2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3 * Copyright (c) 2012 Red Hat, Inc.
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License as
8 * published by the Free Software Foundation.
10 * This program is distributed in the hope that it would be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
21 #include "xfs_shared.h"
22 #include "xfs_format.h"
23 #include "xfs_log_format.h"
24 #include "xfs_trans_resv.h"
26 #include "xfs_mount.h"
27 #include "xfs_da_format.h"
28 #include "xfs_inode.h"
29 #include "xfs_btree.h"
30 #include "xfs_trans.h"
31 #include "xfs_extfree_item.h"
32 #include "xfs_alloc.h"
34 #include "xfs_bmap_util.h"
35 #include "xfs_bmap_btree.h"
36 #include "xfs_rtalloc.h"
37 #include "xfs_error.h"
38 #include "xfs_quota.h"
39 #include "xfs_trans_space.h"
40 #include "xfs_trace.h"
41 #include "xfs_icache.h"
44 /* Kernel only BMAP related definitions and functions */
47 * Convert the given file system block to a disk block. We have to treat it
48 * differently based on whether the file is a real time file or not, because the
52 xfs_fsb_to_db(struct xfs_inode
*ip
, xfs_fsblock_t fsb
)
54 return (XFS_IS_REALTIME_INODE(ip
) ? \
55 (xfs_daddr_t
)XFS_FSB_TO_BB((ip
)->i_mount
, (fsb
)) : \
56 XFS_FSB_TO_DADDR((ip
)->i_mount
, (fsb
)));
60 * Routine to zero an extent on disk allocated to the specific inode.
62 * The VFS functions take a linearised filesystem block offset, so we have to
63 * convert the sparse xfs fsb to the right format first.
64 * VFS types are real funky, too.
69 xfs_fsblock_t start_fsb
,
72 struct xfs_mount
*mp
= ip
->i_mount
;
73 xfs_daddr_t sector
= xfs_fsb_to_db(ip
, start_fsb
);
74 sector_t block
= XFS_BB_TO_FSBT(mp
, sector
);
75 ssize_t size
= XFS_FSB_TO_B(mp
, count_fsb
);
77 if (IS_DAX(VFS_I(ip
)))
78 return dax_clear_sectors(xfs_find_bdev_for_inode(VFS_I(ip
)),
82 * let the block layer decide on the fastest method of
83 * implementing the zeroing.
85 return sb_issue_zeroout(mp
->m_super
, block
, count_fsb
, GFP_NOFS
);
90 * Routine to be called at transaction's end by xfs_bmapi, xfs_bunmapi
91 * caller. Frees all the extents that need freeing, which must be done
92 * last due to locking considerations. We never free any extents in
93 * the first transaction.
95 * If an inode *ip is provided, rejoin it to the transaction if
96 * the transaction was committed.
100 struct xfs_trans
**tp
, /* transaction pointer addr */
101 struct xfs_bmap_free
*flist
, /* i/o: list extents to free */
102 struct xfs_inode
*ip
)
104 struct xfs_efd_log_item
*efd
; /* extent free data */
105 struct xfs_efi_log_item
*efi
; /* extent free intention */
106 int error
; /* error return value */
107 int committed
;/* xact committed or not */
108 struct xfs_bmap_free_item
*free
; /* free extent item */
109 struct xfs_bmap_free_item
*next
; /* next item on free list */
111 ASSERT((*tp
)->t_flags
& XFS_TRANS_PERM_LOG_RES
);
112 if (flist
->xbf_count
== 0)
115 efi
= xfs_trans_get_efi(*tp
, flist
->xbf_count
);
116 for (free
= flist
->xbf_first
; free
; free
= free
->xbfi_next
)
117 xfs_trans_log_efi_extent(*tp
, efi
, free
->xbfi_startblock
,
118 free
->xbfi_blockcount
);
120 error
= __xfs_trans_roll(tp
, ip
, &committed
);
123 * If the transaction was committed, drop the EFD reference
124 * since we're bailing out of here. The other reference is
125 * dropped when the EFI hits the AIL.
127 * If the transaction was not committed, the EFI is freed by the
128 * EFI item unlock handler on abort. Also, we have a new
129 * transaction so we should return committed=1 even though we're
130 * returning an error.
133 xfs_efi_release(efi
);
134 xfs_force_shutdown((*tp
)->t_mountp
,
135 (error
== -EFSCORRUPTED
) ?
136 SHUTDOWN_CORRUPT_INCORE
:
137 SHUTDOWN_META_IO_ERROR
);
143 * Get an EFD and free each extent in the list, logging to the EFD in
144 * the process. The remaining bmap free list is cleaned up by the caller
147 efd
= xfs_trans_get_efd(*tp
, efi
, flist
->xbf_count
);
148 for (free
= flist
->xbf_first
; free
!= NULL
; free
= next
) {
149 next
= free
->xbfi_next
;
151 error
= xfs_trans_free_extent(*tp
, efd
, free
->xbfi_startblock
,
152 free
->xbfi_blockcount
);
156 xfs_bmap_del_free(flist
, NULL
, free
);
164 struct xfs_bmalloca
*ap
) /* bmap alloc argument struct */
166 xfs_alloctype_t atype
= 0; /* type for allocation routines */
167 int error
; /* error return value */
168 xfs_mount_t
*mp
; /* mount point structure */
169 xfs_extlen_t prod
= 0; /* product factor for allocators */
170 xfs_extlen_t ralen
= 0; /* realtime allocation length */
171 xfs_extlen_t align
; /* minimum allocation alignment */
174 mp
= ap
->ip
->i_mount
;
175 align
= xfs_get_extsz_hint(ap
->ip
);
176 prod
= align
/ mp
->m_sb
.sb_rextsize
;
177 error
= xfs_bmap_extsize_align(mp
, &ap
->got
, &ap
->prev
,
178 align
, 1, ap
->eof
, 0,
179 ap
->conv
, &ap
->offset
, &ap
->length
);
183 ASSERT(ap
->length
% mp
->m_sb
.sb_rextsize
== 0);
186 * If the offset & length are not perfectly aligned
187 * then kill prod, it will just get us in trouble.
189 if (do_mod(ap
->offset
, align
) || ap
->length
% align
)
192 * Set ralen to be the actual requested length in rtextents.
194 ralen
= ap
->length
/ mp
->m_sb
.sb_rextsize
;
196 * If the old value was close enough to MAXEXTLEN that
197 * we rounded up to it, cut it back so it's valid again.
198 * Note that if it's a really large request (bigger than
199 * MAXEXTLEN), we don't hear about that number, and can't
200 * adjust the starting point to match it.
202 if (ralen
* mp
->m_sb
.sb_rextsize
>= MAXEXTLEN
)
203 ralen
= MAXEXTLEN
/ mp
->m_sb
.sb_rextsize
;
206 * Lock out modifications to both the RT bitmap and summary inodes
208 xfs_ilock(mp
->m_rbmip
, XFS_ILOCK_EXCL
);
209 xfs_trans_ijoin(ap
->tp
, mp
->m_rbmip
, XFS_ILOCK_EXCL
);
210 xfs_ilock(mp
->m_rsumip
, XFS_ILOCK_EXCL
);
211 xfs_trans_ijoin(ap
->tp
, mp
->m_rsumip
, XFS_ILOCK_EXCL
);
214 * If it's an allocation to an empty file at offset 0,
215 * pick an extent that will space things out in the rt area.
217 if (ap
->eof
&& ap
->offset
== 0) {
218 xfs_rtblock_t
uninitialized_var(rtx
); /* realtime extent no */
220 error
= xfs_rtpick_extent(mp
, ap
->tp
, ralen
, &rtx
);
223 ap
->blkno
= rtx
* mp
->m_sb
.sb_rextsize
;
228 xfs_bmap_adjacent(ap
);
231 * Realtime allocation, done through xfs_rtallocate_extent.
233 atype
= ap
->blkno
== 0 ? XFS_ALLOCTYPE_ANY_AG
: XFS_ALLOCTYPE_NEAR_BNO
;
234 do_div(ap
->blkno
, mp
->m_sb
.sb_rextsize
);
237 if ((error
= xfs_rtallocate_extent(ap
->tp
, ap
->blkno
, 1, ap
->length
,
238 &ralen
, atype
, ap
->wasdel
, prod
, &rtb
)))
240 if (rtb
== NULLFSBLOCK
&& prod
> 1 &&
241 (error
= xfs_rtallocate_extent(ap
->tp
, ap
->blkno
, 1,
242 ap
->length
, &ralen
, atype
,
243 ap
->wasdel
, 1, &rtb
)))
246 if (ap
->blkno
!= NULLFSBLOCK
) {
247 ap
->blkno
*= mp
->m_sb
.sb_rextsize
;
248 ralen
*= mp
->m_sb
.sb_rextsize
;
250 ap
->ip
->i_d
.di_nblocks
+= ralen
;
251 xfs_trans_log_inode(ap
->tp
, ap
->ip
, XFS_ILOG_CORE
);
253 ap
->ip
->i_delayed_blks
-= ralen
;
255 * Adjust the disk quota also. This was reserved
258 xfs_trans_mod_dquot_byino(ap
->tp
, ap
->ip
,
259 ap
->wasdel
? XFS_TRANS_DQ_DELRTBCOUNT
:
260 XFS_TRANS_DQ_RTBCOUNT
, (long) ralen
);
262 /* Zero the extent if we were asked to do so */
263 if (ap
->userdata
& XFS_ALLOC_USERDATA_ZERO
) {
264 error
= xfs_zero_extent(ap
->ip
, ap
->blkno
, ap
->length
);
275 * Check if the endoff is outside the last extent. If so the caller will grow
276 * the allocation to a stripe unit boundary. All offsets are considered outside
277 * the end of file for an empty fork, so 1 is returned in *eof in that case.
281 struct xfs_inode
*ip
,
282 xfs_fileoff_t endoff
,
286 struct xfs_bmbt_irec rec
;
289 error
= xfs_bmap_last_extent(NULL
, ip
, whichfork
, &rec
, eof
);
293 *eof
= endoff
>= rec
.br_startoff
+ rec
.br_blockcount
;
298 * Extent tree block counting routines.
302 * Count leaf blocks given a range of extent records.
305 xfs_bmap_count_leaves(
313 for (b
= 0; b
< numrecs
; b
++) {
314 xfs_bmbt_rec_host_t
*frp
= xfs_iext_get_ext(ifp
, idx
+ b
);
315 *count
+= xfs_bmbt_get_blockcount(frp
);
320 * Count leaf blocks given a range of extent records originally
324 xfs_bmap_disk_count_leaves(
325 struct xfs_mount
*mp
,
326 struct xfs_btree_block
*block
,
333 for (b
= 1; b
<= numrecs
; b
++) {
334 frp
= XFS_BMBT_REC_ADDR(mp
, block
, b
);
335 *count
+= xfs_bmbt_disk_get_blockcount(frp
);
340 * Recursively walks each level of a btree
341 * to count total fsblocks in use.
343 STATIC
int /* error */
345 xfs_mount_t
*mp
, /* file system mount point */
346 xfs_trans_t
*tp
, /* transaction pointer */
347 xfs_ifork_t
*ifp
, /* inode fork pointer */
348 xfs_fsblock_t blockno
, /* file system block number */
349 int levelin
, /* level in btree */
350 int *count
) /* Count of blocks */
356 xfs_fsblock_t bno
= blockno
;
357 xfs_fsblock_t nextbno
;
358 struct xfs_btree_block
*block
, *nextblock
;
361 error
= xfs_btree_read_bufl(mp
, tp
, bno
, 0, &bp
, XFS_BMAP_BTREE_REF
,
366 block
= XFS_BUF_TO_BLOCK(bp
);
369 /* Not at node above leaves, count this level of nodes */
370 nextbno
= be64_to_cpu(block
->bb_u
.l
.bb_rightsib
);
371 while (nextbno
!= NULLFSBLOCK
) {
372 error
= xfs_btree_read_bufl(mp
, tp
, nextbno
, 0, &nbp
,
378 nextblock
= XFS_BUF_TO_BLOCK(nbp
);
379 nextbno
= be64_to_cpu(nextblock
->bb_u
.l
.bb_rightsib
);
380 xfs_trans_brelse(tp
, nbp
);
383 /* Dive to the next level */
384 pp
= XFS_BMBT_PTR_ADDR(mp
, block
, 1, mp
->m_bmap_dmxr
[1]);
385 bno
= be64_to_cpu(*pp
);
386 if (unlikely((error
=
387 xfs_bmap_count_tree(mp
, tp
, ifp
, bno
, level
, count
)) < 0)) {
388 xfs_trans_brelse(tp
, bp
);
389 XFS_ERROR_REPORT("xfs_bmap_count_tree(1)",
390 XFS_ERRLEVEL_LOW
, mp
);
391 return -EFSCORRUPTED
;
393 xfs_trans_brelse(tp
, bp
);
395 /* count all level 1 nodes and their leaves */
397 nextbno
= be64_to_cpu(block
->bb_u
.l
.bb_rightsib
);
398 numrecs
= be16_to_cpu(block
->bb_numrecs
);
399 xfs_bmap_disk_count_leaves(mp
, block
, numrecs
, count
);
400 xfs_trans_brelse(tp
, bp
);
401 if (nextbno
== NULLFSBLOCK
)
404 error
= xfs_btree_read_bufl(mp
, tp
, bno
, 0, &bp
,
410 block
= XFS_BUF_TO_BLOCK(bp
);
417 * Count fsblocks of the given fork.
420 xfs_bmap_count_blocks(
421 xfs_trans_t
*tp
, /* transaction pointer */
422 xfs_inode_t
*ip
, /* incore inode */
423 int whichfork
, /* data or attr fork */
424 int *count
) /* out: count of blocks */
426 struct xfs_btree_block
*block
; /* current btree block */
427 xfs_fsblock_t bno
; /* block # of "block" */
428 xfs_ifork_t
*ifp
; /* fork structure */
429 int level
; /* btree level, for checking */
430 xfs_mount_t
*mp
; /* file system mount structure */
431 __be64
*pp
; /* pointer to block address */
435 ifp
= XFS_IFORK_PTR(ip
, whichfork
);
436 if ( XFS_IFORK_FORMAT(ip
, whichfork
) == XFS_DINODE_FMT_EXTENTS
) {
437 xfs_bmap_count_leaves(ifp
, 0,
438 ifp
->if_bytes
/ (uint
)sizeof(xfs_bmbt_rec_t
),
444 * Root level must use BMAP_BROOT_PTR_ADDR macro to get ptr out.
446 block
= ifp
->if_broot
;
447 level
= be16_to_cpu(block
->bb_level
);
449 pp
= XFS_BMAP_BROOT_PTR_ADDR(mp
, block
, 1, ifp
->if_broot_bytes
);
450 bno
= be64_to_cpu(*pp
);
451 ASSERT(bno
!= NULLFSBLOCK
);
452 ASSERT(XFS_FSB_TO_AGNO(mp
, bno
) < mp
->m_sb
.sb_agcount
);
453 ASSERT(XFS_FSB_TO_AGBNO(mp
, bno
) < mp
->m_sb
.sb_agblocks
);
455 if (unlikely(xfs_bmap_count_tree(mp
, tp
, ifp
, bno
, level
, count
) < 0)) {
456 XFS_ERROR_REPORT("xfs_bmap_count_blocks(2)", XFS_ERRLEVEL_LOW
,
458 return -EFSCORRUPTED
;
465 * returns 1 for success, 0 if we failed to map the extent.
468 xfs_getbmapx_fix_eof_hole(
469 xfs_inode_t
*ip
, /* xfs incore inode pointer */
470 struct getbmapx
*out
, /* output structure */
471 int prealloced
, /* this is a file with
472 * preallocated data space */
473 __int64_t end
, /* last block requested */
474 xfs_fsblock_t startblock
)
477 xfs_mount_t
*mp
; /* file system mount point */
478 xfs_ifork_t
*ifp
; /* inode fork pointer */
479 xfs_extnum_t lastx
; /* last extent pointer */
480 xfs_fileoff_t fileblock
;
482 if (startblock
== HOLESTARTBLOCK
) {
485 fixlen
= XFS_FSB_TO_BB(mp
, XFS_B_TO_FSB(mp
, XFS_ISIZE(ip
)));
486 fixlen
-= out
->bmv_offset
;
487 if (prealloced
&& out
->bmv_offset
+ out
->bmv_length
== end
) {
488 /* Came to hole at EOF. Trim it. */
491 out
->bmv_length
= fixlen
;
494 if (startblock
== DELAYSTARTBLOCK
)
497 out
->bmv_block
= xfs_fsb_to_db(ip
, startblock
);
498 fileblock
= XFS_BB_TO_FSB(ip
->i_mount
, out
->bmv_offset
);
499 ifp
= XFS_IFORK_PTR(ip
, XFS_DATA_FORK
);
500 if (xfs_iext_bno_to_ext(ifp
, fileblock
, &lastx
) &&
501 (lastx
== (ifp
->if_bytes
/ (uint
)sizeof(xfs_bmbt_rec_t
))-1))
502 out
->bmv_oflags
|= BMV_OF_LAST
;
509 * Get inode's extents as described in bmv, and format for output.
510 * Calls formatter to fill the user's buffer until all extents
511 * are mapped, until the passed-in bmv->bmv_count slots have
512 * been filled, or until the formatter short-circuits the loop,
513 * if it is tracking filled-in extents on its own.
518 struct getbmapx
*bmv
, /* user bmap structure */
519 xfs_bmap_format_t formatter
, /* format to user */
520 void *arg
) /* formatter arg */
522 __int64_t bmvend
; /* last block requested */
523 int error
= 0; /* return value */
524 __int64_t fixlen
; /* length for -1 case */
525 int i
; /* extent number */
526 int lock
; /* lock state */
527 xfs_bmbt_irec_t
*map
; /* buffer for user's data */
528 xfs_mount_t
*mp
; /* file system mount point */
529 int nex
; /* # of user extents can do */
530 int nexleft
; /* # of user extents left */
531 int subnex
; /* # of bmapi's can do */
532 int nmap
; /* number of map entries */
533 struct getbmapx
*out
; /* output structure */
534 int whichfork
; /* data or attr fork */
535 int prealloced
; /* this is a file with
536 * preallocated data space */
537 int iflags
; /* interface flags */
538 int bmapi_flags
; /* flags for xfs_bmapi */
542 iflags
= bmv
->bmv_iflags
;
543 whichfork
= iflags
& BMV_IF_ATTRFORK
? XFS_ATTR_FORK
: XFS_DATA_FORK
;
545 if (whichfork
== XFS_ATTR_FORK
) {
546 if (XFS_IFORK_Q(ip
)) {
547 if (ip
->i_d
.di_aformat
!= XFS_DINODE_FMT_EXTENTS
&&
548 ip
->i_d
.di_aformat
!= XFS_DINODE_FMT_BTREE
&&
549 ip
->i_d
.di_aformat
!= XFS_DINODE_FMT_LOCAL
)
552 ip
->i_d
.di_aformat
!= 0 &&
553 ip
->i_d
.di_aformat
!= XFS_DINODE_FMT_EXTENTS
)) {
554 XFS_ERROR_REPORT("xfs_getbmap", XFS_ERRLEVEL_LOW
,
556 return -EFSCORRUPTED
;
562 if (ip
->i_d
.di_format
!= XFS_DINODE_FMT_EXTENTS
&&
563 ip
->i_d
.di_format
!= XFS_DINODE_FMT_BTREE
&&
564 ip
->i_d
.di_format
!= XFS_DINODE_FMT_LOCAL
)
567 if (xfs_get_extsz_hint(ip
) ||
568 ip
->i_d
.di_flags
& (XFS_DIFLAG_PREALLOC
|XFS_DIFLAG_APPEND
)){
570 fixlen
= mp
->m_super
->s_maxbytes
;
573 fixlen
= XFS_ISIZE(ip
);
577 if (bmv
->bmv_length
== -1) {
578 fixlen
= XFS_FSB_TO_BB(mp
, XFS_B_TO_FSB(mp
, fixlen
));
580 max_t(__int64_t
, fixlen
- bmv
->bmv_offset
, 0);
581 } else if (bmv
->bmv_length
== 0) {
582 bmv
->bmv_entries
= 0;
584 } else if (bmv
->bmv_length
< 0) {
588 nex
= bmv
->bmv_count
- 1;
591 bmvend
= bmv
->bmv_offset
+ bmv
->bmv_length
;
594 if (bmv
->bmv_count
> ULONG_MAX
/ sizeof(struct getbmapx
))
596 out
= kmem_zalloc_large(bmv
->bmv_count
* sizeof(struct getbmapx
), 0);
600 xfs_ilock(ip
, XFS_IOLOCK_SHARED
);
601 if (whichfork
== XFS_DATA_FORK
) {
602 if (!(iflags
& BMV_IF_DELALLOC
) &&
603 (ip
->i_delayed_blks
|| XFS_ISIZE(ip
) > ip
->i_d
.di_size
)) {
604 error
= filemap_write_and_wait(VFS_I(ip
)->i_mapping
);
606 goto out_unlock_iolock
;
609 * Even after flushing the inode, there can still be
610 * delalloc blocks on the inode beyond EOF due to
611 * speculative preallocation. These are not removed
612 * until the release function is called or the inode
613 * is inactivated. Hence we cannot assert here that
614 * ip->i_delayed_blks == 0.
618 lock
= xfs_ilock_data_map_shared(ip
);
620 lock
= xfs_ilock_attr_map_shared(ip
);
624 * Don't let nex be bigger than the number of extents
625 * we can have assuming alternating holes and real extents.
627 if (nex
> XFS_IFORK_NEXTENTS(ip
, whichfork
) * 2 + 1)
628 nex
= XFS_IFORK_NEXTENTS(ip
, whichfork
) * 2 + 1;
630 bmapi_flags
= xfs_bmapi_aflag(whichfork
);
631 if (!(iflags
& BMV_IF_PREALLOC
))
632 bmapi_flags
|= XFS_BMAPI_IGSTATE
;
635 * Allocate enough space to handle "subnex" maps at a time.
639 map
= kmem_alloc(subnex
* sizeof(*map
), KM_MAYFAIL
| KM_NOFS
);
641 goto out_unlock_ilock
;
643 bmv
->bmv_entries
= 0;
645 if (XFS_IFORK_NEXTENTS(ip
, whichfork
) == 0 &&
646 (whichfork
== XFS_ATTR_FORK
|| !(iflags
& BMV_IF_DELALLOC
))) {
654 nmap
= (nexleft
> subnex
) ? subnex
: nexleft
;
655 error
= xfs_bmapi_read(ip
, XFS_BB_TO_FSBT(mp
, bmv
->bmv_offset
),
656 XFS_BB_TO_FSB(mp
, bmv
->bmv_length
),
657 map
, &nmap
, bmapi_flags
);
660 ASSERT(nmap
<= subnex
);
662 for (i
= 0; i
< nmap
&& nexleft
&& bmv
->bmv_length
; i
++) {
663 out
[cur_ext
].bmv_oflags
= 0;
664 if (map
[i
].br_state
== XFS_EXT_UNWRITTEN
)
665 out
[cur_ext
].bmv_oflags
|= BMV_OF_PREALLOC
;
666 else if (map
[i
].br_startblock
== DELAYSTARTBLOCK
)
667 out
[cur_ext
].bmv_oflags
|= BMV_OF_DELALLOC
;
668 out
[cur_ext
].bmv_offset
=
669 XFS_FSB_TO_BB(mp
, map
[i
].br_startoff
);
670 out
[cur_ext
].bmv_length
=
671 XFS_FSB_TO_BB(mp
, map
[i
].br_blockcount
);
672 out
[cur_ext
].bmv_unused1
= 0;
673 out
[cur_ext
].bmv_unused2
= 0;
676 * delayed allocation extents that start beyond EOF can
677 * occur due to speculative EOF allocation when the
678 * delalloc extent is larger than the largest freespace
679 * extent at conversion time. These extents cannot be
680 * converted by data writeback, so can exist here even
681 * if we are not supposed to be finding delalloc
684 if (map
[i
].br_startblock
== DELAYSTARTBLOCK
&&
685 map
[i
].br_startoff
<= XFS_B_TO_FSB(mp
, XFS_ISIZE(ip
)))
686 ASSERT((iflags
& BMV_IF_DELALLOC
) != 0);
688 if (map
[i
].br_startblock
== HOLESTARTBLOCK
&&
689 whichfork
== XFS_ATTR_FORK
) {
690 /* came to the end of attribute fork */
691 out
[cur_ext
].bmv_oflags
|= BMV_OF_LAST
;
695 if (!xfs_getbmapx_fix_eof_hole(ip
, &out
[cur_ext
],
697 map
[i
].br_startblock
))
701 out
[cur_ext
].bmv_offset
+
702 out
[cur_ext
].bmv_length
;
704 max_t(__int64_t
, 0, bmvend
- bmv
->bmv_offset
);
707 * In case we don't want to return the hole,
708 * don't increase cur_ext so that we can reuse
709 * it in the next loop.
711 if ((iflags
& BMV_IF_NO_HOLES
) &&
712 map
[i
].br_startblock
== HOLESTARTBLOCK
) {
713 memset(&out
[cur_ext
], 0, sizeof(out
[cur_ext
]));
721 } while (nmap
&& nexleft
&& bmv
->bmv_length
);
726 xfs_iunlock(ip
, lock
);
728 xfs_iunlock(ip
, XFS_IOLOCK_SHARED
);
730 for (i
= 0; i
< cur_ext
; i
++) {
731 int full
= 0; /* user array is full */
733 /* format results & advance arg */
734 error
= formatter(&arg
, &out
[i
], &full
);
744 * dead simple method of punching delalyed allocation blocks from a range in
745 * the inode. Walks a block at a time so will be slow, but is only executed in
746 * rare error cases so the overhead is not critical. This will always punch out
747 * both the start and end blocks, even if the ranges only partially overlap
748 * them, so it is up to the caller to ensure that partial blocks are not
752 xfs_bmap_punch_delalloc_range(
753 struct xfs_inode
*ip
,
754 xfs_fileoff_t start_fsb
,
755 xfs_fileoff_t length
)
757 xfs_fileoff_t remaining
= length
;
760 ASSERT(xfs_isilocked(ip
, XFS_ILOCK_EXCL
));
764 xfs_bmbt_irec_t imap
;
766 xfs_fsblock_t firstblock
;
767 xfs_bmap_free_t flist
;
770 * Map the range first and check that it is a delalloc extent
771 * before trying to unmap the range. Otherwise we will be
772 * trying to remove a real extent (which requires a
773 * transaction) or a hole, which is probably a bad idea...
775 error
= xfs_bmapi_read(ip
, start_fsb
, 1, &imap
, &nimaps
,
779 /* something screwed, just bail */
780 if (!XFS_FORCED_SHUTDOWN(ip
->i_mount
)) {
781 xfs_alert(ip
->i_mount
,
782 "Failed delalloc mapping lookup ino %lld fsb %lld.",
783 ip
->i_ino
, start_fsb
);
791 if (imap
.br_startblock
!= DELAYSTARTBLOCK
) {
792 /* been converted, ignore */
795 WARN_ON(imap
.br_blockcount
== 0);
798 * Note: while we initialise the firstblock/flist pair, they
799 * should never be used because blocks should never be
800 * allocated or freed for a delalloc extent and hence we need
801 * don't cancel or finish them after the xfs_bunmapi() call.
803 xfs_bmap_init(&flist
, &firstblock
);
804 error
= xfs_bunmapi(NULL
, ip
, start_fsb
, 1, 0, 1, &firstblock
,
809 ASSERT(!flist
.xbf_count
&& !flist
.xbf_first
);
813 } while(remaining
> 0);
819 * Test whether it is appropriate to check an inode for and free post EOF
820 * blocks. The 'force' parameter determines whether we should also consider
821 * regular files that are marked preallocated or append-only.
824 xfs_can_free_eofblocks(struct xfs_inode
*ip
, bool force
)
826 /* prealloc/delalloc exists only on regular files */
827 if (!S_ISREG(VFS_I(ip
)->i_mode
))
831 * Zero sized files with no cached pages and delalloc blocks will not
832 * have speculative prealloc/delalloc blocks to remove.
834 if (VFS_I(ip
)->i_size
== 0 &&
835 VFS_I(ip
)->i_mapping
->nrpages
== 0 &&
836 ip
->i_delayed_blks
== 0)
839 /* If we haven't read in the extent list, then don't do it now. */
840 if (!(ip
->i_df
.if_flags
& XFS_IFEXTENTS
))
844 * Do not free real preallocated or append-only files unless the file
845 * has delalloc blocks and we are forced to remove them.
847 if (ip
->i_d
.di_flags
& (XFS_DIFLAG_PREALLOC
| XFS_DIFLAG_APPEND
))
848 if (!force
|| ip
->i_delayed_blks
== 0)
855 * This is called by xfs_inactive to free any blocks beyond eof
856 * when the link count isn't zero and by xfs_dm_punch_hole() when
857 * punching a hole to EOF.
867 xfs_fileoff_t end_fsb
;
868 xfs_fileoff_t last_fsb
;
869 xfs_filblks_t map_len
;
871 xfs_bmbt_irec_t imap
;
874 * Figure out if there are any blocks beyond the end
875 * of the file. If not, then there is nothing to do.
877 end_fsb
= XFS_B_TO_FSB(mp
, (xfs_ufsize_t
)XFS_ISIZE(ip
));
878 last_fsb
= XFS_B_TO_FSB(mp
, mp
->m_super
->s_maxbytes
);
879 if (last_fsb
<= end_fsb
)
881 map_len
= last_fsb
- end_fsb
;
884 xfs_ilock(ip
, XFS_ILOCK_SHARED
);
885 error
= xfs_bmapi_read(ip
, end_fsb
, map_len
, &imap
, &nimaps
, 0);
886 xfs_iunlock(ip
, XFS_ILOCK_SHARED
);
888 if (!error
&& (nimaps
!= 0) &&
889 (imap
.br_startblock
!= HOLESTARTBLOCK
||
890 ip
->i_delayed_blks
)) {
892 * Attach the dquots to the inode up front.
894 error
= xfs_qm_dqattach(ip
, 0);
899 * There are blocks after the end of file.
900 * Free them up now by truncating the file to
903 tp
= xfs_trans_alloc(mp
, XFS_TRANS_INACTIVE
);
906 if (!xfs_ilock_nowait(ip
, XFS_IOLOCK_EXCL
)) {
907 xfs_trans_cancel(tp
);
912 error
= xfs_trans_reserve(tp
, &M_RES(mp
)->tr_itruncate
, 0, 0);
914 ASSERT(XFS_FORCED_SHUTDOWN(mp
));
915 xfs_trans_cancel(tp
);
917 xfs_iunlock(ip
, XFS_IOLOCK_EXCL
);
921 xfs_ilock(ip
, XFS_ILOCK_EXCL
);
922 xfs_trans_ijoin(tp
, ip
, 0);
925 * Do not update the on-disk file size. If we update the
926 * on-disk file size and then the system crashes before the
927 * contents of the file are flushed to disk then the files
928 * may be full of holes (ie NULL files bug).
930 error
= xfs_itruncate_extents(&tp
, ip
, XFS_DATA_FORK
,
934 * If we get an error at this point we simply don't
935 * bother truncating the file.
937 xfs_trans_cancel(tp
);
939 error
= xfs_trans_commit(tp
);
941 xfs_inode_clear_eofblocks_tag(ip
);
944 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
946 xfs_iunlock(ip
, XFS_IOLOCK_EXCL
);
952 xfs_alloc_file_space(
953 struct xfs_inode
*ip
,
958 xfs_mount_t
*mp
= ip
->i_mount
;
960 xfs_filblks_t allocated_fsb
;
961 xfs_filblks_t allocatesize_fsb
;
962 xfs_extlen_t extsz
, temp
;
963 xfs_fileoff_t startoffset_fsb
;
964 xfs_fsblock_t firstfsb
;
969 xfs_bmbt_irec_t imaps
[1], *imapp
;
970 xfs_bmap_free_t free_list
;
971 uint qblocks
, resblks
, resrtextents
;
974 trace_xfs_alloc_file_space(ip
);
976 if (XFS_FORCED_SHUTDOWN(mp
))
979 error
= xfs_qm_dqattach(ip
, 0);
986 rt
= XFS_IS_REALTIME_INODE(ip
);
987 extsz
= xfs_get_extsz_hint(ip
);
992 startoffset_fsb
= XFS_B_TO_FSBT(mp
, offset
);
993 allocatesize_fsb
= XFS_B_TO_FSB(mp
, count
);
996 * Allocate file space until done or until there is an error
998 while (allocatesize_fsb
&& !error
) {
1002 * Determine space reservations for data/realtime.
1004 if (unlikely(extsz
)) {
1005 s
= startoffset_fsb
;
1008 e
= startoffset_fsb
+ allocatesize_fsb
;
1009 if ((temp
= do_mod(startoffset_fsb
, extsz
)))
1011 if ((temp
= do_mod(e
, extsz
)))
1015 e
= allocatesize_fsb
;
1019 * The transaction reservation is limited to a 32-bit block
1020 * count, hence we need to limit the number of blocks we are
1021 * trying to reserve to avoid an overflow. We can't allocate
1022 * more than @nimaps extents, and an extent is limited on disk
1023 * to MAXEXTLEN (21 bits), so use that to enforce the limit.
1025 resblks
= min_t(xfs_fileoff_t
, (e
- s
), (MAXEXTLEN
* nimaps
));
1027 resrtextents
= qblocks
= resblks
;
1028 resrtextents
/= mp
->m_sb
.sb_rextsize
;
1029 resblks
= XFS_DIOSTRAT_SPACE_RES(mp
, 0);
1030 quota_flag
= XFS_QMOPT_RES_RTBLKS
;
1033 resblks
= qblocks
= XFS_DIOSTRAT_SPACE_RES(mp
, resblks
);
1034 quota_flag
= XFS_QMOPT_RES_REGBLKS
;
1038 * Allocate and setup the transaction.
1040 tp
= xfs_trans_alloc(mp
, XFS_TRANS_DIOSTRAT
);
1041 error
= xfs_trans_reserve(tp
, &M_RES(mp
)->tr_write
,
1042 resblks
, resrtextents
);
1044 * Check for running out of space
1048 * Free the transaction structure.
1050 ASSERT(error
== -ENOSPC
|| XFS_FORCED_SHUTDOWN(mp
));
1051 xfs_trans_cancel(tp
);
1054 xfs_ilock(ip
, XFS_ILOCK_EXCL
);
1055 error
= xfs_trans_reserve_quota_nblks(tp
, ip
, qblocks
,
1060 xfs_trans_ijoin(tp
, ip
, 0);
1062 xfs_bmap_init(&free_list
, &firstfsb
);
1063 error
= xfs_bmapi_write(tp
, ip
, startoffset_fsb
,
1064 allocatesize_fsb
, alloc_type
, &firstfsb
,
1065 resblks
, imapp
, &nimaps
, &free_list
);
1070 * Complete the transaction
1072 error
= xfs_bmap_finish(&tp
, &free_list
, NULL
);
1076 error
= xfs_trans_commit(tp
);
1077 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
1081 allocated_fsb
= imapp
->br_blockcount
;
1088 startoffset_fsb
+= allocated_fsb
;
1089 allocatesize_fsb
-= allocated_fsb
;
1094 error0
: /* Cancel bmap, unlock inode, unreserve quota blocks, cancel trans */
1095 xfs_bmap_cancel(&free_list
);
1096 xfs_trans_unreserve_quota_nblks(tp
, ip
, (long)qblocks
, 0, quota_flag
);
1098 error1
: /* Just cancel transaction */
1099 xfs_trans_cancel(tp
);
1100 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
1105 * Zero file bytes between startoff and endoff inclusive.
1106 * The iolock is held exclusive and no blocks are buffered.
1108 * This function is used by xfs_free_file_space() to zero
1109 * partial blocks when the range to free is not block aligned.
1110 * When unreserving space with boundaries that are not block
1111 * aligned we round up the start and round down the end
1112 * boundaries and then use this function to zero the parts of
1113 * the blocks that got dropped during the rounding.
1116 xfs_zero_remaining_bytes(
1121 xfs_bmbt_irec_t imap
;
1122 xfs_fileoff_t offset_fsb
;
1123 xfs_off_t lastoffset
;
1126 xfs_mount_t
*mp
= ip
->i_mount
;
1131 * Avoid doing I/O beyond eof - it's not necessary
1132 * since nothing can read beyond eof. The space will
1133 * be zeroed when the file is extended anyway.
1135 if (startoff
>= XFS_ISIZE(ip
))
1138 if (endoff
> XFS_ISIZE(ip
))
1139 endoff
= XFS_ISIZE(ip
);
1141 for (offset
= startoff
; offset
<= endoff
; offset
= lastoffset
+ 1) {
1144 offset_fsb
= XFS_B_TO_FSBT(mp
, offset
);
1147 lock_mode
= xfs_ilock_data_map_shared(ip
);
1148 error
= xfs_bmapi_read(ip
, offset_fsb
, 1, &imap
, &nimap
, 0);
1149 xfs_iunlock(ip
, lock_mode
);
1151 if (error
|| nimap
< 1)
1153 ASSERT(imap
.br_blockcount
>= 1);
1154 ASSERT(imap
.br_startoff
== offset_fsb
);
1155 ASSERT(imap
.br_startblock
!= DELAYSTARTBLOCK
);
1157 if (imap
.br_startblock
== HOLESTARTBLOCK
||
1158 imap
.br_state
== XFS_EXT_UNWRITTEN
) {
1159 /* skip the entire extent */
1160 lastoffset
= XFS_FSB_TO_B(mp
, imap
.br_startoff
+
1161 imap
.br_blockcount
) - 1;
1165 lastoffset
= XFS_FSB_TO_B(mp
, imap
.br_startoff
+ 1) - 1;
1166 if (lastoffset
> endoff
)
1167 lastoffset
= endoff
;
1169 /* DAX can just zero the backing device directly */
1170 if (IS_DAX(VFS_I(ip
))) {
1171 error
= dax_zero_page_range(VFS_I(ip
), offset
,
1172 lastoffset
- offset
+ 1,
1173 xfs_get_blocks_direct
);
1179 error
= xfs_buf_read_uncached(XFS_IS_REALTIME_INODE(ip
) ?
1180 mp
->m_rtdev_targp
: mp
->m_ddev_targp
,
1181 xfs_fsb_to_db(ip
, imap
.br_startblock
),
1182 BTOBB(mp
->m_sb
.sb_blocksize
),
1188 (offset
- XFS_FSB_TO_B(mp
, imap
.br_startoff
)),
1189 0, lastoffset
- offset
+ 1);
1191 error
= xfs_bwrite(bp
);
1200 xfs_free_file_space(
1201 struct xfs_inode
*ip
,
1206 xfs_fileoff_t endoffset_fsb
;
1208 xfs_fsblock_t firstfsb
;
1209 xfs_bmap_free_t free_list
;
1210 xfs_bmbt_irec_t imap
;
1212 xfs_off_t iendoffset
;
1219 xfs_fileoff_t startoffset_fsb
;
1224 trace_xfs_free_file_space(ip
);
1226 error
= xfs_qm_dqattach(ip
, 0);
1231 if (len
<= 0) /* if nothing being freed */
1233 rt
= XFS_IS_REALTIME_INODE(ip
);
1234 startoffset_fsb
= XFS_B_TO_FSB(mp
, offset
);
1235 endoffset_fsb
= XFS_B_TO_FSBT(mp
, offset
+ len
);
1237 /* wait for the completion of any pending DIOs */
1238 inode_dio_wait(VFS_I(ip
));
1240 rounding
= max_t(xfs_off_t
, 1 << mp
->m_sb
.sb_blocklog
, PAGE_CACHE_SIZE
);
1241 ioffset
= round_down(offset
, rounding
);
1242 iendoffset
= round_up(offset
+ len
, rounding
) - 1;
1243 error
= filemap_write_and_wait_range(VFS_I(ip
)->i_mapping
, ioffset
,
1247 truncate_pagecache_range(VFS_I(ip
), ioffset
, iendoffset
);
1250 * Need to zero the stuff we're not freeing, on disk.
1251 * If it's a realtime file & can't use unwritten extents then we
1252 * actually need to zero the extent edges. Otherwise xfs_bunmapi
1253 * will take care of it for us.
1255 if (rt
&& !xfs_sb_version_hasextflgbit(&mp
->m_sb
)) {
1257 error
= xfs_bmapi_read(ip
, startoffset_fsb
, 1,
1261 ASSERT(nimap
== 0 || nimap
== 1);
1262 if (nimap
&& imap
.br_startblock
!= HOLESTARTBLOCK
) {
1265 ASSERT(imap
.br_startblock
!= DELAYSTARTBLOCK
);
1266 block
= imap
.br_startblock
;
1267 mod
= do_div(block
, mp
->m_sb
.sb_rextsize
);
1269 startoffset_fsb
+= mp
->m_sb
.sb_rextsize
- mod
;
1272 error
= xfs_bmapi_read(ip
, endoffset_fsb
- 1, 1,
1276 ASSERT(nimap
== 0 || nimap
== 1);
1277 if (nimap
&& imap
.br_startblock
!= HOLESTARTBLOCK
) {
1278 ASSERT(imap
.br_startblock
!= DELAYSTARTBLOCK
);
1280 if (mod
&& (mod
!= mp
->m_sb
.sb_rextsize
))
1281 endoffset_fsb
-= mod
;
1284 if ((done
= (endoffset_fsb
<= startoffset_fsb
)))
1286 * One contiguous piece to clear
1288 error
= xfs_zero_remaining_bytes(ip
, offset
, offset
+ len
- 1);
1291 * Some full blocks, possibly two pieces to clear
1293 if (offset
< XFS_FSB_TO_B(mp
, startoffset_fsb
))
1294 error
= xfs_zero_remaining_bytes(ip
, offset
,
1295 XFS_FSB_TO_B(mp
, startoffset_fsb
) - 1);
1297 XFS_FSB_TO_B(mp
, endoffset_fsb
) < offset
+ len
)
1298 error
= xfs_zero_remaining_bytes(ip
,
1299 XFS_FSB_TO_B(mp
, endoffset_fsb
),
1304 * free file space until done or until there is an error
1306 resblks
= XFS_DIOSTRAT_SPACE_RES(mp
, 0);
1307 while (!error
&& !done
) {
1310 * allocate and setup the transaction. Allow this
1311 * transaction to dip into the reserve blocks to ensure
1312 * the freeing of the space succeeds at ENOSPC.
1314 tp
= xfs_trans_alloc(mp
, XFS_TRANS_DIOSTRAT
);
1315 error
= xfs_trans_reserve(tp
, &M_RES(mp
)->tr_write
, resblks
, 0);
1318 * check for running out of space
1322 * Free the transaction structure.
1324 ASSERT(error
== -ENOSPC
|| XFS_FORCED_SHUTDOWN(mp
));
1325 xfs_trans_cancel(tp
);
1328 xfs_ilock(ip
, XFS_ILOCK_EXCL
);
1329 error
= xfs_trans_reserve_quota(tp
, mp
,
1330 ip
->i_udquot
, ip
->i_gdquot
, ip
->i_pdquot
,
1331 resblks
, 0, XFS_QMOPT_RES_REGBLKS
);
1335 xfs_trans_ijoin(tp
, ip
, 0);
1338 * issue the bunmapi() call to free the blocks
1340 xfs_bmap_init(&free_list
, &firstfsb
);
1341 error
= xfs_bunmapi(tp
, ip
, startoffset_fsb
,
1342 endoffset_fsb
- startoffset_fsb
,
1343 0, 2, &firstfsb
, &free_list
, &done
);
1348 * complete the transaction
1350 error
= xfs_bmap_finish(&tp
, &free_list
, NULL
);
1354 error
= xfs_trans_commit(tp
);
1355 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
1362 xfs_bmap_cancel(&free_list
);
1364 xfs_trans_cancel(tp
);
1365 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
1370 * Preallocate and zero a range of a file. This mechanism has the allocation
1371 * semantics of fallocate and in addition converts data in the range to zeroes.
1374 xfs_zero_file_space(
1375 struct xfs_inode
*ip
,
1379 struct xfs_mount
*mp
= ip
->i_mount
;
1383 trace_xfs_zero_file_space(ip
);
1385 blksize
= 1 << mp
->m_sb
.sb_blocklog
;
1388 * Punch a hole and prealloc the range. We use hole punch rather than
1389 * unwritten extent conversion for two reasons:
1391 * 1.) Hole punch handles partial block zeroing for us.
1393 * 2.) If prealloc returns ENOSPC, the file range is still zero-valued
1394 * by virtue of the hole punch.
1396 error
= xfs_free_file_space(ip
, offset
, len
);
1400 error
= xfs_alloc_file_space(ip
, round_down(offset
, blksize
),
1401 round_up(offset
+ len
, blksize
) -
1402 round_down(offset
, blksize
),
1403 XFS_BMAPI_PREALLOC
);
1410 * @next_fsb will keep track of the extent currently undergoing shift.
1411 * @stop_fsb will keep track of the extent at which we have to stop.
1412 * If we are shifting left, we will start with block (offset + len) and
1413 * shift each extent till last extent.
1414 * If we are shifting right, we will start with last extent inside file space
1415 * and continue until we reach the block corresponding to offset.
1418 xfs_shift_file_space(
1419 struct xfs_inode
*ip
,
1422 enum shift_direction direction
)
1425 struct xfs_mount
*mp
= ip
->i_mount
;
1426 struct xfs_trans
*tp
;
1428 struct xfs_bmap_free free_list
;
1429 xfs_fsblock_t first_block
;
1430 xfs_fileoff_t stop_fsb
;
1431 xfs_fileoff_t next_fsb
;
1432 xfs_fileoff_t shift_fsb
;
1434 ASSERT(direction
== SHIFT_LEFT
|| direction
== SHIFT_RIGHT
);
1436 if (direction
== SHIFT_LEFT
) {
1437 next_fsb
= XFS_B_TO_FSB(mp
, offset
+ len
);
1438 stop_fsb
= XFS_B_TO_FSB(mp
, VFS_I(ip
)->i_size
);
1441 * If right shift, delegate the work of initialization of
1442 * next_fsb to xfs_bmap_shift_extent as it has ilock held.
1444 next_fsb
= NULLFSBLOCK
;
1445 stop_fsb
= XFS_B_TO_FSB(mp
, offset
);
1448 shift_fsb
= XFS_B_TO_FSB(mp
, len
);
1451 * Trim eofblocks to avoid shifting uninitialized post-eof preallocation
1452 * into the accessible region of the file.
1454 if (xfs_can_free_eofblocks(ip
, true)) {
1455 error
= xfs_free_eofblocks(mp
, ip
, false);
1461 * Writeback and invalidate cache for the remainder of the file as we're
1462 * about to shift down every extent from offset to EOF.
1464 error
= filemap_write_and_wait_range(VFS_I(ip
)->i_mapping
,
1468 error
= invalidate_inode_pages2_range(VFS_I(ip
)->i_mapping
,
1469 offset
>> PAGE_CACHE_SHIFT
, -1);
1474 * The extent shiting code works on extent granularity. So, if
1475 * stop_fsb is not the starting block of extent, we need to split
1476 * the extent at stop_fsb.
1478 if (direction
== SHIFT_RIGHT
) {
1479 error
= xfs_bmap_split_extent(ip
, stop_fsb
);
1484 while (!error
&& !done
) {
1485 tp
= xfs_trans_alloc(mp
, XFS_TRANS_DIOSTRAT
);
1487 * We would need to reserve permanent block for transaction.
1488 * This will come into picture when after shifting extent into
1489 * hole we found that adjacent extents can be merged which
1490 * may lead to freeing of a block during record update.
1492 error
= xfs_trans_reserve(tp
, &M_RES(mp
)->tr_write
,
1493 XFS_DIOSTRAT_SPACE_RES(mp
, 0), 0);
1495 xfs_trans_cancel(tp
);
1499 xfs_ilock(ip
, XFS_ILOCK_EXCL
);
1500 error
= xfs_trans_reserve_quota(tp
, mp
, ip
->i_udquot
,
1501 ip
->i_gdquot
, ip
->i_pdquot
,
1502 XFS_DIOSTRAT_SPACE_RES(mp
, 0), 0,
1503 XFS_QMOPT_RES_REGBLKS
);
1505 goto out_trans_cancel
;
1507 xfs_trans_ijoin(tp
, ip
, XFS_ILOCK_EXCL
);
1509 xfs_bmap_init(&free_list
, &first_block
);
1512 * We are using the write transaction in which max 2 bmbt
1513 * updates are allowed
1515 error
= xfs_bmap_shift_extents(tp
, ip
, &next_fsb
, shift_fsb
,
1516 &done
, stop_fsb
, &first_block
, &free_list
,
1517 direction
, XFS_BMAP_MAX_SHIFT_EXTENTS
);
1519 goto out_bmap_cancel
;
1521 error
= xfs_bmap_finish(&tp
, &free_list
, NULL
);
1523 goto out_bmap_cancel
;
1525 error
= xfs_trans_commit(tp
);
1531 xfs_bmap_cancel(&free_list
);
1533 xfs_trans_cancel(tp
);
1538 * xfs_collapse_file_space()
1539 * This routine frees disk space and shift extent for the given file.
1540 * The first thing we do is to free data blocks in the specified range
1541 * by calling xfs_free_file_space(). It would also sync dirty data
1542 * and invalidate page cache over the region on which collapse range
1543 * is working. And Shift extent records to the left to cover a hole.
1550 xfs_collapse_file_space(
1551 struct xfs_inode
*ip
,
1557 ASSERT(xfs_isilocked(ip
, XFS_IOLOCK_EXCL
));
1558 trace_xfs_collapse_file_space(ip
);
1560 error
= xfs_free_file_space(ip
, offset
, len
);
1564 return xfs_shift_file_space(ip
, offset
, len
, SHIFT_LEFT
);
1568 * xfs_insert_file_space()
1569 * This routine create hole space by shifting extents for the given file.
1570 * The first thing we do is to sync dirty data and invalidate page cache
1571 * over the region on which insert range is working. And split an extent
1572 * to two extents at given offset by calling xfs_bmap_split_extent.
1573 * And shift all extent records which are laying between [offset,
1574 * last allocated extent] to the right to reserve hole range.
1580 xfs_insert_file_space(
1581 struct xfs_inode
*ip
,
1585 ASSERT(xfs_isilocked(ip
, XFS_IOLOCK_EXCL
));
1586 trace_xfs_insert_file_space(ip
);
1588 return xfs_shift_file_space(ip
, offset
, len
, SHIFT_RIGHT
);
1592 * We need to check that the format of the data fork in the temporary inode is
1593 * valid for the target inode before doing the swap. This is not a problem with
1594 * attr1 because of the fixed fork offset, but attr2 has a dynamically sized
1595 * data fork depending on the space the attribute fork is taking so we can get
1596 * invalid formats on the target inode.
1598 * E.g. target has space for 7 extents in extent format, temp inode only has
1599 * space for 6. If we defragment down to 7 extents, then the tmp format is a
1600 * btree, but when swapped it needs to be in extent format. Hence we can't just
1601 * blindly swap data forks on attr2 filesystems.
1603 * Note that we check the swap in both directions so that we don't end up with
1604 * a corrupt temporary inode, either.
1606 * Note that fixing the way xfs_fsr sets up the attribute fork in the source
1607 * inode will prevent this situation from occurring, so all we do here is
1608 * reject and log the attempt. basically we are putting the responsibility on
1609 * userspace to get this right.
1612 xfs_swap_extents_check_format(
1613 xfs_inode_t
*ip
, /* target inode */
1614 xfs_inode_t
*tip
) /* tmp inode */
1617 /* Should never get a local format */
1618 if (ip
->i_d
.di_format
== XFS_DINODE_FMT_LOCAL
||
1619 tip
->i_d
.di_format
== XFS_DINODE_FMT_LOCAL
)
1623 * if the target inode has less extents that then temporary inode then
1624 * why did userspace call us?
1626 if (ip
->i_d
.di_nextents
< tip
->i_d
.di_nextents
)
1630 * if the target inode is in extent form and the temp inode is in btree
1631 * form then we will end up with the target inode in the wrong format
1632 * as we already know there are less extents in the temp inode.
1634 if (ip
->i_d
.di_format
== XFS_DINODE_FMT_EXTENTS
&&
1635 tip
->i_d
.di_format
== XFS_DINODE_FMT_BTREE
)
1638 /* Check temp in extent form to max in target */
1639 if (tip
->i_d
.di_format
== XFS_DINODE_FMT_EXTENTS
&&
1640 XFS_IFORK_NEXTENTS(tip
, XFS_DATA_FORK
) >
1641 XFS_IFORK_MAXEXT(ip
, XFS_DATA_FORK
))
1644 /* Check target in extent form to max in temp */
1645 if (ip
->i_d
.di_format
== XFS_DINODE_FMT_EXTENTS
&&
1646 XFS_IFORK_NEXTENTS(ip
, XFS_DATA_FORK
) >
1647 XFS_IFORK_MAXEXT(tip
, XFS_DATA_FORK
))
1651 * If we are in a btree format, check that the temp root block will fit
1652 * in the target and that it has enough extents to be in btree format
1655 * Note that we have to be careful to allow btree->extent conversions
1656 * (a common defrag case) which will occur when the temp inode is in
1659 if (tip
->i_d
.di_format
== XFS_DINODE_FMT_BTREE
) {
1660 if (XFS_IFORK_BOFF(ip
) &&
1661 XFS_BMAP_BMDR_SPACE(tip
->i_df
.if_broot
) > XFS_IFORK_BOFF(ip
))
1663 if (XFS_IFORK_NEXTENTS(tip
, XFS_DATA_FORK
) <=
1664 XFS_IFORK_MAXEXT(ip
, XFS_DATA_FORK
))
1668 /* Reciprocal target->temp btree format checks */
1669 if (ip
->i_d
.di_format
== XFS_DINODE_FMT_BTREE
) {
1670 if (XFS_IFORK_BOFF(tip
) &&
1671 XFS_BMAP_BMDR_SPACE(ip
->i_df
.if_broot
) > XFS_IFORK_BOFF(tip
))
1673 if (XFS_IFORK_NEXTENTS(ip
, XFS_DATA_FORK
) <=
1674 XFS_IFORK_MAXEXT(tip
, XFS_DATA_FORK
))
1682 xfs_swap_extent_flush(
1683 struct xfs_inode
*ip
)
1687 error
= filemap_write_and_wait(VFS_I(ip
)->i_mapping
);
1690 truncate_pagecache_range(VFS_I(ip
), 0, -1);
1692 /* Verify O_DIRECT for ftmp */
1693 if (VFS_I(ip
)->i_mapping
->nrpages
)
1700 xfs_inode_t
*ip
, /* target inode */
1701 xfs_inode_t
*tip
, /* tmp inode */
1704 xfs_mount_t
*mp
= ip
->i_mount
;
1706 xfs_bstat_t
*sbp
= &sxp
->sx_stat
;
1707 xfs_ifork_t
*tempifp
, *ifp
, *tifp
;
1708 int src_log_flags
, target_log_flags
;
1715 tempifp
= kmem_alloc(sizeof(xfs_ifork_t
), KM_MAYFAIL
);
1722 * Lock the inodes against other IO, page faults and truncate to
1723 * begin with. Then we can ensure the inodes are flushed and have no
1724 * page cache safely. Once we have done this we can take the ilocks and
1725 * do the rest of the checks.
1727 lock_flags
= XFS_IOLOCK_EXCL
| XFS_MMAPLOCK_EXCL
;
1728 xfs_lock_two_inodes(ip
, tip
, XFS_IOLOCK_EXCL
);
1729 xfs_lock_two_inodes(ip
, tip
, XFS_MMAPLOCK_EXCL
);
1731 /* Verify that both files have the same format */
1732 if ((VFS_I(ip
)->i_mode
& S_IFMT
) != (VFS_I(tip
)->i_mode
& S_IFMT
)) {
1737 /* Verify both files are either real-time or non-realtime */
1738 if (XFS_IS_REALTIME_INODE(ip
) != XFS_IS_REALTIME_INODE(tip
)) {
1743 error
= xfs_swap_extent_flush(ip
);
1746 error
= xfs_swap_extent_flush(tip
);
1750 tp
= xfs_trans_alloc(mp
, XFS_TRANS_SWAPEXT
);
1751 error
= xfs_trans_reserve(tp
, &M_RES(mp
)->tr_ichange
, 0, 0);
1753 xfs_trans_cancel(tp
);
1758 * Lock and join the inodes to the tansaction so that transaction commit
1759 * or cancel will unlock the inodes from this point onwards.
1761 xfs_lock_two_inodes(ip
, tip
, XFS_ILOCK_EXCL
);
1762 lock_flags
|= XFS_ILOCK_EXCL
;
1763 xfs_trans_ijoin(tp
, ip
, lock_flags
);
1764 xfs_trans_ijoin(tp
, tip
, lock_flags
);
1767 /* Verify all data are being swapped */
1768 if (sxp
->sx_offset
!= 0 ||
1769 sxp
->sx_length
!= ip
->i_d
.di_size
||
1770 sxp
->sx_length
!= tip
->i_d
.di_size
) {
1772 goto out_trans_cancel
;
1775 trace_xfs_swap_extent_before(ip
, 0);
1776 trace_xfs_swap_extent_before(tip
, 1);
1778 /* check inode formats now that data is flushed */
1779 error
= xfs_swap_extents_check_format(ip
, tip
);
1782 "%s: inode 0x%llx format is incompatible for exchanging.",
1783 __func__
, ip
->i_ino
);
1784 goto out_trans_cancel
;
1788 * Compare the current change & modify times with that
1789 * passed in. If they differ, we abort this swap.
1790 * This is the mechanism used to ensure the calling
1791 * process that the file was not changed out from
1794 if ((sbp
->bs_ctime
.tv_sec
!= VFS_I(ip
)->i_ctime
.tv_sec
) ||
1795 (sbp
->bs_ctime
.tv_nsec
!= VFS_I(ip
)->i_ctime
.tv_nsec
) ||
1796 (sbp
->bs_mtime
.tv_sec
!= VFS_I(ip
)->i_mtime
.tv_sec
) ||
1797 (sbp
->bs_mtime
.tv_nsec
!= VFS_I(ip
)->i_mtime
.tv_nsec
)) {
1799 goto out_trans_cancel
;
1802 * Count the number of extended attribute blocks
1804 if ( ((XFS_IFORK_Q(ip
) != 0) && (ip
->i_d
.di_anextents
> 0)) &&
1805 (ip
->i_d
.di_aformat
!= XFS_DINODE_FMT_LOCAL
)) {
1806 error
= xfs_bmap_count_blocks(tp
, ip
, XFS_ATTR_FORK
, &aforkblks
);
1808 goto out_trans_cancel
;
1810 if ( ((XFS_IFORK_Q(tip
) != 0) && (tip
->i_d
.di_anextents
> 0)) &&
1811 (tip
->i_d
.di_aformat
!= XFS_DINODE_FMT_LOCAL
)) {
1812 error
= xfs_bmap_count_blocks(tp
, tip
, XFS_ATTR_FORK
,
1815 goto out_trans_cancel
;
1819 * Before we've swapped the forks, lets set the owners of the forks
1820 * appropriately. We have to do this as we are demand paging the btree
1821 * buffers, and so the validation done on read will expect the owner
1822 * field to be correctly set. Once we change the owners, we can swap the
1825 * Note the trickiness in setting the log flags - we set the owner log
1826 * flag on the opposite inode (i.e. the inode we are setting the new
1827 * owner to be) because once we swap the forks and log that, log
1828 * recovery is going to see the fork as owned by the swapped inode,
1829 * not the pre-swapped inodes.
1831 src_log_flags
= XFS_ILOG_CORE
;
1832 target_log_flags
= XFS_ILOG_CORE
;
1833 if (ip
->i_d
.di_version
== 3 &&
1834 ip
->i_d
.di_format
== XFS_DINODE_FMT_BTREE
) {
1835 target_log_flags
|= XFS_ILOG_DOWNER
;
1836 error
= xfs_bmbt_change_owner(tp
, ip
, XFS_DATA_FORK
,
1839 goto out_trans_cancel
;
1842 if (tip
->i_d
.di_version
== 3 &&
1843 tip
->i_d
.di_format
== XFS_DINODE_FMT_BTREE
) {
1844 src_log_flags
|= XFS_ILOG_DOWNER
;
1845 error
= xfs_bmbt_change_owner(tp
, tip
, XFS_DATA_FORK
,
1848 goto out_trans_cancel
;
1852 * Swap the data forks of the inodes
1856 *tempifp
= *ifp
; /* struct copy */
1857 *ifp
= *tifp
; /* struct copy */
1858 *tifp
= *tempifp
; /* struct copy */
1861 * Fix the on-disk inode values
1863 tmp
= (__uint64_t
)ip
->i_d
.di_nblocks
;
1864 ip
->i_d
.di_nblocks
= tip
->i_d
.di_nblocks
- taforkblks
+ aforkblks
;
1865 tip
->i_d
.di_nblocks
= tmp
+ taforkblks
- aforkblks
;
1867 tmp
= (__uint64_t
) ip
->i_d
.di_nextents
;
1868 ip
->i_d
.di_nextents
= tip
->i_d
.di_nextents
;
1869 tip
->i_d
.di_nextents
= tmp
;
1871 tmp
= (__uint64_t
) ip
->i_d
.di_format
;
1872 ip
->i_d
.di_format
= tip
->i_d
.di_format
;
1873 tip
->i_d
.di_format
= tmp
;
1876 * The extents in the source inode could still contain speculative
1877 * preallocation beyond EOF (e.g. the file is open but not modified
1878 * while defrag is in progress). In that case, we need to copy over the
1879 * number of delalloc blocks the data fork in the source inode is
1880 * tracking beyond EOF so that when the fork is truncated away when the
1881 * temporary inode is unlinked we don't underrun the i_delayed_blks
1882 * counter on that inode.
1884 ASSERT(tip
->i_delayed_blks
== 0);
1885 tip
->i_delayed_blks
= ip
->i_delayed_blks
;
1886 ip
->i_delayed_blks
= 0;
1888 switch (ip
->i_d
.di_format
) {
1889 case XFS_DINODE_FMT_EXTENTS
:
1890 /* If the extents fit in the inode, fix the
1891 * pointer. Otherwise it's already NULL or
1892 * pointing to the extent.
1894 if (ip
->i_d
.di_nextents
<= XFS_INLINE_EXTS
) {
1895 ifp
->if_u1
.if_extents
=
1896 ifp
->if_u2
.if_inline_ext
;
1898 src_log_flags
|= XFS_ILOG_DEXT
;
1900 case XFS_DINODE_FMT_BTREE
:
1901 ASSERT(ip
->i_d
.di_version
< 3 ||
1902 (src_log_flags
& XFS_ILOG_DOWNER
));
1903 src_log_flags
|= XFS_ILOG_DBROOT
;
1907 switch (tip
->i_d
.di_format
) {
1908 case XFS_DINODE_FMT_EXTENTS
:
1909 /* If the extents fit in the inode, fix the
1910 * pointer. Otherwise it's already NULL or
1911 * pointing to the extent.
1913 if (tip
->i_d
.di_nextents
<= XFS_INLINE_EXTS
) {
1914 tifp
->if_u1
.if_extents
=
1915 tifp
->if_u2
.if_inline_ext
;
1917 target_log_flags
|= XFS_ILOG_DEXT
;
1919 case XFS_DINODE_FMT_BTREE
:
1920 target_log_flags
|= XFS_ILOG_DBROOT
;
1921 ASSERT(tip
->i_d
.di_version
< 3 ||
1922 (target_log_flags
& XFS_ILOG_DOWNER
));
1926 xfs_trans_log_inode(tp
, ip
, src_log_flags
);
1927 xfs_trans_log_inode(tp
, tip
, target_log_flags
);
1930 * If this is a synchronous mount, make sure that the
1931 * transaction goes to disk before returning to the user.
1933 if (mp
->m_flags
& XFS_MOUNT_WSYNC
)
1934 xfs_trans_set_sync(tp
);
1936 error
= xfs_trans_commit(tp
);
1938 trace_xfs_swap_extent_after(ip
, 0);
1939 trace_xfs_swap_extent_after(tip
, 1);
1945 xfs_iunlock(ip
, lock_flags
);
1946 xfs_iunlock(tip
, lock_flags
);
1950 xfs_trans_cancel(tp
);