2 * Copyright (c) 2006, Intel Corporation.
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * You should have received a copy of the GNU General Public License along with
14 * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
15 * Place - Suite 330, Boston, MA 02111-1307 USA.
17 * Copyright (C) 2006-2008 Intel Corporation
18 * Author: Ashok Raj <ashok.raj@intel.com>
19 * Author: Shaohua Li <shaohua.li@intel.com>
20 * Author: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
21 * Author: Fenghua Yu <fenghua.yu@intel.com>
24 #include <linux/init.h>
25 #include <linux/bitmap.h>
26 #include <linux/debugfs.h>
27 #include <linux/slab.h>
28 #include <linux/irq.h>
29 #include <linux/interrupt.h>
30 #include <linux/spinlock.h>
31 #include <linux/pci.h>
32 #include <linux/dmar.h>
33 #include <linux/dma-mapping.h>
34 #include <linux/mempool.h>
35 #include <linux/timer.h>
36 #include <linux/iova.h>
37 #include <linux/iommu.h>
38 #include <linux/intel-iommu.h>
39 #include <linux/sysdev.h>
40 #include <asm/cacheflush.h>
41 #include <asm/iommu.h>
44 #define ROOT_SIZE VTD_PAGE_SIZE
45 #define CONTEXT_SIZE VTD_PAGE_SIZE
47 #define IS_GFX_DEVICE(pdev) ((pdev->class >> 16) == PCI_BASE_CLASS_DISPLAY)
48 #define IS_ISA_DEVICE(pdev) ((pdev->class >> 8) == PCI_CLASS_BRIDGE_ISA)
50 #define IOAPIC_RANGE_START (0xfee00000)
51 #define IOAPIC_RANGE_END (0xfeefffff)
52 #define IOVA_START_ADDR (0x1000)
54 #define DEFAULT_DOMAIN_ADDRESS_WIDTH 48
56 #define MAX_AGAW_WIDTH 64
58 #define DOMAIN_MAX_ADDR(gaw) ((((u64)1) << gaw) - 1)
60 #define IOVA_PFN(addr) ((addr) >> PAGE_SHIFT)
61 #define DMA_32BIT_PFN IOVA_PFN(DMA_BIT_MASK(32))
62 #define DMA_64BIT_PFN IOVA_PFN(DMA_BIT_MASK(64))
64 #ifndef PHYSICAL_PAGE_MASK
65 #define PHYSICAL_PAGE_MASK PAGE_MASK
68 /* VT-d pages must always be _smaller_ than MM pages. Otherwise things
69 are never going to work. */
70 static inline unsigned long dma_to_mm_pfn(unsigned long dma_pfn
)
72 return dma_pfn
>> (PAGE_SHIFT
- VTD_PAGE_SHIFT
);
75 static inline unsigned long mm_to_dma_pfn(unsigned long mm_pfn
)
77 return mm_pfn
<< (PAGE_SHIFT
- VTD_PAGE_SHIFT
);
79 static inline unsigned long page_to_dma_pfn(struct page
*pg
)
81 return mm_to_dma_pfn(page_to_pfn(pg
));
83 static inline unsigned long virt_to_dma_pfn(void *p
)
85 return page_to_dma_pfn(virt_to_page(p
));
88 /* global iommu list, set NULL for ignored DMAR units */
89 static struct intel_iommu
**g_iommus
;
91 static int rwbf_quirk
;
96 * 12-63: Context Ptr (12 - (haw-1))
103 #define ROOT_ENTRY_NR (VTD_PAGE_SIZE/sizeof(struct root_entry))
104 static inline bool root_present(struct root_entry
*root
)
106 return (root
->val
& 1);
108 static inline void set_root_present(struct root_entry
*root
)
112 static inline void set_root_value(struct root_entry
*root
, unsigned long value
)
114 root
->val
|= value
& VTD_PAGE_MASK
;
117 static inline struct context_entry
*
118 get_context_addr_from_root(struct root_entry
*root
)
120 return (struct context_entry
*)
121 (root_present(root
)?phys_to_virt(
122 root
->val
& VTD_PAGE_MASK
) :
129 * 1: fault processing disable
130 * 2-3: translation type
131 * 12-63: address space root
137 struct context_entry
{
142 static inline bool context_present(struct context_entry
*context
)
144 return (context
->lo
& 1);
146 static inline void context_set_present(struct context_entry
*context
)
151 static inline void context_set_fault_enable(struct context_entry
*context
)
153 context
->lo
&= (((u64
)-1) << 2) | 1;
156 static inline void context_set_translation_type(struct context_entry
*context
,
159 context
->lo
&= (((u64
)-1) << 4) | 3;
160 context
->lo
|= (value
& 3) << 2;
163 static inline void context_set_address_root(struct context_entry
*context
,
166 context
->lo
|= value
& VTD_PAGE_MASK
;
169 static inline void context_set_address_width(struct context_entry
*context
,
172 context
->hi
|= value
& 7;
175 static inline void context_set_domain_id(struct context_entry
*context
,
178 context
->hi
|= (value
& ((1 << 16) - 1)) << 8;
181 static inline void context_clear_entry(struct context_entry
*context
)
194 * 12-63: Host physcial address
200 static inline void dma_clear_pte(struct dma_pte
*pte
)
205 static inline void dma_set_pte_readable(struct dma_pte
*pte
)
207 pte
->val
|= DMA_PTE_READ
;
210 static inline void dma_set_pte_writable(struct dma_pte
*pte
)
212 pte
->val
|= DMA_PTE_WRITE
;
215 static inline void dma_set_pte_snp(struct dma_pte
*pte
)
217 pte
->val
|= DMA_PTE_SNP
;
220 static inline void dma_set_pte_prot(struct dma_pte
*pte
, unsigned long prot
)
222 pte
->val
= (pte
->val
& ~3) | (prot
& 3);
225 static inline u64
dma_pte_addr(struct dma_pte
*pte
)
227 return (pte
->val
& VTD_PAGE_MASK
);
230 static inline void dma_set_pte_pfn(struct dma_pte
*pte
, unsigned long pfn
)
232 pte
->val
|= (uint64_t)pfn
<< VTD_PAGE_SHIFT
;
235 static inline bool dma_pte_present(struct dma_pte
*pte
)
237 return (pte
->val
& 3) != 0;
241 * This domain is a statically identity mapping domain.
242 * 1. This domain creats a static 1:1 mapping to all usable memory.
243 * 2. It maps to each iommu if successful.
244 * 3. Each iommu mapps to this domain if successful.
246 struct dmar_domain
*si_domain
;
248 /* devices under the same p2p bridge are owned in one domain */
249 #define DOMAIN_FLAG_P2P_MULTIPLE_DEVICES (1 << 0)
251 /* domain represents a virtual machine, more than one devices
252 * across iommus may be owned in one domain, e.g. kvm guest.
254 #define DOMAIN_FLAG_VIRTUAL_MACHINE (1 << 1)
256 /* si_domain contains mulitple devices */
257 #define DOMAIN_FLAG_STATIC_IDENTITY (1 << 2)
260 int id
; /* domain id */
261 unsigned long iommu_bmp
; /* bitmap of iommus this domain uses*/
263 struct list_head devices
; /* all devices' list */
264 struct iova_domain iovad
; /* iova's that belong to this domain */
266 struct dma_pte
*pgd
; /* virtual address */
267 spinlock_t mapping_lock
; /* page table lock */
268 int gaw
; /* max guest address width */
270 /* adjusted guest address width, 0 is level 2 30-bit */
273 int flags
; /* flags to find out type of domain */
275 int iommu_coherency
;/* indicate coherency of iommu access */
276 int iommu_snooping
; /* indicate snooping control feature*/
277 int iommu_count
; /* reference count of iommu */
278 spinlock_t iommu_lock
; /* protect iommu set in domain */
279 u64 max_addr
; /* maximum mapped address */
282 /* PCI domain-device relationship */
283 struct device_domain_info
{
284 struct list_head link
; /* link to domain siblings */
285 struct list_head global
; /* link to global list */
286 int segment
; /* PCI domain */
287 u8 bus
; /* PCI bus number */
288 u8 devfn
; /* PCI devfn number */
289 struct pci_dev
*dev
; /* it's NULL for PCIE-to-PCI bridge */
290 struct intel_iommu
*iommu
; /* IOMMU used by this device */
291 struct dmar_domain
*domain
; /* pointer to domain */
294 static void flush_unmaps_timeout(unsigned long data
);
296 DEFINE_TIMER(unmap_timer
, flush_unmaps_timeout
, 0, 0);
298 #define HIGH_WATER_MARK 250
299 struct deferred_flush_tables
{
301 struct iova
*iova
[HIGH_WATER_MARK
];
302 struct dmar_domain
*domain
[HIGH_WATER_MARK
];
305 static struct deferred_flush_tables
*deferred_flush
;
307 /* bitmap for indexing intel_iommus */
308 static int g_num_of_iommus
;
310 static DEFINE_SPINLOCK(async_umap_flush_lock
);
311 static LIST_HEAD(unmaps_to_do
);
314 static long list_size
;
316 static void domain_remove_dev_info(struct dmar_domain
*domain
);
318 #ifdef CONFIG_DMAR_DEFAULT_ON
319 int dmar_disabled
= 0;
321 int dmar_disabled
= 1;
322 #endif /*CONFIG_DMAR_DEFAULT_ON*/
324 static int __initdata dmar_map_gfx
= 1;
325 static int dmar_forcedac
;
326 static int intel_iommu_strict
;
328 #define DUMMY_DEVICE_DOMAIN_INFO ((struct device_domain_info *)(-1))
329 static DEFINE_SPINLOCK(device_domain_lock
);
330 static LIST_HEAD(device_domain_list
);
332 static struct iommu_ops intel_iommu_ops
;
334 static int __init
intel_iommu_setup(char *str
)
339 if (!strncmp(str
, "on", 2)) {
341 printk(KERN_INFO
"Intel-IOMMU: enabled\n");
342 } else if (!strncmp(str
, "off", 3)) {
344 printk(KERN_INFO
"Intel-IOMMU: disabled\n");
345 } else if (!strncmp(str
, "igfx_off", 8)) {
348 "Intel-IOMMU: disable GFX device mapping\n");
349 } else if (!strncmp(str
, "forcedac", 8)) {
351 "Intel-IOMMU: Forcing DAC for PCI devices\n");
353 } else if (!strncmp(str
, "strict", 6)) {
355 "Intel-IOMMU: disable batched IOTLB flush\n");
356 intel_iommu_strict
= 1;
359 str
+= strcspn(str
, ",");
365 __setup("intel_iommu=", intel_iommu_setup
);
367 static struct kmem_cache
*iommu_domain_cache
;
368 static struct kmem_cache
*iommu_devinfo_cache
;
369 static struct kmem_cache
*iommu_iova_cache
;
371 static inline void *iommu_kmem_cache_alloc(struct kmem_cache
*cachep
)
376 /* trying to avoid low memory issues */
377 flags
= current
->flags
& PF_MEMALLOC
;
378 current
->flags
|= PF_MEMALLOC
;
379 vaddr
= kmem_cache_alloc(cachep
, GFP_ATOMIC
);
380 current
->flags
&= (~PF_MEMALLOC
| flags
);
385 static inline void *alloc_pgtable_page(void)
390 /* trying to avoid low memory issues */
391 flags
= current
->flags
& PF_MEMALLOC
;
392 current
->flags
|= PF_MEMALLOC
;
393 vaddr
= (void *)get_zeroed_page(GFP_ATOMIC
);
394 current
->flags
&= (~PF_MEMALLOC
| flags
);
398 static inline void free_pgtable_page(void *vaddr
)
400 free_page((unsigned long)vaddr
);
403 static inline void *alloc_domain_mem(void)
405 return iommu_kmem_cache_alloc(iommu_domain_cache
);
408 static void free_domain_mem(void *vaddr
)
410 kmem_cache_free(iommu_domain_cache
, vaddr
);
413 static inline void * alloc_devinfo_mem(void)
415 return iommu_kmem_cache_alloc(iommu_devinfo_cache
);
418 static inline void free_devinfo_mem(void *vaddr
)
420 kmem_cache_free(iommu_devinfo_cache
, vaddr
);
423 struct iova
*alloc_iova_mem(void)
425 return iommu_kmem_cache_alloc(iommu_iova_cache
);
428 void free_iova_mem(struct iova
*iova
)
430 kmem_cache_free(iommu_iova_cache
, iova
);
434 static inline int width_to_agaw(int width
);
436 static int __iommu_calculate_agaw(struct intel_iommu
*iommu
, int max_gaw
)
441 sagaw
= cap_sagaw(iommu
->cap
);
442 for (agaw
= width_to_agaw(max_gaw
);
444 if (test_bit(agaw
, &sagaw
))
452 * Calculate max SAGAW for each iommu.
454 int iommu_calculate_max_sagaw(struct intel_iommu
*iommu
)
456 return __iommu_calculate_agaw(iommu
, MAX_AGAW_WIDTH
);
460 * calculate agaw for each iommu.
461 * "SAGAW" may be different across iommus, use a default agaw, and
462 * get a supported less agaw for iommus that don't support the default agaw.
464 int iommu_calculate_agaw(struct intel_iommu
*iommu
)
466 return __iommu_calculate_agaw(iommu
, DEFAULT_DOMAIN_ADDRESS_WIDTH
);
469 /* This functionin only returns single iommu in a domain */
470 static struct intel_iommu
*domain_get_iommu(struct dmar_domain
*domain
)
474 /* si_domain and vm domain should not get here. */
475 BUG_ON(domain
->flags
& DOMAIN_FLAG_VIRTUAL_MACHINE
);
476 BUG_ON(domain
->flags
& DOMAIN_FLAG_STATIC_IDENTITY
);
478 iommu_id
= find_first_bit(&domain
->iommu_bmp
, g_num_of_iommus
);
479 if (iommu_id
< 0 || iommu_id
>= g_num_of_iommus
)
482 return g_iommus
[iommu_id
];
485 static void domain_update_iommu_coherency(struct dmar_domain
*domain
)
489 domain
->iommu_coherency
= 1;
491 i
= find_first_bit(&domain
->iommu_bmp
, g_num_of_iommus
);
492 for (; i
< g_num_of_iommus
; ) {
493 if (!ecap_coherent(g_iommus
[i
]->ecap
)) {
494 domain
->iommu_coherency
= 0;
497 i
= find_next_bit(&domain
->iommu_bmp
, g_num_of_iommus
, i
+1);
501 static void domain_update_iommu_snooping(struct dmar_domain
*domain
)
505 domain
->iommu_snooping
= 1;
507 i
= find_first_bit(&domain
->iommu_bmp
, g_num_of_iommus
);
508 for (; i
< g_num_of_iommus
; ) {
509 if (!ecap_sc_support(g_iommus
[i
]->ecap
)) {
510 domain
->iommu_snooping
= 0;
513 i
= find_next_bit(&domain
->iommu_bmp
, g_num_of_iommus
, i
+1);
517 /* Some capabilities may be different across iommus */
518 static void domain_update_iommu_cap(struct dmar_domain
*domain
)
520 domain_update_iommu_coherency(domain
);
521 domain_update_iommu_snooping(domain
);
524 static struct intel_iommu
*device_to_iommu(int segment
, u8 bus
, u8 devfn
)
526 struct dmar_drhd_unit
*drhd
= NULL
;
529 for_each_drhd_unit(drhd
) {
532 if (segment
!= drhd
->segment
)
535 for (i
= 0; i
< drhd
->devices_cnt
; i
++) {
536 if (drhd
->devices
[i
] &&
537 drhd
->devices
[i
]->bus
->number
== bus
&&
538 drhd
->devices
[i
]->devfn
== devfn
)
540 if (drhd
->devices
[i
] &&
541 drhd
->devices
[i
]->subordinate
&&
542 drhd
->devices
[i
]->subordinate
->number
<= bus
&&
543 drhd
->devices
[i
]->subordinate
->subordinate
>= bus
)
547 if (drhd
->include_all
)
554 static void domain_flush_cache(struct dmar_domain
*domain
,
555 void *addr
, int size
)
557 if (!domain
->iommu_coherency
)
558 clflush_cache_range(addr
, size
);
561 /* Gets context entry for a given bus and devfn */
562 static struct context_entry
* device_to_context_entry(struct intel_iommu
*iommu
,
565 struct root_entry
*root
;
566 struct context_entry
*context
;
567 unsigned long phy_addr
;
570 spin_lock_irqsave(&iommu
->lock
, flags
);
571 root
= &iommu
->root_entry
[bus
];
572 context
= get_context_addr_from_root(root
);
574 context
= (struct context_entry
*)alloc_pgtable_page();
576 spin_unlock_irqrestore(&iommu
->lock
, flags
);
579 __iommu_flush_cache(iommu
, (void *)context
, CONTEXT_SIZE
);
580 phy_addr
= virt_to_phys((void *)context
);
581 set_root_value(root
, phy_addr
);
582 set_root_present(root
);
583 __iommu_flush_cache(iommu
, root
, sizeof(*root
));
585 spin_unlock_irqrestore(&iommu
->lock
, flags
);
586 return &context
[devfn
];
589 static int device_context_mapped(struct intel_iommu
*iommu
, u8 bus
, u8 devfn
)
591 struct root_entry
*root
;
592 struct context_entry
*context
;
596 spin_lock_irqsave(&iommu
->lock
, flags
);
597 root
= &iommu
->root_entry
[bus
];
598 context
= get_context_addr_from_root(root
);
603 ret
= context_present(&context
[devfn
]);
605 spin_unlock_irqrestore(&iommu
->lock
, flags
);
609 static void clear_context_table(struct intel_iommu
*iommu
, u8 bus
, u8 devfn
)
611 struct root_entry
*root
;
612 struct context_entry
*context
;
615 spin_lock_irqsave(&iommu
->lock
, flags
);
616 root
= &iommu
->root_entry
[bus
];
617 context
= get_context_addr_from_root(root
);
619 context_clear_entry(&context
[devfn
]);
620 __iommu_flush_cache(iommu
, &context
[devfn
], \
623 spin_unlock_irqrestore(&iommu
->lock
, flags
);
626 static void free_context_table(struct intel_iommu
*iommu
)
628 struct root_entry
*root
;
631 struct context_entry
*context
;
633 spin_lock_irqsave(&iommu
->lock
, flags
);
634 if (!iommu
->root_entry
) {
637 for (i
= 0; i
< ROOT_ENTRY_NR
; i
++) {
638 root
= &iommu
->root_entry
[i
];
639 context
= get_context_addr_from_root(root
);
641 free_pgtable_page(context
);
643 free_pgtable_page(iommu
->root_entry
);
644 iommu
->root_entry
= NULL
;
646 spin_unlock_irqrestore(&iommu
->lock
, flags
);
649 /* page table handling */
650 #define LEVEL_STRIDE (9)
651 #define LEVEL_MASK (((u64)1 << LEVEL_STRIDE) - 1)
653 static inline int agaw_to_level(int agaw
)
658 static inline int agaw_to_width(int agaw
)
660 return 30 + agaw
* LEVEL_STRIDE
;
664 static inline int width_to_agaw(int width
)
666 return (width
- 30) / LEVEL_STRIDE
;
669 static inline unsigned int level_to_offset_bits(int level
)
671 return (12 + (level
- 1) * LEVEL_STRIDE
);
674 static inline int pfn_level_offset(unsigned long pfn
, int level
)
676 return (pfn
>> (level_to_offset_bits(level
) - 12)) & LEVEL_MASK
;
679 static inline u64
level_mask(int level
)
681 return ((u64
)-1 << level_to_offset_bits(level
));
684 static inline u64
level_size(int level
)
686 return ((u64
)1 << level_to_offset_bits(level
));
689 static inline u64
align_to_level(u64 addr
, int level
)
691 return ((addr
+ level_size(level
) - 1) & level_mask(level
));
694 static struct dma_pte
* addr_to_dma_pte(struct dmar_domain
*domain
, u64 addr
)
696 int addr_width
= agaw_to_width(domain
->agaw
);
697 struct dma_pte
*parent
, *pte
= NULL
;
698 int level
= agaw_to_level(domain
->agaw
);
702 BUG_ON(!domain
->pgd
);
704 addr
&= (((u64
)1) << addr_width
) - 1;
705 parent
= domain
->pgd
;
707 spin_lock_irqsave(&domain
->mapping_lock
, flags
);
711 offset
= pfn_level_offset(addr
>> VTD_PAGE_SHIFT
, level
);
712 pte
= &parent
[offset
];
716 if (!dma_pte_present(pte
)) {
717 tmp_page
= alloc_pgtable_page();
720 spin_unlock_irqrestore(&domain
->mapping_lock
,
724 domain_flush_cache(domain
, tmp_page
, PAGE_SIZE
);
725 dma_set_pte_pfn(pte
, virt_to_dma_pfn(tmp_page
));
727 * high level table always sets r/w, last level page
728 * table control read/write
730 dma_set_pte_readable(pte
);
731 dma_set_pte_writable(pte
);
732 domain_flush_cache(domain
, pte
, sizeof(*pte
));
734 parent
= phys_to_virt(dma_pte_addr(pte
));
738 spin_unlock_irqrestore(&domain
->mapping_lock
, flags
);
742 /* return address's pte at specific level */
743 static struct dma_pte
*dma_pfn_level_pte(struct dmar_domain
*domain
,
747 struct dma_pte
*parent
, *pte
= NULL
;
748 int total
= agaw_to_level(domain
->agaw
);
751 parent
= domain
->pgd
;
752 while (level
<= total
) {
753 offset
= pfn_level_offset(pfn
, total
);
754 pte
= &parent
[offset
];
758 if (!dma_pte_present(pte
))
760 parent
= phys_to_virt(dma_pte_addr(pte
));
766 /* clear one page's page table */
767 static void dma_pte_clear_one(struct dmar_domain
*domain
, u64 addr
)
769 struct dma_pte
*pte
= NULL
;
771 /* get last level pte */
772 pte
= dma_pfn_level_pte(domain
, addr
>> VTD_PAGE_SHIFT
, 1);
776 domain_flush_cache(domain
, pte
, sizeof(*pte
));
780 /* clear last level pte, a tlb flush should be followed */
781 static void dma_pte_clear_range(struct dmar_domain
*domain
, u64 start
, u64 end
)
783 int addr_width
= agaw_to_width(domain
->agaw
);
786 start
&= (((u64
)1) << addr_width
) - 1;
787 end
&= (((u64
)1) << addr_width
) - 1;
788 /* in case it's partial page */
790 end
= PAGE_ALIGN(end
);
791 npages
= (end
- start
) / VTD_PAGE_SIZE
;
793 /* we don't need lock here, nobody else touches the iova range */
795 dma_pte_clear_one(domain
, start
);
796 start
+= VTD_PAGE_SIZE
;
800 /* free page table pages. last level pte should already be cleared */
801 static void dma_pte_free_pagetable(struct dmar_domain
*domain
,
804 int addr_width
= agaw_to_width(domain
->agaw
);
806 int total
= agaw_to_level(domain
->agaw
);
810 start
&= (((u64
)1) << addr_width
) - 1;
811 end
&= (((u64
)1) << addr_width
) - 1;
813 /* we don't need lock here, nobody else touches the iova range */
815 while (level
<= total
) {
816 tmp
= align_to_level(start
, level
);
817 if (tmp
>= end
|| (tmp
+ level_size(level
) > end
))
821 pte
= dma_pfn_level_pte(domain
, tmp
>> VTD_PAGE_SHIFT
,
825 phys_to_virt(dma_pte_addr(pte
)));
827 domain_flush_cache(domain
, pte
, sizeof(*pte
));
829 tmp
+= level_size(level
);
834 if (start
== 0 && end
>= ((((u64
)1) << addr_width
) - 1)) {
835 free_pgtable_page(domain
->pgd
);
841 static int iommu_alloc_root_entry(struct intel_iommu
*iommu
)
843 struct root_entry
*root
;
846 root
= (struct root_entry
*)alloc_pgtable_page();
850 __iommu_flush_cache(iommu
, root
, ROOT_SIZE
);
852 spin_lock_irqsave(&iommu
->lock
, flags
);
853 iommu
->root_entry
= root
;
854 spin_unlock_irqrestore(&iommu
->lock
, flags
);
859 static void iommu_set_root_entry(struct intel_iommu
*iommu
)
865 addr
= iommu
->root_entry
;
867 spin_lock_irqsave(&iommu
->register_lock
, flag
);
868 dmar_writeq(iommu
->reg
+ DMAR_RTADDR_REG
, virt_to_phys(addr
));
870 writel(iommu
->gcmd
| DMA_GCMD_SRTP
, iommu
->reg
+ DMAR_GCMD_REG
);
872 /* Make sure hardware complete it */
873 IOMMU_WAIT_OP(iommu
, DMAR_GSTS_REG
,
874 readl
, (sts
& DMA_GSTS_RTPS
), sts
);
876 spin_unlock_irqrestore(&iommu
->register_lock
, flag
);
879 static void iommu_flush_write_buffer(struct intel_iommu
*iommu
)
884 if (!rwbf_quirk
&& !cap_rwbf(iommu
->cap
))
887 spin_lock_irqsave(&iommu
->register_lock
, flag
);
888 writel(iommu
->gcmd
| DMA_GCMD_WBF
, iommu
->reg
+ DMAR_GCMD_REG
);
890 /* Make sure hardware complete it */
891 IOMMU_WAIT_OP(iommu
, DMAR_GSTS_REG
,
892 readl
, (!(val
& DMA_GSTS_WBFS
)), val
);
894 spin_unlock_irqrestore(&iommu
->register_lock
, flag
);
897 /* return value determine if we need a write buffer flush */
898 static void __iommu_flush_context(struct intel_iommu
*iommu
,
899 u16 did
, u16 source_id
, u8 function_mask
,
906 case DMA_CCMD_GLOBAL_INVL
:
907 val
= DMA_CCMD_GLOBAL_INVL
;
909 case DMA_CCMD_DOMAIN_INVL
:
910 val
= DMA_CCMD_DOMAIN_INVL
|DMA_CCMD_DID(did
);
912 case DMA_CCMD_DEVICE_INVL
:
913 val
= DMA_CCMD_DEVICE_INVL
|DMA_CCMD_DID(did
)
914 | DMA_CCMD_SID(source_id
) | DMA_CCMD_FM(function_mask
);
921 spin_lock_irqsave(&iommu
->register_lock
, flag
);
922 dmar_writeq(iommu
->reg
+ DMAR_CCMD_REG
, val
);
924 /* Make sure hardware complete it */
925 IOMMU_WAIT_OP(iommu
, DMAR_CCMD_REG
,
926 dmar_readq
, (!(val
& DMA_CCMD_ICC
)), val
);
928 spin_unlock_irqrestore(&iommu
->register_lock
, flag
);
931 /* return value determine if we need a write buffer flush */
932 static void __iommu_flush_iotlb(struct intel_iommu
*iommu
, u16 did
,
933 u64 addr
, unsigned int size_order
, u64 type
)
935 int tlb_offset
= ecap_iotlb_offset(iommu
->ecap
);
936 u64 val
= 0, val_iva
= 0;
940 case DMA_TLB_GLOBAL_FLUSH
:
941 /* global flush doesn't need set IVA_REG */
942 val
= DMA_TLB_GLOBAL_FLUSH
|DMA_TLB_IVT
;
944 case DMA_TLB_DSI_FLUSH
:
945 val
= DMA_TLB_DSI_FLUSH
|DMA_TLB_IVT
|DMA_TLB_DID(did
);
947 case DMA_TLB_PSI_FLUSH
:
948 val
= DMA_TLB_PSI_FLUSH
|DMA_TLB_IVT
|DMA_TLB_DID(did
);
949 /* Note: always flush non-leaf currently */
950 val_iva
= size_order
| addr
;
955 /* Note: set drain read/write */
958 * This is probably to be super secure.. Looks like we can
959 * ignore it without any impact.
961 if (cap_read_drain(iommu
->cap
))
962 val
|= DMA_TLB_READ_DRAIN
;
964 if (cap_write_drain(iommu
->cap
))
965 val
|= DMA_TLB_WRITE_DRAIN
;
967 spin_lock_irqsave(&iommu
->register_lock
, flag
);
968 /* Note: Only uses first TLB reg currently */
970 dmar_writeq(iommu
->reg
+ tlb_offset
, val_iva
);
971 dmar_writeq(iommu
->reg
+ tlb_offset
+ 8, val
);
973 /* Make sure hardware complete it */
974 IOMMU_WAIT_OP(iommu
, tlb_offset
+ 8,
975 dmar_readq
, (!(val
& DMA_TLB_IVT
)), val
);
977 spin_unlock_irqrestore(&iommu
->register_lock
, flag
);
979 /* check IOTLB invalidation granularity */
980 if (DMA_TLB_IAIG(val
) == 0)
981 printk(KERN_ERR
"IOMMU: flush IOTLB failed\n");
982 if (DMA_TLB_IAIG(val
) != DMA_TLB_IIRG(type
))
983 pr_debug("IOMMU: tlb flush request %Lx, actual %Lx\n",
984 (unsigned long long)DMA_TLB_IIRG(type
),
985 (unsigned long long)DMA_TLB_IAIG(val
));
988 static struct device_domain_info
*iommu_support_dev_iotlb(
989 struct dmar_domain
*domain
, int segment
, u8 bus
, u8 devfn
)
993 struct device_domain_info
*info
;
994 struct intel_iommu
*iommu
= device_to_iommu(segment
, bus
, devfn
);
996 if (!ecap_dev_iotlb_support(iommu
->ecap
))
1002 spin_lock_irqsave(&device_domain_lock
, flags
);
1003 list_for_each_entry(info
, &domain
->devices
, link
)
1004 if (info
->bus
== bus
&& info
->devfn
== devfn
) {
1008 spin_unlock_irqrestore(&device_domain_lock
, flags
);
1010 if (!found
|| !info
->dev
)
1013 if (!pci_find_ext_capability(info
->dev
, PCI_EXT_CAP_ID_ATS
))
1016 if (!dmar_find_matched_atsr_unit(info
->dev
))
1019 info
->iommu
= iommu
;
1024 static void iommu_enable_dev_iotlb(struct device_domain_info
*info
)
1029 pci_enable_ats(info
->dev
, VTD_PAGE_SHIFT
);
1032 static void iommu_disable_dev_iotlb(struct device_domain_info
*info
)
1034 if (!info
->dev
|| !pci_ats_enabled(info
->dev
))
1037 pci_disable_ats(info
->dev
);
1040 static void iommu_flush_dev_iotlb(struct dmar_domain
*domain
,
1041 u64 addr
, unsigned mask
)
1044 unsigned long flags
;
1045 struct device_domain_info
*info
;
1047 spin_lock_irqsave(&device_domain_lock
, flags
);
1048 list_for_each_entry(info
, &domain
->devices
, link
) {
1049 if (!info
->dev
|| !pci_ats_enabled(info
->dev
))
1052 sid
= info
->bus
<< 8 | info
->devfn
;
1053 qdep
= pci_ats_queue_depth(info
->dev
);
1054 qi_flush_dev_iotlb(info
->iommu
, sid
, qdep
, addr
, mask
);
1056 spin_unlock_irqrestore(&device_domain_lock
, flags
);
1059 static void iommu_flush_iotlb_psi(struct intel_iommu
*iommu
, u16 did
,
1060 u64 addr
, unsigned int pages
)
1062 unsigned int mask
= ilog2(__roundup_pow_of_two(pages
));
1064 BUG_ON(addr
& (~VTD_PAGE_MASK
));
1068 * Fallback to domain selective flush if no PSI support or the size is
1070 * PSI requires page size to be 2 ^ x, and the base address is naturally
1071 * aligned to the size
1073 if (!cap_pgsel_inv(iommu
->cap
) || mask
> cap_max_amask_val(iommu
->cap
))
1074 iommu
->flush
.flush_iotlb(iommu
, did
, 0, 0,
1077 iommu
->flush
.flush_iotlb(iommu
, did
, addr
, mask
,
1081 * In caching mode, domain ID 0 is reserved for non-present to present
1082 * mapping flush. Device IOTLB doesn't need to be flushed in this case.
1084 if (!cap_caching_mode(iommu
->cap
) || did
)
1085 iommu_flush_dev_iotlb(iommu
->domains
[did
], addr
, mask
);
1088 static void iommu_disable_protect_mem_regions(struct intel_iommu
*iommu
)
1091 unsigned long flags
;
1093 spin_lock_irqsave(&iommu
->register_lock
, flags
);
1094 pmen
= readl(iommu
->reg
+ DMAR_PMEN_REG
);
1095 pmen
&= ~DMA_PMEN_EPM
;
1096 writel(pmen
, iommu
->reg
+ DMAR_PMEN_REG
);
1098 /* wait for the protected region status bit to clear */
1099 IOMMU_WAIT_OP(iommu
, DMAR_PMEN_REG
,
1100 readl
, !(pmen
& DMA_PMEN_PRS
), pmen
);
1102 spin_unlock_irqrestore(&iommu
->register_lock
, flags
);
1105 static int iommu_enable_translation(struct intel_iommu
*iommu
)
1108 unsigned long flags
;
1110 spin_lock_irqsave(&iommu
->register_lock
, flags
);
1111 iommu
->gcmd
|= DMA_GCMD_TE
;
1112 writel(iommu
->gcmd
, iommu
->reg
+ DMAR_GCMD_REG
);
1114 /* Make sure hardware complete it */
1115 IOMMU_WAIT_OP(iommu
, DMAR_GSTS_REG
,
1116 readl
, (sts
& DMA_GSTS_TES
), sts
);
1118 spin_unlock_irqrestore(&iommu
->register_lock
, flags
);
1122 static int iommu_disable_translation(struct intel_iommu
*iommu
)
1127 spin_lock_irqsave(&iommu
->register_lock
, flag
);
1128 iommu
->gcmd
&= ~DMA_GCMD_TE
;
1129 writel(iommu
->gcmd
, iommu
->reg
+ DMAR_GCMD_REG
);
1131 /* Make sure hardware complete it */
1132 IOMMU_WAIT_OP(iommu
, DMAR_GSTS_REG
,
1133 readl
, (!(sts
& DMA_GSTS_TES
)), sts
);
1135 spin_unlock_irqrestore(&iommu
->register_lock
, flag
);
1140 static int iommu_init_domains(struct intel_iommu
*iommu
)
1142 unsigned long ndomains
;
1143 unsigned long nlongs
;
1145 ndomains
= cap_ndoms(iommu
->cap
);
1146 pr_debug("Number of Domains supportd <%ld>\n", ndomains
);
1147 nlongs
= BITS_TO_LONGS(ndomains
);
1149 /* TBD: there might be 64K domains,
1150 * consider other allocation for future chip
1152 iommu
->domain_ids
= kcalloc(nlongs
, sizeof(unsigned long), GFP_KERNEL
);
1153 if (!iommu
->domain_ids
) {
1154 printk(KERN_ERR
"Allocating domain id array failed\n");
1157 iommu
->domains
= kcalloc(ndomains
, sizeof(struct dmar_domain
*),
1159 if (!iommu
->domains
) {
1160 printk(KERN_ERR
"Allocating domain array failed\n");
1161 kfree(iommu
->domain_ids
);
1165 spin_lock_init(&iommu
->lock
);
1168 * if Caching mode is set, then invalid translations are tagged
1169 * with domainid 0. Hence we need to pre-allocate it.
1171 if (cap_caching_mode(iommu
->cap
))
1172 set_bit(0, iommu
->domain_ids
);
1177 static void domain_exit(struct dmar_domain
*domain
);
1178 static void vm_domain_exit(struct dmar_domain
*domain
);
1180 void free_dmar_iommu(struct intel_iommu
*iommu
)
1182 struct dmar_domain
*domain
;
1184 unsigned long flags
;
1186 i
= find_first_bit(iommu
->domain_ids
, cap_ndoms(iommu
->cap
));
1187 for (; i
< cap_ndoms(iommu
->cap
); ) {
1188 domain
= iommu
->domains
[i
];
1189 clear_bit(i
, iommu
->domain_ids
);
1191 spin_lock_irqsave(&domain
->iommu_lock
, flags
);
1192 if (--domain
->iommu_count
== 0) {
1193 if (domain
->flags
& DOMAIN_FLAG_VIRTUAL_MACHINE
)
1194 vm_domain_exit(domain
);
1196 domain_exit(domain
);
1198 spin_unlock_irqrestore(&domain
->iommu_lock
, flags
);
1200 i
= find_next_bit(iommu
->domain_ids
,
1201 cap_ndoms(iommu
->cap
), i
+1);
1204 if (iommu
->gcmd
& DMA_GCMD_TE
)
1205 iommu_disable_translation(iommu
);
1208 set_irq_data(iommu
->irq
, NULL
);
1209 /* This will mask the irq */
1210 free_irq(iommu
->irq
, iommu
);
1211 destroy_irq(iommu
->irq
);
1214 kfree(iommu
->domains
);
1215 kfree(iommu
->domain_ids
);
1217 g_iommus
[iommu
->seq_id
] = NULL
;
1219 /* if all iommus are freed, free g_iommus */
1220 for (i
= 0; i
< g_num_of_iommus
; i
++) {
1225 if (i
== g_num_of_iommus
)
1228 /* free context mapping */
1229 free_context_table(iommu
);
1232 static struct dmar_domain
*alloc_domain(void)
1234 struct dmar_domain
*domain
;
1236 domain
= alloc_domain_mem();
1240 memset(&domain
->iommu_bmp
, 0, sizeof(unsigned long));
1246 static int iommu_attach_domain(struct dmar_domain
*domain
,
1247 struct intel_iommu
*iommu
)
1250 unsigned long ndomains
;
1251 unsigned long flags
;
1253 ndomains
= cap_ndoms(iommu
->cap
);
1255 spin_lock_irqsave(&iommu
->lock
, flags
);
1257 num
= find_first_zero_bit(iommu
->domain_ids
, ndomains
);
1258 if (num
>= ndomains
) {
1259 spin_unlock_irqrestore(&iommu
->lock
, flags
);
1260 printk(KERN_ERR
"IOMMU: no free domain ids\n");
1265 set_bit(num
, iommu
->domain_ids
);
1266 set_bit(iommu
->seq_id
, &domain
->iommu_bmp
);
1267 iommu
->domains
[num
] = domain
;
1268 spin_unlock_irqrestore(&iommu
->lock
, flags
);
1273 static void iommu_detach_domain(struct dmar_domain
*domain
,
1274 struct intel_iommu
*iommu
)
1276 unsigned long flags
;
1280 spin_lock_irqsave(&iommu
->lock
, flags
);
1281 ndomains
= cap_ndoms(iommu
->cap
);
1282 num
= find_first_bit(iommu
->domain_ids
, ndomains
);
1283 for (; num
< ndomains
; ) {
1284 if (iommu
->domains
[num
] == domain
) {
1288 num
= find_next_bit(iommu
->domain_ids
,
1289 cap_ndoms(iommu
->cap
), num
+1);
1293 clear_bit(num
, iommu
->domain_ids
);
1294 clear_bit(iommu
->seq_id
, &domain
->iommu_bmp
);
1295 iommu
->domains
[num
] = NULL
;
1297 spin_unlock_irqrestore(&iommu
->lock
, flags
);
1300 static struct iova_domain reserved_iova_list
;
1301 static struct lock_class_key reserved_alloc_key
;
1302 static struct lock_class_key reserved_rbtree_key
;
1304 static void dmar_init_reserved_ranges(void)
1306 struct pci_dev
*pdev
= NULL
;
1311 init_iova_domain(&reserved_iova_list
, DMA_32BIT_PFN
);
1313 lockdep_set_class(&reserved_iova_list
.iova_alloc_lock
,
1314 &reserved_alloc_key
);
1315 lockdep_set_class(&reserved_iova_list
.iova_rbtree_lock
,
1316 &reserved_rbtree_key
);
1318 /* IOAPIC ranges shouldn't be accessed by DMA */
1319 iova
= reserve_iova(&reserved_iova_list
, IOVA_PFN(IOAPIC_RANGE_START
),
1320 IOVA_PFN(IOAPIC_RANGE_END
));
1322 printk(KERN_ERR
"Reserve IOAPIC range failed\n");
1324 /* Reserve all PCI MMIO to avoid peer-to-peer access */
1325 for_each_pci_dev(pdev
) {
1328 for (i
= 0; i
< PCI_NUM_RESOURCES
; i
++) {
1329 r
= &pdev
->resource
[i
];
1330 if (!r
->flags
|| !(r
->flags
& IORESOURCE_MEM
))
1333 addr
&= PHYSICAL_PAGE_MASK
;
1334 size
= r
->end
- addr
;
1335 size
= PAGE_ALIGN(size
);
1336 iova
= reserve_iova(&reserved_iova_list
, IOVA_PFN(addr
),
1337 IOVA_PFN(size
+ addr
) - 1);
1339 printk(KERN_ERR
"Reserve iova failed\n");
1345 static void domain_reserve_special_ranges(struct dmar_domain
*domain
)
1347 copy_reserved_iova(&reserved_iova_list
, &domain
->iovad
);
1350 static inline int guestwidth_to_adjustwidth(int gaw
)
1353 int r
= (gaw
- 12) % 9;
1364 static int domain_init(struct dmar_domain
*domain
, int guest_width
)
1366 struct intel_iommu
*iommu
;
1367 int adjust_width
, agaw
;
1368 unsigned long sagaw
;
1370 init_iova_domain(&domain
->iovad
, DMA_32BIT_PFN
);
1371 spin_lock_init(&domain
->mapping_lock
);
1372 spin_lock_init(&domain
->iommu_lock
);
1374 domain_reserve_special_ranges(domain
);
1376 /* calculate AGAW */
1377 iommu
= domain_get_iommu(domain
);
1378 if (guest_width
> cap_mgaw(iommu
->cap
))
1379 guest_width
= cap_mgaw(iommu
->cap
);
1380 domain
->gaw
= guest_width
;
1381 adjust_width
= guestwidth_to_adjustwidth(guest_width
);
1382 agaw
= width_to_agaw(adjust_width
);
1383 sagaw
= cap_sagaw(iommu
->cap
);
1384 if (!test_bit(agaw
, &sagaw
)) {
1385 /* hardware doesn't support it, choose a bigger one */
1386 pr_debug("IOMMU: hardware doesn't support agaw %d\n", agaw
);
1387 agaw
= find_next_bit(&sagaw
, 5, agaw
);
1391 domain
->agaw
= agaw
;
1392 INIT_LIST_HEAD(&domain
->devices
);
1394 if (ecap_coherent(iommu
->ecap
))
1395 domain
->iommu_coherency
= 1;
1397 domain
->iommu_coherency
= 0;
1399 if (ecap_sc_support(iommu
->ecap
))
1400 domain
->iommu_snooping
= 1;
1402 domain
->iommu_snooping
= 0;
1404 domain
->iommu_count
= 1;
1406 /* always allocate the top pgd */
1407 domain
->pgd
= (struct dma_pte
*)alloc_pgtable_page();
1410 __iommu_flush_cache(iommu
, domain
->pgd
, PAGE_SIZE
);
1414 static void domain_exit(struct dmar_domain
*domain
)
1416 struct dmar_drhd_unit
*drhd
;
1417 struct intel_iommu
*iommu
;
1420 /* Domain 0 is reserved, so dont process it */
1424 domain_remove_dev_info(domain
);
1426 put_iova_domain(&domain
->iovad
);
1427 end
= DOMAIN_MAX_ADDR(domain
->gaw
);
1428 end
= end
& (~PAGE_MASK
);
1431 dma_pte_clear_range(domain
, 0, end
);
1433 /* free page tables */
1434 dma_pte_free_pagetable(domain
, 0, end
);
1436 for_each_active_iommu(iommu
, drhd
)
1437 if (test_bit(iommu
->seq_id
, &domain
->iommu_bmp
))
1438 iommu_detach_domain(domain
, iommu
);
1440 free_domain_mem(domain
);
1443 static int domain_context_mapping_one(struct dmar_domain
*domain
, int segment
,
1444 u8 bus
, u8 devfn
, int translation
)
1446 struct context_entry
*context
;
1447 unsigned long flags
;
1448 struct intel_iommu
*iommu
;
1449 struct dma_pte
*pgd
;
1451 unsigned long ndomains
;
1454 struct device_domain_info
*info
= NULL
;
1456 pr_debug("Set context mapping for %02x:%02x.%d\n",
1457 bus
, PCI_SLOT(devfn
), PCI_FUNC(devfn
));
1459 BUG_ON(!domain
->pgd
);
1460 BUG_ON(translation
!= CONTEXT_TT_PASS_THROUGH
&&
1461 translation
!= CONTEXT_TT_MULTI_LEVEL
);
1463 iommu
= device_to_iommu(segment
, bus
, devfn
);
1467 context
= device_to_context_entry(iommu
, bus
, devfn
);
1470 spin_lock_irqsave(&iommu
->lock
, flags
);
1471 if (context_present(context
)) {
1472 spin_unlock_irqrestore(&iommu
->lock
, flags
);
1479 if (domain
->flags
& DOMAIN_FLAG_VIRTUAL_MACHINE
||
1480 domain
->flags
& DOMAIN_FLAG_STATIC_IDENTITY
) {
1483 /* find an available domain id for this device in iommu */
1484 ndomains
= cap_ndoms(iommu
->cap
);
1485 num
= find_first_bit(iommu
->domain_ids
, ndomains
);
1486 for (; num
< ndomains
; ) {
1487 if (iommu
->domains
[num
] == domain
) {
1492 num
= find_next_bit(iommu
->domain_ids
,
1493 cap_ndoms(iommu
->cap
), num
+1);
1497 num
= find_first_zero_bit(iommu
->domain_ids
, ndomains
);
1498 if (num
>= ndomains
) {
1499 spin_unlock_irqrestore(&iommu
->lock
, flags
);
1500 printk(KERN_ERR
"IOMMU: no free domain ids\n");
1504 set_bit(num
, iommu
->domain_ids
);
1505 set_bit(iommu
->seq_id
, &domain
->iommu_bmp
);
1506 iommu
->domains
[num
] = domain
;
1510 /* Skip top levels of page tables for
1511 * iommu which has less agaw than default.
1513 for (agaw
= domain
->agaw
; agaw
!= iommu
->agaw
; agaw
--) {
1514 pgd
= phys_to_virt(dma_pte_addr(pgd
));
1515 if (!dma_pte_present(pgd
)) {
1516 spin_unlock_irqrestore(&iommu
->lock
, flags
);
1522 context_set_domain_id(context
, id
);
1524 if (translation
!= CONTEXT_TT_PASS_THROUGH
) {
1525 info
= iommu_support_dev_iotlb(domain
, segment
, bus
, devfn
);
1526 translation
= info
? CONTEXT_TT_DEV_IOTLB
:
1527 CONTEXT_TT_MULTI_LEVEL
;
1530 * In pass through mode, AW must be programmed to indicate the largest
1531 * AGAW value supported by hardware. And ASR is ignored by hardware.
1533 if (unlikely(translation
== CONTEXT_TT_PASS_THROUGH
))
1534 context_set_address_width(context
, iommu
->msagaw
);
1536 context_set_address_root(context
, virt_to_phys(pgd
));
1537 context_set_address_width(context
, iommu
->agaw
);
1540 context_set_translation_type(context
, translation
);
1541 context_set_fault_enable(context
);
1542 context_set_present(context
);
1543 domain_flush_cache(domain
, context
, sizeof(*context
));
1546 * It's a non-present to present mapping. If hardware doesn't cache
1547 * non-present entry we only need to flush the write-buffer. If the
1548 * _does_ cache non-present entries, then it does so in the special
1549 * domain #0, which we have to flush:
1551 if (cap_caching_mode(iommu
->cap
)) {
1552 iommu
->flush
.flush_context(iommu
, 0,
1553 (((u16
)bus
) << 8) | devfn
,
1554 DMA_CCMD_MASK_NOBIT
,
1555 DMA_CCMD_DEVICE_INVL
);
1556 iommu
->flush
.flush_iotlb(iommu
, 0, 0, 0, DMA_TLB_DSI_FLUSH
);
1558 iommu_flush_write_buffer(iommu
);
1560 iommu_enable_dev_iotlb(info
);
1561 spin_unlock_irqrestore(&iommu
->lock
, flags
);
1563 spin_lock_irqsave(&domain
->iommu_lock
, flags
);
1564 if (!test_and_set_bit(iommu
->seq_id
, &domain
->iommu_bmp
)) {
1565 domain
->iommu_count
++;
1566 domain_update_iommu_cap(domain
);
1568 spin_unlock_irqrestore(&domain
->iommu_lock
, flags
);
1573 domain_context_mapping(struct dmar_domain
*domain
, struct pci_dev
*pdev
,
1577 struct pci_dev
*tmp
, *parent
;
1579 ret
= domain_context_mapping_one(domain
, pci_domain_nr(pdev
->bus
),
1580 pdev
->bus
->number
, pdev
->devfn
,
1585 /* dependent device mapping */
1586 tmp
= pci_find_upstream_pcie_bridge(pdev
);
1589 /* Secondary interface's bus number and devfn 0 */
1590 parent
= pdev
->bus
->self
;
1591 while (parent
!= tmp
) {
1592 ret
= domain_context_mapping_one(domain
,
1593 pci_domain_nr(parent
->bus
),
1594 parent
->bus
->number
,
1595 parent
->devfn
, translation
);
1598 parent
= parent
->bus
->self
;
1600 if (tmp
->is_pcie
) /* this is a PCIE-to-PCI bridge */
1601 return domain_context_mapping_one(domain
,
1602 pci_domain_nr(tmp
->subordinate
),
1603 tmp
->subordinate
->number
, 0,
1605 else /* this is a legacy PCI bridge */
1606 return domain_context_mapping_one(domain
,
1607 pci_domain_nr(tmp
->bus
),
1613 static int domain_context_mapped(struct pci_dev
*pdev
)
1616 struct pci_dev
*tmp
, *parent
;
1617 struct intel_iommu
*iommu
;
1619 iommu
= device_to_iommu(pci_domain_nr(pdev
->bus
), pdev
->bus
->number
,
1624 ret
= device_context_mapped(iommu
, pdev
->bus
->number
, pdev
->devfn
);
1627 /* dependent device mapping */
1628 tmp
= pci_find_upstream_pcie_bridge(pdev
);
1631 /* Secondary interface's bus number and devfn 0 */
1632 parent
= pdev
->bus
->self
;
1633 while (parent
!= tmp
) {
1634 ret
= device_context_mapped(iommu
, parent
->bus
->number
,
1638 parent
= parent
->bus
->self
;
1641 return device_context_mapped(iommu
, tmp
->subordinate
->number
,
1644 return device_context_mapped(iommu
, tmp
->bus
->number
,
1649 domain_page_mapping(struct dmar_domain
*domain
, dma_addr_t iova
,
1650 u64 hpa
, size_t size
, int prot
)
1652 u64 start_pfn
, end_pfn
;
1653 struct dma_pte
*pte
;
1655 int addr_width
= agaw_to_width(domain
->agaw
);
1657 hpa
&= (((u64
)1) << addr_width
) - 1;
1659 if ((prot
& (DMA_PTE_READ
|DMA_PTE_WRITE
)) == 0)
1662 start_pfn
= ((u64
)hpa
) >> VTD_PAGE_SHIFT
;
1663 end_pfn
= (VTD_PAGE_ALIGN(((u64
)hpa
) + size
)) >> VTD_PAGE_SHIFT
;
1665 while (start_pfn
< end_pfn
) {
1666 pte
= addr_to_dma_pte(domain
, iova
+ VTD_PAGE_SIZE
* index
);
1669 /* We don't need lock here, nobody else
1670 * touches the iova range
1672 BUG_ON(dma_pte_addr(pte
));
1673 dma_set_pte_pfn(pte
, start_pfn
);
1674 dma_set_pte_prot(pte
, prot
);
1675 if (prot
& DMA_PTE_SNP
)
1676 dma_set_pte_snp(pte
);
1677 domain_flush_cache(domain
, pte
, sizeof(*pte
));
1684 static void iommu_detach_dev(struct intel_iommu
*iommu
, u8 bus
, u8 devfn
)
1689 clear_context_table(iommu
, bus
, devfn
);
1690 iommu
->flush
.flush_context(iommu
, 0, 0, 0,
1691 DMA_CCMD_GLOBAL_INVL
);
1692 iommu
->flush
.flush_iotlb(iommu
, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH
);
1695 static void domain_remove_dev_info(struct dmar_domain
*domain
)
1697 struct device_domain_info
*info
;
1698 unsigned long flags
;
1699 struct intel_iommu
*iommu
;
1701 spin_lock_irqsave(&device_domain_lock
, flags
);
1702 while (!list_empty(&domain
->devices
)) {
1703 info
= list_entry(domain
->devices
.next
,
1704 struct device_domain_info
, link
);
1705 list_del(&info
->link
);
1706 list_del(&info
->global
);
1708 info
->dev
->dev
.archdata
.iommu
= NULL
;
1709 spin_unlock_irqrestore(&device_domain_lock
, flags
);
1711 iommu_disable_dev_iotlb(info
);
1712 iommu
= device_to_iommu(info
->segment
, info
->bus
, info
->devfn
);
1713 iommu_detach_dev(iommu
, info
->bus
, info
->devfn
);
1714 free_devinfo_mem(info
);
1716 spin_lock_irqsave(&device_domain_lock
, flags
);
1718 spin_unlock_irqrestore(&device_domain_lock
, flags
);
1723 * Note: we use struct pci_dev->dev.archdata.iommu stores the info
1725 static struct dmar_domain
*
1726 find_domain(struct pci_dev
*pdev
)
1728 struct device_domain_info
*info
;
1730 /* No lock here, assumes no domain exit in normal case */
1731 info
= pdev
->dev
.archdata
.iommu
;
1733 return info
->domain
;
1737 /* domain is initialized */
1738 static struct dmar_domain
*get_domain_for_dev(struct pci_dev
*pdev
, int gaw
)
1740 struct dmar_domain
*domain
, *found
= NULL
;
1741 struct intel_iommu
*iommu
;
1742 struct dmar_drhd_unit
*drhd
;
1743 struct device_domain_info
*info
, *tmp
;
1744 struct pci_dev
*dev_tmp
;
1745 unsigned long flags
;
1746 int bus
= 0, devfn
= 0;
1750 domain
= find_domain(pdev
);
1754 segment
= pci_domain_nr(pdev
->bus
);
1756 dev_tmp
= pci_find_upstream_pcie_bridge(pdev
);
1758 if (dev_tmp
->is_pcie
) {
1759 bus
= dev_tmp
->subordinate
->number
;
1762 bus
= dev_tmp
->bus
->number
;
1763 devfn
= dev_tmp
->devfn
;
1765 spin_lock_irqsave(&device_domain_lock
, flags
);
1766 list_for_each_entry(info
, &device_domain_list
, global
) {
1767 if (info
->segment
== segment
&&
1768 info
->bus
== bus
&& info
->devfn
== devfn
) {
1769 found
= info
->domain
;
1773 spin_unlock_irqrestore(&device_domain_lock
, flags
);
1774 /* pcie-pci bridge already has a domain, uses it */
1781 domain
= alloc_domain();
1785 /* Allocate new domain for the device */
1786 drhd
= dmar_find_matched_drhd_unit(pdev
);
1788 printk(KERN_ERR
"IOMMU: can't find DMAR for device %s\n",
1792 iommu
= drhd
->iommu
;
1794 ret
= iommu_attach_domain(domain
, iommu
);
1796 domain_exit(domain
);
1800 if (domain_init(domain
, gaw
)) {
1801 domain_exit(domain
);
1805 /* register pcie-to-pci device */
1807 info
= alloc_devinfo_mem();
1809 domain_exit(domain
);
1812 info
->segment
= segment
;
1814 info
->devfn
= devfn
;
1816 info
->domain
= domain
;
1817 /* This domain is shared by devices under p2p bridge */
1818 domain
->flags
|= DOMAIN_FLAG_P2P_MULTIPLE_DEVICES
;
1820 /* pcie-to-pci bridge already has a domain, uses it */
1822 spin_lock_irqsave(&device_domain_lock
, flags
);
1823 list_for_each_entry(tmp
, &device_domain_list
, global
) {
1824 if (tmp
->segment
== segment
&&
1825 tmp
->bus
== bus
&& tmp
->devfn
== devfn
) {
1826 found
= tmp
->domain
;
1831 free_devinfo_mem(info
);
1832 domain_exit(domain
);
1835 list_add(&info
->link
, &domain
->devices
);
1836 list_add(&info
->global
, &device_domain_list
);
1838 spin_unlock_irqrestore(&device_domain_lock
, flags
);
1842 info
= alloc_devinfo_mem();
1845 info
->segment
= segment
;
1846 info
->bus
= pdev
->bus
->number
;
1847 info
->devfn
= pdev
->devfn
;
1849 info
->domain
= domain
;
1850 spin_lock_irqsave(&device_domain_lock
, flags
);
1851 /* somebody is fast */
1852 found
= find_domain(pdev
);
1853 if (found
!= NULL
) {
1854 spin_unlock_irqrestore(&device_domain_lock
, flags
);
1855 if (found
!= domain
) {
1856 domain_exit(domain
);
1859 free_devinfo_mem(info
);
1862 list_add(&info
->link
, &domain
->devices
);
1863 list_add(&info
->global
, &device_domain_list
);
1864 pdev
->dev
.archdata
.iommu
= info
;
1865 spin_unlock_irqrestore(&device_domain_lock
, flags
);
1868 /* recheck it here, maybe others set it */
1869 return find_domain(pdev
);
1872 static int iommu_identity_mapping
;
1874 static int iommu_domain_identity_map(struct dmar_domain
*domain
,
1875 unsigned long long start
,
1876 unsigned long long end
)
1879 unsigned long long base
;
1881 /* The address might not be aligned */
1882 base
= start
& PAGE_MASK
;
1884 size
= PAGE_ALIGN(size
);
1885 if (!reserve_iova(&domain
->iovad
, IOVA_PFN(base
),
1886 IOVA_PFN(base
+ size
) - 1)) {
1887 printk(KERN_ERR
"IOMMU: reserve iova failed\n");
1891 pr_debug("Mapping reserved region %lx@%llx for domain %d\n",
1892 size
, base
, domain
->id
);
1894 * RMRR range might have overlap with physical memory range,
1897 dma_pte_clear_range(domain
, base
, base
+ size
);
1899 return domain_page_mapping(domain
, base
, base
, size
,
1900 DMA_PTE_READ
|DMA_PTE_WRITE
);
1903 static int iommu_prepare_identity_map(struct pci_dev
*pdev
,
1904 unsigned long long start
,
1905 unsigned long long end
)
1907 struct dmar_domain
*domain
;
1911 "IOMMU: Setting identity map for device %s [0x%Lx - 0x%Lx]\n",
1912 pci_name(pdev
), start
, end
);
1914 domain
= get_domain_for_dev(pdev
, DEFAULT_DOMAIN_ADDRESS_WIDTH
);
1918 ret
= iommu_domain_identity_map(domain
, start
, end
);
1922 /* context entry init */
1923 ret
= domain_context_mapping(domain
, pdev
, CONTEXT_TT_MULTI_LEVEL
);
1930 domain_exit(domain
);
1934 static inline int iommu_prepare_rmrr_dev(struct dmar_rmrr_unit
*rmrr
,
1935 struct pci_dev
*pdev
)
1937 if (pdev
->dev
.archdata
.iommu
== DUMMY_DEVICE_DOMAIN_INFO
)
1939 return iommu_prepare_identity_map(pdev
, rmrr
->base_address
,
1940 rmrr
->end_address
+ 1);
1943 #ifdef CONFIG_DMAR_FLOPPY_WA
1944 static inline void iommu_prepare_isa(void)
1946 struct pci_dev
*pdev
;
1949 pdev
= pci_get_class(PCI_CLASS_BRIDGE_ISA
<< 8, NULL
);
1953 printk(KERN_INFO
"IOMMU: Prepare 0-16MiB unity mapping for LPC\n");
1954 ret
= iommu_prepare_identity_map(pdev
, 0, 16*1024*1024);
1957 printk(KERN_ERR
"IOMMU: Failed to create 0-16MiB identity map; "
1958 "floppy might not work\n");
1962 static inline void iommu_prepare_isa(void)
1966 #endif /* !CONFIG_DMAR_FLPY_WA */
1968 /* Initialize each context entry as pass through.*/
1969 static int __init
init_context_pass_through(void)
1971 struct pci_dev
*pdev
= NULL
;
1972 struct dmar_domain
*domain
;
1975 for_each_pci_dev(pdev
) {
1976 domain
= get_domain_for_dev(pdev
, DEFAULT_DOMAIN_ADDRESS_WIDTH
);
1977 ret
= domain_context_mapping(domain
, pdev
,
1978 CONTEXT_TT_PASS_THROUGH
);
1985 static int md_domain_init(struct dmar_domain
*domain
, int guest_width
);
1987 static int __init
si_domain_work_fn(unsigned long start_pfn
,
1988 unsigned long end_pfn
, void *datax
)
1992 *ret
= iommu_domain_identity_map(si_domain
,
1993 (uint64_t)start_pfn
<< PAGE_SHIFT
,
1994 (uint64_t)end_pfn
<< PAGE_SHIFT
);
1999 static int si_domain_init(void)
2001 struct dmar_drhd_unit
*drhd
;
2002 struct intel_iommu
*iommu
;
2005 si_domain
= alloc_domain();
2009 pr_debug("Identity mapping domain is domain %d\n", si_domain
->id
);
2011 for_each_active_iommu(iommu
, drhd
) {
2012 ret
= iommu_attach_domain(si_domain
, iommu
);
2014 domain_exit(si_domain
);
2019 if (md_domain_init(si_domain
, DEFAULT_DOMAIN_ADDRESS_WIDTH
)) {
2020 domain_exit(si_domain
);
2024 si_domain
->flags
= DOMAIN_FLAG_STATIC_IDENTITY
;
2026 for_each_online_node(nid
) {
2027 work_with_active_regions(nid
, si_domain_work_fn
, &ret
);
2035 static void domain_remove_one_dev_info(struct dmar_domain
*domain
,
2036 struct pci_dev
*pdev
);
2037 static int identity_mapping(struct pci_dev
*pdev
)
2039 struct device_domain_info
*info
;
2041 if (likely(!iommu_identity_mapping
))
2045 list_for_each_entry(info
, &si_domain
->devices
, link
)
2046 if (info
->dev
== pdev
)
2051 static int domain_add_dev_info(struct dmar_domain
*domain
,
2052 struct pci_dev
*pdev
)
2054 struct device_domain_info
*info
;
2055 unsigned long flags
;
2057 info
= alloc_devinfo_mem();
2061 info
->segment
= pci_domain_nr(pdev
->bus
);
2062 info
->bus
= pdev
->bus
->number
;
2063 info
->devfn
= pdev
->devfn
;
2065 info
->domain
= domain
;
2067 spin_lock_irqsave(&device_domain_lock
, flags
);
2068 list_add(&info
->link
, &domain
->devices
);
2069 list_add(&info
->global
, &device_domain_list
);
2070 pdev
->dev
.archdata
.iommu
= info
;
2071 spin_unlock_irqrestore(&device_domain_lock
, flags
);
2076 static int iommu_prepare_static_identity_mapping(void)
2078 struct pci_dev
*pdev
= NULL
;
2081 ret
= si_domain_init();
2085 for_each_pci_dev(pdev
) {
2086 printk(KERN_INFO
"IOMMU: identity mapping for device %s\n",
2089 ret
= domain_context_mapping(si_domain
, pdev
,
2090 CONTEXT_TT_MULTI_LEVEL
);
2093 ret
= domain_add_dev_info(si_domain
, pdev
);
2101 int __init
init_dmars(void)
2103 struct dmar_drhd_unit
*drhd
;
2104 struct dmar_rmrr_unit
*rmrr
;
2105 struct pci_dev
*pdev
;
2106 struct intel_iommu
*iommu
;
2108 int pass_through
= 1;
2111 * In case pass through can not be enabled, iommu tries to use identity
2114 if (iommu_pass_through
)
2115 iommu_identity_mapping
= 1;
2120 * initialize and program root entry to not present
2123 for_each_drhd_unit(drhd
) {
2126 * lock not needed as this is only incremented in the single
2127 * threaded kernel __init code path all other access are read
2132 g_iommus
= kcalloc(g_num_of_iommus
, sizeof(struct intel_iommu
*),
2135 printk(KERN_ERR
"Allocating global iommu array failed\n");
2140 deferred_flush
= kzalloc(g_num_of_iommus
*
2141 sizeof(struct deferred_flush_tables
), GFP_KERNEL
);
2142 if (!deferred_flush
) {
2148 for_each_drhd_unit(drhd
) {
2152 iommu
= drhd
->iommu
;
2153 g_iommus
[iommu
->seq_id
] = iommu
;
2155 ret
= iommu_init_domains(iommu
);
2161 * we could share the same root & context tables
2162 * amoung all IOMMU's. Need to Split it later.
2164 ret
= iommu_alloc_root_entry(iommu
);
2166 printk(KERN_ERR
"IOMMU: allocate root entry failed\n");
2169 if (!ecap_pass_through(iommu
->ecap
))
2172 if (iommu_pass_through
)
2173 if (!pass_through
) {
2175 "Pass Through is not supported by hardware.\n");
2176 iommu_pass_through
= 0;
2180 * Start from the sane iommu hardware state.
2182 for_each_drhd_unit(drhd
) {
2186 iommu
= drhd
->iommu
;
2189 * If the queued invalidation is already initialized by us
2190 * (for example, while enabling interrupt-remapping) then
2191 * we got the things already rolling from a sane state.
2197 * Clear any previous faults.
2199 dmar_fault(-1, iommu
);
2201 * Disable queued invalidation if supported and already enabled
2202 * before OS handover.
2204 dmar_disable_qi(iommu
);
2207 for_each_drhd_unit(drhd
) {
2211 iommu
= drhd
->iommu
;
2213 if (dmar_enable_qi(iommu
)) {
2215 * Queued Invalidate not enabled, use Register Based
2218 iommu
->flush
.flush_context
= __iommu_flush_context
;
2219 iommu
->flush
.flush_iotlb
= __iommu_flush_iotlb
;
2220 printk(KERN_INFO
"IOMMU 0x%Lx: using Register based "
2222 (unsigned long long)drhd
->reg_base_addr
);
2224 iommu
->flush
.flush_context
= qi_flush_context
;
2225 iommu
->flush
.flush_iotlb
= qi_flush_iotlb
;
2226 printk(KERN_INFO
"IOMMU 0x%Lx: using Queued "
2228 (unsigned long long)drhd
->reg_base_addr
);
2233 * If pass through is set and enabled, context entries of all pci
2234 * devices are intialized by pass through translation type.
2236 if (iommu_pass_through
) {
2237 ret
= init_context_pass_through();
2239 printk(KERN_ERR
"IOMMU: Pass through init failed.\n");
2240 iommu_pass_through
= 0;
2245 * If pass through is not set or not enabled, setup context entries for
2246 * identity mappings for rmrr, gfx, and isa and may fall back to static
2247 * identity mapping if iommu_identity_mapping is set.
2249 if (!iommu_pass_through
) {
2250 if (iommu_identity_mapping
)
2251 iommu_prepare_static_identity_mapping();
2254 * for each dev attached to rmrr
2256 * locate drhd for dev, alloc domain for dev
2257 * allocate free domain
2258 * allocate page table entries for rmrr
2259 * if context not allocated for bus
2260 * allocate and init context
2261 * set present in root table for this bus
2262 * init context with domain, translation etc
2266 printk(KERN_INFO
"IOMMU: Setting RMRR:\n");
2267 for_each_rmrr_units(rmrr
) {
2268 for (i
= 0; i
< rmrr
->devices_cnt
; i
++) {
2269 pdev
= rmrr
->devices
[i
];
2271 * some BIOS lists non-exist devices in DMAR
2276 ret
= iommu_prepare_rmrr_dev(rmrr
, pdev
);
2279 "IOMMU: mapping reserved region failed\n");
2283 iommu_prepare_isa();
2289 * global invalidate context cache
2290 * global invalidate iotlb
2291 * enable translation
2293 for_each_drhd_unit(drhd
) {
2296 iommu
= drhd
->iommu
;
2298 iommu_flush_write_buffer(iommu
);
2300 ret
= dmar_set_interrupt(iommu
);
2304 iommu_set_root_entry(iommu
);
2306 iommu
->flush
.flush_context(iommu
, 0, 0, 0, DMA_CCMD_GLOBAL_INVL
);
2307 iommu
->flush
.flush_iotlb(iommu
, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH
);
2308 iommu_disable_protect_mem_regions(iommu
);
2310 ret
= iommu_enable_translation(iommu
);
2317 for_each_drhd_unit(drhd
) {
2320 iommu
= drhd
->iommu
;
2327 static inline u64
aligned_size(u64 host_addr
, size_t size
)
2330 addr
= (host_addr
& (~PAGE_MASK
)) + size
;
2331 return PAGE_ALIGN(addr
);
2335 iommu_alloc_iova(struct dmar_domain
*domain
, size_t size
, u64 end
)
2339 /* Make sure it's in range */
2340 end
= min_t(u64
, DOMAIN_MAX_ADDR(domain
->gaw
), end
);
2341 if (!size
|| (IOVA_START_ADDR
+ size
> end
))
2344 piova
= alloc_iova(&domain
->iovad
,
2345 size
>> PAGE_SHIFT
, IOVA_PFN(end
), 1);
2349 static struct iova
*
2350 __intel_alloc_iova(struct device
*dev
, struct dmar_domain
*domain
,
2351 size_t size
, u64 dma_mask
)
2353 struct pci_dev
*pdev
= to_pci_dev(dev
);
2354 struct iova
*iova
= NULL
;
2356 if (dma_mask
<= DMA_BIT_MASK(32) || dmar_forcedac
)
2357 iova
= iommu_alloc_iova(domain
, size
, dma_mask
);
2360 * First try to allocate an io virtual address in
2361 * DMA_BIT_MASK(32) and if that fails then try allocating
2364 iova
= iommu_alloc_iova(domain
, size
, DMA_BIT_MASK(32));
2366 iova
= iommu_alloc_iova(domain
, size
, dma_mask
);
2370 printk(KERN_ERR
"Allocating iova for %s failed", pci_name(pdev
));
2377 static struct dmar_domain
*
2378 get_valid_domain_for_dev(struct pci_dev
*pdev
)
2380 struct dmar_domain
*domain
;
2383 domain
= get_domain_for_dev(pdev
,
2384 DEFAULT_DOMAIN_ADDRESS_WIDTH
);
2387 "Allocating domain for %s failed", pci_name(pdev
));
2391 /* make sure context mapping is ok */
2392 if (unlikely(!domain_context_mapped(pdev
))) {
2393 ret
= domain_context_mapping(domain
, pdev
,
2394 CONTEXT_TT_MULTI_LEVEL
);
2397 "Domain context map for %s failed",
2406 static int iommu_dummy(struct pci_dev
*pdev
)
2408 return pdev
->dev
.archdata
.iommu
== DUMMY_DEVICE_DOMAIN_INFO
;
2411 /* Check if the pdev needs to go through non-identity map and unmap process.*/
2412 static int iommu_no_mapping(struct pci_dev
*pdev
)
2416 if (!iommu_identity_mapping
)
2417 return iommu_dummy(pdev
);
2419 found
= identity_mapping(pdev
);
2421 if (pdev
->dma_mask
> DMA_BIT_MASK(32))
2425 * 32 bit DMA is removed from si_domain and fall back
2426 * to non-identity mapping.
2428 domain_remove_one_dev_info(si_domain
, pdev
);
2429 printk(KERN_INFO
"32bit %s uses non-identity mapping\n",
2435 * In case of a detached 64 bit DMA device from vm, the device
2436 * is put into si_domain for identity mapping.
2438 if (pdev
->dma_mask
> DMA_BIT_MASK(32)) {
2440 ret
= domain_add_dev_info(si_domain
, pdev
);
2442 printk(KERN_INFO
"64bit %s uses identity mapping\n",
2449 return iommu_dummy(pdev
);
2452 static dma_addr_t
__intel_map_single(struct device
*hwdev
, phys_addr_t paddr
,
2453 size_t size
, int dir
, u64 dma_mask
)
2455 struct pci_dev
*pdev
= to_pci_dev(hwdev
);
2456 struct dmar_domain
*domain
;
2457 phys_addr_t start_paddr
;
2461 struct intel_iommu
*iommu
;
2463 BUG_ON(dir
== DMA_NONE
);
2465 if (iommu_no_mapping(pdev
))
2468 domain
= get_valid_domain_for_dev(pdev
);
2472 iommu
= domain_get_iommu(domain
);
2473 size
= aligned_size((u64
)paddr
, size
);
2475 iova
= __intel_alloc_iova(hwdev
, domain
, size
, pdev
->dma_mask
);
2479 start_paddr
= (phys_addr_t
)iova
->pfn_lo
<< PAGE_SHIFT
;
2482 * Check if DMAR supports zero-length reads on write only
2485 if (dir
== DMA_TO_DEVICE
|| dir
== DMA_BIDIRECTIONAL
|| \
2486 !cap_zlr(iommu
->cap
))
2487 prot
|= DMA_PTE_READ
;
2488 if (dir
== DMA_FROM_DEVICE
|| dir
== DMA_BIDIRECTIONAL
)
2489 prot
|= DMA_PTE_WRITE
;
2491 * paddr - (paddr + size) might be partial page, we should map the whole
2492 * page. Note: if two part of one page are separately mapped, we
2493 * might have two guest_addr mapping to the same host paddr, but this
2494 * is not a big problem
2496 ret
= domain_page_mapping(domain
, start_paddr
,
2497 ((u64
)paddr
) & PHYSICAL_PAGE_MASK
,
2502 /* it's a non-present to present mapping. Only flush if caching mode */
2503 if (cap_caching_mode(iommu
->cap
))
2504 iommu_flush_iotlb_psi(iommu
, 0, start_paddr
,
2505 size
>> VTD_PAGE_SHIFT
);
2507 iommu_flush_write_buffer(iommu
);
2509 return start_paddr
+ ((u64
)paddr
& (~PAGE_MASK
));
2513 __free_iova(&domain
->iovad
, iova
);
2514 printk(KERN_ERR
"Device %s request: %zx@%llx dir %d --- failed\n",
2515 pci_name(pdev
), size
, (unsigned long long)paddr
, dir
);
2519 static dma_addr_t
intel_map_page(struct device
*dev
, struct page
*page
,
2520 unsigned long offset
, size_t size
,
2521 enum dma_data_direction dir
,
2522 struct dma_attrs
*attrs
)
2524 return __intel_map_single(dev
, page_to_phys(page
) + offset
, size
,
2525 dir
, to_pci_dev(dev
)->dma_mask
);
2528 static void flush_unmaps(void)
2534 /* just flush them all */
2535 for (i
= 0; i
< g_num_of_iommus
; i
++) {
2536 struct intel_iommu
*iommu
= g_iommus
[i
];
2540 if (!deferred_flush
[i
].next
)
2543 iommu
->flush
.flush_iotlb(iommu
, 0, 0, 0,
2544 DMA_TLB_GLOBAL_FLUSH
);
2545 for (j
= 0; j
< deferred_flush
[i
].next
; j
++) {
2547 struct iova
*iova
= deferred_flush
[i
].iova
[j
];
2549 mask
= (iova
->pfn_hi
- iova
->pfn_lo
+ 1) << PAGE_SHIFT
;
2550 mask
= ilog2(mask
>> VTD_PAGE_SHIFT
);
2551 iommu_flush_dev_iotlb(deferred_flush
[i
].domain
[j
],
2552 iova
->pfn_lo
<< PAGE_SHIFT
, mask
);
2553 __free_iova(&deferred_flush
[i
].domain
[j
]->iovad
, iova
);
2555 deferred_flush
[i
].next
= 0;
2561 static void flush_unmaps_timeout(unsigned long data
)
2563 unsigned long flags
;
2565 spin_lock_irqsave(&async_umap_flush_lock
, flags
);
2567 spin_unlock_irqrestore(&async_umap_flush_lock
, flags
);
2570 static void add_unmap(struct dmar_domain
*dom
, struct iova
*iova
)
2572 unsigned long flags
;
2574 struct intel_iommu
*iommu
;
2576 spin_lock_irqsave(&async_umap_flush_lock
, flags
);
2577 if (list_size
== HIGH_WATER_MARK
)
2580 iommu
= domain_get_iommu(dom
);
2581 iommu_id
= iommu
->seq_id
;
2583 next
= deferred_flush
[iommu_id
].next
;
2584 deferred_flush
[iommu_id
].domain
[next
] = dom
;
2585 deferred_flush
[iommu_id
].iova
[next
] = iova
;
2586 deferred_flush
[iommu_id
].next
++;
2589 mod_timer(&unmap_timer
, jiffies
+ msecs_to_jiffies(10));
2593 spin_unlock_irqrestore(&async_umap_flush_lock
, flags
);
2596 static void intel_unmap_page(struct device
*dev
, dma_addr_t dev_addr
,
2597 size_t size
, enum dma_data_direction dir
,
2598 struct dma_attrs
*attrs
)
2600 struct pci_dev
*pdev
= to_pci_dev(dev
);
2601 struct dmar_domain
*domain
;
2602 unsigned long start_addr
;
2604 struct intel_iommu
*iommu
;
2606 if (iommu_no_mapping(pdev
))
2609 domain
= find_domain(pdev
);
2612 iommu
= domain_get_iommu(domain
);
2614 iova
= find_iova(&domain
->iovad
, IOVA_PFN(dev_addr
));
2618 start_addr
= iova
->pfn_lo
<< PAGE_SHIFT
;
2619 size
= aligned_size((u64
)dev_addr
, size
);
2621 pr_debug("Device %s unmapping: %zx@%llx\n",
2622 pci_name(pdev
), size
, (unsigned long long)start_addr
);
2624 /* clear the whole page */
2625 dma_pte_clear_range(domain
, start_addr
, start_addr
+ size
);
2626 /* free page tables */
2627 dma_pte_free_pagetable(domain
, start_addr
, start_addr
+ size
);
2628 if (intel_iommu_strict
) {
2629 iommu_flush_iotlb_psi(iommu
, domain
->id
, start_addr
,
2630 size
>> VTD_PAGE_SHIFT
);
2632 __free_iova(&domain
->iovad
, iova
);
2634 add_unmap(domain
, iova
);
2636 * queue up the release of the unmap to save the 1/6th of the
2637 * cpu used up by the iotlb flush operation...
2642 static void intel_unmap_single(struct device
*dev
, dma_addr_t dev_addr
, size_t size
,
2645 intel_unmap_page(dev
, dev_addr
, size
, dir
, NULL
);
2648 static void *intel_alloc_coherent(struct device
*hwdev
, size_t size
,
2649 dma_addr_t
*dma_handle
, gfp_t flags
)
2654 size
= PAGE_ALIGN(size
);
2655 order
= get_order(size
);
2656 flags
&= ~(GFP_DMA
| GFP_DMA32
);
2658 vaddr
= (void *)__get_free_pages(flags
, order
);
2661 memset(vaddr
, 0, size
);
2663 *dma_handle
= __intel_map_single(hwdev
, virt_to_bus(vaddr
), size
,
2665 hwdev
->coherent_dma_mask
);
2668 free_pages((unsigned long)vaddr
, order
);
2672 static void intel_free_coherent(struct device
*hwdev
, size_t size
, void *vaddr
,
2673 dma_addr_t dma_handle
)
2677 size
= PAGE_ALIGN(size
);
2678 order
= get_order(size
);
2680 intel_unmap_single(hwdev
, dma_handle
, size
, DMA_BIDIRECTIONAL
);
2681 free_pages((unsigned long)vaddr
, order
);
2684 static void intel_unmap_sg(struct device
*hwdev
, struct scatterlist
*sglist
,
2685 int nelems
, enum dma_data_direction dir
,
2686 struct dma_attrs
*attrs
)
2689 struct pci_dev
*pdev
= to_pci_dev(hwdev
);
2690 struct dmar_domain
*domain
;
2691 unsigned long start_addr
;
2695 struct scatterlist
*sg
;
2696 struct intel_iommu
*iommu
;
2698 if (iommu_no_mapping(pdev
))
2701 domain
= find_domain(pdev
);
2704 iommu
= domain_get_iommu(domain
);
2706 iova
= find_iova(&domain
->iovad
, IOVA_PFN(sglist
[0].dma_address
));
2709 for_each_sg(sglist
, sg
, nelems
, i
) {
2710 addr
= page_to_phys(sg_page(sg
)) + sg
->offset
;
2711 size
+= aligned_size((u64
)addr
, sg
->length
);
2714 start_addr
= iova
->pfn_lo
<< PAGE_SHIFT
;
2716 /* clear the whole page */
2717 dma_pte_clear_range(domain
, start_addr
, start_addr
+ size
);
2718 /* free page tables */
2719 dma_pte_free_pagetable(domain
, start_addr
, start_addr
+ size
);
2721 iommu_flush_iotlb_psi(iommu
, domain
->id
, start_addr
,
2722 size
>> VTD_PAGE_SHIFT
);
2725 __free_iova(&domain
->iovad
, iova
);
2728 static int intel_nontranslate_map_sg(struct device
*hddev
,
2729 struct scatterlist
*sglist
, int nelems
, int dir
)
2732 struct scatterlist
*sg
;
2734 for_each_sg(sglist
, sg
, nelems
, i
) {
2735 BUG_ON(!sg_page(sg
));
2736 sg
->dma_address
= page_to_phys(sg_page(sg
)) + sg
->offset
;
2737 sg
->dma_length
= sg
->length
;
2742 static int intel_map_sg(struct device
*hwdev
, struct scatterlist
*sglist
, int nelems
,
2743 enum dma_data_direction dir
, struct dma_attrs
*attrs
)
2747 struct pci_dev
*pdev
= to_pci_dev(hwdev
);
2748 struct dmar_domain
*domain
;
2752 struct iova
*iova
= NULL
;
2754 struct scatterlist
*sg
;
2755 unsigned long start_addr
;
2756 struct intel_iommu
*iommu
;
2758 BUG_ON(dir
== DMA_NONE
);
2759 if (iommu_no_mapping(pdev
))
2760 return intel_nontranslate_map_sg(hwdev
, sglist
, nelems
, dir
);
2762 domain
= get_valid_domain_for_dev(pdev
);
2766 iommu
= domain_get_iommu(domain
);
2768 for_each_sg(sglist
, sg
, nelems
, i
) {
2769 addr
= page_to_phys(sg_page(sg
)) + sg
->offset
;
2770 size
+= aligned_size((u64
)addr
, sg
->length
);
2773 iova
= __intel_alloc_iova(hwdev
, domain
, size
, pdev
->dma_mask
);
2775 sglist
->dma_length
= 0;
2780 * Check if DMAR supports zero-length reads on write only
2783 if (dir
== DMA_TO_DEVICE
|| dir
== DMA_BIDIRECTIONAL
|| \
2784 !cap_zlr(iommu
->cap
))
2785 prot
|= DMA_PTE_READ
;
2786 if (dir
== DMA_FROM_DEVICE
|| dir
== DMA_BIDIRECTIONAL
)
2787 prot
|= DMA_PTE_WRITE
;
2789 start_addr
= iova
->pfn_lo
<< PAGE_SHIFT
;
2791 for_each_sg(sglist
, sg
, nelems
, i
) {
2792 addr
= page_to_phys(sg_page(sg
)) + sg
->offset
;
2793 size
= aligned_size((u64
)addr
, sg
->length
);
2794 ret
= domain_page_mapping(domain
, start_addr
+ offset
,
2795 ((u64
)addr
) & PHYSICAL_PAGE_MASK
,
2798 /* clear the page */
2799 dma_pte_clear_range(domain
, start_addr
,
2800 start_addr
+ offset
);
2801 /* free page tables */
2802 dma_pte_free_pagetable(domain
, start_addr
,
2803 start_addr
+ offset
);
2805 __free_iova(&domain
->iovad
, iova
);
2808 sg
->dma_address
= start_addr
+ offset
+
2809 ((u64
)addr
& (~PAGE_MASK
));
2810 sg
->dma_length
= sg
->length
;
2814 /* it's a non-present to present mapping. Only flush if caching mode */
2815 if (cap_caching_mode(iommu
->cap
))
2816 iommu_flush_iotlb_psi(iommu
, 0, start_addr
,
2817 offset
>> VTD_PAGE_SHIFT
);
2819 iommu_flush_write_buffer(iommu
);
2824 static int intel_mapping_error(struct device
*dev
, dma_addr_t dma_addr
)
2829 struct dma_map_ops intel_dma_ops
= {
2830 .alloc_coherent
= intel_alloc_coherent
,
2831 .free_coherent
= intel_free_coherent
,
2832 .map_sg
= intel_map_sg
,
2833 .unmap_sg
= intel_unmap_sg
,
2834 .map_page
= intel_map_page
,
2835 .unmap_page
= intel_unmap_page
,
2836 .mapping_error
= intel_mapping_error
,
2839 static inline int iommu_domain_cache_init(void)
2843 iommu_domain_cache
= kmem_cache_create("iommu_domain",
2844 sizeof(struct dmar_domain
),
2849 if (!iommu_domain_cache
) {
2850 printk(KERN_ERR
"Couldn't create iommu_domain cache\n");
2857 static inline int iommu_devinfo_cache_init(void)
2861 iommu_devinfo_cache
= kmem_cache_create("iommu_devinfo",
2862 sizeof(struct device_domain_info
),
2866 if (!iommu_devinfo_cache
) {
2867 printk(KERN_ERR
"Couldn't create devinfo cache\n");
2874 static inline int iommu_iova_cache_init(void)
2878 iommu_iova_cache
= kmem_cache_create("iommu_iova",
2879 sizeof(struct iova
),
2883 if (!iommu_iova_cache
) {
2884 printk(KERN_ERR
"Couldn't create iova cache\n");
2891 static int __init
iommu_init_mempool(void)
2894 ret
= iommu_iova_cache_init();
2898 ret
= iommu_domain_cache_init();
2902 ret
= iommu_devinfo_cache_init();
2906 kmem_cache_destroy(iommu_domain_cache
);
2908 kmem_cache_destroy(iommu_iova_cache
);
2913 static void __init
iommu_exit_mempool(void)
2915 kmem_cache_destroy(iommu_devinfo_cache
);
2916 kmem_cache_destroy(iommu_domain_cache
);
2917 kmem_cache_destroy(iommu_iova_cache
);
2921 static void __init
init_no_remapping_devices(void)
2923 struct dmar_drhd_unit
*drhd
;
2925 for_each_drhd_unit(drhd
) {
2926 if (!drhd
->include_all
) {
2928 for (i
= 0; i
< drhd
->devices_cnt
; i
++)
2929 if (drhd
->devices
[i
] != NULL
)
2931 /* ignore DMAR unit if no pci devices exist */
2932 if (i
== drhd
->devices_cnt
)
2940 for_each_drhd_unit(drhd
) {
2942 if (drhd
->ignored
|| drhd
->include_all
)
2945 for (i
= 0; i
< drhd
->devices_cnt
; i
++)
2946 if (drhd
->devices
[i
] &&
2947 !IS_GFX_DEVICE(drhd
->devices
[i
]))
2950 if (i
< drhd
->devices_cnt
)
2953 /* bypass IOMMU if it is just for gfx devices */
2955 for (i
= 0; i
< drhd
->devices_cnt
; i
++) {
2956 if (!drhd
->devices
[i
])
2958 drhd
->devices
[i
]->dev
.archdata
.iommu
= DUMMY_DEVICE_DOMAIN_INFO
;
2963 #ifdef CONFIG_SUSPEND
2964 static int init_iommu_hw(void)
2966 struct dmar_drhd_unit
*drhd
;
2967 struct intel_iommu
*iommu
= NULL
;
2969 for_each_active_iommu(iommu
, drhd
)
2971 dmar_reenable_qi(iommu
);
2973 for_each_active_iommu(iommu
, drhd
) {
2974 iommu_flush_write_buffer(iommu
);
2976 iommu_set_root_entry(iommu
);
2978 iommu
->flush
.flush_context(iommu
, 0, 0, 0,
2979 DMA_CCMD_GLOBAL_INVL
);
2980 iommu
->flush
.flush_iotlb(iommu
, 0, 0, 0,
2981 DMA_TLB_GLOBAL_FLUSH
);
2982 iommu_disable_protect_mem_regions(iommu
);
2983 iommu_enable_translation(iommu
);
2989 static void iommu_flush_all(void)
2991 struct dmar_drhd_unit
*drhd
;
2992 struct intel_iommu
*iommu
;
2994 for_each_active_iommu(iommu
, drhd
) {
2995 iommu
->flush
.flush_context(iommu
, 0, 0, 0,
2996 DMA_CCMD_GLOBAL_INVL
);
2997 iommu
->flush
.flush_iotlb(iommu
, 0, 0, 0,
2998 DMA_TLB_GLOBAL_FLUSH
);
3002 static int iommu_suspend(struct sys_device
*dev
, pm_message_t state
)
3004 struct dmar_drhd_unit
*drhd
;
3005 struct intel_iommu
*iommu
= NULL
;
3008 for_each_active_iommu(iommu
, drhd
) {
3009 iommu
->iommu_state
= kzalloc(sizeof(u32
) * MAX_SR_DMAR_REGS
,
3011 if (!iommu
->iommu_state
)
3017 for_each_active_iommu(iommu
, drhd
) {
3018 iommu_disable_translation(iommu
);
3020 spin_lock_irqsave(&iommu
->register_lock
, flag
);
3022 iommu
->iommu_state
[SR_DMAR_FECTL_REG
] =
3023 readl(iommu
->reg
+ DMAR_FECTL_REG
);
3024 iommu
->iommu_state
[SR_DMAR_FEDATA_REG
] =
3025 readl(iommu
->reg
+ DMAR_FEDATA_REG
);
3026 iommu
->iommu_state
[SR_DMAR_FEADDR_REG
] =
3027 readl(iommu
->reg
+ DMAR_FEADDR_REG
);
3028 iommu
->iommu_state
[SR_DMAR_FEUADDR_REG
] =
3029 readl(iommu
->reg
+ DMAR_FEUADDR_REG
);
3031 spin_unlock_irqrestore(&iommu
->register_lock
, flag
);
3036 for_each_active_iommu(iommu
, drhd
)
3037 kfree(iommu
->iommu_state
);
3042 static int iommu_resume(struct sys_device
*dev
)
3044 struct dmar_drhd_unit
*drhd
;
3045 struct intel_iommu
*iommu
= NULL
;
3048 if (init_iommu_hw()) {
3049 WARN(1, "IOMMU setup failed, DMAR can not resume!\n");
3053 for_each_active_iommu(iommu
, drhd
) {
3055 spin_lock_irqsave(&iommu
->register_lock
, flag
);
3057 writel(iommu
->iommu_state
[SR_DMAR_FECTL_REG
],
3058 iommu
->reg
+ DMAR_FECTL_REG
);
3059 writel(iommu
->iommu_state
[SR_DMAR_FEDATA_REG
],
3060 iommu
->reg
+ DMAR_FEDATA_REG
);
3061 writel(iommu
->iommu_state
[SR_DMAR_FEADDR_REG
],
3062 iommu
->reg
+ DMAR_FEADDR_REG
);
3063 writel(iommu
->iommu_state
[SR_DMAR_FEUADDR_REG
],
3064 iommu
->reg
+ DMAR_FEUADDR_REG
);
3066 spin_unlock_irqrestore(&iommu
->register_lock
, flag
);
3069 for_each_active_iommu(iommu
, drhd
)
3070 kfree(iommu
->iommu_state
);
3075 static struct sysdev_class iommu_sysclass
= {
3077 .resume
= iommu_resume
,
3078 .suspend
= iommu_suspend
,
3081 static struct sys_device device_iommu
= {
3082 .cls
= &iommu_sysclass
,
3085 static int __init
init_iommu_sysfs(void)
3089 error
= sysdev_class_register(&iommu_sysclass
);
3093 error
= sysdev_register(&device_iommu
);
3095 sysdev_class_unregister(&iommu_sysclass
);
3101 static int __init
init_iommu_sysfs(void)
3105 #endif /* CONFIG_PM */
3107 int __init
intel_iommu_init(void)
3111 if (dmar_table_init())
3114 if (dmar_dev_scope_init())
3118 * Check the need for DMA-remapping initialization now.
3119 * Above initialization will also be used by Interrupt-remapping.
3121 if (no_iommu
|| (swiotlb
&& !iommu_pass_through
) || dmar_disabled
)
3124 iommu_init_mempool();
3125 dmar_init_reserved_ranges();
3127 init_no_remapping_devices();
3131 printk(KERN_ERR
"IOMMU: dmar init failed\n");
3132 put_iova_domain(&reserved_iova_list
);
3133 iommu_exit_mempool();
3137 "PCI-DMA: Intel(R) Virtualization Technology for Directed I/O\n");
3139 init_timer(&unmap_timer
);
3142 if (!iommu_pass_through
) {
3144 "Multi-level page-table translation for DMAR.\n");
3145 dma_ops
= &intel_dma_ops
;
3148 "DMAR: Pass through translation for DMAR.\n");
3152 register_iommu(&intel_iommu_ops
);
3157 static void iommu_detach_dependent_devices(struct intel_iommu
*iommu
,
3158 struct pci_dev
*pdev
)
3160 struct pci_dev
*tmp
, *parent
;
3162 if (!iommu
|| !pdev
)
3165 /* dependent device detach */
3166 tmp
= pci_find_upstream_pcie_bridge(pdev
);
3167 /* Secondary interface's bus number and devfn 0 */
3169 parent
= pdev
->bus
->self
;
3170 while (parent
!= tmp
) {
3171 iommu_detach_dev(iommu
, parent
->bus
->number
,
3173 parent
= parent
->bus
->self
;
3175 if (tmp
->is_pcie
) /* this is a PCIE-to-PCI bridge */
3176 iommu_detach_dev(iommu
,
3177 tmp
->subordinate
->number
, 0);
3178 else /* this is a legacy PCI bridge */
3179 iommu_detach_dev(iommu
, tmp
->bus
->number
,
3184 static void domain_remove_one_dev_info(struct dmar_domain
*domain
,
3185 struct pci_dev
*pdev
)
3187 struct device_domain_info
*info
;
3188 struct intel_iommu
*iommu
;
3189 unsigned long flags
;
3191 struct list_head
*entry
, *tmp
;
3193 iommu
= device_to_iommu(pci_domain_nr(pdev
->bus
), pdev
->bus
->number
,
3198 spin_lock_irqsave(&device_domain_lock
, flags
);
3199 list_for_each_safe(entry
, tmp
, &domain
->devices
) {
3200 info
= list_entry(entry
, struct device_domain_info
, link
);
3201 /* No need to compare PCI domain; it has to be the same */
3202 if (info
->bus
== pdev
->bus
->number
&&
3203 info
->devfn
== pdev
->devfn
) {
3204 list_del(&info
->link
);
3205 list_del(&info
->global
);
3207 info
->dev
->dev
.archdata
.iommu
= NULL
;
3208 spin_unlock_irqrestore(&device_domain_lock
, flags
);
3210 iommu_disable_dev_iotlb(info
);
3211 iommu_detach_dev(iommu
, info
->bus
, info
->devfn
);
3212 iommu_detach_dependent_devices(iommu
, pdev
);
3213 free_devinfo_mem(info
);
3215 spin_lock_irqsave(&device_domain_lock
, flags
);
3223 /* if there is no other devices under the same iommu
3224 * owned by this domain, clear this iommu in iommu_bmp
3225 * update iommu count and coherency
3227 if (iommu
== device_to_iommu(info
->segment
, info
->bus
,
3233 unsigned long tmp_flags
;
3234 spin_lock_irqsave(&domain
->iommu_lock
, tmp_flags
);
3235 clear_bit(iommu
->seq_id
, &domain
->iommu_bmp
);
3236 domain
->iommu_count
--;
3237 domain_update_iommu_cap(domain
);
3238 spin_unlock_irqrestore(&domain
->iommu_lock
, tmp_flags
);
3241 spin_unlock_irqrestore(&device_domain_lock
, flags
);
3244 static void vm_domain_remove_all_dev_info(struct dmar_domain
*domain
)
3246 struct device_domain_info
*info
;
3247 struct intel_iommu
*iommu
;
3248 unsigned long flags1
, flags2
;
3250 spin_lock_irqsave(&device_domain_lock
, flags1
);
3251 while (!list_empty(&domain
->devices
)) {
3252 info
= list_entry(domain
->devices
.next
,
3253 struct device_domain_info
, link
);
3254 list_del(&info
->link
);
3255 list_del(&info
->global
);
3257 info
->dev
->dev
.archdata
.iommu
= NULL
;
3259 spin_unlock_irqrestore(&device_domain_lock
, flags1
);
3261 iommu_disable_dev_iotlb(info
);
3262 iommu
= device_to_iommu(info
->segment
, info
->bus
, info
->devfn
);
3263 iommu_detach_dev(iommu
, info
->bus
, info
->devfn
);
3264 iommu_detach_dependent_devices(iommu
, info
->dev
);
3266 /* clear this iommu in iommu_bmp, update iommu count
3269 spin_lock_irqsave(&domain
->iommu_lock
, flags2
);
3270 if (test_and_clear_bit(iommu
->seq_id
,
3271 &domain
->iommu_bmp
)) {
3272 domain
->iommu_count
--;
3273 domain_update_iommu_cap(domain
);
3275 spin_unlock_irqrestore(&domain
->iommu_lock
, flags2
);
3277 free_devinfo_mem(info
);
3278 spin_lock_irqsave(&device_domain_lock
, flags1
);
3280 spin_unlock_irqrestore(&device_domain_lock
, flags1
);
3283 /* domain id for virtual machine, it won't be set in context */
3284 static unsigned long vm_domid
;
3286 static int vm_domain_min_agaw(struct dmar_domain
*domain
)
3289 int min_agaw
= domain
->agaw
;
3291 i
= find_first_bit(&domain
->iommu_bmp
, g_num_of_iommus
);
3292 for (; i
< g_num_of_iommus
; ) {
3293 if (min_agaw
> g_iommus
[i
]->agaw
)
3294 min_agaw
= g_iommus
[i
]->agaw
;
3296 i
= find_next_bit(&domain
->iommu_bmp
, g_num_of_iommus
, i
+1);
3302 static struct dmar_domain
*iommu_alloc_vm_domain(void)
3304 struct dmar_domain
*domain
;
3306 domain
= alloc_domain_mem();
3310 domain
->id
= vm_domid
++;
3311 memset(&domain
->iommu_bmp
, 0, sizeof(unsigned long));
3312 domain
->flags
= DOMAIN_FLAG_VIRTUAL_MACHINE
;
3317 static int md_domain_init(struct dmar_domain
*domain
, int guest_width
)
3321 init_iova_domain(&domain
->iovad
, DMA_32BIT_PFN
);
3322 spin_lock_init(&domain
->mapping_lock
);
3323 spin_lock_init(&domain
->iommu_lock
);
3325 domain_reserve_special_ranges(domain
);
3327 /* calculate AGAW */
3328 domain
->gaw
= guest_width
;
3329 adjust_width
= guestwidth_to_adjustwidth(guest_width
);
3330 domain
->agaw
= width_to_agaw(adjust_width
);
3332 INIT_LIST_HEAD(&domain
->devices
);
3334 domain
->iommu_count
= 0;
3335 domain
->iommu_coherency
= 0;
3336 domain
->max_addr
= 0;
3338 /* always allocate the top pgd */
3339 domain
->pgd
= (struct dma_pte
*)alloc_pgtable_page();
3342 domain_flush_cache(domain
, domain
->pgd
, PAGE_SIZE
);
3346 static void iommu_free_vm_domain(struct dmar_domain
*domain
)
3348 unsigned long flags
;
3349 struct dmar_drhd_unit
*drhd
;
3350 struct intel_iommu
*iommu
;
3352 unsigned long ndomains
;
3354 for_each_drhd_unit(drhd
) {
3357 iommu
= drhd
->iommu
;
3359 ndomains
= cap_ndoms(iommu
->cap
);
3360 i
= find_first_bit(iommu
->domain_ids
, ndomains
);
3361 for (; i
< ndomains
; ) {
3362 if (iommu
->domains
[i
] == domain
) {
3363 spin_lock_irqsave(&iommu
->lock
, flags
);
3364 clear_bit(i
, iommu
->domain_ids
);
3365 iommu
->domains
[i
] = NULL
;
3366 spin_unlock_irqrestore(&iommu
->lock
, flags
);
3369 i
= find_next_bit(iommu
->domain_ids
, ndomains
, i
+1);
3374 static void vm_domain_exit(struct dmar_domain
*domain
)
3378 /* Domain 0 is reserved, so dont process it */
3382 vm_domain_remove_all_dev_info(domain
);
3384 put_iova_domain(&domain
->iovad
);
3385 end
= DOMAIN_MAX_ADDR(domain
->gaw
);
3386 end
= end
& (~VTD_PAGE_MASK
);
3389 dma_pte_clear_range(domain
, 0, end
);
3391 /* free page tables */
3392 dma_pte_free_pagetable(domain
, 0, end
);
3394 iommu_free_vm_domain(domain
);
3395 free_domain_mem(domain
);
3398 static int intel_iommu_domain_init(struct iommu_domain
*domain
)
3400 struct dmar_domain
*dmar_domain
;
3402 dmar_domain
= iommu_alloc_vm_domain();
3405 "intel_iommu_domain_init: dmar_domain == NULL\n");
3408 if (md_domain_init(dmar_domain
, DEFAULT_DOMAIN_ADDRESS_WIDTH
)) {
3410 "intel_iommu_domain_init() failed\n");
3411 vm_domain_exit(dmar_domain
);
3414 domain
->priv
= dmar_domain
;
3419 static void intel_iommu_domain_destroy(struct iommu_domain
*domain
)
3421 struct dmar_domain
*dmar_domain
= domain
->priv
;
3423 domain
->priv
= NULL
;
3424 vm_domain_exit(dmar_domain
);
3427 static int intel_iommu_attach_device(struct iommu_domain
*domain
,
3430 struct dmar_domain
*dmar_domain
= domain
->priv
;
3431 struct pci_dev
*pdev
= to_pci_dev(dev
);
3432 struct intel_iommu
*iommu
;
3437 /* normally pdev is not mapped */
3438 if (unlikely(domain_context_mapped(pdev
))) {
3439 struct dmar_domain
*old_domain
;
3441 old_domain
= find_domain(pdev
);
3443 if (dmar_domain
->flags
& DOMAIN_FLAG_VIRTUAL_MACHINE
||
3444 dmar_domain
->flags
& DOMAIN_FLAG_STATIC_IDENTITY
)
3445 domain_remove_one_dev_info(old_domain
, pdev
);
3447 domain_remove_dev_info(old_domain
);
3451 iommu
= device_to_iommu(pci_domain_nr(pdev
->bus
), pdev
->bus
->number
,
3456 /* check if this iommu agaw is sufficient for max mapped address */
3457 addr_width
= agaw_to_width(iommu
->agaw
);
3458 end
= DOMAIN_MAX_ADDR(addr_width
);
3459 end
= end
& VTD_PAGE_MASK
;
3460 if (end
< dmar_domain
->max_addr
) {
3461 printk(KERN_ERR
"%s: iommu agaw (%d) is not "
3462 "sufficient for the mapped address (%llx)\n",
3463 __func__
, iommu
->agaw
, dmar_domain
->max_addr
);
3467 ret
= domain_add_dev_info(dmar_domain
, pdev
);
3471 ret
= domain_context_mapping(dmar_domain
, pdev
, CONTEXT_TT_MULTI_LEVEL
);
3475 static void intel_iommu_detach_device(struct iommu_domain
*domain
,
3478 struct dmar_domain
*dmar_domain
= domain
->priv
;
3479 struct pci_dev
*pdev
= to_pci_dev(dev
);
3481 domain_remove_one_dev_info(dmar_domain
, pdev
);
3484 static int intel_iommu_map_range(struct iommu_domain
*domain
,
3485 unsigned long iova
, phys_addr_t hpa
,
3486 size_t size
, int iommu_prot
)
3488 struct dmar_domain
*dmar_domain
= domain
->priv
;
3494 if (iommu_prot
& IOMMU_READ
)
3495 prot
|= DMA_PTE_READ
;
3496 if (iommu_prot
& IOMMU_WRITE
)
3497 prot
|= DMA_PTE_WRITE
;
3498 if ((iommu_prot
& IOMMU_CACHE
) && dmar_domain
->iommu_snooping
)
3499 prot
|= DMA_PTE_SNP
;
3501 max_addr
= (iova
& VTD_PAGE_MASK
) + VTD_PAGE_ALIGN(size
);
3502 if (dmar_domain
->max_addr
< max_addr
) {
3506 /* check if minimum agaw is sufficient for mapped address */
3507 min_agaw
= vm_domain_min_agaw(dmar_domain
);
3508 addr_width
= agaw_to_width(min_agaw
);
3509 end
= DOMAIN_MAX_ADDR(addr_width
);
3510 end
= end
& VTD_PAGE_MASK
;
3511 if (end
< max_addr
) {
3512 printk(KERN_ERR
"%s: iommu agaw (%d) is not "
3513 "sufficient for the mapped address (%llx)\n",
3514 __func__
, min_agaw
, max_addr
);
3517 dmar_domain
->max_addr
= max_addr
;
3520 ret
= domain_page_mapping(dmar_domain
, iova
, hpa
, size
, prot
);
3524 static void intel_iommu_unmap_range(struct iommu_domain
*domain
,
3525 unsigned long iova
, size_t size
)
3527 struct dmar_domain
*dmar_domain
= domain
->priv
;
3530 /* The address might not be aligned */
3531 base
= iova
& VTD_PAGE_MASK
;
3532 size
= VTD_PAGE_ALIGN(size
);
3533 dma_pte_clear_range(dmar_domain
, base
, base
+ size
);
3535 if (dmar_domain
->max_addr
== base
+ size
)
3536 dmar_domain
->max_addr
= base
;
3539 static phys_addr_t
intel_iommu_iova_to_phys(struct iommu_domain
*domain
,
3542 struct dmar_domain
*dmar_domain
= domain
->priv
;
3543 struct dma_pte
*pte
;
3546 pte
= addr_to_dma_pte(dmar_domain
, iova
);
3548 phys
= dma_pte_addr(pte
);
3553 static int intel_iommu_domain_has_cap(struct iommu_domain
*domain
,
3556 struct dmar_domain
*dmar_domain
= domain
->priv
;
3558 if (cap
== IOMMU_CAP_CACHE_COHERENCY
)
3559 return dmar_domain
->iommu_snooping
;
3564 static struct iommu_ops intel_iommu_ops
= {
3565 .domain_init
= intel_iommu_domain_init
,
3566 .domain_destroy
= intel_iommu_domain_destroy
,
3567 .attach_dev
= intel_iommu_attach_device
,
3568 .detach_dev
= intel_iommu_detach_device
,
3569 .map
= intel_iommu_map_range
,
3570 .unmap
= intel_iommu_unmap_range
,
3571 .iova_to_phys
= intel_iommu_iova_to_phys
,
3572 .domain_has_cap
= intel_iommu_domain_has_cap
,
3575 static void __devinit
quirk_iommu_rwbf(struct pci_dev
*dev
)
3578 * Mobile 4 Series Chipset neglects to set RWBF capability,
3581 printk(KERN_INFO
"DMAR: Forcing write-buffer flush capability\n");
3585 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL
, 0x2a40, quirk_iommu_rwbf
);