the first submit_bh can bring the page out of writeback.
2478 * be careful with the buffers.
2480 do {
2481 struct buffer_head *next = bh->b_this_page;
2482 if (buffer_async_write(bh)) {
2483 submit_bh(WRITE, bh);
2484 nr++;
2486 put_bh(bh);
2487 bh = next;
2488 } while (bh != head);
2490 error = 0;
2491 done:
2492 if (nr == 0) {
2494 * if this page only had a direct item, it is very possible for
2495 * no io to be required without there being an error. Or,
2496 * someone else could have locked them and sent them down the
2497 * pipe without locking the page
2499 bh = head;
2500 do {
2501 if (!buffer_uptodate(bh)) {
2502 partial = 1;
2503 break;
2505 bh = bh->b_this_page;
2506 } while (bh != head);
2507 if (!partial)
2508 SetPageUptodate(page);
2509 end_page_writeback(page);
2511 return error;
2513 fail:
2514 /* catches various errors, we need to make sure any valid dirty blocks
2515 * get to the media. The page is currently locked and not marked for
2516 * writeback
2518 ClearPageUptodate(page);
2519 bh = head;
2520 do {
2521 get_bh(bh);
2522 if (buffer_mapped(bh) && buffer_dirty(bh) && bh->b_blocknr) {
2523 lock_buffer(bh);
2524 mark_buffer_async_write(bh);
2525 } else {
2527 * clear any dirty bits that might have come from getting
2528 * attached to a dirty page
2530 clear_buffer_dirty(bh);
2532 bh = bh->b_this_page;
2533 } while (bh != head);
2534 SetPageError(page);
2535 BUG_ON(PageWriteback(page));
2536 set_page_writeback(page);
2537 unlock_page(page);
2538 do {
2539 struct buffer_head *next = bh->b_this_page;
2540 if (buffer_async_write(bh)) {
2541 clear_buffer_dirty(bh);
2542 submit_bh(WRITE, bh);
2543 nr++;
2545 put_bh(bh);
2546 bh = next;
2547 } while (bh != head);
2548 goto done;
2551 static int reiserfs_readpage(struct file *f, struct page *page)
2553 return block_read_full_page(page, reiserfs_get_block);
2556 static int reiserfs_writepage(struct page *page, struct writeback_control *wbc)
2558 struct inode *inode = page->mapping->host;
2559 reiserfs_wait_on_write_block(inode->i_sb);
2560 return reiserfs_write_full_page(page, wbc);
2563 static void reiserfs_truncate_failed_write(struct inode *inode)
2565 truncate_inode_pages(inode->i_mapping, inode->i_size);
2566 reiserfs_truncate_file(inode, 0);
2569 static int reiserfs_write_begin(struct file *file,
2570 struct address_space *mapping,
2571 loff_t pos, unsigned len, unsigned flags,
2572 struct page **pagep, void **fsdata)
2574 struct inode *inode;
2575 struct page *page;
2576 pgoff_t index;
2577 int ret;
2578 int old_ref = 0;
2580 inode = mapping->host;
2581 *fsdata = 0;
2582 if (flags & AOP_FLAG_CONT_EXPAND &&
2583 (pos & (inode->i_sb->s_blocksize - 1)) == 0) {
2584 pos ++;
2585 *fsdata = (void *)(unsigned long)flags;
2588 index = pos >> PAGE_CACHE_SHIFT;
2589 page = grab_cache_page_write_begin(mapping, index, flags);
2590 if (!page)
2591 return -ENOMEM;
2592 *pagep = page;
2594 reiserfs_wait_on_write_block(inode->i_sb);
2595 fix_tail_page_for_writing(page);
2596 if (reiserfs_transaction_running(inode->i_sb)) {
2597 struct reiserfs_transaction_handle *th;
2598 th = (struct reiserfs_transaction_handle *)current->
2599 journal_info;
2600 BUG_ON(!th->t_refcount);
2601 BUG_ON(!th->t_trans_id);
2602 old_ref = th->t_refcount;
2603 th->t_refcount++;
2605 ret = __block_write_begin(page, pos, len, reiserfs_get_block);
2606 if (ret && reiserfs_transaction_running(inode->i_sb)) {
2607 struct reiserfs_transaction_handle *th = current->journal_info;
2608 /* this gets a little ugly. If reiserfs_get_block returned an
2609 * error and left a transacstion running, we've got to close it,
2610 * and we've got to free handle if it was a persistent transaction.
2612 * But, if we had nested into an existing transaction, we need
2613 * to just drop the ref count on the handle.
2615 * If old_ref == 0, the transaction is from reiserfs_get_block,
2616 * and it was a persistent trans. Otherwise, it was nested above.
2618 if (th->t_refcount > old_ref) {
2619 if (old_ref)
2620 th->t_refcount--;
2621 else {
2622 int err;
2623 reiserfs_write_lock(inode->i_sb);
2624 err = reiserfs_end_persistent_transaction(th);
2625 reiserfs_write_unlock(inode->i_sb);
2626 if (err)
2627 ret = err;
2631 if (ret) {
2632 unlock_page(page);
2633 page_cache_release(page);
2634 /* Truncate allocated blocks */
2635 reiserfs_truncate_failed_write(inode);
2637 return ret;
2640 int __reiserfs_write_begin(struct page *page, unsigned from, unsigned len)
2642 struct inode *inode = page->mapping->host;
2643 int ret;
2644 int old_ref = 0;
2646 reiserfs_write_unlock(inode->i_sb);
2647 reiserfs_wait_on_write_block(inode->i_sb);
2648 reiserfs_write_lock(inode->i_sb);
2650 fix_tail_page_for_writing(page);
2651 if (reiserfs_transaction_running(inode->i_sb)) {
2652 struct reiserfs_transaction_handle *th;
2653 th = (struct reiserfs_transaction_handle *)current->
2654 journal_info;
2655 BUG_ON(!th->t_refcount);
2656 BUG_ON(!th->t_trans_id);
2657 old_ref = th->t_refcount;
2658 th->t_refcount++;
2661 ret = __block_write_begin(page, from, len, reiserfs_get_block);
2662 if (ret && reiserfs_transaction_running(inode->i_sb)) {
2663 struct reiserfs_transaction_handle *th = current->journal_info;
2664 /* this gets a little ugly. If reiserfs_get_block returned an
2665 * error and left a transacstion running, we've got to close it,
2666 * and we've got to free handle if it was a persistent transaction.
2668 * But, if we had nested into an existing transaction, we need
2669 * to just drop the ref count on the handle.
2671 * If old_ref == 0, the transaction is from reiserfs_get_block,
2672 * and it was a persistent trans. Otherwise, it was nested above.
2674 if (th->t_refcount > old_ref) {
2675 if (old_ref)
2676 th->t_refcount--;
2677 else {
2678 int err;
2679 reiserfs_write_lock(inode->i_sb);
2680 err = reiserfs_end_persistent_transaction(th);
2681 reiserfs_write_unlock(inode->i_sb);
2682 if (err)
2683 ret = err;
2687 return ret;
2691 static sector_t reiserfs_aop_bmap(struct address_space *as, sector_t block)
2693 return generic_block_bmap(as, block, reiserfs_bmap);
2696 static int reiserfs_write_end(struct file *file, struct address_space *mapping,
2697 loff_t pos, unsigned len, unsigned copied,
2698 struct page *page, void *fsdata)
2700 struct inode *inode = page->mapping->host;
2701 int ret = 0;
2702 int update_sd = 0;
2703 struct reiserfs_transaction_handle *th;
2704 unsigned start;
2705 int lock_depth = 0;
2706 bool locked = false;
2708 if ((unsigned long)fsdata & AOP_FLAG_CONT_EXPAND)
2709 pos ++;
2711 reiserfs_wait_on_write_block(inode->i_sb);
2712 if (reiserfs_transaction_running(inode->i_sb))
2713 th = current->journal_info;
2714 else
2715 th = NULL;
2717 start = pos & (PAGE_CACHE_SIZE - 1);
2718 if (unlikely(copied < len)) {
2719 if (!PageUptodate(page))
2720 copied = 0;
2722 page_zero_new_buffers(page, start + copied, start + len);
2724 flush_dcache_page(page);
2726 reiserfs_commit_page(inode, page, start, start + copied);
2728 /* generic_commit_write does this for us, but does not update the
2729 ** transaction tracking stuff when the size changes. So, we have
2730 ** to do the i_size updates here.
2732 if (pos + copied > inode->i_size) {
2733 struct reiserfs_transaction_handle myth;
2734 lock_depth = reiserfs_write_lock_once(inode->i_sb);
2735 locked = true;
2736 /* If the file have grown beyond the border where it
2737 can have a tail, unmark it as needing a tail
2738 packing */
2739 if ((have_large_tails(inode->i_sb)
2740 && inode->i_size > i_block_size(inode) * 4)
2741 || (have_small_tails(inode->i_sb)
2742 && inode->i_size > i_block_size(inode)))
2743 REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask;
2745 ret = journal_begin(&myth, inode->i_sb, 1);
2746 if (ret)
2747 goto journal_error;
2749 reiserfs_update_inode_transaction(inode);
2750 inode->i_size = pos + copied;
2752 * this will just nest into our transaction. It's important
2753 * to use mark_inode_dirty so the inode gets pushed around on the
2754 * dirty lists, and so that O_SYNC works as expected
2756 mark_inode_dirty(inode);
2757 reiserfs_update_sd(&myth, inode);
2758 update_sd = 1;
2759 ret = journal_end(&myth, inode->i_sb, 1);
2760 if (ret)
2761 goto journal_error;
2763 if (th) {
2764 if (!locked) {
2765 lock_depth = reiserfs_write_lock_once(inode->i_sb);
2766 locked = true;
2768 if (!update_sd)
2769 mark_inode_dirty(inode);
2770 ret = reiserfs_end_persistent_transaction(th);
2771 if (ret)
2772 goto out;
2775 out:
2776 if (locked)
2777 reiserfs_write_unlock_once(inode->i_sb, lock_depth);
2778 unlock_page(page);
2779 page_cache_release(page);
2781 if (pos + len > inode->i_size)
2782 reiserfs_truncate_failed_write(inode);
2784 return ret == 0 ? copied : ret;
2786 journal_error:
2787 reiserfs_write_unlock_once(inode->i_sb, lock_depth);
2788 locked = false;
2789 if (th) {
2790 if (!update_sd)
2791 reiserfs_update_sd(th, inode);
2792 ret = reiserfs_end_persistent_transaction(th);
2794 goto out;
2797 int reiserfs_commit_write(struct file *f, struct page *page,
2798 unsigned from, unsigned to)
2800 struct inode *inode = page->mapping->host;
2801 loff_t pos = ((loff_t) page->index << PAGE_CACHE_SHIFT) + to;
2802 int ret = 0;
2803 int update_sd = 0;
2804 struct reiserfs_transaction_handle *th = NULL;
2806 reiserfs_write_unlock(inode->i_sb);
2807 reiserfs_wait_on_write_block(inode->i_sb);
2808 reiserfs_write_lock(inode->i_sb);
2810 if (reiserfs_transaction_running(inode->i_sb)) {
2811 th = current->journal_info;
2813 reiserfs_commit_page(inode, page, from, to);
2815 /* generic_commit_write does this for us, but does not update the
2816 ** transaction tracking stuff when the size changes. So, we have
2817 ** to do the i_size updates here.
2819 if (pos > inode->i_size) {
2820 struct reiserfs_transaction_handle myth;
2821 /* If the file have grown beyond the border where it
2822 can have a tail, unmark it as needing a tail
2823 packing */
2824 if ((have_large_tails(inode->i_sb)
2825 && inode->i_size > i_block_size(inode) * 4)
2826 || (have_small_tails(inode->i_sb)
2827 && inode->i_size > i_block_size(inode)))
2828 REISERFS_I(inode)->i_flags &= ~i_pack_on_close_mask;
2830 ret = journal_begin(&myth, inode->i_sb, 1);
2831 if (ret)
2832 goto journal_error;
2834 reiserfs_update_inode_transaction(inode);
2835 inode->i_size = pos;
2837 * this will just nest into our transaction. It's important
2838 * to use mark_inode_dirty so the inode gets pushed around on the
2839 * dirty lists, and so that O_SYNC works as expected
2841 mark_inode_dirty(inode);
2842 reiserfs_update_sd(&myth, inode);
2843 update_sd = 1;
2844 ret = journal_end(&myth, inode->i_sb, 1);
2845 if (ret)
2846 goto journal_error;
2848 if (th) {
2849 if (!update_sd)
2850 mark_inode_dirty(inode);
2851 ret = reiserfs_end_persistent_transaction(th);
2852 if (ret)
2853 goto out;
2856 out:
2857 return ret;
2859 journal_error:
2860 if (th) {
2861 if (!update_sd)
2862 reiserfs_update_sd(th, inode);
2863 ret = reiserfs_end_persistent_transaction(th);
2866 return ret;
2869 void sd_attrs_to_i_attrs(__u16 sd_attrs, struct inode *inode)
2871 if (reiserfs_attrs(inode->i_sb)) {
2872 if (sd_attrs & REISERFS_SYNC_FL)
2873 inode->i_flags |= S_SYNC;
2874 else
2875 inode->i_flags &= ~S_SYNC;
2876 if (sd_attrs & REISERFS_IMMUTABLE_FL)
2877 inode->i_flags |= S_IMMUTABLE;
2878 else
2879 inode->i_flags &= ~S_IMMUTABLE;
2880 if (sd_attrs & REISERFS_APPEND_FL)
2881 inode->i_flags |= S_APPEND;
2882 else
2883 inode->i_flags &= ~S_APPEND;
2884 if (sd_attrs & REISERFS_NOATIME_FL)
2885 inode->i_flags |= S_NOATIME;
2886 else
2887 inode->i_flags &= ~S_NOATIME;
2888 if (sd_attrs & REISERFS_NOTAIL_FL)
2889 REISERFS_I(inode)->i_flags |= i_nopack_mask;
2890 else
2891 REISERFS_I(inode)->i_flags &= ~i_nopack_mask;
2895 void i_attrs_to_sd_attrs(struct inode *inode, __u16 * sd_attrs)
2897 if (reiserfs_attrs(inode->i_sb)) {
2898 if (inode->i_flags & S_IMMUTABLE)
2899 *sd_attrs |= REISERFS_IMMUTABLE_FL;
2900 else
2901 *sd_attrs &= ~REISERFS_IMMUTABLE_FL;
2902 if (inode->i_flags & S_SYNC)
2903 *sd_attrs |= REISERFS_SYNC_FL;
2904 else
2905 *sd_attrs &= ~REISERFS_SYNC_FL;
2906 if (inode->i_flags & S_NOATIME)
2907 *sd_attrs |= REISERFS_NOATIME_FL;
2908 else
2909 *sd_attrs &= ~REISERFS_NOATIME_FL;
2910 if (REISERFS_I(inode)->i_flags & i_nopack_mask)
2911 *sd_attrs |= REISERFS_NOTAIL_FL;
2912 else
2913 *sd_attrs &= ~REISERFS_NOTAIL_FL;
2917 /* decide if this buffer needs to stay around for data logging or ordered
2918 ** write purposes
2920 static int invalidatepage_can_drop(struct inode *inode, struct buffer_head *bh)
2922 int ret = 1;
2923 struct reiserfs_journal *j = SB_JOURNAL(inode->i_sb);
2925 lock_buffer(bh);
2926 spin_lock(&j->j_dirty_buffers_lock);
2927 if (!buffer_mapped(bh)) {
2928 goto free_jh;
2930 /* the page is locked, and the only places that log a data buffer
2931 * also lock the page.
2933 if (reiserfs_file_data_log(inode)) {
2935 * very conservative, leave the buffer pinned if
2936 * anyone might need it.
2938 if (buffer_journaled(bh) || buffer_journal_dirty(bh)) {
2939 ret = 0;
2941 } else if (buffer_dirty(bh)) {
2942 struct reiserfs_journal_list *jl;
2943 struct reiserfs_jh *jh = bh->b_private;
2945 /* why is this safe?
2946 * reiserfs_setattr updates i_size in the on disk
2947 * stat data before allowing vmtruncate to be called.
2949 * If buffer was put onto the ordered list for this
2950 * transaction, we know for sure either this transaction
2951 * or an older one already has updated i_size on disk,
2952 * and this ordered data won't be referenced in the file
2953 * if we crash.
2955 * if the buffer was put onto the ordered list for an older
2956 * transaction, we need to leave it around
2958 if (jh && (jl = jh->jl)
2959 && jl != SB_JOURNAL(inode->i_sb)->j_current_jl)
2960 ret = 0;
2962 free_jh:
2963 if (ret && bh->b_private) {
2964 reiserfs_free_jh(bh);
2966 spin_unlock(&j->j_dirty_buffers_lock);
2967 unlock_buffer(bh);
2968 return ret;
2971 /* clm -- taken from fs/buffer.c:block_invalidate_page */
2972 static void reiserfs_invalidatepage(struct page *page, unsigned long offset)
2974 struct buffer_head *head, *bh, *next;
2975 struct inode *inode = page->mapping->host;
2976 unsigned int curr_off = 0;
2977 int ret = 1;
2979 BUG_ON(!PageLocked(page));
2981 if (offset == 0)
2982 ClearPageChecked(page);
2984 if (!page_has_buffers(page))
2985 goto out;
2987 head = page_buffers(page);
2988 bh = head;
2989 do {
2990 unsigned int next_off = curr_off + bh->b_size;
2991 next = bh->b_this_page;
2994 * is this block fully invalidated?
2996 if (offset <= curr_off) {
2997 if (invalidatepage_can_drop(inode, bh))
2998 reiserfs_unmap_buffer(bh);
2999 else
3000 ret = 0;
3002 curr_off = next_off;
3003 bh = next;
3004 } while (bh != head);
3007 * We release buffers only if the entire page is being invalidated.
3008 * The get_block cached value has been unconditionally invalidated,
3009 * so real IO is not possible anymore.
3011 if (!offset && ret) {
3012 ret = try_to_release_page(page, 0);
3013 /* maybe should BUG_ON(!ret); - neilb */
3015 out:
3016 return;
3019 static int reiserfs_set_page_dirty(struct page *page)
3021 struct inode *inode = page->mapping->host;
3022 if (reiserfs_file_data_log(inode)) {
3023 SetPageChecked(page);
3024 return __set_page_dirty_nobuffers(page);
3026 return __set_page_dirty_buffers(page);
3030 * Returns 1 if the page's buffers were dropped. The page is locked.
3032 * Takes j_dirty_buffers_lock to protect the b_assoc_buffers list_heads
3033 * in the buffers at page_buffers(page).
3035 * even in -o notail mode, we can't be sure an old mount without -o notail
3036 * didn't create files with tails.
3038 static int reiserfs_releasepage(struct page *page, gfp_t unused_gfp_flags)
3040 struct inode *inode = page->mapping->host;
3041 struct reiserfs_journal *j = SB_JOURNAL(inode->i_sb);
3042 struct buffer_head *head;
3043 struct buffer_head *bh;
3044 int ret = 1;
3046 WARN_ON(PageChecked(page));
3047 spin_lock(&j->j_dirty_buffers_lock);
3048 head = page_buffers(page);
3049 bh = head;
3050 do {
3051 if (bh->b_private) {
3052 if (!buffer_dirty(bh) && !buffer_locked(bh)) {
3053 reiserfs_free_jh(bh);
3054 } else {
3055 ret = 0;
3056 break;
3059 bh = bh->b_this_page;
3060 } while (bh != head);
3061 if (ret)
3062 ret = try_to_free_buffers(page);
3063 spin_unlock(&j->j_dirty_buffers_lock);
3064 return ret;
3067 /* We thank Mingming Cao for helping us understand in great detail what
3068 to do in this section of the code. */
3069 static ssize_t reiserfs_direct_IO(int rw, struct kiocb *iocb,
3070 const struct iovec *iov, loff_t offset,
3071 unsigned long nr_segs)
3073 struct file *file = iocb->ki_filp;
3074 struct inode *inode = file->f_mapping->host;
3075 ssize_t ret;
3077 ret = blockdev_direct_IO(rw, iocb, inode, iov, offset, nr_segs,
3078 reiserfs_get_blocks_direct_io);
3081 * In case of error extending write may have instantiated a few
3082 * blocks outside i_size. Trim these off again.
3084 if (unlikely((rw & WRITE) && ret < 0)) {
3085 loff_t isize = i_size_read(inode);
3086 loff_t end = offset + iov_length(iov, nr_segs);
3088 if ((end > isize) && inode_newsize_ok(inode, isize) == 0) {
3089 truncate_setsize(inode, isize);
3090 reiserfs_vfs_truncate_file(inode);
3094 return ret;
3097 int reiserfs_setattr(struct dentry *dentry, struct iattr *attr)
3099 struct inode *inode = dentry->d_inode;
3100 unsigned int ia_valid;
3101 int depth;
3102 int error;
3104 error = inode_change_ok(inode, attr);
3105 if (error)
3106 return error;
3108 /* must be turned off for recursive notify_change calls */
3109 ia_valid = attr->ia_valid &= ~(ATTR_KILL_SUID|ATTR_KILL_SGID);
3111 if (is_quota_modification(inode, attr))
3112 dquot_initialize(inode);
3113 depth = reiserfs_write_lock_once(inode->i_sb);
3114 if (attr->ia_valid & ATTR_SIZE) {
3115 /* version 2 items will be caught by the s_maxbytes check
3116 ** done for us in vmtruncate
3118 if (get_inode_item_key_version(inode) == KEY_FORMAT_3_5 &&
3119 attr->ia_size > MAX_NON_LFS) {
3120 error = -EFBIG;
3121 goto out;
3124 inode_dio_wait(inode);
3126 /* fill in hole pointers in the expanding truncate case. */
3127 if (attr->ia_size > inode->i_size) {
3128 error = generic_cont_expand_simple(inode, attr->ia_size);
3129 if (REISERFS_I(inode)->i_prealloc_count > 0) {
3130 int err;
3131 struct reiserfs_transaction_handle th;
3132 /* we're changing at most 2 bitmaps, inode + super */
3133 err = journal_begin(&th, inode->i_sb, 4);
3134 if (!err) {
3135 reiserfs_discard_prealloc(&th, inode);
3136 err = journal_end(&th, inode->i_sb, 4);
3138 if (err)
3139 error = err;
3141 if (error)
3142 goto out;
3144 * file size is changed, ctime and mtime are
3145 * to be updated
3147 attr->ia_valid |= (ATTR_MTIME | ATTR_CTIME);
3151 if ((((attr->ia_valid & ATTR_UID) && (from_kuid(&init_user_ns, attr->ia_uid) & ~0xffff)) ||
3152 ((attr->ia_valid & ATTR_GID) && (from_kgid(&init_user_ns, attr->ia_gid) & ~0xffff))) &&
3153 (get_inode_sd_version(inode) == STAT_DATA_V1)) {
3154 /* stat data of format v3.5 has 16 bit uid and gid */
3155 error = -EINVAL;
3156 goto out;
3159 if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
3160 (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
3161 struct reiserfs_transaction_handle th;
3162 int jbegin_count =
3164 (REISERFS_QUOTA_INIT_BLOCKS(inode->i_sb) +
3165 REISERFS_QUOTA_DEL_BLOCKS(inode->i_sb)) +
3168 error = reiserfs_chown_xattrs(inode, attr);
3170 if (error)
3171 return error;
3173 /* (user+group)*(old+new) structure - we count quota info and , inode write (sb, inode) */
3174 error = journal_begin(&th, inode->i_sb, jbegin_count);
3175 if (error)
3176 goto out;
3177 reiserfs_write_unlock_once(inode->i_sb, depth);
3178 error = dquot_transfer(inode, attr);
3179 depth = reiserfs_write_lock_once(inode->i_sb);
3180 if (error) {
3181 journal_end(&th, inode->i_sb, jbegin_count);
3182 goto out;
3185 /* Update corresponding info in inode so that everything is in
3186 * one transaction */
3187 if (attr->ia_valid & ATTR_UID)
3188 inode->i_uid = attr->ia_uid;
3189 if (attr->ia_valid & ATTR_GID)
3190 inode->i_gid = attr->ia_gid;
3191 mark_inode_dirty(inode);
3192 error = journal_end(&th, inode->i_sb, jbegin_count);
3193 if (error)
3194 goto out;
3198 * Relax the lock here, as it might truncate the
3199 * inode pages and wait for inode pages locks.
3200 * To release such page lock, the owner needs the
3201 * reiserfs lock
3203 reiserfs_write_unlock_once(inode->i_sb, depth);
3204 if ((attr->ia_valid & ATTR_SIZE) &&
3205 attr->ia_size != i_size_read(inode)) {
3206 error = inode_newsize_ok(inode, attr->ia_size);
3207 if (!error) {
3208 truncate_setsize(inode, attr->ia_size);
3209 reiserfs_vfs_truncate_file(inode);
3213 if (!error) {
3214 setattr_copy(inode, attr);
3215 mark_inode_dirty(inode);
3217 depth = reiserfs_write_lock_once(inode->i_sb);
3219 if (!error && reiserfs_posixacl(inode->i_sb)) {
3220 if (attr->ia_valid & ATTR_MODE)
3221 error = reiserfs_acl_chmod(inode);
3224 out:
3225 reiserfs_write_unlock_once(inode->i_sb, depth);
3227 return error;
3230 const struct address_space_operations reiserfs_address_space_operations = {
3231 .writepage = reiserfs_writepage,
3232 .readpage = reiserfs_readpage,
3233 .readpages = reiserfs_readpages,
3234 .releasepage = reiserfs_releasepage,
3235 .invalidatepage = reiserfs_invalidatepage,
3236 .write_begin = reiserfs_write_begin,
3237 .write_end = reiserfs_write_end,
3238 .bmap = reiserfs_aop_bmap,
3239 .direct_IO = reiserfs_direct_IO,
3240 .set_page_dirty = reiserfs_set_page_dirty,