ARM: mvebu: fix indentation of assembly instructions in coherency_ll.S
[linux/fpc-iii.git] / ipc / sem.c
blobbee5554173120780374e6b42228d13c786ceb315
1 /*
2 * linux/ipc/sem.c
3 * Copyright (C) 1992 Krishna Balasubramanian
4 * Copyright (C) 1995 Eric Schenk, Bruno Haible
6 * /proc/sysvipc/sem support (c) 1999 Dragos Acostachioaie <dragos@iname.com>
8 * SMP-threaded, sysctl's added
9 * (c) 1999 Manfred Spraul <manfred@colorfullife.com>
10 * Enforced range limit on SEM_UNDO
11 * (c) 2001 Red Hat Inc
12 * Lockless wakeup
13 * (c) 2003 Manfred Spraul <manfred@colorfullife.com>
14 * Further wakeup optimizations, documentation
15 * (c) 2010 Manfred Spraul <manfred@colorfullife.com>
17 * support for audit of ipc object properties and permission changes
18 * Dustin Kirkland <dustin.kirkland@us.ibm.com>
20 * namespaces support
21 * OpenVZ, SWsoft Inc.
22 * Pavel Emelianov <xemul@openvz.org>
24 * Implementation notes: (May 2010)
25 * This file implements System V semaphores.
27 * User space visible behavior:
28 * - FIFO ordering for semop() operations (just FIFO, not starvation
29 * protection)
30 * - multiple semaphore operations that alter the same semaphore in
31 * one semop() are handled.
32 * - sem_ctime (time of last semctl()) is updated in the IPC_SET, SETVAL and
33 * SETALL calls.
34 * - two Linux specific semctl() commands: SEM_STAT, SEM_INFO.
35 * - undo adjustments at process exit are limited to 0..SEMVMX.
36 * - namespace are supported.
37 * - SEMMSL, SEMMNS, SEMOPM and SEMMNI can be configured at runtine by writing
38 * to /proc/sys/kernel/sem.
39 * - statistics about the usage are reported in /proc/sysvipc/sem.
41 * Internals:
42 * - scalability:
43 * - all global variables are read-mostly.
44 * - semop() calls and semctl(RMID) are synchronized by RCU.
45 * - most operations do write operations (actually: spin_lock calls) to
46 * the per-semaphore array structure.
47 * Thus: Perfect SMP scaling between independent semaphore arrays.
48 * If multiple semaphores in one array are used, then cache line
49 * trashing on the semaphore array spinlock will limit the scaling.
50 * - semncnt and semzcnt are calculated on demand in count_semncnt() and
51 * count_semzcnt()
52 * - the task that performs a successful semop() scans the list of all
53 * sleeping tasks and completes any pending operations that can be fulfilled.
54 * Semaphores are actively given to waiting tasks (necessary for FIFO).
55 * (see update_queue())
56 * - To improve the scalability, the actual wake-up calls are performed after
57 * dropping all locks. (see wake_up_sem_queue_prepare(),
58 * wake_up_sem_queue_do())
59 * - All work is done by the waker, the woken up task does not have to do
60 * anything - not even acquiring a lock or dropping a refcount.
61 * - A woken up task may not even touch the semaphore array anymore, it may
62 * have been destroyed already by a semctl(RMID).
63 * - The synchronizations between wake-ups due to a timeout/signal and a
64 * wake-up due to a completed semaphore operation is achieved by using an
65 * intermediate state (IN_WAKEUP).
66 * - UNDO values are stored in an array (one per process and per
67 * semaphore array, lazily allocated). For backwards compatibility, multiple
68 * modes for the UNDO variables are supported (per process, per thread)
69 * (see copy_semundo, CLONE_SYSVSEM)
70 * - There are two lists of the pending operations: a per-array list
71 * and per-semaphore list (stored in the array). This allows to achieve FIFO
72 * ordering without always scanning all pending operations.
73 * The worst-case behavior is nevertheless O(N^2) for N wakeups.
76 #include <linux/slab.h>
77 #include <linux/spinlock.h>
78 #include <linux/init.h>
79 #include <linux/proc_fs.h>
80 #include <linux/time.h>
81 #include <linux/security.h>
82 #include <linux/syscalls.h>
83 #include <linux/audit.h>
84 #include <linux/capability.h>
85 #include <linux/seq_file.h>
86 #include <linux/rwsem.h>
87 #include <linux/nsproxy.h>
88 #include <linux/ipc_namespace.h>
90 #include <asm/uaccess.h>
91 #include "util.h"
93 /* One semaphore structure for each semaphore in the system. */
94 struct sem {
95 int semval; /* current value */
96 int sempid; /* pid of last operation */
97 spinlock_t lock; /* spinlock for fine-grained semtimedop */
98 struct list_head pending_alter; /* pending single-sop operations */
99 /* that alter the semaphore */
100 struct list_head pending_const; /* pending single-sop operations */
101 /* that do not alter the semaphore*/
102 time_t sem_otime; /* candidate for sem_otime */
103 } ____cacheline_aligned_in_smp;
105 /* One queue for each sleeping process in the system. */
106 struct sem_queue {
107 struct list_head list; /* queue of pending operations */
108 struct task_struct *sleeper; /* this process */
109 struct sem_undo *undo; /* undo structure */
110 int pid; /* process id of requesting process */
111 int status; /* completion status of operation */
112 struct sembuf *sops; /* array of pending operations */
113 int nsops; /* number of operations */
114 int alter; /* does *sops alter the array? */
117 /* Each task has a list of undo requests. They are executed automatically
118 * when the process exits.
120 struct sem_undo {
121 struct list_head list_proc; /* per-process list: *
122 * all undos from one process
123 * rcu protected */
124 struct rcu_head rcu; /* rcu struct for sem_undo */
125 struct sem_undo_list *ulp; /* back ptr to sem_undo_list */
126 struct list_head list_id; /* per semaphore array list:
127 * all undos for one array */
128 int semid; /* semaphore set identifier */
129 short *semadj; /* array of adjustments */
130 /* one per semaphore */
133 /* sem_undo_list controls shared access to the list of sem_undo structures
134 * that may be shared among all a CLONE_SYSVSEM task group.
136 struct sem_undo_list {
137 atomic_t refcnt;
138 spinlock_t lock;
139 struct list_head list_proc;
143 #define sem_ids(ns) ((ns)->ids[IPC_SEM_IDS])
145 #define sem_checkid(sma, semid) ipc_checkid(&sma->sem_perm, semid)
147 static int newary(struct ipc_namespace *, struct ipc_params *);
148 static void freeary(struct ipc_namespace *, struct kern_ipc_perm *);
149 #ifdef CONFIG_PROC_FS
150 static int sysvipc_sem_proc_show(struct seq_file *s, void *it);
151 #endif
153 #define SEMMSL_FAST 256 /* 512 bytes on stack */
154 #define SEMOPM_FAST 64 /* ~ 372 bytes on stack */
157 * Locking:
158 * sem_undo.id_next,
159 * sem_array.complex_count,
160 * sem_array.pending{_alter,_cont},
161 * sem_array.sem_undo: global sem_lock() for read/write
162 * sem_undo.proc_next: only "current" is allowed to read/write that field.
164 * sem_array.sem_base[i].pending_{const,alter}:
165 * global or semaphore sem_lock() for read/write
168 #define sc_semmsl sem_ctls[0]
169 #define sc_semmns sem_ctls[1]
170 #define sc_semopm sem_ctls[2]
171 #define sc_semmni sem_ctls[3]
173 void sem_init_ns(struct ipc_namespace *ns)
175 ns->sc_semmsl = SEMMSL;
176 ns->sc_semmns = SEMMNS;
177 ns->sc_semopm = SEMOPM;
178 ns->sc_semmni = SEMMNI;
179 ns->used_sems = 0;
180 ipc_init_ids(&ns->ids[IPC_SEM_IDS]);
183 #ifdef CONFIG_IPC_NS
184 void sem_exit_ns(struct ipc_namespace *ns)
186 free_ipcs(ns, &sem_ids(ns), freeary);
187 idr_destroy(&ns->ids[IPC_SEM_IDS].ipcs_idr);
189 #endif
191 void __init sem_init(void)
193 sem_init_ns(&init_ipc_ns);
194 ipc_init_proc_interface("sysvipc/sem",
195 " key semid perms nsems uid gid cuid cgid otime ctime\n",
196 IPC_SEM_IDS, sysvipc_sem_proc_show);
200 * unmerge_queues - unmerge queues, if possible.
201 * @sma: semaphore array
203 * The function unmerges the wait queues if complex_count is 0.
204 * It must be called prior to dropping the global semaphore array lock.
206 static void unmerge_queues(struct sem_array *sma)
208 struct sem_queue *q, *tq;
210 /* complex operations still around? */
211 if (sma->complex_count)
212 return;
214 * We will switch back to simple mode.
215 * Move all pending operation back into the per-semaphore
216 * queues.
218 list_for_each_entry_safe(q, tq, &sma->pending_alter, list) {
219 struct sem *curr;
220 curr = &sma->sem_base[q->sops[0].sem_num];
222 list_add_tail(&q->list, &curr->pending_alter);
224 INIT_LIST_HEAD(&sma->pending_alter);
228 * merge_queues - merge single semop queues into global queue
229 * @sma: semaphore array
231 * This function merges all per-semaphore queues into the global queue.
232 * It is necessary to achieve FIFO ordering for the pending single-sop
233 * operations when a multi-semop operation must sleep.
234 * Only the alter operations must be moved, the const operations can stay.
236 static void merge_queues(struct sem_array *sma)
238 int i;
239 for (i = 0; i < sma->sem_nsems; i++) {
240 struct sem *sem = sma->sem_base + i;
242 list_splice_init(&sem->pending_alter, &sma->pending_alter);
246 static void sem_rcu_free(struct rcu_head *head)
248 struct ipc_rcu *p = container_of(head, struct ipc_rcu, rcu);
249 struct sem_array *sma = ipc_rcu_to_struct(p);
251 security_sem_free(sma);
252 ipc_rcu_free(head);
256 * Wait until all currently ongoing simple ops have completed.
257 * Caller must own sem_perm.lock.
258 * New simple ops cannot start, because simple ops first check
259 * that sem_perm.lock is free.
260 * that a) sem_perm.lock is free and b) complex_count is 0.
262 static void sem_wait_array(struct sem_array *sma)
264 int i;
265 struct sem *sem;
267 if (sma->complex_count) {
268 /* The thread that increased sma->complex_count waited on
269 * all sem->lock locks. Thus we don't need to wait again.
271 return;
274 for (i = 0; i < sma->sem_nsems; i++) {
275 sem = sma->sem_base + i;
276 spin_unlock_wait(&sem->lock);
281 * If the request contains only one semaphore operation, and there are
282 * no complex transactions pending, lock only the semaphore involved.
283 * Otherwise, lock the entire semaphore array, since we either have
284 * multiple semaphores in our own semops, or we need to look at
285 * semaphores from other pending complex operations.
287 static inline int sem_lock(struct sem_array *sma, struct sembuf *sops,
288 int nsops)
290 struct sem *sem;
292 if (nsops != 1) {
293 /* Complex operation - acquire a full lock */
294 ipc_lock_object(&sma->sem_perm);
296 /* And wait until all simple ops that are processed
297 * right now have dropped their locks.
299 sem_wait_array(sma);
300 return -1;
304 * Only one semaphore affected - try to optimize locking.
305 * The rules are:
306 * - optimized locking is possible if no complex operation
307 * is either enqueued or processed right now.
308 * - The test for enqueued complex ops is simple:
309 * sma->complex_count != 0
310 * - Testing for complex ops that are processed right now is
311 * a bit more difficult. Complex ops acquire the full lock
312 * and first wait that the running simple ops have completed.
313 * (see above)
314 * Thus: If we own a simple lock and the global lock is free
315 * and complex_count is now 0, then it will stay 0 and
316 * thus just locking sem->lock is sufficient.
318 sem = sma->sem_base + sops->sem_num;
320 if (sma->complex_count == 0) {
322 * It appears that no complex operation is around.
323 * Acquire the per-semaphore lock.
325 spin_lock(&sem->lock);
327 /* Then check that the global lock is free */
328 if (!spin_is_locked(&sma->sem_perm.lock)) {
329 /* spin_is_locked() is not a memory barrier */
330 smp_mb();
332 /* Now repeat the test of complex_count:
333 * It can't change anymore until we drop sem->lock.
334 * Thus: if is now 0, then it will stay 0.
336 if (sma->complex_count == 0) {
337 /* fast path successful! */
338 return sops->sem_num;
341 spin_unlock(&sem->lock);
344 /* slow path: acquire the full lock */
345 ipc_lock_object(&sma->sem_perm);
347 if (sma->complex_count == 0) {
348 /* False alarm:
349 * There is no complex operation, thus we can switch
350 * back to the fast path.
352 spin_lock(&sem->lock);
353 ipc_unlock_object(&sma->sem_perm);
354 return sops->sem_num;
355 } else {
356 /* Not a false alarm, thus complete the sequence for a
357 * full lock.
359 sem_wait_array(sma);
360 return -1;
364 static inline void sem_unlock(struct sem_array *sma, int locknum)
366 if (locknum == -1) {
367 unmerge_queues(sma);
368 ipc_unlock_object(&sma->sem_perm);
369 } else {
370 struct sem *sem = sma->sem_base + locknum;
371 spin_unlock(&sem->lock);
376 * sem_lock_(check_) routines are called in the paths where the rwsem
377 * is not held.
379 * The caller holds the RCU read lock.
381 static inline struct sem_array *sem_obtain_lock(struct ipc_namespace *ns,
382 int id, struct sembuf *sops, int nsops, int *locknum)
384 struct kern_ipc_perm *ipcp;
385 struct sem_array *sma;
387 ipcp = ipc_obtain_object(&sem_ids(ns), id);
388 if (IS_ERR(ipcp))
389 return ERR_CAST(ipcp);
391 sma = container_of(ipcp, struct sem_array, sem_perm);
392 *locknum = sem_lock(sma, sops, nsops);
394 /* ipc_rmid() may have already freed the ID while sem_lock
395 * was spinning: verify that the structure is still valid
397 if (ipc_valid_object(ipcp))
398 return container_of(ipcp, struct sem_array, sem_perm);
400 sem_unlock(sma, *locknum);
401 return ERR_PTR(-EINVAL);
404 static inline struct sem_array *sem_obtain_object(struct ipc_namespace *ns, int id)
406 struct kern_ipc_perm *ipcp = ipc_obtain_object(&sem_ids(ns), id);
408 if (IS_ERR(ipcp))
409 return ERR_CAST(ipcp);
411 return container_of(ipcp, struct sem_array, sem_perm);
414 static inline struct sem_array *sem_obtain_object_check(struct ipc_namespace *ns,
415 int id)
417 struct kern_ipc_perm *ipcp = ipc_obtain_object_check(&sem_ids(ns), id);
419 if (IS_ERR(ipcp))
420 return ERR_CAST(ipcp);
422 return container_of(ipcp, struct sem_array, sem_perm);
425 static inline void sem_lock_and_putref(struct sem_array *sma)
427 sem_lock(sma, NULL, -1);
428 ipc_rcu_putref(sma, ipc_rcu_free);
431 static inline void sem_rmid(struct ipc_namespace *ns, struct sem_array *s)
433 ipc_rmid(&sem_ids(ns), &s->sem_perm);
437 * Lockless wakeup algorithm:
438 * Without the check/retry algorithm a lockless wakeup is possible:
439 * - queue.status is initialized to -EINTR before blocking.
440 * - wakeup is performed by
441 * * unlinking the queue entry from the pending list
442 * * setting queue.status to IN_WAKEUP
443 * This is the notification for the blocked thread that a
444 * result value is imminent.
445 * * call wake_up_process
446 * * set queue.status to the final value.
447 * - the previously blocked thread checks queue.status:
448 * * if it's IN_WAKEUP, then it must wait until the value changes
449 * * if it's not -EINTR, then the operation was completed by
450 * update_queue. semtimedop can return queue.status without
451 * performing any operation on the sem array.
452 * * otherwise it must acquire the spinlock and check what's up.
454 * The two-stage algorithm is necessary to protect against the following
455 * races:
456 * - if queue.status is set after wake_up_process, then the woken up idle
457 * thread could race forward and try (and fail) to acquire sma->lock
458 * before update_queue had a chance to set queue.status
459 * - if queue.status is written before wake_up_process and if the
460 * blocked process is woken up by a signal between writing
461 * queue.status and the wake_up_process, then the woken up
462 * process could return from semtimedop and die by calling
463 * sys_exit before wake_up_process is called. Then wake_up_process
464 * will oops, because the task structure is already invalid.
465 * (yes, this happened on s390 with sysv msg).
468 #define IN_WAKEUP 1
471 * newary - Create a new semaphore set
472 * @ns: namespace
473 * @params: ptr to the structure that contains key, semflg and nsems
475 * Called with sem_ids.rwsem held (as a writer)
477 static int newary(struct ipc_namespace *ns, struct ipc_params *params)
479 int id;
480 int retval;
481 struct sem_array *sma;
482 int size;
483 key_t key = params->key;
484 int nsems = params->u.nsems;
485 int semflg = params->flg;
486 int i;
488 if (!nsems)
489 return -EINVAL;
490 if (ns->used_sems + nsems > ns->sc_semmns)
491 return -ENOSPC;
493 size = sizeof(*sma) + nsems * sizeof(struct sem);
494 sma = ipc_rcu_alloc(size);
495 if (!sma)
496 return -ENOMEM;
498 memset(sma, 0, size);
500 sma->sem_perm.mode = (semflg & S_IRWXUGO);
501 sma->sem_perm.key = key;
503 sma->sem_perm.security = NULL;
504 retval = security_sem_alloc(sma);
505 if (retval) {
506 ipc_rcu_putref(sma, ipc_rcu_free);
507 return retval;
510 id = ipc_addid(&sem_ids(ns), &sma->sem_perm, ns->sc_semmni);
511 if (id < 0) {
512 ipc_rcu_putref(sma, sem_rcu_free);
513 return id;
515 ns->used_sems += nsems;
517 sma->sem_base = (struct sem *) &sma[1];
519 for (i = 0; i < nsems; i++) {
520 INIT_LIST_HEAD(&sma->sem_base[i].pending_alter);
521 INIT_LIST_HEAD(&sma->sem_base[i].pending_const);
522 spin_lock_init(&sma->sem_base[i].lock);
525 sma->complex_count = 0;
526 INIT_LIST_HEAD(&sma->pending_alter);
527 INIT_LIST_HEAD(&sma->pending_const);
528 INIT_LIST_HEAD(&sma->list_id);
529 sma->sem_nsems = nsems;
530 sma->sem_ctime = get_seconds();
531 sem_unlock(sma, -1);
532 rcu_read_unlock();
534 return sma->sem_perm.id;
539 * Called with sem_ids.rwsem and ipcp locked.
541 static inline int sem_security(struct kern_ipc_perm *ipcp, int semflg)
543 struct sem_array *sma;
545 sma = container_of(ipcp, struct sem_array, sem_perm);
546 return security_sem_associate(sma, semflg);
550 * Called with sem_ids.rwsem and ipcp locked.
552 static inline int sem_more_checks(struct kern_ipc_perm *ipcp,
553 struct ipc_params *params)
555 struct sem_array *sma;
557 sma = container_of(ipcp, struct sem_array, sem_perm);
558 if (params->u.nsems > sma->sem_nsems)
559 return -EINVAL;
561 return 0;
564 SYSCALL_DEFINE3(semget, key_t, key, int, nsems, int, semflg)
566 struct ipc_namespace *ns;
567 struct ipc_ops sem_ops;
568 struct ipc_params sem_params;
570 ns = current->nsproxy->ipc_ns;
572 if (nsems < 0 || nsems > ns->sc_semmsl)
573 return -EINVAL;
575 sem_ops.getnew = newary;
576 sem_ops.associate = sem_security;
577 sem_ops.more_checks = sem_more_checks;
579 sem_params.key = key;
580 sem_params.flg = semflg;
581 sem_params.u.nsems = nsems;
583 return ipcget(ns, &sem_ids(ns), &sem_ops, &sem_params);
587 * perform_atomic_semop - Perform (if possible) a semaphore operation
588 * @sma: semaphore array
589 * @sops: array with operations that should be checked
590 * @nsops: number of operations
591 * @un: undo array
592 * @pid: pid that did the change
594 * Returns 0 if the operation was possible.
595 * Returns 1 if the operation is impossible, the caller must sleep.
596 * Negative values are error codes.
598 static int perform_atomic_semop(struct sem_array *sma, struct sembuf *sops,
599 int nsops, struct sem_undo *un, int pid)
601 int result, sem_op;
602 struct sembuf *sop;
603 struct sem *curr;
605 for (sop = sops; sop < sops + nsops; sop++) {
606 curr = sma->sem_base + sop->sem_num;
607 sem_op = sop->sem_op;
608 result = curr->semval;
610 if (!sem_op && result)
611 goto would_block;
613 result += sem_op;
614 if (result < 0)
615 goto would_block;
616 if (result > SEMVMX)
617 goto out_of_range;
619 if (sop->sem_flg & SEM_UNDO) {
620 int undo = un->semadj[sop->sem_num] - sem_op;
621 /* Exceeding the undo range is an error. */
622 if (undo < (-SEMAEM - 1) || undo > SEMAEM)
623 goto out_of_range;
624 un->semadj[sop->sem_num] = undo;
627 curr->semval = result;
630 sop--;
631 while (sop >= sops) {
632 sma->sem_base[sop->sem_num].sempid = pid;
633 sop--;
636 return 0;
638 out_of_range:
639 result = -ERANGE;
640 goto undo;
642 would_block:
643 if (sop->sem_flg & IPC_NOWAIT)
644 result = -EAGAIN;
645 else
646 result = 1;
648 undo:
649 sop--;
650 while (sop >= sops) {
651 sem_op = sop->sem_op;
652 sma->sem_base[sop->sem_num].semval -= sem_op;
653 if (sop->sem_flg & SEM_UNDO)
654 un->semadj[sop->sem_num] += sem_op;
655 sop--;
658 return result;
661 /** wake_up_sem_queue_prepare(q, error): Prepare wake-up
662 * @q: queue entry that must be signaled
663 * @error: Error value for the signal
665 * Prepare the wake-up of the queue entry q.
667 static void wake_up_sem_queue_prepare(struct list_head *pt,
668 struct sem_queue *q, int error)
670 if (list_empty(pt)) {
672 * Hold preempt off so that we don't get preempted and have the
673 * wakee busy-wait until we're scheduled back on.
675 preempt_disable();
677 q->status = IN_WAKEUP;
678 q->pid = error;
680 list_add_tail(&q->list, pt);
684 * wake_up_sem_queue_do - do the actual wake-up
685 * @pt: list of tasks to be woken up
687 * Do the actual wake-up.
688 * The function is called without any locks held, thus the semaphore array
689 * could be destroyed already and the tasks can disappear as soon as the
690 * status is set to the actual return code.
692 static void wake_up_sem_queue_do(struct list_head *pt)
694 struct sem_queue *q, *t;
695 int did_something;
697 did_something = !list_empty(pt);
698 list_for_each_entry_safe(q, t, pt, list) {
699 wake_up_process(q->sleeper);
700 /* q can disappear immediately after writing q->status. */
701 smp_wmb();
702 q->status = q->pid;
704 if (did_something)
705 preempt_enable();
708 static void unlink_queue(struct sem_array *sma, struct sem_queue *q)
710 list_del(&q->list);
711 if (q->nsops > 1)
712 sma->complex_count--;
715 /** check_restart(sma, q)
716 * @sma: semaphore array
717 * @q: the operation that just completed
719 * update_queue is O(N^2) when it restarts scanning the whole queue of
720 * waiting operations. Therefore this function checks if the restart is
721 * really necessary. It is called after a previously waiting operation
722 * modified the array.
723 * Note that wait-for-zero operations are handled without restart.
725 static int check_restart(struct sem_array *sma, struct sem_queue *q)
727 /* pending complex alter operations are too difficult to analyse */
728 if (!list_empty(&sma->pending_alter))
729 return 1;
731 /* we were a sleeping complex operation. Too difficult */
732 if (q->nsops > 1)
733 return 1;
735 /* It is impossible that someone waits for the new value:
736 * - complex operations always restart.
737 * - wait-for-zero are handled seperately.
738 * - q is a previously sleeping simple operation that
739 * altered the array. It must be a decrement, because
740 * simple increments never sleep.
741 * - If there are older (higher priority) decrements
742 * in the queue, then they have observed the original
743 * semval value and couldn't proceed. The operation
744 * decremented to value - thus they won't proceed either.
746 return 0;
750 * wake_const_ops - wake up non-alter tasks
751 * @sma: semaphore array.
752 * @semnum: semaphore that was modified.
753 * @pt: list head for the tasks that must be woken up.
755 * wake_const_ops must be called after a semaphore in a semaphore array
756 * was set to 0. If complex const operations are pending, wake_const_ops must
757 * be called with semnum = -1, as well as with the number of each modified
758 * semaphore.
759 * The tasks that must be woken up are added to @pt. The return code
760 * is stored in q->pid.
761 * The function returns 1 if at least one operation was completed successfully.
763 static int wake_const_ops(struct sem_array *sma, int semnum,
764 struct list_head *pt)
766 struct sem_queue *q;
767 struct list_head *walk;
768 struct list_head *pending_list;
769 int semop_completed = 0;
771 if (semnum == -1)
772 pending_list = &sma->pending_const;
773 else
774 pending_list = &sma->sem_base[semnum].pending_const;
776 walk = pending_list->next;
777 while (walk != pending_list) {
778 int error;
780 q = container_of(walk, struct sem_queue, list);
781 walk = walk->next;
783 error = perform_atomic_semop(sma, q->sops, q->nsops,
784 q->undo, q->pid);
786 if (error <= 0) {
787 /* operation completed, remove from queue & wakeup */
789 unlink_queue(sma, q);
791 wake_up_sem_queue_prepare(pt, q, error);
792 if (error == 0)
793 semop_completed = 1;
796 return semop_completed;
800 * do_smart_wakeup_zero - wakeup all wait for zero tasks
801 * @sma: semaphore array
802 * @sops: operations that were performed
803 * @nsops: number of operations
804 * @pt: list head of the tasks that must be woken up.
806 * Checks all required queue for wait-for-zero operations, based
807 * on the actual changes that were performed on the semaphore array.
808 * The function returns 1 if at least one operation was completed successfully.
810 static int do_smart_wakeup_zero(struct sem_array *sma, struct sembuf *sops,
811 int nsops, struct list_head *pt)
813 int i;
814 int semop_completed = 0;
815 int got_zero = 0;
817 /* first: the per-semaphore queues, if known */
818 if (sops) {
819 for (i = 0; i < nsops; i++) {
820 int num = sops[i].sem_num;
822 if (sma->sem_base[num].semval == 0) {
823 got_zero = 1;
824 semop_completed |= wake_const_ops(sma, num, pt);
827 } else {
829 * No sops means modified semaphores not known.
830 * Assume all were changed.
832 for (i = 0; i < sma->sem_nsems; i++) {
833 if (sma->sem_base[i].semval == 0) {
834 got_zero = 1;
835 semop_completed |= wake_const_ops(sma, i, pt);
840 * If one of the modified semaphores got 0,
841 * then check the global queue, too.
843 if (got_zero)
844 semop_completed |= wake_const_ops(sma, -1, pt);
846 return semop_completed;
851 * update_queue - look for tasks that can be completed.
852 * @sma: semaphore array.
853 * @semnum: semaphore that was modified.
854 * @pt: list head for the tasks that must be woken up.
856 * update_queue must be called after a semaphore in a semaphore array
857 * was modified. If multiple semaphores were modified, update_queue must
858 * be called with semnum = -1, as well as with the number of each modified
859 * semaphore.
860 * The tasks that must be woken up are added to @pt. The return code
861 * is stored in q->pid.
862 * The function internally checks if const operations can now succeed.
864 * The function return 1 if at least one semop was completed successfully.
866 static int update_queue(struct sem_array *sma, int semnum, struct list_head *pt)
868 struct sem_queue *q;
869 struct list_head *walk;
870 struct list_head *pending_list;
871 int semop_completed = 0;
873 if (semnum == -1)
874 pending_list = &sma->pending_alter;
875 else
876 pending_list = &sma->sem_base[semnum].pending_alter;
878 again:
879 walk = pending_list->next;
880 while (walk != pending_list) {
881 int error, restart;
883 q = container_of(walk, struct sem_queue, list);
884 walk = walk->next;
886 /* If we are scanning the single sop, per-semaphore list of
887 * one semaphore and that semaphore is 0, then it is not
888 * necessary to scan further: simple increments
889 * that affect only one entry succeed immediately and cannot
890 * be in the per semaphore pending queue, and decrements
891 * cannot be successful if the value is already 0.
893 if (semnum != -1 && sma->sem_base[semnum].semval == 0)
894 break;
896 error = perform_atomic_semop(sma, q->sops, q->nsops,
897 q->undo, q->pid);
899 /* Does q->sleeper still need to sleep? */
900 if (error > 0)
901 continue;
903 unlink_queue(sma, q);
905 if (error) {
906 restart = 0;
907 } else {
908 semop_completed = 1;
909 do_smart_wakeup_zero(sma, q->sops, q->nsops, pt);
910 restart = check_restart(sma, q);
913 wake_up_sem_queue_prepare(pt, q, error);
914 if (restart)
915 goto again;
917 return semop_completed;
921 * set_semotime - set sem_otime
922 * @sma: semaphore array
923 * @sops: operations that modified the array, may be NULL
925 * sem_otime is replicated to avoid cache line trashing.
926 * This function sets one instance to the current time.
928 static void set_semotime(struct sem_array *sma, struct sembuf *sops)
930 if (sops == NULL) {
931 sma->sem_base[0].sem_otime = get_seconds();
932 } else {
933 sma->sem_base[sops[0].sem_num].sem_otime =
934 get_seconds();
939 * do_smart_update - optimized update_queue
940 * @sma: semaphore array
941 * @sops: operations that were performed
942 * @nsops: number of operations
943 * @otime: force setting otime
944 * @pt: list head of the tasks that must be woken up.
946 * do_smart_update() does the required calls to update_queue and wakeup_zero,
947 * based on the actual changes that were performed on the semaphore array.
948 * Note that the function does not do the actual wake-up: the caller is
949 * responsible for calling wake_up_sem_queue_do(@pt).
950 * It is safe to perform this call after dropping all locks.
952 static void do_smart_update(struct sem_array *sma, struct sembuf *sops, int nsops,
953 int otime, struct list_head *pt)
955 int i;
957 otime |= do_smart_wakeup_zero(sma, sops, nsops, pt);
959 if (!list_empty(&sma->pending_alter)) {
960 /* semaphore array uses the global queue - just process it. */
961 otime |= update_queue(sma, -1, pt);
962 } else {
963 if (!sops) {
965 * No sops, thus the modified semaphores are not
966 * known. Check all.
968 for (i = 0; i < sma->sem_nsems; i++)
969 otime |= update_queue(sma, i, pt);
970 } else {
972 * Check the semaphores that were increased:
973 * - No complex ops, thus all sleeping ops are
974 * decrease.
975 * - if we decreased the value, then any sleeping
976 * semaphore ops wont be able to run: If the
977 * previous value was too small, then the new
978 * value will be too small, too.
980 for (i = 0; i < nsops; i++) {
981 if (sops[i].sem_op > 0) {
982 otime |= update_queue(sma,
983 sops[i].sem_num, pt);
988 if (otime)
989 set_semotime(sma, sops);
992 /* The following counts are associated to each semaphore:
993 * semncnt number of tasks waiting on semval being nonzero
994 * semzcnt number of tasks waiting on semval being zero
995 * This model assumes that a task waits on exactly one semaphore.
996 * Since semaphore operations are to be performed atomically, tasks actually
997 * wait on a whole sequence of semaphores simultaneously.
998 * The counts we return here are a rough approximation, but still
999 * warrant that semncnt+semzcnt>0 if the task is on the pending queue.
1001 static int count_semncnt(struct sem_array *sma, ushort semnum)
1003 int semncnt;
1004 struct sem_queue *q;
1006 semncnt = 0;
1007 list_for_each_entry(q, &sma->sem_base[semnum].pending_alter, list) {
1008 struct sembuf *sops = q->sops;
1009 BUG_ON(sops->sem_num != semnum);
1010 if ((sops->sem_op < 0) && !(sops->sem_flg & IPC_NOWAIT))
1011 semncnt++;
1014 list_for_each_entry(q, &sma->pending_alter, list) {
1015 struct sembuf *sops = q->sops;
1016 int nsops = q->nsops;
1017 int i;
1018 for (i = 0; i < nsops; i++)
1019 if (sops[i].sem_num == semnum
1020 && (sops[i].sem_op < 0)
1021 && !(sops[i].sem_flg & IPC_NOWAIT))
1022 semncnt++;
1024 return semncnt;
1027 static int count_semzcnt(struct sem_array *sma, ushort semnum)
1029 int semzcnt;
1030 struct sem_queue *q;
1032 semzcnt = 0;
1033 list_for_each_entry(q, &sma->sem_base[semnum].pending_const, list) {
1034 struct sembuf *sops = q->sops;
1035 BUG_ON(sops->sem_num != semnum);
1036 if ((sops->sem_op == 0) && !(sops->sem_flg & IPC_NOWAIT))
1037 semzcnt++;
1040 list_for_each_entry(q, &sma->pending_const, list) {
1041 struct sembuf *sops = q->sops;
1042 int nsops = q->nsops;
1043 int i;
1044 for (i = 0; i < nsops; i++)
1045 if (sops[i].sem_num == semnum
1046 && (sops[i].sem_op == 0)
1047 && !(sops[i].sem_flg & IPC_NOWAIT))
1048 semzcnt++;
1050 return semzcnt;
1053 /* Free a semaphore set. freeary() is called with sem_ids.rwsem locked
1054 * as a writer and the spinlock for this semaphore set hold. sem_ids.rwsem
1055 * remains locked on exit.
1057 static void freeary(struct ipc_namespace *ns, struct kern_ipc_perm *ipcp)
1059 struct sem_undo *un, *tu;
1060 struct sem_queue *q, *tq;
1061 struct sem_array *sma = container_of(ipcp, struct sem_array, sem_perm);
1062 struct list_head tasks;
1063 int i;
1065 /* Free the existing undo structures for this semaphore set. */
1066 ipc_assert_locked_object(&sma->sem_perm);
1067 list_for_each_entry_safe(un, tu, &sma->list_id, list_id) {
1068 list_del(&un->list_id);
1069 spin_lock(&un->ulp->lock);
1070 un->semid = -1;
1071 list_del_rcu(&un->list_proc);
1072 spin_unlock(&un->ulp->lock);
1073 kfree_rcu(un, rcu);
1076 /* Wake up all pending processes and let them fail with EIDRM. */
1077 INIT_LIST_HEAD(&tasks);
1078 list_for_each_entry_safe(q, tq, &sma->pending_const, list) {
1079 unlink_queue(sma, q);
1080 wake_up_sem_queue_prepare(&tasks, q, -EIDRM);
1083 list_for_each_entry_safe(q, tq, &sma->pending_alter, list) {
1084 unlink_queue(sma, q);
1085 wake_up_sem_queue_prepare(&tasks, q, -EIDRM);
1087 for (i = 0; i < sma->sem_nsems; i++) {
1088 struct sem *sem = sma->sem_base + i;
1089 list_for_each_entry_safe(q, tq, &sem->pending_const, list) {
1090 unlink_queue(sma, q);
1091 wake_up_sem_queue_prepare(&tasks, q, -EIDRM);
1093 list_for_each_entry_safe(q, tq, &sem->pending_alter, list) {
1094 unlink_queue(sma, q);
1095 wake_up_sem_queue_prepare(&tasks, q, -EIDRM);
1099 /* Remove the semaphore set from the IDR */
1100 sem_rmid(ns, sma);
1101 sem_unlock(sma, -1);
1102 rcu_read_unlock();
1104 wake_up_sem_queue_do(&tasks);
1105 ns->used_sems -= sma->sem_nsems;
1106 ipc_rcu_putref(sma, sem_rcu_free);
1109 static unsigned long copy_semid_to_user(void __user *buf, struct semid64_ds *in, int version)
1111 switch (version) {
1112 case IPC_64:
1113 return copy_to_user(buf, in, sizeof(*in));
1114 case IPC_OLD:
1116 struct semid_ds out;
1118 memset(&out, 0, sizeof(out));
1120 ipc64_perm_to_ipc_perm(&in->sem_perm, &out.sem_perm);
1122 out.sem_otime = in->sem_otime;
1123 out.sem_ctime = in->sem_ctime;
1124 out.sem_nsems = in->sem_nsems;
1126 return copy_to_user(buf, &out, sizeof(out));
1128 default:
1129 return -EINVAL;
1133 static time_t get_semotime(struct sem_array *sma)
1135 int i;
1136 time_t res;
1138 res = sma->sem_base[0].sem_otime;
1139 for (i = 1; i < sma->sem_nsems; i++) {
1140 time_t to = sma->sem_base[i].sem_otime;
1142 if (to > res)
1143 res = to;
1145 return res;
1148 static int semctl_nolock(struct ipc_namespace *ns, int semid,
1149 int cmd, int version, void __user *p)
1151 int err;
1152 struct sem_array *sma;
1154 switch (cmd) {
1155 case IPC_INFO:
1156 case SEM_INFO:
1158 struct seminfo seminfo;
1159 int max_id;
1161 err = security_sem_semctl(NULL, cmd);
1162 if (err)
1163 return err;
1165 memset(&seminfo, 0, sizeof(seminfo));
1166 seminfo.semmni = ns->sc_semmni;
1167 seminfo.semmns = ns->sc_semmns;
1168 seminfo.semmsl = ns->sc_semmsl;
1169 seminfo.semopm = ns->sc_semopm;
1170 seminfo.semvmx = SEMVMX;
1171 seminfo.semmnu = SEMMNU;
1172 seminfo.semmap = SEMMAP;
1173 seminfo.semume = SEMUME;
1174 down_read(&sem_ids(ns).rwsem);
1175 if (cmd == SEM_INFO) {
1176 seminfo.semusz = sem_ids(ns).in_use;
1177 seminfo.semaem = ns->used_sems;
1178 } else {
1179 seminfo.semusz = SEMUSZ;
1180 seminfo.semaem = SEMAEM;
1182 max_id = ipc_get_maxid(&sem_ids(ns));
1183 up_read(&sem_ids(ns).rwsem);
1184 if (copy_to_user(p, &seminfo, sizeof(struct seminfo)))
1185 return -EFAULT;
1186 return (max_id < 0) ? 0 : max_id;
1188 case IPC_STAT:
1189 case SEM_STAT:
1191 struct semid64_ds tbuf;
1192 int id = 0;
1194 memset(&tbuf, 0, sizeof(tbuf));
1196 rcu_read_lock();
1197 if (cmd == SEM_STAT) {
1198 sma = sem_obtain_object(ns, semid);
1199 if (IS_ERR(sma)) {
1200 err = PTR_ERR(sma);
1201 goto out_unlock;
1203 id = sma->sem_perm.id;
1204 } else {
1205 sma = sem_obtain_object_check(ns, semid);
1206 if (IS_ERR(sma)) {
1207 err = PTR_ERR(sma);
1208 goto out_unlock;
1212 err = -EACCES;
1213 if (ipcperms(ns, &sma->sem_perm, S_IRUGO))
1214 goto out_unlock;
1216 err = security_sem_semctl(sma, cmd);
1217 if (err)
1218 goto out_unlock;
1220 kernel_to_ipc64_perm(&sma->sem_perm, &tbuf.sem_perm);
1221 tbuf.sem_otime = get_semotime(sma);
1222 tbuf.sem_ctime = sma->sem_ctime;
1223 tbuf.sem_nsems = sma->sem_nsems;
1224 rcu_read_unlock();
1225 if (copy_semid_to_user(p, &tbuf, version))
1226 return -EFAULT;
1227 return id;
1229 default:
1230 return -EINVAL;
1232 out_unlock:
1233 rcu_read_unlock();
1234 return err;
1237 static int semctl_setval(struct ipc_namespace *ns, int semid, int semnum,
1238 unsigned long arg)
1240 struct sem_undo *un;
1241 struct sem_array *sma;
1242 struct sem *curr;
1243 int err;
1244 struct list_head tasks;
1245 int val;
1246 #if defined(CONFIG_64BIT) && defined(__BIG_ENDIAN)
1247 /* big-endian 64bit */
1248 val = arg >> 32;
1249 #else
1250 /* 32bit or little-endian 64bit */
1251 val = arg;
1252 #endif
1254 if (val > SEMVMX || val < 0)
1255 return -ERANGE;
1257 INIT_LIST_HEAD(&tasks);
1259 rcu_read_lock();
1260 sma = sem_obtain_object_check(ns, semid);
1261 if (IS_ERR(sma)) {
1262 rcu_read_unlock();
1263 return PTR_ERR(sma);
1266 if (semnum < 0 || semnum >= sma->sem_nsems) {
1267 rcu_read_unlock();
1268 return -EINVAL;
1272 if (ipcperms(ns, &sma->sem_perm, S_IWUGO)) {
1273 rcu_read_unlock();
1274 return -EACCES;
1277 err = security_sem_semctl(sma, SETVAL);
1278 if (err) {
1279 rcu_read_unlock();
1280 return -EACCES;
1283 sem_lock(sma, NULL, -1);
1285 if (!ipc_valid_object(&sma->sem_perm)) {
1286 sem_unlock(sma, -1);
1287 rcu_read_unlock();
1288 return -EIDRM;
1291 curr = &sma->sem_base[semnum];
1293 ipc_assert_locked_object(&sma->sem_perm);
1294 list_for_each_entry(un, &sma->list_id, list_id)
1295 un->semadj[semnum] = 0;
1297 curr->semval = val;
1298 curr->sempid = task_tgid_vnr(current);
1299 sma->sem_ctime = get_seconds();
1300 /* maybe some queued-up processes were waiting for this */
1301 do_smart_update(sma, NULL, 0, 0, &tasks);
1302 sem_unlock(sma, -1);
1303 rcu_read_unlock();
1304 wake_up_sem_queue_do(&tasks);
1305 return 0;
1308 static int semctl_main(struct ipc_namespace *ns, int semid, int semnum,
1309 int cmd, void __user *p)
1311 struct sem_array *sma;
1312 struct sem *curr;
1313 int err, nsems;
1314 ushort fast_sem_io[SEMMSL_FAST];
1315 ushort *sem_io = fast_sem_io;
1316 struct list_head tasks;
1318 INIT_LIST_HEAD(&tasks);
1320 rcu_read_lock();
1321 sma = sem_obtain_object_check(ns, semid);
1322 if (IS_ERR(sma)) {
1323 rcu_read_unlock();
1324 return PTR_ERR(sma);
1327 nsems = sma->sem_nsems;
1329 err = -EACCES;
1330 if (ipcperms(ns, &sma->sem_perm, cmd == SETALL ? S_IWUGO : S_IRUGO))
1331 goto out_rcu_wakeup;
1333 err = security_sem_semctl(sma, cmd);
1334 if (err)
1335 goto out_rcu_wakeup;
1337 err = -EACCES;
1338 switch (cmd) {
1339 case GETALL:
1341 ushort __user *array = p;
1342 int i;
1344 sem_lock(sma, NULL, -1);
1345 if (!ipc_valid_object(&sma->sem_perm)) {
1346 err = -EIDRM;
1347 goto out_unlock;
1349 if (nsems > SEMMSL_FAST) {
1350 if (!ipc_rcu_getref(sma)) {
1351 err = -EIDRM;
1352 goto out_unlock;
1354 sem_unlock(sma, -1);
1355 rcu_read_unlock();
1356 sem_io = ipc_alloc(sizeof(ushort)*nsems);
1357 if (sem_io == NULL) {
1358 ipc_rcu_putref(sma, ipc_rcu_free);
1359 return -ENOMEM;
1362 rcu_read_lock();
1363 sem_lock_and_putref(sma);
1364 if (!ipc_valid_object(&sma->sem_perm)) {
1365 err = -EIDRM;
1366 goto out_unlock;
1369 for (i = 0; i < sma->sem_nsems; i++)
1370 sem_io[i] = sma->sem_base[i].semval;
1371 sem_unlock(sma, -1);
1372 rcu_read_unlock();
1373 err = 0;
1374 if (copy_to_user(array, sem_io, nsems*sizeof(ushort)))
1375 err = -EFAULT;
1376 goto out_free;
1378 case SETALL:
1380 int i;
1381 struct sem_undo *un;
1383 if (!ipc_rcu_getref(sma)) {
1384 err = -EIDRM;
1385 goto out_rcu_wakeup;
1387 rcu_read_unlock();
1389 if (nsems > SEMMSL_FAST) {
1390 sem_io = ipc_alloc(sizeof(ushort)*nsems);
1391 if (sem_io == NULL) {
1392 ipc_rcu_putref(sma, ipc_rcu_free);
1393 return -ENOMEM;
1397 if (copy_from_user(sem_io, p, nsems*sizeof(ushort))) {
1398 ipc_rcu_putref(sma, ipc_rcu_free);
1399 err = -EFAULT;
1400 goto out_free;
1403 for (i = 0; i < nsems; i++) {
1404 if (sem_io[i] > SEMVMX) {
1405 ipc_rcu_putref(sma, ipc_rcu_free);
1406 err = -ERANGE;
1407 goto out_free;
1410 rcu_read_lock();
1411 sem_lock_and_putref(sma);
1412 if (!ipc_valid_object(&sma->sem_perm)) {
1413 err = -EIDRM;
1414 goto out_unlock;
1417 for (i = 0; i < nsems; i++)
1418 sma->sem_base[i].semval = sem_io[i];
1420 ipc_assert_locked_object(&sma->sem_perm);
1421 list_for_each_entry(un, &sma->list_id, list_id) {
1422 for (i = 0; i < nsems; i++)
1423 un->semadj[i] = 0;
1425 sma->sem_ctime = get_seconds();
1426 /* maybe some queued-up processes were waiting for this */
1427 do_smart_update(sma, NULL, 0, 0, &tasks);
1428 err = 0;
1429 goto out_unlock;
1431 /* GETVAL, GETPID, GETNCTN, GETZCNT: fall-through */
1433 err = -EINVAL;
1434 if (semnum < 0 || semnum >= nsems)
1435 goto out_rcu_wakeup;
1437 sem_lock(sma, NULL, -1);
1438 if (!ipc_valid_object(&sma->sem_perm)) {
1439 err = -EIDRM;
1440 goto out_unlock;
1442 curr = &sma->sem_base[semnum];
1444 switch (cmd) {
1445 case GETVAL:
1446 err = curr->semval;
1447 goto out_unlock;
1448 case GETPID:
1449 err = curr->sempid;
1450 goto out_unlock;
1451 case GETNCNT:
1452 err = count_semncnt(sma, semnum);
1453 goto out_unlock;
1454 case GETZCNT:
1455 err = count_semzcnt(sma, semnum);
1456 goto out_unlock;
1459 out_unlock:
1460 sem_unlock(sma, -1);
1461 out_rcu_wakeup:
1462 rcu_read_unlock();
1463 wake_up_sem_queue_do(&tasks);
1464 out_free:
1465 if (sem_io != fast_sem_io)
1466 ipc_free(sem_io, sizeof(ushort)*nsems);
1467 return err;
1470 static inline unsigned long
1471 copy_semid_from_user(struct semid64_ds *out, void __user *buf, int version)
1473 switch (version) {
1474 case IPC_64:
1475 if (copy_from_user(out, buf, sizeof(*out)))
1476 return -EFAULT;
1477 return 0;
1478 case IPC_OLD:
1480 struct semid_ds tbuf_old;
1482 if (copy_from_user(&tbuf_old, buf, sizeof(tbuf_old)))
1483 return -EFAULT;
1485 out->sem_perm.uid = tbuf_old.sem_perm.uid;
1486 out->sem_perm.gid = tbuf_old.sem_perm.gid;
1487 out->sem_perm.mode = tbuf_old.sem_perm.mode;
1489 return 0;
1491 default:
1492 return -EINVAL;
1497 * This function handles some semctl commands which require the rwsem
1498 * to be held in write mode.
1499 * NOTE: no locks must be held, the rwsem is taken inside this function.
1501 static int semctl_down(struct ipc_namespace *ns, int semid,
1502 int cmd, int version, void __user *p)
1504 struct sem_array *sma;
1505 int err;
1506 struct semid64_ds semid64;
1507 struct kern_ipc_perm *ipcp;
1509 if (cmd == IPC_SET) {
1510 if (copy_semid_from_user(&semid64, p, version))
1511 return -EFAULT;
1514 down_write(&sem_ids(ns).rwsem);
1515 rcu_read_lock();
1517 ipcp = ipcctl_pre_down_nolock(ns, &sem_ids(ns), semid, cmd,
1518 &semid64.sem_perm, 0);
1519 if (IS_ERR(ipcp)) {
1520 err = PTR_ERR(ipcp);
1521 goto out_unlock1;
1524 sma = container_of(ipcp, struct sem_array, sem_perm);
1526 err = security_sem_semctl(sma, cmd);
1527 if (err)
1528 goto out_unlock1;
1530 switch (cmd) {
1531 case IPC_RMID:
1532 sem_lock(sma, NULL, -1);
1533 /* freeary unlocks the ipc object and rcu */
1534 freeary(ns, ipcp);
1535 goto out_up;
1536 case IPC_SET:
1537 sem_lock(sma, NULL, -1);
1538 err = ipc_update_perm(&semid64.sem_perm, ipcp);
1539 if (err)
1540 goto out_unlock0;
1541 sma->sem_ctime = get_seconds();
1542 break;
1543 default:
1544 err = -EINVAL;
1545 goto out_unlock1;
1548 out_unlock0:
1549 sem_unlock(sma, -1);
1550 out_unlock1:
1551 rcu_read_unlock();
1552 out_up:
1553 up_write(&sem_ids(ns).rwsem);
1554 return err;
1557 SYSCALL_DEFINE4(semctl, int, semid, int, semnum, int, cmd, unsigned long, arg)
1559 int version;
1560 struct ipc_namespace *ns;
1561 void __user *p = (void __user *)arg;
1563 if (semid < 0)
1564 return -EINVAL;
1566 version = ipc_parse_version(&cmd);
1567 ns = current->nsproxy->ipc_ns;
1569 switch (cmd) {
1570 case IPC_INFO:
1571 case SEM_INFO:
1572 case IPC_STAT:
1573 case SEM_STAT:
1574 return semctl_nolock(ns, semid, cmd, version, p);
1575 case GETALL:
1576 case GETVAL:
1577 case GETPID:
1578 case GETNCNT:
1579 case GETZCNT:
1580 case SETALL:
1581 return semctl_main(ns, semid, semnum, cmd, p);
1582 case SETVAL:
1583 return semctl_setval(ns, semid, semnum, arg);
1584 case IPC_RMID:
1585 case IPC_SET:
1586 return semctl_down(ns, semid, cmd, version, p);
1587 default:
1588 return -EINVAL;
1592 /* If the task doesn't already have a undo_list, then allocate one
1593 * here. We guarantee there is only one thread using this undo list,
1594 * and current is THE ONE
1596 * If this allocation and assignment succeeds, but later
1597 * portions of this code fail, there is no need to free the sem_undo_list.
1598 * Just let it stay associated with the task, and it'll be freed later
1599 * at exit time.
1601 * This can block, so callers must hold no locks.
1603 static inline int get_undo_list(struct sem_undo_list **undo_listp)
1605 struct sem_undo_list *undo_list;
1607 undo_list = current->sysvsem.undo_list;
1608 if (!undo_list) {
1609 undo_list = kzalloc(sizeof(*undo_list), GFP_KERNEL);
1610 if (undo_list == NULL)
1611 return -ENOMEM;
1612 spin_lock_init(&undo_list->lock);
1613 atomic_set(&undo_list->refcnt, 1);
1614 INIT_LIST_HEAD(&undo_list->list_proc);
1616 current->sysvsem.undo_list = undo_list;
1618 *undo_listp = undo_list;
1619 return 0;
1622 static struct sem_undo *__lookup_undo(struct sem_undo_list *ulp, int semid)
1624 struct sem_undo *un;
1626 list_for_each_entry_rcu(un, &ulp->list_proc, list_proc) {
1627 if (un->semid == semid)
1628 return un;
1630 return NULL;
1633 static struct sem_undo *lookup_undo(struct sem_undo_list *ulp, int semid)
1635 struct sem_undo *un;
1637 assert_spin_locked(&ulp->lock);
1639 un = __lookup_undo(ulp, semid);
1640 if (un) {
1641 list_del_rcu(&un->list_proc);
1642 list_add_rcu(&un->list_proc, &ulp->list_proc);
1644 return un;
1648 * find_alloc_undo - lookup (and if not present create) undo array
1649 * @ns: namespace
1650 * @semid: semaphore array id
1652 * The function looks up (and if not present creates) the undo structure.
1653 * The size of the undo structure depends on the size of the semaphore
1654 * array, thus the alloc path is not that straightforward.
1655 * Lifetime-rules: sem_undo is rcu-protected, on success, the function
1656 * performs a rcu_read_lock().
1658 static struct sem_undo *find_alloc_undo(struct ipc_namespace *ns, int semid)
1660 struct sem_array *sma;
1661 struct sem_undo_list *ulp;
1662 struct sem_undo *un, *new;
1663 int nsems, error;
1665 error = get_undo_list(&ulp);
1666 if (error)
1667 return ERR_PTR(error);
1669 rcu_read_lock();
1670 spin_lock(&ulp->lock);
1671 un = lookup_undo(ulp, semid);
1672 spin_unlock(&ulp->lock);
1673 if (likely(un != NULL))
1674 goto out;
1676 /* no undo structure around - allocate one. */
1677 /* step 1: figure out the size of the semaphore array */
1678 sma = sem_obtain_object_check(ns, semid);
1679 if (IS_ERR(sma)) {
1680 rcu_read_unlock();
1681 return ERR_CAST(sma);
1684 nsems = sma->sem_nsems;
1685 if (!ipc_rcu_getref(sma)) {
1686 rcu_read_unlock();
1687 un = ERR_PTR(-EIDRM);
1688 goto out;
1690 rcu_read_unlock();
1692 /* step 2: allocate new undo structure */
1693 new = kzalloc(sizeof(struct sem_undo) + sizeof(short)*nsems, GFP_KERNEL);
1694 if (!new) {
1695 ipc_rcu_putref(sma, ipc_rcu_free);
1696 return ERR_PTR(-ENOMEM);
1699 /* step 3: Acquire the lock on semaphore array */
1700 rcu_read_lock();
1701 sem_lock_and_putref(sma);
1702 if (!ipc_valid_object(&sma->sem_perm)) {
1703 sem_unlock(sma, -1);
1704 rcu_read_unlock();
1705 kfree(new);
1706 un = ERR_PTR(-EIDRM);
1707 goto out;
1709 spin_lock(&ulp->lock);
1712 * step 4: check for races: did someone else allocate the undo struct?
1714 un = lookup_undo(ulp, semid);
1715 if (un) {
1716 kfree(new);
1717 goto success;
1719 /* step 5: initialize & link new undo structure */
1720 new->semadj = (short *) &new[1];
1721 new->ulp = ulp;
1722 new->semid = semid;
1723 assert_spin_locked(&ulp->lock);
1724 list_add_rcu(&new->list_proc, &ulp->list_proc);
1725 ipc_assert_locked_object(&sma->sem_perm);
1726 list_add(&new->list_id, &sma->list_id);
1727 un = new;
1729 success:
1730 spin_unlock(&ulp->lock);
1731 sem_unlock(sma, -1);
1732 out:
1733 return un;
1738 * get_queue_result - retrieve the result code from sem_queue
1739 * @q: Pointer to queue structure
1741 * Retrieve the return code from the pending queue. If IN_WAKEUP is found in
1742 * q->status, then we must loop until the value is replaced with the final
1743 * value: This may happen if a task is woken up by an unrelated event (e.g.
1744 * signal) and in parallel the task is woken up by another task because it got
1745 * the requested semaphores.
1747 * The function can be called with or without holding the semaphore spinlock.
1749 static int get_queue_result(struct sem_queue *q)
1751 int error;
1753 error = q->status;
1754 while (unlikely(error == IN_WAKEUP)) {
1755 cpu_relax();
1756 error = q->status;
1759 return error;
1762 SYSCALL_DEFINE4(semtimedop, int, semid, struct sembuf __user *, tsops,
1763 unsigned, nsops, const struct timespec __user *, timeout)
1765 int error = -EINVAL;
1766 struct sem_array *sma;
1767 struct sembuf fast_sops[SEMOPM_FAST];
1768 struct sembuf *sops = fast_sops, *sop;
1769 struct sem_undo *un;
1770 int undos = 0, alter = 0, max, locknum;
1771 struct sem_queue queue;
1772 unsigned long jiffies_left = 0;
1773 struct ipc_namespace *ns;
1774 struct list_head tasks;
1776 ns = current->nsproxy->ipc_ns;
1778 if (nsops < 1 || semid < 0)
1779 return -EINVAL;
1780 if (nsops > ns->sc_semopm)
1781 return -E2BIG;
1782 if (nsops > SEMOPM_FAST) {
1783 sops = kmalloc(sizeof(*sops)*nsops, GFP_KERNEL);
1784 if (sops == NULL)
1785 return -ENOMEM;
1787 if (copy_from_user(sops, tsops, nsops * sizeof(*tsops))) {
1788 error = -EFAULT;
1789 goto out_free;
1791 if (timeout) {
1792 struct timespec _timeout;
1793 if (copy_from_user(&_timeout, timeout, sizeof(*timeout))) {
1794 error = -EFAULT;
1795 goto out_free;
1797 if (_timeout.tv_sec < 0 || _timeout.tv_nsec < 0 ||
1798 _timeout.tv_nsec >= 1000000000L) {
1799 error = -EINVAL;
1800 goto out_free;
1802 jiffies_left = timespec_to_jiffies(&_timeout);
1804 max = 0;
1805 for (sop = sops; sop < sops + nsops; sop++) {
1806 if (sop->sem_num >= max)
1807 max = sop->sem_num;
1808 if (sop->sem_flg & SEM_UNDO)
1809 undos = 1;
1810 if (sop->sem_op != 0)
1811 alter = 1;
1814 INIT_LIST_HEAD(&tasks);
1816 if (undos) {
1817 /* On success, find_alloc_undo takes the rcu_read_lock */
1818 un = find_alloc_undo(ns, semid);
1819 if (IS_ERR(un)) {
1820 error = PTR_ERR(un);
1821 goto out_free;
1823 } else {
1824 un = NULL;
1825 rcu_read_lock();
1828 sma = sem_obtain_object_check(ns, semid);
1829 if (IS_ERR(sma)) {
1830 rcu_read_unlock();
1831 error = PTR_ERR(sma);
1832 goto out_free;
1835 error = -EFBIG;
1836 if (max >= sma->sem_nsems)
1837 goto out_rcu_wakeup;
1839 error = -EACCES;
1840 if (ipcperms(ns, &sma->sem_perm, alter ? S_IWUGO : S_IRUGO))
1841 goto out_rcu_wakeup;
1843 error = security_sem_semop(sma, sops, nsops, alter);
1844 if (error)
1845 goto out_rcu_wakeup;
1847 error = -EIDRM;
1848 locknum = sem_lock(sma, sops, nsops);
1850 * We eventually might perform the following check in a lockless
1851 * fashion, considering ipc_valid_object() locking constraints.
1852 * If nsops == 1 and there is no contention for sem_perm.lock, then
1853 * only a per-semaphore lock is held and it's OK to proceed with the
1854 * check below. More details on the fine grained locking scheme
1855 * entangled here and why it's RMID race safe on comments at sem_lock()
1857 if (!ipc_valid_object(&sma->sem_perm))
1858 goto out_unlock_free;
1860 * semid identifiers are not unique - find_alloc_undo may have
1861 * allocated an undo structure, it was invalidated by an RMID
1862 * and now a new array with received the same id. Check and fail.
1863 * This case can be detected checking un->semid. The existence of
1864 * "un" itself is guaranteed by rcu.
1866 if (un && un->semid == -1)
1867 goto out_unlock_free;
1869 error = perform_atomic_semop(sma, sops, nsops, un,
1870 task_tgid_vnr(current));
1871 if (error == 0) {
1872 /* If the operation was successful, then do
1873 * the required updates.
1875 if (alter)
1876 do_smart_update(sma, sops, nsops, 1, &tasks);
1877 else
1878 set_semotime(sma, sops);
1880 if (error <= 0)
1881 goto out_unlock_free;
1883 /* We need to sleep on this operation, so we put the current
1884 * task into the pending queue and go to sleep.
1887 queue.sops = sops;
1888 queue.nsops = nsops;
1889 queue.undo = un;
1890 queue.pid = task_tgid_vnr(current);
1891 queue.alter = alter;
1893 if (nsops == 1) {
1894 struct sem *curr;
1895 curr = &sma->sem_base[sops->sem_num];
1897 if (alter) {
1898 if (sma->complex_count) {
1899 list_add_tail(&queue.list,
1900 &sma->pending_alter);
1901 } else {
1903 list_add_tail(&queue.list,
1904 &curr->pending_alter);
1906 } else {
1907 list_add_tail(&queue.list, &curr->pending_const);
1909 } else {
1910 if (!sma->complex_count)
1911 merge_queues(sma);
1913 if (alter)
1914 list_add_tail(&queue.list, &sma->pending_alter);
1915 else
1916 list_add_tail(&queue.list, &sma->pending_const);
1918 sma->complex_count++;
1921 queue.status = -EINTR;
1922 queue.sleeper = current;
1924 sleep_again:
1925 current->state = TASK_INTERRUPTIBLE;
1926 sem_unlock(sma, locknum);
1927 rcu_read_unlock();
1929 if (timeout)
1930 jiffies_left = schedule_timeout(jiffies_left);
1931 else
1932 schedule();
1934 error = get_queue_result(&queue);
1936 if (error != -EINTR) {
1937 /* fast path: update_queue already obtained all requested
1938 * resources.
1939 * Perform a smp_mb(): User space could assume that semop()
1940 * is a memory barrier: Without the mb(), the cpu could
1941 * speculatively read in user space stale data that was
1942 * overwritten by the previous owner of the semaphore.
1944 smp_mb();
1946 goto out_free;
1949 rcu_read_lock();
1950 sma = sem_obtain_lock(ns, semid, sops, nsops, &locknum);
1953 * Wait until it's guaranteed that no wakeup_sem_queue_do() is ongoing.
1955 error = get_queue_result(&queue);
1958 * Array removed? If yes, leave without sem_unlock().
1960 if (IS_ERR(sma)) {
1961 rcu_read_unlock();
1962 goto out_free;
1967 * If queue.status != -EINTR we are woken up by another process.
1968 * Leave without unlink_queue(), but with sem_unlock().
1970 if (error != -EINTR)
1971 goto out_unlock_free;
1974 * If an interrupt occurred we have to clean up the queue
1976 if (timeout && jiffies_left == 0)
1977 error = -EAGAIN;
1980 * If the wakeup was spurious, just retry
1982 if (error == -EINTR && !signal_pending(current))
1983 goto sleep_again;
1985 unlink_queue(sma, &queue);
1987 out_unlock_free:
1988 sem_unlock(sma, locknum);
1989 out_rcu_wakeup:
1990 rcu_read_unlock();
1991 wake_up_sem_queue_do(&tasks);
1992 out_free:
1993 if (sops != fast_sops)
1994 kfree(sops);
1995 return error;
1998 SYSCALL_DEFINE3(semop, int, semid, struct sembuf __user *, tsops,
1999 unsigned, nsops)
2001 return sys_semtimedop(semid, tsops, nsops, NULL);
2004 /* If CLONE_SYSVSEM is set, establish sharing of SEM_UNDO state between
2005 * parent and child tasks.
2008 int copy_semundo(unsigned long clone_flags, struct task_struct *tsk)
2010 struct sem_undo_list *undo_list;
2011 int error;
2013 if (clone_flags & CLONE_SYSVSEM) {
2014 error = get_undo_list(&undo_list);
2015 if (error)
2016 return error;
2017 atomic_inc(&undo_list->refcnt);
2018 tsk->sysvsem.undo_list = undo_list;
2019 } else
2020 tsk->sysvsem.undo_list = NULL;
2022 return 0;
2026 * add semadj values to semaphores, free undo structures.
2027 * undo structures are not freed when semaphore arrays are destroyed
2028 * so some of them may be out of date.
2029 * IMPLEMENTATION NOTE: There is some confusion over whether the
2030 * set of adjustments that needs to be done should be done in an atomic
2031 * manner or not. That is, if we are attempting to decrement the semval
2032 * should we queue up and wait until we can do so legally?
2033 * The original implementation attempted to do this (queue and wait).
2034 * The current implementation does not do so. The POSIX standard
2035 * and SVID should be consulted to determine what behavior is mandated.
2037 void exit_sem(struct task_struct *tsk)
2039 struct sem_undo_list *ulp;
2041 ulp = tsk->sysvsem.undo_list;
2042 if (!ulp)
2043 return;
2044 tsk->sysvsem.undo_list = NULL;
2046 if (!atomic_dec_and_test(&ulp->refcnt))
2047 return;
2049 for (;;) {
2050 struct sem_array *sma;
2051 struct sem_undo *un;
2052 struct list_head tasks;
2053 int semid, i;
2055 rcu_read_lock();
2056 un = list_entry_rcu(ulp->list_proc.next,
2057 struct sem_undo, list_proc);
2058 if (&un->list_proc == &ulp->list_proc)
2059 semid = -1;
2060 else
2061 semid = un->semid;
2063 if (semid == -1) {
2064 rcu_read_unlock();
2065 break;
2068 sma = sem_obtain_object_check(tsk->nsproxy->ipc_ns, un->semid);
2069 /* exit_sem raced with IPC_RMID, nothing to do */
2070 if (IS_ERR(sma)) {
2071 rcu_read_unlock();
2072 continue;
2075 sem_lock(sma, NULL, -1);
2076 /* exit_sem raced with IPC_RMID, nothing to do */
2077 if (!ipc_valid_object(&sma->sem_perm)) {
2078 sem_unlock(sma, -1);
2079 rcu_read_unlock();
2080 continue;
2082 un = __lookup_undo(ulp, semid);
2083 if (un == NULL) {
2084 /* exit_sem raced with IPC_RMID+semget() that created
2085 * exactly the same semid. Nothing to do.
2087 sem_unlock(sma, -1);
2088 rcu_read_unlock();
2089 continue;
2092 /* remove un from the linked lists */
2093 ipc_assert_locked_object(&sma->sem_perm);
2094 list_del(&un->list_id);
2096 spin_lock(&ulp->lock);
2097 list_del_rcu(&un->list_proc);
2098 spin_unlock(&ulp->lock);
2100 /* perform adjustments registered in un */
2101 for (i = 0; i < sma->sem_nsems; i++) {
2102 struct sem *semaphore = &sma->sem_base[i];
2103 if (un->semadj[i]) {
2104 semaphore->semval += un->semadj[i];
2106 * Range checks of the new semaphore value,
2107 * not defined by sus:
2108 * - Some unices ignore the undo entirely
2109 * (e.g. HP UX 11i 11.22, Tru64 V5.1)
2110 * - some cap the value (e.g. FreeBSD caps
2111 * at 0, but doesn't enforce SEMVMX)
2113 * Linux caps the semaphore value, both at 0
2114 * and at SEMVMX.
2116 * Manfred <manfred@colorfullife.com>
2118 if (semaphore->semval < 0)
2119 semaphore->semval = 0;
2120 if (semaphore->semval > SEMVMX)
2121 semaphore->semval = SEMVMX;
2122 semaphore->sempid = task_tgid_vnr(current);
2125 /* maybe some queued-up processes were waiting for this */
2126 INIT_LIST_HEAD(&tasks);
2127 do_smart_update(sma, NULL, 0, 1, &tasks);
2128 sem_unlock(sma, -1);
2129 rcu_read_unlock();
2130 wake_up_sem_queue_do(&tasks);
2132 kfree_rcu(un, rcu);
2134 kfree(ulp);
2137 #ifdef CONFIG_PROC_FS
2138 static int sysvipc_sem_proc_show(struct seq_file *s, void *it)
2140 struct user_namespace *user_ns = seq_user_ns(s);
2141 struct sem_array *sma = it;
2142 time_t sem_otime;
2145 * The proc interface isn't aware of sem_lock(), it calls
2146 * ipc_lock_object() directly (in sysvipc_find_ipc).
2147 * In order to stay compatible with sem_lock(), we must wait until
2148 * all simple semop() calls have left their critical regions.
2150 sem_wait_array(sma);
2152 sem_otime = get_semotime(sma);
2154 return seq_printf(s,
2155 "%10d %10d %4o %10u %5u %5u %5u %5u %10lu %10lu\n",
2156 sma->sem_perm.key,
2157 sma->sem_perm.id,
2158 sma->sem_perm.mode,
2159 sma->sem_nsems,
2160 from_kuid_munged(user_ns, sma->sem_perm.uid),
2161 from_kgid_munged(user_ns, sma->sem_perm.gid),
2162 from_kuid_munged(user_ns, sma->sem_perm.cuid),
2163 from_kgid_munged(user_ns, sma->sem_perm.cgid),
2164 sem_otime,
2165 sma->sem_ctime);
2167 #endif