net: move procfs code to net/core/net-procfs.c
[linux/fpc-iii.git] / fs / xfs / xfs_trans_ail.c
blob6011ee6613396f9b325418fde28e07c2147f0e5e
1 /*
2 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
3 * Copyright (c) 2008 Dave Chinner
4 * All Rights Reserved.
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License as
8 * published by the Free Software Foundation.
10 * This program is distributed in the hope that it would be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
19 #include "xfs.h"
20 #include "xfs_fs.h"
21 #include "xfs_types.h"
22 #include "xfs_log.h"
23 #include "xfs_trans.h"
24 #include "xfs_sb.h"
25 #include "xfs_ag.h"
26 #include "xfs_mount.h"
27 #include "xfs_trans_priv.h"
28 #include "xfs_trace.h"
29 #include "xfs_error.h"
31 #ifdef DEBUG
33 * Check that the list is sorted as it should be.
35 STATIC void
36 xfs_ail_check(
37 struct xfs_ail *ailp,
38 xfs_log_item_t *lip)
40 xfs_log_item_t *prev_lip;
42 if (list_empty(&ailp->xa_ail))
43 return;
46 * Check the next and previous entries are valid.
48 ASSERT((lip->li_flags & XFS_LI_IN_AIL) != 0);
49 prev_lip = list_entry(lip->li_ail.prev, xfs_log_item_t, li_ail);
50 if (&prev_lip->li_ail != &ailp->xa_ail)
51 ASSERT(XFS_LSN_CMP(prev_lip->li_lsn, lip->li_lsn) <= 0);
53 prev_lip = list_entry(lip->li_ail.next, xfs_log_item_t, li_ail);
54 if (&prev_lip->li_ail != &ailp->xa_ail)
55 ASSERT(XFS_LSN_CMP(prev_lip->li_lsn, lip->li_lsn) >= 0);
58 #ifdef XFS_TRANS_DEBUG
60 * Walk the list checking lsn ordering, and that every entry has the
61 * XFS_LI_IN_AIL flag set. This is really expensive, so only do it
62 * when specifically debugging the transaction subsystem.
64 prev_lip = list_entry(&ailp->xa_ail, xfs_log_item_t, li_ail);
65 list_for_each_entry(lip, &ailp->xa_ail, li_ail) {
66 if (&prev_lip->li_ail != &ailp->xa_ail)
67 ASSERT(XFS_LSN_CMP(prev_lip->li_lsn, lip->li_lsn) <= 0);
68 ASSERT((lip->li_flags & XFS_LI_IN_AIL) != 0);
69 prev_lip = lip;
71 #endif /* XFS_TRANS_DEBUG */
73 #else /* !DEBUG */
74 #define xfs_ail_check(a,l)
75 #endif /* DEBUG */
78 * Return a pointer to the first item in the AIL. If the AIL is empty, then
79 * return NULL.
81 xfs_log_item_t *
82 xfs_ail_min(
83 struct xfs_ail *ailp)
85 if (list_empty(&ailp->xa_ail))
86 return NULL;
88 return list_first_entry(&ailp->xa_ail, xfs_log_item_t, li_ail);
92 * Return a pointer to the last item in the AIL. If the AIL is empty, then
93 * return NULL.
95 static xfs_log_item_t *
96 xfs_ail_max(
97 struct xfs_ail *ailp)
99 if (list_empty(&ailp->xa_ail))
100 return NULL;
102 return list_entry(ailp->xa_ail.prev, xfs_log_item_t, li_ail);
106 * Return a pointer to the item which follows the given item in the AIL. If
107 * the given item is the last item in the list, then return NULL.
109 static xfs_log_item_t *
110 xfs_ail_next(
111 struct xfs_ail *ailp,
112 xfs_log_item_t *lip)
114 if (lip->li_ail.next == &ailp->xa_ail)
115 return NULL;
117 return list_first_entry(&lip->li_ail, xfs_log_item_t, li_ail);
121 * This is called by the log manager code to determine the LSN of the tail of
122 * the log. This is exactly the LSN of the first item in the AIL. If the AIL
123 * is empty, then this function returns 0.
125 * We need the AIL lock in order to get a coherent read of the lsn of the last
126 * item in the AIL.
128 xfs_lsn_t
129 xfs_ail_min_lsn(
130 struct xfs_ail *ailp)
132 xfs_lsn_t lsn = 0;
133 xfs_log_item_t *lip;
135 spin_lock(&ailp->xa_lock);
136 lip = xfs_ail_min(ailp);
137 if (lip)
138 lsn = lip->li_lsn;
139 spin_unlock(&ailp->xa_lock);
141 return lsn;
145 * Return the maximum lsn held in the AIL, or zero if the AIL is empty.
147 static xfs_lsn_t
148 xfs_ail_max_lsn(
149 struct xfs_ail *ailp)
151 xfs_lsn_t lsn = 0;
152 xfs_log_item_t *lip;
154 spin_lock(&ailp->xa_lock);
155 lip = xfs_ail_max(ailp);
156 if (lip)
157 lsn = lip->li_lsn;
158 spin_unlock(&ailp->xa_lock);
160 return lsn;
164 * The cursor keeps track of where our current traversal is up to by tracking
165 * the next item in the list for us. However, for this to be safe, removing an
166 * object from the AIL needs to invalidate any cursor that points to it. hence
167 * the traversal cursor needs to be linked to the struct xfs_ail so that
168 * deletion can search all the active cursors for invalidation.
170 STATIC void
171 xfs_trans_ail_cursor_init(
172 struct xfs_ail *ailp,
173 struct xfs_ail_cursor *cur)
175 cur->item = NULL;
176 list_add_tail(&cur->list, &ailp->xa_cursors);
180 * Get the next item in the traversal and advance the cursor. If the cursor
181 * was invalidated (indicated by a lip of 1), restart the traversal.
183 struct xfs_log_item *
184 xfs_trans_ail_cursor_next(
185 struct xfs_ail *ailp,
186 struct xfs_ail_cursor *cur)
188 struct xfs_log_item *lip = cur->item;
190 if ((__psint_t)lip & 1)
191 lip = xfs_ail_min(ailp);
192 if (lip)
193 cur->item = xfs_ail_next(ailp, lip);
194 return lip;
198 * When the traversal is complete, we need to remove the cursor from the list
199 * of traversing cursors.
201 void
202 xfs_trans_ail_cursor_done(
203 struct xfs_ail *ailp,
204 struct xfs_ail_cursor *cur)
206 cur->item = NULL;
207 list_del_init(&cur->list);
211 * Invalidate any cursor that is pointing to this item. This is called when an
212 * item is removed from the AIL. Any cursor pointing to this object is now
213 * invalid and the traversal needs to be terminated so it doesn't reference a
214 * freed object. We set the low bit of the cursor item pointer so we can
215 * distinguish between an invalidation and the end of the list when getting the
216 * next item from the cursor.
218 STATIC void
219 xfs_trans_ail_cursor_clear(
220 struct xfs_ail *ailp,
221 struct xfs_log_item *lip)
223 struct xfs_ail_cursor *cur;
225 list_for_each_entry(cur, &ailp->xa_cursors, list) {
226 if (cur->item == lip)
227 cur->item = (struct xfs_log_item *)
228 ((__psint_t)cur->item | 1);
233 * Find the first item in the AIL with the given @lsn by searching in ascending
234 * LSN order and initialise the cursor to point to the next item for a
235 * ascending traversal. Pass a @lsn of zero to initialise the cursor to the
236 * first item in the AIL. Returns NULL if the list is empty.
238 xfs_log_item_t *
239 xfs_trans_ail_cursor_first(
240 struct xfs_ail *ailp,
241 struct xfs_ail_cursor *cur,
242 xfs_lsn_t lsn)
244 xfs_log_item_t *lip;
246 xfs_trans_ail_cursor_init(ailp, cur);
248 if (lsn == 0) {
249 lip = xfs_ail_min(ailp);
250 goto out;
253 list_for_each_entry(lip, &ailp->xa_ail, li_ail) {
254 if (XFS_LSN_CMP(lip->li_lsn, lsn) >= 0)
255 goto out;
257 return NULL;
259 out:
260 if (lip)
261 cur->item = xfs_ail_next(ailp, lip);
262 return lip;
265 static struct xfs_log_item *
266 __xfs_trans_ail_cursor_last(
267 struct xfs_ail *ailp,
268 xfs_lsn_t lsn)
270 xfs_log_item_t *lip;
272 list_for_each_entry_reverse(lip, &ailp->xa_ail, li_ail) {
273 if (XFS_LSN_CMP(lip->li_lsn, lsn) <= 0)
274 return lip;
276 return NULL;
280 * Find the last item in the AIL with the given @lsn by searching in descending
281 * LSN order and initialise the cursor to point to that item. If there is no
282 * item with the value of @lsn, then it sets the cursor to the last item with an
283 * LSN lower than @lsn. Returns NULL if the list is empty.
285 struct xfs_log_item *
286 xfs_trans_ail_cursor_last(
287 struct xfs_ail *ailp,
288 struct xfs_ail_cursor *cur,
289 xfs_lsn_t lsn)
291 xfs_trans_ail_cursor_init(ailp, cur);
292 cur->item = __xfs_trans_ail_cursor_last(ailp, lsn);
293 return cur->item;
297 * Splice the log item list into the AIL at the given LSN. We splice to the
298 * tail of the given LSN to maintain insert order for push traversals. The
299 * cursor is optional, allowing repeated updates to the same LSN to avoid
300 * repeated traversals. This should not be called with an empty list.
302 static void
303 xfs_ail_splice(
304 struct xfs_ail *ailp,
305 struct xfs_ail_cursor *cur,
306 struct list_head *list,
307 xfs_lsn_t lsn)
309 struct xfs_log_item *lip;
311 ASSERT(!list_empty(list));
314 * Use the cursor to determine the insertion point if one is
315 * provided. If not, or if the one we got is not valid,
316 * find the place in the AIL where the items belong.
318 lip = cur ? cur->item : NULL;
319 if (!lip || (__psint_t) lip & 1)
320 lip = __xfs_trans_ail_cursor_last(ailp, lsn);
323 * If a cursor is provided, we know we're processing the AIL
324 * in lsn order, and future items to be spliced in will
325 * follow the last one being inserted now. Update the
326 * cursor to point to that last item, now while we have a
327 * reliable pointer to it.
329 if (cur)
330 cur->item = list_entry(list->prev, struct xfs_log_item, li_ail);
333 * Finally perform the splice. Unless the AIL was empty,
334 * lip points to the item in the AIL _after_ which the new
335 * items should go. If lip is null the AIL was empty, so
336 * the new items go at the head of the AIL.
338 if (lip)
339 list_splice(list, &lip->li_ail);
340 else
341 list_splice(list, &ailp->xa_ail);
345 * Delete the given item from the AIL. Return a pointer to the item.
347 static void
348 xfs_ail_delete(
349 struct xfs_ail *ailp,
350 xfs_log_item_t *lip)
352 xfs_ail_check(ailp, lip);
353 list_del(&lip->li_ail);
354 xfs_trans_ail_cursor_clear(ailp, lip);
357 static long
358 xfsaild_push(
359 struct xfs_ail *ailp)
361 xfs_mount_t *mp = ailp->xa_mount;
362 struct xfs_ail_cursor cur;
363 xfs_log_item_t *lip;
364 xfs_lsn_t lsn;
365 xfs_lsn_t target;
366 long tout;
367 int stuck = 0;
368 int flushing = 0;
369 int count = 0;
372 * If we encountered pinned items or did not finish writing out all
373 * buffers the last time we ran, force the log first and wait for it
374 * before pushing again.
376 if (ailp->xa_log_flush && ailp->xa_last_pushed_lsn == 0 &&
377 (!list_empty_careful(&ailp->xa_buf_list) ||
378 xfs_ail_min_lsn(ailp))) {
379 ailp->xa_log_flush = 0;
381 XFS_STATS_INC(xs_push_ail_flush);
382 xfs_log_force(mp, XFS_LOG_SYNC);
385 spin_lock(&ailp->xa_lock);
387 /* barrier matches the xa_target update in xfs_ail_push() */
388 smp_rmb();
389 target = ailp->xa_target;
390 ailp->xa_target_prev = target;
392 lip = xfs_trans_ail_cursor_first(ailp, &cur, ailp->xa_last_pushed_lsn);
393 if (!lip) {
395 * If the AIL is empty or our push has reached the end we are
396 * done now.
398 xfs_trans_ail_cursor_done(ailp, &cur);
399 spin_unlock(&ailp->xa_lock);
400 goto out_done;
403 XFS_STATS_INC(xs_push_ail);
405 lsn = lip->li_lsn;
406 while ((XFS_LSN_CMP(lip->li_lsn, target) <= 0)) {
407 int lock_result;
410 * Note that IOP_PUSH may unlock and reacquire the AIL lock. We
411 * rely on the AIL cursor implementation to be able to deal with
412 * the dropped lock.
414 lock_result = IOP_PUSH(lip, &ailp->xa_buf_list);
415 switch (lock_result) {
416 case XFS_ITEM_SUCCESS:
417 XFS_STATS_INC(xs_push_ail_success);
418 trace_xfs_ail_push(lip);
420 ailp->xa_last_pushed_lsn = lsn;
421 break;
423 case XFS_ITEM_FLUSHING:
425 * The item or its backing buffer is already beeing
426 * flushed. The typical reason for that is that an
427 * inode buffer is locked because we already pushed the
428 * updates to it as part of inode clustering.
430 * We do not want to to stop flushing just because lots
431 * of items are already beeing flushed, but we need to
432 * re-try the flushing relatively soon if most of the
433 * AIL is beeing flushed.
435 XFS_STATS_INC(xs_push_ail_flushing);
436 trace_xfs_ail_flushing(lip);
438 flushing++;
439 ailp->xa_last_pushed_lsn = lsn;
440 break;
442 case XFS_ITEM_PINNED:
443 XFS_STATS_INC(xs_push_ail_pinned);
444 trace_xfs_ail_pinned(lip);
446 stuck++;
447 ailp->xa_log_flush++;
448 break;
449 case XFS_ITEM_LOCKED:
450 XFS_STATS_INC(xs_push_ail_locked);
451 trace_xfs_ail_locked(lip);
453 stuck++;
454 break;
455 default:
456 ASSERT(0);
457 break;
460 count++;
463 * Are there too many items we can't do anything with?
465 * If we we are skipping too many items because we can't flush
466 * them or they are already being flushed, we back off and
467 * given them time to complete whatever operation is being
468 * done. i.e. remove pressure from the AIL while we can't make
469 * progress so traversals don't slow down further inserts and
470 * removals to/from the AIL.
472 * The value of 100 is an arbitrary magic number based on
473 * observation.
475 if (stuck > 100)
476 break;
478 lip = xfs_trans_ail_cursor_next(ailp, &cur);
479 if (lip == NULL)
480 break;
481 lsn = lip->li_lsn;
483 xfs_trans_ail_cursor_done(ailp, &cur);
484 spin_unlock(&ailp->xa_lock);
486 if (xfs_buf_delwri_submit_nowait(&ailp->xa_buf_list))
487 ailp->xa_log_flush++;
489 if (!count || XFS_LSN_CMP(lsn, target) >= 0) {
490 out_done:
492 * We reached the target or the AIL is empty, so wait a bit
493 * longer for I/O to complete and remove pushed items from the
494 * AIL before we start the next scan from the start of the AIL.
496 tout = 50;
497 ailp->xa_last_pushed_lsn = 0;
498 } else if (((stuck + flushing) * 100) / count > 90) {
500 * Either there is a lot of contention on the AIL or we are
501 * stuck due to operations in progress. "Stuck" in this case
502 * is defined as >90% of the items we tried to push were stuck.
504 * Backoff a bit more to allow some I/O to complete before
505 * restarting from the start of the AIL. This prevents us from
506 * spinning on the same items, and if they are pinned will all
507 * the restart to issue a log force to unpin the stuck items.
509 tout = 20;
510 ailp->xa_last_pushed_lsn = 0;
511 } else {
513 * Assume we have more work to do in a short while.
515 tout = 10;
518 return tout;
521 static int
522 xfsaild(
523 void *data)
525 struct xfs_ail *ailp = data;
526 long tout = 0; /* milliseconds */
528 current->flags |= PF_MEMALLOC;
530 while (!kthread_should_stop()) {
531 if (tout && tout <= 20)
532 __set_current_state(TASK_KILLABLE);
533 else
534 __set_current_state(TASK_INTERRUPTIBLE);
536 spin_lock(&ailp->xa_lock);
539 * Idle if the AIL is empty and we are not racing with a target
540 * update. We check the AIL after we set the task to a sleep
541 * state to guarantee that we either catch an xa_target update
542 * or that a wake_up resets the state to TASK_RUNNING.
543 * Otherwise, we run the risk of sleeping indefinitely.
545 * The barrier matches the xa_target update in xfs_ail_push().
547 smp_rmb();
548 if (!xfs_ail_min(ailp) &&
549 ailp->xa_target == ailp->xa_target_prev) {
550 spin_unlock(&ailp->xa_lock);
551 schedule();
552 tout = 0;
553 continue;
555 spin_unlock(&ailp->xa_lock);
557 if (tout)
558 schedule_timeout(msecs_to_jiffies(tout));
560 __set_current_state(TASK_RUNNING);
562 try_to_freeze();
564 tout = xfsaild_push(ailp);
567 return 0;
571 * This routine is called to move the tail of the AIL forward. It does this by
572 * trying to flush items in the AIL whose lsns are below the given
573 * threshold_lsn.
575 * The push is run asynchronously in a workqueue, which means the caller needs
576 * to handle waiting on the async flush for space to become available.
577 * We don't want to interrupt any push that is in progress, hence we only queue
578 * work if we set the pushing bit approriately.
580 * We do this unlocked - we only need to know whether there is anything in the
581 * AIL at the time we are called. We don't need to access the contents of
582 * any of the objects, so the lock is not needed.
584 void
585 xfs_ail_push(
586 struct xfs_ail *ailp,
587 xfs_lsn_t threshold_lsn)
589 xfs_log_item_t *lip;
591 lip = xfs_ail_min(ailp);
592 if (!lip || XFS_FORCED_SHUTDOWN(ailp->xa_mount) ||
593 XFS_LSN_CMP(threshold_lsn, ailp->xa_target) <= 0)
594 return;
597 * Ensure that the new target is noticed in push code before it clears
598 * the XFS_AIL_PUSHING_BIT.
600 smp_wmb();
601 xfs_trans_ail_copy_lsn(ailp, &ailp->xa_target, &threshold_lsn);
602 smp_wmb();
604 wake_up_process(ailp->xa_task);
608 * Push out all items in the AIL immediately
610 void
611 xfs_ail_push_all(
612 struct xfs_ail *ailp)
614 xfs_lsn_t threshold_lsn = xfs_ail_max_lsn(ailp);
616 if (threshold_lsn)
617 xfs_ail_push(ailp, threshold_lsn);
621 * Push out all items in the AIL immediately and wait until the AIL is empty.
623 void
624 xfs_ail_push_all_sync(
625 struct xfs_ail *ailp)
627 struct xfs_log_item *lip;
628 DEFINE_WAIT(wait);
630 spin_lock(&ailp->xa_lock);
631 while ((lip = xfs_ail_max(ailp)) != NULL) {
632 prepare_to_wait(&ailp->xa_empty, &wait, TASK_UNINTERRUPTIBLE);
633 ailp->xa_target = lip->li_lsn;
634 wake_up_process(ailp->xa_task);
635 spin_unlock(&ailp->xa_lock);
636 schedule();
637 spin_lock(&ailp->xa_lock);
639 spin_unlock(&ailp->xa_lock);
641 finish_wait(&ailp->xa_empty, &wait);
645 * xfs_trans_ail_update - bulk AIL insertion operation.
647 * @xfs_trans_ail_update takes an array of log items that all need to be
648 * positioned at the same LSN in the AIL. If an item is not in the AIL, it will
649 * be added. Otherwise, it will be repositioned by removing it and re-adding
650 * it to the AIL. If we move the first item in the AIL, update the log tail to
651 * match the new minimum LSN in the AIL.
653 * This function takes the AIL lock once to execute the update operations on
654 * all the items in the array, and as such should not be called with the AIL
655 * lock held. As a result, once we have the AIL lock, we need to check each log
656 * item LSN to confirm it needs to be moved forward in the AIL.
658 * To optimise the insert operation, we delete all the items from the AIL in
659 * the first pass, moving them into a temporary list, then splice the temporary
660 * list into the correct position in the AIL. This avoids needing to do an
661 * insert operation on every item.
663 * This function must be called with the AIL lock held. The lock is dropped
664 * before returning.
666 void
667 xfs_trans_ail_update_bulk(
668 struct xfs_ail *ailp,
669 struct xfs_ail_cursor *cur,
670 struct xfs_log_item **log_items,
671 int nr_items,
672 xfs_lsn_t lsn) __releases(ailp->xa_lock)
674 xfs_log_item_t *mlip;
675 int mlip_changed = 0;
676 int i;
677 LIST_HEAD(tmp);
679 ASSERT(nr_items > 0); /* Not required, but true. */
680 mlip = xfs_ail_min(ailp);
682 for (i = 0; i < nr_items; i++) {
683 struct xfs_log_item *lip = log_items[i];
684 if (lip->li_flags & XFS_LI_IN_AIL) {
685 /* check if we really need to move the item */
686 if (XFS_LSN_CMP(lsn, lip->li_lsn) <= 0)
687 continue;
689 xfs_ail_delete(ailp, lip);
690 if (mlip == lip)
691 mlip_changed = 1;
692 } else {
693 lip->li_flags |= XFS_LI_IN_AIL;
695 lip->li_lsn = lsn;
696 list_add(&lip->li_ail, &tmp);
699 if (!list_empty(&tmp))
700 xfs_ail_splice(ailp, cur, &tmp, lsn);
702 if (mlip_changed) {
703 if (!XFS_FORCED_SHUTDOWN(ailp->xa_mount))
704 xlog_assign_tail_lsn_locked(ailp->xa_mount);
705 spin_unlock(&ailp->xa_lock);
707 xfs_log_space_wake(ailp->xa_mount);
708 } else {
709 spin_unlock(&ailp->xa_lock);
714 * xfs_trans_ail_delete_bulk - remove multiple log items from the AIL
716 * @xfs_trans_ail_delete_bulk takes an array of log items that all need to
717 * removed from the AIL. The caller is already holding the AIL lock, and done
718 * all the checks necessary to ensure the items passed in via @log_items are
719 * ready for deletion. This includes checking that the items are in the AIL.
721 * For each log item to be removed, unlink it from the AIL, clear the IN_AIL
722 * flag from the item and reset the item's lsn to 0. If we remove the first
723 * item in the AIL, update the log tail to match the new minimum LSN in the
724 * AIL.
726 * This function will not drop the AIL lock until all items are removed from
727 * the AIL to minimise the amount of lock traffic on the AIL. This does not
728 * greatly increase the AIL hold time, but does significantly reduce the amount
729 * of traffic on the lock, especially during IO completion.
731 * This function must be called with the AIL lock held. The lock is dropped
732 * before returning.
734 void
735 xfs_trans_ail_delete_bulk(
736 struct xfs_ail *ailp,
737 struct xfs_log_item **log_items,
738 int nr_items,
739 int shutdown_type) __releases(ailp->xa_lock)
741 xfs_log_item_t *mlip;
742 int mlip_changed = 0;
743 int i;
745 mlip = xfs_ail_min(ailp);
747 for (i = 0; i < nr_items; i++) {
748 struct xfs_log_item *lip = log_items[i];
749 if (!(lip->li_flags & XFS_LI_IN_AIL)) {
750 struct xfs_mount *mp = ailp->xa_mount;
752 spin_unlock(&ailp->xa_lock);
753 if (!XFS_FORCED_SHUTDOWN(mp)) {
754 xfs_alert_tag(mp, XFS_PTAG_AILDELETE,
755 "%s: attempting to delete a log item that is not in the AIL",
756 __func__);
757 xfs_force_shutdown(mp, shutdown_type);
759 return;
762 xfs_ail_delete(ailp, lip);
763 lip->li_flags &= ~XFS_LI_IN_AIL;
764 lip->li_lsn = 0;
765 if (mlip == lip)
766 mlip_changed = 1;
769 if (mlip_changed) {
770 if (!XFS_FORCED_SHUTDOWN(ailp->xa_mount))
771 xlog_assign_tail_lsn_locked(ailp->xa_mount);
772 if (list_empty(&ailp->xa_ail))
773 wake_up_all(&ailp->xa_empty);
774 spin_unlock(&ailp->xa_lock);
776 xfs_log_space_wake(ailp->xa_mount);
777 } else {
778 spin_unlock(&ailp->xa_lock);
783 xfs_trans_ail_init(
784 xfs_mount_t *mp)
786 struct xfs_ail *ailp;
788 ailp = kmem_zalloc(sizeof(struct xfs_ail), KM_MAYFAIL);
789 if (!ailp)
790 return ENOMEM;
792 ailp->xa_mount = mp;
793 INIT_LIST_HEAD(&ailp->xa_ail);
794 INIT_LIST_HEAD(&ailp->xa_cursors);
795 spin_lock_init(&ailp->xa_lock);
796 INIT_LIST_HEAD(&ailp->xa_buf_list);
797 init_waitqueue_head(&ailp->xa_empty);
799 ailp->xa_task = kthread_run(xfsaild, ailp, "xfsaild/%s",
800 ailp->xa_mount->m_fsname);
801 if (IS_ERR(ailp->xa_task))
802 goto out_free_ailp;
804 mp->m_ail = ailp;
805 return 0;
807 out_free_ailp:
808 kmem_free(ailp);
809 return ENOMEM;
812 void
813 xfs_trans_ail_destroy(
814 xfs_mount_t *mp)
816 struct xfs_ail *ailp = mp->m_ail;
818 kthread_stop(ailp->xa_task);
819 kmem_free(ailp);