firmware_class: fix memory leak - free allocated pages
[linux/fpc-iii.git] / kernel / mutex.c
blob4c0b7b3e6d2e9a483c6cb4cc384e979911ed03bb
1 /*
2 * kernel/mutex.c
4 * Mutexes: blocking mutual exclusion locks
6 * Started by Ingo Molnar:
8 * Copyright (C) 2004, 2005, 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
10 * Many thanks to Arjan van de Ven, Thomas Gleixner, Steven Rostedt and
11 * David Howells for suggestions and improvements.
13 * - Adaptive spinning for mutexes by Peter Zijlstra. (Ported to mainline
14 * from the -rt tree, where it was originally implemented for rtmutexes
15 * by Steven Rostedt, based on work by Gregory Haskins, Peter Morreale
16 * and Sven Dietrich.
18 * Also see Documentation/mutex-design.txt.
20 #include <linux/mutex.h>
21 #include <linux/sched.h>
22 #include <linux/module.h>
23 #include <linux/spinlock.h>
24 #include <linux/interrupt.h>
25 #include <linux/debug_locks.h>
28 * In the DEBUG case we are using the "NULL fastpath" for mutexes,
29 * which forces all calls into the slowpath:
31 #ifdef CONFIG_DEBUG_MUTEXES
32 # include "mutex-debug.h"
33 # include <asm-generic/mutex-null.h>
34 #else
35 # include "mutex.h"
36 # include <asm/mutex.h>
37 #endif
39 /***
40 * mutex_init - initialize the mutex
41 * @lock: the mutex to be initialized
42 * @key: the lock_class_key for the class; used by mutex lock debugging
44 * Initialize the mutex to unlocked state.
46 * It is not allowed to initialize an already locked mutex.
48 void
49 __mutex_init(struct mutex *lock, const char *name, struct lock_class_key *key)
51 atomic_set(&lock->count, 1);
52 spin_lock_init(&lock->wait_lock);
53 INIT_LIST_HEAD(&lock->wait_list);
54 mutex_clear_owner(lock);
56 debug_mutex_init(lock, name, key);
59 EXPORT_SYMBOL(__mutex_init);
61 #ifndef CONFIG_DEBUG_LOCK_ALLOC
63 * We split the mutex lock/unlock logic into separate fastpath and
64 * slowpath functions, to reduce the register pressure on the fastpath.
65 * We also put the fastpath first in the kernel image, to make sure the
66 * branch is predicted by the CPU as default-untaken.
68 static __used noinline void __sched
69 __mutex_lock_slowpath(atomic_t *lock_count);
71 /***
72 * mutex_lock - acquire the mutex
73 * @lock: the mutex to be acquired
75 * Lock the mutex exclusively for this task. If the mutex is not
76 * available right now, it will sleep until it can get it.
78 * The mutex must later on be released by the same task that
79 * acquired it. Recursive locking is not allowed. The task
80 * may not exit without first unlocking the mutex. Also, kernel
81 * memory where the mutex resides mutex must not be freed with
82 * the mutex still locked. The mutex must first be initialized
83 * (or statically defined) before it can be locked. memset()-ing
84 * the mutex to 0 is not allowed.
86 * ( The CONFIG_DEBUG_MUTEXES .config option turns on debugging
87 * checks that will enforce the restrictions and will also do
88 * deadlock debugging. )
90 * This function is similar to (but not equivalent to) down().
92 void __sched mutex_lock(struct mutex *lock)
94 might_sleep();
96 * The locking fastpath is the 1->0 transition from
97 * 'unlocked' into 'locked' state.
99 __mutex_fastpath_lock(&lock->count, __mutex_lock_slowpath);
100 mutex_set_owner(lock);
103 EXPORT_SYMBOL(mutex_lock);
104 #endif
106 static __used noinline void __sched __mutex_unlock_slowpath(atomic_t *lock_count);
108 /***
109 * mutex_unlock - release the mutex
110 * @lock: the mutex to be released
112 * Unlock a mutex that has been locked by this task previously.
114 * This function must not be used in interrupt context. Unlocking
115 * of a not locked mutex is not allowed.
117 * This function is similar to (but not equivalent to) up().
119 void __sched mutex_unlock(struct mutex *lock)
122 * The unlocking fastpath is the 0->1 transition from 'locked'
123 * into 'unlocked' state:
125 #ifndef CONFIG_DEBUG_MUTEXES
127 * When debugging is enabled we must not clear the owner before time,
128 * the slow path will always be taken, and that clears the owner field
129 * after verifying that it was indeed current.
131 mutex_clear_owner(lock);
132 #endif
133 __mutex_fastpath_unlock(&lock->count, __mutex_unlock_slowpath);
136 EXPORT_SYMBOL(mutex_unlock);
139 * Lock a mutex (possibly interruptible), slowpath:
141 static inline int __sched
142 __mutex_lock_common(struct mutex *lock, long state, unsigned int subclass,
143 unsigned long ip)
145 struct task_struct *task = current;
146 struct mutex_waiter waiter;
147 unsigned long flags;
149 preempt_disable();
150 mutex_acquire(&lock->dep_map, subclass, 0, ip);
152 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
154 * Optimistic spinning.
156 * We try to spin for acquisition when we find that there are no
157 * pending waiters and the lock owner is currently running on a
158 * (different) CPU.
160 * The rationale is that if the lock owner is running, it is likely to
161 * release the lock soon.
163 * Since this needs the lock owner, and this mutex implementation
164 * doesn't track the owner atomically in the lock field, we need to
165 * track it non-atomically.
167 * We can't do this for DEBUG_MUTEXES because that relies on wait_lock
168 * to serialize everything.
171 for (;;) {
172 struct thread_info *owner;
175 * If we own the BKL, then don't spin. The owner of
176 * the mutex might be waiting on us to release the BKL.
178 if (unlikely(current->lock_depth >= 0))
179 break;
182 * If there's an owner, wait for it to either
183 * release the lock or go to sleep.
185 owner = ACCESS_ONCE(lock->owner);
186 if (owner && !mutex_spin_on_owner(lock, owner))
187 break;
189 if (atomic_cmpxchg(&lock->count, 1, 0) == 1) {
190 lock_acquired(&lock->dep_map, ip);
191 mutex_set_owner(lock);
192 preempt_enable();
193 return 0;
197 * When there's no owner, we might have preempted between the
198 * owner acquiring the lock and setting the owner field. If
199 * we're an RT task that will live-lock because we won't let
200 * the owner complete.
202 if (!owner && (need_resched() || rt_task(task)))
203 break;
206 * The cpu_relax() call is a compiler barrier which forces
207 * everything in this loop to be re-loaded. We don't need
208 * memory barriers as we'll eventually observe the right
209 * values at the cost of a few extra spins.
211 cpu_relax();
213 #endif
214 spin_lock_mutex(&lock->wait_lock, flags);
216 debug_mutex_lock_common(lock, &waiter);
217 debug_mutex_add_waiter(lock, &waiter, task_thread_info(task));
219 /* add waiting tasks to the end of the waitqueue (FIFO): */
220 list_add_tail(&waiter.list, &lock->wait_list);
221 waiter.task = task;
223 if (atomic_xchg(&lock->count, -1) == 1)
224 goto done;
226 lock_contended(&lock->dep_map, ip);
228 for (;;) {
230 * Lets try to take the lock again - this is needed even if
231 * we get here for the first time (shortly after failing to
232 * acquire the lock), to make sure that we get a wakeup once
233 * it's unlocked. Later on, if we sleep, this is the
234 * operation that gives us the lock. We xchg it to -1, so
235 * that when we release the lock, we properly wake up the
236 * other waiters:
238 if (atomic_xchg(&lock->count, -1) == 1)
239 break;
242 * got a signal? (This code gets eliminated in the
243 * TASK_UNINTERRUPTIBLE case.)
245 if (unlikely(signal_pending_state(state, task))) {
246 mutex_remove_waiter(lock, &waiter,
247 task_thread_info(task));
248 mutex_release(&lock->dep_map, 1, ip);
249 spin_unlock_mutex(&lock->wait_lock, flags);
251 debug_mutex_free_waiter(&waiter);
252 preempt_enable();
253 return -EINTR;
255 __set_task_state(task, state);
257 /* didnt get the lock, go to sleep: */
258 spin_unlock_mutex(&lock->wait_lock, flags);
259 preempt_enable_no_resched();
260 schedule();
261 preempt_disable();
262 spin_lock_mutex(&lock->wait_lock, flags);
265 done:
266 lock_acquired(&lock->dep_map, ip);
267 /* got the lock - rejoice! */
268 mutex_remove_waiter(lock, &waiter, current_thread_info());
269 mutex_set_owner(lock);
271 /* set it to 0 if there are no waiters left: */
272 if (likely(list_empty(&lock->wait_list)))
273 atomic_set(&lock->count, 0);
275 spin_unlock_mutex(&lock->wait_lock, flags);
277 debug_mutex_free_waiter(&waiter);
278 preempt_enable();
280 return 0;
283 #ifdef CONFIG_DEBUG_LOCK_ALLOC
284 void __sched
285 mutex_lock_nested(struct mutex *lock, unsigned int subclass)
287 might_sleep();
288 __mutex_lock_common(lock, TASK_UNINTERRUPTIBLE, subclass, _RET_IP_);
291 EXPORT_SYMBOL_GPL(mutex_lock_nested);
293 int __sched
294 mutex_lock_killable_nested(struct mutex *lock, unsigned int subclass)
296 might_sleep();
297 return __mutex_lock_common(lock, TASK_KILLABLE, subclass, _RET_IP_);
299 EXPORT_SYMBOL_GPL(mutex_lock_killable_nested);
301 int __sched
302 mutex_lock_interruptible_nested(struct mutex *lock, unsigned int subclass)
304 might_sleep();
305 return __mutex_lock_common(lock, TASK_INTERRUPTIBLE,
306 subclass, _RET_IP_);
309 EXPORT_SYMBOL_GPL(mutex_lock_interruptible_nested);
310 #endif
313 * Release the lock, slowpath:
315 static inline void
316 __mutex_unlock_common_slowpath(atomic_t *lock_count, int nested)
318 struct mutex *lock = container_of(lock_count, struct mutex, count);
319 unsigned long flags;
321 spin_lock_mutex(&lock->wait_lock, flags);
322 mutex_release(&lock->dep_map, nested, _RET_IP_);
323 debug_mutex_unlock(lock);
326 * some architectures leave the lock unlocked in the fastpath failure
327 * case, others need to leave it locked. In the later case we have to
328 * unlock it here
330 if (__mutex_slowpath_needs_to_unlock())
331 atomic_set(&lock->count, 1);
333 if (!list_empty(&lock->wait_list)) {
334 /* get the first entry from the wait-list: */
335 struct mutex_waiter *waiter =
336 list_entry(lock->wait_list.next,
337 struct mutex_waiter, list);
339 debug_mutex_wake_waiter(lock, waiter);
341 wake_up_process(waiter->task);
344 spin_unlock_mutex(&lock->wait_lock, flags);
348 * Release the lock, slowpath:
350 static __used noinline void
351 __mutex_unlock_slowpath(atomic_t *lock_count)
353 __mutex_unlock_common_slowpath(lock_count, 1);
356 #ifndef CONFIG_DEBUG_LOCK_ALLOC
358 * Here come the less common (and hence less performance-critical) APIs:
359 * mutex_lock_interruptible() and mutex_trylock().
361 static noinline int __sched
362 __mutex_lock_killable_slowpath(atomic_t *lock_count);
364 static noinline int __sched
365 __mutex_lock_interruptible_slowpath(atomic_t *lock_count);
367 /***
368 * mutex_lock_interruptible - acquire the mutex, interruptable
369 * @lock: the mutex to be acquired
371 * Lock the mutex like mutex_lock(), and return 0 if the mutex has
372 * been acquired or sleep until the mutex becomes available. If a
373 * signal arrives while waiting for the lock then this function
374 * returns -EINTR.
376 * This function is similar to (but not equivalent to) down_interruptible().
378 int __sched mutex_lock_interruptible(struct mutex *lock)
380 int ret;
382 might_sleep();
383 ret = __mutex_fastpath_lock_retval
384 (&lock->count, __mutex_lock_interruptible_slowpath);
385 if (!ret)
386 mutex_set_owner(lock);
388 return ret;
391 EXPORT_SYMBOL(mutex_lock_interruptible);
393 int __sched mutex_lock_killable(struct mutex *lock)
395 int ret;
397 might_sleep();
398 ret = __mutex_fastpath_lock_retval
399 (&lock->count, __mutex_lock_killable_slowpath);
400 if (!ret)
401 mutex_set_owner(lock);
403 return ret;
405 EXPORT_SYMBOL(mutex_lock_killable);
407 static __used noinline void __sched
408 __mutex_lock_slowpath(atomic_t *lock_count)
410 struct mutex *lock = container_of(lock_count, struct mutex, count);
412 __mutex_lock_common(lock, TASK_UNINTERRUPTIBLE, 0, _RET_IP_);
415 static noinline int __sched
416 __mutex_lock_killable_slowpath(atomic_t *lock_count)
418 struct mutex *lock = container_of(lock_count, struct mutex, count);
420 return __mutex_lock_common(lock, TASK_KILLABLE, 0, _RET_IP_);
423 static noinline int __sched
424 __mutex_lock_interruptible_slowpath(atomic_t *lock_count)
426 struct mutex *lock = container_of(lock_count, struct mutex, count);
428 return __mutex_lock_common(lock, TASK_INTERRUPTIBLE, 0, _RET_IP_);
430 #endif
433 * Spinlock based trylock, we take the spinlock and check whether we
434 * can get the lock:
436 static inline int __mutex_trylock_slowpath(atomic_t *lock_count)
438 struct mutex *lock = container_of(lock_count, struct mutex, count);
439 unsigned long flags;
440 int prev;
442 spin_lock_mutex(&lock->wait_lock, flags);
444 prev = atomic_xchg(&lock->count, -1);
445 if (likely(prev == 1)) {
446 mutex_set_owner(lock);
447 mutex_acquire(&lock->dep_map, 0, 1, _RET_IP_);
450 /* Set it back to 0 if there are no waiters: */
451 if (likely(list_empty(&lock->wait_list)))
452 atomic_set(&lock->count, 0);
454 spin_unlock_mutex(&lock->wait_lock, flags);
456 return prev == 1;
459 /***
460 * mutex_trylock - try acquire the mutex, without waiting
461 * @lock: the mutex to be acquired
463 * Try to acquire the mutex atomically. Returns 1 if the mutex
464 * has been acquired successfully, and 0 on contention.
466 * NOTE: this function follows the spin_trylock() convention, so
467 * it is negated to the down_trylock() return values! Be careful
468 * about this when converting semaphore users to mutexes.
470 * This function must not be used in interrupt context. The
471 * mutex must be released by the same task that acquired it.
473 int __sched mutex_trylock(struct mutex *lock)
475 int ret;
477 ret = __mutex_fastpath_trylock(&lock->count, __mutex_trylock_slowpath);
478 if (ret)
479 mutex_set_owner(lock);
481 return ret;
483 EXPORT_SYMBOL(mutex_trylock);
486 * atomic_dec_and_mutex_lock - return holding mutex if we dec to 0
487 * @cnt: the atomic which we are to dec
488 * @lock: the mutex to return holding if we dec to 0
490 * return true and hold lock if we dec to 0, return false otherwise
492 int atomic_dec_and_mutex_lock(atomic_t *cnt, struct mutex *lock)
494 /* dec if we can't possibly hit 0 */
495 if (atomic_add_unless(cnt, -1, 1))
496 return 0;
497 /* we might hit 0, so take the lock */
498 mutex_lock(lock);
499 if (!atomic_dec_and_test(cnt)) {
500 /* when we actually did the dec, we didn't hit 0 */
501 mutex_unlock(lock);
502 return 0;
504 /* we hit 0, and we hold the lock */
505 return 1;
507 EXPORT_SYMBOL(atomic_dec_and_mutex_lock);