Merge branch 'r6040-next'
[linux/fpc-iii.git] / drivers / misc / eeprom / at24.c
blob9ceb63b62be5ad39d34dd1f0b17fbb624143196d
1 /*
2 * at24.c - handle most I2C EEPROMs
4 * Copyright (C) 2005-2007 David Brownell
5 * Copyright (C) 2008 Wolfram Sang, Pengutronix
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
12 #include <linux/kernel.h>
13 #include <linux/init.h>
14 #include <linux/module.h>
15 #include <linux/slab.h>
16 #include <linux/delay.h>
17 #include <linux/mutex.h>
18 #include <linux/mod_devicetable.h>
19 #include <linux/log2.h>
20 #include <linux/bitops.h>
21 #include <linux/jiffies.h>
22 #include <linux/of.h>
23 #include <linux/acpi.h>
24 #include <linux/i2c.h>
25 #include <linux/nvmem-provider.h>
26 #include <linux/platform_data/at24.h>
29 * I2C EEPROMs from most vendors are inexpensive and mostly interchangeable.
30 * Differences between different vendor product lines (like Atmel AT24C or
31 * MicroChip 24LC, etc) won't much matter for typical read/write access.
32 * There are also I2C RAM chips, likewise interchangeable. One example
33 * would be the PCF8570, which acts like a 24c02 EEPROM (256 bytes).
35 * However, misconfiguration can lose data. "Set 16-bit memory address"
36 * to a part with 8-bit addressing will overwrite data. Writing with too
37 * big a page size also loses data. And it's not safe to assume that the
38 * conventional addresses 0x50..0x57 only hold eeproms; a PCF8563 RTC
39 * uses 0x51, for just one example.
41 * Accordingly, explicit board-specific configuration data should be used
42 * in almost all cases. (One partial exception is an SMBus used to access
43 * "SPD" data for DRAM sticks. Those only use 24c02 EEPROMs.)
45 * So this driver uses "new style" I2C driver binding, expecting to be
46 * told what devices exist. That may be in arch/X/mach-Y/board-Z.c or
47 * similar kernel-resident tables; or, configuration data coming from
48 * a bootloader.
50 * Other than binding model, current differences from "eeprom" driver are
51 * that this one handles write access and isn't restricted to 24c02 devices.
52 * It also handles larger devices (32 kbit and up) with two-byte addresses,
53 * which won't work on pure SMBus systems.
56 struct at24_data {
57 struct at24_platform_data chip;
58 int use_smbus;
59 int use_smbus_write;
62 * Lock protects against activities from other Linux tasks,
63 * but not from changes by other I2C masters.
65 struct mutex lock;
67 u8 *writebuf;
68 unsigned write_max;
69 unsigned num_addresses;
71 struct nvmem_config nvmem_config;
72 struct nvmem_device *nvmem;
75 * Some chips tie up multiple I2C addresses; dummy devices reserve
76 * them for us, and we'll use them with SMBus calls.
78 struct i2c_client *client[];
82 * This parameter is to help this driver avoid blocking other drivers out
83 * of I2C for potentially troublesome amounts of time. With a 100 kHz I2C
84 * clock, one 256 byte read takes about 1/43 second which is excessive;
85 * but the 1/170 second it takes at 400 kHz may be quite reasonable; and
86 * at 1 MHz (Fm+) a 1/430 second delay could easily be invisible.
88 * This value is forced to be a power of two so that writes align on pages.
90 static unsigned io_limit = 128;
91 module_param(io_limit, uint, 0);
92 MODULE_PARM_DESC(io_limit, "Maximum bytes per I/O (default 128)");
95 * Specs often allow 5 msec for a page write, sometimes 20 msec;
96 * it's important to recover from write timeouts.
98 static unsigned write_timeout = 25;
99 module_param(write_timeout, uint, 0);
100 MODULE_PARM_DESC(write_timeout, "Time (in ms) to try writes (default 25)");
102 #define AT24_SIZE_BYTELEN 5
103 #define AT24_SIZE_FLAGS 8
105 #define AT24_BITMASK(x) (BIT(x) - 1)
107 /* create non-zero magic value for given eeprom parameters */
108 #define AT24_DEVICE_MAGIC(_len, _flags) \
109 ((1 << AT24_SIZE_FLAGS | (_flags)) \
110 << AT24_SIZE_BYTELEN | ilog2(_len))
112 static const struct i2c_device_id at24_ids[] = {
113 /* needs 8 addresses as A0-A2 are ignored */
114 { "24c00", AT24_DEVICE_MAGIC(128 / 8, AT24_FLAG_TAKE8ADDR) },
115 /* old variants can't be handled with this generic entry! */
116 { "24c01", AT24_DEVICE_MAGIC(1024 / 8, 0) },
117 { "24c02", AT24_DEVICE_MAGIC(2048 / 8, 0) },
118 /* spd is a 24c02 in memory DIMMs */
119 { "spd", AT24_DEVICE_MAGIC(2048 / 8,
120 AT24_FLAG_READONLY | AT24_FLAG_IRUGO) },
121 { "24c04", AT24_DEVICE_MAGIC(4096 / 8, 0) },
122 /* 24rf08 quirk is handled at i2c-core */
123 { "24c08", AT24_DEVICE_MAGIC(8192 / 8, 0) },
124 { "24c16", AT24_DEVICE_MAGIC(16384 / 8, 0) },
125 { "24c32", AT24_DEVICE_MAGIC(32768 / 8, AT24_FLAG_ADDR16) },
126 { "24c64", AT24_DEVICE_MAGIC(65536 / 8, AT24_FLAG_ADDR16) },
127 { "24c128", AT24_DEVICE_MAGIC(131072 / 8, AT24_FLAG_ADDR16) },
128 { "24c256", AT24_DEVICE_MAGIC(262144 / 8, AT24_FLAG_ADDR16) },
129 { "24c512", AT24_DEVICE_MAGIC(524288 / 8, AT24_FLAG_ADDR16) },
130 { "24c1024", AT24_DEVICE_MAGIC(1048576 / 8, AT24_FLAG_ADDR16) },
131 { "at24", 0 },
132 { /* END OF LIST */ }
134 MODULE_DEVICE_TABLE(i2c, at24_ids);
136 static const struct acpi_device_id at24_acpi_ids[] = {
137 { "INT3499", AT24_DEVICE_MAGIC(8192 / 8, 0) },
140 MODULE_DEVICE_TABLE(acpi, at24_acpi_ids);
142 /*-------------------------------------------------------------------------*/
145 * This routine supports chips which consume multiple I2C addresses. It
146 * computes the addressing information to be used for a given r/w request.
147 * Assumes that sanity checks for offset happened at sysfs-layer.
149 static struct i2c_client *at24_translate_offset(struct at24_data *at24,
150 unsigned *offset)
152 unsigned i;
154 if (at24->chip.flags & AT24_FLAG_ADDR16) {
155 i = *offset >> 16;
156 *offset &= 0xffff;
157 } else {
158 i = *offset >> 8;
159 *offset &= 0xff;
162 return at24->client[i];
165 static ssize_t at24_eeprom_read(struct at24_data *at24, char *buf,
166 unsigned offset, size_t count)
168 struct i2c_msg msg[2];
169 u8 msgbuf[2];
170 struct i2c_client *client;
171 unsigned long timeout, read_time;
172 int status, i;
174 memset(msg, 0, sizeof(msg));
177 * REVISIT some multi-address chips don't rollover page reads to
178 * the next slave address, so we may need to truncate the count.
179 * Those chips might need another quirk flag.
181 * If the real hardware used four adjacent 24c02 chips and that
182 * were misconfigured as one 24c08, that would be a similar effect:
183 * one "eeprom" file not four, but larger reads would fail when
184 * they crossed certain pages.
188 * Slave address and byte offset derive from the offset. Always
189 * set the byte address; on a multi-master board, another master
190 * may have changed the chip's "current" address pointer.
192 client = at24_translate_offset(at24, &offset);
194 if (count > io_limit)
195 count = io_limit;
197 if (at24->use_smbus) {
198 /* Smaller eeproms can work given some SMBus extension calls */
199 if (count > I2C_SMBUS_BLOCK_MAX)
200 count = I2C_SMBUS_BLOCK_MAX;
201 } else {
203 * When we have a better choice than SMBus calls, use a
204 * combined I2C message. Write address; then read up to
205 * io_limit data bytes. Note that read page rollover helps us
206 * here (unlike writes). msgbuf is u8 and will cast to our
207 * needs.
209 i = 0;
210 if (at24->chip.flags & AT24_FLAG_ADDR16)
211 msgbuf[i++] = offset >> 8;
212 msgbuf[i++] = offset;
214 msg[0].addr = client->addr;
215 msg[0].buf = msgbuf;
216 msg[0].len = i;
218 msg[1].addr = client->addr;
219 msg[1].flags = I2C_M_RD;
220 msg[1].buf = buf;
221 msg[1].len = count;
225 * Reads fail if the previous write didn't complete yet. We may
226 * loop a few times until this one succeeds, waiting at least
227 * long enough for one entire page write to work.
229 timeout = jiffies + msecs_to_jiffies(write_timeout);
230 do {
231 read_time = jiffies;
232 if (at24->use_smbus) {
233 status = i2c_smbus_read_i2c_block_data_or_emulated(client, offset,
234 count, buf);
235 } else {
236 status = i2c_transfer(client->adapter, msg, 2);
237 if (status == 2)
238 status = count;
240 dev_dbg(&client->dev, "read %zu@%d --> %d (%ld)\n",
241 count, offset, status, jiffies);
243 if (status == count)
244 return count;
246 usleep_range(1000, 1500);
247 } while (time_before(read_time, timeout));
249 return -ETIMEDOUT;
252 static int at24_read(void *priv, unsigned int off, void *val, size_t count)
254 struct at24_data *at24 = priv;
255 char *buf = val;
257 if (unlikely(!count))
258 return count;
261 * Read data from chip, protecting against concurrent updates
262 * from this host, but not from other I2C masters.
264 mutex_lock(&at24->lock);
266 while (count) {
267 int status;
269 status = at24_eeprom_read(at24, buf, off, count);
270 if (status < 0) {
271 mutex_unlock(&at24->lock);
272 return status;
274 buf += status;
275 off += status;
276 count -= status;
279 mutex_unlock(&at24->lock);
281 return 0;
285 * Note that if the hardware write-protect pin is pulled high, the whole
286 * chip is normally write protected. But there are plenty of product
287 * variants here, including OTP fuses and partial chip protect.
289 * We only use page mode writes; the alternative is sloooow. This routine
290 * writes at most one page.
292 static ssize_t at24_eeprom_write(struct at24_data *at24, const char *buf,
293 unsigned offset, size_t count)
295 struct i2c_client *client;
296 struct i2c_msg msg;
297 ssize_t status = 0;
298 unsigned long timeout, write_time;
299 unsigned next_page;
301 /* Get corresponding I2C address and adjust offset */
302 client = at24_translate_offset(at24, &offset);
304 /* write_max is at most a page */
305 if (count > at24->write_max)
306 count = at24->write_max;
308 /* Never roll over backwards, to the start of this page */
309 next_page = roundup(offset + 1, at24->chip.page_size);
310 if (offset + count > next_page)
311 count = next_page - offset;
313 /* If we'll use I2C calls for I/O, set up the message */
314 if (!at24->use_smbus) {
315 int i = 0;
317 msg.addr = client->addr;
318 msg.flags = 0;
320 /* msg.buf is u8 and casts will mask the values */
321 msg.buf = at24->writebuf;
322 if (at24->chip.flags & AT24_FLAG_ADDR16)
323 msg.buf[i++] = offset >> 8;
325 msg.buf[i++] = offset;
326 memcpy(&msg.buf[i], buf, count);
327 msg.len = i + count;
331 * Writes fail if the previous one didn't complete yet. We may
332 * loop a few times until this one succeeds, waiting at least
333 * long enough for one entire page write to work.
335 timeout = jiffies + msecs_to_jiffies(write_timeout);
336 do {
337 write_time = jiffies;
338 if (at24->use_smbus_write) {
339 switch (at24->use_smbus_write) {
340 case I2C_SMBUS_I2C_BLOCK_DATA:
341 status = i2c_smbus_write_i2c_block_data(client,
342 offset, count, buf);
343 break;
344 case I2C_SMBUS_BYTE_DATA:
345 status = i2c_smbus_write_byte_data(client,
346 offset, buf[0]);
347 break;
350 if (status == 0)
351 status = count;
352 } else {
353 status = i2c_transfer(client->adapter, &msg, 1);
354 if (status == 1)
355 status = count;
357 dev_dbg(&client->dev, "write %zu@%d --> %zd (%ld)\n",
358 count, offset, status, jiffies);
360 if (status == count)
361 return count;
363 usleep_range(1000, 1500);
364 } while (time_before(write_time, timeout));
366 return -ETIMEDOUT;
369 static int at24_write(void *priv, unsigned int off, void *val, size_t count)
371 struct at24_data *at24 = priv;
372 char *buf = val;
374 if (unlikely(!count))
375 return -EINVAL;
378 * Write data to chip, protecting against concurrent updates
379 * from this host, but not from other I2C masters.
381 mutex_lock(&at24->lock);
383 while (count) {
384 int status;
386 status = at24_eeprom_write(at24, buf, off, count);
387 if (status < 0) {
388 mutex_unlock(&at24->lock);
389 return status;
391 buf += status;
392 off += status;
393 count -= status;
396 mutex_unlock(&at24->lock);
398 return 0;
401 #ifdef CONFIG_OF
402 static void at24_get_ofdata(struct i2c_client *client,
403 struct at24_platform_data *chip)
405 const __be32 *val;
406 struct device_node *node = client->dev.of_node;
408 if (node) {
409 if (of_get_property(node, "read-only", NULL))
410 chip->flags |= AT24_FLAG_READONLY;
411 val = of_get_property(node, "pagesize", NULL);
412 if (val)
413 chip->page_size = be32_to_cpup(val);
416 #else
417 static void at24_get_ofdata(struct i2c_client *client,
418 struct at24_platform_data *chip)
420 #endif /* CONFIG_OF */
422 static int at24_probe(struct i2c_client *client, const struct i2c_device_id *id)
424 struct at24_platform_data chip;
425 kernel_ulong_t magic = 0;
426 bool writable;
427 int use_smbus = 0;
428 int use_smbus_write = 0;
429 struct at24_data *at24;
430 int err;
431 unsigned i, num_addresses;
433 if (client->dev.platform_data) {
434 chip = *(struct at24_platform_data *)client->dev.platform_data;
435 } else {
436 if (id) {
437 magic = id->driver_data;
438 } else {
439 const struct acpi_device_id *aid;
441 aid = acpi_match_device(at24_acpi_ids, &client->dev);
442 if (aid)
443 magic = aid->driver_data;
445 if (!magic)
446 return -ENODEV;
448 chip.byte_len = BIT(magic & AT24_BITMASK(AT24_SIZE_BYTELEN));
449 magic >>= AT24_SIZE_BYTELEN;
450 chip.flags = magic & AT24_BITMASK(AT24_SIZE_FLAGS);
452 * This is slow, but we can't know all eeproms, so we better
453 * play safe. Specifying custom eeprom-types via platform_data
454 * is recommended anyhow.
456 chip.page_size = 1;
458 /* update chipdata if OF is present */
459 at24_get_ofdata(client, &chip);
461 chip.setup = NULL;
462 chip.context = NULL;
465 if (!is_power_of_2(chip.byte_len))
466 dev_warn(&client->dev,
467 "byte_len looks suspicious (no power of 2)!\n");
468 if (!chip.page_size) {
469 dev_err(&client->dev, "page_size must not be 0!\n");
470 return -EINVAL;
472 if (!is_power_of_2(chip.page_size))
473 dev_warn(&client->dev,
474 "page_size looks suspicious (no power of 2)!\n");
476 /* Use I2C operations unless we're stuck with SMBus extensions. */
477 if (!i2c_check_functionality(client->adapter, I2C_FUNC_I2C)) {
478 if (chip.flags & AT24_FLAG_ADDR16)
479 return -EPFNOSUPPORT;
481 if (i2c_check_functionality(client->adapter,
482 I2C_FUNC_SMBUS_READ_I2C_BLOCK)) {
483 use_smbus = I2C_SMBUS_I2C_BLOCK_DATA;
484 } else if (i2c_check_functionality(client->adapter,
485 I2C_FUNC_SMBUS_READ_WORD_DATA)) {
486 use_smbus = I2C_SMBUS_WORD_DATA;
487 } else if (i2c_check_functionality(client->adapter,
488 I2C_FUNC_SMBUS_READ_BYTE_DATA)) {
489 use_smbus = I2C_SMBUS_BYTE_DATA;
490 } else {
491 return -EPFNOSUPPORT;
494 if (i2c_check_functionality(client->adapter,
495 I2C_FUNC_SMBUS_WRITE_I2C_BLOCK)) {
496 use_smbus_write = I2C_SMBUS_I2C_BLOCK_DATA;
497 } else if (i2c_check_functionality(client->adapter,
498 I2C_FUNC_SMBUS_WRITE_BYTE_DATA)) {
499 use_smbus_write = I2C_SMBUS_BYTE_DATA;
500 chip.page_size = 1;
504 if (chip.flags & AT24_FLAG_TAKE8ADDR)
505 num_addresses = 8;
506 else
507 num_addresses = DIV_ROUND_UP(chip.byte_len,
508 (chip.flags & AT24_FLAG_ADDR16) ? 65536 : 256);
510 at24 = devm_kzalloc(&client->dev, sizeof(struct at24_data) +
511 num_addresses * sizeof(struct i2c_client *), GFP_KERNEL);
512 if (!at24)
513 return -ENOMEM;
515 mutex_init(&at24->lock);
516 at24->use_smbus = use_smbus;
517 at24->use_smbus_write = use_smbus_write;
518 at24->chip = chip;
519 at24->num_addresses = num_addresses;
521 writable = !(chip.flags & AT24_FLAG_READONLY);
522 if (writable) {
523 if (!use_smbus || use_smbus_write) {
525 unsigned write_max = chip.page_size;
527 if (write_max > io_limit)
528 write_max = io_limit;
529 if (use_smbus && write_max > I2C_SMBUS_BLOCK_MAX)
530 write_max = I2C_SMBUS_BLOCK_MAX;
531 at24->write_max = write_max;
533 /* buffer (data + address at the beginning) */
534 at24->writebuf = devm_kzalloc(&client->dev,
535 write_max + 2, GFP_KERNEL);
536 if (!at24->writebuf)
537 return -ENOMEM;
538 } else {
539 dev_warn(&client->dev,
540 "cannot write due to controller restrictions.");
544 at24->client[0] = client;
546 /* use dummy devices for multiple-address chips */
547 for (i = 1; i < num_addresses; i++) {
548 at24->client[i] = i2c_new_dummy(client->adapter,
549 client->addr + i);
550 if (!at24->client[i]) {
551 dev_err(&client->dev, "address 0x%02x unavailable\n",
552 client->addr + i);
553 err = -EADDRINUSE;
554 goto err_clients;
558 at24->nvmem_config.name = dev_name(&client->dev);
559 at24->nvmem_config.dev = &client->dev;
560 at24->nvmem_config.read_only = !writable;
561 at24->nvmem_config.root_only = true;
562 at24->nvmem_config.owner = THIS_MODULE;
563 at24->nvmem_config.compat = true;
564 at24->nvmem_config.base_dev = &client->dev;
565 at24->nvmem_config.reg_read = at24_read;
566 at24->nvmem_config.reg_write = at24_write;
567 at24->nvmem_config.priv = at24;
568 at24->nvmem_config.stride = 4;
569 at24->nvmem_config.word_size = 1;
570 at24->nvmem_config.size = chip.byte_len;
572 at24->nvmem = nvmem_register(&at24->nvmem_config);
574 if (IS_ERR(at24->nvmem)) {
575 err = PTR_ERR(at24->nvmem);
576 goto err_clients;
579 i2c_set_clientdata(client, at24);
581 dev_info(&client->dev, "%u byte %s EEPROM, %s, %u bytes/write\n",
582 chip.byte_len, client->name,
583 writable ? "writable" : "read-only", at24->write_max);
584 if (use_smbus == I2C_SMBUS_WORD_DATA ||
585 use_smbus == I2C_SMBUS_BYTE_DATA) {
586 dev_notice(&client->dev, "Falling back to %s reads, "
587 "performance will suffer\n", use_smbus ==
588 I2C_SMBUS_WORD_DATA ? "word" : "byte");
591 /* export data to kernel code */
592 if (chip.setup)
593 chip.setup(at24->nvmem, chip.context);
595 return 0;
597 err_clients:
598 for (i = 1; i < num_addresses; i++)
599 if (at24->client[i])
600 i2c_unregister_device(at24->client[i]);
602 return err;
605 static int at24_remove(struct i2c_client *client)
607 struct at24_data *at24;
608 int i;
610 at24 = i2c_get_clientdata(client);
612 nvmem_unregister(at24->nvmem);
614 for (i = 1; i < at24->num_addresses; i++)
615 i2c_unregister_device(at24->client[i]);
617 return 0;
620 /*-------------------------------------------------------------------------*/
622 static struct i2c_driver at24_driver = {
623 .driver = {
624 .name = "at24",
625 .acpi_match_table = ACPI_PTR(at24_acpi_ids),
627 .probe = at24_probe,
628 .remove = at24_remove,
629 .id_table = at24_ids,
632 static int __init at24_init(void)
634 if (!io_limit) {
635 pr_err("at24: io_limit must not be 0!\n");
636 return -EINVAL;
639 io_limit = rounddown_pow_of_two(io_limit);
640 return i2c_add_driver(&at24_driver);
642 module_init(at24_init);
644 static void __exit at24_exit(void)
646 i2c_del_driver(&at24_driver);
648 module_exit(at24_exit);
650 MODULE_DESCRIPTION("Driver for most I2C EEPROMs");
651 MODULE_AUTHOR("David Brownell and Wolfram Sang");
652 MODULE_LICENSE("GPL");