Merge branch 'r6040-next'
[linux/fpc-iii.git] / drivers / usb / dwc2 / hcd.c
blob2df3d04d26f5687b9bb84499b0ec55648a0f45a0
1 /*
2 * hcd.c - DesignWare HS OTG Controller host-mode routines
4 * Copyright (C) 2004-2013 Synopsys, Inc.
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions, and the following disclaimer,
11 * without modification.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. The names of the above-listed copyright holders may not be used
16 * to endorse or promote products derived from this software without
17 * specific prior written permission.
19 * ALTERNATIVELY, this software may be distributed under the terms of the
20 * GNU General Public License ("GPL") as published by the Free Software
21 * Foundation; either version 2 of the License, or (at your option) any
22 * later version.
24 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
25 * IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
26 * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
27 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
28 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
29 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
30 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
31 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
32 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
33 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
34 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
38 * This file contains the core HCD code, and implements the Linux hc_driver
39 * API
41 #include <linux/kernel.h>
42 #include <linux/module.h>
43 #include <linux/spinlock.h>
44 #include <linux/interrupt.h>
45 #include <linux/dma-mapping.h>
46 #include <linux/delay.h>
47 #include <linux/io.h>
48 #include <linux/slab.h>
49 #include <linux/usb.h>
51 #include <linux/usb/hcd.h>
52 #include <linux/usb/ch11.h>
54 #include "core.h"
55 #include "hcd.h"
58 * =========================================================================
59 * Host Core Layer Functions
60 * =========================================================================
63 /**
64 * dwc2_enable_common_interrupts() - Initializes the commmon interrupts,
65 * used in both device and host modes
67 * @hsotg: Programming view of the DWC_otg controller
69 static void dwc2_enable_common_interrupts(struct dwc2_hsotg *hsotg)
71 u32 intmsk;
73 /* Clear any pending OTG Interrupts */
74 dwc2_writel(0xffffffff, hsotg->regs + GOTGINT);
76 /* Clear any pending interrupts */
77 dwc2_writel(0xffffffff, hsotg->regs + GINTSTS);
79 /* Enable the interrupts in the GINTMSK */
80 intmsk = GINTSTS_MODEMIS | GINTSTS_OTGINT;
82 if (hsotg->core_params->dma_enable <= 0)
83 intmsk |= GINTSTS_RXFLVL;
84 if (hsotg->core_params->external_id_pin_ctl <= 0)
85 intmsk |= GINTSTS_CONIDSTSCHNG;
87 intmsk |= GINTSTS_WKUPINT | GINTSTS_USBSUSP |
88 GINTSTS_SESSREQINT;
90 dwc2_writel(intmsk, hsotg->regs + GINTMSK);
94 * Initializes the FSLSPClkSel field of the HCFG register depending on the
95 * PHY type
97 static void dwc2_init_fs_ls_pclk_sel(struct dwc2_hsotg *hsotg)
99 u32 hcfg, val;
101 if ((hsotg->hw_params.hs_phy_type == GHWCFG2_HS_PHY_TYPE_ULPI &&
102 hsotg->hw_params.fs_phy_type == GHWCFG2_FS_PHY_TYPE_DEDICATED &&
103 hsotg->core_params->ulpi_fs_ls > 0) ||
104 hsotg->core_params->phy_type == DWC2_PHY_TYPE_PARAM_FS) {
105 /* Full speed PHY */
106 val = HCFG_FSLSPCLKSEL_48_MHZ;
107 } else {
108 /* High speed PHY running at full speed or high speed */
109 val = HCFG_FSLSPCLKSEL_30_60_MHZ;
112 dev_dbg(hsotg->dev, "Initializing HCFG.FSLSPClkSel to %08x\n", val);
113 hcfg = dwc2_readl(hsotg->regs + HCFG);
114 hcfg &= ~HCFG_FSLSPCLKSEL_MASK;
115 hcfg |= val << HCFG_FSLSPCLKSEL_SHIFT;
116 dwc2_writel(hcfg, hsotg->regs + HCFG);
119 static int dwc2_fs_phy_init(struct dwc2_hsotg *hsotg, bool select_phy)
121 u32 usbcfg, i2cctl;
122 int retval = 0;
125 * core_init() is now called on every switch so only call the
126 * following for the first time through
128 if (select_phy) {
129 dev_dbg(hsotg->dev, "FS PHY selected\n");
131 usbcfg = dwc2_readl(hsotg->regs + GUSBCFG);
132 if (!(usbcfg & GUSBCFG_PHYSEL)) {
133 usbcfg |= GUSBCFG_PHYSEL;
134 dwc2_writel(usbcfg, hsotg->regs + GUSBCFG);
136 /* Reset after a PHY select */
137 retval = dwc2_core_reset_and_force_dr_mode(hsotg);
139 if (retval) {
140 dev_err(hsotg->dev,
141 "%s: Reset failed, aborting", __func__);
142 return retval;
148 * Program DCFG.DevSpd or HCFG.FSLSPclkSel to 48Mhz in FS. Also
149 * do this on HNP Dev/Host mode switches (done in dev_init and
150 * host_init).
152 if (dwc2_is_host_mode(hsotg))
153 dwc2_init_fs_ls_pclk_sel(hsotg);
155 if (hsotg->core_params->i2c_enable > 0) {
156 dev_dbg(hsotg->dev, "FS PHY enabling I2C\n");
158 /* Program GUSBCFG.OtgUtmiFsSel to I2C */
159 usbcfg = dwc2_readl(hsotg->regs + GUSBCFG);
160 usbcfg |= GUSBCFG_OTG_UTMI_FS_SEL;
161 dwc2_writel(usbcfg, hsotg->regs + GUSBCFG);
163 /* Program GI2CCTL.I2CEn */
164 i2cctl = dwc2_readl(hsotg->regs + GI2CCTL);
165 i2cctl &= ~GI2CCTL_I2CDEVADDR_MASK;
166 i2cctl |= 1 << GI2CCTL_I2CDEVADDR_SHIFT;
167 i2cctl &= ~GI2CCTL_I2CEN;
168 dwc2_writel(i2cctl, hsotg->regs + GI2CCTL);
169 i2cctl |= GI2CCTL_I2CEN;
170 dwc2_writel(i2cctl, hsotg->regs + GI2CCTL);
173 return retval;
176 static int dwc2_hs_phy_init(struct dwc2_hsotg *hsotg, bool select_phy)
178 u32 usbcfg, usbcfg_old;
179 int retval = 0;
181 if (!select_phy)
182 return 0;
184 usbcfg = dwc2_readl(hsotg->regs + GUSBCFG);
185 usbcfg_old = usbcfg;
188 * HS PHY parameters. These parameters are preserved during soft reset
189 * so only program the first time. Do a soft reset immediately after
190 * setting phyif.
192 switch (hsotg->core_params->phy_type) {
193 case DWC2_PHY_TYPE_PARAM_ULPI:
194 /* ULPI interface */
195 dev_dbg(hsotg->dev, "HS ULPI PHY selected\n");
196 usbcfg |= GUSBCFG_ULPI_UTMI_SEL;
197 usbcfg &= ~(GUSBCFG_PHYIF16 | GUSBCFG_DDRSEL);
198 if (hsotg->core_params->phy_ulpi_ddr > 0)
199 usbcfg |= GUSBCFG_DDRSEL;
200 break;
201 case DWC2_PHY_TYPE_PARAM_UTMI:
202 /* UTMI+ interface */
203 dev_dbg(hsotg->dev, "HS UTMI+ PHY selected\n");
204 usbcfg &= ~(GUSBCFG_ULPI_UTMI_SEL | GUSBCFG_PHYIF16);
205 if (hsotg->core_params->phy_utmi_width == 16)
206 usbcfg |= GUSBCFG_PHYIF16;
207 break;
208 default:
209 dev_err(hsotg->dev, "FS PHY selected at HS!\n");
210 break;
213 if (usbcfg != usbcfg_old) {
214 dwc2_writel(usbcfg, hsotg->regs + GUSBCFG);
216 /* Reset after setting the PHY parameters */
217 retval = dwc2_core_reset_and_force_dr_mode(hsotg);
218 if (retval) {
219 dev_err(hsotg->dev,
220 "%s: Reset failed, aborting", __func__);
221 return retval;
225 return retval;
228 static int dwc2_phy_init(struct dwc2_hsotg *hsotg, bool select_phy)
230 u32 usbcfg;
231 int retval = 0;
233 if (hsotg->core_params->speed == DWC2_SPEED_PARAM_FULL &&
234 hsotg->core_params->phy_type == DWC2_PHY_TYPE_PARAM_FS) {
235 /* If FS mode with FS PHY */
236 retval = dwc2_fs_phy_init(hsotg, select_phy);
237 if (retval)
238 return retval;
239 } else {
240 /* High speed PHY */
241 retval = dwc2_hs_phy_init(hsotg, select_phy);
242 if (retval)
243 return retval;
246 if (hsotg->hw_params.hs_phy_type == GHWCFG2_HS_PHY_TYPE_ULPI &&
247 hsotg->hw_params.fs_phy_type == GHWCFG2_FS_PHY_TYPE_DEDICATED &&
248 hsotg->core_params->ulpi_fs_ls > 0) {
249 dev_dbg(hsotg->dev, "Setting ULPI FSLS\n");
250 usbcfg = dwc2_readl(hsotg->regs + GUSBCFG);
251 usbcfg |= GUSBCFG_ULPI_FS_LS;
252 usbcfg |= GUSBCFG_ULPI_CLK_SUSP_M;
253 dwc2_writel(usbcfg, hsotg->regs + GUSBCFG);
254 } else {
255 usbcfg = dwc2_readl(hsotg->regs + GUSBCFG);
256 usbcfg &= ~GUSBCFG_ULPI_FS_LS;
257 usbcfg &= ~GUSBCFG_ULPI_CLK_SUSP_M;
258 dwc2_writel(usbcfg, hsotg->regs + GUSBCFG);
261 return retval;
264 static int dwc2_gahbcfg_init(struct dwc2_hsotg *hsotg)
266 u32 ahbcfg = dwc2_readl(hsotg->regs + GAHBCFG);
268 switch (hsotg->hw_params.arch) {
269 case GHWCFG2_EXT_DMA_ARCH:
270 dev_err(hsotg->dev, "External DMA Mode not supported\n");
271 return -EINVAL;
273 case GHWCFG2_INT_DMA_ARCH:
274 dev_dbg(hsotg->dev, "Internal DMA Mode\n");
275 if (hsotg->core_params->ahbcfg != -1) {
276 ahbcfg &= GAHBCFG_CTRL_MASK;
277 ahbcfg |= hsotg->core_params->ahbcfg &
278 ~GAHBCFG_CTRL_MASK;
280 break;
282 case GHWCFG2_SLAVE_ONLY_ARCH:
283 default:
284 dev_dbg(hsotg->dev, "Slave Only Mode\n");
285 break;
288 dev_dbg(hsotg->dev, "dma_enable:%d dma_desc_enable:%d\n",
289 hsotg->core_params->dma_enable,
290 hsotg->core_params->dma_desc_enable);
292 if (hsotg->core_params->dma_enable > 0) {
293 if (hsotg->core_params->dma_desc_enable > 0)
294 dev_dbg(hsotg->dev, "Using Descriptor DMA mode\n");
295 else
296 dev_dbg(hsotg->dev, "Using Buffer DMA mode\n");
297 } else {
298 dev_dbg(hsotg->dev, "Using Slave mode\n");
299 hsotg->core_params->dma_desc_enable = 0;
302 if (hsotg->core_params->dma_enable > 0)
303 ahbcfg |= GAHBCFG_DMA_EN;
305 dwc2_writel(ahbcfg, hsotg->regs + GAHBCFG);
307 return 0;
310 static void dwc2_gusbcfg_init(struct dwc2_hsotg *hsotg)
312 u32 usbcfg;
314 usbcfg = dwc2_readl(hsotg->regs + GUSBCFG);
315 usbcfg &= ~(GUSBCFG_HNPCAP | GUSBCFG_SRPCAP);
317 switch (hsotg->hw_params.op_mode) {
318 case GHWCFG2_OP_MODE_HNP_SRP_CAPABLE:
319 if (hsotg->core_params->otg_cap ==
320 DWC2_CAP_PARAM_HNP_SRP_CAPABLE)
321 usbcfg |= GUSBCFG_HNPCAP;
322 if (hsotg->core_params->otg_cap !=
323 DWC2_CAP_PARAM_NO_HNP_SRP_CAPABLE)
324 usbcfg |= GUSBCFG_SRPCAP;
325 break;
327 case GHWCFG2_OP_MODE_SRP_ONLY_CAPABLE:
328 case GHWCFG2_OP_MODE_SRP_CAPABLE_DEVICE:
329 case GHWCFG2_OP_MODE_SRP_CAPABLE_HOST:
330 if (hsotg->core_params->otg_cap !=
331 DWC2_CAP_PARAM_NO_HNP_SRP_CAPABLE)
332 usbcfg |= GUSBCFG_SRPCAP;
333 break;
335 case GHWCFG2_OP_MODE_NO_HNP_SRP_CAPABLE:
336 case GHWCFG2_OP_MODE_NO_SRP_CAPABLE_DEVICE:
337 case GHWCFG2_OP_MODE_NO_SRP_CAPABLE_HOST:
338 default:
339 break;
342 dwc2_writel(usbcfg, hsotg->regs + GUSBCFG);
346 * dwc2_enable_host_interrupts() - Enables the Host mode interrupts
348 * @hsotg: Programming view of DWC_otg controller
350 static void dwc2_enable_host_interrupts(struct dwc2_hsotg *hsotg)
352 u32 intmsk;
354 dev_dbg(hsotg->dev, "%s()\n", __func__);
356 /* Disable all interrupts */
357 dwc2_writel(0, hsotg->regs + GINTMSK);
358 dwc2_writel(0, hsotg->regs + HAINTMSK);
360 /* Enable the common interrupts */
361 dwc2_enable_common_interrupts(hsotg);
363 /* Enable host mode interrupts without disturbing common interrupts */
364 intmsk = dwc2_readl(hsotg->regs + GINTMSK);
365 intmsk |= GINTSTS_DISCONNINT | GINTSTS_PRTINT | GINTSTS_HCHINT;
366 dwc2_writel(intmsk, hsotg->regs + GINTMSK);
370 * dwc2_disable_host_interrupts() - Disables the Host Mode interrupts
372 * @hsotg: Programming view of DWC_otg controller
374 static void dwc2_disable_host_interrupts(struct dwc2_hsotg *hsotg)
376 u32 intmsk = dwc2_readl(hsotg->regs + GINTMSK);
378 /* Disable host mode interrupts without disturbing common interrupts */
379 intmsk &= ~(GINTSTS_SOF | GINTSTS_PRTINT | GINTSTS_HCHINT |
380 GINTSTS_PTXFEMP | GINTSTS_NPTXFEMP | GINTSTS_DISCONNINT);
381 dwc2_writel(intmsk, hsotg->regs + GINTMSK);
385 * dwc2_calculate_dynamic_fifo() - Calculates the default fifo size
386 * For system that have a total fifo depth that is smaller than the default
387 * RX + TX fifo size.
389 * @hsotg: Programming view of DWC_otg controller
391 static void dwc2_calculate_dynamic_fifo(struct dwc2_hsotg *hsotg)
393 struct dwc2_core_params *params = hsotg->core_params;
394 struct dwc2_hw_params *hw = &hsotg->hw_params;
395 u32 rxfsiz, nptxfsiz, ptxfsiz, total_fifo_size;
397 total_fifo_size = hw->total_fifo_size;
398 rxfsiz = params->host_rx_fifo_size;
399 nptxfsiz = params->host_nperio_tx_fifo_size;
400 ptxfsiz = params->host_perio_tx_fifo_size;
403 * Will use Method 2 defined in the DWC2 spec: minimum FIFO depth
404 * allocation with support for high bandwidth endpoints. Synopsys
405 * defines MPS(Max Packet size) for a periodic EP=1024, and for
406 * non-periodic as 512.
408 if (total_fifo_size < (rxfsiz + nptxfsiz + ptxfsiz)) {
410 * For Buffer DMA mode/Scatter Gather DMA mode
411 * 2 * ((Largest Packet size / 4) + 1 + 1) + n
412 * with n = number of host channel.
413 * 2 * ((1024/4) + 2) = 516
415 rxfsiz = 516 + hw->host_channels;
418 * min non-periodic tx fifo depth
419 * 2 * (largest non-periodic USB packet used / 4)
420 * 2 * (512/4) = 256
422 nptxfsiz = 256;
425 * min periodic tx fifo depth
426 * (largest packet size*MC)/4
427 * (1024 * 3)/4 = 768
429 ptxfsiz = 768;
431 params->host_rx_fifo_size = rxfsiz;
432 params->host_nperio_tx_fifo_size = nptxfsiz;
433 params->host_perio_tx_fifo_size = ptxfsiz;
437 * If the summation of RX, NPTX and PTX fifo sizes is still
438 * bigger than the total_fifo_size, then we have a problem.
440 * We won't be able to allocate as many endpoints. Right now,
441 * we're just printing an error message, but ideally this FIFO
442 * allocation algorithm would be improved in the future.
444 * FIXME improve this FIFO allocation algorithm.
446 if (unlikely(total_fifo_size < (rxfsiz + nptxfsiz + ptxfsiz)))
447 dev_err(hsotg->dev, "invalid fifo sizes\n");
450 static void dwc2_config_fifos(struct dwc2_hsotg *hsotg)
452 struct dwc2_core_params *params = hsotg->core_params;
453 u32 nptxfsiz, hptxfsiz, dfifocfg, grxfsiz;
455 if (!params->enable_dynamic_fifo)
456 return;
458 dwc2_calculate_dynamic_fifo(hsotg);
460 /* Rx FIFO */
461 grxfsiz = dwc2_readl(hsotg->regs + GRXFSIZ);
462 dev_dbg(hsotg->dev, "initial grxfsiz=%08x\n", grxfsiz);
463 grxfsiz &= ~GRXFSIZ_DEPTH_MASK;
464 grxfsiz |= params->host_rx_fifo_size <<
465 GRXFSIZ_DEPTH_SHIFT & GRXFSIZ_DEPTH_MASK;
466 dwc2_writel(grxfsiz, hsotg->regs + GRXFSIZ);
467 dev_dbg(hsotg->dev, "new grxfsiz=%08x\n",
468 dwc2_readl(hsotg->regs + GRXFSIZ));
470 /* Non-periodic Tx FIFO */
471 dev_dbg(hsotg->dev, "initial gnptxfsiz=%08x\n",
472 dwc2_readl(hsotg->regs + GNPTXFSIZ));
473 nptxfsiz = params->host_nperio_tx_fifo_size <<
474 FIFOSIZE_DEPTH_SHIFT & FIFOSIZE_DEPTH_MASK;
475 nptxfsiz |= params->host_rx_fifo_size <<
476 FIFOSIZE_STARTADDR_SHIFT & FIFOSIZE_STARTADDR_MASK;
477 dwc2_writel(nptxfsiz, hsotg->regs + GNPTXFSIZ);
478 dev_dbg(hsotg->dev, "new gnptxfsiz=%08x\n",
479 dwc2_readl(hsotg->regs + GNPTXFSIZ));
481 /* Periodic Tx FIFO */
482 dev_dbg(hsotg->dev, "initial hptxfsiz=%08x\n",
483 dwc2_readl(hsotg->regs + HPTXFSIZ));
484 hptxfsiz = params->host_perio_tx_fifo_size <<
485 FIFOSIZE_DEPTH_SHIFT & FIFOSIZE_DEPTH_MASK;
486 hptxfsiz |= (params->host_rx_fifo_size +
487 params->host_nperio_tx_fifo_size) <<
488 FIFOSIZE_STARTADDR_SHIFT & FIFOSIZE_STARTADDR_MASK;
489 dwc2_writel(hptxfsiz, hsotg->regs + HPTXFSIZ);
490 dev_dbg(hsotg->dev, "new hptxfsiz=%08x\n",
491 dwc2_readl(hsotg->regs + HPTXFSIZ));
493 if (hsotg->core_params->en_multiple_tx_fifo > 0 &&
494 hsotg->hw_params.snpsid <= DWC2_CORE_REV_2_94a) {
496 * Global DFIFOCFG calculation for Host mode -
497 * include RxFIFO, NPTXFIFO and HPTXFIFO
499 dfifocfg = dwc2_readl(hsotg->regs + GDFIFOCFG);
500 dfifocfg &= ~GDFIFOCFG_EPINFOBASE_MASK;
501 dfifocfg |= (params->host_rx_fifo_size +
502 params->host_nperio_tx_fifo_size +
503 params->host_perio_tx_fifo_size) <<
504 GDFIFOCFG_EPINFOBASE_SHIFT &
505 GDFIFOCFG_EPINFOBASE_MASK;
506 dwc2_writel(dfifocfg, hsotg->regs + GDFIFOCFG);
511 * dwc2_calc_frame_interval() - Calculates the correct frame Interval value for
512 * the HFIR register according to PHY type and speed
514 * @hsotg: Programming view of DWC_otg controller
516 * NOTE: The caller can modify the value of the HFIR register only after the
517 * Port Enable bit of the Host Port Control and Status register (HPRT.EnaPort)
518 * has been set
520 u32 dwc2_calc_frame_interval(struct dwc2_hsotg *hsotg)
522 u32 usbcfg;
523 u32 hprt0;
524 int clock = 60; /* default value */
526 usbcfg = dwc2_readl(hsotg->regs + GUSBCFG);
527 hprt0 = dwc2_readl(hsotg->regs + HPRT0);
529 if (!(usbcfg & GUSBCFG_PHYSEL) && (usbcfg & GUSBCFG_ULPI_UTMI_SEL) &&
530 !(usbcfg & GUSBCFG_PHYIF16))
531 clock = 60;
532 if ((usbcfg & GUSBCFG_PHYSEL) && hsotg->hw_params.fs_phy_type ==
533 GHWCFG2_FS_PHY_TYPE_SHARED_ULPI)
534 clock = 48;
535 if (!(usbcfg & GUSBCFG_PHY_LP_CLK_SEL) && !(usbcfg & GUSBCFG_PHYSEL) &&
536 !(usbcfg & GUSBCFG_ULPI_UTMI_SEL) && (usbcfg & GUSBCFG_PHYIF16))
537 clock = 30;
538 if (!(usbcfg & GUSBCFG_PHY_LP_CLK_SEL) && !(usbcfg & GUSBCFG_PHYSEL) &&
539 !(usbcfg & GUSBCFG_ULPI_UTMI_SEL) && !(usbcfg & GUSBCFG_PHYIF16))
540 clock = 60;
541 if ((usbcfg & GUSBCFG_PHY_LP_CLK_SEL) && !(usbcfg & GUSBCFG_PHYSEL) &&
542 !(usbcfg & GUSBCFG_ULPI_UTMI_SEL) && (usbcfg & GUSBCFG_PHYIF16))
543 clock = 48;
544 if ((usbcfg & GUSBCFG_PHYSEL) && !(usbcfg & GUSBCFG_PHYIF16) &&
545 hsotg->hw_params.fs_phy_type == GHWCFG2_FS_PHY_TYPE_SHARED_UTMI)
546 clock = 48;
547 if ((usbcfg & GUSBCFG_PHYSEL) &&
548 hsotg->hw_params.fs_phy_type == GHWCFG2_FS_PHY_TYPE_DEDICATED)
549 clock = 48;
551 if ((hprt0 & HPRT0_SPD_MASK) >> HPRT0_SPD_SHIFT == HPRT0_SPD_HIGH_SPEED)
552 /* High speed case */
553 return 125 * clock - 1;
555 /* FS/LS case */
556 return 1000 * clock - 1;
560 * dwc2_read_packet() - Reads a packet from the Rx FIFO into the destination
561 * buffer
563 * @core_if: Programming view of DWC_otg controller
564 * @dest: Destination buffer for the packet
565 * @bytes: Number of bytes to copy to the destination
567 void dwc2_read_packet(struct dwc2_hsotg *hsotg, u8 *dest, u16 bytes)
569 u32 __iomem *fifo = hsotg->regs + HCFIFO(0);
570 u32 *data_buf = (u32 *)dest;
571 int word_count = (bytes + 3) / 4;
572 int i;
575 * Todo: Account for the case where dest is not dword aligned. This
576 * requires reading data from the FIFO into a u32 temp buffer, then
577 * moving it into the data buffer.
580 dev_vdbg(hsotg->dev, "%s(%p,%p,%d)\n", __func__, hsotg, dest, bytes);
582 for (i = 0; i < word_count; i++, data_buf++)
583 *data_buf = dwc2_readl(fifo);
587 * dwc2_dump_channel_info() - Prints the state of a host channel
589 * @hsotg: Programming view of DWC_otg controller
590 * @chan: Pointer to the channel to dump
592 * Must be called with interrupt disabled and spinlock held
594 * NOTE: This function will be removed once the peripheral controller code
595 * is integrated and the driver is stable
597 static void dwc2_dump_channel_info(struct dwc2_hsotg *hsotg,
598 struct dwc2_host_chan *chan)
600 #ifdef VERBOSE_DEBUG
601 int num_channels = hsotg->core_params->host_channels;
602 struct dwc2_qh *qh;
603 u32 hcchar;
604 u32 hcsplt;
605 u32 hctsiz;
606 u32 hc_dma;
607 int i;
609 if (!chan)
610 return;
612 hcchar = dwc2_readl(hsotg->regs + HCCHAR(chan->hc_num));
613 hcsplt = dwc2_readl(hsotg->regs + HCSPLT(chan->hc_num));
614 hctsiz = dwc2_readl(hsotg->regs + HCTSIZ(chan->hc_num));
615 hc_dma = dwc2_readl(hsotg->regs + HCDMA(chan->hc_num));
617 dev_dbg(hsotg->dev, " Assigned to channel %p:\n", chan);
618 dev_dbg(hsotg->dev, " hcchar 0x%08x, hcsplt 0x%08x\n",
619 hcchar, hcsplt);
620 dev_dbg(hsotg->dev, " hctsiz 0x%08x, hc_dma 0x%08x\n",
621 hctsiz, hc_dma);
622 dev_dbg(hsotg->dev, " dev_addr: %d, ep_num: %d, ep_is_in: %d\n",
623 chan->dev_addr, chan->ep_num, chan->ep_is_in);
624 dev_dbg(hsotg->dev, " ep_type: %d\n", chan->ep_type);
625 dev_dbg(hsotg->dev, " max_packet: %d\n", chan->max_packet);
626 dev_dbg(hsotg->dev, " data_pid_start: %d\n", chan->data_pid_start);
627 dev_dbg(hsotg->dev, " xfer_started: %d\n", chan->xfer_started);
628 dev_dbg(hsotg->dev, " halt_status: %d\n", chan->halt_status);
629 dev_dbg(hsotg->dev, " xfer_buf: %p\n", chan->xfer_buf);
630 dev_dbg(hsotg->dev, " xfer_dma: %08lx\n",
631 (unsigned long)chan->xfer_dma);
632 dev_dbg(hsotg->dev, " xfer_len: %d\n", chan->xfer_len);
633 dev_dbg(hsotg->dev, " qh: %p\n", chan->qh);
634 dev_dbg(hsotg->dev, " NP inactive sched:\n");
635 list_for_each_entry(qh, &hsotg->non_periodic_sched_inactive,
636 qh_list_entry)
637 dev_dbg(hsotg->dev, " %p\n", qh);
638 dev_dbg(hsotg->dev, " NP active sched:\n");
639 list_for_each_entry(qh, &hsotg->non_periodic_sched_active,
640 qh_list_entry)
641 dev_dbg(hsotg->dev, " %p\n", qh);
642 dev_dbg(hsotg->dev, " Channels:\n");
643 for (i = 0; i < num_channels; i++) {
644 struct dwc2_host_chan *chan = hsotg->hc_ptr_array[i];
646 dev_dbg(hsotg->dev, " %2d: %p\n", i, chan);
648 #endif /* VERBOSE_DEBUG */
652 * =========================================================================
653 * Low Level Host Channel Access Functions
654 * =========================================================================
657 static void dwc2_hc_enable_slave_ints(struct dwc2_hsotg *hsotg,
658 struct dwc2_host_chan *chan)
660 u32 hcintmsk = HCINTMSK_CHHLTD;
662 switch (chan->ep_type) {
663 case USB_ENDPOINT_XFER_CONTROL:
664 case USB_ENDPOINT_XFER_BULK:
665 dev_vdbg(hsotg->dev, "control/bulk\n");
666 hcintmsk |= HCINTMSK_XFERCOMPL;
667 hcintmsk |= HCINTMSK_STALL;
668 hcintmsk |= HCINTMSK_XACTERR;
669 hcintmsk |= HCINTMSK_DATATGLERR;
670 if (chan->ep_is_in) {
671 hcintmsk |= HCINTMSK_BBLERR;
672 } else {
673 hcintmsk |= HCINTMSK_NAK;
674 hcintmsk |= HCINTMSK_NYET;
675 if (chan->do_ping)
676 hcintmsk |= HCINTMSK_ACK;
679 if (chan->do_split) {
680 hcintmsk |= HCINTMSK_NAK;
681 if (chan->complete_split)
682 hcintmsk |= HCINTMSK_NYET;
683 else
684 hcintmsk |= HCINTMSK_ACK;
687 if (chan->error_state)
688 hcintmsk |= HCINTMSK_ACK;
689 break;
691 case USB_ENDPOINT_XFER_INT:
692 if (dbg_perio())
693 dev_vdbg(hsotg->dev, "intr\n");
694 hcintmsk |= HCINTMSK_XFERCOMPL;
695 hcintmsk |= HCINTMSK_NAK;
696 hcintmsk |= HCINTMSK_STALL;
697 hcintmsk |= HCINTMSK_XACTERR;
698 hcintmsk |= HCINTMSK_DATATGLERR;
699 hcintmsk |= HCINTMSK_FRMOVRUN;
701 if (chan->ep_is_in)
702 hcintmsk |= HCINTMSK_BBLERR;
703 if (chan->error_state)
704 hcintmsk |= HCINTMSK_ACK;
705 if (chan->do_split) {
706 if (chan->complete_split)
707 hcintmsk |= HCINTMSK_NYET;
708 else
709 hcintmsk |= HCINTMSK_ACK;
711 break;
713 case USB_ENDPOINT_XFER_ISOC:
714 if (dbg_perio())
715 dev_vdbg(hsotg->dev, "isoc\n");
716 hcintmsk |= HCINTMSK_XFERCOMPL;
717 hcintmsk |= HCINTMSK_FRMOVRUN;
718 hcintmsk |= HCINTMSK_ACK;
720 if (chan->ep_is_in) {
721 hcintmsk |= HCINTMSK_XACTERR;
722 hcintmsk |= HCINTMSK_BBLERR;
724 break;
725 default:
726 dev_err(hsotg->dev, "## Unknown EP type ##\n");
727 break;
730 dwc2_writel(hcintmsk, hsotg->regs + HCINTMSK(chan->hc_num));
731 if (dbg_hc(chan))
732 dev_vdbg(hsotg->dev, "set HCINTMSK to %08x\n", hcintmsk);
735 static void dwc2_hc_enable_dma_ints(struct dwc2_hsotg *hsotg,
736 struct dwc2_host_chan *chan)
738 u32 hcintmsk = HCINTMSK_CHHLTD;
741 * For Descriptor DMA mode core halts the channel on AHB error.
742 * Interrupt is not required.
744 if (hsotg->core_params->dma_desc_enable <= 0) {
745 if (dbg_hc(chan))
746 dev_vdbg(hsotg->dev, "desc DMA disabled\n");
747 hcintmsk |= HCINTMSK_AHBERR;
748 } else {
749 if (dbg_hc(chan))
750 dev_vdbg(hsotg->dev, "desc DMA enabled\n");
751 if (chan->ep_type == USB_ENDPOINT_XFER_ISOC)
752 hcintmsk |= HCINTMSK_XFERCOMPL;
755 if (chan->error_state && !chan->do_split &&
756 chan->ep_type != USB_ENDPOINT_XFER_ISOC) {
757 if (dbg_hc(chan))
758 dev_vdbg(hsotg->dev, "setting ACK\n");
759 hcintmsk |= HCINTMSK_ACK;
760 if (chan->ep_is_in) {
761 hcintmsk |= HCINTMSK_DATATGLERR;
762 if (chan->ep_type != USB_ENDPOINT_XFER_INT)
763 hcintmsk |= HCINTMSK_NAK;
767 dwc2_writel(hcintmsk, hsotg->regs + HCINTMSK(chan->hc_num));
768 if (dbg_hc(chan))
769 dev_vdbg(hsotg->dev, "set HCINTMSK to %08x\n", hcintmsk);
772 static void dwc2_hc_enable_ints(struct dwc2_hsotg *hsotg,
773 struct dwc2_host_chan *chan)
775 u32 intmsk;
777 if (hsotg->core_params->dma_enable > 0) {
778 if (dbg_hc(chan))
779 dev_vdbg(hsotg->dev, "DMA enabled\n");
780 dwc2_hc_enable_dma_ints(hsotg, chan);
781 } else {
782 if (dbg_hc(chan))
783 dev_vdbg(hsotg->dev, "DMA disabled\n");
784 dwc2_hc_enable_slave_ints(hsotg, chan);
787 /* Enable the top level host channel interrupt */
788 intmsk = dwc2_readl(hsotg->regs + HAINTMSK);
789 intmsk |= 1 << chan->hc_num;
790 dwc2_writel(intmsk, hsotg->regs + HAINTMSK);
791 if (dbg_hc(chan))
792 dev_vdbg(hsotg->dev, "set HAINTMSK to %08x\n", intmsk);
794 /* Make sure host channel interrupts are enabled */
795 intmsk = dwc2_readl(hsotg->regs + GINTMSK);
796 intmsk |= GINTSTS_HCHINT;
797 dwc2_writel(intmsk, hsotg->regs + GINTMSK);
798 if (dbg_hc(chan))
799 dev_vdbg(hsotg->dev, "set GINTMSK to %08x\n", intmsk);
803 * dwc2_hc_init() - Prepares a host channel for transferring packets to/from
804 * a specific endpoint
806 * @hsotg: Programming view of DWC_otg controller
807 * @chan: Information needed to initialize the host channel
809 * The HCCHARn register is set up with the characteristics specified in chan.
810 * Host channel interrupts that may need to be serviced while this transfer is
811 * in progress are enabled.
813 static void dwc2_hc_init(struct dwc2_hsotg *hsotg, struct dwc2_host_chan *chan)
815 u8 hc_num = chan->hc_num;
816 u32 hcintmsk;
817 u32 hcchar;
818 u32 hcsplt = 0;
820 if (dbg_hc(chan))
821 dev_vdbg(hsotg->dev, "%s()\n", __func__);
823 /* Clear old interrupt conditions for this host channel */
824 hcintmsk = 0xffffffff;
825 hcintmsk &= ~HCINTMSK_RESERVED14_31;
826 dwc2_writel(hcintmsk, hsotg->regs + HCINT(hc_num));
828 /* Enable channel interrupts required for this transfer */
829 dwc2_hc_enable_ints(hsotg, chan);
832 * Program the HCCHARn register with the endpoint characteristics for
833 * the current transfer
835 hcchar = chan->dev_addr << HCCHAR_DEVADDR_SHIFT & HCCHAR_DEVADDR_MASK;
836 hcchar |= chan->ep_num << HCCHAR_EPNUM_SHIFT & HCCHAR_EPNUM_MASK;
837 if (chan->ep_is_in)
838 hcchar |= HCCHAR_EPDIR;
839 if (chan->speed == USB_SPEED_LOW)
840 hcchar |= HCCHAR_LSPDDEV;
841 hcchar |= chan->ep_type << HCCHAR_EPTYPE_SHIFT & HCCHAR_EPTYPE_MASK;
842 hcchar |= chan->max_packet << HCCHAR_MPS_SHIFT & HCCHAR_MPS_MASK;
843 dwc2_writel(hcchar, hsotg->regs + HCCHAR(hc_num));
844 if (dbg_hc(chan)) {
845 dev_vdbg(hsotg->dev, "set HCCHAR(%d) to %08x\n",
846 hc_num, hcchar);
848 dev_vdbg(hsotg->dev, "%s: Channel %d\n",
849 __func__, hc_num);
850 dev_vdbg(hsotg->dev, " Dev Addr: %d\n",
851 chan->dev_addr);
852 dev_vdbg(hsotg->dev, " Ep Num: %d\n",
853 chan->ep_num);
854 dev_vdbg(hsotg->dev, " Is In: %d\n",
855 chan->ep_is_in);
856 dev_vdbg(hsotg->dev, " Is Low Speed: %d\n",
857 chan->speed == USB_SPEED_LOW);
858 dev_vdbg(hsotg->dev, " Ep Type: %d\n",
859 chan->ep_type);
860 dev_vdbg(hsotg->dev, " Max Pkt: %d\n",
861 chan->max_packet);
864 /* Program the HCSPLT register for SPLITs */
865 if (chan->do_split) {
866 if (dbg_hc(chan))
867 dev_vdbg(hsotg->dev,
868 "Programming HC %d with split --> %s\n",
869 hc_num,
870 chan->complete_split ? "CSPLIT" : "SSPLIT");
871 if (chan->complete_split)
872 hcsplt |= HCSPLT_COMPSPLT;
873 hcsplt |= chan->xact_pos << HCSPLT_XACTPOS_SHIFT &
874 HCSPLT_XACTPOS_MASK;
875 hcsplt |= chan->hub_addr << HCSPLT_HUBADDR_SHIFT &
876 HCSPLT_HUBADDR_MASK;
877 hcsplt |= chan->hub_port << HCSPLT_PRTADDR_SHIFT &
878 HCSPLT_PRTADDR_MASK;
879 if (dbg_hc(chan)) {
880 dev_vdbg(hsotg->dev, " comp split %d\n",
881 chan->complete_split);
882 dev_vdbg(hsotg->dev, " xact pos %d\n",
883 chan->xact_pos);
884 dev_vdbg(hsotg->dev, " hub addr %d\n",
885 chan->hub_addr);
886 dev_vdbg(hsotg->dev, " hub port %d\n",
887 chan->hub_port);
888 dev_vdbg(hsotg->dev, " is_in %d\n",
889 chan->ep_is_in);
890 dev_vdbg(hsotg->dev, " Max Pkt %d\n",
891 chan->max_packet);
892 dev_vdbg(hsotg->dev, " xferlen %d\n",
893 chan->xfer_len);
897 dwc2_writel(hcsplt, hsotg->regs + HCSPLT(hc_num));
901 * dwc2_hc_halt() - Attempts to halt a host channel
903 * @hsotg: Controller register interface
904 * @chan: Host channel to halt
905 * @halt_status: Reason for halting the channel
907 * This function should only be called in Slave mode or to abort a transfer in
908 * either Slave mode or DMA mode. Under normal circumstances in DMA mode, the
909 * controller halts the channel when the transfer is complete or a condition
910 * occurs that requires application intervention.
912 * In slave mode, checks for a free request queue entry, then sets the Channel
913 * Enable and Channel Disable bits of the Host Channel Characteristics
914 * register of the specified channel to intiate the halt. If there is no free
915 * request queue entry, sets only the Channel Disable bit of the HCCHARn
916 * register to flush requests for this channel. In the latter case, sets a
917 * flag to indicate that the host channel needs to be halted when a request
918 * queue slot is open.
920 * In DMA mode, always sets the Channel Enable and Channel Disable bits of the
921 * HCCHARn register. The controller ensures there is space in the request
922 * queue before submitting the halt request.
924 * Some time may elapse before the core flushes any posted requests for this
925 * host channel and halts. The Channel Halted interrupt handler completes the
926 * deactivation of the host channel.
928 void dwc2_hc_halt(struct dwc2_hsotg *hsotg, struct dwc2_host_chan *chan,
929 enum dwc2_halt_status halt_status)
931 u32 nptxsts, hptxsts, hcchar;
933 if (dbg_hc(chan))
934 dev_vdbg(hsotg->dev, "%s()\n", __func__);
935 if (halt_status == DWC2_HC_XFER_NO_HALT_STATUS)
936 dev_err(hsotg->dev, "!!! halt_status = %d !!!\n", halt_status);
938 if (halt_status == DWC2_HC_XFER_URB_DEQUEUE ||
939 halt_status == DWC2_HC_XFER_AHB_ERR) {
941 * Disable all channel interrupts except Ch Halted. The QTD
942 * and QH state associated with this transfer has been cleared
943 * (in the case of URB_DEQUEUE), so the channel needs to be
944 * shut down carefully to prevent crashes.
946 u32 hcintmsk = HCINTMSK_CHHLTD;
948 dev_vdbg(hsotg->dev, "dequeue/error\n");
949 dwc2_writel(hcintmsk, hsotg->regs + HCINTMSK(chan->hc_num));
952 * Make sure no other interrupts besides halt are currently
953 * pending. Handling another interrupt could cause a crash due
954 * to the QTD and QH state.
956 dwc2_writel(~hcintmsk, hsotg->regs + HCINT(chan->hc_num));
959 * Make sure the halt status is set to URB_DEQUEUE or AHB_ERR
960 * even if the channel was already halted for some other
961 * reason
963 chan->halt_status = halt_status;
965 hcchar = dwc2_readl(hsotg->regs + HCCHAR(chan->hc_num));
966 if (!(hcchar & HCCHAR_CHENA)) {
968 * The channel is either already halted or it hasn't
969 * started yet. In DMA mode, the transfer may halt if
970 * it finishes normally or a condition occurs that
971 * requires driver intervention. Don't want to halt
972 * the channel again. In either Slave or DMA mode,
973 * it's possible that the transfer has been assigned
974 * to a channel, but not started yet when an URB is
975 * dequeued. Don't want to halt a channel that hasn't
976 * started yet.
978 return;
981 if (chan->halt_pending) {
983 * A halt has already been issued for this channel. This might
984 * happen when a transfer is aborted by a higher level in
985 * the stack.
987 dev_vdbg(hsotg->dev,
988 "*** %s: Channel %d, chan->halt_pending already set ***\n",
989 __func__, chan->hc_num);
990 return;
993 hcchar = dwc2_readl(hsotg->regs + HCCHAR(chan->hc_num));
995 /* No need to set the bit in DDMA for disabling the channel */
996 /* TODO check it everywhere channel is disabled */
997 if (hsotg->core_params->dma_desc_enable <= 0) {
998 if (dbg_hc(chan))
999 dev_vdbg(hsotg->dev, "desc DMA disabled\n");
1000 hcchar |= HCCHAR_CHENA;
1001 } else {
1002 if (dbg_hc(chan))
1003 dev_dbg(hsotg->dev, "desc DMA enabled\n");
1005 hcchar |= HCCHAR_CHDIS;
1007 if (hsotg->core_params->dma_enable <= 0) {
1008 if (dbg_hc(chan))
1009 dev_vdbg(hsotg->dev, "DMA not enabled\n");
1010 hcchar |= HCCHAR_CHENA;
1012 /* Check for space in the request queue to issue the halt */
1013 if (chan->ep_type == USB_ENDPOINT_XFER_CONTROL ||
1014 chan->ep_type == USB_ENDPOINT_XFER_BULK) {
1015 dev_vdbg(hsotg->dev, "control/bulk\n");
1016 nptxsts = dwc2_readl(hsotg->regs + GNPTXSTS);
1017 if ((nptxsts & TXSTS_QSPCAVAIL_MASK) == 0) {
1018 dev_vdbg(hsotg->dev, "Disabling channel\n");
1019 hcchar &= ~HCCHAR_CHENA;
1021 } else {
1022 if (dbg_perio())
1023 dev_vdbg(hsotg->dev, "isoc/intr\n");
1024 hptxsts = dwc2_readl(hsotg->regs + HPTXSTS);
1025 if ((hptxsts & TXSTS_QSPCAVAIL_MASK) == 0 ||
1026 hsotg->queuing_high_bandwidth) {
1027 if (dbg_perio())
1028 dev_vdbg(hsotg->dev, "Disabling channel\n");
1029 hcchar &= ~HCCHAR_CHENA;
1032 } else {
1033 if (dbg_hc(chan))
1034 dev_vdbg(hsotg->dev, "DMA enabled\n");
1037 dwc2_writel(hcchar, hsotg->regs + HCCHAR(chan->hc_num));
1038 chan->halt_status = halt_status;
1040 if (hcchar & HCCHAR_CHENA) {
1041 if (dbg_hc(chan))
1042 dev_vdbg(hsotg->dev, "Channel enabled\n");
1043 chan->halt_pending = 1;
1044 chan->halt_on_queue = 0;
1045 } else {
1046 if (dbg_hc(chan))
1047 dev_vdbg(hsotg->dev, "Channel disabled\n");
1048 chan->halt_on_queue = 1;
1051 if (dbg_hc(chan)) {
1052 dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__,
1053 chan->hc_num);
1054 dev_vdbg(hsotg->dev, " hcchar: 0x%08x\n",
1055 hcchar);
1056 dev_vdbg(hsotg->dev, " halt_pending: %d\n",
1057 chan->halt_pending);
1058 dev_vdbg(hsotg->dev, " halt_on_queue: %d\n",
1059 chan->halt_on_queue);
1060 dev_vdbg(hsotg->dev, " halt_status: %d\n",
1061 chan->halt_status);
1066 * dwc2_hc_cleanup() - Clears the transfer state for a host channel
1068 * @hsotg: Programming view of DWC_otg controller
1069 * @chan: Identifies the host channel to clean up
1071 * This function is normally called after a transfer is done and the host
1072 * channel is being released
1074 void dwc2_hc_cleanup(struct dwc2_hsotg *hsotg, struct dwc2_host_chan *chan)
1076 u32 hcintmsk;
1078 chan->xfer_started = 0;
1080 list_del_init(&chan->split_order_list_entry);
1083 * Clear channel interrupt enables and any unhandled channel interrupt
1084 * conditions
1086 dwc2_writel(0, hsotg->regs + HCINTMSK(chan->hc_num));
1087 hcintmsk = 0xffffffff;
1088 hcintmsk &= ~HCINTMSK_RESERVED14_31;
1089 dwc2_writel(hcintmsk, hsotg->regs + HCINT(chan->hc_num));
1093 * dwc2_hc_set_even_odd_frame() - Sets the channel property that indicates in
1094 * which frame a periodic transfer should occur
1096 * @hsotg: Programming view of DWC_otg controller
1097 * @chan: Identifies the host channel to set up and its properties
1098 * @hcchar: Current value of the HCCHAR register for the specified host channel
1100 * This function has no effect on non-periodic transfers
1102 static void dwc2_hc_set_even_odd_frame(struct dwc2_hsotg *hsotg,
1103 struct dwc2_host_chan *chan, u32 *hcchar)
1105 if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
1106 chan->ep_type == USB_ENDPOINT_XFER_ISOC) {
1107 int host_speed;
1108 int xfer_ns;
1109 int xfer_us;
1110 int bytes_in_fifo;
1111 u16 fifo_space;
1112 u16 frame_number;
1113 u16 wire_frame;
1116 * Try to figure out if we're an even or odd frame. If we set
1117 * even and the current frame number is even the the transfer
1118 * will happen immediately. Similar if both are odd. If one is
1119 * even and the other is odd then the transfer will happen when
1120 * the frame number ticks.
1122 * There's a bit of a balancing act to get this right.
1123 * Sometimes we may want to send data in the current frame (AK
1124 * right away). We might want to do this if the frame number
1125 * _just_ ticked, but we might also want to do this in order
1126 * to continue a split transaction that happened late in a
1127 * microframe (so we didn't know to queue the next transfer
1128 * until the frame number had ticked). The problem is that we
1129 * need a lot of knowledge to know if there's actually still
1130 * time to send things or if it would be better to wait until
1131 * the next frame.
1133 * We can look at how much time is left in the current frame
1134 * and make a guess about whether we'll have time to transfer.
1135 * We'll do that.
1138 /* Get speed host is running at */
1139 host_speed = (chan->speed != USB_SPEED_HIGH &&
1140 !chan->do_split) ? chan->speed : USB_SPEED_HIGH;
1142 /* See how many bytes are in the periodic FIFO right now */
1143 fifo_space = (dwc2_readl(hsotg->regs + HPTXSTS) &
1144 TXSTS_FSPCAVAIL_MASK) >> TXSTS_FSPCAVAIL_SHIFT;
1145 bytes_in_fifo = sizeof(u32) *
1146 (hsotg->core_params->host_perio_tx_fifo_size -
1147 fifo_space);
1150 * Roughly estimate bus time for everything in the periodic
1151 * queue + our new transfer. This is "rough" because we're
1152 * using a function that makes takes into account IN/OUT
1153 * and INT/ISO and we're just slamming in one value for all
1154 * transfers. This should be an over-estimate and that should
1155 * be OK, but we can probably tighten it.
1157 xfer_ns = usb_calc_bus_time(host_speed, false, false,
1158 chan->xfer_len + bytes_in_fifo);
1159 xfer_us = NS_TO_US(xfer_ns);
1161 /* See what frame number we'll be at by the time we finish */
1162 frame_number = dwc2_hcd_get_future_frame_number(hsotg, xfer_us);
1164 /* This is when we were scheduled to be on the wire */
1165 wire_frame = dwc2_frame_num_inc(chan->qh->next_active_frame, 1);
1168 * If we'd finish _after_ the frame we're scheduled in then
1169 * it's hopeless. Just schedule right away and hope for the
1170 * best. Note that it _might_ be wise to call back into the
1171 * scheduler to pick a better frame, but this is better than
1172 * nothing.
1174 if (dwc2_frame_num_gt(frame_number, wire_frame)) {
1175 dwc2_sch_vdbg(hsotg,
1176 "QH=%p EO MISS fr=%04x=>%04x (%+d)\n",
1177 chan->qh, wire_frame, frame_number,
1178 dwc2_frame_num_dec(frame_number,
1179 wire_frame));
1180 wire_frame = frame_number;
1183 * We picked a different frame number; communicate this
1184 * back to the scheduler so it doesn't try to schedule
1185 * another in the same frame.
1187 * Remember that next_active_frame is 1 before the wire
1188 * frame.
1190 chan->qh->next_active_frame =
1191 dwc2_frame_num_dec(frame_number, 1);
1194 if (wire_frame & 1)
1195 *hcchar |= HCCHAR_ODDFRM;
1196 else
1197 *hcchar &= ~HCCHAR_ODDFRM;
1201 static void dwc2_set_pid_isoc(struct dwc2_host_chan *chan)
1203 /* Set up the initial PID for the transfer */
1204 if (chan->speed == USB_SPEED_HIGH) {
1205 if (chan->ep_is_in) {
1206 if (chan->multi_count == 1)
1207 chan->data_pid_start = DWC2_HC_PID_DATA0;
1208 else if (chan->multi_count == 2)
1209 chan->data_pid_start = DWC2_HC_PID_DATA1;
1210 else
1211 chan->data_pid_start = DWC2_HC_PID_DATA2;
1212 } else {
1213 if (chan->multi_count == 1)
1214 chan->data_pid_start = DWC2_HC_PID_DATA0;
1215 else
1216 chan->data_pid_start = DWC2_HC_PID_MDATA;
1218 } else {
1219 chan->data_pid_start = DWC2_HC_PID_DATA0;
1224 * dwc2_hc_write_packet() - Writes a packet into the Tx FIFO associated with
1225 * the Host Channel
1227 * @hsotg: Programming view of DWC_otg controller
1228 * @chan: Information needed to initialize the host channel
1230 * This function should only be called in Slave mode. For a channel associated
1231 * with a non-periodic EP, the non-periodic Tx FIFO is written. For a channel
1232 * associated with a periodic EP, the periodic Tx FIFO is written.
1234 * Upon return the xfer_buf and xfer_count fields in chan are incremented by
1235 * the number of bytes written to the Tx FIFO.
1237 static void dwc2_hc_write_packet(struct dwc2_hsotg *hsotg,
1238 struct dwc2_host_chan *chan)
1240 u32 i;
1241 u32 remaining_count;
1242 u32 byte_count;
1243 u32 dword_count;
1244 u32 __iomem *data_fifo;
1245 u32 *data_buf = (u32 *)chan->xfer_buf;
1247 if (dbg_hc(chan))
1248 dev_vdbg(hsotg->dev, "%s()\n", __func__);
1250 data_fifo = (u32 __iomem *)(hsotg->regs + HCFIFO(chan->hc_num));
1252 remaining_count = chan->xfer_len - chan->xfer_count;
1253 if (remaining_count > chan->max_packet)
1254 byte_count = chan->max_packet;
1255 else
1256 byte_count = remaining_count;
1258 dword_count = (byte_count + 3) / 4;
1260 if (((unsigned long)data_buf & 0x3) == 0) {
1261 /* xfer_buf is DWORD aligned */
1262 for (i = 0; i < dword_count; i++, data_buf++)
1263 dwc2_writel(*data_buf, data_fifo);
1264 } else {
1265 /* xfer_buf is not DWORD aligned */
1266 for (i = 0; i < dword_count; i++, data_buf++) {
1267 u32 data = data_buf[0] | data_buf[1] << 8 |
1268 data_buf[2] << 16 | data_buf[3] << 24;
1269 dwc2_writel(data, data_fifo);
1273 chan->xfer_count += byte_count;
1274 chan->xfer_buf += byte_count;
1278 * dwc2_hc_do_ping() - Starts a PING transfer
1280 * @hsotg: Programming view of DWC_otg controller
1281 * @chan: Information needed to initialize the host channel
1283 * This function should only be called in Slave mode. The Do Ping bit is set in
1284 * the HCTSIZ register, then the channel is enabled.
1286 static void dwc2_hc_do_ping(struct dwc2_hsotg *hsotg,
1287 struct dwc2_host_chan *chan)
1289 u32 hcchar;
1290 u32 hctsiz;
1292 if (dbg_hc(chan))
1293 dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__,
1294 chan->hc_num);
1296 hctsiz = TSIZ_DOPNG;
1297 hctsiz |= 1 << TSIZ_PKTCNT_SHIFT;
1298 dwc2_writel(hctsiz, hsotg->regs + HCTSIZ(chan->hc_num));
1300 hcchar = dwc2_readl(hsotg->regs + HCCHAR(chan->hc_num));
1301 hcchar |= HCCHAR_CHENA;
1302 hcchar &= ~HCCHAR_CHDIS;
1303 dwc2_writel(hcchar, hsotg->regs + HCCHAR(chan->hc_num));
1307 * dwc2_hc_start_transfer() - Does the setup for a data transfer for a host
1308 * channel and starts the transfer
1310 * @hsotg: Programming view of DWC_otg controller
1311 * @chan: Information needed to initialize the host channel. The xfer_len value
1312 * may be reduced to accommodate the max widths of the XferSize and
1313 * PktCnt fields in the HCTSIZn register. The multi_count value may be
1314 * changed to reflect the final xfer_len value.
1316 * This function may be called in either Slave mode or DMA mode. In Slave mode,
1317 * the caller must ensure that there is sufficient space in the request queue
1318 * and Tx Data FIFO.
1320 * For an OUT transfer in Slave mode, it loads a data packet into the
1321 * appropriate FIFO. If necessary, additional data packets are loaded in the
1322 * Host ISR.
1324 * For an IN transfer in Slave mode, a data packet is requested. The data
1325 * packets are unloaded from the Rx FIFO in the Host ISR. If necessary,
1326 * additional data packets are requested in the Host ISR.
1328 * For a PING transfer in Slave mode, the Do Ping bit is set in the HCTSIZ
1329 * register along with a packet count of 1 and the channel is enabled. This
1330 * causes a single PING transaction to occur. Other fields in HCTSIZ are
1331 * simply set to 0 since no data transfer occurs in this case.
1333 * For a PING transfer in DMA mode, the HCTSIZ register is initialized with
1334 * all the information required to perform the subsequent data transfer. In
1335 * addition, the Do Ping bit is set in the HCTSIZ register. In this case, the
1336 * controller performs the entire PING protocol, then starts the data
1337 * transfer.
1339 static void dwc2_hc_start_transfer(struct dwc2_hsotg *hsotg,
1340 struct dwc2_host_chan *chan)
1342 u32 max_hc_xfer_size = hsotg->core_params->max_transfer_size;
1343 u16 max_hc_pkt_count = hsotg->core_params->max_packet_count;
1344 u32 hcchar;
1345 u32 hctsiz = 0;
1346 u16 num_packets;
1347 u32 ec_mc;
1349 if (dbg_hc(chan))
1350 dev_vdbg(hsotg->dev, "%s()\n", __func__);
1352 if (chan->do_ping) {
1353 if (hsotg->core_params->dma_enable <= 0) {
1354 if (dbg_hc(chan))
1355 dev_vdbg(hsotg->dev, "ping, no DMA\n");
1356 dwc2_hc_do_ping(hsotg, chan);
1357 chan->xfer_started = 1;
1358 return;
1361 if (dbg_hc(chan))
1362 dev_vdbg(hsotg->dev, "ping, DMA\n");
1364 hctsiz |= TSIZ_DOPNG;
1367 if (chan->do_split) {
1368 if (dbg_hc(chan))
1369 dev_vdbg(hsotg->dev, "split\n");
1370 num_packets = 1;
1372 if (chan->complete_split && !chan->ep_is_in)
1374 * For CSPLIT OUT Transfer, set the size to 0 so the
1375 * core doesn't expect any data written to the FIFO
1377 chan->xfer_len = 0;
1378 else if (chan->ep_is_in || chan->xfer_len > chan->max_packet)
1379 chan->xfer_len = chan->max_packet;
1380 else if (!chan->ep_is_in && chan->xfer_len > 188)
1381 chan->xfer_len = 188;
1383 hctsiz |= chan->xfer_len << TSIZ_XFERSIZE_SHIFT &
1384 TSIZ_XFERSIZE_MASK;
1386 /* For split set ec_mc for immediate retries */
1387 if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
1388 chan->ep_type == USB_ENDPOINT_XFER_ISOC)
1389 ec_mc = 3;
1390 else
1391 ec_mc = 1;
1392 } else {
1393 if (dbg_hc(chan))
1394 dev_vdbg(hsotg->dev, "no split\n");
1396 * Ensure that the transfer length and packet count will fit
1397 * in the widths allocated for them in the HCTSIZn register
1399 if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
1400 chan->ep_type == USB_ENDPOINT_XFER_ISOC) {
1402 * Make sure the transfer size is no larger than one
1403 * (micro)frame's worth of data. (A check was done
1404 * when the periodic transfer was accepted to ensure
1405 * that a (micro)frame's worth of data can be
1406 * programmed into a channel.)
1408 u32 max_periodic_len =
1409 chan->multi_count * chan->max_packet;
1411 if (chan->xfer_len > max_periodic_len)
1412 chan->xfer_len = max_periodic_len;
1413 } else if (chan->xfer_len > max_hc_xfer_size) {
1415 * Make sure that xfer_len is a multiple of max packet
1416 * size
1418 chan->xfer_len =
1419 max_hc_xfer_size - chan->max_packet + 1;
1422 if (chan->xfer_len > 0) {
1423 num_packets = (chan->xfer_len + chan->max_packet - 1) /
1424 chan->max_packet;
1425 if (num_packets > max_hc_pkt_count) {
1426 num_packets = max_hc_pkt_count;
1427 chan->xfer_len = num_packets * chan->max_packet;
1429 } else {
1430 /* Need 1 packet for transfer length of 0 */
1431 num_packets = 1;
1434 if (chan->ep_is_in)
1436 * Always program an integral # of max packets for IN
1437 * transfers
1439 chan->xfer_len = num_packets * chan->max_packet;
1441 if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
1442 chan->ep_type == USB_ENDPOINT_XFER_ISOC)
1444 * Make sure that the multi_count field matches the
1445 * actual transfer length
1447 chan->multi_count = num_packets;
1449 if (chan->ep_type == USB_ENDPOINT_XFER_ISOC)
1450 dwc2_set_pid_isoc(chan);
1452 hctsiz |= chan->xfer_len << TSIZ_XFERSIZE_SHIFT &
1453 TSIZ_XFERSIZE_MASK;
1455 /* The ec_mc gets the multi_count for non-split */
1456 ec_mc = chan->multi_count;
1459 chan->start_pkt_count = num_packets;
1460 hctsiz |= num_packets << TSIZ_PKTCNT_SHIFT & TSIZ_PKTCNT_MASK;
1461 hctsiz |= chan->data_pid_start << TSIZ_SC_MC_PID_SHIFT &
1462 TSIZ_SC_MC_PID_MASK;
1463 dwc2_writel(hctsiz, hsotg->regs + HCTSIZ(chan->hc_num));
1464 if (dbg_hc(chan)) {
1465 dev_vdbg(hsotg->dev, "Wrote %08x to HCTSIZ(%d)\n",
1466 hctsiz, chan->hc_num);
1468 dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__,
1469 chan->hc_num);
1470 dev_vdbg(hsotg->dev, " Xfer Size: %d\n",
1471 (hctsiz & TSIZ_XFERSIZE_MASK) >>
1472 TSIZ_XFERSIZE_SHIFT);
1473 dev_vdbg(hsotg->dev, " Num Pkts: %d\n",
1474 (hctsiz & TSIZ_PKTCNT_MASK) >>
1475 TSIZ_PKTCNT_SHIFT);
1476 dev_vdbg(hsotg->dev, " Start PID: %d\n",
1477 (hctsiz & TSIZ_SC_MC_PID_MASK) >>
1478 TSIZ_SC_MC_PID_SHIFT);
1481 if (hsotg->core_params->dma_enable > 0) {
1482 dwc2_writel((u32)chan->xfer_dma,
1483 hsotg->regs + HCDMA(chan->hc_num));
1484 if (dbg_hc(chan))
1485 dev_vdbg(hsotg->dev, "Wrote %08lx to HCDMA(%d)\n",
1486 (unsigned long)chan->xfer_dma, chan->hc_num);
1489 /* Start the split */
1490 if (chan->do_split) {
1491 u32 hcsplt = dwc2_readl(hsotg->regs + HCSPLT(chan->hc_num));
1493 hcsplt |= HCSPLT_SPLTENA;
1494 dwc2_writel(hcsplt, hsotg->regs + HCSPLT(chan->hc_num));
1497 hcchar = dwc2_readl(hsotg->regs + HCCHAR(chan->hc_num));
1498 hcchar &= ~HCCHAR_MULTICNT_MASK;
1499 hcchar |= (ec_mc << HCCHAR_MULTICNT_SHIFT) & HCCHAR_MULTICNT_MASK;
1500 dwc2_hc_set_even_odd_frame(hsotg, chan, &hcchar);
1502 if (hcchar & HCCHAR_CHDIS)
1503 dev_warn(hsotg->dev,
1504 "%s: chdis set, channel %d, hcchar 0x%08x\n",
1505 __func__, chan->hc_num, hcchar);
1507 /* Set host channel enable after all other setup is complete */
1508 hcchar |= HCCHAR_CHENA;
1509 hcchar &= ~HCCHAR_CHDIS;
1511 if (dbg_hc(chan))
1512 dev_vdbg(hsotg->dev, " Multi Cnt: %d\n",
1513 (hcchar & HCCHAR_MULTICNT_MASK) >>
1514 HCCHAR_MULTICNT_SHIFT);
1516 dwc2_writel(hcchar, hsotg->regs + HCCHAR(chan->hc_num));
1517 if (dbg_hc(chan))
1518 dev_vdbg(hsotg->dev, "Wrote %08x to HCCHAR(%d)\n", hcchar,
1519 chan->hc_num);
1521 chan->xfer_started = 1;
1522 chan->requests++;
1524 if (hsotg->core_params->dma_enable <= 0 &&
1525 !chan->ep_is_in && chan->xfer_len > 0)
1526 /* Load OUT packet into the appropriate Tx FIFO */
1527 dwc2_hc_write_packet(hsotg, chan);
1531 * dwc2_hc_start_transfer_ddma() - Does the setup for a data transfer for a
1532 * host channel and starts the transfer in Descriptor DMA mode
1534 * @hsotg: Programming view of DWC_otg controller
1535 * @chan: Information needed to initialize the host channel
1537 * Initializes HCTSIZ register. For a PING transfer the Do Ping bit is set.
1538 * Sets PID and NTD values. For periodic transfers initializes SCHED_INFO field
1539 * with micro-frame bitmap.
1541 * Initializes HCDMA register with descriptor list address and CTD value then
1542 * starts the transfer via enabling the channel.
1544 void dwc2_hc_start_transfer_ddma(struct dwc2_hsotg *hsotg,
1545 struct dwc2_host_chan *chan)
1547 u32 hcchar;
1548 u32 hctsiz = 0;
1550 if (chan->do_ping)
1551 hctsiz |= TSIZ_DOPNG;
1553 if (chan->ep_type == USB_ENDPOINT_XFER_ISOC)
1554 dwc2_set_pid_isoc(chan);
1556 /* Packet Count and Xfer Size are not used in Descriptor DMA mode */
1557 hctsiz |= chan->data_pid_start << TSIZ_SC_MC_PID_SHIFT &
1558 TSIZ_SC_MC_PID_MASK;
1560 /* 0 - 1 descriptor, 1 - 2 descriptors, etc */
1561 hctsiz |= (chan->ntd - 1) << TSIZ_NTD_SHIFT & TSIZ_NTD_MASK;
1563 /* Non-zero only for high-speed interrupt endpoints */
1564 hctsiz |= chan->schinfo << TSIZ_SCHINFO_SHIFT & TSIZ_SCHINFO_MASK;
1566 if (dbg_hc(chan)) {
1567 dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__,
1568 chan->hc_num);
1569 dev_vdbg(hsotg->dev, " Start PID: %d\n",
1570 chan->data_pid_start);
1571 dev_vdbg(hsotg->dev, " NTD: %d\n", chan->ntd - 1);
1574 dwc2_writel(hctsiz, hsotg->regs + HCTSIZ(chan->hc_num));
1576 dma_sync_single_for_device(hsotg->dev, chan->desc_list_addr,
1577 chan->desc_list_sz, DMA_TO_DEVICE);
1579 dwc2_writel(chan->desc_list_addr, hsotg->regs + HCDMA(chan->hc_num));
1581 if (dbg_hc(chan))
1582 dev_vdbg(hsotg->dev, "Wrote %pad to HCDMA(%d)\n",
1583 &chan->desc_list_addr, chan->hc_num);
1585 hcchar = dwc2_readl(hsotg->regs + HCCHAR(chan->hc_num));
1586 hcchar &= ~HCCHAR_MULTICNT_MASK;
1587 hcchar |= chan->multi_count << HCCHAR_MULTICNT_SHIFT &
1588 HCCHAR_MULTICNT_MASK;
1590 if (hcchar & HCCHAR_CHDIS)
1591 dev_warn(hsotg->dev,
1592 "%s: chdis set, channel %d, hcchar 0x%08x\n",
1593 __func__, chan->hc_num, hcchar);
1595 /* Set host channel enable after all other setup is complete */
1596 hcchar |= HCCHAR_CHENA;
1597 hcchar &= ~HCCHAR_CHDIS;
1599 if (dbg_hc(chan))
1600 dev_vdbg(hsotg->dev, " Multi Cnt: %d\n",
1601 (hcchar & HCCHAR_MULTICNT_MASK) >>
1602 HCCHAR_MULTICNT_SHIFT);
1604 dwc2_writel(hcchar, hsotg->regs + HCCHAR(chan->hc_num));
1605 if (dbg_hc(chan))
1606 dev_vdbg(hsotg->dev, "Wrote %08x to HCCHAR(%d)\n", hcchar,
1607 chan->hc_num);
1609 chan->xfer_started = 1;
1610 chan->requests++;
1614 * dwc2_hc_continue_transfer() - Continues a data transfer that was started by
1615 * a previous call to dwc2_hc_start_transfer()
1617 * @hsotg: Programming view of DWC_otg controller
1618 * @chan: Information needed to initialize the host channel
1620 * The caller must ensure there is sufficient space in the request queue and Tx
1621 * Data FIFO. This function should only be called in Slave mode. In DMA mode,
1622 * the controller acts autonomously to complete transfers programmed to a host
1623 * channel.
1625 * For an OUT transfer, a new data packet is loaded into the appropriate FIFO
1626 * if there is any data remaining to be queued. For an IN transfer, another
1627 * data packet is always requested. For the SETUP phase of a control transfer,
1628 * this function does nothing.
1630 * Return: 1 if a new request is queued, 0 if no more requests are required
1631 * for this transfer
1633 static int dwc2_hc_continue_transfer(struct dwc2_hsotg *hsotg,
1634 struct dwc2_host_chan *chan)
1636 if (dbg_hc(chan))
1637 dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__,
1638 chan->hc_num);
1640 if (chan->do_split)
1641 /* SPLITs always queue just once per channel */
1642 return 0;
1644 if (chan->data_pid_start == DWC2_HC_PID_SETUP)
1645 /* SETUPs are queued only once since they can't be NAK'd */
1646 return 0;
1648 if (chan->ep_is_in) {
1650 * Always queue another request for other IN transfers. If
1651 * back-to-back INs are issued and NAKs are received for both,
1652 * the driver may still be processing the first NAK when the
1653 * second NAK is received. When the interrupt handler clears
1654 * the NAK interrupt for the first NAK, the second NAK will
1655 * not be seen. So we can't depend on the NAK interrupt
1656 * handler to requeue a NAK'd request. Instead, IN requests
1657 * are issued each time this function is called. When the
1658 * transfer completes, the extra requests for the channel will
1659 * be flushed.
1661 u32 hcchar = dwc2_readl(hsotg->regs + HCCHAR(chan->hc_num));
1663 dwc2_hc_set_even_odd_frame(hsotg, chan, &hcchar);
1664 hcchar |= HCCHAR_CHENA;
1665 hcchar &= ~HCCHAR_CHDIS;
1666 if (dbg_hc(chan))
1667 dev_vdbg(hsotg->dev, " IN xfer: hcchar = 0x%08x\n",
1668 hcchar);
1669 dwc2_writel(hcchar, hsotg->regs + HCCHAR(chan->hc_num));
1670 chan->requests++;
1671 return 1;
1674 /* OUT transfers */
1676 if (chan->xfer_count < chan->xfer_len) {
1677 if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
1678 chan->ep_type == USB_ENDPOINT_XFER_ISOC) {
1679 u32 hcchar = dwc2_readl(hsotg->regs +
1680 HCCHAR(chan->hc_num));
1682 dwc2_hc_set_even_odd_frame(hsotg, chan,
1683 &hcchar);
1686 /* Load OUT packet into the appropriate Tx FIFO */
1687 dwc2_hc_write_packet(hsotg, chan);
1688 chan->requests++;
1689 return 1;
1692 return 0;
1696 * =========================================================================
1697 * HCD
1698 * =========================================================================
1702 * Processes all the URBs in a single list of QHs. Completes them with
1703 * -ETIMEDOUT and frees the QTD.
1705 * Must be called with interrupt disabled and spinlock held
1707 static void dwc2_kill_urbs_in_qh_list(struct dwc2_hsotg *hsotg,
1708 struct list_head *qh_list)
1710 struct dwc2_qh *qh, *qh_tmp;
1711 struct dwc2_qtd *qtd, *qtd_tmp;
1713 list_for_each_entry_safe(qh, qh_tmp, qh_list, qh_list_entry) {
1714 list_for_each_entry_safe(qtd, qtd_tmp, &qh->qtd_list,
1715 qtd_list_entry) {
1716 dwc2_host_complete(hsotg, qtd, -ECONNRESET);
1717 dwc2_hcd_qtd_unlink_and_free(hsotg, qtd, qh);
1722 static void dwc2_qh_list_free(struct dwc2_hsotg *hsotg,
1723 struct list_head *qh_list)
1725 struct dwc2_qtd *qtd, *qtd_tmp;
1726 struct dwc2_qh *qh, *qh_tmp;
1727 unsigned long flags;
1729 if (!qh_list->next)
1730 /* The list hasn't been initialized yet */
1731 return;
1733 spin_lock_irqsave(&hsotg->lock, flags);
1735 /* Ensure there are no QTDs or URBs left */
1736 dwc2_kill_urbs_in_qh_list(hsotg, qh_list);
1738 list_for_each_entry_safe(qh, qh_tmp, qh_list, qh_list_entry) {
1739 dwc2_hcd_qh_unlink(hsotg, qh);
1741 /* Free each QTD in the QH's QTD list */
1742 list_for_each_entry_safe(qtd, qtd_tmp, &qh->qtd_list,
1743 qtd_list_entry)
1744 dwc2_hcd_qtd_unlink_and_free(hsotg, qtd, qh);
1746 if (qh->channel && qh->channel->qh == qh)
1747 qh->channel->qh = NULL;
1749 spin_unlock_irqrestore(&hsotg->lock, flags);
1750 dwc2_hcd_qh_free(hsotg, qh);
1751 spin_lock_irqsave(&hsotg->lock, flags);
1754 spin_unlock_irqrestore(&hsotg->lock, flags);
1758 * Responds with an error status of -ETIMEDOUT to all URBs in the non-periodic
1759 * and periodic schedules. The QTD associated with each URB is removed from
1760 * the schedule and freed. This function may be called when a disconnect is
1761 * detected or when the HCD is being stopped.
1763 * Must be called with interrupt disabled and spinlock held
1765 static void dwc2_kill_all_urbs(struct dwc2_hsotg *hsotg)
1767 dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->non_periodic_sched_inactive);
1768 dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->non_periodic_sched_active);
1769 dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->periodic_sched_inactive);
1770 dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->periodic_sched_ready);
1771 dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->periodic_sched_assigned);
1772 dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->periodic_sched_queued);
1776 * dwc2_hcd_start() - Starts the HCD when switching to Host mode
1778 * @hsotg: Pointer to struct dwc2_hsotg
1780 void dwc2_hcd_start(struct dwc2_hsotg *hsotg)
1782 u32 hprt0;
1784 if (hsotg->op_state == OTG_STATE_B_HOST) {
1786 * Reset the port. During a HNP mode switch the reset
1787 * needs to occur within 1ms and have a duration of at
1788 * least 50ms.
1790 hprt0 = dwc2_read_hprt0(hsotg);
1791 hprt0 |= HPRT0_RST;
1792 dwc2_writel(hprt0, hsotg->regs + HPRT0);
1795 queue_delayed_work(hsotg->wq_otg, &hsotg->start_work,
1796 msecs_to_jiffies(50));
1799 /* Must be called with interrupt disabled and spinlock held */
1800 static void dwc2_hcd_cleanup_channels(struct dwc2_hsotg *hsotg)
1802 int num_channels = hsotg->core_params->host_channels;
1803 struct dwc2_host_chan *channel;
1804 u32 hcchar;
1805 int i;
1807 if (hsotg->core_params->dma_enable <= 0) {
1808 /* Flush out any channel requests in slave mode */
1809 for (i = 0; i < num_channels; i++) {
1810 channel = hsotg->hc_ptr_array[i];
1811 if (!list_empty(&channel->hc_list_entry))
1812 continue;
1813 hcchar = dwc2_readl(hsotg->regs + HCCHAR(i));
1814 if (hcchar & HCCHAR_CHENA) {
1815 hcchar &= ~(HCCHAR_CHENA | HCCHAR_EPDIR);
1816 hcchar |= HCCHAR_CHDIS;
1817 dwc2_writel(hcchar, hsotg->regs + HCCHAR(i));
1822 for (i = 0; i < num_channels; i++) {
1823 channel = hsotg->hc_ptr_array[i];
1824 if (!list_empty(&channel->hc_list_entry))
1825 continue;
1826 hcchar = dwc2_readl(hsotg->regs + HCCHAR(i));
1827 if (hcchar & HCCHAR_CHENA) {
1828 /* Halt the channel */
1829 hcchar |= HCCHAR_CHDIS;
1830 dwc2_writel(hcchar, hsotg->regs + HCCHAR(i));
1833 dwc2_hc_cleanup(hsotg, channel);
1834 list_add_tail(&channel->hc_list_entry, &hsotg->free_hc_list);
1836 * Added for Descriptor DMA to prevent channel double cleanup in
1837 * release_channel_ddma(), which is called from ep_disable when
1838 * device disconnects
1840 channel->qh = NULL;
1842 /* All channels have been freed, mark them available */
1843 if (hsotg->core_params->uframe_sched > 0) {
1844 hsotg->available_host_channels =
1845 hsotg->core_params->host_channels;
1846 } else {
1847 hsotg->non_periodic_channels = 0;
1848 hsotg->periodic_channels = 0;
1853 * dwc2_hcd_connect() - Handles connect of the HCD
1855 * @hsotg: Pointer to struct dwc2_hsotg
1857 * Must be called with interrupt disabled and spinlock held
1859 void dwc2_hcd_connect(struct dwc2_hsotg *hsotg)
1861 if (hsotg->lx_state != DWC2_L0)
1862 usb_hcd_resume_root_hub(hsotg->priv);
1864 hsotg->flags.b.port_connect_status_change = 1;
1865 hsotg->flags.b.port_connect_status = 1;
1869 * dwc2_hcd_disconnect() - Handles disconnect of the HCD
1871 * @hsotg: Pointer to struct dwc2_hsotg
1872 * @force: If true, we won't try to reconnect even if we see device connected.
1874 * Must be called with interrupt disabled and spinlock held
1876 void dwc2_hcd_disconnect(struct dwc2_hsotg *hsotg, bool force)
1878 u32 intr;
1879 u32 hprt0;
1881 /* Set status flags for the hub driver */
1882 hsotg->flags.b.port_connect_status_change = 1;
1883 hsotg->flags.b.port_connect_status = 0;
1886 * Shutdown any transfers in process by clearing the Tx FIFO Empty
1887 * interrupt mask and status bits and disabling subsequent host
1888 * channel interrupts.
1890 intr = dwc2_readl(hsotg->regs + GINTMSK);
1891 intr &= ~(GINTSTS_NPTXFEMP | GINTSTS_PTXFEMP | GINTSTS_HCHINT);
1892 dwc2_writel(intr, hsotg->regs + GINTMSK);
1893 intr = GINTSTS_NPTXFEMP | GINTSTS_PTXFEMP | GINTSTS_HCHINT;
1894 dwc2_writel(intr, hsotg->regs + GINTSTS);
1897 * Turn off the vbus power only if the core has transitioned to device
1898 * mode. If still in host mode, need to keep power on to detect a
1899 * reconnection.
1901 if (dwc2_is_device_mode(hsotg)) {
1902 if (hsotg->op_state != OTG_STATE_A_SUSPEND) {
1903 dev_dbg(hsotg->dev, "Disconnect: PortPower off\n");
1904 dwc2_writel(0, hsotg->regs + HPRT0);
1907 dwc2_disable_host_interrupts(hsotg);
1910 /* Respond with an error status to all URBs in the schedule */
1911 dwc2_kill_all_urbs(hsotg);
1913 if (dwc2_is_host_mode(hsotg))
1914 /* Clean up any host channels that were in use */
1915 dwc2_hcd_cleanup_channels(hsotg);
1917 dwc2_host_disconnect(hsotg);
1920 * Add an extra check here to see if we're actually connected but
1921 * we don't have a detection interrupt pending. This can happen if:
1922 * 1. hardware sees connect
1923 * 2. hardware sees disconnect
1924 * 3. hardware sees connect
1925 * 4. dwc2_port_intr() - clears connect interrupt
1926 * 5. dwc2_handle_common_intr() - calls here
1928 * Without the extra check here we will end calling disconnect
1929 * and won't get any future interrupts to handle the connect.
1931 if (!force) {
1932 hprt0 = dwc2_readl(hsotg->regs + HPRT0);
1933 if (!(hprt0 & HPRT0_CONNDET) && (hprt0 & HPRT0_CONNSTS))
1934 dwc2_hcd_connect(hsotg);
1939 * dwc2_hcd_rem_wakeup() - Handles Remote Wakeup
1941 * @hsotg: Pointer to struct dwc2_hsotg
1943 static void dwc2_hcd_rem_wakeup(struct dwc2_hsotg *hsotg)
1945 if (hsotg->bus_suspended) {
1946 hsotg->flags.b.port_suspend_change = 1;
1947 usb_hcd_resume_root_hub(hsotg->priv);
1950 if (hsotg->lx_state == DWC2_L1)
1951 hsotg->flags.b.port_l1_change = 1;
1955 * dwc2_hcd_stop() - Halts the DWC_otg host mode operations in a clean manner
1957 * @hsotg: Pointer to struct dwc2_hsotg
1959 * Must be called with interrupt disabled and spinlock held
1961 void dwc2_hcd_stop(struct dwc2_hsotg *hsotg)
1963 dev_dbg(hsotg->dev, "DWC OTG HCD STOP\n");
1966 * The root hub should be disconnected before this function is called.
1967 * The disconnect will clear the QTD lists (via ..._hcd_urb_dequeue)
1968 * and the QH lists (via ..._hcd_endpoint_disable).
1971 /* Turn off all host-specific interrupts */
1972 dwc2_disable_host_interrupts(hsotg);
1974 /* Turn off the vbus power */
1975 dev_dbg(hsotg->dev, "PortPower off\n");
1976 dwc2_writel(0, hsotg->regs + HPRT0);
1979 /* Caller must hold driver lock */
1980 static int dwc2_hcd_urb_enqueue(struct dwc2_hsotg *hsotg,
1981 struct dwc2_hcd_urb *urb, struct dwc2_qh *qh,
1982 struct dwc2_qtd *qtd)
1984 u32 intr_mask;
1985 int retval;
1986 int dev_speed;
1988 if (!hsotg->flags.b.port_connect_status) {
1989 /* No longer connected */
1990 dev_err(hsotg->dev, "Not connected\n");
1991 return -ENODEV;
1994 dev_speed = dwc2_host_get_speed(hsotg, urb->priv);
1996 /* Some configurations cannot support LS traffic on a FS root port */
1997 if ((dev_speed == USB_SPEED_LOW) &&
1998 (hsotg->hw_params.fs_phy_type == GHWCFG2_FS_PHY_TYPE_DEDICATED) &&
1999 (hsotg->hw_params.hs_phy_type == GHWCFG2_HS_PHY_TYPE_UTMI)) {
2000 u32 hprt0 = dwc2_readl(hsotg->regs + HPRT0);
2001 u32 prtspd = (hprt0 & HPRT0_SPD_MASK) >> HPRT0_SPD_SHIFT;
2003 if (prtspd == HPRT0_SPD_FULL_SPEED)
2004 return -ENODEV;
2007 if (!qtd)
2008 return -EINVAL;
2010 dwc2_hcd_qtd_init(qtd, urb);
2011 retval = dwc2_hcd_qtd_add(hsotg, qtd, qh);
2012 if (retval) {
2013 dev_err(hsotg->dev,
2014 "DWC OTG HCD URB Enqueue failed adding QTD. Error status %d\n",
2015 retval);
2016 return retval;
2019 intr_mask = dwc2_readl(hsotg->regs + GINTMSK);
2020 if (!(intr_mask & GINTSTS_SOF)) {
2021 enum dwc2_transaction_type tr_type;
2023 if (qtd->qh->ep_type == USB_ENDPOINT_XFER_BULK &&
2024 !(qtd->urb->flags & URB_GIVEBACK_ASAP))
2026 * Do not schedule SG transactions until qtd has
2027 * URB_GIVEBACK_ASAP set
2029 return 0;
2031 tr_type = dwc2_hcd_select_transactions(hsotg);
2032 if (tr_type != DWC2_TRANSACTION_NONE)
2033 dwc2_hcd_queue_transactions(hsotg, tr_type);
2036 return 0;
2039 /* Must be called with interrupt disabled and spinlock held */
2040 static int dwc2_hcd_urb_dequeue(struct dwc2_hsotg *hsotg,
2041 struct dwc2_hcd_urb *urb)
2043 struct dwc2_qh *qh;
2044 struct dwc2_qtd *urb_qtd;
2046 urb_qtd = urb->qtd;
2047 if (!urb_qtd) {
2048 dev_dbg(hsotg->dev, "## Urb QTD is NULL ##\n");
2049 return -EINVAL;
2052 qh = urb_qtd->qh;
2053 if (!qh) {
2054 dev_dbg(hsotg->dev, "## Urb QTD QH is NULL ##\n");
2055 return -EINVAL;
2058 urb->priv = NULL;
2060 if (urb_qtd->in_process && qh->channel) {
2061 dwc2_dump_channel_info(hsotg, qh->channel);
2063 /* The QTD is in process (it has been assigned to a channel) */
2064 if (hsotg->flags.b.port_connect_status)
2066 * If still connected (i.e. in host mode), halt the
2067 * channel so it can be used for other transfers. If
2068 * no longer connected, the host registers can't be
2069 * written to halt the channel since the core is in
2070 * device mode.
2072 dwc2_hc_halt(hsotg, qh->channel,
2073 DWC2_HC_XFER_URB_DEQUEUE);
2077 * Free the QTD and clean up the associated QH. Leave the QH in the
2078 * schedule if it has any remaining QTDs.
2080 if (hsotg->core_params->dma_desc_enable <= 0) {
2081 u8 in_process = urb_qtd->in_process;
2083 dwc2_hcd_qtd_unlink_and_free(hsotg, urb_qtd, qh);
2084 if (in_process) {
2085 dwc2_hcd_qh_deactivate(hsotg, qh, 0);
2086 qh->channel = NULL;
2087 } else if (list_empty(&qh->qtd_list)) {
2088 dwc2_hcd_qh_unlink(hsotg, qh);
2090 } else {
2091 dwc2_hcd_qtd_unlink_and_free(hsotg, urb_qtd, qh);
2094 return 0;
2097 /* Must NOT be called with interrupt disabled or spinlock held */
2098 static int dwc2_hcd_endpoint_disable(struct dwc2_hsotg *hsotg,
2099 struct usb_host_endpoint *ep, int retry)
2101 struct dwc2_qtd *qtd, *qtd_tmp;
2102 struct dwc2_qh *qh;
2103 unsigned long flags;
2104 int rc;
2106 spin_lock_irqsave(&hsotg->lock, flags);
2108 qh = ep->hcpriv;
2109 if (!qh) {
2110 rc = -EINVAL;
2111 goto err;
2114 while (!list_empty(&qh->qtd_list) && retry--) {
2115 if (retry == 0) {
2116 dev_err(hsotg->dev,
2117 "## timeout in dwc2_hcd_endpoint_disable() ##\n");
2118 rc = -EBUSY;
2119 goto err;
2122 spin_unlock_irqrestore(&hsotg->lock, flags);
2123 usleep_range(20000, 40000);
2124 spin_lock_irqsave(&hsotg->lock, flags);
2125 qh = ep->hcpriv;
2126 if (!qh) {
2127 rc = -EINVAL;
2128 goto err;
2132 dwc2_hcd_qh_unlink(hsotg, qh);
2134 /* Free each QTD in the QH's QTD list */
2135 list_for_each_entry_safe(qtd, qtd_tmp, &qh->qtd_list, qtd_list_entry)
2136 dwc2_hcd_qtd_unlink_and_free(hsotg, qtd, qh);
2138 ep->hcpriv = NULL;
2140 if (qh->channel && qh->channel->qh == qh)
2141 qh->channel->qh = NULL;
2143 spin_unlock_irqrestore(&hsotg->lock, flags);
2145 dwc2_hcd_qh_free(hsotg, qh);
2147 return 0;
2149 err:
2150 ep->hcpriv = NULL;
2151 spin_unlock_irqrestore(&hsotg->lock, flags);
2153 return rc;
2156 /* Must be called with interrupt disabled and spinlock held */
2157 static int dwc2_hcd_endpoint_reset(struct dwc2_hsotg *hsotg,
2158 struct usb_host_endpoint *ep)
2160 struct dwc2_qh *qh = ep->hcpriv;
2162 if (!qh)
2163 return -EINVAL;
2165 qh->data_toggle = DWC2_HC_PID_DATA0;
2167 return 0;
2171 * dwc2_core_init() - Initializes the DWC_otg controller registers and
2172 * prepares the core for device mode or host mode operation
2174 * @hsotg: Programming view of the DWC_otg controller
2175 * @initial_setup: If true then this is the first init for this instance.
2177 static int dwc2_core_init(struct dwc2_hsotg *hsotg, bool initial_setup)
2179 u32 usbcfg, otgctl;
2180 int retval;
2182 dev_dbg(hsotg->dev, "%s(%p)\n", __func__, hsotg);
2184 usbcfg = dwc2_readl(hsotg->regs + GUSBCFG);
2186 /* Set ULPI External VBUS bit if needed */
2187 usbcfg &= ~GUSBCFG_ULPI_EXT_VBUS_DRV;
2188 if (hsotg->core_params->phy_ulpi_ext_vbus ==
2189 DWC2_PHY_ULPI_EXTERNAL_VBUS)
2190 usbcfg |= GUSBCFG_ULPI_EXT_VBUS_DRV;
2192 /* Set external TS Dline pulsing bit if needed */
2193 usbcfg &= ~GUSBCFG_TERMSELDLPULSE;
2194 if (hsotg->core_params->ts_dline > 0)
2195 usbcfg |= GUSBCFG_TERMSELDLPULSE;
2197 dwc2_writel(usbcfg, hsotg->regs + GUSBCFG);
2200 * Reset the Controller
2202 * We only need to reset the controller if this is a re-init.
2203 * For the first init we know for sure that earlier code reset us (it
2204 * needed to in order to properly detect various parameters).
2206 if (!initial_setup) {
2207 retval = dwc2_core_reset_and_force_dr_mode(hsotg);
2208 if (retval) {
2209 dev_err(hsotg->dev, "%s(): Reset failed, aborting\n",
2210 __func__);
2211 return retval;
2216 * This needs to happen in FS mode before any other programming occurs
2218 retval = dwc2_phy_init(hsotg, initial_setup);
2219 if (retval)
2220 return retval;
2222 /* Program the GAHBCFG Register */
2223 retval = dwc2_gahbcfg_init(hsotg);
2224 if (retval)
2225 return retval;
2227 /* Program the GUSBCFG register */
2228 dwc2_gusbcfg_init(hsotg);
2230 /* Program the GOTGCTL register */
2231 otgctl = dwc2_readl(hsotg->regs + GOTGCTL);
2232 otgctl &= ~GOTGCTL_OTGVER;
2233 if (hsotg->core_params->otg_ver > 0)
2234 otgctl |= GOTGCTL_OTGVER;
2235 dwc2_writel(otgctl, hsotg->regs + GOTGCTL);
2236 dev_dbg(hsotg->dev, "OTG VER PARAM: %d\n", hsotg->core_params->otg_ver);
2238 /* Clear the SRP success bit for FS-I2c */
2239 hsotg->srp_success = 0;
2241 /* Enable common interrupts */
2242 dwc2_enable_common_interrupts(hsotg);
2245 * Do device or host initialization based on mode during PCD and
2246 * HCD initialization
2248 if (dwc2_is_host_mode(hsotg)) {
2249 dev_dbg(hsotg->dev, "Host Mode\n");
2250 hsotg->op_state = OTG_STATE_A_HOST;
2251 } else {
2252 dev_dbg(hsotg->dev, "Device Mode\n");
2253 hsotg->op_state = OTG_STATE_B_PERIPHERAL;
2256 return 0;
2260 * dwc2_core_host_init() - Initializes the DWC_otg controller registers for
2261 * Host mode
2263 * @hsotg: Programming view of DWC_otg controller
2265 * This function flushes the Tx and Rx FIFOs and flushes any entries in the
2266 * request queues. Host channels are reset to ensure that they are ready for
2267 * performing transfers.
2269 static void dwc2_core_host_init(struct dwc2_hsotg *hsotg)
2271 u32 hcfg, hfir, otgctl;
2273 dev_dbg(hsotg->dev, "%s(%p)\n", __func__, hsotg);
2275 /* Restart the Phy Clock */
2276 dwc2_writel(0, hsotg->regs + PCGCTL);
2278 /* Initialize Host Configuration Register */
2279 dwc2_init_fs_ls_pclk_sel(hsotg);
2280 if (hsotg->core_params->speed == DWC2_SPEED_PARAM_FULL) {
2281 hcfg = dwc2_readl(hsotg->regs + HCFG);
2282 hcfg |= HCFG_FSLSSUPP;
2283 dwc2_writel(hcfg, hsotg->regs + HCFG);
2287 * This bit allows dynamic reloading of the HFIR register during
2288 * runtime. This bit needs to be programmed during initial configuration
2289 * and its value must not be changed during runtime.
2291 if (hsotg->core_params->reload_ctl > 0) {
2292 hfir = dwc2_readl(hsotg->regs + HFIR);
2293 hfir |= HFIR_RLDCTRL;
2294 dwc2_writel(hfir, hsotg->regs + HFIR);
2297 if (hsotg->core_params->dma_desc_enable > 0) {
2298 u32 op_mode = hsotg->hw_params.op_mode;
2300 if (hsotg->hw_params.snpsid < DWC2_CORE_REV_2_90a ||
2301 !hsotg->hw_params.dma_desc_enable ||
2302 op_mode == GHWCFG2_OP_MODE_SRP_CAPABLE_DEVICE ||
2303 op_mode == GHWCFG2_OP_MODE_NO_SRP_CAPABLE_DEVICE ||
2304 op_mode == GHWCFG2_OP_MODE_UNDEFINED) {
2305 dev_err(hsotg->dev,
2306 "Hardware does not support descriptor DMA mode -\n");
2307 dev_err(hsotg->dev,
2308 "falling back to buffer DMA mode.\n");
2309 hsotg->core_params->dma_desc_enable = 0;
2310 } else {
2311 hcfg = dwc2_readl(hsotg->regs + HCFG);
2312 hcfg |= HCFG_DESCDMA;
2313 dwc2_writel(hcfg, hsotg->regs + HCFG);
2317 /* Configure data FIFO sizes */
2318 dwc2_config_fifos(hsotg);
2320 /* TODO - check this */
2321 /* Clear Host Set HNP Enable in the OTG Control Register */
2322 otgctl = dwc2_readl(hsotg->regs + GOTGCTL);
2323 otgctl &= ~GOTGCTL_HSTSETHNPEN;
2324 dwc2_writel(otgctl, hsotg->regs + GOTGCTL);
2326 /* Make sure the FIFOs are flushed */
2327 dwc2_flush_tx_fifo(hsotg, 0x10 /* all TX FIFOs */);
2328 dwc2_flush_rx_fifo(hsotg);
2330 /* Clear Host Set HNP Enable in the OTG Control Register */
2331 otgctl = dwc2_readl(hsotg->regs + GOTGCTL);
2332 otgctl &= ~GOTGCTL_HSTSETHNPEN;
2333 dwc2_writel(otgctl, hsotg->regs + GOTGCTL);
2335 if (hsotg->core_params->dma_desc_enable <= 0) {
2336 int num_channels, i;
2337 u32 hcchar;
2339 /* Flush out any leftover queued requests */
2340 num_channels = hsotg->core_params->host_channels;
2341 for (i = 0; i < num_channels; i++) {
2342 hcchar = dwc2_readl(hsotg->regs + HCCHAR(i));
2343 hcchar &= ~HCCHAR_CHENA;
2344 hcchar |= HCCHAR_CHDIS;
2345 hcchar &= ~HCCHAR_EPDIR;
2346 dwc2_writel(hcchar, hsotg->regs + HCCHAR(i));
2349 /* Halt all channels to put them into a known state */
2350 for (i = 0; i < num_channels; i++) {
2351 int count = 0;
2353 hcchar = dwc2_readl(hsotg->regs + HCCHAR(i));
2354 hcchar |= HCCHAR_CHENA | HCCHAR_CHDIS;
2355 hcchar &= ~HCCHAR_EPDIR;
2356 dwc2_writel(hcchar, hsotg->regs + HCCHAR(i));
2357 dev_dbg(hsotg->dev, "%s: Halt channel %d\n",
2358 __func__, i);
2359 do {
2360 hcchar = dwc2_readl(hsotg->regs + HCCHAR(i));
2361 if (++count > 1000) {
2362 dev_err(hsotg->dev,
2363 "Unable to clear enable on channel %d\n",
2365 break;
2367 udelay(1);
2368 } while (hcchar & HCCHAR_CHENA);
2372 /* Turn on the vbus power */
2373 dev_dbg(hsotg->dev, "Init: Port Power? op_state=%d\n", hsotg->op_state);
2374 if (hsotg->op_state == OTG_STATE_A_HOST) {
2375 u32 hprt0 = dwc2_read_hprt0(hsotg);
2377 dev_dbg(hsotg->dev, "Init: Power Port (%d)\n",
2378 !!(hprt0 & HPRT0_PWR));
2379 if (!(hprt0 & HPRT0_PWR)) {
2380 hprt0 |= HPRT0_PWR;
2381 dwc2_writel(hprt0, hsotg->regs + HPRT0);
2385 dwc2_enable_host_interrupts(hsotg);
2389 * Initializes dynamic portions of the DWC_otg HCD state
2391 * Must be called with interrupt disabled and spinlock held
2393 static void dwc2_hcd_reinit(struct dwc2_hsotg *hsotg)
2395 struct dwc2_host_chan *chan, *chan_tmp;
2396 int num_channels;
2397 int i;
2399 hsotg->flags.d32 = 0;
2400 hsotg->non_periodic_qh_ptr = &hsotg->non_periodic_sched_active;
2402 if (hsotg->core_params->uframe_sched > 0) {
2403 hsotg->available_host_channels =
2404 hsotg->core_params->host_channels;
2405 } else {
2406 hsotg->non_periodic_channels = 0;
2407 hsotg->periodic_channels = 0;
2411 * Put all channels in the free channel list and clean up channel
2412 * states
2414 list_for_each_entry_safe(chan, chan_tmp, &hsotg->free_hc_list,
2415 hc_list_entry)
2416 list_del_init(&chan->hc_list_entry);
2418 num_channels = hsotg->core_params->host_channels;
2419 for (i = 0; i < num_channels; i++) {
2420 chan = hsotg->hc_ptr_array[i];
2421 list_add_tail(&chan->hc_list_entry, &hsotg->free_hc_list);
2422 dwc2_hc_cleanup(hsotg, chan);
2425 /* Initialize the DWC core for host mode operation */
2426 dwc2_core_host_init(hsotg);
2429 static void dwc2_hc_init_split(struct dwc2_hsotg *hsotg,
2430 struct dwc2_host_chan *chan,
2431 struct dwc2_qtd *qtd, struct dwc2_hcd_urb *urb)
2433 int hub_addr, hub_port;
2435 chan->do_split = 1;
2436 chan->xact_pos = qtd->isoc_split_pos;
2437 chan->complete_split = qtd->complete_split;
2438 dwc2_host_hub_info(hsotg, urb->priv, &hub_addr, &hub_port);
2439 chan->hub_addr = (u8)hub_addr;
2440 chan->hub_port = (u8)hub_port;
2443 static void dwc2_hc_init_xfer(struct dwc2_hsotg *hsotg,
2444 struct dwc2_host_chan *chan,
2445 struct dwc2_qtd *qtd)
2447 struct dwc2_hcd_urb *urb = qtd->urb;
2448 struct dwc2_hcd_iso_packet_desc *frame_desc;
2450 switch (dwc2_hcd_get_pipe_type(&urb->pipe_info)) {
2451 case USB_ENDPOINT_XFER_CONTROL:
2452 chan->ep_type = USB_ENDPOINT_XFER_CONTROL;
2454 switch (qtd->control_phase) {
2455 case DWC2_CONTROL_SETUP:
2456 dev_vdbg(hsotg->dev, " Control setup transaction\n");
2457 chan->do_ping = 0;
2458 chan->ep_is_in = 0;
2459 chan->data_pid_start = DWC2_HC_PID_SETUP;
2460 if (hsotg->core_params->dma_enable > 0)
2461 chan->xfer_dma = urb->setup_dma;
2462 else
2463 chan->xfer_buf = urb->setup_packet;
2464 chan->xfer_len = 8;
2465 break;
2467 case DWC2_CONTROL_DATA:
2468 dev_vdbg(hsotg->dev, " Control data transaction\n");
2469 chan->data_pid_start = qtd->data_toggle;
2470 break;
2472 case DWC2_CONTROL_STATUS:
2474 * Direction is opposite of data direction or IN if no
2475 * data
2477 dev_vdbg(hsotg->dev, " Control status transaction\n");
2478 if (urb->length == 0)
2479 chan->ep_is_in = 1;
2480 else
2481 chan->ep_is_in =
2482 dwc2_hcd_is_pipe_out(&urb->pipe_info);
2483 if (chan->ep_is_in)
2484 chan->do_ping = 0;
2485 chan->data_pid_start = DWC2_HC_PID_DATA1;
2486 chan->xfer_len = 0;
2487 if (hsotg->core_params->dma_enable > 0)
2488 chan->xfer_dma = hsotg->status_buf_dma;
2489 else
2490 chan->xfer_buf = hsotg->status_buf;
2491 break;
2493 break;
2495 case USB_ENDPOINT_XFER_BULK:
2496 chan->ep_type = USB_ENDPOINT_XFER_BULK;
2497 break;
2499 case USB_ENDPOINT_XFER_INT:
2500 chan->ep_type = USB_ENDPOINT_XFER_INT;
2501 break;
2503 case USB_ENDPOINT_XFER_ISOC:
2504 chan->ep_type = USB_ENDPOINT_XFER_ISOC;
2505 if (hsotg->core_params->dma_desc_enable > 0)
2506 break;
2508 frame_desc = &urb->iso_descs[qtd->isoc_frame_index];
2509 frame_desc->status = 0;
2511 if (hsotg->core_params->dma_enable > 0) {
2512 chan->xfer_dma = urb->dma;
2513 chan->xfer_dma += frame_desc->offset +
2514 qtd->isoc_split_offset;
2515 } else {
2516 chan->xfer_buf = urb->buf;
2517 chan->xfer_buf += frame_desc->offset +
2518 qtd->isoc_split_offset;
2521 chan->xfer_len = frame_desc->length - qtd->isoc_split_offset;
2523 if (chan->xact_pos == DWC2_HCSPLT_XACTPOS_ALL) {
2524 if (chan->xfer_len <= 188)
2525 chan->xact_pos = DWC2_HCSPLT_XACTPOS_ALL;
2526 else
2527 chan->xact_pos = DWC2_HCSPLT_XACTPOS_BEGIN;
2529 break;
2533 #define DWC2_USB_DMA_ALIGN 4
2535 struct dma_aligned_buffer {
2536 void *kmalloc_ptr;
2537 void *old_xfer_buffer;
2538 u8 data[0];
2541 static void dwc2_free_dma_aligned_buffer(struct urb *urb)
2543 struct dma_aligned_buffer *temp;
2545 if (!(urb->transfer_flags & URB_ALIGNED_TEMP_BUFFER))
2546 return;
2548 temp = container_of(urb->transfer_buffer,
2549 struct dma_aligned_buffer, data);
2551 if (usb_urb_dir_in(urb))
2552 memcpy(temp->old_xfer_buffer, temp->data,
2553 urb->transfer_buffer_length);
2554 urb->transfer_buffer = temp->old_xfer_buffer;
2555 kfree(temp->kmalloc_ptr);
2557 urb->transfer_flags &= ~URB_ALIGNED_TEMP_BUFFER;
2560 static int dwc2_alloc_dma_aligned_buffer(struct urb *urb, gfp_t mem_flags)
2562 struct dma_aligned_buffer *temp, *kmalloc_ptr;
2563 size_t kmalloc_size;
2565 if (urb->num_sgs || urb->sg ||
2566 urb->transfer_buffer_length == 0 ||
2567 !((uintptr_t)urb->transfer_buffer & (DWC2_USB_DMA_ALIGN - 1)))
2568 return 0;
2570 /* Allocate a buffer with enough padding for alignment */
2571 kmalloc_size = urb->transfer_buffer_length +
2572 sizeof(struct dma_aligned_buffer) + DWC2_USB_DMA_ALIGN - 1;
2574 kmalloc_ptr = kmalloc(kmalloc_size, mem_flags);
2575 if (!kmalloc_ptr)
2576 return -ENOMEM;
2578 /* Position our struct dma_aligned_buffer such that data is aligned */
2579 temp = PTR_ALIGN(kmalloc_ptr + 1, DWC2_USB_DMA_ALIGN) - 1;
2580 temp->kmalloc_ptr = kmalloc_ptr;
2581 temp->old_xfer_buffer = urb->transfer_buffer;
2582 if (usb_urb_dir_out(urb))
2583 memcpy(temp->data, urb->transfer_buffer,
2584 urb->transfer_buffer_length);
2585 urb->transfer_buffer = temp->data;
2587 urb->transfer_flags |= URB_ALIGNED_TEMP_BUFFER;
2589 return 0;
2592 static int dwc2_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
2593 gfp_t mem_flags)
2595 int ret;
2597 /* We assume setup_dma is always aligned; warn if not */
2598 WARN_ON_ONCE(urb->setup_dma &&
2599 (urb->setup_dma & (DWC2_USB_DMA_ALIGN - 1)));
2601 ret = dwc2_alloc_dma_aligned_buffer(urb, mem_flags);
2602 if (ret)
2603 return ret;
2605 ret = usb_hcd_map_urb_for_dma(hcd, urb, mem_flags);
2606 if (ret)
2607 dwc2_free_dma_aligned_buffer(urb);
2609 return ret;
2612 static void dwc2_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
2614 usb_hcd_unmap_urb_for_dma(hcd, urb);
2615 dwc2_free_dma_aligned_buffer(urb);
2619 * dwc2_assign_and_init_hc() - Assigns transactions from a QTD to a free host
2620 * channel and initializes the host channel to perform the transactions. The
2621 * host channel is removed from the free list.
2623 * @hsotg: The HCD state structure
2624 * @qh: Transactions from the first QTD for this QH are selected and assigned
2625 * to a free host channel
2627 static int dwc2_assign_and_init_hc(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh)
2629 struct dwc2_host_chan *chan;
2630 struct dwc2_hcd_urb *urb;
2631 struct dwc2_qtd *qtd;
2633 if (dbg_qh(qh))
2634 dev_vdbg(hsotg->dev, "%s(%p,%p)\n", __func__, hsotg, qh);
2636 if (list_empty(&qh->qtd_list)) {
2637 dev_dbg(hsotg->dev, "No QTDs in QH list\n");
2638 return -ENOMEM;
2641 if (list_empty(&hsotg->free_hc_list)) {
2642 dev_dbg(hsotg->dev, "No free channel to assign\n");
2643 return -ENOMEM;
2646 chan = list_first_entry(&hsotg->free_hc_list, struct dwc2_host_chan,
2647 hc_list_entry);
2649 /* Remove host channel from free list */
2650 list_del_init(&chan->hc_list_entry);
2652 qtd = list_first_entry(&qh->qtd_list, struct dwc2_qtd, qtd_list_entry);
2653 urb = qtd->urb;
2654 qh->channel = chan;
2655 qtd->in_process = 1;
2658 * Use usb_pipedevice to determine device address. This address is
2659 * 0 before the SET_ADDRESS command and the correct address afterward.
2661 chan->dev_addr = dwc2_hcd_get_dev_addr(&urb->pipe_info);
2662 chan->ep_num = dwc2_hcd_get_ep_num(&urb->pipe_info);
2663 chan->speed = qh->dev_speed;
2664 chan->max_packet = dwc2_max_packet(qh->maxp);
2666 chan->xfer_started = 0;
2667 chan->halt_status = DWC2_HC_XFER_NO_HALT_STATUS;
2668 chan->error_state = (qtd->error_count > 0);
2669 chan->halt_on_queue = 0;
2670 chan->halt_pending = 0;
2671 chan->requests = 0;
2674 * The following values may be modified in the transfer type section
2675 * below. The xfer_len value may be reduced when the transfer is
2676 * started to accommodate the max widths of the XferSize and PktCnt
2677 * fields in the HCTSIZn register.
2680 chan->ep_is_in = (dwc2_hcd_is_pipe_in(&urb->pipe_info) != 0);
2681 if (chan->ep_is_in)
2682 chan->do_ping = 0;
2683 else
2684 chan->do_ping = qh->ping_state;
2686 chan->data_pid_start = qh->data_toggle;
2687 chan->multi_count = 1;
2689 if (urb->actual_length > urb->length &&
2690 !dwc2_hcd_is_pipe_in(&urb->pipe_info))
2691 urb->actual_length = urb->length;
2693 if (hsotg->core_params->dma_enable > 0)
2694 chan->xfer_dma = urb->dma + urb->actual_length;
2695 else
2696 chan->xfer_buf = (u8 *)urb->buf + urb->actual_length;
2698 chan->xfer_len = urb->length - urb->actual_length;
2699 chan->xfer_count = 0;
2701 /* Set the split attributes if required */
2702 if (qh->do_split)
2703 dwc2_hc_init_split(hsotg, chan, qtd, urb);
2704 else
2705 chan->do_split = 0;
2707 /* Set the transfer attributes */
2708 dwc2_hc_init_xfer(hsotg, chan, qtd);
2710 if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
2711 chan->ep_type == USB_ENDPOINT_XFER_ISOC)
2713 * This value may be modified when the transfer is started
2714 * to reflect the actual transfer length
2716 chan->multi_count = dwc2_hb_mult(qh->maxp);
2718 if (hsotg->core_params->dma_desc_enable > 0) {
2719 chan->desc_list_addr = qh->desc_list_dma;
2720 chan->desc_list_sz = qh->desc_list_sz;
2723 dwc2_hc_init(hsotg, chan);
2724 chan->qh = qh;
2726 return 0;
2730 * dwc2_hcd_select_transactions() - Selects transactions from the HCD transfer
2731 * schedule and assigns them to available host channels. Called from the HCD
2732 * interrupt handler functions.
2734 * @hsotg: The HCD state structure
2736 * Return: The types of new transactions that were assigned to host channels
2738 enum dwc2_transaction_type dwc2_hcd_select_transactions(
2739 struct dwc2_hsotg *hsotg)
2741 enum dwc2_transaction_type ret_val = DWC2_TRANSACTION_NONE;
2742 struct list_head *qh_ptr;
2743 struct dwc2_qh *qh;
2744 int num_channels;
2746 #ifdef DWC2_DEBUG_SOF
2747 dev_vdbg(hsotg->dev, " Select Transactions\n");
2748 #endif
2750 /* Process entries in the periodic ready list */
2751 qh_ptr = hsotg->periodic_sched_ready.next;
2752 while (qh_ptr != &hsotg->periodic_sched_ready) {
2753 if (list_empty(&hsotg->free_hc_list))
2754 break;
2755 if (hsotg->core_params->uframe_sched > 0) {
2756 if (hsotg->available_host_channels <= 1)
2757 break;
2758 hsotg->available_host_channels--;
2760 qh = list_entry(qh_ptr, struct dwc2_qh, qh_list_entry);
2761 if (dwc2_assign_and_init_hc(hsotg, qh))
2762 break;
2765 * Move the QH from the periodic ready schedule to the
2766 * periodic assigned schedule
2768 qh_ptr = qh_ptr->next;
2769 list_move_tail(&qh->qh_list_entry,
2770 &hsotg->periodic_sched_assigned);
2771 ret_val = DWC2_TRANSACTION_PERIODIC;
2775 * Process entries in the inactive portion of the non-periodic
2776 * schedule. Some free host channels may not be used if they are
2777 * reserved for periodic transfers.
2779 num_channels = hsotg->core_params->host_channels;
2780 qh_ptr = hsotg->non_periodic_sched_inactive.next;
2781 while (qh_ptr != &hsotg->non_periodic_sched_inactive) {
2782 if (hsotg->core_params->uframe_sched <= 0 &&
2783 hsotg->non_periodic_channels >= num_channels -
2784 hsotg->periodic_channels)
2785 break;
2786 if (list_empty(&hsotg->free_hc_list))
2787 break;
2788 qh = list_entry(qh_ptr, struct dwc2_qh, qh_list_entry);
2789 if (hsotg->core_params->uframe_sched > 0) {
2790 if (hsotg->available_host_channels < 1)
2791 break;
2792 hsotg->available_host_channels--;
2795 if (dwc2_assign_and_init_hc(hsotg, qh))
2796 break;
2799 * Move the QH from the non-periodic inactive schedule to the
2800 * non-periodic active schedule
2802 qh_ptr = qh_ptr->next;
2803 list_move_tail(&qh->qh_list_entry,
2804 &hsotg->non_periodic_sched_active);
2806 if (ret_val == DWC2_TRANSACTION_NONE)
2807 ret_val = DWC2_TRANSACTION_NON_PERIODIC;
2808 else
2809 ret_val = DWC2_TRANSACTION_ALL;
2811 if (hsotg->core_params->uframe_sched <= 0)
2812 hsotg->non_periodic_channels++;
2815 return ret_val;
2819 * dwc2_queue_transaction() - Attempts to queue a single transaction request for
2820 * a host channel associated with either a periodic or non-periodic transfer
2822 * @hsotg: The HCD state structure
2823 * @chan: Host channel descriptor associated with either a periodic or
2824 * non-periodic transfer
2825 * @fifo_dwords_avail: Number of DWORDs available in the periodic Tx FIFO
2826 * for periodic transfers or the non-periodic Tx FIFO
2827 * for non-periodic transfers
2829 * Return: 1 if a request is queued and more requests may be needed to
2830 * complete the transfer, 0 if no more requests are required for this
2831 * transfer, -1 if there is insufficient space in the Tx FIFO
2833 * This function assumes that there is space available in the appropriate
2834 * request queue. For an OUT transfer or SETUP transaction in Slave mode,
2835 * it checks whether space is available in the appropriate Tx FIFO.
2837 * Must be called with interrupt disabled and spinlock held
2839 static int dwc2_queue_transaction(struct dwc2_hsotg *hsotg,
2840 struct dwc2_host_chan *chan,
2841 u16 fifo_dwords_avail)
2843 int retval = 0;
2845 if (chan->do_split)
2846 /* Put ourselves on the list to keep order straight */
2847 list_move_tail(&chan->split_order_list_entry,
2848 &hsotg->split_order);
2850 if (hsotg->core_params->dma_enable > 0) {
2851 if (hsotg->core_params->dma_desc_enable > 0) {
2852 if (!chan->xfer_started ||
2853 chan->ep_type == USB_ENDPOINT_XFER_ISOC) {
2854 dwc2_hcd_start_xfer_ddma(hsotg, chan->qh);
2855 chan->qh->ping_state = 0;
2857 } else if (!chan->xfer_started) {
2858 dwc2_hc_start_transfer(hsotg, chan);
2859 chan->qh->ping_state = 0;
2861 } else if (chan->halt_pending) {
2862 /* Don't queue a request if the channel has been halted */
2863 } else if (chan->halt_on_queue) {
2864 dwc2_hc_halt(hsotg, chan, chan->halt_status);
2865 } else if (chan->do_ping) {
2866 if (!chan->xfer_started)
2867 dwc2_hc_start_transfer(hsotg, chan);
2868 } else if (!chan->ep_is_in ||
2869 chan->data_pid_start == DWC2_HC_PID_SETUP) {
2870 if ((fifo_dwords_avail * 4) >= chan->max_packet) {
2871 if (!chan->xfer_started) {
2872 dwc2_hc_start_transfer(hsotg, chan);
2873 retval = 1;
2874 } else {
2875 retval = dwc2_hc_continue_transfer(hsotg, chan);
2877 } else {
2878 retval = -1;
2880 } else {
2881 if (!chan->xfer_started) {
2882 dwc2_hc_start_transfer(hsotg, chan);
2883 retval = 1;
2884 } else {
2885 retval = dwc2_hc_continue_transfer(hsotg, chan);
2889 return retval;
2893 * Processes periodic channels for the next frame and queues transactions for
2894 * these channels to the DWC_otg controller. After queueing transactions, the
2895 * Periodic Tx FIFO Empty interrupt is enabled if there are more transactions
2896 * to queue as Periodic Tx FIFO or request queue space becomes available.
2897 * Otherwise, the Periodic Tx FIFO Empty interrupt is disabled.
2899 * Must be called with interrupt disabled and spinlock held
2901 static void dwc2_process_periodic_channels(struct dwc2_hsotg *hsotg)
2903 struct list_head *qh_ptr;
2904 struct dwc2_qh *qh;
2905 u32 tx_status;
2906 u32 fspcavail;
2907 u32 gintmsk;
2908 int status;
2909 bool no_queue_space = false;
2910 bool no_fifo_space = false;
2911 u32 qspcavail;
2913 /* If empty list then just adjust interrupt enables */
2914 if (list_empty(&hsotg->periodic_sched_assigned))
2915 goto exit;
2917 if (dbg_perio())
2918 dev_vdbg(hsotg->dev, "Queue periodic transactions\n");
2920 tx_status = dwc2_readl(hsotg->regs + HPTXSTS);
2921 qspcavail = (tx_status & TXSTS_QSPCAVAIL_MASK) >>
2922 TXSTS_QSPCAVAIL_SHIFT;
2923 fspcavail = (tx_status & TXSTS_FSPCAVAIL_MASK) >>
2924 TXSTS_FSPCAVAIL_SHIFT;
2926 if (dbg_perio()) {
2927 dev_vdbg(hsotg->dev, " P Tx Req Queue Space Avail (before queue): %d\n",
2928 qspcavail);
2929 dev_vdbg(hsotg->dev, " P Tx FIFO Space Avail (before queue): %d\n",
2930 fspcavail);
2933 qh_ptr = hsotg->periodic_sched_assigned.next;
2934 while (qh_ptr != &hsotg->periodic_sched_assigned) {
2935 tx_status = dwc2_readl(hsotg->regs + HPTXSTS);
2936 qspcavail = (tx_status & TXSTS_QSPCAVAIL_MASK) >>
2937 TXSTS_QSPCAVAIL_SHIFT;
2938 if (qspcavail == 0) {
2939 no_queue_space = 1;
2940 break;
2943 qh = list_entry(qh_ptr, struct dwc2_qh, qh_list_entry);
2944 if (!qh->channel) {
2945 qh_ptr = qh_ptr->next;
2946 continue;
2949 /* Make sure EP's TT buffer is clean before queueing qtds */
2950 if (qh->tt_buffer_dirty) {
2951 qh_ptr = qh_ptr->next;
2952 continue;
2956 * Set a flag if we're queuing high-bandwidth in slave mode.
2957 * The flag prevents any halts to get into the request queue in
2958 * the middle of multiple high-bandwidth packets getting queued.
2960 if (hsotg->core_params->dma_enable <= 0 &&
2961 qh->channel->multi_count > 1)
2962 hsotg->queuing_high_bandwidth = 1;
2964 fspcavail = (tx_status & TXSTS_FSPCAVAIL_MASK) >>
2965 TXSTS_FSPCAVAIL_SHIFT;
2966 status = dwc2_queue_transaction(hsotg, qh->channel, fspcavail);
2967 if (status < 0) {
2968 no_fifo_space = 1;
2969 break;
2973 * In Slave mode, stay on the current transfer until there is
2974 * nothing more to do or the high-bandwidth request count is
2975 * reached. In DMA mode, only need to queue one request. The
2976 * controller automatically handles multiple packets for
2977 * high-bandwidth transfers.
2979 if (hsotg->core_params->dma_enable > 0 || status == 0 ||
2980 qh->channel->requests == qh->channel->multi_count) {
2981 qh_ptr = qh_ptr->next;
2983 * Move the QH from the periodic assigned schedule to
2984 * the periodic queued schedule
2986 list_move_tail(&qh->qh_list_entry,
2987 &hsotg->periodic_sched_queued);
2989 /* done queuing high bandwidth */
2990 hsotg->queuing_high_bandwidth = 0;
2994 exit:
2995 if (no_queue_space || no_fifo_space ||
2996 (hsotg->core_params->dma_enable <= 0 &&
2997 !list_empty(&hsotg->periodic_sched_assigned))) {
2999 * May need to queue more transactions as the request
3000 * queue or Tx FIFO empties. Enable the periodic Tx
3001 * FIFO empty interrupt. (Always use the half-empty
3002 * level to ensure that new requests are loaded as
3003 * soon as possible.)
3005 gintmsk = dwc2_readl(hsotg->regs + GINTMSK);
3006 if (!(gintmsk & GINTSTS_PTXFEMP)) {
3007 gintmsk |= GINTSTS_PTXFEMP;
3008 dwc2_writel(gintmsk, hsotg->regs + GINTMSK);
3010 } else {
3012 * Disable the Tx FIFO empty interrupt since there are
3013 * no more transactions that need to be queued right
3014 * now. This function is called from interrupt
3015 * handlers to queue more transactions as transfer
3016 * states change.
3018 gintmsk = dwc2_readl(hsotg->regs + GINTMSK);
3019 if (gintmsk & GINTSTS_PTXFEMP) {
3020 gintmsk &= ~GINTSTS_PTXFEMP;
3021 dwc2_writel(gintmsk, hsotg->regs + GINTMSK);
3027 * Processes active non-periodic channels and queues transactions for these
3028 * channels to the DWC_otg controller. After queueing transactions, the NP Tx
3029 * FIFO Empty interrupt is enabled if there are more transactions to queue as
3030 * NP Tx FIFO or request queue space becomes available. Otherwise, the NP Tx
3031 * FIFO Empty interrupt is disabled.
3033 * Must be called with interrupt disabled and spinlock held
3035 static void dwc2_process_non_periodic_channels(struct dwc2_hsotg *hsotg)
3037 struct list_head *orig_qh_ptr;
3038 struct dwc2_qh *qh;
3039 u32 tx_status;
3040 u32 qspcavail;
3041 u32 fspcavail;
3042 u32 gintmsk;
3043 int status;
3044 int no_queue_space = 0;
3045 int no_fifo_space = 0;
3046 int more_to_do = 0;
3048 dev_vdbg(hsotg->dev, "Queue non-periodic transactions\n");
3050 tx_status = dwc2_readl(hsotg->regs + GNPTXSTS);
3051 qspcavail = (tx_status & TXSTS_QSPCAVAIL_MASK) >>
3052 TXSTS_QSPCAVAIL_SHIFT;
3053 fspcavail = (tx_status & TXSTS_FSPCAVAIL_MASK) >>
3054 TXSTS_FSPCAVAIL_SHIFT;
3055 dev_vdbg(hsotg->dev, " NP Tx Req Queue Space Avail (before queue): %d\n",
3056 qspcavail);
3057 dev_vdbg(hsotg->dev, " NP Tx FIFO Space Avail (before queue): %d\n",
3058 fspcavail);
3061 * Keep track of the starting point. Skip over the start-of-list
3062 * entry.
3064 if (hsotg->non_periodic_qh_ptr == &hsotg->non_periodic_sched_active)
3065 hsotg->non_periodic_qh_ptr = hsotg->non_periodic_qh_ptr->next;
3066 orig_qh_ptr = hsotg->non_periodic_qh_ptr;
3069 * Process once through the active list or until no more space is
3070 * available in the request queue or the Tx FIFO
3072 do {
3073 tx_status = dwc2_readl(hsotg->regs + GNPTXSTS);
3074 qspcavail = (tx_status & TXSTS_QSPCAVAIL_MASK) >>
3075 TXSTS_QSPCAVAIL_SHIFT;
3076 if (hsotg->core_params->dma_enable <= 0 && qspcavail == 0) {
3077 no_queue_space = 1;
3078 break;
3081 qh = list_entry(hsotg->non_periodic_qh_ptr, struct dwc2_qh,
3082 qh_list_entry);
3083 if (!qh->channel)
3084 goto next;
3086 /* Make sure EP's TT buffer is clean before queueing qtds */
3087 if (qh->tt_buffer_dirty)
3088 goto next;
3090 fspcavail = (tx_status & TXSTS_FSPCAVAIL_MASK) >>
3091 TXSTS_FSPCAVAIL_SHIFT;
3092 status = dwc2_queue_transaction(hsotg, qh->channel, fspcavail);
3094 if (status > 0) {
3095 more_to_do = 1;
3096 } else if (status < 0) {
3097 no_fifo_space = 1;
3098 break;
3100 next:
3101 /* Advance to next QH, skipping start-of-list entry */
3102 hsotg->non_periodic_qh_ptr = hsotg->non_periodic_qh_ptr->next;
3103 if (hsotg->non_periodic_qh_ptr ==
3104 &hsotg->non_periodic_sched_active)
3105 hsotg->non_periodic_qh_ptr =
3106 hsotg->non_periodic_qh_ptr->next;
3107 } while (hsotg->non_periodic_qh_ptr != orig_qh_ptr);
3109 if (hsotg->core_params->dma_enable <= 0) {
3110 tx_status = dwc2_readl(hsotg->regs + GNPTXSTS);
3111 qspcavail = (tx_status & TXSTS_QSPCAVAIL_MASK) >>
3112 TXSTS_QSPCAVAIL_SHIFT;
3113 fspcavail = (tx_status & TXSTS_FSPCAVAIL_MASK) >>
3114 TXSTS_FSPCAVAIL_SHIFT;
3115 dev_vdbg(hsotg->dev,
3116 " NP Tx Req Queue Space Avail (after queue): %d\n",
3117 qspcavail);
3118 dev_vdbg(hsotg->dev,
3119 " NP Tx FIFO Space Avail (after queue): %d\n",
3120 fspcavail);
3122 if (more_to_do || no_queue_space || no_fifo_space) {
3124 * May need to queue more transactions as the request
3125 * queue or Tx FIFO empties. Enable the non-periodic
3126 * Tx FIFO empty interrupt. (Always use the half-empty
3127 * level to ensure that new requests are loaded as
3128 * soon as possible.)
3130 gintmsk = dwc2_readl(hsotg->regs + GINTMSK);
3131 gintmsk |= GINTSTS_NPTXFEMP;
3132 dwc2_writel(gintmsk, hsotg->regs + GINTMSK);
3133 } else {
3135 * Disable the Tx FIFO empty interrupt since there are
3136 * no more transactions that need to be queued right
3137 * now. This function is called from interrupt
3138 * handlers to queue more transactions as transfer
3139 * states change.
3141 gintmsk = dwc2_readl(hsotg->regs + GINTMSK);
3142 gintmsk &= ~GINTSTS_NPTXFEMP;
3143 dwc2_writel(gintmsk, hsotg->regs + GINTMSK);
3149 * dwc2_hcd_queue_transactions() - Processes the currently active host channels
3150 * and queues transactions for these channels to the DWC_otg controller. Called
3151 * from the HCD interrupt handler functions.
3153 * @hsotg: The HCD state structure
3154 * @tr_type: The type(s) of transactions to queue (non-periodic, periodic,
3155 * or both)
3157 * Must be called with interrupt disabled and spinlock held
3159 void dwc2_hcd_queue_transactions(struct dwc2_hsotg *hsotg,
3160 enum dwc2_transaction_type tr_type)
3162 #ifdef DWC2_DEBUG_SOF
3163 dev_vdbg(hsotg->dev, "Queue Transactions\n");
3164 #endif
3165 /* Process host channels associated with periodic transfers */
3166 if (tr_type == DWC2_TRANSACTION_PERIODIC ||
3167 tr_type == DWC2_TRANSACTION_ALL)
3168 dwc2_process_periodic_channels(hsotg);
3170 /* Process host channels associated with non-periodic transfers */
3171 if (tr_type == DWC2_TRANSACTION_NON_PERIODIC ||
3172 tr_type == DWC2_TRANSACTION_ALL) {
3173 if (!list_empty(&hsotg->non_periodic_sched_active)) {
3174 dwc2_process_non_periodic_channels(hsotg);
3175 } else {
3177 * Ensure NP Tx FIFO empty interrupt is disabled when
3178 * there are no non-periodic transfers to process
3180 u32 gintmsk = dwc2_readl(hsotg->regs + GINTMSK);
3182 gintmsk &= ~GINTSTS_NPTXFEMP;
3183 dwc2_writel(gintmsk, hsotg->regs + GINTMSK);
3188 static void dwc2_conn_id_status_change(struct work_struct *work)
3190 struct dwc2_hsotg *hsotg = container_of(work, struct dwc2_hsotg,
3191 wf_otg);
3192 u32 count = 0;
3193 u32 gotgctl;
3194 unsigned long flags;
3196 dev_dbg(hsotg->dev, "%s()\n", __func__);
3198 gotgctl = dwc2_readl(hsotg->regs + GOTGCTL);
3199 dev_dbg(hsotg->dev, "gotgctl=%0x\n", gotgctl);
3200 dev_dbg(hsotg->dev, "gotgctl.b.conidsts=%d\n",
3201 !!(gotgctl & GOTGCTL_CONID_B));
3203 /* B-Device connector (Device Mode) */
3204 if (gotgctl & GOTGCTL_CONID_B) {
3205 /* Wait for switch to device mode */
3206 dev_dbg(hsotg->dev, "connId B\n");
3207 while (!dwc2_is_device_mode(hsotg)) {
3208 dev_info(hsotg->dev,
3209 "Waiting for Peripheral Mode, Mode=%s\n",
3210 dwc2_is_host_mode(hsotg) ? "Host" :
3211 "Peripheral");
3212 usleep_range(20000, 40000);
3213 if (++count > 250)
3214 break;
3216 if (count > 250)
3217 dev_err(hsotg->dev,
3218 "Connection id status change timed out\n");
3219 hsotg->op_state = OTG_STATE_B_PERIPHERAL;
3220 dwc2_core_init(hsotg, false);
3221 dwc2_enable_global_interrupts(hsotg);
3222 spin_lock_irqsave(&hsotg->lock, flags);
3223 dwc2_hsotg_core_init_disconnected(hsotg, false);
3224 spin_unlock_irqrestore(&hsotg->lock, flags);
3225 dwc2_hsotg_core_connect(hsotg);
3226 } else {
3227 /* A-Device connector (Host Mode) */
3228 dev_dbg(hsotg->dev, "connId A\n");
3229 while (!dwc2_is_host_mode(hsotg)) {
3230 dev_info(hsotg->dev, "Waiting for Host Mode, Mode=%s\n",
3231 dwc2_is_host_mode(hsotg) ?
3232 "Host" : "Peripheral");
3233 usleep_range(20000, 40000);
3234 if (++count > 250)
3235 break;
3237 if (count > 250)
3238 dev_err(hsotg->dev,
3239 "Connection id status change timed out\n");
3240 hsotg->op_state = OTG_STATE_A_HOST;
3242 /* Initialize the Core for Host mode */
3243 dwc2_core_init(hsotg, false);
3244 dwc2_enable_global_interrupts(hsotg);
3245 dwc2_hcd_start(hsotg);
3249 static void dwc2_wakeup_detected(unsigned long data)
3251 struct dwc2_hsotg *hsotg = (struct dwc2_hsotg *)data;
3252 u32 hprt0;
3254 dev_dbg(hsotg->dev, "%s()\n", __func__);
3257 * Clear the Resume after 70ms. (Need 20 ms minimum. Use 70 ms
3258 * so that OPT tests pass with all PHYs.)
3260 hprt0 = dwc2_read_hprt0(hsotg);
3261 dev_dbg(hsotg->dev, "Resume: HPRT0=%0x\n", hprt0);
3262 hprt0 &= ~HPRT0_RES;
3263 dwc2_writel(hprt0, hsotg->regs + HPRT0);
3264 dev_dbg(hsotg->dev, "Clear Resume: HPRT0=%0x\n",
3265 dwc2_readl(hsotg->regs + HPRT0));
3267 dwc2_hcd_rem_wakeup(hsotg);
3268 hsotg->bus_suspended = 0;
3270 /* Change to L0 state */
3271 hsotg->lx_state = DWC2_L0;
3274 static int dwc2_host_is_b_hnp_enabled(struct dwc2_hsotg *hsotg)
3276 struct usb_hcd *hcd = dwc2_hsotg_to_hcd(hsotg);
3278 return hcd->self.b_hnp_enable;
3281 /* Must NOT be called with interrupt disabled or spinlock held */
3282 static void dwc2_port_suspend(struct dwc2_hsotg *hsotg, u16 windex)
3284 unsigned long flags;
3285 u32 hprt0;
3286 u32 pcgctl;
3287 u32 gotgctl;
3289 dev_dbg(hsotg->dev, "%s()\n", __func__);
3291 spin_lock_irqsave(&hsotg->lock, flags);
3293 if (windex == hsotg->otg_port && dwc2_host_is_b_hnp_enabled(hsotg)) {
3294 gotgctl = dwc2_readl(hsotg->regs + GOTGCTL);
3295 gotgctl |= GOTGCTL_HSTSETHNPEN;
3296 dwc2_writel(gotgctl, hsotg->regs + GOTGCTL);
3297 hsotg->op_state = OTG_STATE_A_SUSPEND;
3300 hprt0 = dwc2_read_hprt0(hsotg);
3301 hprt0 |= HPRT0_SUSP;
3302 dwc2_writel(hprt0, hsotg->regs + HPRT0);
3304 hsotg->bus_suspended = 1;
3307 * If hibernation is supported, Phy clock will be suspended
3308 * after registers are backuped.
3310 if (!hsotg->core_params->hibernation) {
3311 /* Suspend the Phy Clock */
3312 pcgctl = dwc2_readl(hsotg->regs + PCGCTL);
3313 pcgctl |= PCGCTL_STOPPCLK;
3314 dwc2_writel(pcgctl, hsotg->regs + PCGCTL);
3315 udelay(10);
3318 /* For HNP the bus must be suspended for at least 200ms */
3319 if (dwc2_host_is_b_hnp_enabled(hsotg)) {
3320 pcgctl = dwc2_readl(hsotg->regs + PCGCTL);
3321 pcgctl &= ~PCGCTL_STOPPCLK;
3322 dwc2_writel(pcgctl, hsotg->regs + PCGCTL);
3324 spin_unlock_irqrestore(&hsotg->lock, flags);
3326 usleep_range(200000, 250000);
3327 } else {
3328 spin_unlock_irqrestore(&hsotg->lock, flags);
3332 /* Must NOT be called with interrupt disabled or spinlock held */
3333 static void dwc2_port_resume(struct dwc2_hsotg *hsotg)
3335 unsigned long flags;
3336 u32 hprt0;
3337 u32 pcgctl;
3339 spin_lock_irqsave(&hsotg->lock, flags);
3342 * If hibernation is supported, Phy clock is already resumed
3343 * after registers restore.
3345 if (!hsotg->core_params->hibernation) {
3346 pcgctl = dwc2_readl(hsotg->regs + PCGCTL);
3347 pcgctl &= ~PCGCTL_STOPPCLK;
3348 dwc2_writel(pcgctl, hsotg->regs + PCGCTL);
3349 spin_unlock_irqrestore(&hsotg->lock, flags);
3350 usleep_range(20000, 40000);
3351 spin_lock_irqsave(&hsotg->lock, flags);
3354 hprt0 = dwc2_read_hprt0(hsotg);
3355 hprt0 |= HPRT0_RES;
3356 hprt0 &= ~HPRT0_SUSP;
3357 dwc2_writel(hprt0, hsotg->regs + HPRT0);
3358 spin_unlock_irqrestore(&hsotg->lock, flags);
3360 msleep(USB_RESUME_TIMEOUT);
3362 spin_lock_irqsave(&hsotg->lock, flags);
3363 hprt0 = dwc2_read_hprt0(hsotg);
3364 hprt0 &= ~(HPRT0_RES | HPRT0_SUSP);
3365 dwc2_writel(hprt0, hsotg->regs + HPRT0);
3366 hsotg->bus_suspended = 0;
3367 spin_unlock_irqrestore(&hsotg->lock, flags);
3370 /* Handles hub class-specific requests */
3371 static int dwc2_hcd_hub_control(struct dwc2_hsotg *hsotg, u16 typereq,
3372 u16 wvalue, u16 windex, char *buf, u16 wlength)
3374 struct usb_hub_descriptor *hub_desc;
3375 int retval = 0;
3376 u32 hprt0;
3377 u32 port_status;
3378 u32 speed;
3379 u32 pcgctl;
3381 switch (typereq) {
3382 case ClearHubFeature:
3383 dev_dbg(hsotg->dev, "ClearHubFeature %1xh\n", wvalue);
3385 switch (wvalue) {
3386 case C_HUB_LOCAL_POWER:
3387 case C_HUB_OVER_CURRENT:
3388 /* Nothing required here */
3389 break;
3391 default:
3392 retval = -EINVAL;
3393 dev_err(hsotg->dev,
3394 "ClearHubFeature request %1xh unknown\n",
3395 wvalue);
3397 break;
3399 case ClearPortFeature:
3400 if (wvalue != USB_PORT_FEAT_L1)
3401 if (!windex || windex > 1)
3402 goto error;
3403 switch (wvalue) {
3404 case USB_PORT_FEAT_ENABLE:
3405 dev_dbg(hsotg->dev,
3406 "ClearPortFeature USB_PORT_FEAT_ENABLE\n");
3407 hprt0 = dwc2_read_hprt0(hsotg);
3408 hprt0 |= HPRT0_ENA;
3409 dwc2_writel(hprt0, hsotg->regs + HPRT0);
3410 break;
3412 case USB_PORT_FEAT_SUSPEND:
3413 dev_dbg(hsotg->dev,
3414 "ClearPortFeature USB_PORT_FEAT_SUSPEND\n");
3416 if (hsotg->bus_suspended)
3417 dwc2_port_resume(hsotg);
3418 break;
3420 case USB_PORT_FEAT_POWER:
3421 dev_dbg(hsotg->dev,
3422 "ClearPortFeature USB_PORT_FEAT_POWER\n");
3423 hprt0 = dwc2_read_hprt0(hsotg);
3424 hprt0 &= ~HPRT0_PWR;
3425 dwc2_writel(hprt0, hsotg->regs + HPRT0);
3426 break;
3428 case USB_PORT_FEAT_INDICATOR:
3429 dev_dbg(hsotg->dev,
3430 "ClearPortFeature USB_PORT_FEAT_INDICATOR\n");
3431 /* Port indicator not supported */
3432 break;
3434 case USB_PORT_FEAT_C_CONNECTION:
3436 * Clears driver's internal Connect Status Change flag
3438 dev_dbg(hsotg->dev,
3439 "ClearPortFeature USB_PORT_FEAT_C_CONNECTION\n");
3440 hsotg->flags.b.port_connect_status_change = 0;
3441 break;
3443 case USB_PORT_FEAT_C_RESET:
3444 /* Clears driver's internal Port Reset Change flag */
3445 dev_dbg(hsotg->dev,
3446 "ClearPortFeature USB_PORT_FEAT_C_RESET\n");
3447 hsotg->flags.b.port_reset_change = 0;
3448 break;
3450 case USB_PORT_FEAT_C_ENABLE:
3452 * Clears the driver's internal Port Enable/Disable
3453 * Change flag
3455 dev_dbg(hsotg->dev,
3456 "ClearPortFeature USB_PORT_FEAT_C_ENABLE\n");
3457 hsotg->flags.b.port_enable_change = 0;
3458 break;
3460 case USB_PORT_FEAT_C_SUSPEND:
3462 * Clears the driver's internal Port Suspend Change
3463 * flag, which is set when resume signaling on the host
3464 * port is complete
3466 dev_dbg(hsotg->dev,
3467 "ClearPortFeature USB_PORT_FEAT_C_SUSPEND\n");
3468 hsotg->flags.b.port_suspend_change = 0;
3469 break;
3471 case USB_PORT_FEAT_C_PORT_L1:
3472 dev_dbg(hsotg->dev,
3473 "ClearPortFeature USB_PORT_FEAT_C_PORT_L1\n");
3474 hsotg->flags.b.port_l1_change = 0;
3475 break;
3477 case USB_PORT_FEAT_C_OVER_CURRENT:
3478 dev_dbg(hsotg->dev,
3479 "ClearPortFeature USB_PORT_FEAT_C_OVER_CURRENT\n");
3480 hsotg->flags.b.port_over_current_change = 0;
3481 break;
3483 default:
3484 retval = -EINVAL;
3485 dev_err(hsotg->dev,
3486 "ClearPortFeature request %1xh unknown or unsupported\n",
3487 wvalue);
3489 break;
3491 case GetHubDescriptor:
3492 dev_dbg(hsotg->dev, "GetHubDescriptor\n");
3493 hub_desc = (struct usb_hub_descriptor *)buf;
3494 hub_desc->bDescLength = 9;
3495 hub_desc->bDescriptorType = USB_DT_HUB;
3496 hub_desc->bNbrPorts = 1;
3497 hub_desc->wHubCharacteristics =
3498 cpu_to_le16(HUB_CHAR_COMMON_LPSM |
3499 HUB_CHAR_INDV_PORT_OCPM);
3500 hub_desc->bPwrOn2PwrGood = 1;
3501 hub_desc->bHubContrCurrent = 0;
3502 hub_desc->u.hs.DeviceRemovable[0] = 0;
3503 hub_desc->u.hs.DeviceRemovable[1] = 0xff;
3504 break;
3506 case GetHubStatus:
3507 dev_dbg(hsotg->dev, "GetHubStatus\n");
3508 memset(buf, 0, 4);
3509 break;
3511 case GetPortStatus:
3512 dev_vdbg(hsotg->dev,
3513 "GetPortStatus wIndex=0x%04x flags=0x%08x\n", windex,
3514 hsotg->flags.d32);
3515 if (!windex || windex > 1)
3516 goto error;
3518 port_status = 0;
3519 if (hsotg->flags.b.port_connect_status_change)
3520 port_status |= USB_PORT_STAT_C_CONNECTION << 16;
3521 if (hsotg->flags.b.port_enable_change)
3522 port_status |= USB_PORT_STAT_C_ENABLE << 16;
3523 if (hsotg->flags.b.port_suspend_change)
3524 port_status |= USB_PORT_STAT_C_SUSPEND << 16;
3525 if (hsotg->flags.b.port_l1_change)
3526 port_status |= USB_PORT_STAT_C_L1 << 16;
3527 if (hsotg->flags.b.port_reset_change)
3528 port_status |= USB_PORT_STAT_C_RESET << 16;
3529 if (hsotg->flags.b.port_over_current_change) {
3530 dev_warn(hsotg->dev, "Overcurrent change detected\n");
3531 port_status |= USB_PORT_STAT_C_OVERCURRENT << 16;
3534 if (!hsotg->flags.b.port_connect_status) {
3536 * The port is disconnected, which means the core is
3537 * either in device mode or it soon will be. Just
3538 * return 0's for the remainder of the port status
3539 * since the port register can't be read if the core
3540 * is in device mode.
3542 *(__le32 *)buf = cpu_to_le32(port_status);
3543 break;
3546 hprt0 = dwc2_readl(hsotg->regs + HPRT0);
3547 dev_vdbg(hsotg->dev, " HPRT0: 0x%08x\n", hprt0);
3549 if (hprt0 & HPRT0_CONNSTS)
3550 port_status |= USB_PORT_STAT_CONNECTION;
3551 if (hprt0 & HPRT0_ENA)
3552 port_status |= USB_PORT_STAT_ENABLE;
3553 if (hprt0 & HPRT0_SUSP)
3554 port_status |= USB_PORT_STAT_SUSPEND;
3555 if (hprt0 & HPRT0_OVRCURRACT)
3556 port_status |= USB_PORT_STAT_OVERCURRENT;
3557 if (hprt0 & HPRT0_RST)
3558 port_status |= USB_PORT_STAT_RESET;
3559 if (hprt0 & HPRT0_PWR)
3560 port_status |= USB_PORT_STAT_POWER;
3562 speed = (hprt0 & HPRT0_SPD_MASK) >> HPRT0_SPD_SHIFT;
3563 if (speed == HPRT0_SPD_HIGH_SPEED)
3564 port_status |= USB_PORT_STAT_HIGH_SPEED;
3565 else if (speed == HPRT0_SPD_LOW_SPEED)
3566 port_status |= USB_PORT_STAT_LOW_SPEED;
3568 if (hprt0 & HPRT0_TSTCTL_MASK)
3569 port_status |= USB_PORT_STAT_TEST;
3570 /* USB_PORT_FEAT_INDICATOR unsupported always 0 */
3572 if (hsotg->core_params->dma_desc_fs_enable) {
3574 * Enable descriptor DMA only if a full speed
3575 * device is connected.
3577 if (hsotg->new_connection &&
3578 ((port_status &
3579 (USB_PORT_STAT_CONNECTION |
3580 USB_PORT_STAT_HIGH_SPEED |
3581 USB_PORT_STAT_LOW_SPEED)) ==
3582 USB_PORT_STAT_CONNECTION)) {
3583 u32 hcfg;
3585 dev_info(hsotg->dev, "Enabling descriptor DMA mode\n");
3586 hsotg->core_params->dma_desc_enable = 1;
3587 hcfg = dwc2_readl(hsotg->regs + HCFG);
3588 hcfg |= HCFG_DESCDMA;
3589 dwc2_writel(hcfg, hsotg->regs + HCFG);
3590 hsotg->new_connection = false;
3594 dev_vdbg(hsotg->dev, "port_status=%08x\n", port_status);
3595 *(__le32 *)buf = cpu_to_le32(port_status);
3596 break;
3598 case SetHubFeature:
3599 dev_dbg(hsotg->dev, "SetHubFeature\n");
3600 /* No HUB features supported */
3601 break;
3603 case SetPortFeature:
3604 dev_dbg(hsotg->dev, "SetPortFeature\n");
3605 if (wvalue != USB_PORT_FEAT_TEST && (!windex || windex > 1))
3606 goto error;
3608 if (!hsotg->flags.b.port_connect_status) {
3610 * The port is disconnected, which means the core is
3611 * either in device mode or it soon will be. Just
3612 * return without doing anything since the port
3613 * register can't be written if the core is in device
3614 * mode.
3616 break;
3619 switch (wvalue) {
3620 case USB_PORT_FEAT_SUSPEND:
3621 dev_dbg(hsotg->dev,
3622 "SetPortFeature - USB_PORT_FEAT_SUSPEND\n");
3623 if (windex != hsotg->otg_port)
3624 goto error;
3625 dwc2_port_suspend(hsotg, windex);
3626 break;
3628 case USB_PORT_FEAT_POWER:
3629 dev_dbg(hsotg->dev,
3630 "SetPortFeature - USB_PORT_FEAT_POWER\n");
3631 hprt0 = dwc2_read_hprt0(hsotg);
3632 hprt0 |= HPRT0_PWR;
3633 dwc2_writel(hprt0, hsotg->regs + HPRT0);
3634 break;
3636 case USB_PORT_FEAT_RESET:
3637 hprt0 = dwc2_read_hprt0(hsotg);
3638 dev_dbg(hsotg->dev,
3639 "SetPortFeature - USB_PORT_FEAT_RESET\n");
3640 pcgctl = dwc2_readl(hsotg->regs + PCGCTL);
3641 pcgctl &= ~(PCGCTL_ENBL_SLEEP_GATING | PCGCTL_STOPPCLK);
3642 dwc2_writel(pcgctl, hsotg->regs + PCGCTL);
3643 /* ??? Original driver does this */
3644 dwc2_writel(0, hsotg->regs + PCGCTL);
3646 hprt0 = dwc2_read_hprt0(hsotg);
3647 /* Clear suspend bit if resetting from suspend state */
3648 hprt0 &= ~HPRT0_SUSP;
3651 * When B-Host the Port reset bit is set in the Start
3652 * HCD Callback function, so that the reset is started
3653 * within 1ms of the HNP success interrupt
3655 if (!dwc2_hcd_is_b_host(hsotg)) {
3656 hprt0 |= HPRT0_PWR | HPRT0_RST;
3657 dev_dbg(hsotg->dev,
3658 "In host mode, hprt0=%08x\n", hprt0);
3659 dwc2_writel(hprt0, hsotg->regs + HPRT0);
3662 /* Clear reset bit in 10ms (FS/LS) or 50ms (HS) */
3663 usleep_range(50000, 70000);
3664 hprt0 &= ~HPRT0_RST;
3665 dwc2_writel(hprt0, hsotg->regs + HPRT0);
3666 hsotg->lx_state = DWC2_L0; /* Now back to On state */
3667 break;
3669 case USB_PORT_FEAT_INDICATOR:
3670 dev_dbg(hsotg->dev,
3671 "SetPortFeature - USB_PORT_FEAT_INDICATOR\n");
3672 /* Not supported */
3673 break;
3675 case USB_PORT_FEAT_TEST:
3676 hprt0 = dwc2_read_hprt0(hsotg);
3677 dev_dbg(hsotg->dev,
3678 "SetPortFeature - USB_PORT_FEAT_TEST\n");
3679 hprt0 &= ~HPRT0_TSTCTL_MASK;
3680 hprt0 |= (windex >> 8) << HPRT0_TSTCTL_SHIFT;
3681 dwc2_writel(hprt0, hsotg->regs + HPRT0);
3682 break;
3684 default:
3685 retval = -EINVAL;
3686 dev_err(hsotg->dev,
3687 "SetPortFeature %1xh unknown or unsupported\n",
3688 wvalue);
3689 break;
3691 break;
3693 default:
3694 error:
3695 retval = -EINVAL;
3696 dev_dbg(hsotg->dev,
3697 "Unknown hub control request: %1xh wIndex: %1xh wValue: %1xh\n",
3698 typereq, windex, wvalue);
3699 break;
3702 return retval;
3705 static int dwc2_hcd_is_status_changed(struct dwc2_hsotg *hsotg, int port)
3707 int retval;
3709 if (port != 1)
3710 return -EINVAL;
3712 retval = (hsotg->flags.b.port_connect_status_change ||
3713 hsotg->flags.b.port_reset_change ||
3714 hsotg->flags.b.port_enable_change ||
3715 hsotg->flags.b.port_suspend_change ||
3716 hsotg->flags.b.port_over_current_change);
3718 if (retval) {
3719 dev_dbg(hsotg->dev,
3720 "DWC OTG HCD HUB STATUS DATA: Root port status changed\n");
3721 dev_dbg(hsotg->dev, " port_connect_status_change: %d\n",
3722 hsotg->flags.b.port_connect_status_change);
3723 dev_dbg(hsotg->dev, " port_reset_change: %d\n",
3724 hsotg->flags.b.port_reset_change);
3725 dev_dbg(hsotg->dev, " port_enable_change: %d\n",
3726 hsotg->flags.b.port_enable_change);
3727 dev_dbg(hsotg->dev, " port_suspend_change: %d\n",
3728 hsotg->flags.b.port_suspend_change);
3729 dev_dbg(hsotg->dev, " port_over_current_change: %d\n",
3730 hsotg->flags.b.port_over_current_change);
3733 return retval;
3736 int dwc2_hcd_get_frame_number(struct dwc2_hsotg *hsotg)
3738 u32 hfnum = dwc2_readl(hsotg->regs + HFNUM);
3740 #ifdef DWC2_DEBUG_SOF
3741 dev_vdbg(hsotg->dev, "DWC OTG HCD GET FRAME NUMBER %d\n",
3742 (hfnum & HFNUM_FRNUM_MASK) >> HFNUM_FRNUM_SHIFT);
3743 #endif
3744 return (hfnum & HFNUM_FRNUM_MASK) >> HFNUM_FRNUM_SHIFT;
3747 int dwc2_hcd_get_future_frame_number(struct dwc2_hsotg *hsotg, int us)
3749 u32 hprt = dwc2_readl(hsotg->regs + HPRT0);
3750 u32 hfir = dwc2_readl(hsotg->regs + HFIR);
3751 u32 hfnum = dwc2_readl(hsotg->regs + HFNUM);
3752 unsigned int us_per_frame;
3753 unsigned int frame_number;
3754 unsigned int remaining;
3755 unsigned int interval;
3756 unsigned int phy_clks;
3758 /* High speed has 125 us per (micro) frame; others are 1 ms per */
3759 us_per_frame = (hprt & HPRT0_SPD_MASK) ? 1000 : 125;
3761 /* Extract fields */
3762 frame_number = (hfnum & HFNUM_FRNUM_MASK) >> HFNUM_FRNUM_SHIFT;
3763 remaining = (hfnum & HFNUM_FRREM_MASK) >> HFNUM_FRREM_SHIFT;
3764 interval = (hfir & HFIR_FRINT_MASK) >> HFIR_FRINT_SHIFT;
3767 * Number of phy clocks since the last tick of the frame number after
3768 * "us" has passed.
3770 phy_clks = (interval - remaining) +
3771 DIV_ROUND_UP(interval * us, us_per_frame);
3773 return dwc2_frame_num_inc(frame_number, phy_clks / interval);
3776 int dwc2_hcd_is_b_host(struct dwc2_hsotg *hsotg)
3778 return hsotg->op_state == OTG_STATE_B_HOST;
3781 static struct dwc2_hcd_urb *dwc2_hcd_urb_alloc(struct dwc2_hsotg *hsotg,
3782 int iso_desc_count,
3783 gfp_t mem_flags)
3785 struct dwc2_hcd_urb *urb;
3786 u32 size = sizeof(*urb) + iso_desc_count *
3787 sizeof(struct dwc2_hcd_iso_packet_desc);
3789 urb = kzalloc(size, mem_flags);
3790 if (urb)
3791 urb->packet_count = iso_desc_count;
3792 return urb;
3795 static void dwc2_hcd_urb_set_pipeinfo(struct dwc2_hsotg *hsotg,
3796 struct dwc2_hcd_urb *urb, u8 dev_addr,
3797 u8 ep_num, u8 ep_type, u8 ep_dir, u16 mps)
3799 if (dbg_perio() ||
3800 ep_type == USB_ENDPOINT_XFER_BULK ||
3801 ep_type == USB_ENDPOINT_XFER_CONTROL)
3802 dev_vdbg(hsotg->dev,
3803 "addr=%d, ep_num=%d, ep_dir=%1x, ep_type=%1x, mps=%d\n",
3804 dev_addr, ep_num, ep_dir, ep_type, mps);
3805 urb->pipe_info.dev_addr = dev_addr;
3806 urb->pipe_info.ep_num = ep_num;
3807 urb->pipe_info.pipe_type = ep_type;
3808 urb->pipe_info.pipe_dir = ep_dir;
3809 urb->pipe_info.mps = mps;
3813 * NOTE: This function will be removed once the peripheral controller code
3814 * is integrated and the driver is stable
3816 void dwc2_hcd_dump_state(struct dwc2_hsotg *hsotg)
3818 #ifdef DEBUG
3819 struct dwc2_host_chan *chan;
3820 struct dwc2_hcd_urb *urb;
3821 struct dwc2_qtd *qtd;
3822 int num_channels;
3823 u32 np_tx_status;
3824 u32 p_tx_status;
3825 int i;
3827 num_channels = hsotg->core_params->host_channels;
3828 dev_dbg(hsotg->dev, "\n");
3829 dev_dbg(hsotg->dev,
3830 "************************************************************\n");
3831 dev_dbg(hsotg->dev, "HCD State:\n");
3832 dev_dbg(hsotg->dev, " Num channels: %d\n", num_channels);
3834 for (i = 0; i < num_channels; i++) {
3835 chan = hsotg->hc_ptr_array[i];
3836 dev_dbg(hsotg->dev, " Channel %d:\n", i);
3837 dev_dbg(hsotg->dev,
3838 " dev_addr: %d, ep_num: %d, ep_is_in: %d\n",
3839 chan->dev_addr, chan->ep_num, chan->ep_is_in);
3840 dev_dbg(hsotg->dev, " speed: %d\n", chan->speed);
3841 dev_dbg(hsotg->dev, " ep_type: %d\n", chan->ep_type);
3842 dev_dbg(hsotg->dev, " max_packet: %d\n", chan->max_packet);
3843 dev_dbg(hsotg->dev, " data_pid_start: %d\n",
3844 chan->data_pid_start);
3845 dev_dbg(hsotg->dev, " multi_count: %d\n", chan->multi_count);
3846 dev_dbg(hsotg->dev, " xfer_started: %d\n",
3847 chan->xfer_started);
3848 dev_dbg(hsotg->dev, " xfer_buf: %p\n", chan->xfer_buf);
3849 dev_dbg(hsotg->dev, " xfer_dma: %08lx\n",
3850 (unsigned long)chan->xfer_dma);
3851 dev_dbg(hsotg->dev, " xfer_len: %d\n", chan->xfer_len);
3852 dev_dbg(hsotg->dev, " xfer_count: %d\n", chan->xfer_count);
3853 dev_dbg(hsotg->dev, " halt_on_queue: %d\n",
3854 chan->halt_on_queue);
3855 dev_dbg(hsotg->dev, " halt_pending: %d\n",
3856 chan->halt_pending);
3857 dev_dbg(hsotg->dev, " halt_status: %d\n", chan->halt_status);
3858 dev_dbg(hsotg->dev, " do_split: %d\n", chan->do_split);
3859 dev_dbg(hsotg->dev, " complete_split: %d\n",
3860 chan->complete_split);
3861 dev_dbg(hsotg->dev, " hub_addr: %d\n", chan->hub_addr);
3862 dev_dbg(hsotg->dev, " hub_port: %d\n", chan->hub_port);
3863 dev_dbg(hsotg->dev, " xact_pos: %d\n", chan->xact_pos);
3864 dev_dbg(hsotg->dev, " requests: %d\n", chan->requests);
3865 dev_dbg(hsotg->dev, " qh: %p\n", chan->qh);
3867 if (chan->xfer_started) {
3868 u32 hfnum, hcchar, hctsiz, hcint, hcintmsk;
3870 hfnum = dwc2_readl(hsotg->regs + HFNUM);
3871 hcchar = dwc2_readl(hsotg->regs + HCCHAR(i));
3872 hctsiz = dwc2_readl(hsotg->regs + HCTSIZ(i));
3873 hcint = dwc2_readl(hsotg->regs + HCINT(i));
3874 hcintmsk = dwc2_readl(hsotg->regs + HCINTMSK(i));
3875 dev_dbg(hsotg->dev, " hfnum: 0x%08x\n", hfnum);
3876 dev_dbg(hsotg->dev, " hcchar: 0x%08x\n", hcchar);
3877 dev_dbg(hsotg->dev, " hctsiz: 0x%08x\n", hctsiz);
3878 dev_dbg(hsotg->dev, " hcint: 0x%08x\n", hcint);
3879 dev_dbg(hsotg->dev, " hcintmsk: 0x%08x\n", hcintmsk);
3882 if (!(chan->xfer_started && chan->qh))
3883 continue;
3885 list_for_each_entry(qtd, &chan->qh->qtd_list, qtd_list_entry) {
3886 if (!qtd->in_process)
3887 break;
3888 urb = qtd->urb;
3889 dev_dbg(hsotg->dev, " URB Info:\n");
3890 dev_dbg(hsotg->dev, " qtd: %p, urb: %p\n",
3891 qtd, urb);
3892 if (urb) {
3893 dev_dbg(hsotg->dev,
3894 " Dev: %d, EP: %d %s\n",
3895 dwc2_hcd_get_dev_addr(&urb->pipe_info),
3896 dwc2_hcd_get_ep_num(&urb->pipe_info),
3897 dwc2_hcd_is_pipe_in(&urb->pipe_info) ?
3898 "IN" : "OUT");
3899 dev_dbg(hsotg->dev,
3900 " Max packet size: %d\n",
3901 dwc2_hcd_get_mps(&urb->pipe_info));
3902 dev_dbg(hsotg->dev,
3903 " transfer_buffer: %p\n",
3904 urb->buf);
3905 dev_dbg(hsotg->dev,
3906 " transfer_dma: %08lx\n",
3907 (unsigned long)urb->dma);
3908 dev_dbg(hsotg->dev,
3909 " transfer_buffer_length: %d\n",
3910 urb->length);
3911 dev_dbg(hsotg->dev, " actual_length: %d\n",
3912 urb->actual_length);
3917 dev_dbg(hsotg->dev, " non_periodic_channels: %d\n",
3918 hsotg->non_periodic_channels);
3919 dev_dbg(hsotg->dev, " periodic_channels: %d\n",
3920 hsotg->periodic_channels);
3921 dev_dbg(hsotg->dev, " periodic_usecs: %d\n", hsotg->periodic_usecs);
3922 np_tx_status = dwc2_readl(hsotg->regs + GNPTXSTS);
3923 dev_dbg(hsotg->dev, " NP Tx Req Queue Space Avail: %d\n",
3924 (np_tx_status & TXSTS_QSPCAVAIL_MASK) >> TXSTS_QSPCAVAIL_SHIFT);
3925 dev_dbg(hsotg->dev, " NP Tx FIFO Space Avail: %d\n",
3926 (np_tx_status & TXSTS_FSPCAVAIL_MASK) >> TXSTS_FSPCAVAIL_SHIFT);
3927 p_tx_status = dwc2_readl(hsotg->regs + HPTXSTS);
3928 dev_dbg(hsotg->dev, " P Tx Req Queue Space Avail: %d\n",
3929 (p_tx_status & TXSTS_QSPCAVAIL_MASK) >> TXSTS_QSPCAVAIL_SHIFT);
3930 dev_dbg(hsotg->dev, " P Tx FIFO Space Avail: %d\n",
3931 (p_tx_status & TXSTS_FSPCAVAIL_MASK) >> TXSTS_FSPCAVAIL_SHIFT);
3932 dwc2_hcd_dump_frrem(hsotg);
3933 dwc2_dump_global_registers(hsotg);
3934 dwc2_dump_host_registers(hsotg);
3935 dev_dbg(hsotg->dev,
3936 "************************************************************\n");
3937 dev_dbg(hsotg->dev, "\n");
3938 #endif
3942 * NOTE: This function will be removed once the peripheral controller code
3943 * is integrated and the driver is stable
3945 void dwc2_hcd_dump_frrem(struct dwc2_hsotg *hsotg)
3947 #ifdef DWC2_DUMP_FRREM
3948 dev_dbg(hsotg->dev, "Frame remaining at SOF:\n");
3949 dev_dbg(hsotg->dev, " samples %u, accum %llu, avg %llu\n",
3950 hsotg->frrem_samples, hsotg->frrem_accum,
3951 hsotg->frrem_samples > 0 ?
3952 hsotg->frrem_accum / hsotg->frrem_samples : 0);
3953 dev_dbg(hsotg->dev, "\n");
3954 dev_dbg(hsotg->dev, "Frame remaining at start_transfer (uframe 7):\n");
3955 dev_dbg(hsotg->dev, " samples %u, accum %llu, avg %llu\n",
3956 hsotg->hfnum_7_samples,
3957 hsotg->hfnum_7_frrem_accum,
3958 hsotg->hfnum_7_samples > 0 ?
3959 hsotg->hfnum_7_frrem_accum / hsotg->hfnum_7_samples : 0);
3960 dev_dbg(hsotg->dev, "Frame remaining at start_transfer (uframe 0):\n");
3961 dev_dbg(hsotg->dev, " samples %u, accum %llu, avg %llu\n",
3962 hsotg->hfnum_0_samples,
3963 hsotg->hfnum_0_frrem_accum,
3964 hsotg->hfnum_0_samples > 0 ?
3965 hsotg->hfnum_0_frrem_accum / hsotg->hfnum_0_samples : 0);
3966 dev_dbg(hsotg->dev, "Frame remaining at start_transfer (uframe 1-6):\n");
3967 dev_dbg(hsotg->dev, " samples %u, accum %llu, avg %llu\n",
3968 hsotg->hfnum_other_samples,
3969 hsotg->hfnum_other_frrem_accum,
3970 hsotg->hfnum_other_samples > 0 ?
3971 hsotg->hfnum_other_frrem_accum / hsotg->hfnum_other_samples :
3973 dev_dbg(hsotg->dev, "\n");
3974 dev_dbg(hsotg->dev, "Frame remaining at sample point A (uframe 7):\n");
3975 dev_dbg(hsotg->dev, " samples %u, accum %llu, avg %llu\n",
3976 hsotg->hfnum_7_samples_a, hsotg->hfnum_7_frrem_accum_a,
3977 hsotg->hfnum_7_samples_a > 0 ?
3978 hsotg->hfnum_7_frrem_accum_a / hsotg->hfnum_7_samples_a : 0);
3979 dev_dbg(hsotg->dev, "Frame remaining at sample point A (uframe 0):\n");
3980 dev_dbg(hsotg->dev, " samples %u, accum %llu, avg %llu\n",
3981 hsotg->hfnum_0_samples_a, hsotg->hfnum_0_frrem_accum_a,
3982 hsotg->hfnum_0_samples_a > 0 ?
3983 hsotg->hfnum_0_frrem_accum_a / hsotg->hfnum_0_samples_a : 0);
3984 dev_dbg(hsotg->dev, "Frame remaining at sample point A (uframe 1-6):\n");
3985 dev_dbg(hsotg->dev, " samples %u, accum %llu, avg %llu\n",
3986 hsotg->hfnum_other_samples_a, hsotg->hfnum_other_frrem_accum_a,
3987 hsotg->hfnum_other_samples_a > 0 ?
3988 hsotg->hfnum_other_frrem_accum_a / hsotg->hfnum_other_samples_a
3989 : 0);
3990 dev_dbg(hsotg->dev, "\n");
3991 dev_dbg(hsotg->dev, "Frame remaining at sample point B (uframe 7):\n");
3992 dev_dbg(hsotg->dev, " samples %u, accum %llu, avg %llu\n",
3993 hsotg->hfnum_7_samples_b, hsotg->hfnum_7_frrem_accum_b,
3994 hsotg->hfnum_7_samples_b > 0 ?
3995 hsotg->hfnum_7_frrem_accum_b / hsotg->hfnum_7_samples_b : 0);
3996 dev_dbg(hsotg->dev, "Frame remaining at sample point B (uframe 0):\n");
3997 dev_dbg(hsotg->dev, " samples %u, accum %llu, avg %llu\n",
3998 hsotg->hfnum_0_samples_b, hsotg->hfnum_0_frrem_accum_b,
3999 (hsotg->hfnum_0_samples_b > 0) ?
4000 hsotg->hfnum_0_frrem_accum_b / hsotg->hfnum_0_samples_b : 0);
4001 dev_dbg(hsotg->dev, "Frame remaining at sample point B (uframe 1-6):\n");
4002 dev_dbg(hsotg->dev, " samples %u, accum %llu, avg %llu\n",
4003 hsotg->hfnum_other_samples_b, hsotg->hfnum_other_frrem_accum_b,
4004 (hsotg->hfnum_other_samples_b > 0) ?
4005 hsotg->hfnum_other_frrem_accum_b / hsotg->hfnum_other_samples_b
4006 : 0);
4007 #endif
4010 struct wrapper_priv_data {
4011 struct dwc2_hsotg *hsotg;
4014 /* Gets the dwc2_hsotg from a usb_hcd */
4015 static struct dwc2_hsotg *dwc2_hcd_to_hsotg(struct usb_hcd *hcd)
4017 struct wrapper_priv_data *p;
4019 p = (struct wrapper_priv_data *) &hcd->hcd_priv;
4020 return p->hsotg;
4023 static int _dwc2_hcd_start(struct usb_hcd *hcd);
4025 void dwc2_host_start(struct dwc2_hsotg *hsotg)
4027 struct usb_hcd *hcd = dwc2_hsotg_to_hcd(hsotg);
4029 hcd->self.is_b_host = dwc2_hcd_is_b_host(hsotg);
4030 _dwc2_hcd_start(hcd);
4033 void dwc2_host_disconnect(struct dwc2_hsotg *hsotg)
4035 struct usb_hcd *hcd = dwc2_hsotg_to_hcd(hsotg);
4037 hcd->self.is_b_host = 0;
4040 void dwc2_host_hub_info(struct dwc2_hsotg *hsotg, void *context, int *hub_addr,
4041 int *hub_port)
4043 struct urb *urb = context;
4045 if (urb->dev->tt)
4046 *hub_addr = urb->dev->tt->hub->devnum;
4047 else
4048 *hub_addr = 0;
4049 *hub_port = urb->dev->ttport;
4053 * dwc2_host_get_tt_info() - Get the dwc2_tt associated with context
4055 * This will get the dwc2_tt structure (and ttport) associated with the given
4056 * context (which is really just a struct urb pointer).
4058 * The first time this is called for a given TT we allocate memory for our
4059 * structure. When everyone is done and has called dwc2_host_put_tt_info()
4060 * then the refcount for the structure will go to 0 and we'll free it.
4062 * @hsotg: The HCD state structure for the DWC OTG controller.
4063 * @qh: The QH structure.
4064 * @context: The priv pointer from a struct dwc2_hcd_urb.
4065 * @mem_flags: Flags for allocating memory.
4066 * @ttport: We'll return this device's port number here. That's used to
4067 * reference into the bitmap if we're on a multi_tt hub.
4069 * Return: a pointer to a struct dwc2_tt. Don't forget to call
4070 * dwc2_host_put_tt_info()! Returns NULL upon memory alloc failure.
4073 struct dwc2_tt *dwc2_host_get_tt_info(struct dwc2_hsotg *hsotg, void *context,
4074 gfp_t mem_flags, int *ttport)
4076 struct urb *urb = context;
4077 struct dwc2_tt *dwc_tt = NULL;
4079 if (urb->dev->tt) {
4080 *ttport = urb->dev->ttport;
4082 dwc_tt = urb->dev->tt->hcpriv;
4083 if (dwc_tt == NULL) {
4084 size_t bitmap_size;
4087 * For single_tt we need one schedule. For multi_tt
4088 * we need one per port.
4090 bitmap_size = DWC2_ELEMENTS_PER_LS_BITMAP *
4091 sizeof(dwc_tt->periodic_bitmaps[0]);
4092 if (urb->dev->tt->multi)
4093 bitmap_size *= urb->dev->tt->hub->maxchild;
4095 dwc_tt = kzalloc(sizeof(*dwc_tt) + bitmap_size,
4096 mem_flags);
4097 if (dwc_tt == NULL)
4098 return NULL;
4100 dwc_tt->usb_tt = urb->dev->tt;
4101 dwc_tt->usb_tt->hcpriv = dwc_tt;
4104 dwc_tt->refcount++;
4107 return dwc_tt;
4111 * dwc2_host_put_tt_info() - Put the dwc2_tt from dwc2_host_get_tt_info()
4113 * Frees resources allocated by dwc2_host_get_tt_info() if all current holders
4114 * of the structure are done.
4116 * It's OK to call this with NULL.
4118 * @hsotg: The HCD state structure for the DWC OTG controller.
4119 * @dwc_tt: The pointer returned by dwc2_host_get_tt_info.
4121 void dwc2_host_put_tt_info(struct dwc2_hsotg *hsotg, struct dwc2_tt *dwc_tt)
4123 /* Model kfree and make put of NULL a no-op */
4124 if (dwc_tt == NULL)
4125 return;
4127 WARN_ON(dwc_tt->refcount < 1);
4129 dwc_tt->refcount--;
4130 if (!dwc_tt->refcount) {
4131 dwc_tt->usb_tt->hcpriv = NULL;
4132 kfree(dwc_tt);
4136 int dwc2_host_get_speed(struct dwc2_hsotg *hsotg, void *context)
4138 struct urb *urb = context;
4140 return urb->dev->speed;
4143 static void dwc2_allocate_bus_bandwidth(struct usb_hcd *hcd, u16 bw,
4144 struct urb *urb)
4146 struct usb_bus *bus = hcd_to_bus(hcd);
4148 if (urb->interval)
4149 bus->bandwidth_allocated += bw / urb->interval;
4150 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS)
4151 bus->bandwidth_isoc_reqs++;
4152 else
4153 bus->bandwidth_int_reqs++;
4156 static void dwc2_free_bus_bandwidth(struct usb_hcd *hcd, u16 bw,
4157 struct urb *urb)
4159 struct usb_bus *bus = hcd_to_bus(hcd);
4161 if (urb->interval)
4162 bus->bandwidth_allocated -= bw / urb->interval;
4163 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS)
4164 bus->bandwidth_isoc_reqs--;
4165 else
4166 bus->bandwidth_int_reqs--;
4170 * Sets the final status of an URB and returns it to the upper layer. Any
4171 * required cleanup of the URB is performed.
4173 * Must be called with interrupt disabled and spinlock held
4175 void dwc2_host_complete(struct dwc2_hsotg *hsotg, struct dwc2_qtd *qtd,
4176 int status)
4178 struct urb *urb;
4179 int i;
4181 if (!qtd) {
4182 dev_dbg(hsotg->dev, "## %s: qtd is NULL ##\n", __func__);
4183 return;
4186 if (!qtd->urb) {
4187 dev_dbg(hsotg->dev, "## %s: qtd->urb is NULL ##\n", __func__);
4188 return;
4191 urb = qtd->urb->priv;
4192 if (!urb) {
4193 dev_dbg(hsotg->dev, "## %s: urb->priv is NULL ##\n", __func__);
4194 return;
4197 urb->actual_length = dwc2_hcd_urb_get_actual_length(qtd->urb);
4199 if (dbg_urb(urb))
4200 dev_vdbg(hsotg->dev,
4201 "%s: urb %p device %d ep %d-%s status %d actual %d\n",
4202 __func__, urb, usb_pipedevice(urb->pipe),
4203 usb_pipeendpoint(urb->pipe),
4204 usb_pipein(urb->pipe) ? "IN" : "OUT", status,
4205 urb->actual_length);
4208 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) {
4209 urb->error_count = dwc2_hcd_urb_get_error_count(qtd->urb);
4210 for (i = 0; i < urb->number_of_packets; ++i) {
4211 urb->iso_frame_desc[i].actual_length =
4212 dwc2_hcd_urb_get_iso_desc_actual_length(
4213 qtd->urb, i);
4214 urb->iso_frame_desc[i].status =
4215 dwc2_hcd_urb_get_iso_desc_status(qtd->urb, i);
4219 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS && dbg_perio()) {
4220 for (i = 0; i < urb->number_of_packets; i++)
4221 dev_vdbg(hsotg->dev, " ISO Desc %d status %d\n",
4222 i, urb->iso_frame_desc[i].status);
4225 urb->status = status;
4226 if (!status) {
4227 if ((urb->transfer_flags & URB_SHORT_NOT_OK) &&
4228 urb->actual_length < urb->transfer_buffer_length)
4229 urb->status = -EREMOTEIO;
4232 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS ||
4233 usb_pipetype(urb->pipe) == PIPE_INTERRUPT) {
4234 struct usb_host_endpoint *ep = urb->ep;
4236 if (ep)
4237 dwc2_free_bus_bandwidth(dwc2_hsotg_to_hcd(hsotg),
4238 dwc2_hcd_get_ep_bandwidth(hsotg, ep),
4239 urb);
4242 usb_hcd_unlink_urb_from_ep(dwc2_hsotg_to_hcd(hsotg), urb);
4243 urb->hcpriv = NULL;
4244 kfree(qtd->urb);
4245 qtd->urb = NULL;
4247 usb_hcd_giveback_urb(dwc2_hsotg_to_hcd(hsotg), urb, status);
4251 * Work queue function for starting the HCD when A-Cable is connected
4253 static void dwc2_hcd_start_func(struct work_struct *work)
4255 struct dwc2_hsotg *hsotg = container_of(work, struct dwc2_hsotg,
4256 start_work.work);
4258 dev_dbg(hsotg->dev, "%s() %p\n", __func__, hsotg);
4259 dwc2_host_start(hsotg);
4263 * Reset work queue function
4265 static void dwc2_hcd_reset_func(struct work_struct *work)
4267 struct dwc2_hsotg *hsotg = container_of(work, struct dwc2_hsotg,
4268 reset_work.work);
4269 unsigned long flags;
4270 u32 hprt0;
4272 dev_dbg(hsotg->dev, "USB RESET function called\n");
4274 spin_lock_irqsave(&hsotg->lock, flags);
4276 hprt0 = dwc2_read_hprt0(hsotg);
4277 hprt0 &= ~HPRT0_RST;
4278 dwc2_writel(hprt0, hsotg->regs + HPRT0);
4279 hsotg->flags.b.port_reset_change = 1;
4281 spin_unlock_irqrestore(&hsotg->lock, flags);
4285 * =========================================================================
4286 * Linux HC Driver Functions
4287 * =========================================================================
4291 * Initializes the DWC_otg controller and its root hub and prepares it for host
4292 * mode operation. Activates the root port. Returns 0 on success and a negative
4293 * error code on failure.
4295 static int _dwc2_hcd_start(struct usb_hcd *hcd)
4297 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4298 struct usb_bus *bus = hcd_to_bus(hcd);
4299 unsigned long flags;
4301 dev_dbg(hsotg->dev, "DWC OTG HCD START\n");
4303 spin_lock_irqsave(&hsotg->lock, flags);
4304 hsotg->lx_state = DWC2_L0;
4305 hcd->state = HC_STATE_RUNNING;
4306 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
4308 if (dwc2_is_device_mode(hsotg)) {
4309 spin_unlock_irqrestore(&hsotg->lock, flags);
4310 return 0; /* why 0 ?? */
4313 dwc2_hcd_reinit(hsotg);
4315 /* Initialize and connect root hub if one is not already attached */
4316 if (bus->root_hub) {
4317 dev_dbg(hsotg->dev, "DWC OTG HCD Has Root Hub\n");
4318 /* Inform the HUB driver to resume */
4319 usb_hcd_resume_root_hub(hcd);
4322 spin_unlock_irqrestore(&hsotg->lock, flags);
4323 return 0;
4327 * Halts the DWC_otg host mode operations in a clean manner. USB transfers are
4328 * stopped.
4330 static void _dwc2_hcd_stop(struct usb_hcd *hcd)
4332 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4333 unsigned long flags;
4335 /* Turn off all host-specific interrupts */
4336 dwc2_disable_host_interrupts(hsotg);
4338 /* Wait for interrupt processing to finish */
4339 synchronize_irq(hcd->irq);
4341 spin_lock_irqsave(&hsotg->lock, flags);
4342 /* Ensure hcd is disconnected */
4343 dwc2_hcd_disconnect(hsotg, true);
4344 dwc2_hcd_stop(hsotg);
4345 hsotg->lx_state = DWC2_L3;
4346 hcd->state = HC_STATE_HALT;
4347 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
4348 spin_unlock_irqrestore(&hsotg->lock, flags);
4350 usleep_range(1000, 3000);
4353 static int _dwc2_hcd_suspend(struct usb_hcd *hcd)
4355 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4356 unsigned long flags;
4357 int ret = 0;
4358 u32 hprt0;
4360 spin_lock_irqsave(&hsotg->lock, flags);
4362 if (hsotg->lx_state != DWC2_L0)
4363 goto unlock;
4365 if (!HCD_HW_ACCESSIBLE(hcd))
4366 goto unlock;
4368 if (!hsotg->core_params->hibernation)
4369 goto skip_power_saving;
4372 * Drive USB suspend and disable port Power
4373 * if usb bus is not suspended.
4375 if (!hsotg->bus_suspended) {
4376 hprt0 = dwc2_read_hprt0(hsotg);
4377 hprt0 |= HPRT0_SUSP;
4378 hprt0 &= ~HPRT0_PWR;
4379 dwc2_writel(hprt0, hsotg->regs + HPRT0);
4382 /* Enter hibernation */
4383 ret = dwc2_enter_hibernation(hsotg);
4384 if (ret) {
4385 if (ret != -ENOTSUPP)
4386 dev_err(hsotg->dev,
4387 "enter hibernation failed\n");
4388 goto skip_power_saving;
4391 /* Ask phy to be suspended */
4392 if (!IS_ERR_OR_NULL(hsotg->uphy)) {
4393 spin_unlock_irqrestore(&hsotg->lock, flags);
4394 usb_phy_set_suspend(hsotg->uphy, true);
4395 spin_lock_irqsave(&hsotg->lock, flags);
4398 /* After entering hibernation, hardware is no more accessible */
4399 clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
4401 skip_power_saving:
4402 hsotg->lx_state = DWC2_L2;
4403 unlock:
4404 spin_unlock_irqrestore(&hsotg->lock, flags);
4406 return ret;
4409 static int _dwc2_hcd_resume(struct usb_hcd *hcd)
4411 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4412 unsigned long flags;
4413 int ret = 0;
4415 spin_lock_irqsave(&hsotg->lock, flags);
4417 if (hsotg->lx_state != DWC2_L2)
4418 goto unlock;
4420 if (!hsotg->core_params->hibernation) {
4421 hsotg->lx_state = DWC2_L0;
4422 goto unlock;
4426 * Set HW accessible bit before powering on the controller
4427 * since an interrupt may rise.
4429 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
4432 * Enable power if not already done.
4433 * This must not be spinlocked since duration
4434 * of this call is unknown.
4436 if (!IS_ERR_OR_NULL(hsotg->uphy)) {
4437 spin_unlock_irqrestore(&hsotg->lock, flags);
4438 usb_phy_set_suspend(hsotg->uphy, false);
4439 spin_lock_irqsave(&hsotg->lock, flags);
4442 /* Exit hibernation */
4443 ret = dwc2_exit_hibernation(hsotg, true);
4444 if (ret && (ret != -ENOTSUPP))
4445 dev_err(hsotg->dev, "exit hibernation failed\n");
4447 hsotg->lx_state = DWC2_L0;
4449 spin_unlock_irqrestore(&hsotg->lock, flags);
4451 if (hsotg->bus_suspended) {
4452 spin_lock_irqsave(&hsotg->lock, flags);
4453 hsotg->flags.b.port_suspend_change = 1;
4454 spin_unlock_irqrestore(&hsotg->lock, flags);
4455 dwc2_port_resume(hsotg);
4456 } else {
4457 /* Wait for controller to correctly update D+/D- level */
4458 usleep_range(3000, 5000);
4461 * Clear Port Enable and Port Status changes.
4462 * Enable Port Power.
4464 dwc2_writel(HPRT0_PWR | HPRT0_CONNDET |
4465 HPRT0_ENACHG, hsotg->regs + HPRT0);
4466 /* Wait for controller to detect Port Connect */
4467 usleep_range(5000, 7000);
4470 return ret;
4471 unlock:
4472 spin_unlock_irqrestore(&hsotg->lock, flags);
4474 return ret;
4477 /* Returns the current frame number */
4478 static int _dwc2_hcd_get_frame_number(struct usb_hcd *hcd)
4480 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4482 return dwc2_hcd_get_frame_number(hsotg);
4485 static void dwc2_dump_urb_info(struct usb_hcd *hcd, struct urb *urb,
4486 char *fn_name)
4488 #ifdef VERBOSE_DEBUG
4489 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4490 char *pipetype;
4491 char *speed;
4493 dev_vdbg(hsotg->dev, "%s, urb %p\n", fn_name, urb);
4494 dev_vdbg(hsotg->dev, " Device address: %d\n",
4495 usb_pipedevice(urb->pipe));
4496 dev_vdbg(hsotg->dev, " Endpoint: %d, %s\n",
4497 usb_pipeendpoint(urb->pipe),
4498 usb_pipein(urb->pipe) ? "IN" : "OUT");
4500 switch (usb_pipetype(urb->pipe)) {
4501 case PIPE_CONTROL:
4502 pipetype = "CONTROL";
4503 break;
4504 case PIPE_BULK:
4505 pipetype = "BULK";
4506 break;
4507 case PIPE_INTERRUPT:
4508 pipetype = "INTERRUPT";
4509 break;
4510 case PIPE_ISOCHRONOUS:
4511 pipetype = "ISOCHRONOUS";
4512 break;
4513 default:
4514 pipetype = "UNKNOWN";
4515 break;
4518 dev_vdbg(hsotg->dev, " Endpoint type: %s %s (%s)\n", pipetype,
4519 usb_urb_dir_in(urb) ? "IN" : "OUT", usb_pipein(urb->pipe) ?
4520 "IN" : "OUT");
4522 switch (urb->dev->speed) {
4523 case USB_SPEED_HIGH:
4524 speed = "HIGH";
4525 break;
4526 case USB_SPEED_FULL:
4527 speed = "FULL";
4528 break;
4529 case USB_SPEED_LOW:
4530 speed = "LOW";
4531 break;
4532 default:
4533 speed = "UNKNOWN";
4534 break;
4537 dev_vdbg(hsotg->dev, " Speed: %s\n", speed);
4538 dev_vdbg(hsotg->dev, " Max packet size: %d\n",
4539 usb_maxpacket(urb->dev, urb->pipe, usb_pipeout(urb->pipe)));
4540 dev_vdbg(hsotg->dev, " Data buffer length: %d\n",
4541 urb->transfer_buffer_length);
4542 dev_vdbg(hsotg->dev, " Transfer buffer: %p, Transfer DMA: %08lx\n",
4543 urb->transfer_buffer, (unsigned long)urb->transfer_dma);
4544 dev_vdbg(hsotg->dev, " Setup buffer: %p, Setup DMA: %08lx\n",
4545 urb->setup_packet, (unsigned long)urb->setup_dma);
4546 dev_vdbg(hsotg->dev, " Interval: %d\n", urb->interval);
4548 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) {
4549 int i;
4551 for (i = 0; i < urb->number_of_packets; i++) {
4552 dev_vdbg(hsotg->dev, " ISO Desc %d:\n", i);
4553 dev_vdbg(hsotg->dev, " offset: %d, length %d\n",
4554 urb->iso_frame_desc[i].offset,
4555 urb->iso_frame_desc[i].length);
4558 #endif
4562 * Starts processing a USB transfer request specified by a USB Request Block
4563 * (URB). mem_flags indicates the type of memory allocation to use while
4564 * processing this URB.
4566 static int _dwc2_hcd_urb_enqueue(struct usb_hcd *hcd, struct urb *urb,
4567 gfp_t mem_flags)
4569 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4570 struct usb_host_endpoint *ep = urb->ep;
4571 struct dwc2_hcd_urb *dwc2_urb;
4572 int i;
4573 int retval;
4574 int alloc_bandwidth = 0;
4575 u8 ep_type = 0;
4576 u32 tflags = 0;
4577 void *buf;
4578 unsigned long flags;
4579 struct dwc2_qh *qh;
4580 bool qh_allocated = false;
4581 struct dwc2_qtd *qtd;
4583 if (dbg_urb(urb)) {
4584 dev_vdbg(hsotg->dev, "DWC OTG HCD URB Enqueue\n");
4585 dwc2_dump_urb_info(hcd, urb, "urb_enqueue");
4588 if (ep == NULL)
4589 return -EINVAL;
4591 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS ||
4592 usb_pipetype(urb->pipe) == PIPE_INTERRUPT) {
4593 spin_lock_irqsave(&hsotg->lock, flags);
4594 if (!dwc2_hcd_is_bandwidth_allocated(hsotg, ep))
4595 alloc_bandwidth = 1;
4596 spin_unlock_irqrestore(&hsotg->lock, flags);
4599 switch (usb_pipetype(urb->pipe)) {
4600 case PIPE_CONTROL:
4601 ep_type = USB_ENDPOINT_XFER_CONTROL;
4602 break;
4603 case PIPE_ISOCHRONOUS:
4604 ep_type = USB_ENDPOINT_XFER_ISOC;
4605 break;
4606 case PIPE_BULK:
4607 ep_type = USB_ENDPOINT_XFER_BULK;
4608 break;
4609 case PIPE_INTERRUPT:
4610 ep_type = USB_ENDPOINT_XFER_INT;
4611 break;
4612 default:
4613 dev_warn(hsotg->dev, "Wrong ep type\n");
4616 dwc2_urb = dwc2_hcd_urb_alloc(hsotg, urb->number_of_packets,
4617 mem_flags);
4618 if (!dwc2_urb)
4619 return -ENOMEM;
4621 dwc2_hcd_urb_set_pipeinfo(hsotg, dwc2_urb, usb_pipedevice(urb->pipe),
4622 usb_pipeendpoint(urb->pipe), ep_type,
4623 usb_pipein(urb->pipe),
4624 usb_maxpacket(urb->dev, urb->pipe,
4625 !(usb_pipein(urb->pipe))));
4627 buf = urb->transfer_buffer;
4629 if (hcd->self.uses_dma) {
4630 if (!buf && (urb->transfer_dma & 3)) {
4631 dev_err(hsotg->dev,
4632 "%s: unaligned transfer with no transfer_buffer",
4633 __func__);
4634 retval = -EINVAL;
4635 goto fail0;
4639 if (!(urb->transfer_flags & URB_NO_INTERRUPT))
4640 tflags |= URB_GIVEBACK_ASAP;
4641 if (urb->transfer_flags & URB_ZERO_PACKET)
4642 tflags |= URB_SEND_ZERO_PACKET;
4644 dwc2_urb->priv = urb;
4645 dwc2_urb->buf = buf;
4646 dwc2_urb->dma = urb->transfer_dma;
4647 dwc2_urb->length = urb->transfer_buffer_length;
4648 dwc2_urb->setup_packet = urb->setup_packet;
4649 dwc2_urb->setup_dma = urb->setup_dma;
4650 dwc2_urb->flags = tflags;
4651 dwc2_urb->interval = urb->interval;
4652 dwc2_urb->status = -EINPROGRESS;
4654 for (i = 0; i < urb->number_of_packets; ++i)
4655 dwc2_hcd_urb_set_iso_desc_params(dwc2_urb, i,
4656 urb->iso_frame_desc[i].offset,
4657 urb->iso_frame_desc[i].length);
4659 urb->hcpriv = dwc2_urb;
4660 qh = (struct dwc2_qh *) ep->hcpriv;
4661 /* Create QH for the endpoint if it doesn't exist */
4662 if (!qh) {
4663 qh = dwc2_hcd_qh_create(hsotg, dwc2_urb, mem_flags);
4664 if (!qh) {
4665 retval = -ENOMEM;
4666 goto fail0;
4668 ep->hcpriv = qh;
4669 qh_allocated = true;
4672 qtd = kzalloc(sizeof(*qtd), mem_flags);
4673 if (!qtd) {
4674 retval = -ENOMEM;
4675 goto fail1;
4678 spin_lock_irqsave(&hsotg->lock, flags);
4679 retval = usb_hcd_link_urb_to_ep(hcd, urb);
4680 if (retval)
4681 goto fail2;
4683 retval = dwc2_hcd_urb_enqueue(hsotg, dwc2_urb, qh, qtd);
4684 if (retval)
4685 goto fail3;
4687 if (alloc_bandwidth) {
4688 dwc2_allocate_bus_bandwidth(hcd,
4689 dwc2_hcd_get_ep_bandwidth(hsotg, ep),
4690 urb);
4693 spin_unlock_irqrestore(&hsotg->lock, flags);
4695 return 0;
4697 fail3:
4698 dwc2_urb->priv = NULL;
4699 usb_hcd_unlink_urb_from_ep(hcd, urb);
4700 if (qh_allocated && qh->channel && qh->channel->qh == qh)
4701 qh->channel->qh = NULL;
4702 fail2:
4703 spin_unlock_irqrestore(&hsotg->lock, flags);
4704 urb->hcpriv = NULL;
4705 kfree(qtd);
4706 qtd = NULL;
4707 fail1:
4708 if (qh_allocated) {
4709 struct dwc2_qtd *qtd2, *qtd2_tmp;
4711 ep->hcpriv = NULL;
4712 dwc2_hcd_qh_unlink(hsotg, qh);
4713 /* Free each QTD in the QH's QTD list */
4714 list_for_each_entry_safe(qtd2, qtd2_tmp, &qh->qtd_list,
4715 qtd_list_entry)
4716 dwc2_hcd_qtd_unlink_and_free(hsotg, qtd2, qh);
4717 dwc2_hcd_qh_free(hsotg, qh);
4719 fail0:
4720 kfree(dwc2_urb);
4722 return retval;
4726 * Aborts/cancels a USB transfer request. Always returns 0 to indicate success.
4728 static int _dwc2_hcd_urb_dequeue(struct usb_hcd *hcd, struct urb *urb,
4729 int status)
4731 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4732 int rc;
4733 unsigned long flags;
4735 dev_dbg(hsotg->dev, "DWC OTG HCD URB Dequeue\n");
4736 dwc2_dump_urb_info(hcd, urb, "urb_dequeue");
4738 spin_lock_irqsave(&hsotg->lock, flags);
4740 rc = usb_hcd_check_unlink_urb(hcd, urb, status);
4741 if (rc)
4742 goto out;
4744 if (!urb->hcpriv) {
4745 dev_dbg(hsotg->dev, "## urb->hcpriv is NULL ##\n");
4746 goto out;
4749 rc = dwc2_hcd_urb_dequeue(hsotg, urb->hcpriv);
4751 usb_hcd_unlink_urb_from_ep(hcd, urb);
4753 kfree(urb->hcpriv);
4754 urb->hcpriv = NULL;
4756 /* Higher layer software sets URB status */
4757 spin_unlock(&hsotg->lock);
4758 usb_hcd_giveback_urb(hcd, urb, status);
4759 spin_lock(&hsotg->lock);
4761 dev_dbg(hsotg->dev, "Called usb_hcd_giveback_urb()\n");
4762 dev_dbg(hsotg->dev, " urb->status = %d\n", urb->status);
4763 out:
4764 spin_unlock_irqrestore(&hsotg->lock, flags);
4766 return rc;
4770 * Frees resources in the DWC_otg controller related to a given endpoint. Also
4771 * clears state in the HCD related to the endpoint. Any URBs for the endpoint
4772 * must already be dequeued.
4774 static void _dwc2_hcd_endpoint_disable(struct usb_hcd *hcd,
4775 struct usb_host_endpoint *ep)
4777 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4779 dev_dbg(hsotg->dev,
4780 "DWC OTG HCD EP DISABLE: bEndpointAddress=0x%02x, ep->hcpriv=%p\n",
4781 ep->desc.bEndpointAddress, ep->hcpriv);
4782 dwc2_hcd_endpoint_disable(hsotg, ep, 250);
4786 * Resets endpoint specific parameter values, in current version used to reset
4787 * the data toggle (as a WA). This function can be called from usb_clear_halt
4788 * routine.
4790 static void _dwc2_hcd_endpoint_reset(struct usb_hcd *hcd,
4791 struct usb_host_endpoint *ep)
4793 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4794 unsigned long flags;
4796 dev_dbg(hsotg->dev,
4797 "DWC OTG HCD EP RESET: bEndpointAddress=0x%02x\n",
4798 ep->desc.bEndpointAddress);
4800 spin_lock_irqsave(&hsotg->lock, flags);
4801 dwc2_hcd_endpoint_reset(hsotg, ep);
4802 spin_unlock_irqrestore(&hsotg->lock, flags);
4806 * Handles host mode interrupts for the DWC_otg controller. Returns IRQ_NONE if
4807 * there was no interrupt to handle. Returns IRQ_HANDLED if there was a valid
4808 * interrupt.
4810 * This function is called by the USB core when an interrupt occurs
4812 static irqreturn_t _dwc2_hcd_irq(struct usb_hcd *hcd)
4814 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4816 return dwc2_handle_hcd_intr(hsotg);
4820 * Creates Status Change bitmap for the root hub and root port. The bitmap is
4821 * returned in buf. Bit 0 is the status change indicator for the root hub. Bit 1
4822 * is the status change indicator for the single root port. Returns 1 if either
4823 * change indicator is 1, otherwise returns 0.
4825 static int _dwc2_hcd_hub_status_data(struct usb_hcd *hcd, char *buf)
4827 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4829 buf[0] = dwc2_hcd_is_status_changed(hsotg, 1) << 1;
4830 return buf[0] != 0;
4833 /* Handles hub class-specific requests */
4834 static int _dwc2_hcd_hub_control(struct usb_hcd *hcd, u16 typereq, u16 wvalue,
4835 u16 windex, char *buf, u16 wlength)
4837 int retval = dwc2_hcd_hub_control(dwc2_hcd_to_hsotg(hcd), typereq,
4838 wvalue, windex, buf, wlength);
4839 return retval;
4842 /* Handles hub TT buffer clear completions */
4843 static void _dwc2_hcd_clear_tt_buffer_complete(struct usb_hcd *hcd,
4844 struct usb_host_endpoint *ep)
4846 struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4847 struct dwc2_qh *qh;
4848 unsigned long flags;
4850 qh = ep->hcpriv;
4851 if (!qh)
4852 return;
4854 spin_lock_irqsave(&hsotg->lock, flags);
4855 qh->tt_buffer_dirty = 0;
4857 if (hsotg->flags.b.port_connect_status)
4858 dwc2_hcd_queue_transactions(hsotg, DWC2_TRANSACTION_ALL);
4860 spin_unlock_irqrestore(&hsotg->lock, flags);
4863 static struct hc_driver dwc2_hc_driver = {
4864 .description = "dwc2_hsotg",
4865 .product_desc = "DWC OTG Controller",
4866 .hcd_priv_size = sizeof(struct wrapper_priv_data),
4868 .irq = _dwc2_hcd_irq,
4869 .flags = HCD_MEMORY | HCD_USB2 | HCD_BH,
4871 .start = _dwc2_hcd_start,
4872 .stop = _dwc2_hcd_stop,
4873 .urb_enqueue = _dwc2_hcd_urb_enqueue,
4874 .urb_dequeue = _dwc2_hcd_urb_dequeue,
4875 .endpoint_disable = _dwc2_hcd_endpoint_disable,
4876 .endpoint_reset = _dwc2_hcd_endpoint_reset,
4877 .get_frame_number = _dwc2_hcd_get_frame_number,
4879 .hub_status_data = _dwc2_hcd_hub_status_data,
4880 .hub_control = _dwc2_hcd_hub_control,
4881 .clear_tt_buffer_complete = _dwc2_hcd_clear_tt_buffer_complete,
4883 .bus_suspend = _dwc2_hcd_suspend,
4884 .bus_resume = _dwc2_hcd_resume,
4886 .map_urb_for_dma = dwc2_map_urb_for_dma,
4887 .unmap_urb_for_dma = dwc2_unmap_urb_for_dma,
4891 * Frees secondary storage associated with the dwc2_hsotg structure contained
4892 * in the struct usb_hcd field
4894 static void dwc2_hcd_free(struct dwc2_hsotg *hsotg)
4896 u32 ahbcfg;
4897 u32 dctl;
4898 int i;
4900 dev_dbg(hsotg->dev, "DWC OTG HCD FREE\n");
4902 /* Free memory for QH/QTD lists */
4903 dwc2_qh_list_free(hsotg, &hsotg->non_periodic_sched_inactive);
4904 dwc2_qh_list_free(hsotg, &hsotg->non_periodic_sched_active);
4905 dwc2_qh_list_free(hsotg, &hsotg->periodic_sched_inactive);
4906 dwc2_qh_list_free(hsotg, &hsotg->periodic_sched_ready);
4907 dwc2_qh_list_free(hsotg, &hsotg->periodic_sched_assigned);
4908 dwc2_qh_list_free(hsotg, &hsotg->periodic_sched_queued);
4910 /* Free memory for the host channels */
4911 for (i = 0; i < MAX_EPS_CHANNELS; i++) {
4912 struct dwc2_host_chan *chan = hsotg->hc_ptr_array[i];
4914 if (chan != NULL) {
4915 dev_dbg(hsotg->dev, "HCD Free channel #%i, chan=%p\n",
4916 i, chan);
4917 hsotg->hc_ptr_array[i] = NULL;
4918 kfree(chan);
4922 if (hsotg->core_params->dma_enable > 0) {
4923 if (hsotg->status_buf) {
4924 dma_free_coherent(hsotg->dev, DWC2_HCD_STATUS_BUF_SIZE,
4925 hsotg->status_buf,
4926 hsotg->status_buf_dma);
4927 hsotg->status_buf = NULL;
4929 } else {
4930 kfree(hsotg->status_buf);
4931 hsotg->status_buf = NULL;
4934 ahbcfg = dwc2_readl(hsotg->regs + GAHBCFG);
4936 /* Disable all interrupts */
4937 ahbcfg &= ~GAHBCFG_GLBL_INTR_EN;
4938 dwc2_writel(ahbcfg, hsotg->regs + GAHBCFG);
4939 dwc2_writel(0, hsotg->regs + GINTMSK);
4941 if (hsotg->hw_params.snpsid >= DWC2_CORE_REV_3_00a) {
4942 dctl = dwc2_readl(hsotg->regs + DCTL);
4943 dctl |= DCTL_SFTDISCON;
4944 dwc2_writel(dctl, hsotg->regs + DCTL);
4947 if (hsotg->wq_otg) {
4948 if (!cancel_work_sync(&hsotg->wf_otg))
4949 flush_workqueue(hsotg->wq_otg);
4950 destroy_workqueue(hsotg->wq_otg);
4953 del_timer(&hsotg->wkp_timer);
4956 static void dwc2_hcd_release(struct dwc2_hsotg *hsotg)
4958 /* Turn off all host-specific interrupts */
4959 dwc2_disable_host_interrupts(hsotg);
4961 dwc2_hcd_free(hsotg);
4965 * Initializes the HCD. This function allocates memory for and initializes the
4966 * static parts of the usb_hcd and dwc2_hsotg structures. It also registers the
4967 * USB bus with the core and calls the hc_driver->start() function. It returns
4968 * a negative error on failure.
4970 int dwc2_hcd_init(struct dwc2_hsotg *hsotg, int irq)
4972 struct usb_hcd *hcd;
4973 struct dwc2_host_chan *channel;
4974 u32 hcfg;
4975 int i, num_channels;
4976 int retval;
4978 if (usb_disabled())
4979 return -ENODEV;
4981 dev_dbg(hsotg->dev, "DWC OTG HCD INIT\n");
4983 retval = -ENOMEM;
4985 hcfg = dwc2_readl(hsotg->regs + HCFG);
4986 dev_dbg(hsotg->dev, "hcfg=%08x\n", hcfg);
4988 #ifdef CONFIG_USB_DWC2_TRACK_MISSED_SOFS
4989 hsotg->frame_num_array = kzalloc(sizeof(*hsotg->frame_num_array) *
4990 FRAME_NUM_ARRAY_SIZE, GFP_KERNEL);
4991 if (!hsotg->frame_num_array)
4992 goto error1;
4993 hsotg->last_frame_num_array = kzalloc(
4994 sizeof(*hsotg->last_frame_num_array) *
4995 FRAME_NUM_ARRAY_SIZE, GFP_KERNEL);
4996 if (!hsotg->last_frame_num_array)
4997 goto error1;
4998 #endif
4999 hsotg->last_frame_num = HFNUM_MAX_FRNUM;
5001 /* Check if the bus driver or platform code has setup a dma_mask */
5002 if (hsotg->core_params->dma_enable > 0 &&
5003 hsotg->dev->dma_mask == NULL) {
5004 dev_warn(hsotg->dev,
5005 "dma_mask not set, disabling DMA\n");
5006 hsotg->core_params->dma_enable = 0;
5007 hsotg->core_params->dma_desc_enable = 0;
5010 /* Set device flags indicating whether the HCD supports DMA */
5011 if (hsotg->core_params->dma_enable > 0) {
5012 if (dma_set_mask(hsotg->dev, DMA_BIT_MASK(32)) < 0)
5013 dev_warn(hsotg->dev, "can't set DMA mask\n");
5014 if (dma_set_coherent_mask(hsotg->dev, DMA_BIT_MASK(32)) < 0)
5015 dev_warn(hsotg->dev, "can't set coherent DMA mask\n");
5018 hcd = usb_create_hcd(&dwc2_hc_driver, hsotg->dev, dev_name(hsotg->dev));
5019 if (!hcd)
5020 goto error1;
5022 if (hsotg->core_params->dma_enable <= 0)
5023 hcd->self.uses_dma = 0;
5025 hcd->has_tt = 1;
5027 ((struct wrapper_priv_data *) &hcd->hcd_priv)->hsotg = hsotg;
5028 hsotg->priv = hcd;
5031 * Disable the global interrupt until all the interrupt handlers are
5032 * installed
5034 dwc2_disable_global_interrupts(hsotg);
5036 /* Initialize the DWC_otg core, and select the Phy type */
5037 retval = dwc2_core_init(hsotg, true);
5038 if (retval)
5039 goto error2;
5041 /* Create new workqueue and init work */
5042 retval = -ENOMEM;
5043 hsotg->wq_otg = create_singlethread_workqueue("dwc2");
5044 if (!hsotg->wq_otg) {
5045 dev_err(hsotg->dev, "Failed to create workqueue\n");
5046 goto error2;
5048 INIT_WORK(&hsotg->wf_otg, dwc2_conn_id_status_change);
5050 setup_timer(&hsotg->wkp_timer, dwc2_wakeup_detected,
5051 (unsigned long)hsotg);
5053 /* Initialize the non-periodic schedule */
5054 INIT_LIST_HEAD(&hsotg->non_periodic_sched_inactive);
5055 INIT_LIST_HEAD(&hsotg->non_periodic_sched_active);
5057 /* Initialize the periodic schedule */
5058 INIT_LIST_HEAD(&hsotg->periodic_sched_inactive);
5059 INIT_LIST_HEAD(&hsotg->periodic_sched_ready);
5060 INIT_LIST_HEAD(&hsotg->periodic_sched_assigned);
5061 INIT_LIST_HEAD(&hsotg->periodic_sched_queued);
5063 INIT_LIST_HEAD(&hsotg->split_order);
5066 * Create a host channel descriptor for each host channel implemented
5067 * in the controller. Initialize the channel descriptor array.
5069 INIT_LIST_HEAD(&hsotg->free_hc_list);
5070 num_channels = hsotg->core_params->host_channels;
5071 memset(&hsotg->hc_ptr_array[0], 0, sizeof(hsotg->hc_ptr_array));
5073 for (i = 0; i < num_channels; i++) {
5074 channel = kzalloc(sizeof(*channel), GFP_KERNEL);
5075 if (channel == NULL)
5076 goto error3;
5077 channel->hc_num = i;
5078 INIT_LIST_HEAD(&channel->split_order_list_entry);
5079 hsotg->hc_ptr_array[i] = channel;
5082 /* Initialize hsotg start work */
5083 INIT_DELAYED_WORK(&hsotg->start_work, dwc2_hcd_start_func);
5085 /* Initialize port reset work */
5086 INIT_DELAYED_WORK(&hsotg->reset_work, dwc2_hcd_reset_func);
5089 * Allocate space for storing data on status transactions. Normally no
5090 * data is sent, but this space acts as a bit bucket. This must be
5091 * done after usb_add_hcd since that function allocates the DMA buffer
5092 * pool.
5094 if (hsotg->core_params->dma_enable > 0)
5095 hsotg->status_buf = dma_alloc_coherent(hsotg->dev,
5096 DWC2_HCD_STATUS_BUF_SIZE,
5097 &hsotg->status_buf_dma, GFP_KERNEL);
5098 else
5099 hsotg->status_buf = kzalloc(DWC2_HCD_STATUS_BUF_SIZE,
5100 GFP_KERNEL);
5102 if (!hsotg->status_buf)
5103 goto error3;
5106 * Create kmem caches to handle descriptor buffers in descriptor
5107 * DMA mode.
5108 * Alignment must be set to 512 bytes.
5110 if (hsotg->core_params->dma_desc_enable ||
5111 hsotg->core_params->dma_desc_fs_enable) {
5112 hsotg->desc_gen_cache = kmem_cache_create("dwc2-gen-desc",
5113 sizeof(struct dwc2_hcd_dma_desc) *
5114 MAX_DMA_DESC_NUM_GENERIC, 512, SLAB_CACHE_DMA,
5115 NULL);
5116 if (!hsotg->desc_gen_cache) {
5117 dev_err(hsotg->dev,
5118 "unable to create dwc2 generic desc cache\n");
5121 * Disable descriptor dma mode since it will not be
5122 * usable.
5124 hsotg->core_params->dma_desc_enable = 0;
5125 hsotg->core_params->dma_desc_fs_enable = 0;
5128 hsotg->desc_hsisoc_cache = kmem_cache_create("dwc2-hsisoc-desc",
5129 sizeof(struct dwc2_hcd_dma_desc) *
5130 MAX_DMA_DESC_NUM_HS_ISOC, 512, 0, NULL);
5131 if (!hsotg->desc_hsisoc_cache) {
5132 dev_err(hsotg->dev,
5133 "unable to create dwc2 hs isoc desc cache\n");
5135 kmem_cache_destroy(hsotg->desc_gen_cache);
5138 * Disable descriptor dma mode since it will not be
5139 * usable.
5141 hsotg->core_params->dma_desc_enable = 0;
5142 hsotg->core_params->dma_desc_fs_enable = 0;
5146 hsotg->otg_port = 1;
5147 hsotg->frame_list = NULL;
5148 hsotg->frame_list_dma = 0;
5149 hsotg->periodic_qh_count = 0;
5151 /* Initiate lx_state to L3 disconnected state */
5152 hsotg->lx_state = DWC2_L3;
5154 hcd->self.otg_port = hsotg->otg_port;
5156 /* Don't support SG list at this point */
5157 hcd->self.sg_tablesize = 0;
5159 if (!IS_ERR_OR_NULL(hsotg->uphy))
5160 otg_set_host(hsotg->uphy->otg, &hcd->self);
5163 * Finish generic HCD initialization and start the HCD. This function
5164 * allocates the DMA buffer pool, registers the USB bus, requests the
5165 * IRQ line, and calls hcd_start method.
5167 retval = usb_add_hcd(hcd, irq, IRQF_SHARED);
5168 if (retval < 0)
5169 goto error4;
5171 device_wakeup_enable(hcd->self.controller);
5173 dwc2_hcd_dump_state(hsotg);
5175 dwc2_enable_global_interrupts(hsotg);
5177 return 0;
5179 error4:
5180 kmem_cache_destroy(hsotg->desc_gen_cache);
5181 kmem_cache_destroy(hsotg->desc_hsisoc_cache);
5182 error3:
5183 dwc2_hcd_release(hsotg);
5184 error2:
5185 usb_put_hcd(hcd);
5186 error1:
5187 kfree(hsotg->core_params);
5189 #ifdef CONFIG_USB_DWC2_TRACK_MISSED_SOFS
5190 kfree(hsotg->last_frame_num_array);
5191 kfree(hsotg->frame_num_array);
5192 #endif
5194 dev_err(hsotg->dev, "%s() FAILED, returning %d\n", __func__, retval);
5195 return retval;
5199 * Removes the HCD.
5200 * Frees memory and resources associated with the HCD and deregisters the bus.
5202 void dwc2_hcd_remove(struct dwc2_hsotg *hsotg)
5204 struct usb_hcd *hcd;
5206 dev_dbg(hsotg->dev, "DWC OTG HCD REMOVE\n");
5208 hcd = dwc2_hsotg_to_hcd(hsotg);
5209 dev_dbg(hsotg->dev, "hsotg->hcd = %p\n", hcd);
5211 if (!hcd) {
5212 dev_dbg(hsotg->dev, "%s: dwc2_hsotg_to_hcd(hsotg) NULL!\n",
5213 __func__);
5214 return;
5217 if (!IS_ERR_OR_NULL(hsotg->uphy))
5218 otg_set_host(hsotg->uphy->otg, NULL);
5220 usb_remove_hcd(hcd);
5221 hsotg->priv = NULL;
5223 kmem_cache_destroy(hsotg->desc_gen_cache);
5224 kmem_cache_destroy(hsotg->desc_hsisoc_cache);
5226 dwc2_hcd_release(hsotg);
5227 usb_put_hcd(hcd);
5229 #ifdef CONFIG_USB_DWC2_TRACK_MISSED_SOFS
5230 kfree(hsotg->last_frame_num_array);
5231 kfree(hsotg->frame_num_array);
5232 #endif
5236 * dwc2_backup_host_registers() - Backup controller host registers.
5237 * When suspending usb bus, registers needs to be backuped
5238 * if controller power is disabled once suspended.
5240 * @hsotg: Programming view of the DWC_otg controller
5242 int dwc2_backup_host_registers(struct dwc2_hsotg *hsotg)
5244 struct dwc2_hregs_backup *hr;
5245 int i;
5247 dev_dbg(hsotg->dev, "%s\n", __func__);
5249 /* Backup Host regs */
5250 hr = &hsotg->hr_backup;
5251 hr->hcfg = dwc2_readl(hsotg->regs + HCFG);
5252 hr->haintmsk = dwc2_readl(hsotg->regs + HAINTMSK);
5253 for (i = 0; i < hsotg->core_params->host_channels; ++i)
5254 hr->hcintmsk[i] = dwc2_readl(hsotg->regs + HCINTMSK(i));
5256 hr->hprt0 = dwc2_read_hprt0(hsotg);
5257 hr->hfir = dwc2_readl(hsotg->regs + HFIR);
5258 hr->valid = true;
5260 return 0;
5264 * dwc2_restore_host_registers() - Restore controller host registers.
5265 * When resuming usb bus, device registers needs to be restored
5266 * if controller power were disabled.
5268 * @hsotg: Programming view of the DWC_otg controller
5270 int dwc2_restore_host_registers(struct dwc2_hsotg *hsotg)
5272 struct dwc2_hregs_backup *hr;
5273 int i;
5275 dev_dbg(hsotg->dev, "%s\n", __func__);
5277 /* Restore host regs */
5278 hr = &hsotg->hr_backup;
5279 if (!hr->valid) {
5280 dev_err(hsotg->dev, "%s: no host registers to restore\n",
5281 __func__);
5282 return -EINVAL;
5284 hr->valid = false;
5286 dwc2_writel(hr->hcfg, hsotg->regs + HCFG);
5287 dwc2_writel(hr->haintmsk, hsotg->regs + HAINTMSK);
5289 for (i = 0; i < hsotg->core_params->host_channels; ++i)
5290 dwc2_writel(hr->hcintmsk[i], hsotg->regs + HCINTMSK(i));
5292 dwc2_writel(hr->hprt0, hsotg->regs + HPRT0);
5293 dwc2_writel(hr->hfir, hsotg->regs + HFIR);
5294 hsotg->frame_number = 0;
5296 return 0;