1 /******************************************************************************
3 * Module Name: dsmethod - Parser/Interpreter interface - control method parsing
5 *****************************************************************************/
8 * Copyright (C) 2000 - 2016, Intel Corp.
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions, and the following disclaimer,
16 * without modification.
17 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
18 * substantially similar to the "NO WARRANTY" disclaimer below
19 * ("Disclaimer") and any redistribution must be conditioned upon
20 * including a substantially similar Disclaimer requirement for further
21 * binary redistribution.
22 * 3. Neither the names of the above-listed copyright holders nor the names
23 * of any contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
26 * Alternatively, this software may be distributed under the terms of the
27 * GNU General Public License ("GPL") version 2 as published by the Free
28 * Software Foundation.
31 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
32 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
33 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
34 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
35 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
39 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
40 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
41 * POSSIBILITY OF SUCH DAMAGES.
44 #include <acpi/acpi.h>
53 #define _COMPONENT ACPI_DISPATCHER
54 ACPI_MODULE_NAME("dsmethod")
56 /* Local prototypes */
58 acpi_ds_detect_named_opcodes(struct acpi_walk_state
*walk_state
,
59 union acpi_parse_object
**out_op
);
62 acpi_ds_create_method_mutex(union acpi_operand_object
*method_desc
);
64 /*******************************************************************************
66 * FUNCTION: acpi_ds_auto_serialize_method
68 * PARAMETERS: node - Namespace Node of the method
69 * obj_desc - Method object attached to node
73 * DESCRIPTION: Parse a control method AML to scan for control methods that
74 * need serialization due to the creation of named objects.
76 * NOTE: It is a bit of overkill to mark all such methods serialized, since
77 * there is only a problem if the method actually blocks during execution.
78 * A blocking operation is, for example, a Sleep() operation, or any access
79 * to an operation region. However, it is probably not possible to easily
80 * detect whether a method will block or not, so we simply mark all suspicious
81 * methods as serialized.
83 * NOTE2: This code is essentially a generic routine for parsing a single
86 ******************************************************************************/
89 acpi_ds_auto_serialize_method(struct acpi_namespace_node
*node
,
90 union acpi_operand_object
*obj_desc
)
93 union acpi_parse_object
*op
= NULL
;
94 struct acpi_walk_state
*walk_state
;
96 ACPI_FUNCTION_TRACE_PTR(ds_auto_serialize_method
, node
);
98 ACPI_DEBUG_PRINT((ACPI_DB_PARSE
,
99 "Method auto-serialization parse [%4.4s] %p\n",
100 acpi_ut_get_node_name(node
), node
));
102 /* Create/Init a root op for the method parse tree */
104 op
= acpi_ps_alloc_op(AML_METHOD_OP
, obj_desc
->method
.aml_start
);
106 return_ACPI_STATUS(AE_NO_MEMORY
);
109 acpi_ps_set_name(op
, node
->name
.integer
);
110 op
->common
.node
= node
;
112 /* Create and initialize a new walk state */
115 acpi_ds_create_walk_state(node
->owner_id
, NULL
, NULL
, NULL
);
118 return_ACPI_STATUS(AE_NO_MEMORY
);
121 status
= acpi_ds_init_aml_walk(walk_state
, op
, node
,
122 obj_desc
->method
.aml_start
,
123 obj_desc
->method
.aml_length
, NULL
, 0);
124 if (ACPI_FAILURE(status
)) {
125 acpi_ds_delete_walk_state(walk_state
);
127 return_ACPI_STATUS(status
);
130 walk_state
->descending_callback
= acpi_ds_detect_named_opcodes
;
132 /* Parse the method, scan for creation of named objects */
134 status
= acpi_ps_parse_aml(walk_state
);
136 acpi_ps_delete_parse_tree(op
);
137 return_ACPI_STATUS(status
);
140 /*******************************************************************************
142 * FUNCTION: acpi_ds_detect_named_opcodes
144 * PARAMETERS: walk_state - Current state of the parse tree walk
145 * out_op - Unused, required for parser interface
149 * DESCRIPTION: Descending callback used during the loading of ACPI tables.
150 * Currently used to detect methods that must be marked serialized
151 * in order to avoid problems with the creation of named objects.
153 ******************************************************************************/
156 acpi_ds_detect_named_opcodes(struct acpi_walk_state
*walk_state
,
157 union acpi_parse_object
**out_op
)
160 ACPI_FUNCTION_NAME(acpi_ds_detect_named_opcodes
);
162 /* We are only interested in opcodes that create a new name */
165 (walk_state
->op_info
->
166 flags
& (AML_NAMED
| AML_CREATE
| AML_FIELD
))) {
171 * At this point, we know we have a Named object opcode.
172 * Mark the method as serialized. Later code will create a mutex for
173 * this method to enforce serialization.
175 * Note, ACPI_METHOD_IGNORE_SYNC_LEVEL flag means that we will ignore the
176 * Sync Level mechanism for this method, even though it is now serialized.
177 * Otherwise, there can be conflicts with existing ASL code that actually
180 walk_state
->method_desc
->method
.sync_level
= 0;
181 walk_state
->method_desc
->method
.info_flags
|=
182 (ACPI_METHOD_SERIALIZED
| ACPI_METHOD_IGNORE_SYNC_LEVEL
);
184 ACPI_DEBUG_PRINT((ACPI_DB_INFO
,
185 "Method serialized [%4.4s] %p - [%s] (%4.4X)\n",
186 walk_state
->method_node
->name
.ascii
,
187 walk_state
->method_node
, walk_state
->op_info
->name
,
188 walk_state
->opcode
));
190 /* Abort the parse, no need to examine this method any further */
192 return (AE_CTRL_TERMINATE
);
195 /*******************************************************************************
197 * FUNCTION: acpi_ds_method_error
199 * PARAMETERS: status - Execution status
200 * walk_state - Current state
204 * DESCRIPTION: Called on method error. Invoke the global exception handler if
205 * present, dump the method data if the debugger is configured
207 * Note: Allows the exception handler to change the status code
209 ******************************************************************************/
212 acpi_ds_method_error(acpi_status status
, struct acpi_walk_state
*walk_state
)
216 ACPI_FUNCTION_ENTRY();
218 /* Ignore AE_OK and control exception codes */
220 if (ACPI_SUCCESS(status
) || (status
& AE_CODE_CONTROL
)) {
224 /* Invoke the global exception handler */
226 if (acpi_gbl_exception_handler
) {
228 /* Exit the interpreter, allow handler to execute methods */
230 acpi_ex_exit_interpreter();
233 * Handler can map the exception code to anything it wants, including
234 * AE_OK, in which case the executing method will not be aborted.
236 aml_offset
= (u32
)ACPI_PTR_DIFF(walk_state
->aml
,
237 walk_state
->parser_state
.
240 status
= acpi_gbl_exception_handler(status
,
241 walk_state
->method_node
?
242 walk_state
->method_node
->
246 acpi_ex_enter_interpreter();
249 acpi_ds_clear_implicit_return(walk_state
);
251 if (ACPI_FAILURE(status
)) {
252 acpi_ds_dump_method_stack(status
, walk_state
, walk_state
->op
);
254 /* Display method locals/args if debugger is present */
257 acpi_db_dump_method_info(status
, walk_state
);
264 /*******************************************************************************
266 * FUNCTION: acpi_ds_create_method_mutex
268 * PARAMETERS: obj_desc - The method object
272 * DESCRIPTION: Create a mutex object for a serialized control method
274 ******************************************************************************/
277 acpi_ds_create_method_mutex(union acpi_operand_object
*method_desc
)
279 union acpi_operand_object
*mutex_desc
;
282 ACPI_FUNCTION_TRACE(ds_create_method_mutex
);
284 /* Create the new mutex object */
286 mutex_desc
= acpi_ut_create_internal_object(ACPI_TYPE_MUTEX
);
288 return_ACPI_STATUS(AE_NO_MEMORY
);
291 /* Create the actual OS Mutex */
293 status
= acpi_os_create_mutex(&mutex_desc
->mutex
.os_mutex
);
294 if (ACPI_FAILURE(status
)) {
295 acpi_ut_delete_object_desc(mutex_desc
);
296 return_ACPI_STATUS(status
);
299 mutex_desc
->mutex
.sync_level
= method_desc
->method
.sync_level
;
300 method_desc
->method
.mutex
= mutex_desc
;
301 return_ACPI_STATUS(AE_OK
);
304 /*******************************************************************************
306 * FUNCTION: acpi_ds_begin_method_execution
308 * PARAMETERS: method_node - Node of the method
309 * obj_desc - The method object
310 * walk_state - current state, NULL if not yet executing
315 * DESCRIPTION: Prepare a method for execution. Parses the method if necessary,
316 * increments the thread count, and waits at the method semaphore
317 * for clearance to execute.
319 ******************************************************************************/
322 acpi_ds_begin_method_execution(struct acpi_namespace_node
*method_node
,
323 union acpi_operand_object
*obj_desc
,
324 struct acpi_walk_state
*walk_state
)
326 acpi_status status
= AE_OK
;
328 ACPI_FUNCTION_TRACE_PTR(ds_begin_method_execution
, method_node
);
331 return_ACPI_STATUS(AE_NULL_ENTRY
);
334 acpi_ex_start_trace_method(method_node
, obj_desc
, walk_state
);
336 /* Prevent wraparound of thread count */
338 if (obj_desc
->method
.thread_count
== ACPI_UINT8_MAX
) {
340 "Method reached maximum reentrancy limit (255)"));
341 return_ACPI_STATUS(AE_AML_METHOD_LIMIT
);
345 * If this method is serialized, we need to acquire the method mutex.
347 if (obj_desc
->method
.info_flags
& ACPI_METHOD_SERIALIZED
) {
349 * Create a mutex for the method if it is defined to be Serialized
350 * and a mutex has not already been created. We defer the mutex creation
351 * until a method is actually executed, to minimize the object count
353 if (!obj_desc
->method
.mutex
) {
354 status
= acpi_ds_create_method_mutex(obj_desc
);
355 if (ACPI_FAILURE(status
)) {
356 return_ACPI_STATUS(status
);
361 * The current_sync_level (per-thread) must be less than or equal to
362 * the sync level of the method. This mechanism provides some
363 * deadlock prevention.
365 * If the method was auto-serialized, we just ignore the sync level
366 * mechanism, because auto-serialization of methods can interfere
367 * with ASL code that actually uses sync levels.
369 * Top-level method invocation has no walk state at this point
373 info_flags
& ACPI_METHOD_IGNORE_SYNC_LEVEL
))
374 && (walk_state
->thread
->current_sync_level
>
375 obj_desc
->method
.mutex
->mutex
.sync_level
)) {
377 "Cannot acquire Mutex for method [%4.4s]"
378 ", current SyncLevel is too large (%u)",
379 acpi_ut_get_node_name(method_node
),
380 walk_state
->thread
->current_sync_level
));
382 return_ACPI_STATUS(AE_AML_MUTEX_ORDER
);
386 * Obtain the method mutex if necessary. Do not acquire mutex for a
390 !obj_desc
->method
.mutex
->mutex
.thread_id
||
391 (walk_state
->thread
->thread_id
!=
392 obj_desc
->method
.mutex
->mutex
.thread_id
)) {
394 * Acquire the method mutex. This releases the interpreter if we
395 * block (and reacquires it before it returns)
398 acpi_ex_system_wait_mutex(obj_desc
->method
.mutex
->
401 if (ACPI_FAILURE(status
)) {
402 return_ACPI_STATUS(status
);
405 /* Update the mutex and walk info and save the original sync_level */
408 obj_desc
->method
.mutex
->mutex
.
409 original_sync_level
=
410 walk_state
->thread
->current_sync_level
;
412 obj_desc
->method
.mutex
->mutex
.thread_id
=
413 walk_state
->thread
->thread_id
;
416 * Update the current sync_level only if this is not an auto-
417 * serialized method. In the auto case, we have to ignore
418 * the sync level for the method mutex (created for the
419 * auto-serialization) because we have no idea of what the
420 * sync level should be. Therefore, just ignore it.
422 if (!(obj_desc
->method
.info_flags
&
423 ACPI_METHOD_IGNORE_SYNC_LEVEL
)) {
424 walk_state
->thread
->current_sync_level
=
425 obj_desc
->method
.sync_level
;
428 obj_desc
->method
.mutex
->mutex
.
429 original_sync_level
=
430 obj_desc
->method
.mutex
->mutex
.sync_level
;
432 obj_desc
->method
.mutex
->mutex
.thread_id
=
433 acpi_os_get_thread_id();
437 /* Always increase acquisition depth */
439 obj_desc
->method
.mutex
->mutex
.acquisition_depth
++;
443 * Allocate an Owner ID for this method, only if this is the first thread
444 * to begin concurrent execution. We only need one owner_id, even if the
445 * method is invoked recursively.
447 if (!obj_desc
->method
.owner_id
) {
448 status
= acpi_ut_allocate_owner_id(&obj_desc
->method
.owner_id
);
449 if (ACPI_FAILURE(status
)) {
455 * Increment the method parse tree thread count since it has been
456 * reentered one more time (even if it is the same thread)
458 obj_desc
->method
.thread_count
++;
460 return_ACPI_STATUS(status
);
463 /* On error, must release the method mutex (if present) */
465 if (obj_desc
->method
.mutex
) {
466 acpi_os_release_mutex(obj_desc
->method
.mutex
->mutex
.os_mutex
);
468 return_ACPI_STATUS(status
);
471 /*******************************************************************************
473 * FUNCTION: acpi_ds_call_control_method
475 * PARAMETERS: thread - Info for this thread
476 * this_walk_state - Current walk state
477 * op - Current Op to be walked
481 * DESCRIPTION: Transfer execution to a called control method
483 ******************************************************************************/
486 acpi_ds_call_control_method(struct acpi_thread_state
*thread
,
487 struct acpi_walk_state
*this_walk_state
,
488 union acpi_parse_object
*op
)
491 struct acpi_namespace_node
*method_node
;
492 struct acpi_walk_state
*next_walk_state
= NULL
;
493 union acpi_operand_object
*obj_desc
;
494 struct acpi_evaluate_info
*info
;
497 ACPI_FUNCTION_TRACE_PTR(ds_call_control_method
, this_walk_state
);
499 ACPI_DEBUG_PRINT((ACPI_DB_DISPATCH
,
500 "Calling method %p, currentstate=%p\n",
501 this_walk_state
->prev_op
, this_walk_state
));
504 * Get the namespace entry for the control method we are about to call
506 method_node
= this_walk_state
->method_call_node
;
508 return_ACPI_STATUS(AE_NULL_ENTRY
);
511 obj_desc
= acpi_ns_get_attached_object(method_node
);
513 return_ACPI_STATUS(AE_NULL_OBJECT
);
516 /* Init for new method, possibly wait on method mutex */
519 acpi_ds_begin_method_execution(method_node
, obj_desc
,
521 if (ACPI_FAILURE(status
)) {
522 return_ACPI_STATUS(status
);
525 /* Begin method parse/execution. Create a new walk state */
528 acpi_ds_create_walk_state(obj_desc
->method
.owner_id
, NULL
, obj_desc
,
530 if (!next_walk_state
) {
531 status
= AE_NO_MEMORY
;
536 * The resolved arguments were put on the previous walk state's operand
537 * stack. Operands on the previous walk state stack always
538 * start at index 0. Also, null terminate the list of arguments
540 this_walk_state
->operands
[this_walk_state
->num_operands
] = NULL
;
543 * Allocate and initialize the evaluation information block
544 * TBD: this is somewhat inefficient, should change interface to
545 * ds_init_aml_walk. For now, keeps this struct off the CPU stack
547 info
= ACPI_ALLOCATE_ZEROED(sizeof(struct acpi_evaluate_info
));
549 status
= AE_NO_MEMORY
;
553 info
->parameters
= &this_walk_state
->operands
[0];
555 status
= acpi_ds_init_aml_walk(next_walk_state
, NULL
, method_node
,
556 obj_desc
->method
.aml_start
,
557 obj_desc
->method
.aml_length
, info
,
561 if (ACPI_FAILURE(status
)) {
566 * Delete the operands on the previous walkstate operand stack
567 * (they were copied to new objects)
569 for (i
= 0; i
< obj_desc
->method
.param_count
; i
++) {
570 acpi_ut_remove_reference(this_walk_state
->operands
[i
]);
571 this_walk_state
->operands
[i
] = NULL
;
574 /* Clear the operand stack */
576 this_walk_state
->num_operands
= 0;
578 ACPI_DEBUG_PRINT((ACPI_DB_DISPATCH
,
579 "**** Begin nested execution of [%4.4s] **** WalkState=%p\n",
580 method_node
->name
.ascii
, next_walk_state
));
582 /* Invoke an internal method if necessary */
584 if (obj_desc
->method
.info_flags
& ACPI_METHOD_INTERNAL_ONLY
) {
586 obj_desc
->method
.dispatch
.implementation(next_walk_state
);
587 if (status
== AE_OK
) {
588 status
= AE_CTRL_TERMINATE
;
592 return_ACPI_STATUS(status
);
596 /* On error, we must terminate the method properly */
598 acpi_ds_terminate_control_method(obj_desc
, next_walk_state
);
599 acpi_ds_delete_walk_state(next_walk_state
);
601 return_ACPI_STATUS(status
);
604 /*******************************************************************************
606 * FUNCTION: acpi_ds_restart_control_method
608 * PARAMETERS: walk_state - State for preempted method (caller)
609 * return_desc - Return value from the called method
613 * DESCRIPTION: Restart a method that was preempted by another (nested) method
614 * invocation. Handle the return value (if any) from the callee.
616 ******************************************************************************/
619 acpi_ds_restart_control_method(struct acpi_walk_state
*walk_state
,
620 union acpi_operand_object
*return_desc
)
623 int same_as_implicit_return
;
625 ACPI_FUNCTION_TRACE_PTR(ds_restart_control_method
, walk_state
);
627 ACPI_DEBUG_PRINT((ACPI_DB_DISPATCH
,
628 "****Restart [%4.4s] Op %p ReturnValueFromCallee %p\n",
629 acpi_ut_get_node_name(walk_state
->method_node
),
630 walk_state
->method_call_op
, return_desc
));
632 ACPI_DEBUG_PRINT((ACPI_DB_DISPATCH
,
633 " ReturnFromThisMethodUsed?=%X ResStack %p Walk %p\n",
634 walk_state
->return_used
,
635 walk_state
->results
, walk_state
));
637 /* Did the called method return a value? */
641 /* Is the implicit return object the same as the return desc? */
643 same_as_implicit_return
=
644 (walk_state
->implicit_return_obj
== return_desc
);
646 /* Are we actually going to use the return value? */
648 if (walk_state
->return_used
) {
650 /* Save the return value from the previous method */
652 status
= acpi_ds_result_push(return_desc
, walk_state
);
653 if (ACPI_FAILURE(status
)) {
654 acpi_ut_remove_reference(return_desc
);
655 return_ACPI_STATUS(status
);
659 * Save as THIS method's return value in case it is returned
660 * immediately to yet another method
662 walk_state
->return_desc
= return_desc
;
666 * The following code is the optional support for the so-called
667 * "implicit return". Some AML code assumes that the last value of the
668 * method is "implicitly" returned to the caller, in the absence of an
669 * explicit return value.
671 * Just save the last result of the method as the return value.
673 * NOTE: this is optional because the ASL language does not actually
674 * support this behavior.
676 else if (!acpi_ds_do_implicit_return
677 (return_desc
, walk_state
, FALSE
)
678 || same_as_implicit_return
) {
680 * Delete the return value if it will not be used by the
681 * calling method or remove one reference if the explicit return
682 * is the same as the implicit return value.
684 acpi_ut_remove_reference(return_desc
);
688 return_ACPI_STATUS(AE_OK
);
691 /*******************************************************************************
693 * FUNCTION: acpi_ds_terminate_control_method
695 * PARAMETERS: method_desc - Method object
696 * walk_state - State associated with the method
700 * DESCRIPTION: Terminate a control method. Delete everything that the method
701 * created, delete all locals and arguments, and delete the parse
704 * MUTEX: Interpreter is locked
706 ******************************************************************************/
709 acpi_ds_terminate_control_method(union acpi_operand_object
*method_desc
,
710 struct acpi_walk_state
*walk_state
)
713 ACPI_FUNCTION_TRACE_PTR(ds_terminate_control_method
, walk_state
);
715 /* method_desc is required, walk_state is optional */
723 /* Delete all arguments and locals */
725 acpi_ds_method_data_delete_all(walk_state
);
728 * If method is serialized, release the mutex and restore the
729 * current sync level for this thread
731 if (method_desc
->method
.mutex
) {
733 /* Acquisition Depth handles recursive calls */
735 method_desc
->method
.mutex
->mutex
.acquisition_depth
--;
736 if (!method_desc
->method
.mutex
->mutex
.acquisition_depth
) {
737 walk_state
->thread
->current_sync_level
=
738 method_desc
->method
.mutex
->mutex
.
741 acpi_os_release_mutex(method_desc
->method
.
742 mutex
->mutex
.os_mutex
);
743 method_desc
->method
.mutex
->mutex
.thread_id
= 0;
748 * Delete any namespace objects created anywhere within the
749 * namespace by the execution of this method. Unless:
750 * 1) This method is a module-level executable code method, in which
751 * case we want make the objects permanent.
752 * 2) There are other threads executing the method, in which case we
753 * will wait until the last thread has completed.
755 if (!(method_desc
->method
.info_flags
& ACPI_METHOD_MODULE_LEVEL
)
756 && (method_desc
->method
.thread_count
== 1)) {
758 /* Delete any direct children of (created by) this method */
760 acpi_ns_delete_namespace_subtree(walk_state
->
764 * Delete any objects that were created by this method
765 * elsewhere in the namespace (if any were created).
766 * Use of the ACPI_METHOD_MODIFIED_NAMESPACE optimizes the
767 * deletion such that we don't have to perform an entire
768 * namespace walk for every control method execution.
770 if (method_desc
->method
.
771 info_flags
& ACPI_METHOD_MODIFIED_NAMESPACE
) {
772 acpi_ns_delete_namespace_by_owner(method_desc
->
775 method_desc
->method
.info_flags
&=
776 ~ACPI_METHOD_MODIFIED_NAMESPACE
;
781 /* Decrement the thread count on the method */
783 if (method_desc
->method
.thread_count
) {
784 method_desc
->method
.thread_count
--;
786 ACPI_ERROR((AE_INFO
, "Invalid zero thread count in method"));
789 /* Are there any other threads currently executing this method? */
791 if (method_desc
->method
.thread_count
) {
793 * Additional threads. Do not release the owner_id in this case,
794 * we immediately reuse it for the next thread executing this method
796 ACPI_DEBUG_PRINT((ACPI_DB_DISPATCH
,
797 "*** Completed execution of one thread, %u threads remaining\n",
798 method_desc
->method
.thread_count
));
800 /* This is the only executing thread for this method */
803 * Support to dynamically change a method from not_serialized to
804 * Serialized if it appears that the method is incorrectly written and
805 * does not support multiple thread execution. The best example of this
806 * is if such a method creates namespace objects and blocks. A second
807 * thread will fail with an AE_ALREADY_EXISTS exception.
809 * This code is here because we must wait until the last thread exits
810 * before marking the method as serialized.
812 if (method_desc
->method
.
813 info_flags
& ACPI_METHOD_SERIALIZED_PENDING
) {
815 ACPI_INFO(("Marking method %4.4s as Serialized "
816 "because of AE_ALREADY_EXISTS error",
817 walk_state
->method_node
->name
.
822 * Method tried to create an object twice and was marked as
823 * "pending serialized". The probable cause is that the method
824 * cannot handle reentrancy.
826 * The method was created as not_serialized, but it tried to create
827 * a named object and then blocked, causing the second thread
828 * entrance to begin and then fail. Workaround this problem by
829 * marking the method permanently as Serialized when the last
832 method_desc
->method
.info_flags
&=
833 ~ACPI_METHOD_SERIALIZED_PENDING
;
835 method_desc
->method
.info_flags
|=
836 (ACPI_METHOD_SERIALIZED
|
837 ACPI_METHOD_IGNORE_SYNC_LEVEL
);
838 method_desc
->method
.sync_level
= 0;
841 /* No more threads, we can free the owner_id */
844 (method_desc
->method
.
845 info_flags
& ACPI_METHOD_MODULE_LEVEL
)) {
846 acpi_ut_release_owner_id(&method_desc
->method
.owner_id
);
850 acpi_ex_stop_trace_method((struct acpi_namespace_node
*)method_desc
->
851 method
.node
, method_desc
, walk_state
);