Merge branch 'r6040-next'
[linux/fpc-iii.git] / drivers / clk / clk-cdce925.c
blob089bf88ffa8d677547b1a6f18c6ace50322793c6
1 /*
2 * Driver for TI Dual PLL CDCE925 clock synthesizer
4 * This driver always connects the Y1 to the input clock, Y2/Y3 to PLL1
5 * and Y4/Y5 to PLL2. PLL frequency is set on a first-come-first-serve
6 * basis. Clients can directly request any frequency that the chip can
7 * deliver using the standard clk framework. In addition, the device can
8 * be configured and activated via the devicetree.
10 * Copyright (C) 2014, Topic Embedded Products
11 * Licenced under GPL
13 #include <linux/clk.h>
14 #include <linux/clk-provider.h>
15 #include <linux/delay.h>
16 #include <linux/module.h>
17 #include <linux/i2c.h>
18 #include <linux/regmap.h>
19 #include <linux/slab.h>
20 #include <linux/gcd.h>
22 /* The chip has 2 PLLs which can be routed through dividers to 5 outputs.
23 * Model this as 2 PLL clocks which are parents to the outputs.
25 #define NUMBER_OF_PLLS 2
26 #define NUMBER_OF_OUTPUTS 5
28 #define CDCE925_REG_GLOBAL1 0x01
29 #define CDCE925_REG_Y1SPIPDIVH 0x02
30 #define CDCE925_REG_PDIVL 0x03
31 #define CDCE925_REG_XCSEL 0x05
32 /* PLL parameters start at 0x10, steps of 0x10 */
33 #define CDCE925_OFFSET_PLL 0x10
34 /* Add CDCE925_OFFSET_PLL * (pll) to these registers before sending */
35 #define CDCE925_PLL_MUX_OUTPUTS 0x14
36 #define CDCE925_PLL_MULDIV 0x18
38 #define CDCE925_PLL_FREQUENCY_MIN 80000000ul
39 #define CDCE925_PLL_FREQUENCY_MAX 230000000ul
40 struct clk_cdce925_chip;
42 struct clk_cdce925_output {
43 struct clk_hw hw;
44 struct clk_cdce925_chip *chip;
45 u8 index;
46 u16 pdiv; /* 1..127 for Y2-Y5; 1..1023 for Y1 */
48 #define to_clk_cdce925_output(_hw) \
49 container_of(_hw, struct clk_cdce925_output, hw)
51 struct clk_cdce925_pll {
52 struct clk_hw hw;
53 struct clk_cdce925_chip *chip;
54 u8 index;
55 u16 m; /* 1..511 */
56 u16 n; /* 1..4095 */
58 #define to_clk_cdce925_pll(_hw) container_of(_hw, struct clk_cdce925_pll, hw)
60 struct clk_cdce925_chip {
61 struct regmap *regmap;
62 struct i2c_client *i2c_client;
63 struct clk_cdce925_pll pll[NUMBER_OF_PLLS];
64 struct clk_cdce925_output clk[NUMBER_OF_OUTPUTS];
65 struct clk *dt_clk[NUMBER_OF_OUTPUTS];
66 struct clk_onecell_data onecell;
69 /* ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** */
71 static unsigned long cdce925_pll_calculate_rate(unsigned long parent_rate,
72 u16 n, u16 m)
74 if ((!m || !n) || (m == n))
75 return parent_rate; /* In bypass mode runs at same frequency */
76 return mult_frac(parent_rate, (unsigned long)n, (unsigned long)m);
79 static unsigned long cdce925_pll_recalc_rate(struct clk_hw *hw,
80 unsigned long parent_rate)
82 /* Output frequency of PLL is Fout = (Fin/Pdiv)*(N/M) */
83 struct clk_cdce925_pll *data = to_clk_cdce925_pll(hw);
85 return cdce925_pll_calculate_rate(parent_rate, data->n, data->m);
88 static void cdce925_pll_find_rate(unsigned long rate,
89 unsigned long parent_rate, u16 *n, u16 *m)
91 unsigned long un;
92 unsigned long um;
93 unsigned long g;
95 if (rate <= parent_rate) {
96 /* Can always deliver parent_rate in bypass mode */
97 rate = parent_rate;
98 *n = 0;
99 *m = 0;
100 } else {
101 /* In PLL mode, need to apply min/max range */
102 if (rate < CDCE925_PLL_FREQUENCY_MIN)
103 rate = CDCE925_PLL_FREQUENCY_MIN;
104 else if (rate > CDCE925_PLL_FREQUENCY_MAX)
105 rate = CDCE925_PLL_FREQUENCY_MAX;
107 g = gcd(rate, parent_rate);
108 um = parent_rate / g;
109 un = rate / g;
110 /* When outside hw range, reduce to fit (rounding errors) */
111 while ((un > 4095) || (um > 511)) {
112 un >>= 1;
113 um >>= 1;
115 if (un == 0)
116 un = 1;
117 if (um == 0)
118 um = 1;
120 *n = un;
121 *m = um;
125 static long cdce925_pll_round_rate(struct clk_hw *hw, unsigned long rate,
126 unsigned long *parent_rate)
128 u16 n, m;
130 cdce925_pll_find_rate(rate, *parent_rate, &n, &m);
131 return (long)cdce925_pll_calculate_rate(*parent_rate, n, m);
134 static int cdce925_pll_set_rate(struct clk_hw *hw, unsigned long rate,
135 unsigned long parent_rate)
137 struct clk_cdce925_pll *data = to_clk_cdce925_pll(hw);
139 if (!rate || (rate == parent_rate)) {
140 data->m = 0; /* Bypass mode */
141 data->n = 0;
142 return 0;
145 if ((rate < CDCE925_PLL_FREQUENCY_MIN) ||
146 (rate > CDCE925_PLL_FREQUENCY_MAX)) {
147 pr_debug("%s: rate %lu outside PLL range.\n", __func__, rate);
148 return -EINVAL;
151 if (rate < parent_rate) {
152 pr_debug("%s: rate %lu less than parent rate %lu.\n", __func__,
153 rate, parent_rate);
154 return -EINVAL;
157 cdce925_pll_find_rate(rate, parent_rate, &data->n, &data->m);
158 return 0;
162 /* calculate p = max(0, 4 - int(log2 (n/m))) */
163 static u8 cdce925_pll_calc_p(u16 n, u16 m)
165 u8 p;
166 u16 r = n / m;
168 if (r >= 16)
169 return 0;
170 p = 4;
171 while (r > 1) {
172 r >>= 1;
173 --p;
175 return p;
178 /* Returns VCO range bits for VCO1_0_RANGE */
179 static u8 cdce925_pll_calc_range_bits(struct clk_hw *hw, u16 n, u16 m)
181 struct clk *parent = clk_get_parent(hw->clk);
182 unsigned long rate = clk_get_rate(parent);
184 rate = mult_frac(rate, (unsigned long)n, (unsigned long)m);
185 if (rate >= 175000000)
186 return 0x3;
187 if (rate >= 150000000)
188 return 0x02;
189 if (rate >= 125000000)
190 return 0x01;
191 return 0x00;
194 /* I2C clock, hence everything must happen in (un)prepare because this
195 * may sleep */
196 static int cdce925_pll_prepare(struct clk_hw *hw)
198 struct clk_cdce925_pll *data = to_clk_cdce925_pll(hw);
199 u16 n = data->n;
200 u16 m = data->m;
201 u16 r;
202 u8 q;
203 u8 p;
204 u16 nn;
205 u8 pll[4]; /* Bits are spread out over 4 byte registers */
206 u8 reg_ofs = data->index * CDCE925_OFFSET_PLL;
207 unsigned i;
209 if ((!m || !n) || (m == n)) {
210 /* Set PLL mux to bypass mode, leave the rest as is */
211 regmap_update_bits(data->chip->regmap,
212 reg_ofs + CDCE925_PLL_MUX_OUTPUTS, 0x80, 0x80);
213 } else {
214 /* According to data sheet: */
215 /* p = max(0, 4 - int(log2 (n/m))) */
216 p = cdce925_pll_calc_p(n, m);
217 /* nn = n * 2^p */
218 nn = n * BIT(p);
219 /* q = int(nn/m) */
220 q = nn / m;
221 if ((q < 16) || (1 > 64)) {
222 pr_debug("%s invalid q=%d\n", __func__, q);
223 return -EINVAL;
225 r = nn - (m*q);
226 if (r > 511) {
227 pr_debug("%s invalid r=%d\n", __func__, r);
228 return -EINVAL;
230 pr_debug("%s n=%d m=%d p=%d q=%d r=%d\n", __func__,
231 n, m, p, q, r);
232 /* encode into register bits */
233 pll[0] = n >> 4;
234 pll[1] = ((n & 0x0F) << 4) | ((r >> 5) & 0x0F);
235 pll[2] = ((r & 0x1F) << 3) | ((q >> 3) & 0x07);
236 pll[3] = ((q & 0x07) << 5) | (p << 2) |
237 cdce925_pll_calc_range_bits(hw, n, m);
238 /* Write to registers */
239 for (i = 0; i < ARRAY_SIZE(pll); ++i)
240 regmap_write(data->chip->regmap,
241 reg_ofs + CDCE925_PLL_MULDIV + i, pll[i]);
242 /* Enable PLL */
243 regmap_update_bits(data->chip->regmap,
244 reg_ofs + CDCE925_PLL_MUX_OUTPUTS, 0x80, 0x00);
247 return 0;
250 static void cdce925_pll_unprepare(struct clk_hw *hw)
252 struct clk_cdce925_pll *data = to_clk_cdce925_pll(hw);
253 u8 reg_ofs = data->index * CDCE925_OFFSET_PLL;
255 regmap_update_bits(data->chip->regmap,
256 reg_ofs + CDCE925_PLL_MUX_OUTPUTS, 0x80, 0x80);
259 static const struct clk_ops cdce925_pll_ops = {
260 .prepare = cdce925_pll_prepare,
261 .unprepare = cdce925_pll_unprepare,
262 .recalc_rate = cdce925_pll_recalc_rate,
263 .round_rate = cdce925_pll_round_rate,
264 .set_rate = cdce925_pll_set_rate,
268 static void cdce925_clk_set_pdiv(struct clk_cdce925_output *data, u16 pdiv)
270 switch (data->index) {
271 case 0:
272 regmap_update_bits(data->chip->regmap,
273 CDCE925_REG_Y1SPIPDIVH,
274 0x03, (pdiv >> 8) & 0x03);
275 regmap_write(data->chip->regmap, 0x03, pdiv & 0xFF);
276 break;
277 case 1:
278 regmap_update_bits(data->chip->regmap, 0x16, 0x7F, pdiv);
279 break;
280 case 2:
281 regmap_update_bits(data->chip->regmap, 0x17, 0x7F, pdiv);
282 break;
283 case 3:
284 regmap_update_bits(data->chip->regmap, 0x26, 0x7F, pdiv);
285 break;
286 case 4:
287 regmap_update_bits(data->chip->regmap, 0x27, 0x7F, pdiv);
288 break;
292 static void cdce925_clk_activate(struct clk_cdce925_output *data)
294 switch (data->index) {
295 case 0:
296 regmap_update_bits(data->chip->regmap,
297 CDCE925_REG_Y1SPIPDIVH, 0x0c, 0x0c);
298 break;
299 case 1:
300 case 2:
301 regmap_update_bits(data->chip->regmap, 0x14, 0x03, 0x03);
302 break;
303 case 3:
304 case 4:
305 regmap_update_bits(data->chip->regmap, 0x24, 0x03, 0x03);
306 break;
310 static int cdce925_clk_prepare(struct clk_hw *hw)
312 struct clk_cdce925_output *data = to_clk_cdce925_output(hw);
314 cdce925_clk_set_pdiv(data, data->pdiv);
315 cdce925_clk_activate(data);
316 return 0;
319 static void cdce925_clk_unprepare(struct clk_hw *hw)
321 struct clk_cdce925_output *data = to_clk_cdce925_output(hw);
323 /* Disable clock by setting divider to "0" */
324 cdce925_clk_set_pdiv(data, 0);
327 static unsigned long cdce925_clk_recalc_rate(struct clk_hw *hw,
328 unsigned long parent_rate)
330 struct clk_cdce925_output *data = to_clk_cdce925_output(hw);
332 if (data->pdiv)
333 return parent_rate / data->pdiv;
334 return 0;
337 static u16 cdce925_calc_divider(unsigned long rate,
338 unsigned long parent_rate)
340 unsigned long divider;
342 if (!rate)
343 return 0;
344 if (rate >= parent_rate)
345 return 1;
347 divider = DIV_ROUND_CLOSEST(parent_rate, rate);
348 if (divider > 0x7F)
349 divider = 0x7F;
351 return (u16)divider;
354 static unsigned long cdce925_clk_best_parent_rate(
355 struct clk_hw *hw, unsigned long rate)
357 struct clk *pll = clk_get_parent(hw->clk);
358 struct clk *root = clk_get_parent(pll);
359 unsigned long root_rate = clk_get_rate(root);
360 unsigned long best_rate_error = rate;
361 u16 pdiv_min;
362 u16 pdiv_max;
363 u16 pdiv_best;
364 u16 pdiv_now;
366 if (root_rate % rate == 0)
367 return root_rate; /* Don't need the PLL, use bypass */
369 pdiv_min = (u16)max(1ul, DIV_ROUND_UP(CDCE925_PLL_FREQUENCY_MIN, rate));
370 pdiv_max = (u16)min(127ul, CDCE925_PLL_FREQUENCY_MAX / rate);
372 if (pdiv_min > pdiv_max)
373 return 0; /* No can do? */
375 pdiv_best = pdiv_min;
376 for (pdiv_now = pdiv_min; pdiv_now < pdiv_max; ++pdiv_now) {
377 unsigned long target_rate = rate * pdiv_now;
378 long pll_rate = clk_round_rate(pll, target_rate);
379 unsigned long actual_rate;
380 unsigned long rate_error;
382 if (pll_rate <= 0)
383 continue;
384 actual_rate = pll_rate / pdiv_now;
385 rate_error = abs((long)actual_rate - (long)rate);
386 if (rate_error < best_rate_error) {
387 pdiv_best = pdiv_now;
388 best_rate_error = rate_error;
390 /* TODO: Consider PLL frequency based on smaller n/m values
391 * and pick the better one if the error is equal */
394 return rate * pdiv_best;
397 static long cdce925_clk_round_rate(struct clk_hw *hw, unsigned long rate,
398 unsigned long *parent_rate)
400 unsigned long l_parent_rate = *parent_rate;
401 u16 divider = cdce925_calc_divider(rate, l_parent_rate);
403 if (l_parent_rate / divider != rate) {
404 l_parent_rate = cdce925_clk_best_parent_rate(hw, rate);
405 divider = cdce925_calc_divider(rate, l_parent_rate);
406 *parent_rate = l_parent_rate;
409 if (divider)
410 return (long)(l_parent_rate / divider);
411 return 0;
414 static int cdce925_clk_set_rate(struct clk_hw *hw, unsigned long rate,
415 unsigned long parent_rate)
417 struct clk_cdce925_output *data = to_clk_cdce925_output(hw);
419 data->pdiv = cdce925_calc_divider(rate, parent_rate);
421 return 0;
424 static const struct clk_ops cdce925_clk_ops = {
425 .prepare = cdce925_clk_prepare,
426 .unprepare = cdce925_clk_unprepare,
427 .recalc_rate = cdce925_clk_recalc_rate,
428 .round_rate = cdce925_clk_round_rate,
429 .set_rate = cdce925_clk_set_rate,
433 static u16 cdce925_y1_calc_divider(unsigned long rate,
434 unsigned long parent_rate)
436 unsigned long divider;
438 if (!rate)
439 return 0;
440 if (rate >= parent_rate)
441 return 1;
443 divider = DIV_ROUND_CLOSEST(parent_rate, rate);
444 if (divider > 0x3FF) /* Y1 has 10-bit divider */
445 divider = 0x3FF;
447 return (u16)divider;
450 static long cdce925_clk_y1_round_rate(struct clk_hw *hw, unsigned long rate,
451 unsigned long *parent_rate)
453 unsigned long l_parent_rate = *parent_rate;
454 u16 divider = cdce925_y1_calc_divider(rate, l_parent_rate);
456 if (divider)
457 return (long)(l_parent_rate / divider);
458 return 0;
461 static int cdce925_clk_y1_set_rate(struct clk_hw *hw, unsigned long rate,
462 unsigned long parent_rate)
464 struct clk_cdce925_output *data = to_clk_cdce925_output(hw);
466 data->pdiv = cdce925_y1_calc_divider(rate, parent_rate);
468 return 0;
471 static const struct clk_ops cdce925_clk_y1_ops = {
472 .prepare = cdce925_clk_prepare,
473 .unprepare = cdce925_clk_unprepare,
474 .recalc_rate = cdce925_clk_recalc_rate,
475 .round_rate = cdce925_clk_y1_round_rate,
476 .set_rate = cdce925_clk_y1_set_rate,
480 static struct regmap_config cdce925_regmap_config = {
481 .name = "configuration0",
482 .reg_bits = 8,
483 .val_bits = 8,
484 .cache_type = REGCACHE_RBTREE,
485 .max_register = 0x2F,
488 #define CDCE925_I2C_COMMAND_BLOCK_TRANSFER 0x00
489 #define CDCE925_I2C_COMMAND_BYTE_TRANSFER 0x80
491 static int cdce925_regmap_i2c_write(
492 void *context, const void *data, size_t count)
494 struct device *dev = context;
495 struct i2c_client *i2c = to_i2c_client(dev);
496 int ret;
497 u8 reg_data[2];
499 if (count != 2)
500 return -ENOTSUPP;
502 /* First byte is command code */
503 reg_data[0] = CDCE925_I2C_COMMAND_BYTE_TRANSFER | ((u8 *)data)[0];
504 reg_data[1] = ((u8 *)data)[1];
506 dev_dbg(&i2c->dev, "%s(%zu) %#x %#x\n", __func__, count,
507 reg_data[0], reg_data[1]);
509 ret = i2c_master_send(i2c, reg_data, count);
510 if (likely(ret == count))
511 return 0;
512 else if (ret < 0)
513 return ret;
514 else
515 return -EIO;
518 static int cdce925_regmap_i2c_read(void *context,
519 const void *reg, size_t reg_size, void *val, size_t val_size)
521 struct device *dev = context;
522 struct i2c_client *i2c = to_i2c_client(dev);
523 struct i2c_msg xfer[2];
524 int ret;
525 u8 reg_data[2];
527 if (reg_size != 1)
528 return -ENOTSUPP;
530 xfer[0].addr = i2c->addr;
531 xfer[0].flags = 0;
532 xfer[0].buf = reg_data;
533 if (val_size == 1) {
534 reg_data[0] =
535 CDCE925_I2C_COMMAND_BYTE_TRANSFER | ((u8 *)reg)[0];
536 xfer[0].len = 1;
537 } else {
538 reg_data[0] =
539 CDCE925_I2C_COMMAND_BLOCK_TRANSFER | ((u8 *)reg)[0];
540 reg_data[1] = val_size;
541 xfer[0].len = 2;
544 xfer[1].addr = i2c->addr;
545 xfer[1].flags = I2C_M_RD;
546 xfer[1].len = val_size;
547 xfer[1].buf = val;
549 ret = i2c_transfer(i2c->adapter, xfer, 2);
550 if (likely(ret == 2)) {
551 dev_dbg(&i2c->dev, "%s(%zu, %zu) %#x %#x\n", __func__,
552 reg_size, val_size, reg_data[0], *((u8 *)val));
553 return 0;
554 } else if (ret < 0)
555 return ret;
556 else
557 return -EIO;
560 /* The CDCE925 uses a funky way to read/write registers. Bulk mode is
561 * just weird, so just use the single byte mode exclusively. */
562 static struct regmap_bus regmap_cdce925_bus = {
563 .write = cdce925_regmap_i2c_write,
564 .read = cdce925_regmap_i2c_read,
567 static int cdce925_probe(struct i2c_client *client,
568 const struct i2c_device_id *id)
570 struct clk_cdce925_chip *data;
571 struct device_node *node = client->dev.of_node;
572 const char *parent_name;
573 const char *pll_clk_name[NUMBER_OF_PLLS] = {NULL,};
574 struct clk_init_data init;
575 struct clk *clk;
576 u32 value;
577 int i;
578 int err;
579 struct device_node *np_output;
580 char child_name[6];
582 dev_dbg(&client->dev, "%s\n", __func__);
583 data = devm_kzalloc(&client->dev, sizeof(*data), GFP_KERNEL);
584 if (!data)
585 return -ENOMEM;
587 data->i2c_client = client;
588 data->regmap = devm_regmap_init(&client->dev, &regmap_cdce925_bus,
589 &client->dev, &cdce925_regmap_config);
590 if (IS_ERR(data->regmap)) {
591 dev_err(&client->dev, "failed to allocate register map\n");
592 return PTR_ERR(data->regmap);
594 i2c_set_clientdata(client, data);
596 parent_name = of_clk_get_parent_name(node, 0);
597 if (!parent_name) {
598 dev_err(&client->dev, "missing parent clock\n");
599 return -ENODEV;
601 dev_dbg(&client->dev, "parent is: %s\n", parent_name);
603 if (of_property_read_u32(node, "xtal-load-pf", &value) == 0)
604 regmap_write(data->regmap,
605 CDCE925_REG_XCSEL, (value << 3) & 0xF8);
606 /* PWDN bit */
607 regmap_update_bits(data->regmap, CDCE925_REG_GLOBAL1, BIT(4), 0);
609 /* Set input source for Y1 to be the XTAL */
610 regmap_update_bits(data->regmap, 0x02, BIT(7), 0);
612 init.ops = &cdce925_pll_ops;
613 init.flags = 0;
614 init.parent_names = &parent_name;
615 init.num_parents = parent_name ? 1 : 0;
617 /* Register PLL clocks */
618 for (i = 0; i < NUMBER_OF_PLLS; ++i) {
619 pll_clk_name[i] = kasprintf(GFP_KERNEL, "%s.pll%d",
620 client->dev.of_node->name, i);
621 init.name = pll_clk_name[i];
622 data->pll[i].chip = data;
623 data->pll[i].hw.init = &init;
624 data->pll[i].index = i;
625 clk = devm_clk_register(&client->dev, &data->pll[i].hw);
626 if (IS_ERR(clk)) {
627 dev_err(&client->dev, "Failed register PLL %d\n", i);
628 err = PTR_ERR(clk);
629 goto error;
631 sprintf(child_name, "PLL%d", i+1);
632 np_output = of_get_child_by_name(node, child_name);
633 if (!np_output)
634 continue;
635 if (!of_property_read_u32(np_output,
636 "clock-frequency", &value)) {
637 err = clk_set_rate(clk, value);
638 if (err)
639 dev_err(&client->dev,
640 "unable to set PLL frequency %ud\n",
641 value);
643 if (!of_property_read_u32(np_output,
644 "spread-spectrum", &value)) {
645 u8 flag = of_property_read_bool(np_output,
646 "spread-spectrum-center") ? 0x80 : 0x00;
647 regmap_update_bits(data->regmap,
648 0x16 + (i*CDCE925_OFFSET_PLL),
649 0x80, flag);
650 regmap_update_bits(data->regmap,
651 0x12 + (i*CDCE925_OFFSET_PLL),
652 0x07, value & 0x07);
656 /* Register output clock Y1 */
657 init.ops = &cdce925_clk_y1_ops;
658 init.flags = 0;
659 init.num_parents = 1;
660 init.parent_names = &parent_name; /* Mux Y1 to input */
661 init.name = kasprintf(GFP_KERNEL, "%s.Y1", client->dev.of_node->name);
662 data->clk[0].chip = data;
663 data->clk[0].hw.init = &init;
664 data->clk[0].index = 0;
665 data->clk[0].pdiv = 1;
666 clk = devm_clk_register(&client->dev, &data->clk[0].hw);
667 kfree(init.name); /* clock framework made a copy of the name */
668 if (IS_ERR(clk)) {
669 dev_err(&client->dev, "clock registration Y1 failed\n");
670 err = PTR_ERR(clk);
671 goto error;
673 data->dt_clk[0] = clk;
675 /* Register output clocks Y2 .. Y5*/
676 init.ops = &cdce925_clk_ops;
677 init.flags = CLK_SET_RATE_PARENT;
678 init.num_parents = 1;
679 for (i = 1; i < NUMBER_OF_OUTPUTS; ++i) {
680 init.name = kasprintf(GFP_KERNEL, "%s.Y%d",
681 client->dev.of_node->name, i+1);
682 data->clk[i].chip = data;
683 data->clk[i].hw.init = &init;
684 data->clk[i].index = i;
685 data->clk[i].pdiv = 1;
686 switch (i) {
687 case 1:
688 case 2:
689 /* Mux Y2/3 to PLL1 */
690 init.parent_names = &pll_clk_name[0];
691 break;
692 case 3:
693 case 4:
694 /* Mux Y4/5 to PLL2 */
695 init.parent_names = &pll_clk_name[1];
696 break;
698 clk = devm_clk_register(&client->dev, &data->clk[i].hw);
699 kfree(init.name); /* clock framework made a copy of the name */
700 if (IS_ERR(clk)) {
701 dev_err(&client->dev, "clock registration failed\n");
702 err = PTR_ERR(clk);
703 goto error;
705 data->dt_clk[i] = clk;
708 /* Register the output clocks */
709 data->onecell.clk_num = NUMBER_OF_OUTPUTS;
710 data->onecell.clks = data->dt_clk;
711 err = of_clk_add_provider(client->dev.of_node, of_clk_src_onecell_get,
712 &data->onecell);
713 if (err)
714 dev_err(&client->dev, "unable to add OF clock provider\n");
716 err = 0;
718 error:
719 for (i = 0; i < NUMBER_OF_PLLS; ++i)
720 /* clock framework made a copy of the name */
721 kfree(pll_clk_name[i]);
723 return err;
726 static const struct i2c_device_id cdce925_id[] = {
727 { "cdce925", 0 },
730 MODULE_DEVICE_TABLE(i2c, cdce925_id);
732 static const struct of_device_id clk_cdce925_of_match[] = {
733 { .compatible = "ti,cdce925" },
734 { },
736 MODULE_DEVICE_TABLE(of, clk_cdce925_of_match);
738 static struct i2c_driver cdce925_driver = {
739 .driver = {
740 .name = "cdce925",
741 .of_match_table = of_match_ptr(clk_cdce925_of_match),
743 .probe = cdce925_probe,
744 .id_table = cdce925_id,
746 module_i2c_driver(cdce925_driver);
748 MODULE_AUTHOR("Mike Looijmans <mike.looijmans@topic.nl>");
749 MODULE_DESCRIPTION("cdce925 driver");
750 MODULE_LICENSE("GPL");