Merge branch 'r6040-next'
[linux/fpc-iii.git] / drivers / usb / dwc2 / core.h
blobdec0b21fc62687d700ffc3b040ec16a70a530710
1 /*
2 * core.h - DesignWare HS OTG Controller common declarations
4 * Copyright (C) 2004-2013 Synopsys, Inc.
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions, and the following disclaimer,
11 * without modification.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. The names of the above-listed copyright holders may not be used
16 * to endorse or promote products derived from this software without
17 * specific prior written permission.
19 * ALTERNATIVELY, this software may be distributed under the terms of the
20 * GNU General Public License ("GPL") as published by the Free Software
21 * Foundation; either version 2 of the License, or (at your option) any
22 * later version.
24 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
25 * IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
26 * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
27 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
28 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
29 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
30 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
31 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
32 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
33 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
34 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
37 #ifndef __DWC2_CORE_H__
38 #define __DWC2_CORE_H__
40 #include <linux/phy/phy.h>
41 #include <linux/regulator/consumer.h>
42 #include <linux/usb/gadget.h>
43 #include <linux/usb/otg.h>
44 #include <linux/usb/phy.h>
45 #include "hw.h"
48 * Suggested defines for tracers:
49 * - no_printk: Disable tracing
50 * - pr_info: Print this info to the console
51 * - trace_printk: Print this info to trace buffer (good for verbose logging)
54 #define DWC2_TRACE_SCHEDULER no_printk
55 #define DWC2_TRACE_SCHEDULER_VB no_printk
57 /* Detailed scheduler tracing, but won't overwhelm console */
58 #define dwc2_sch_dbg(hsotg, fmt, ...) \
59 DWC2_TRACE_SCHEDULER(pr_fmt("%s: SCH: " fmt), \
60 dev_name(hsotg->dev), ##__VA_ARGS__)
62 /* Verbose scheduler tracing */
63 #define dwc2_sch_vdbg(hsotg, fmt, ...) \
64 DWC2_TRACE_SCHEDULER_VB(pr_fmt("%s: SCH: " fmt), \
65 dev_name(hsotg->dev), ##__VA_ARGS__)
67 #ifdef CONFIG_MIPS
69 * There are some MIPS machines that can run in either big-endian
70 * or little-endian mode and that use the dwc2 register without
71 * a byteswap in both ways.
72 * Unlike other architectures, MIPS apparently does not require a
73 * barrier before the __raw_writel() to synchronize with DMA but does
74 * require the barrier after the __raw_writel() to serialize a set of
75 * writes. This set of operations was added specifically for MIPS and
76 * should only be used there.
78 static inline u32 dwc2_readl(const void __iomem *addr)
80 u32 value = __raw_readl(addr);
82 /* In order to preserve endianness __raw_* operation is used. Therefore
83 * a barrier is needed to ensure IO access is not re-ordered across
84 * reads or writes
86 mb();
87 return value;
90 static inline void dwc2_writel(u32 value, void __iomem *addr)
92 __raw_writel(value, addr);
95 * In order to preserve endianness __raw_* operation is used. Therefore
96 * a barrier is needed to ensure IO access is not re-ordered across
97 * reads or writes
99 mb();
100 #ifdef DWC2_LOG_WRITES
101 pr_info("INFO:: wrote %08x to %p\n", value, addr);
102 #endif
104 #else
105 /* Normal architectures just use readl/write */
106 static inline u32 dwc2_readl(const void __iomem *addr)
108 return readl(addr);
111 static inline void dwc2_writel(u32 value, void __iomem *addr)
113 writel(value, addr);
115 #ifdef DWC2_LOG_WRITES
116 pr_info("info:: wrote %08x to %p\n", value, addr);
117 #endif
119 #endif
121 /* Maximum number of Endpoints/HostChannels */
122 #define MAX_EPS_CHANNELS 16
124 /* dwc2-hsotg declarations */
125 static const char * const dwc2_hsotg_supply_names[] = {
126 "vusb_d", /* digital USB supply, 1.2V */
127 "vusb_a", /* analog USB supply, 1.1V */
131 * EP0_MPS_LIMIT
133 * Unfortunately there seems to be a limit of the amount of data that can
134 * be transferred by IN transactions on EP0. This is either 127 bytes or 3
135 * packets (which practically means 1 packet and 63 bytes of data) when the
136 * MPS is set to 64.
138 * This means if we are wanting to move >127 bytes of data, we need to
139 * split the transactions up, but just doing one packet at a time does
140 * not work (this may be an implicit DATA0 PID on first packet of the
141 * transaction) and doing 2 packets is outside the controller's limits.
143 * If we try to lower the MPS size for EP0, then no transfers work properly
144 * for EP0, and the system will fail basic enumeration. As no cause for this
145 * has currently been found, we cannot support any large IN transfers for
146 * EP0.
148 #define EP0_MPS_LIMIT 64
150 struct dwc2_hsotg;
151 struct dwc2_hsotg_req;
154 * struct dwc2_hsotg_ep - driver endpoint definition.
155 * @ep: The gadget layer representation of the endpoint.
156 * @name: The driver generated name for the endpoint.
157 * @queue: Queue of requests for this endpoint.
158 * @parent: Reference back to the parent device structure.
159 * @req: The current request that the endpoint is processing. This is
160 * used to indicate an request has been loaded onto the endpoint
161 * and has yet to be completed (maybe due to data move, or simply
162 * awaiting an ack from the core all the data has been completed).
163 * @debugfs: File entry for debugfs file for this endpoint.
164 * @lock: State lock to protect contents of endpoint.
165 * @dir_in: Set to true if this endpoint is of the IN direction, which
166 * means that it is sending data to the Host.
167 * @index: The index for the endpoint registers.
168 * @mc: Multi Count - number of transactions per microframe
169 * @interval - Interval for periodic endpoints
170 * @name: The name array passed to the USB core.
171 * @halted: Set if the endpoint has been halted.
172 * @periodic: Set if this is a periodic ep, such as Interrupt
173 * @isochronous: Set if this is a isochronous ep
174 * @send_zlp: Set if we need to send a zero-length packet.
175 * @total_data: The total number of data bytes done.
176 * @fifo_size: The size of the FIFO (for periodic IN endpoints)
177 * @fifo_load: The amount of data loaded into the FIFO (periodic IN)
178 * @last_load: The offset of data for the last start of request.
179 * @size_loaded: The last loaded size for DxEPTSIZE for periodic IN
181 * This is the driver's state for each registered enpoint, allowing it
182 * to keep track of transactions that need doing. Each endpoint has a
183 * lock to protect the state, to try and avoid using an overall lock
184 * for the host controller as much as possible.
186 * For periodic IN endpoints, we have fifo_size and fifo_load to try
187 * and keep track of the amount of data in the periodic FIFO for each
188 * of these as we don't have a status register that tells us how much
189 * is in each of them. (note, this may actually be useless information
190 * as in shared-fifo mode periodic in acts like a single-frame packet
191 * buffer than a fifo)
193 struct dwc2_hsotg_ep {
194 struct usb_ep ep;
195 struct list_head queue;
196 struct dwc2_hsotg *parent;
197 struct dwc2_hsotg_req *req;
198 struct dentry *debugfs;
200 unsigned long total_data;
201 unsigned int size_loaded;
202 unsigned int last_load;
203 unsigned int fifo_load;
204 unsigned short fifo_size;
205 unsigned short fifo_index;
207 unsigned char dir_in;
208 unsigned char index;
209 unsigned char mc;
210 unsigned char interval;
212 unsigned int halted:1;
213 unsigned int periodic:1;
214 unsigned int isochronous:1;
215 unsigned int send_zlp:1;
216 unsigned int has_correct_parity:1;
218 char name[10];
222 * struct dwc2_hsotg_req - data transfer request
223 * @req: The USB gadget request
224 * @queue: The list of requests for the endpoint this is queued for.
225 * @saved_req_buf: variable to save req.buf when bounce buffers are used.
227 struct dwc2_hsotg_req {
228 struct usb_request req;
229 struct list_head queue;
230 void *saved_req_buf;
233 #if IS_ENABLED(CONFIG_USB_DWC2_PERIPHERAL) || IS_ENABLED(CONFIG_USB_DWC2_DUAL_ROLE)
234 #define call_gadget(_hs, _entry) \
235 do { \
236 if ((_hs)->gadget.speed != USB_SPEED_UNKNOWN && \
237 (_hs)->driver && (_hs)->driver->_entry) { \
238 spin_unlock(&_hs->lock); \
239 (_hs)->driver->_entry(&(_hs)->gadget); \
240 spin_lock(&_hs->lock); \
242 } while (0)
243 #else
244 #define call_gadget(_hs, _entry) do {} while (0)
245 #endif
247 struct dwc2_hsotg;
248 struct dwc2_host_chan;
250 /* Device States */
251 enum dwc2_lx_state {
252 DWC2_L0, /* On state */
253 DWC2_L1, /* LPM sleep state */
254 DWC2_L2, /* USB suspend state */
255 DWC2_L3, /* Off state */
259 * Gadget periodic tx fifo sizes as used by legacy driver
260 * EP0 is not included
262 #define DWC2_G_P_LEGACY_TX_FIFO_SIZE {256, 256, 256, 256, 768, 768, 768, \
263 768, 0, 0, 0, 0, 0, 0, 0}
265 /* Gadget ep0 states */
266 enum dwc2_ep0_state {
267 DWC2_EP0_SETUP,
268 DWC2_EP0_DATA_IN,
269 DWC2_EP0_DATA_OUT,
270 DWC2_EP0_STATUS_IN,
271 DWC2_EP0_STATUS_OUT,
275 * struct dwc2_core_params - Parameters for configuring the core
277 * @otg_cap: Specifies the OTG capabilities.
278 * 0 - HNP and SRP capable
279 * 1 - SRP Only capable
280 * 2 - No HNP/SRP capable (always available)
281 * Defaults to best available option (0, 1, then 2)
282 * @otg_ver: OTG version supported
283 * 0 - 1.3 (default)
284 * 1 - 2.0
285 * @dma_enable: Specifies whether to use slave or DMA mode for accessing
286 * the data FIFOs. The driver will automatically detect the
287 * value for this parameter if none is specified.
288 * 0 - Slave (always available)
289 * 1 - DMA (default, if available)
290 * @dma_desc_enable: When DMA mode is enabled, specifies whether to use
291 * address DMA mode or descriptor DMA mode for accessing
292 * the data FIFOs. The driver will automatically detect the
293 * value for this if none is specified.
294 * 0 - Address DMA
295 * 1 - Descriptor DMA (default, if available)
296 * @dma_desc_fs_enable: When DMA mode is enabled, specifies whether to use
297 * address DMA mode or descriptor DMA mode for accessing
298 * the data FIFOs in Full Speed mode only. The driver
299 * will automatically detect the value for this if none is
300 * specified.
301 * 0 - Address DMA
302 * 1 - Descriptor DMA in FS (default, if available)
303 * @speed: Specifies the maximum speed of operation in host and
304 * device mode. The actual speed depends on the speed of
305 * the attached device and the value of phy_type.
306 * 0 - High Speed
307 * (default when phy_type is UTMI+ or ULPI)
308 * 1 - Full Speed
309 * (default when phy_type is Full Speed)
310 * @enable_dynamic_fifo: 0 - Use coreConsultant-specified FIFO size parameters
311 * 1 - Allow dynamic FIFO sizing (default, if available)
312 * @en_multiple_tx_fifo: Specifies whether dedicated per-endpoint transmit FIFOs
313 * are enabled
314 * @host_rx_fifo_size: Number of 4-byte words in the Rx FIFO in host mode when
315 * dynamic FIFO sizing is enabled
316 * 16 to 32768
317 * Actual maximum value is autodetected and also
318 * the default.
319 * @host_nperio_tx_fifo_size: Number of 4-byte words in the non-periodic Tx FIFO
320 * in host mode when dynamic FIFO sizing is enabled
321 * 16 to 32768
322 * Actual maximum value is autodetected and also
323 * the default.
324 * @host_perio_tx_fifo_size: Number of 4-byte words in the periodic Tx FIFO in
325 * host mode when dynamic FIFO sizing is enabled
326 * 16 to 32768
327 * Actual maximum value is autodetected and also
328 * the default.
329 * @max_transfer_size: The maximum transfer size supported, in bytes
330 * 2047 to 65,535
331 * Actual maximum value is autodetected and also
332 * the default.
333 * @max_packet_count: The maximum number of packets in a transfer
334 * 15 to 511
335 * Actual maximum value is autodetected and also
336 * the default.
337 * @host_channels: The number of host channel registers to use
338 * 1 to 16
339 * Actual maximum value is autodetected and also
340 * the default.
341 * @phy_type: Specifies the type of PHY interface to use. By default,
342 * the driver will automatically detect the phy_type.
343 * 0 - Full Speed Phy
344 * 1 - UTMI+ Phy
345 * 2 - ULPI Phy
346 * Defaults to best available option (2, 1, then 0)
347 * @phy_utmi_width: Specifies the UTMI+ Data Width (in bits). This parameter
348 * is applicable for a phy_type of UTMI+ or ULPI. (For a
349 * ULPI phy_type, this parameter indicates the data width
350 * between the MAC and the ULPI Wrapper.) Also, this
351 * parameter is applicable only if the OTG_HSPHY_WIDTH cC
352 * parameter was set to "8 and 16 bits", meaning that the
353 * core has been configured to work at either data path
354 * width.
355 * 8 or 16 (default 16 if available)
356 * @phy_ulpi_ddr: Specifies whether the ULPI operates at double or single
357 * data rate. This parameter is only applicable if phy_type
358 * is ULPI.
359 * 0 - single data rate ULPI interface with 8 bit wide
360 * data bus (default)
361 * 1 - double data rate ULPI interface with 4 bit wide
362 * data bus
363 * @phy_ulpi_ext_vbus: For a ULPI phy, specifies whether to use the internal or
364 * external supply to drive the VBus
365 * 0 - Internal supply (default)
366 * 1 - External supply
367 * @i2c_enable: Specifies whether to use the I2Cinterface for a full
368 * speed PHY. This parameter is only applicable if phy_type
369 * is FS.
370 * 0 - No (default)
371 * 1 - Yes
372 * @ulpi_fs_ls: Make ULPI phy operate in FS/LS mode only
373 * 0 - No (default)
374 * 1 - Yes
375 * @host_support_fs_ls_low_power: Specifies whether low power mode is supported
376 * when attached to a Full Speed or Low Speed device in
377 * host mode.
378 * 0 - Don't support low power mode (default)
379 * 1 - Support low power mode
380 * @host_ls_low_power_phy_clk: Specifies the PHY clock rate in low power mode
381 * when connected to a Low Speed device in host
382 * mode. This parameter is applicable only if
383 * host_support_fs_ls_low_power is enabled.
384 * 0 - 48 MHz
385 * (default when phy_type is UTMI+ or ULPI)
386 * 1 - 6 MHz
387 * (default when phy_type is Full Speed)
388 * @ts_dline: Enable Term Select Dline pulsing
389 * 0 - No (default)
390 * 1 - Yes
391 * @reload_ctl: Allow dynamic reloading of HFIR register during runtime
392 * 0 - No (default for core < 2.92a)
393 * 1 - Yes (default for core >= 2.92a)
394 * @ahbcfg: This field allows the default value of the GAHBCFG
395 * register to be overridden
396 * -1 - GAHBCFG value will be set to 0x06
397 * (INCR4, default)
398 * all others - GAHBCFG value will be overridden with
399 * this value
400 * Not all bits can be controlled like this, the
401 * bits defined by GAHBCFG_CTRL_MASK are controlled
402 * by the driver and are ignored in this
403 * configuration value.
404 * @uframe_sched: True to enable the microframe scheduler
405 * @external_id_pin_ctl: Specifies whether ID pin is handled externally.
406 * Disable CONIDSTSCHNG controller interrupt in such
407 * case.
408 * 0 - No (default)
409 * 1 - Yes
410 * @hibernation: Specifies whether the controller support hibernation.
411 * If hibernation is enabled, the controller will enter
412 * hibernation in both peripheral and host mode when
413 * needed.
414 * 0 - No (default)
415 * 1 - Yes
417 * The following parameters may be specified when starting the module. These
418 * parameters define how the DWC_otg controller should be configured. A
419 * value of -1 (or any other out of range value) for any parameter means
420 * to read the value from hardware (if possible) or use the builtin
421 * default described above.
423 struct dwc2_core_params {
425 * Don't add any non-int members here, this will break
426 * dwc2_set_all_params!
428 int otg_cap;
429 int otg_ver;
430 int dma_enable;
431 int dma_desc_enable;
432 int dma_desc_fs_enable;
433 int speed;
434 int enable_dynamic_fifo;
435 int en_multiple_tx_fifo;
436 int host_rx_fifo_size;
437 int host_nperio_tx_fifo_size;
438 int host_perio_tx_fifo_size;
439 int max_transfer_size;
440 int max_packet_count;
441 int host_channels;
442 int phy_type;
443 int phy_utmi_width;
444 int phy_ulpi_ddr;
445 int phy_ulpi_ext_vbus;
446 int i2c_enable;
447 int ulpi_fs_ls;
448 int host_support_fs_ls_low_power;
449 int host_ls_low_power_phy_clk;
450 int ts_dline;
451 int reload_ctl;
452 int ahbcfg;
453 int uframe_sched;
454 int external_id_pin_ctl;
455 int hibernation;
459 * struct dwc2_hw_params - Autodetected parameters.
461 * These parameters are the various parameters read from hardware
462 * registers during initialization. They typically contain the best
463 * supported or maximum value that can be configured in the
464 * corresponding dwc2_core_params value.
466 * The values that are not in dwc2_core_params are documented below.
468 * @op_mode Mode of Operation
469 * 0 - HNP- and SRP-Capable OTG (Host & Device)
470 * 1 - SRP-Capable OTG (Host & Device)
471 * 2 - Non-HNP and Non-SRP Capable OTG (Host & Device)
472 * 3 - SRP-Capable Device
473 * 4 - Non-OTG Device
474 * 5 - SRP-Capable Host
475 * 6 - Non-OTG Host
476 * @arch Architecture
477 * 0 - Slave only
478 * 1 - External DMA
479 * 2 - Internal DMA
480 * @power_optimized Are power optimizations enabled?
481 * @num_dev_ep Number of device endpoints available
482 * @num_dev_perio_in_ep Number of device periodic IN endpoints
483 * available
484 * @dev_token_q_depth Device Mode IN Token Sequence Learning Queue
485 * Depth
486 * 0 to 30
487 * @host_perio_tx_q_depth
488 * Host Mode Periodic Request Queue Depth
489 * 2, 4 or 8
490 * @nperio_tx_q_depth
491 * Non-Periodic Request Queue Depth
492 * 2, 4 or 8
493 * @hs_phy_type High-speed PHY interface type
494 * 0 - High-speed interface not supported
495 * 1 - UTMI+
496 * 2 - ULPI
497 * 3 - UTMI+ and ULPI
498 * @fs_phy_type Full-speed PHY interface type
499 * 0 - Full speed interface not supported
500 * 1 - Dedicated full speed interface
501 * 2 - FS pins shared with UTMI+ pins
502 * 3 - FS pins shared with ULPI pins
503 * @total_fifo_size: Total internal RAM for FIFOs (bytes)
504 * @utmi_phy_data_width UTMI+ PHY data width
505 * 0 - 8 bits
506 * 1 - 16 bits
507 * 2 - 8 or 16 bits
508 * @snpsid: Value from SNPSID register
509 * @dev_ep_dirs: Direction of device endpoints (GHWCFG1)
511 struct dwc2_hw_params {
512 unsigned op_mode:3;
513 unsigned arch:2;
514 unsigned dma_desc_enable:1;
515 unsigned dma_desc_fs_enable:1;
516 unsigned enable_dynamic_fifo:1;
517 unsigned en_multiple_tx_fifo:1;
518 unsigned host_rx_fifo_size:16;
519 unsigned host_nperio_tx_fifo_size:16;
520 unsigned dev_nperio_tx_fifo_size:16;
521 unsigned host_perio_tx_fifo_size:16;
522 unsigned nperio_tx_q_depth:3;
523 unsigned host_perio_tx_q_depth:3;
524 unsigned dev_token_q_depth:5;
525 unsigned max_transfer_size:26;
526 unsigned max_packet_count:11;
527 unsigned host_channels:5;
528 unsigned hs_phy_type:2;
529 unsigned fs_phy_type:2;
530 unsigned i2c_enable:1;
531 unsigned num_dev_ep:4;
532 unsigned num_dev_perio_in_ep:4;
533 unsigned total_fifo_size:16;
534 unsigned power_optimized:1;
535 unsigned utmi_phy_data_width:2;
536 u32 snpsid;
537 u32 dev_ep_dirs;
540 /* Size of control and EP0 buffers */
541 #define DWC2_CTRL_BUFF_SIZE 8
544 * struct dwc2_gregs_backup - Holds global registers state before entering partial
545 * power down
546 * @gotgctl: Backup of GOTGCTL register
547 * @gintmsk: Backup of GINTMSK register
548 * @gahbcfg: Backup of GAHBCFG register
549 * @gusbcfg: Backup of GUSBCFG register
550 * @grxfsiz: Backup of GRXFSIZ register
551 * @gnptxfsiz: Backup of GNPTXFSIZ register
552 * @gi2cctl: Backup of GI2CCTL register
553 * @hptxfsiz: Backup of HPTXFSIZ register
554 * @gdfifocfg: Backup of GDFIFOCFG register
555 * @dtxfsiz: Backup of DTXFSIZ registers for each endpoint
556 * @gpwrdn: Backup of GPWRDN register
558 struct dwc2_gregs_backup {
559 u32 gotgctl;
560 u32 gintmsk;
561 u32 gahbcfg;
562 u32 gusbcfg;
563 u32 grxfsiz;
564 u32 gnptxfsiz;
565 u32 gi2cctl;
566 u32 hptxfsiz;
567 u32 pcgcctl;
568 u32 gdfifocfg;
569 u32 dtxfsiz[MAX_EPS_CHANNELS];
570 u32 gpwrdn;
571 bool valid;
575 * struct dwc2_dregs_backup - Holds device registers state before entering partial
576 * power down
577 * @dcfg: Backup of DCFG register
578 * @dctl: Backup of DCTL register
579 * @daintmsk: Backup of DAINTMSK register
580 * @diepmsk: Backup of DIEPMSK register
581 * @doepmsk: Backup of DOEPMSK register
582 * @diepctl: Backup of DIEPCTL register
583 * @dieptsiz: Backup of DIEPTSIZ register
584 * @diepdma: Backup of DIEPDMA register
585 * @doepctl: Backup of DOEPCTL register
586 * @doeptsiz: Backup of DOEPTSIZ register
587 * @doepdma: Backup of DOEPDMA register
589 struct dwc2_dregs_backup {
590 u32 dcfg;
591 u32 dctl;
592 u32 daintmsk;
593 u32 diepmsk;
594 u32 doepmsk;
595 u32 diepctl[MAX_EPS_CHANNELS];
596 u32 dieptsiz[MAX_EPS_CHANNELS];
597 u32 diepdma[MAX_EPS_CHANNELS];
598 u32 doepctl[MAX_EPS_CHANNELS];
599 u32 doeptsiz[MAX_EPS_CHANNELS];
600 u32 doepdma[MAX_EPS_CHANNELS];
601 bool valid;
605 * struct dwc2_hregs_backup - Holds host registers state before entering partial
606 * power down
607 * @hcfg: Backup of HCFG register
608 * @haintmsk: Backup of HAINTMSK register
609 * @hcintmsk: Backup of HCINTMSK register
610 * @hptr0: Backup of HPTR0 register
611 * @hfir: Backup of HFIR register
613 struct dwc2_hregs_backup {
614 u32 hcfg;
615 u32 haintmsk;
616 u32 hcintmsk[MAX_EPS_CHANNELS];
617 u32 hprt0;
618 u32 hfir;
619 bool valid;
623 * Constants related to high speed periodic scheduling
625 * We have a periodic schedule that is DWC2_HS_SCHEDULE_UFRAMES long. From a
626 * reservation point of view it's assumed that the schedule goes right back to
627 * the beginning after the end of the schedule.
629 * What does that mean for scheduling things with a long interval? It means
630 * we'll reserve time for them in every possible microframe that they could
631 * ever be scheduled in. ...but we'll still only actually schedule them as
632 * often as they were requested.
634 * We keep our schedule in a "bitmap" structure. This simplifies having
635 * to keep track of and merge intervals: we just let the bitmap code do most
636 * of the heavy lifting. In a way scheduling is much like memory allocation.
638 * We schedule 100us per uframe or 80% of 125us (the maximum amount you're
639 * supposed to schedule for periodic transfers). That's according to spec.
641 * Note that though we only schedule 80% of each microframe, the bitmap that we
642 * keep the schedule in is tightly packed (AKA it doesn't have 100us worth of
643 * space for each uFrame).
645 * Requirements:
646 * - DWC2_HS_SCHEDULE_UFRAMES must even divide 0x4000 (HFNUM_MAX_FRNUM + 1)
647 * - DWC2_HS_SCHEDULE_UFRAMES must be 8 times DWC2_LS_SCHEDULE_FRAMES (probably
648 * could be any multiple of 8 times DWC2_LS_SCHEDULE_FRAMES, but there might
649 * be bugs). The 8 comes from the USB spec: number of microframes per frame.
651 #define DWC2_US_PER_UFRAME 125
652 #define DWC2_HS_PERIODIC_US_PER_UFRAME 100
654 #define DWC2_HS_SCHEDULE_UFRAMES 8
655 #define DWC2_HS_SCHEDULE_US (DWC2_HS_SCHEDULE_UFRAMES * \
656 DWC2_HS_PERIODIC_US_PER_UFRAME)
659 * Constants related to low speed scheduling
661 * For high speed we schedule every 1us. For low speed that's a bit overkill,
662 * so we make up a unit called a "slice" that's worth 25us. There are 40
663 * slices in a full frame and we can schedule 36 of those (90%) for periodic
664 * transfers.
666 * Our low speed schedule can be as short as 1 frame or could be longer. When
667 * we only schedule 1 frame it means that we'll need to reserve a time every
668 * frame even for things that only transfer very rarely, so something that runs
669 * every 2048 frames will get time reserved in every frame. Our low speed
670 * schedule can be longer and we'll be able to handle more overlap, but that
671 * will come at increased memory cost and increased time to schedule.
673 * Note: one other advantage of a short low speed schedule is that if we mess
674 * up and miss scheduling we can jump in and use any of the slots that we
675 * happened to reserve.
677 * With 25 us per slice and 1 frame in the schedule, we only need 4 bytes for
678 * the schedule. There will be one schedule per TT.
680 * Requirements:
681 * - DWC2_US_PER_SLICE must evenly divide DWC2_LS_PERIODIC_US_PER_FRAME.
683 #define DWC2_US_PER_SLICE 25
684 #define DWC2_SLICES_PER_UFRAME (DWC2_US_PER_UFRAME / DWC2_US_PER_SLICE)
686 #define DWC2_ROUND_US_TO_SLICE(us) \
687 (DIV_ROUND_UP((us), DWC2_US_PER_SLICE) * \
688 DWC2_US_PER_SLICE)
690 #define DWC2_LS_PERIODIC_US_PER_FRAME \
692 #define DWC2_LS_PERIODIC_SLICES_PER_FRAME \
693 (DWC2_LS_PERIODIC_US_PER_FRAME / \
694 DWC2_US_PER_SLICE)
696 #define DWC2_LS_SCHEDULE_FRAMES 1
697 #define DWC2_LS_SCHEDULE_SLICES (DWC2_LS_SCHEDULE_FRAMES * \
698 DWC2_LS_PERIODIC_SLICES_PER_FRAME)
701 * struct dwc2_hsotg - Holds the state of the driver, including the non-periodic
702 * and periodic schedules
704 * These are common for both host and peripheral modes:
706 * @dev: The struct device pointer
707 * @regs: Pointer to controller regs
708 * @hw_params: Parameters that were autodetected from the
709 * hardware registers
710 * @core_params: Parameters that define how the core should be configured
711 * @op_state: The operational State, during transitions (a_host=>
712 * a_peripheral and b_device=>b_host) this may not match
713 * the core, but allows the software to determine
714 * transitions
715 * @dr_mode: Requested mode of operation, one of following:
716 * - USB_DR_MODE_PERIPHERAL
717 * - USB_DR_MODE_HOST
718 * - USB_DR_MODE_OTG
719 * @hcd_enabled Host mode sub-driver initialization indicator.
720 * @gadget_enabled Peripheral mode sub-driver initialization indicator.
721 * @ll_hw_enabled Status of low-level hardware resources.
722 * @phy: The otg phy transceiver structure for phy control.
723 * @uphy: The otg phy transceiver structure for old USB phy control.
724 * @plat: The platform specific configuration data. This can be removed once
725 * all SoCs support usb transceiver.
726 * @supplies: Definition of USB power supplies
727 * @phyif: PHY interface width
728 * @lock: Spinlock that protects all the driver data structures
729 * @priv: Stores a pointer to the struct usb_hcd
730 * @queuing_high_bandwidth: True if multiple packets of a high-bandwidth
731 * transfer are in process of being queued
732 * @srp_success: Stores status of SRP request in the case of a FS PHY
733 * with an I2C interface
734 * @wq_otg: Workqueue object used for handling of some interrupts
735 * @wf_otg: Work object for handling Connector ID Status Change
736 * interrupt
737 * @wkp_timer: Timer object for handling Wakeup Detected interrupt
738 * @lx_state: Lx state of connected device
739 * @gregs_backup: Backup of global registers during suspend
740 * @dregs_backup: Backup of device registers during suspend
741 * @hregs_backup: Backup of host registers during suspend
743 * These are for host mode:
745 * @flags: Flags for handling root port state changes
746 * @non_periodic_sched_inactive: Inactive QHs in the non-periodic schedule.
747 * Transfers associated with these QHs are not currently
748 * assigned to a host channel.
749 * @non_periodic_sched_active: Active QHs in the non-periodic schedule.
750 * Transfers associated with these QHs are currently
751 * assigned to a host channel.
752 * @non_periodic_qh_ptr: Pointer to next QH to process in the active
753 * non-periodic schedule
754 * @periodic_sched_inactive: Inactive QHs in the periodic schedule. This is a
755 * list of QHs for periodic transfers that are _not_
756 * scheduled for the next frame. Each QH in the list has an
757 * interval counter that determines when it needs to be
758 * scheduled for execution. This scheduling mechanism
759 * allows only a simple calculation for periodic bandwidth
760 * used (i.e. must assume that all periodic transfers may
761 * need to execute in the same frame). However, it greatly
762 * simplifies scheduling and should be sufficient for the
763 * vast majority of OTG hosts, which need to connect to a
764 * small number of peripherals at one time. Items move from
765 * this list to periodic_sched_ready when the QH interval
766 * counter is 0 at SOF.
767 * @periodic_sched_ready: List of periodic QHs that are ready for execution in
768 * the next frame, but have not yet been assigned to host
769 * channels. Items move from this list to
770 * periodic_sched_assigned as host channels become
771 * available during the current frame.
772 * @periodic_sched_assigned: List of periodic QHs to be executed in the next
773 * frame that are assigned to host channels. Items move
774 * from this list to periodic_sched_queued as the
775 * transactions for the QH are queued to the DWC_otg
776 * controller.
777 * @periodic_sched_queued: List of periodic QHs that have been queued for
778 * execution. Items move from this list to either
779 * periodic_sched_inactive or periodic_sched_ready when the
780 * channel associated with the transfer is released. If the
781 * interval for the QH is 1, the item moves to
782 * periodic_sched_ready because it must be rescheduled for
783 * the next frame. Otherwise, the item moves to
784 * periodic_sched_inactive.
785 * @split_order: List keeping track of channels doing splits, in order.
786 * @periodic_usecs: Total bandwidth claimed so far for periodic transfers.
787 * This value is in microseconds per (micro)frame. The
788 * assumption is that all periodic transfers may occur in
789 * the same (micro)frame.
790 * @hs_periodic_bitmap: Bitmap used by the microframe scheduler any time the
791 * host is in high speed mode; low speed schedules are
792 * stored elsewhere since we need one per TT.
793 * @frame_number: Frame number read from the core at SOF. The value ranges
794 * from 0 to HFNUM_MAX_FRNUM.
795 * @periodic_qh_count: Count of periodic QHs, if using several eps. Used for
796 * SOF enable/disable.
797 * @free_hc_list: Free host channels in the controller. This is a list of
798 * struct dwc2_host_chan items.
799 * @periodic_channels: Number of host channels assigned to periodic transfers.
800 * Currently assuming that there is a dedicated host
801 * channel for each periodic transaction and at least one
802 * host channel is available for non-periodic transactions.
803 * @non_periodic_channels: Number of host channels assigned to non-periodic
804 * transfers
805 * @available_host_channels Number of host channels available for the microframe
806 * scheduler to use
807 * @hc_ptr_array: Array of pointers to the host channel descriptors.
808 * Allows accessing a host channel descriptor given the
809 * host channel number. This is useful in interrupt
810 * handlers.
811 * @status_buf: Buffer used for data received during the status phase of
812 * a control transfer.
813 * @status_buf_dma: DMA address for status_buf
814 * @start_work: Delayed work for handling host A-cable connection
815 * @reset_work: Delayed work for handling a port reset
816 * @otg_port: OTG port number
817 * @frame_list: Frame list
818 * @frame_list_dma: Frame list DMA address
819 * @frame_list_sz: Frame list size
820 * @desc_gen_cache: Kmem cache for generic descriptors
821 * @desc_hsisoc_cache: Kmem cache for hs isochronous descriptors
823 * These are for peripheral mode:
825 * @driver: USB gadget driver
826 * @dedicated_fifos: Set if the hardware has dedicated IN-EP fifos.
827 * @num_of_eps: Number of available EPs (excluding EP0)
828 * @debug_root: Root directrory for debugfs.
829 * @debug_file: Main status file for debugfs.
830 * @debug_testmode: Testmode status file for debugfs.
831 * @debug_fifo: FIFO status file for debugfs.
832 * @ep0_reply: Request used for ep0 reply.
833 * @ep0_buff: Buffer for EP0 reply data, if needed.
834 * @ctrl_buff: Buffer for EP0 control requests.
835 * @ctrl_req: Request for EP0 control packets.
836 * @ep0_state: EP0 control transfers state
837 * @test_mode: USB test mode requested by the host
838 * @eps: The endpoints being supplied to the gadget framework
839 * @g_using_dma: Indicate if dma usage is enabled
840 * @g_rx_fifo_sz: Contains rx fifo size value
841 * @g_np_g_tx_fifo_sz: Contains Non-Periodic tx fifo size value
842 * @g_tx_fifo_sz: Contains tx fifo size value per endpoints
844 struct dwc2_hsotg {
845 struct device *dev;
846 void __iomem *regs;
847 /** Params detected from hardware */
848 struct dwc2_hw_params hw_params;
849 /** Params to actually use */
850 struct dwc2_core_params *core_params;
851 enum usb_otg_state op_state;
852 enum usb_dr_mode dr_mode;
853 unsigned int hcd_enabled:1;
854 unsigned int gadget_enabled:1;
855 unsigned int ll_hw_enabled:1;
857 struct phy *phy;
858 struct usb_phy *uphy;
859 struct dwc2_hsotg_plat *plat;
860 struct regulator_bulk_data supplies[ARRAY_SIZE(dwc2_hsotg_supply_names)];
861 u32 phyif;
863 spinlock_t lock;
864 void *priv;
865 int irq;
866 struct clk *clk;
868 unsigned int queuing_high_bandwidth:1;
869 unsigned int srp_success:1;
871 struct workqueue_struct *wq_otg;
872 struct work_struct wf_otg;
873 struct timer_list wkp_timer;
874 enum dwc2_lx_state lx_state;
875 struct dwc2_gregs_backup gr_backup;
876 struct dwc2_dregs_backup dr_backup;
877 struct dwc2_hregs_backup hr_backup;
879 struct dentry *debug_root;
880 struct debugfs_regset32 *regset;
882 /* DWC OTG HW Release versions */
883 #define DWC2_CORE_REV_2_71a 0x4f54271a
884 #define DWC2_CORE_REV_2_90a 0x4f54290a
885 #define DWC2_CORE_REV_2_92a 0x4f54292a
886 #define DWC2_CORE_REV_2_94a 0x4f54294a
887 #define DWC2_CORE_REV_3_00a 0x4f54300a
889 #if IS_ENABLED(CONFIG_USB_DWC2_HOST) || IS_ENABLED(CONFIG_USB_DWC2_DUAL_ROLE)
890 union dwc2_hcd_internal_flags {
891 u32 d32;
892 struct {
893 unsigned port_connect_status_change:1;
894 unsigned port_connect_status:1;
895 unsigned port_reset_change:1;
896 unsigned port_enable_change:1;
897 unsigned port_suspend_change:1;
898 unsigned port_over_current_change:1;
899 unsigned port_l1_change:1;
900 unsigned reserved:25;
901 } b;
902 } flags;
904 struct list_head non_periodic_sched_inactive;
905 struct list_head non_periodic_sched_active;
906 struct list_head *non_periodic_qh_ptr;
907 struct list_head periodic_sched_inactive;
908 struct list_head periodic_sched_ready;
909 struct list_head periodic_sched_assigned;
910 struct list_head periodic_sched_queued;
911 struct list_head split_order;
912 u16 periodic_usecs;
913 unsigned long hs_periodic_bitmap[
914 DIV_ROUND_UP(DWC2_HS_SCHEDULE_US, BITS_PER_LONG)];
915 u16 frame_number;
916 u16 periodic_qh_count;
917 bool bus_suspended;
918 bool new_connection;
920 u16 last_frame_num;
922 #ifdef CONFIG_USB_DWC2_TRACK_MISSED_SOFS
923 #define FRAME_NUM_ARRAY_SIZE 1000
924 u16 *frame_num_array;
925 u16 *last_frame_num_array;
926 int frame_num_idx;
927 int dumped_frame_num_array;
928 #endif
930 struct list_head free_hc_list;
931 int periodic_channels;
932 int non_periodic_channels;
933 int available_host_channels;
934 struct dwc2_host_chan *hc_ptr_array[MAX_EPS_CHANNELS];
935 u8 *status_buf;
936 dma_addr_t status_buf_dma;
937 #define DWC2_HCD_STATUS_BUF_SIZE 64
939 struct delayed_work start_work;
940 struct delayed_work reset_work;
941 u8 otg_port;
942 u32 *frame_list;
943 dma_addr_t frame_list_dma;
944 u32 frame_list_sz;
945 struct kmem_cache *desc_gen_cache;
946 struct kmem_cache *desc_hsisoc_cache;
948 #ifdef DEBUG
949 u32 frrem_samples;
950 u64 frrem_accum;
952 u32 hfnum_7_samples_a;
953 u64 hfnum_7_frrem_accum_a;
954 u32 hfnum_0_samples_a;
955 u64 hfnum_0_frrem_accum_a;
956 u32 hfnum_other_samples_a;
957 u64 hfnum_other_frrem_accum_a;
959 u32 hfnum_7_samples_b;
960 u64 hfnum_7_frrem_accum_b;
961 u32 hfnum_0_samples_b;
962 u64 hfnum_0_frrem_accum_b;
963 u32 hfnum_other_samples_b;
964 u64 hfnum_other_frrem_accum_b;
965 #endif
966 #endif /* CONFIG_USB_DWC2_HOST || CONFIG_USB_DWC2_DUAL_ROLE */
968 #if IS_ENABLED(CONFIG_USB_DWC2_PERIPHERAL) || IS_ENABLED(CONFIG_USB_DWC2_DUAL_ROLE)
969 /* Gadget structures */
970 struct usb_gadget_driver *driver;
971 int fifo_mem;
972 unsigned int dedicated_fifos:1;
973 unsigned char num_of_eps;
974 u32 fifo_map;
976 struct usb_request *ep0_reply;
977 struct usb_request *ctrl_req;
978 void *ep0_buff;
979 void *ctrl_buff;
980 enum dwc2_ep0_state ep0_state;
981 u8 test_mode;
983 struct usb_gadget gadget;
984 unsigned int enabled:1;
985 unsigned int connected:1;
986 struct dwc2_hsotg_ep *eps_in[MAX_EPS_CHANNELS];
987 struct dwc2_hsotg_ep *eps_out[MAX_EPS_CHANNELS];
988 u32 g_using_dma;
989 u32 g_rx_fifo_sz;
990 u32 g_np_g_tx_fifo_sz;
991 u32 g_tx_fifo_sz[MAX_EPS_CHANNELS];
992 #endif /* CONFIG_USB_DWC2_PERIPHERAL || CONFIG_USB_DWC2_DUAL_ROLE */
995 /* Reasons for halting a host channel */
996 enum dwc2_halt_status {
997 DWC2_HC_XFER_NO_HALT_STATUS,
998 DWC2_HC_XFER_COMPLETE,
999 DWC2_HC_XFER_URB_COMPLETE,
1000 DWC2_HC_XFER_ACK,
1001 DWC2_HC_XFER_NAK,
1002 DWC2_HC_XFER_NYET,
1003 DWC2_HC_XFER_STALL,
1004 DWC2_HC_XFER_XACT_ERR,
1005 DWC2_HC_XFER_FRAME_OVERRUN,
1006 DWC2_HC_XFER_BABBLE_ERR,
1007 DWC2_HC_XFER_DATA_TOGGLE_ERR,
1008 DWC2_HC_XFER_AHB_ERR,
1009 DWC2_HC_XFER_PERIODIC_INCOMPLETE,
1010 DWC2_HC_XFER_URB_DEQUEUE,
1014 * The following functions support initialization of the core driver component
1015 * and the DWC_otg controller
1017 extern int dwc2_core_reset(struct dwc2_hsotg *hsotg);
1018 extern int dwc2_core_reset_and_force_dr_mode(struct dwc2_hsotg *hsotg);
1019 extern int dwc2_enter_hibernation(struct dwc2_hsotg *hsotg);
1020 extern int dwc2_exit_hibernation(struct dwc2_hsotg *hsotg, bool restore);
1022 void dwc2_force_dr_mode(struct dwc2_hsotg *hsotg);
1024 extern bool dwc2_is_controller_alive(struct dwc2_hsotg *hsotg);
1027 * Common core Functions.
1028 * The following functions support managing the DWC_otg controller in either
1029 * device or host mode.
1031 extern void dwc2_read_packet(struct dwc2_hsotg *hsotg, u8 *dest, u16 bytes);
1032 extern void dwc2_flush_tx_fifo(struct dwc2_hsotg *hsotg, const int num);
1033 extern void dwc2_flush_rx_fifo(struct dwc2_hsotg *hsotg);
1035 extern void dwc2_enable_global_interrupts(struct dwc2_hsotg *hcd);
1036 extern void dwc2_disable_global_interrupts(struct dwc2_hsotg *hcd);
1038 /* This function should be called on every hardware interrupt. */
1039 extern irqreturn_t dwc2_handle_common_intr(int irq, void *dev);
1041 /* OTG Core Parameters */
1044 * Specifies the OTG capabilities. The driver will automatically
1045 * detect the value for this parameter if none is specified.
1046 * 0 - HNP and SRP capable (default)
1047 * 1 - SRP Only capable
1048 * 2 - No HNP/SRP capable
1050 extern void dwc2_set_param_otg_cap(struct dwc2_hsotg *hsotg, int val);
1051 #define DWC2_CAP_PARAM_HNP_SRP_CAPABLE 0
1052 #define DWC2_CAP_PARAM_SRP_ONLY_CAPABLE 1
1053 #define DWC2_CAP_PARAM_NO_HNP_SRP_CAPABLE 2
1056 * Specifies whether to use slave or DMA mode for accessing the data
1057 * FIFOs. The driver will automatically detect the value for this
1058 * parameter if none is specified.
1059 * 0 - Slave
1060 * 1 - DMA (default, if available)
1062 extern void dwc2_set_param_dma_enable(struct dwc2_hsotg *hsotg, int val);
1065 * When DMA mode is enabled specifies whether to use
1066 * address DMA or DMA Descritor mode for accessing the data
1067 * FIFOs in device mode. The driver will automatically detect
1068 * the value for this parameter if none is specified.
1069 * 0 - address DMA
1070 * 1 - DMA Descriptor(default, if available)
1072 extern void dwc2_set_param_dma_desc_enable(struct dwc2_hsotg *hsotg, int val);
1075 * When DMA mode is enabled specifies whether to use
1076 * address DMA or DMA Descritor mode with full speed devices
1077 * for accessing the data FIFOs in host mode.
1078 * 0 - address DMA
1079 * 1 - FS DMA Descriptor(default, if available)
1081 extern void dwc2_set_param_dma_desc_fs_enable(struct dwc2_hsotg *hsotg,
1082 int val);
1085 * Specifies the maximum speed of operation in host and device mode.
1086 * The actual speed depends on the speed of the attached device and
1087 * the value of phy_type. The actual speed depends on the speed of the
1088 * attached device.
1089 * 0 - High Speed (default)
1090 * 1 - Full Speed
1092 extern void dwc2_set_param_speed(struct dwc2_hsotg *hsotg, int val);
1093 #define DWC2_SPEED_PARAM_HIGH 0
1094 #define DWC2_SPEED_PARAM_FULL 1
1097 * Specifies whether low power mode is supported when attached
1098 * to a Full Speed or Low Speed device in host mode.
1100 * 0 - Don't support low power mode (default)
1101 * 1 - Support low power mode
1103 extern void dwc2_set_param_host_support_fs_ls_low_power(
1104 struct dwc2_hsotg *hsotg, int val);
1107 * Specifies the PHY clock rate in low power mode when connected to a
1108 * Low Speed device in host mode. This parameter is applicable only if
1109 * HOST_SUPPORT_FS_LS_LOW_POWER is enabled. If PHY_TYPE is set to FS
1110 * then defaults to 6 MHZ otherwise 48 MHZ.
1112 * 0 - 48 MHz
1113 * 1 - 6 MHz
1115 extern void dwc2_set_param_host_ls_low_power_phy_clk(struct dwc2_hsotg *hsotg,
1116 int val);
1117 #define DWC2_HOST_LS_LOW_POWER_PHY_CLK_PARAM_48MHZ 0
1118 #define DWC2_HOST_LS_LOW_POWER_PHY_CLK_PARAM_6MHZ 1
1121 * 0 - Use cC FIFO size parameters
1122 * 1 - Allow dynamic FIFO sizing (default)
1124 extern void dwc2_set_param_enable_dynamic_fifo(struct dwc2_hsotg *hsotg,
1125 int val);
1128 * Number of 4-byte words in the Rx FIFO in host mode when dynamic
1129 * FIFO sizing is enabled.
1130 * 16 to 32768 (default 1024)
1132 extern void dwc2_set_param_host_rx_fifo_size(struct dwc2_hsotg *hsotg, int val);
1135 * Number of 4-byte words in the non-periodic Tx FIFO in host mode
1136 * when Dynamic FIFO sizing is enabled in the core.
1137 * 16 to 32768 (default 256)
1139 extern void dwc2_set_param_host_nperio_tx_fifo_size(struct dwc2_hsotg *hsotg,
1140 int val);
1143 * Number of 4-byte words in the host periodic Tx FIFO when dynamic
1144 * FIFO sizing is enabled.
1145 * 16 to 32768 (default 256)
1147 extern void dwc2_set_param_host_perio_tx_fifo_size(struct dwc2_hsotg *hsotg,
1148 int val);
1151 * The maximum transfer size supported in bytes.
1152 * 2047 to 65,535 (default 65,535)
1154 extern void dwc2_set_param_max_transfer_size(struct dwc2_hsotg *hsotg, int val);
1157 * The maximum number of packets in a transfer.
1158 * 15 to 511 (default 511)
1160 extern void dwc2_set_param_max_packet_count(struct dwc2_hsotg *hsotg, int val);
1163 * The number of host channel registers to use.
1164 * 1 to 16 (default 11)
1165 * Note: The FPGA configuration supports a maximum of 11 host channels.
1167 extern void dwc2_set_param_host_channels(struct dwc2_hsotg *hsotg, int val);
1170 * Specifies the type of PHY interface to use. By default, the driver
1171 * will automatically detect the phy_type.
1173 * 0 - Full Speed PHY
1174 * 1 - UTMI+ (default)
1175 * 2 - ULPI
1177 extern void dwc2_set_param_phy_type(struct dwc2_hsotg *hsotg, int val);
1178 #define DWC2_PHY_TYPE_PARAM_FS 0
1179 #define DWC2_PHY_TYPE_PARAM_UTMI 1
1180 #define DWC2_PHY_TYPE_PARAM_ULPI 2
1183 * Specifies the UTMI+ Data Width. This parameter is
1184 * applicable for a PHY_TYPE of UTMI+ or ULPI. (For a ULPI
1185 * PHY_TYPE, this parameter indicates the data width between
1186 * the MAC and the ULPI Wrapper.) Also, this parameter is
1187 * applicable only if the OTG_HSPHY_WIDTH cC parameter was set
1188 * to "8 and 16 bits", meaning that the core has been
1189 * configured to work at either data path width.
1191 * 8 or 16 bits (default 16)
1193 extern void dwc2_set_param_phy_utmi_width(struct dwc2_hsotg *hsotg, int val);
1196 * Specifies whether the ULPI operates at double or single
1197 * data rate. This parameter is only applicable if PHY_TYPE is
1198 * ULPI.
1200 * 0 - single data rate ULPI interface with 8 bit wide data
1201 * bus (default)
1202 * 1 - double data rate ULPI interface with 4 bit wide data
1203 * bus
1205 extern void dwc2_set_param_phy_ulpi_ddr(struct dwc2_hsotg *hsotg, int val);
1208 * Specifies whether to use the internal or external supply to
1209 * drive the vbus with a ULPI phy.
1211 extern void dwc2_set_param_phy_ulpi_ext_vbus(struct dwc2_hsotg *hsotg, int val);
1212 #define DWC2_PHY_ULPI_INTERNAL_VBUS 0
1213 #define DWC2_PHY_ULPI_EXTERNAL_VBUS 1
1216 * Specifies whether to use the I2Cinterface for full speed PHY. This
1217 * parameter is only applicable if PHY_TYPE is FS.
1218 * 0 - No (default)
1219 * 1 - Yes
1221 extern void dwc2_set_param_i2c_enable(struct dwc2_hsotg *hsotg, int val);
1223 extern void dwc2_set_param_ulpi_fs_ls(struct dwc2_hsotg *hsotg, int val);
1225 extern void dwc2_set_param_ts_dline(struct dwc2_hsotg *hsotg, int val);
1228 * Specifies whether dedicated transmit FIFOs are
1229 * enabled for non periodic IN endpoints in device mode
1230 * 0 - No
1231 * 1 - Yes
1233 extern void dwc2_set_param_en_multiple_tx_fifo(struct dwc2_hsotg *hsotg,
1234 int val);
1236 extern void dwc2_set_param_reload_ctl(struct dwc2_hsotg *hsotg, int val);
1238 extern void dwc2_set_param_ahbcfg(struct dwc2_hsotg *hsotg, int val);
1240 extern void dwc2_set_param_otg_ver(struct dwc2_hsotg *hsotg, int val);
1242 extern void dwc2_set_parameters(struct dwc2_hsotg *hsotg,
1243 const struct dwc2_core_params *params);
1245 extern void dwc2_set_all_params(struct dwc2_core_params *params, int value);
1247 extern int dwc2_get_hwparams(struct dwc2_hsotg *hsotg);
1249 extern int dwc2_lowlevel_hw_enable(struct dwc2_hsotg *hsotg);
1250 extern int dwc2_lowlevel_hw_disable(struct dwc2_hsotg *hsotg);
1253 * The following functions check the controller's OTG operation mode
1254 * capability (GHWCFG2.OTG_MODE).
1256 * These functions can be used before the internal hsotg->hw_params
1257 * are read in and cached so they always read directly from the
1258 * GHWCFG2 register.
1260 unsigned dwc2_op_mode(struct dwc2_hsotg *hsotg);
1261 bool dwc2_hw_is_otg(struct dwc2_hsotg *hsotg);
1262 bool dwc2_hw_is_host(struct dwc2_hsotg *hsotg);
1263 bool dwc2_hw_is_device(struct dwc2_hsotg *hsotg);
1266 * Returns the mode of operation, host or device
1268 static inline int dwc2_is_host_mode(struct dwc2_hsotg *hsotg)
1270 return (dwc2_readl(hsotg->regs + GINTSTS) & GINTSTS_CURMODE_HOST) != 0;
1272 static inline int dwc2_is_device_mode(struct dwc2_hsotg *hsotg)
1274 return (dwc2_readl(hsotg->regs + GINTSTS) & GINTSTS_CURMODE_HOST) == 0;
1278 * Dump core registers and SPRAM
1280 extern void dwc2_dump_dev_registers(struct dwc2_hsotg *hsotg);
1281 extern void dwc2_dump_host_registers(struct dwc2_hsotg *hsotg);
1282 extern void dwc2_dump_global_registers(struct dwc2_hsotg *hsotg);
1285 * Return OTG version - either 1.3 or 2.0
1287 extern u16 dwc2_get_otg_version(struct dwc2_hsotg *hsotg);
1289 /* Gadget defines */
1290 #if IS_ENABLED(CONFIG_USB_DWC2_PERIPHERAL) || IS_ENABLED(CONFIG_USB_DWC2_DUAL_ROLE)
1291 extern int dwc2_hsotg_remove(struct dwc2_hsotg *hsotg);
1292 extern int dwc2_hsotg_suspend(struct dwc2_hsotg *dwc2);
1293 extern int dwc2_hsotg_resume(struct dwc2_hsotg *dwc2);
1294 extern int dwc2_gadget_init(struct dwc2_hsotg *hsotg, int irq);
1295 extern void dwc2_hsotg_core_init_disconnected(struct dwc2_hsotg *dwc2,
1296 bool reset);
1297 extern void dwc2_hsotg_core_connect(struct dwc2_hsotg *hsotg);
1298 extern void dwc2_hsotg_disconnect(struct dwc2_hsotg *dwc2);
1299 extern int dwc2_hsotg_set_test_mode(struct dwc2_hsotg *hsotg, int testmode);
1300 #define dwc2_is_device_connected(hsotg) (hsotg->connected)
1301 int dwc2_backup_device_registers(struct dwc2_hsotg *hsotg);
1302 int dwc2_restore_device_registers(struct dwc2_hsotg *hsotg);
1303 #else
1304 static inline int dwc2_hsotg_remove(struct dwc2_hsotg *dwc2)
1305 { return 0; }
1306 static inline int dwc2_hsotg_suspend(struct dwc2_hsotg *dwc2)
1307 { return 0; }
1308 static inline int dwc2_hsotg_resume(struct dwc2_hsotg *dwc2)
1309 { return 0; }
1310 static inline int dwc2_gadget_init(struct dwc2_hsotg *hsotg, int irq)
1311 { return 0; }
1312 static inline void dwc2_hsotg_core_init_disconnected(struct dwc2_hsotg *dwc2,
1313 bool reset) {}
1314 static inline void dwc2_hsotg_core_connect(struct dwc2_hsotg *hsotg) {}
1315 static inline void dwc2_hsotg_disconnect(struct dwc2_hsotg *dwc2) {}
1316 static inline int dwc2_hsotg_set_test_mode(struct dwc2_hsotg *hsotg,
1317 int testmode)
1318 { return 0; }
1319 #define dwc2_is_device_connected(hsotg) (0)
1320 static inline int dwc2_backup_device_registers(struct dwc2_hsotg *hsotg)
1321 { return 0; }
1322 static inline int dwc2_restore_device_registers(struct dwc2_hsotg *hsotg)
1323 { return 0; }
1324 #endif
1326 #if IS_ENABLED(CONFIG_USB_DWC2_HOST) || IS_ENABLED(CONFIG_USB_DWC2_DUAL_ROLE)
1327 extern int dwc2_hcd_get_frame_number(struct dwc2_hsotg *hsotg);
1328 extern int dwc2_hcd_get_future_frame_number(struct dwc2_hsotg *hsotg, int us);
1329 extern void dwc2_hcd_connect(struct dwc2_hsotg *hsotg);
1330 extern void dwc2_hcd_disconnect(struct dwc2_hsotg *hsotg, bool force);
1331 extern void dwc2_hcd_start(struct dwc2_hsotg *hsotg);
1332 int dwc2_backup_host_registers(struct dwc2_hsotg *hsotg);
1333 int dwc2_restore_host_registers(struct dwc2_hsotg *hsotg);
1334 #else
1335 static inline int dwc2_hcd_get_frame_number(struct dwc2_hsotg *hsotg)
1336 { return 0; }
1337 static inline int dwc2_hcd_get_future_frame_number(struct dwc2_hsotg *hsotg,
1338 int us)
1339 { return 0; }
1340 static inline void dwc2_hcd_connect(struct dwc2_hsotg *hsotg) {}
1341 static inline void dwc2_hcd_disconnect(struct dwc2_hsotg *hsotg, bool force) {}
1342 static inline void dwc2_hcd_start(struct dwc2_hsotg *hsotg) {}
1343 static inline void dwc2_hcd_remove(struct dwc2_hsotg *hsotg) {}
1344 static inline int dwc2_hcd_init(struct dwc2_hsotg *hsotg, int irq)
1345 { return 0; }
1346 static inline int dwc2_backup_host_registers(struct dwc2_hsotg *hsotg)
1347 { return 0; }
1348 static inline int dwc2_restore_host_registers(struct dwc2_hsotg *hsotg)
1349 { return 0; }
1351 #endif
1353 #endif /* __DWC2_CORE_H__ */