1 // SPDX-License-Identifier: GPL-2.0-only
3 * Faraday Technology FTIDE010 driver
4 * Copyright (C) 2017 Linus Walleij <linus.walleij@linaro.org>
6 * Includes portions of the SL2312/SL3516/Gemini PATA driver
7 * Copyright (C) 2003 StorLine, Inc <jason@storlink.com.tw>
8 * Copyright (C) 2009 Janos Laube <janos.dev@gmail.com>
9 * Copyright (C) 2010 Frederic Pecourt <opengemini@free.fr>
10 * Copyright (C) 2011 Tobias Waldvogel <tobias.waldvogel@gmail.com>
13 #include <linux/platform_device.h>
14 #include <linux/module.h>
15 #include <linux/libata.h>
16 #include <linux/bitops.h>
17 #include <linux/of_address.h>
18 #include <linux/of_device.h>
19 #include <linux/clk.h>
20 #include "sata_gemini.h"
22 #define DRV_NAME "pata_ftide010"
25 * struct ftide010 - state container for the Faraday FTIDE010
26 * @dev: pointer back to the device representing this controller
27 * @base: remapped I/O space address
28 * @pclk: peripheral clock for the IDE block
29 * @host: pointer to the ATA host for this device
30 * @master_cbl: master cable type
31 * @slave_cbl: slave cable type
32 * @sg: Gemini SATA bridge pointer, if running on the Gemini
33 * @master_to_sata0: Gemini SATA bridge: the ATA master is connected
35 * @slave_to_sata0: Gemini SATA bridge: the ATA slave is connected
37 * @master_to_sata1: Gemini SATA bridge: the ATA master is connected
39 * @slave_to_sata1: Gemini SATA bridge: the ATA slave is connected
46 struct ata_host
*host
;
47 unsigned int master_cbl
;
48 unsigned int slave_cbl
;
49 /* Gemini-specific properties */
50 struct sata_gemini
*sg
;
57 #define FTIDE010_DMA_REG 0x00
58 #define FTIDE010_DMA_STATUS 0x02
59 #define FTIDE010_IDE_BMDTPR 0x04
60 #define FTIDE010_IDE_DEVICE_ID 0x08
61 #define FTIDE010_PIO_TIMING 0x10
62 #define FTIDE010_MWDMA_TIMING 0x11
63 #define FTIDE010_UDMA_TIMING0 0x12 /* Master */
64 #define FTIDE010_UDMA_TIMING1 0x13 /* Slave */
65 #define FTIDE010_CLK_MOD 0x14
66 /* These registers are mapped directly to the IDE registers */
67 #define FTIDE010_CMD_DATA 0x20
68 #define FTIDE010_ERROR_FEATURES 0x21
69 #define FTIDE010_NSECT 0x22
70 #define FTIDE010_LBAL 0x23
71 #define FTIDE010_LBAM 0x24
72 #define FTIDE010_LBAH 0x25
73 #define FTIDE010_DEVICE 0x26
74 #define FTIDE010_STATUS_COMMAND 0x27
75 #define FTIDE010_ALTSTAT_CTRL 0x36
77 /* Set this bit for UDMA mode 5 and 6 */
78 #define FTIDE010_UDMA_TIMING_MODE_56 BIT(7)
80 /* 0 = 50 MHz, 1 = 66 MHz */
81 #define FTIDE010_CLK_MOD_DEV0_CLK_SEL BIT(0)
82 #define FTIDE010_CLK_MOD_DEV1_CLK_SEL BIT(1)
83 /* Enable UDMA on a device */
84 #define FTIDE010_CLK_MOD_DEV0_UDMA_EN BIT(4)
85 #define FTIDE010_CLK_MOD_DEV1_UDMA_EN BIT(5)
87 static struct scsi_host_template pata_ftide010_sht
= {
88 ATA_BMDMA_SHT(DRV_NAME
),
94 * The unit of the below required timings is two clock periods of the ATA
95 * reference clock which is 30 nanoseconds per unit at 66MHz and 20
96 * nanoseconds per unit at 50 MHz. The PIO timings assume 33MHz speed for
99 * pio_active_time: array of 5 elements for T2 timing for Mode 0,
100 * 1, 2, 3 and 4. Range 0..15.
101 * pio_recovery_time: array of 5 elements for T2l timing for Mode 0,
102 * 1, 2, 3 and 4. Range 0..15.
103 * mdma_50_active_time: array of 4 elements for Td timing for multi
104 * word DMA, Mode 0, 1, and 2 at 50 MHz. Range 0..15.
105 * mdma_50_recovery_time: array of 4 elements for Tk timing for
106 * multi word DMA, Mode 0, 1 and 2 at 50 MHz. Range 0..15.
107 * mdma_66_active_time: array of 4 elements for Td timing for multi
108 * word DMA, Mode 0, 1 and 2 at 66 MHz. Range 0..15.
109 * mdma_66_recovery_time: array of 4 elements for Tk timing for
110 * multi word DMA, Mode 0, 1 and 2 at 66 MHz. Range 0..15.
111 * udma_50_setup_time: array of 4 elements for Tvds timing for ultra
112 * DMA, Mode 0, 1, 2, 3, 4 and 5 at 50 MHz. Range 0..7.
113 * udma_50_hold_time: array of 4 elements for Tdvh timing for
114 * multi word DMA, Mode 0, 1, 2, 3, 4 and 5 at 50 MHz, Range 0..7.
115 * udma_66_setup_time: array of 4 elements for Tvds timing for multi
116 * word DMA, Mode 0, 1, 2, 3, 4, 5 and 6 at 66 MHz. Range 0..7.
117 * udma_66_hold_time: array of 4 elements for Tdvh timing for
118 * multi word DMA, Mode 0, 1, 2, 3, 4, 5 and 6 at 66 MHz. Range 0..7.
120 static const u8 pio_active_time
[5] = {10, 10, 10, 3, 3};
121 static const u8 pio_recovery_time
[5] = {10, 3, 1, 3, 1};
122 static const u8 mwdma_50_active_time
[3] = {6, 2, 2};
123 static const u8 mwdma_50_recovery_time
[3] = {6, 2, 1};
124 static const u8 mwdma_66_active_time
[3] = {8, 3, 3};
125 static const u8 mwdma_66_recovery_time
[3] = {8, 2, 1};
126 static const u8 udma_50_setup_time
[6] = {3, 3, 2, 2, 1, 1};
127 static const u8 udma_50_hold_time
[6] = {3, 1, 1, 1, 1, 1};
128 static const u8 udma_66_setup_time
[7] = {4, 4, 3, 2, };
129 static const u8 udma_66_hold_time
[7] = {};
132 * We set 66 MHz for all MWDMA modes
134 static const bool set_mdma_66_mhz
[] = { true, true, true, true };
137 * We set 66 MHz for UDMA modes 3, 4 and 6 and no others
139 static const bool set_udma_66_mhz
[] = { false, false, false, true, true, false, true };
141 static void ftide010_set_dmamode(struct ata_port
*ap
, struct ata_device
*adev
)
143 struct ftide010
*ftide
= ap
->host
->private_data
;
144 u8 speed
= adev
->dma_mode
;
145 u8 devno
= adev
->devno
& 1;
152 /* Target device 0 (master) or 1 (slave) */
154 udma_en_mask
= FTIDE010_CLK_MOD_DEV0_UDMA_EN
;
155 f66m_en_mask
= FTIDE010_CLK_MOD_DEV0_CLK_SEL
;
157 udma_en_mask
= FTIDE010_CLK_MOD_DEV1_UDMA_EN
;
158 f66m_en_mask
= FTIDE010_CLK_MOD_DEV1_CLK_SEL
;
161 clkreg
= readb(ftide
->base
+ FTIDE010_CLK_MOD
);
162 clkreg
&= ~udma_en_mask
;
163 clkreg
&= ~f66m_en_mask
;
165 if (speed
& XFER_UDMA_0
) {
166 i
= speed
& ~XFER_UDMA_0
;
167 dev_dbg(ftide
->dev
, "set UDMA mode %02x, index %d\n",
170 clkreg
|= udma_en_mask
;
171 if (set_udma_66_mhz
[i
]) {
172 clkreg
|= f66m_en_mask
;
173 timreg
= udma_66_setup_time
[i
] << 4 |
174 udma_66_hold_time
[i
];
176 timreg
= udma_50_setup_time
[i
] << 4 |
177 udma_50_hold_time
[i
];
180 /* A special bit needs to be set for modes 5 and 6 */
182 timreg
|= FTIDE010_UDMA_TIMING_MODE_56
;
184 dev_dbg(ftide
->dev
, "UDMA write clkreg = %02x, timreg = %02x\n",
187 writeb(clkreg
, ftide
->base
+ FTIDE010_CLK_MOD
);
188 writeb(timreg
, ftide
->base
+ FTIDE010_UDMA_TIMING0
+ devno
);
190 i
= speed
& ~XFER_MW_DMA_0
;
191 dev_dbg(ftide
->dev
, "set MWDMA mode %02x, index %d\n",
194 if (set_mdma_66_mhz
[i
]) {
195 clkreg
|= f66m_en_mask
;
196 timreg
= mwdma_66_active_time
[i
] << 4 |
197 mwdma_66_recovery_time
[i
];
199 timreg
= mwdma_50_active_time
[i
] << 4 |
200 mwdma_50_recovery_time
[i
];
203 "MWDMA write clkreg = %02x, timreg = %02x\n",
205 /* This will affect all devices */
206 writeb(clkreg
, ftide
->base
+ FTIDE010_CLK_MOD
);
207 writeb(timreg
, ftide
->base
+ FTIDE010_MWDMA_TIMING
);
211 * Store the current device (master or slave) in ap->private_data
212 * so that .qc_issue() can detect if this changes and reprogram
215 ap
->private_data
= adev
;
220 static void ftide010_set_piomode(struct ata_port
*ap
, struct ata_device
*adev
)
222 struct ftide010
*ftide
= ap
->host
->private_data
;
223 u8 pio
= adev
->pio_mode
- XFER_PIO_0
;
225 dev_dbg(ftide
->dev
, "set PIO mode %02x, index %d\n",
226 adev
->pio_mode
, pio
);
227 writeb(pio_active_time
[pio
] << 4 | pio_recovery_time
[pio
],
228 ftide
->base
+ FTIDE010_PIO_TIMING
);
232 * We implement our own qc_issue() callback since we may need to set up
233 * the timings differently for master and slave transfers: the CLK_MOD_REG
234 * and MWDMA_TIMING_REG is shared between master and slave, so reprogramming
235 * this may be necessary.
237 static unsigned int ftide010_qc_issue(struct ata_queued_cmd
*qc
)
239 struct ata_port
*ap
= qc
->ap
;
240 struct ata_device
*adev
= qc
->dev
;
243 * If the device changed, i.e. slave->master, master->slave,
244 * then set up the DMA mode again so we are sure the timings
247 if (adev
!= ap
->private_data
&& ata_dma_enabled(adev
))
248 ftide010_set_dmamode(ap
, adev
);
250 return ata_bmdma_qc_issue(qc
);
253 static struct ata_port_operations pata_ftide010_port_ops
= {
254 .inherits
= &ata_bmdma_port_ops
,
255 .set_dmamode
= ftide010_set_dmamode
,
256 .set_piomode
= ftide010_set_piomode
,
257 .qc_issue
= ftide010_qc_issue
,
260 static struct ata_port_info ftide010_port_info
= {
261 .flags
= ATA_FLAG_SLAVE_POSS
,
262 .mwdma_mask
= ATA_MWDMA2
,
263 .udma_mask
= ATA_UDMA6
,
264 .pio_mask
= ATA_PIO4
,
265 .port_ops
= &pata_ftide010_port_ops
,
268 #if IS_ENABLED(CONFIG_SATA_GEMINI)
270 static int pata_ftide010_gemini_port_start(struct ata_port
*ap
)
272 struct ftide010
*ftide
= ap
->host
->private_data
;
273 struct device
*dev
= ftide
->dev
;
274 struct sata_gemini
*sg
= ftide
->sg
;
278 ret
= ata_bmdma_port_start(ap
);
282 if (ftide
->master_to_sata0
) {
283 dev_info(dev
, "SATA0 (master) start\n");
284 ret
= gemini_sata_start_bridge(sg
, 0);
288 if (ftide
->master_to_sata1
) {
289 dev_info(dev
, "SATA1 (master) start\n");
290 ret
= gemini_sata_start_bridge(sg
, 1);
294 /* Avoid double-starting */
295 if (ftide
->slave_to_sata0
&& !ftide
->master_to_sata0
) {
296 dev_info(dev
, "SATA0 (slave) start\n");
297 ret
= gemini_sata_start_bridge(sg
, 0);
301 /* Avoid double-starting */
302 if (ftide
->slave_to_sata1
&& !ftide
->master_to_sata1
) {
303 dev_info(dev
, "SATA1 (slave) start\n");
304 ret
= gemini_sata_start_bridge(sg
, 1);
309 dev_info(dev
, "brought %d bridges online\n", bridges
);
310 return (bridges
> 0) ? 0 : -EINVAL
; // -ENODEV;
313 static void pata_ftide010_gemini_port_stop(struct ata_port
*ap
)
315 struct ftide010
*ftide
= ap
->host
->private_data
;
316 struct device
*dev
= ftide
->dev
;
317 struct sata_gemini
*sg
= ftide
->sg
;
319 if (ftide
->master_to_sata0
) {
320 dev_info(dev
, "SATA0 (master) stop\n");
321 gemini_sata_stop_bridge(sg
, 0);
323 if (ftide
->master_to_sata1
) {
324 dev_info(dev
, "SATA1 (master) stop\n");
325 gemini_sata_stop_bridge(sg
, 1);
327 /* Avoid double-stopping */
328 if (ftide
->slave_to_sata0
&& !ftide
->master_to_sata0
) {
329 dev_info(dev
, "SATA0 (slave) stop\n");
330 gemini_sata_stop_bridge(sg
, 0);
332 /* Avoid double-stopping */
333 if (ftide
->slave_to_sata1
&& !ftide
->master_to_sata1
) {
334 dev_info(dev
, "SATA1 (slave) stop\n");
335 gemini_sata_stop_bridge(sg
, 1);
339 static int pata_ftide010_gemini_cable_detect(struct ata_port
*ap
)
341 struct ftide010
*ftide
= ap
->host
->private_data
;
344 * Return the master cable, I have no clue how to return a different
345 * cable for the slave than for the master.
347 return ftide
->master_cbl
;
350 static int pata_ftide010_gemini_init(struct ftide010
*ftide
,
351 struct ata_port_info
*pi
,
354 struct device
*dev
= ftide
->dev
;
355 struct sata_gemini
*sg
;
356 enum gemini_muxmode muxmode
;
358 /* Look up SATA bridge */
359 sg
= gemini_sata_bridge_get();
364 muxmode
= gemini_sata_get_muxmode(sg
);
367 pata_ftide010_port_ops
.port_start
=
368 pata_ftide010_gemini_port_start
;
369 pata_ftide010_port_ops
.port_stop
=
370 pata_ftide010_gemini_port_stop
;
371 pata_ftide010_port_ops
.cable_detect
=
372 pata_ftide010_gemini_cable_detect
;
374 /* Flag port as SATA-capable */
375 if (gemini_sata_bridge_enabled(sg
, is_ata1
))
376 pi
->flags
|= ATA_FLAG_SATA
;
378 /* This device has broken DMA, only PIO works */
379 if (of_machine_is_compatible("itian,sq201")) {
385 * We assume that a simple 40-wire cable is used in the PATA mode.
386 * if you're adding a system using the PATA interface, make sure
387 * the right cable is set up here, it might be necessary to use
388 * special hardware detection or encode the cable type in the device
389 * tree with special properties.
393 case GEMINI_MUXMODE_0
:
394 ftide
->master_cbl
= ATA_CBL_SATA
;
395 ftide
->slave_cbl
= ATA_CBL_PATA40
;
396 ftide
->master_to_sata0
= true;
398 case GEMINI_MUXMODE_1
:
399 ftide
->master_cbl
= ATA_CBL_SATA
;
400 ftide
->slave_cbl
= ATA_CBL_NONE
;
401 ftide
->master_to_sata0
= true;
403 case GEMINI_MUXMODE_2
:
404 ftide
->master_cbl
= ATA_CBL_PATA40
;
405 ftide
->slave_cbl
= ATA_CBL_PATA40
;
407 case GEMINI_MUXMODE_3
:
408 ftide
->master_cbl
= ATA_CBL_SATA
;
409 ftide
->slave_cbl
= ATA_CBL_SATA
;
410 ftide
->master_to_sata0
= true;
411 ftide
->slave_to_sata1
= true;
416 case GEMINI_MUXMODE_0
:
417 ftide
->master_cbl
= ATA_CBL_SATA
;
418 ftide
->slave_cbl
= ATA_CBL_NONE
;
419 ftide
->master_to_sata1
= true;
421 case GEMINI_MUXMODE_1
:
422 ftide
->master_cbl
= ATA_CBL_SATA
;
423 ftide
->slave_cbl
= ATA_CBL_PATA40
;
424 ftide
->master_to_sata1
= true;
426 case GEMINI_MUXMODE_2
:
427 ftide
->master_cbl
= ATA_CBL_SATA
;
428 ftide
->slave_cbl
= ATA_CBL_SATA
;
429 ftide
->slave_to_sata0
= true;
430 ftide
->master_to_sata1
= true;
432 case GEMINI_MUXMODE_3
:
433 ftide
->master_cbl
= ATA_CBL_PATA40
;
434 ftide
->slave_cbl
= ATA_CBL_PATA40
;
438 dev_info(dev
, "set up Gemini PATA%d\n", is_ata1
);
443 static int pata_ftide010_gemini_init(struct ftide010
*ftide
,
444 struct ata_port_info
*pi
,
452 static int pata_ftide010_probe(struct platform_device
*pdev
)
454 struct device
*dev
= &pdev
->dev
;
455 struct device_node
*np
= dev
->of_node
;
456 struct ata_port_info pi
= ftide010_port_info
;
457 const struct ata_port_info
*ppi
[] = { &pi
, NULL
};
458 struct ftide010
*ftide
;
459 struct resource
*res
;
464 ftide
= devm_kzalloc(dev
, sizeof(*ftide
), GFP_KERNEL
);
469 irq
= platform_get_irq(pdev
, 0);
473 res
= platform_get_resource(pdev
, IORESOURCE_MEM
, 0);
477 ftide
->base
= devm_ioremap_resource(dev
, res
);
478 if (IS_ERR(ftide
->base
))
479 return PTR_ERR(ftide
->base
);
481 ftide
->pclk
= devm_clk_get(dev
, "PCLK");
482 if (!IS_ERR(ftide
->pclk
)) {
483 ret
= clk_prepare_enable(ftide
->pclk
);
485 dev_err(dev
, "failed to enable PCLK\n");
490 /* Some special Cortina Gemini init, if needed */
491 if (of_device_is_compatible(np
, "cortina,gemini-pata")) {
493 * We need to know which instance is probing (the
494 * Gemini has two instances of FTIDE010) and we do
495 * this simply by looking at the physical base
496 * address, which is 0x63400000 for ATA1, else we
497 * are ATA0. This will also set up the cable types.
499 ret
= pata_ftide010_gemini_init(ftide
,
501 (res
->start
== 0x63400000));
505 /* Else assume we are connected using PATA40 */
506 ftide
->master_cbl
= ATA_CBL_PATA40
;
507 ftide
->slave_cbl
= ATA_CBL_PATA40
;
510 ftide
->host
= ata_host_alloc_pinfo(dev
, ppi
, 1);
515 ftide
->host
->private_data
= ftide
;
517 for (i
= 0; i
< ftide
->host
->n_ports
; i
++) {
518 struct ata_port
*ap
= ftide
->host
->ports
[i
];
519 struct ata_ioports
*ioaddr
= &ap
->ioaddr
;
521 ioaddr
->bmdma_addr
= ftide
->base
+ FTIDE010_DMA_REG
;
522 ioaddr
->cmd_addr
= ftide
->base
+ FTIDE010_CMD_DATA
;
523 ioaddr
->ctl_addr
= ftide
->base
+ FTIDE010_ALTSTAT_CTRL
;
524 ioaddr
->altstatus_addr
= ftide
->base
+ FTIDE010_ALTSTAT_CTRL
;
525 ata_sff_std_ports(ioaddr
);
528 dev_info(dev
, "device ID %08x, irq %d, reg %pR\n",
529 readl(ftide
->base
+ FTIDE010_IDE_DEVICE_ID
), irq
, res
);
531 ret
= ata_host_activate(ftide
->host
, irq
, ata_bmdma_interrupt
,
532 0, &pata_ftide010_sht
);
539 if (!IS_ERR(ftide
->pclk
))
540 clk_disable_unprepare(ftide
->pclk
);
544 static int pata_ftide010_remove(struct platform_device
*pdev
)
546 struct ata_host
*host
= platform_get_drvdata(pdev
);
547 struct ftide010
*ftide
= host
->private_data
;
549 ata_host_detach(ftide
->host
);
550 if (!IS_ERR(ftide
->pclk
))
551 clk_disable_unprepare(ftide
->pclk
);
556 static const struct of_device_id pata_ftide010_of_match
[] = {
558 .compatible
= "faraday,ftide010",
563 static struct platform_driver pata_ftide010_driver
= {
566 .of_match_table
= of_match_ptr(pata_ftide010_of_match
),
568 .probe
= pata_ftide010_probe
,
569 .remove
= pata_ftide010_remove
,
571 module_platform_driver(pata_ftide010_driver
);
573 MODULE_AUTHOR("Linus Walleij <linus.walleij@linaro.org>");
574 MODULE_LICENSE("GPL");
575 MODULE_ALIAS("platform:" DRV_NAME
);