1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * HID support for Linux
5 * Copyright (c) 1999 Andreas Gal
6 * Copyright (c) 2000-2005 Vojtech Pavlik <vojtech@suse.cz>
7 * Copyright (c) 2005 Michael Haboustak <mike-@cinci.rr.com> for Concept2, Inc
8 * Copyright (c) 2006-2012 Jiri Kosina
14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16 #include <linux/module.h>
17 #include <linux/slab.h>
18 #include <linux/init.h>
19 #include <linux/kernel.h>
20 #include <linux/list.h>
22 #include <linux/spinlock.h>
23 #include <asm/unaligned.h>
24 #include <asm/byteorder.h>
25 #include <linux/input.h>
26 #include <linux/wait.h>
27 #include <linux/vmalloc.h>
28 #include <linux/sched.h>
29 #include <linux/semaphore.h>
31 #include <linux/hid.h>
32 #include <linux/hiddev.h>
33 #include <linux/hid-debug.h>
34 #include <linux/hidraw.h>
42 #define DRIVER_DESC "HID core driver"
45 module_param_named(debug
, hid_debug
, int, 0600);
46 MODULE_PARM_DESC(debug
, "toggle HID debugging messages");
47 EXPORT_SYMBOL_GPL(hid_debug
);
49 static int hid_ignore_special_drivers
= 0;
50 module_param_named(ignore_special_drivers
, hid_ignore_special_drivers
, int, 0600);
51 MODULE_PARM_DESC(ignore_special_drivers
, "Ignore any special drivers and handle all devices by generic driver");
54 * Register a new report for a device.
57 struct hid_report
*hid_register_report(struct hid_device
*device
,
58 unsigned int type
, unsigned int id
,
59 unsigned int application
)
61 struct hid_report_enum
*report_enum
= device
->report_enum
+ type
;
62 struct hid_report
*report
;
64 if (id
>= HID_MAX_IDS
)
66 if (report_enum
->report_id_hash
[id
])
67 return report_enum
->report_id_hash
[id
];
69 report
= kzalloc(sizeof(struct hid_report
), GFP_KERNEL
);
74 report_enum
->numbered
= 1;
79 report
->device
= device
;
80 report
->application
= application
;
81 report_enum
->report_id_hash
[id
] = report
;
83 list_add_tail(&report
->list
, &report_enum
->report_list
);
87 EXPORT_SYMBOL_GPL(hid_register_report
);
90 * Register a new field for this report.
93 static struct hid_field
*hid_register_field(struct hid_report
*report
, unsigned usages
, unsigned values
)
95 struct hid_field
*field
;
97 if (report
->maxfield
== HID_MAX_FIELDS
) {
98 hid_err(report
->device
, "too many fields in report\n");
102 field
= kzalloc((sizeof(struct hid_field
) +
103 usages
* sizeof(struct hid_usage
) +
104 values
* sizeof(unsigned)), GFP_KERNEL
);
108 field
->index
= report
->maxfield
++;
109 report
->field
[field
->index
] = field
;
110 field
->usage
= (struct hid_usage
*)(field
+ 1);
111 field
->value
= (s32
*)(field
->usage
+ usages
);
112 field
->report
= report
;
118 * Open a collection. The type/usage is pushed on the stack.
121 static int open_collection(struct hid_parser
*parser
, unsigned type
)
123 struct hid_collection
*collection
;
125 int collection_index
;
127 usage
= parser
->local
.usage
[0];
129 if (parser
->collection_stack_ptr
== parser
->collection_stack_size
) {
130 unsigned int *collection_stack
;
131 unsigned int new_size
= parser
->collection_stack_size
+
132 HID_COLLECTION_STACK_SIZE
;
134 collection_stack
= krealloc(parser
->collection_stack
,
135 new_size
* sizeof(unsigned int),
137 if (!collection_stack
)
140 parser
->collection_stack
= collection_stack
;
141 parser
->collection_stack_size
= new_size
;
144 if (parser
->device
->maxcollection
== parser
->device
->collection_size
) {
145 collection
= kmalloc(
146 array3_size(sizeof(struct hid_collection
),
147 parser
->device
->collection_size
,
150 if (collection
== NULL
) {
151 hid_err(parser
->device
, "failed to reallocate collection array\n");
154 memcpy(collection
, parser
->device
->collection
,
155 sizeof(struct hid_collection
) *
156 parser
->device
->collection_size
);
157 memset(collection
+ parser
->device
->collection_size
, 0,
158 sizeof(struct hid_collection
) *
159 parser
->device
->collection_size
);
160 kfree(parser
->device
->collection
);
161 parser
->device
->collection
= collection
;
162 parser
->device
->collection_size
*= 2;
165 parser
->collection_stack
[parser
->collection_stack_ptr
++] =
166 parser
->device
->maxcollection
;
168 collection_index
= parser
->device
->maxcollection
++;
169 collection
= parser
->device
->collection
+ collection_index
;
170 collection
->type
= type
;
171 collection
->usage
= usage
;
172 collection
->level
= parser
->collection_stack_ptr
- 1;
173 collection
->parent_idx
= (collection
->level
== 0) ? -1 :
174 parser
->collection_stack
[collection
->level
- 1];
176 if (type
== HID_COLLECTION_APPLICATION
)
177 parser
->device
->maxapplication
++;
183 * Close a collection.
186 static int close_collection(struct hid_parser
*parser
)
188 if (!parser
->collection_stack_ptr
) {
189 hid_err(parser
->device
, "collection stack underflow\n");
192 parser
->collection_stack_ptr
--;
197 * Climb up the stack, search for the specified collection type
198 * and return the usage.
201 static unsigned hid_lookup_collection(struct hid_parser
*parser
, unsigned type
)
203 struct hid_collection
*collection
= parser
->device
->collection
;
206 for (n
= parser
->collection_stack_ptr
- 1; n
>= 0; n
--) {
207 unsigned index
= parser
->collection_stack
[n
];
208 if (collection
[index
].type
== type
)
209 return collection
[index
].usage
;
211 return 0; /* we know nothing about this usage type */
215 * Concatenate usage which defines 16 bits or less with the
216 * currently defined usage page to form a 32 bit usage
219 static void complete_usage(struct hid_parser
*parser
, unsigned int index
)
221 parser
->local
.usage
[index
] &= 0xFFFF;
222 parser
->local
.usage
[index
] |=
223 (parser
->global
.usage_page
& 0xFFFF) << 16;
227 * Add a usage to the temporary parser table.
230 static int hid_add_usage(struct hid_parser
*parser
, unsigned usage
, u8 size
)
232 if (parser
->local
.usage_index
>= HID_MAX_USAGES
) {
233 hid_err(parser
->device
, "usage index exceeded\n");
236 parser
->local
.usage
[parser
->local
.usage_index
] = usage
;
239 * If Usage item only includes usage id, concatenate it with
240 * currently defined usage page
243 complete_usage(parser
, parser
->local
.usage_index
);
245 parser
->local
.usage_size
[parser
->local
.usage_index
] = size
;
246 parser
->local
.collection_index
[parser
->local
.usage_index
] =
247 parser
->collection_stack_ptr
?
248 parser
->collection_stack
[parser
->collection_stack_ptr
- 1] : 0;
249 parser
->local
.usage_index
++;
254 * Register a new field for this report.
257 static int hid_add_field(struct hid_parser
*parser
, unsigned report_type
, unsigned flags
)
259 struct hid_report
*report
;
260 struct hid_field
*field
;
264 unsigned int application
;
266 application
= hid_lookup_collection(parser
, HID_COLLECTION_APPLICATION
);
268 report
= hid_register_report(parser
->device
, report_type
,
269 parser
->global
.report_id
, application
);
271 hid_err(parser
->device
, "hid_register_report failed\n");
275 /* Handle both signed and unsigned cases properly */
276 if ((parser
->global
.logical_minimum
< 0 &&
277 parser
->global
.logical_maximum
<
278 parser
->global
.logical_minimum
) ||
279 (parser
->global
.logical_minimum
>= 0 &&
280 (__u32
)parser
->global
.logical_maximum
<
281 (__u32
)parser
->global
.logical_minimum
)) {
282 dbg_hid("logical range invalid 0x%x 0x%x\n",
283 parser
->global
.logical_minimum
,
284 parser
->global
.logical_maximum
);
288 offset
= report
->size
;
289 report
->size
+= parser
->global
.report_size
* parser
->global
.report_count
;
291 /* Total size check: Allow for possible report index byte */
292 if (report
->size
> (HID_MAX_BUFFER_SIZE
- 1) << 3) {
293 hid_err(parser
->device
, "report is too long\n");
297 if (!parser
->local
.usage_index
) /* Ignore padding fields */
300 usages
= max_t(unsigned, parser
->local
.usage_index
,
301 parser
->global
.report_count
);
303 field
= hid_register_field(report
, usages
, parser
->global
.report_count
);
307 field
->physical
= hid_lookup_collection(parser
, HID_COLLECTION_PHYSICAL
);
308 field
->logical
= hid_lookup_collection(parser
, HID_COLLECTION_LOGICAL
);
309 field
->application
= application
;
311 for (i
= 0; i
< usages
; i
++) {
313 /* Duplicate the last usage we parsed if we have excess values */
314 if (i
>= parser
->local
.usage_index
)
315 j
= parser
->local
.usage_index
- 1;
316 field
->usage
[i
].hid
= parser
->local
.usage
[j
];
317 field
->usage
[i
].collection_index
=
318 parser
->local
.collection_index
[j
];
319 field
->usage
[i
].usage_index
= i
;
320 field
->usage
[i
].resolution_multiplier
= 1;
323 field
->maxusage
= usages
;
324 field
->flags
= flags
;
325 field
->report_offset
= offset
;
326 field
->report_type
= report_type
;
327 field
->report_size
= parser
->global
.report_size
;
328 field
->report_count
= parser
->global
.report_count
;
329 field
->logical_minimum
= parser
->global
.logical_minimum
;
330 field
->logical_maximum
= parser
->global
.logical_maximum
;
331 field
->physical_minimum
= parser
->global
.physical_minimum
;
332 field
->physical_maximum
= parser
->global
.physical_maximum
;
333 field
->unit_exponent
= parser
->global
.unit_exponent
;
334 field
->unit
= parser
->global
.unit
;
340 * Read data value from item.
343 static u32
item_udata(struct hid_item
*item
)
345 switch (item
->size
) {
346 case 1: return item
->data
.u8
;
347 case 2: return item
->data
.u16
;
348 case 4: return item
->data
.u32
;
353 static s32
item_sdata(struct hid_item
*item
)
355 switch (item
->size
) {
356 case 1: return item
->data
.s8
;
357 case 2: return item
->data
.s16
;
358 case 4: return item
->data
.s32
;
364 * Process a global item.
367 static int hid_parser_global(struct hid_parser
*parser
, struct hid_item
*item
)
371 case HID_GLOBAL_ITEM_TAG_PUSH
:
373 if (parser
->global_stack_ptr
== HID_GLOBAL_STACK_SIZE
) {
374 hid_err(parser
->device
, "global environment stack overflow\n");
378 memcpy(parser
->global_stack
+ parser
->global_stack_ptr
++,
379 &parser
->global
, sizeof(struct hid_global
));
382 case HID_GLOBAL_ITEM_TAG_POP
:
384 if (!parser
->global_stack_ptr
) {
385 hid_err(parser
->device
, "global environment stack underflow\n");
389 memcpy(&parser
->global
, parser
->global_stack
+
390 --parser
->global_stack_ptr
, sizeof(struct hid_global
));
393 case HID_GLOBAL_ITEM_TAG_USAGE_PAGE
:
394 parser
->global
.usage_page
= item_udata(item
);
397 case HID_GLOBAL_ITEM_TAG_LOGICAL_MINIMUM
:
398 parser
->global
.logical_minimum
= item_sdata(item
);
401 case HID_GLOBAL_ITEM_TAG_LOGICAL_MAXIMUM
:
402 if (parser
->global
.logical_minimum
< 0)
403 parser
->global
.logical_maximum
= item_sdata(item
);
405 parser
->global
.logical_maximum
= item_udata(item
);
408 case HID_GLOBAL_ITEM_TAG_PHYSICAL_MINIMUM
:
409 parser
->global
.physical_minimum
= item_sdata(item
);
412 case HID_GLOBAL_ITEM_TAG_PHYSICAL_MAXIMUM
:
413 if (parser
->global
.physical_minimum
< 0)
414 parser
->global
.physical_maximum
= item_sdata(item
);
416 parser
->global
.physical_maximum
= item_udata(item
);
419 case HID_GLOBAL_ITEM_TAG_UNIT_EXPONENT
:
420 /* Many devices provide unit exponent as a two's complement
421 * nibble due to the common misunderstanding of HID
422 * specification 1.11, 6.2.2.7 Global Items. Attempt to handle
423 * both this and the standard encoding. */
424 raw_value
= item_sdata(item
);
425 if (!(raw_value
& 0xfffffff0))
426 parser
->global
.unit_exponent
= hid_snto32(raw_value
, 4);
428 parser
->global
.unit_exponent
= raw_value
;
431 case HID_GLOBAL_ITEM_TAG_UNIT
:
432 parser
->global
.unit
= item_udata(item
);
435 case HID_GLOBAL_ITEM_TAG_REPORT_SIZE
:
436 parser
->global
.report_size
= item_udata(item
);
437 if (parser
->global
.report_size
> 256) {
438 hid_err(parser
->device
, "invalid report_size %d\n",
439 parser
->global
.report_size
);
444 case HID_GLOBAL_ITEM_TAG_REPORT_COUNT
:
445 parser
->global
.report_count
= item_udata(item
);
446 if (parser
->global
.report_count
> HID_MAX_USAGES
) {
447 hid_err(parser
->device
, "invalid report_count %d\n",
448 parser
->global
.report_count
);
453 case HID_GLOBAL_ITEM_TAG_REPORT_ID
:
454 parser
->global
.report_id
= item_udata(item
);
455 if (parser
->global
.report_id
== 0 ||
456 parser
->global
.report_id
>= HID_MAX_IDS
) {
457 hid_err(parser
->device
, "report_id %u is invalid\n",
458 parser
->global
.report_id
);
464 hid_err(parser
->device
, "unknown global tag 0x%x\n", item
->tag
);
470 * Process a local item.
473 static int hid_parser_local(struct hid_parser
*parser
, struct hid_item
*item
)
479 data
= item_udata(item
);
482 case HID_LOCAL_ITEM_TAG_DELIMITER
:
486 * We treat items before the first delimiter
487 * as global to all usage sets (branch 0).
488 * In the moment we process only these global
489 * items and the first delimiter set.
491 if (parser
->local
.delimiter_depth
!= 0) {
492 hid_err(parser
->device
, "nested delimiters\n");
495 parser
->local
.delimiter_depth
++;
496 parser
->local
.delimiter_branch
++;
498 if (parser
->local
.delimiter_depth
< 1) {
499 hid_err(parser
->device
, "bogus close delimiter\n");
502 parser
->local
.delimiter_depth
--;
506 case HID_LOCAL_ITEM_TAG_USAGE
:
508 if (parser
->local
.delimiter_branch
> 1) {
509 dbg_hid("alternative usage ignored\n");
513 return hid_add_usage(parser
, data
, item
->size
);
515 case HID_LOCAL_ITEM_TAG_USAGE_MINIMUM
:
517 if (parser
->local
.delimiter_branch
> 1) {
518 dbg_hid("alternative usage ignored\n");
522 parser
->local
.usage_minimum
= data
;
525 case HID_LOCAL_ITEM_TAG_USAGE_MAXIMUM
:
527 if (parser
->local
.delimiter_branch
> 1) {
528 dbg_hid("alternative usage ignored\n");
532 count
= data
- parser
->local
.usage_minimum
;
533 if (count
+ parser
->local
.usage_index
>= HID_MAX_USAGES
) {
535 * We do not warn if the name is not set, we are
536 * actually pre-scanning the device.
538 if (dev_name(&parser
->device
->dev
))
539 hid_warn(parser
->device
,
540 "ignoring exceeding usage max\n");
541 data
= HID_MAX_USAGES
- parser
->local
.usage_index
+
542 parser
->local
.usage_minimum
- 1;
544 hid_err(parser
->device
,
545 "no more usage index available\n");
550 for (n
= parser
->local
.usage_minimum
; n
<= data
; n
++)
551 if (hid_add_usage(parser
, n
, item
->size
)) {
552 dbg_hid("hid_add_usage failed\n");
559 dbg_hid("unknown local item tag 0x%x\n", item
->tag
);
566 * Concatenate Usage Pages into Usages where relevant:
567 * As per specification, 6.2.2.8: "When the parser encounters a main item it
568 * concatenates the last declared Usage Page with a Usage to form a complete
572 static void hid_concatenate_last_usage_page(struct hid_parser
*parser
)
575 unsigned int usage_page
;
576 unsigned int current_page
;
578 if (!parser
->local
.usage_index
)
581 usage_page
= parser
->global
.usage_page
;
584 * Concatenate usage page again only if last declared Usage Page
585 * has not been already used in previous usages concatenation
587 for (i
= parser
->local
.usage_index
- 1; i
>= 0; i
--) {
588 if (parser
->local
.usage_size
[i
] > 2)
589 /* Ignore extended usages */
592 current_page
= parser
->local
.usage
[i
] >> 16;
593 if (current_page
== usage_page
)
596 complete_usage(parser
, i
);
601 * Process a main item.
604 static int hid_parser_main(struct hid_parser
*parser
, struct hid_item
*item
)
609 hid_concatenate_last_usage_page(parser
);
611 data
= item_udata(item
);
614 case HID_MAIN_ITEM_TAG_BEGIN_COLLECTION
:
615 ret
= open_collection(parser
, data
& 0xff);
617 case HID_MAIN_ITEM_TAG_END_COLLECTION
:
618 ret
= close_collection(parser
);
620 case HID_MAIN_ITEM_TAG_INPUT
:
621 ret
= hid_add_field(parser
, HID_INPUT_REPORT
, data
);
623 case HID_MAIN_ITEM_TAG_OUTPUT
:
624 ret
= hid_add_field(parser
, HID_OUTPUT_REPORT
, data
);
626 case HID_MAIN_ITEM_TAG_FEATURE
:
627 ret
= hid_add_field(parser
, HID_FEATURE_REPORT
, data
);
630 hid_warn(parser
->device
, "unknown main item tag 0x%x\n", item
->tag
);
634 memset(&parser
->local
, 0, sizeof(parser
->local
)); /* Reset the local parser environment */
640 * Process a reserved item.
643 static int hid_parser_reserved(struct hid_parser
*parser
, struct hid_item
*item
)
645 dbg_hid("reserved item type, tag 0x%x\n", item
->tag
);
650 * Free a report and all registered fields. The field->usage and
651 * field->value table's are allocated behind the field, so we need
652 * only to free(field) itself.
655 static void hid_free_report(struct hid_report
*report
)
659 for (n
= 0; n
< report
->maxfield
; n
++)
660 kfree(report
->field
[n
]);
665 * Close report. This function returns the device
666 * state to the point prior to hid_open_report().
668 static void hid_close_report(struct hid_device
*device
)
672 for (i
= 0; i
< HID_REPORT_TYPES
; i
++) {
673 struct hid_report_enum
*report_enum
= device
->report_enum
+ i
;
675 for (j
= 0; j
< HID_MAX_IDS
; j
++) {
676 struct hid_report
*report
= report_enum
->report_id_hash
[j
];
678 hid_free_report(report
);
680 memset(report_enum
, 0, sizeof(*report_enum
));
681 INIT_LIST_HEAD(&report_enum
->report_list
);
684 kfree(device
->rdesc
);
685 device
->rdesc
= NULL
;
688 kfree(device
->collection
);
689 device
->collection
= NULL
;
690 device
->collection_size
= 0;
691 device
->maxcollection
= 0;
692 device
->maxapplication
= 0;
694 device
->status
&= ~HID_STAT_PARSED
;
698 * Free a device structure, all reports, and all fields.
701 static void hid_device_release(struct device
*dev
)
703 struct hid_device
*hid
= to_hid_device(dev
);
705 hid_close_report(hid
);
706 kfree(hid
->dev_rdesc
);
711 * Fetch a report description item from the data stream. We support long
712 * items, though they are not used yet.
715 static u8
*fetch_item(__u8
*start
, __u8
*end
, struct hid_item
*item
)
719 if ((end
- start
) <= 0)
724 item
->type
= (b
>> 2) & 3;
725 item
->tag
= (b
>> 4) & 15;
727 if (item
->tag
== HID_ITEM_TAG_LONG
) {
729 item
->format
= HID_ITEM_FORMAT_LONG
;
731 if ((end
- start
) < 2)
734 item
->size
= *start
++;
735 item
->tag
= *start
++;
737 if ((end
- start
) < item
->size
)
740 item
->data
.longdata
= start
;
745 item
->format
= HID_ITEM_FORMAT_SHORT
;
748 switch (item
->size
) {
753 if ((end
- start
) < 1)
755 item
->data
.u8
= *start
++;
759 if ((end
- start
) < 2)
761 item
->data
.u16
= get_unaligned_le16(start
);
762 start
= (__u8
*)((__le16
*)start
+ 1);
767 if ((end
- start
) < 4)
769 item
->data
.u32
= get_unaligned_le32(start
);
770 start
= (__u8
*)((__le32
*)start
+ 1);
777 static void hid_scan_input_usage(struct hid_parser
*parser
, u32 usage
)
779 struct hid_device
*hid
= parser
->device
;
781 if (usage
== HID_DG_CONTACTID
)
782 hid
->group
= HID_GROUP_MULTITOUCH
;
785 static void hid_scan_feature_usage(struct hid_parser
*parser
, u32 usage
)
787 if (usage
== 0xff0000c5 && parser
->global
.report_count
== 256 &&
788 parser
->global
.report_size
== 8)
789 parser
->scan_flags
|= HID_SCAN_FLAG_MT_WIN_8
;
791 if (usage
== 0xff0000c6 && parser
->global
.report_count
== 1 &&
792 parser
->global
.report_size
== 8)
793 parser
->scan_flags
|= HID_SCAN_FLAG_MT_WIN_8
;
796 static void hid_scan_collection(struct hid_parser
*parser
, unsigned type
)
798 struct hid_device
*hid
= parser
->device
;
801 if (((parser
->global
.usage_page
<< 16) == HID_UP_SENSOR
) &&
802 type
== HID_COLLECTION_PHYSICAL
)
803 hid
->group
= HID_GROUP_SENSOR_HUB
;
805 if (hid
->vendor
== USB_VENDOR_ID_MICROSOFT
&&
806 hid
->product
== USB_DEVICE_ID_MS_POWER_COVER
&&
807 hid
->group
== HID_GROUP_MULTITOUCH
)
808 hid
->group
= HID_GROUP_GENERIC
;
810 if ((parser
->global
.usage_page
<< 16) == HID_UP_GENDESK
)
811 for (i
= 0; i
< parser
->local
.usage_index
; i
++)
812 if (parser
->local
.usage
[i
] == HID_GD_POINTER
)
813 parser
->scan_flags
|= HID_SCAN_FLAG_GD_POINTER
;
815 if ((parser
->global
.usage_page
<< 16) >= HID_UP_MSVENDOR
)
816 parser
->scan_flags
|= HID_SCAN_FLAG_VENDOR_SPECIFIC
;
819 static int hid_scan_main(struct hid_parser
*parser
, struct hid_item
*item
)
824 hid_concatenate_last_usage_page(parser
);
826 data
= item_udata(item
);
829 case HID_MAIN_ITEM_TAG_BEGIN_COLLECTION
:
830 hid_scan_collection(parser
, data
& 0xff);
832 case HID_MAIN_ITEM_TAG_END_COLLECTION
:
834 case HID_MAIN_ITEM_TAG_INPUT
:
835 /* ignore constant inputs, they will be ignored by hid-input */
836 if (data
& HID_MAIN_ITEM_CONSTANT
)
838 for (i
= 0; i
< parser
->local
.usage_index
; i
++)
839 hid_scan_input_usage(parser
, parser
->local
.usage
[i
]);
841 case HID_MAIN_ITEM_TAG_OUTPUT
:
843 case HID_MAIN_ITEM_TAG_FEATURE
:
844 for (i
= 0; i
< parser
->local
.usage_index
; i
++)
845 hid_scan_feature_usage(parser
, parser
->local
.usage
[i
]);
849 /* Reset the local parser environment */
850 memset(&parser
->local
, 0, sizeof(parser
->local
));
856 * Scan a report descriptor before the device is added to the bus.
857 * Sets device groups and other properties that determine what driver
860 static int hid_scan_report(struct hid_device
*hid
)
862 struct hid_parser
*parser
;
863 struct hid_item item
;
864 __u8
*start
= hid
->dev_rdesc
;
865 __u8
*end
= start
+ hid
->dev_rsize
;
866 static int (*dispatch_type
[])(struct hid_parser
*parser
,
867 struct hid_item
*item
) = {
874 parser
= vzalloc(sizeof(struct hid_parser
));
878 parser
->device
= hid
;
879 hid
->group
= HID_GROUP_GENERIC
;
882 * The parsing is simpler than the one in hid_open_report() as we should
883 * be robust against hid errors. Those errors will be raised by
884 * hid_open_report() anyway.
886 while ((start
= fetch_item(start
, end
, &item
)) != NULL
)
887 dispatch_type
[item
.type
](parser
, &item
);
890 * Handle special flags set during scanning.
892 if ((parser
->scan_flags
& HID_SCAN_FLAG_MT_WIN_8
) &&
893 (hid
->group
== HID_GROUP_MULTITOUCH
))
894 hid
->group
= HID_GROUP_MULTITOUCH_WIN_8
;
897 * Vendor specific handlings
899 switch (hid
->vendor
) {
900 case USB_VENDOR_ID_WACOM
:
901 hid
->group
= HID_GROUP_WACOM
;
903 case USB_VENDOR_ID_SYNAPTICS
:
904 if (hid
->group
== HID_GROUP_GENERIC
)
905 if ((parser
->scan_flags
& HID_SCAN_FLAG_VENDOR_SPECIFIC
)
906 && (parser
->scan_flags
& HID_SCAN_FLAG_GD_POINTER
))
908 * hid-rmi should take care of them,
911 hid
->group
= HID_GROUP_RMI
;
915 kfree(parser
->collection_stack
);
921 * hid_parse_report - parse device report
923 * @device: hid device
924 * @start: report start
927 * Allocate the device report as read by the bus driver. This function should
928 * only be called from parse() in ll drivers.
930 int hid_parse_report(struct hid_device
*hid
, __u8
*start
, unsigned size
)
932 hid
->dev_rdesc
= kmemdup(start
, size
, GFP_KERNEL
);
935 hid
->dev_rsize
= size
;
938 EXPORT_SYMBOL_GPL(hid_parse_report
);
940 static const char * const hid_report_names
[] = {
943 "HID_FEATURE_REPORT",
946 * hid_validate_values - validate existing device report's value indexes
948 * @device: hid device
949 * @type: which report type to examine
950 * @id: which report ID to examine (0 for first)
951 * @field_index: which report field to examine
952 * @report_counts: expected number of values
954 * Validate the number of values in a given field of a given report, after
957 struct hid_report
*hid_validate_values(struct hid_device
*hid
,
958 unsigned int type
, unsigned int id
,
959 unsigned int field_index
,
960 unsigned int report_counts
)
962 struct hid_report
*report
;
964 if (type
> HID_FEATURE_REPORT
) {
965 hid_err(hid
, "invalid HID report type %u\n", type
);
969 if (id
>= HID_MAX_IDS
) {
970 hid_err(hid
, "invalid HID report id %u\n", id
);
975 * Explicitly not using hid_get_report() here since it depends on
976 * ->numbered being checked, which may not always be the case when
977 * drivers go to access report values.
981 * Validating on id 0 means we should examine the first
982 * report in the list.
985 hid
->report_enum
[type
].report_list
.next
,
986 struct hid_report
, list
);
988 report
= hid
->report_enum
[type
].report_id_hash
[id
];
991 hid_err(hid
, "missing %s %u\n", hid_report_names
[type
], id
);
994 if (report
->maxfield
<= field_index
) {
995 hid_err(hid
, "not enough fields in %s %u\n",
996 hid_report_names
[type
], id
);
999 if (report
->field
[field_index
]->report_count
< report_counts
) {
1000 hid_err(hid
, "not enough values in %s %u field %u\n",
1001 hid_report_names
[type
], id
, field_index
);
1006 EXPORT_SYMBOL_GPL(hid_validate_values
);
1008 static int hid_calculate_multiplier(struct hid_device
*hid
,
1009 struct hid_field
*multiplier
)
1012 __s32 v
= *multiplier
->value
;
1013 __s32 lmin
= multiplier
->logical_minimum
;
1014 __s32 lmax
= multiplier
->logical_maximum
;
1015 __s32 pmin
= multiplier
->physical_minimum
;
1016 __s32 pmax
= multiplier
->physical_maximum
;
1019 * "Because OS implementations will generally divide the control's
1020 * reported count by the Effective Resolution Multiplier, designers
1021 * should take care not to establish a potential Effective
1022 * Resolution Multiplier of zero."
1023 * HID Usage Table, v1.12, Section 4.3.1, p31
1025 if (lmax
- lmin
== 0)
1028 * Handling the unit exponent is left as an exercise to whoever
1029 * finds a device where that exponent is not 0.
1031 m
= ((v
- lmin
)/(lmax
- lmin
) * (pmax
- pmin
) + pmin
);
1032 if (unlikely(multiplier
->unit_exponent
!= 0)) {
1034 "unsupported Resolution Multiplier unit exponent %d\n",
1035 multiplier
->unit_exponent
);
1038 /* There are no devices with an effective multiplier > 255 */
1039 if (unlikely(m
== 0 || m
> 255 || m
< -255)) {
1040 hid_warn(hid
, "unsupported Resolution Multiplier %d\n", m
);
1047 static void hid_apply_multiplier_to_field(struct hid_device
*hid
,
1048 struct hid_field
*field
,
1049 struct hid_collection
*multiplier_collection
,
1050 int effective_multiplier
)
1052 struct hid_collection
*collection
;
1053 struct hid_usage
*usage
;
1057 * If multiplier_collection is NULL, the multiplier applies
1058 * to all fields in the report.
1059 * Otherwise, it is the Logical Collection the multiplier applies to
1060 * but our field may be in a subcollection of that collection.
1062 for (i
= 0; i
< field
->maxusage
; i
++) {
1063 usage
= &field
->usage
[i
];
1065 collection
= &hid
->collection
[usage
->collection_index
];
1066 while (collection
->parent_idx
!= -1 &&
1067 collection
!= multiplier_collection
)
1068 collection
= &hid
->collection
[collection
->parent_idx
];
1070 if (collection
->parent_idx
!= -1 ||
1071 multiplier_collection
== NULL
)
1072 usage
->resolution_multiplier
= effective_multiplier
;
1077 static void hid_apply_multiplier(struct hid_device
*hid
,
1078 struct hid_field
*multiplier
)
1080 struct hid_report_enum
*rep_enum
;
1081 struct hid_report
*rep
;
1082 struct hid_field
*field
;
1083 struct hid_collection
*multiplier_collection
;
1084 int effective_multiplier
;
1088 * "The Resolution Multiplier control must be contained in the same
1089 * Logical Collection as the control(s) to which it is to be applied.
1090 * If no Resolution Multiplier is defined, then the Resolution
1091 * Multiplier defaults to 1. If more than one control exists in a
1092 * Logical Collection, the Resolution Multiplier is associated with
1093 * all controls in the collection. If no Logical Collection is
1094 * defined, the Resolution Multiplier is associated with all
1095 * controls in the report."
1096 * HID Usage Table, v1.12, Section 4.3.1, p30
1098 * Thus, search from the current collection upwards until we find a
1099 * logical collection. Then search all fields for that same parent
1100 * collection. Those are the fields the multiplier applies to.
1102 * If we have more than one multiplier, it will overwrite the
1103 * applicable fields later.
1105 multiplier_collection
= &hid
->collection
[multiplier
->usage
->collection_index
];
1106 while (multiplier_collection
->parent_idx
!= -1 &&
1107 multiplier_collection
->type
!= HID_COLLECTION_LOGICAL
)
1108 multiplier_collection
= &hid
->collection
[multiplier_collection
->parent_idx
];
1110 effective_multiplier
= hid_calculate_multiplier(hid
, multiplier
);
1112 rep_enum
= &hid
->report_enum
[HID_INPUT_REPORT
];
1113 list_for_each_entry(rep
, &rep_enum
->report_list
, list
) {
1114 for (i
= 0; i
< rep
->maxfield
; i
++) {
1115 field
= rep
->field
[i
];
1116 hid_apply_multiplier_to_field(hid
, field
,
1117 multiplier_collection
,
1118 effective_multiplier
);
1124 * hid_setup_resolution_multiplier - set up all resolution multipliers
1126 * @device: hid device
1128 * Search for all Resolution Multiplier Feature Reports and apply their
1129 * value to all matching Input items. This only updates the internal struct
1132 * The Resolution Multiplier is applied by the hardware. If the multiplier
1133 * is anything other than 1, the hardware will send pre-multiplied events
1134 * so that the same physical interaction generates an accumulated
1135 * accumulated_value = value * * multiplier
1136 * This may be achieved by sending
1137 * - "value * multiplier" for each event, or
1138 * - "value" but "multiplier" times as frequently, or
1139 * - a combination of the above
1140 * The only guarantee is that the same physical interaction always generates
1141 * an accumulated 'value * multiplier'.
1143 * This function must be called before any event processing and after
1144 * any SetRequest to the Resolution Multiplier.
1146 void hid_setup_resolution_multiplier(struct hid_device
*hid
)
1148 struct hid_report_enum
*rep_enum
;
1149 struct hid_report
*rep
;
1150 struct hid_usage
*usage
;
1153 rep_enum
= &hid
->report_enum
[HID_FEATURE_REPORT
];
1154 list_for_each_entry(rep
, &rep_enum
->report_list
, list
) {
1155 for (i
= 0; i
< rep
->maxfield
; i
++) {
1156 /* Ignore if report count is out of bounds. */
1157 if (rep
->field
[i
]->report_count
< 1)
1160 for (j
= 0; j
< rep
->field
[i
]->maxusage
; j
++) {
1161 usage
= &rep
->field
[i
]->usage
[j
];
1162 if (usage
->hid
== HID_GD_RESOLUTION_MULTIPLIER
)
1163 hid_apply_multiplier(hid
,
1169 EXPORT_SYMBOL_GPL(hid_setup_resolution_multiplier
);
1172 * hid_open_report - open a driver-specific device report
1174 * @device: hid device
1176 * Parse a report description into a hid_device structure. Reports are
1177 * enumerated, fields are attached to these reports.
1178 * 0 returned on success, otherwise nonzero error value.
1180 * This function (or the equivalent hid_parse() macro) should only be
1181 * called from probe() in drivers, before starting the device.
1183 int hid_open_report(struct hid_device
*device
)
1185 struct hid_parser
*parser
;
1186 struct hid_item item
;
1193 static int (*dispatch_type
[])(struct hid_parser
*parser
,
1194 struct hid_item
*item
) = {
1201 if (WARN_ON(device
->status
& HID_STAT_PARSED
))
1204 start
= device
->dev_rdesc
;
1205 if (WARN_ON(!start
))
1207 size
= device
->dev_rsize
;
1209 buf
= kmemdup(start
, size
, GFP_KERNEL
);
1213 if (device
->driver
->report_fixup
)
1214 start
= device
->driver
->report_fixup(device
, buf
, &size
);
1218 start
= kmemdup(start
, size
, GFP_KERNEL
);
1223 device
->rdesc
= start
;
1224 device
->rsize
= size
;
1226 parser
= vzalloc(sizeof(struct hid_parser
));
1232 parser
->device
= device
;
1236 device
->collection
= kcalloc(HID_DEFAULT_NUM_COLLECTIONS
,
1237 sizeof(struct hid_collection
), GFP_KERNEL
);
1238 if (!device
->collection
) {
1242 device
->collection_size
= HID_DEFAULT_NUM_COLLECTIONS
;
1245 while ((next
= fetch_item(start
, end
, &item
)) != NULL
) {
1248 if (item
.format
!= HID_ITEM_FORMAT_SHORT
) {
1249 hid_err(device
, "unexpected long global item\n");
1253 if (dispatch_type
[item
.type
](parser
, &item
)) {
1254 hid_err(device
, "item %u %u %u %u parsing failed\n",
1255 item
.format
, (unsigned)item
.size
,
1256 (unsigned)item
.type
, (unsigned)item
.tag
);
1261 if (parser
->collection_stack_ptr
) {
1262 hid_err(device
, "unbalanced collection at end of report description\n");
1265 if (parser
->local
.delimiter_depth
) {
1266 hid_err(device
, "unbalanced delimiter at end of report description\n");
1271 * fetch initial values in case the device's
1272 * default multiplier isn't the recommended 1
1274 hid_setup_resolution_multiplier(device
);
1276 kfree(parser
->collection_stack
);
1278 device
->status
|= HID_STAT_PARSED
;
1284 hid_err(device
, "item fetching failed at offset %u/%u\n",
1285 size
- (unsigned int)(end
- start
), size
);
1287 kfree(parser
->collection_stack
);
1290 hid_close_report(device
);
1293 EXPORT_SYMBOL_GPL(hid_open_report
);
1296 * Convert a signed n-bit integer to signed 32-bit integer. Common
1297 * cases are done through the compiler, the screwed things has to be
1301 static s32
snto32(__u32 value
, unsigned n
)
1304 case 8: return ((__s8
)value
);
1305 case 16: return ((__s16
)value
);
1306 case 32: return ((__s32
)value
);
1308 return value
& (1 << (n
- 1)) ? value
| (~0U << n
) : value
;
1311 s32
hid_snto32(__u32 value
, unsigned n
)
1313 return snto32(value
, n
);
1315 EXPORT_SYMBOL_GPL(hid_snto32
);
1318 * Convert a signed 32-bit integer to a signed n-bit integer.
1321 static u32
s32ton(__s32 value
, unsigned n
)
1323 s32 a
= value
>> (n
- 1);
1325 return value
< 0 ? 1 << (n
- 1) : (1 << (n
- 1)) - 1;
1326 return value
& ((1 << n
) - 1);
1330 * Extract/implement a data field from/to a little endian report (bit array).
1332 * Code sort-of follows HID spec:
1333 * http://www.usb.org/developers/hidpage/HID1_11.pdf
1335 * While the USB HID spec allows unlimited length bit fields in "report
1336 * descriptors", most devices never use more than 16 bits.
1337 * One model of UPS is claimed to report "LINEV" as a 32-bit field.
1338 * Search linux-kernel and linux-usb-devel archives for "hid-core extract".
1341 static u32
__extract(u8
*report
, unsigned offset
, int n
)
1343 unsigned int idx
= offset
/ 8;
1344 unsigned int bit_nr
= 0;
1345 unsigned int bit_shift
= offset
% 8;
1346 int bits_to_copy
= 8 - bit_shift
;
1348 u32 mask
= n
< 32 ? (1U << n
) - 1 : ~0U;
1351 value
|= ((u32
)report
[idx
] >> bit_shift
) << bit_nr
;
1353 bit_nr
+= bits_to_copy
;
1359 return value
& mask
;
1362 u32
hid_field_extract(const struct hid_device
*hid
, u8
*report
,
1363 unsigned offset
, unsigned n
)
1366 hid_warn_once(hid
, "%s() called with n (%d) > 32! (%s)\n",
1367 __func__
, n
, current
->comm
);
1371 return __extract(report
, offset
, n
);
1373 EXPORT_SYMBOL_GPL(hid_field_extract
);
1376 * "implement" : set bits in a little endian bit stream.
1377 * Same concepts as "extract" (see comments above).
1378 * The data mangled in the bit stream remains in little endian
1379 * order the whole time. It make more sense to talk about
1380 * endianness of register values by considering a register
1381 * a "cached" copy of the little endian bit stream.
1384 static void __implement(u8
*report
, unsigned offset
, int n
, u32 value
)
1386 unsigned int idx
= offset
/ 8;
1387 unsigned int bit_shift
= offset
% 8;
1388 int bits_to_set
= 8 - bit_shift
;
1390 while (n
- bits_to_set
>= 0) {
1391 report
[idx
] &= ~(0xff << bit_shift
);
1392 report
[idx
] |= value
<< bit_shift
;
1393 value
>>= bits_to_set
;
1402 u8 bit_mask
= ((1U << n
) - 1);
1403 report
[idx
] &= ~(bit_mask
<< bit_shift
);
1404 report
[idx
] |= value
<< bit_shift
;
1408 static void implement(const struct hid_device
*hid
, u8
*report
,
1409 unsigned offset
, unsigned n
, u32 value
)
1411 if (unlikely(n
> 32)) {
1412 hid_warn(hid
, "%s() called with n (%d) > 32! (%s)\n",
1413 __func__
, n
, current
->comm
);
1415 } else if (n
< 32) {
1416 u32 m
= (1U << n
) - 1;
1418 if (unlikely(value
> m
)) {
1420 "%s() called with too large value %d (n: %d)! (%s)\n",
1421 __func__
, value
, n
, current
->comm
);
1427 __implement(report
, offset
, n
, value
);
1431 * Search an array for a value.
1434 static int search(__s32
*array
, __s32 value
, unsigned n
)
1437 if (*array
++ == value
)
1444 * hid_match_report - check if driver's raw_event should be called
1447 * @report_type: type to match against
1449 * compare hid->driver->report_table->report_type to report->type
1451 static int hid_match_report(struct hid_device
*hid
, struct hid_report
*report
)
1453 const struct hid_report_id
*id
= hid
->driver
->report_table
;
1455 if (!id
) /* NULL means all */
1458 for (; id
->report_type
!= HID_TERMINATOR
; id
++)
1459 if (id
->report_type
== HID_ANY_ID
||
1460 id
->report_type
== report
->type
)
1466 * hid_match_usage - check if driver's event should be called
1469 * @usage: usage to match against
1471 * compare hid->driver->usage_table->usage_{type,code} to
1472 * usage->usage_{type,code}
1474 static int hid_match_usage(struct hid_device
*hid
, struct hid_usage
*usage
)
1476 const struct hid_usage_id
*id
= hid
->driver
->usage_table
;
1478 if (!id
) /* NULL means all */
1481 for (; id
->usage_type
!= HID_ANY_ID
- 1; id
++)
1482 if ((id
->usage_hid
== HID_ANY_ID
||
1483 id
->usage_hid
== usage
->hid
) &&
1484 (id
->usage_type
== HID_ANY_ID
||
1485 id
->usage_type
== usage
->type
) &&
1486 (id
->usage_code
== HID_ANY_ID
||
1487 id
->usage_code
== usage
->code
))
1492 static void hid_process_event(struct hid_device
*hid
, struct hid_field
*field
,
1493 struct hid_usage
*usage
, __s32 value
, int interrupt
)
1495 struct hid_driver
*hdrv
= hid
->driver
;
1498 if (!list_empty(&hid
->debug_list
))
1499 hid_dump_input(hid
, usage
, value
);
1501 if (hdrv
&& hdrv
->event
&& hid_match_usage(hid
, usage
)) {
1502 ret
= hdrv
->event(hid
, field
, usage
, value
);
1505 hid_err(hid
, "%s's event failed with %d\n",
1511 if (hid
->claimed
& HID_CLAIMED_INPUT
)
1512 hidinput_hid_event(hid
, field
, usage
, value
);
1513 if (hid
->claimed
& HID_CLAIMED_HIDDEV
&& interrupt
&& hid
->hiddev_hid_event
)
1514 hid
->hiddev_hid_event(hid
, field
, usage
, value
);
1518 * Analyse a received field, and fetch the data from it. The field
1519 * content is stored for next report processing (we do differential
1520 * reporting to the layer).
1523 static void hid_input_field(struct hid_device
*hid
, struct hid_field
*field
,
1524 __u8
*data
, int interrupt
)
1527 unsigned count
= field
->report_count
;
1528 unsigned offset
= field
->report_offset
;
1529 unsigned size
= field
->report_size
;
1530 __s32 min
= field
->logical_minimum
;
1531 __s32 max
= field
->logical_maximum
;
1534 value
= kmalloc_array(count
, sizeof(__s32
), GFP_ATOMIC
);
1538 for (n
= 0; n
< count
; n
++) {
1540 value
[n
] = min
< 0 ?
1541 snto32(hid_field_extract(hid
, data
, offset
+ n
* size
,
1543 hid_field_extract(hid
, data
, offset
+ n
* size
, size
);
1545 /* Ignore report if ErrorRollOver */
1546 if (!(field
->flags
& HID_MAIN_ITEM_VARIABLE
) &&
1547 value
[n
] >= min
&& value
[n
] <= max
&&
1548 value
[n
] - min
< field
->maxusage
&&
1549 field
->usage
[value
[n
] - min
].hid
== HID_UP_KEYBOARD
+ 1)
1553 for (n
= 0; n
< count
; n
++) {
1555 if (HID_MAIN_ITEM_VARIABLE
& field
->flags
) {
1556 hid_process_event(hid
, field
, &field
->usage
[n
], value
[n
], interrupt
);
1560 if (field
->value
[n
] >= min
&& field
->value
[n
] <= max
1561 && field
->value
[n
] - min
< field
->maxusage
1562 && field
->usage
[field
->value
[n
] - min
].hid
1563 && search(value
, field
->value
[n
], count
))
1564 hid_process_event(hid
, field
, &field
->usage
[field
->value
[n
] - min
], 0, interrupt
);
1566 if (value
[n
] >= min
&& value
[n
] <= max
1567 && value
[n
] - min
< field
->maxusage
1568 && field
->usage
[value
[n
] - min
].hid
1569 && search(field
->value
, value
[n
], count
))
1570 hid_process_event(hid
, field
, &field
->usage
[value
[n
] - min
], 1, interrupt
);
1573 memcpy(field
->value
, value
, count
* sizeof(__s32
));
1579 * Output the field into the report.
1582 static void hid_output_field(const struct hid_device
*hid
,
1583 struct hid_field
*field
, __u8
*data
)
1585 unsigned count
= field
->report_count
;
1586 unsigned offset
= field
->report_offset
;
1587 unsigned size
= field
->report_size
;
1590 for (n
= 0; n
< count
; n
++) {
1591 if (field
->logical_minimum
< 0) /* signed values */
1592 implement(hid
, data
, offset
+ n
* size
, size
,
1593 s32ton(field
->value
[n
], size
));
1594 else /* unsigned values */
1595 implement(hid
, data
, offset
+ n
* size
, size
,
1601 * Compute the size of a report.
1603 static size_t hid_compute_report_size(struct hid_report
*report
)
1606 return ((report
->size
- 1) >> 3) + 1;
1612 * Create a report. 'data' has to be allocated using
1613 * hid_alloc_report_buf() so that it has proper size.
1616 void hid_output_report(struct hid_report
*report
, __u8
*data
)
1621 *data
++ = report
->id
;
1623 memset(data
, 0, hid_compute_report_size(report
));
1624 for (n
= 0; n
< report
->maxfield
; n
++)
1625 hid_output_field(report
->device
, report
->field
[n
], data
);
1627 EXPORT_SYMBOL_GPL(hid_output_report
);
1630 * Allocator for buffer that is going to be passed to hid_output_report()
1632 u8
*hid_alloc_report_buf(struct hid_report
*report
, gfp_t flags
)
1635 * 7 extra bytes are necessary to achieve proper functionality
1636 * of implement() working on 8 byte chunks
1639 u32 len
= hid_report_len(report
) + 7;
1641 return kmalloc(len
, flags
);
1643 EXPORT_SYMBOL_GPL(hid_alloc_report_buf
);
1646 * Set a field value. The report this field belongs to has to be
1647 * created and transferred to the device, to set this value in the
1651 int hid_set_field(struct hid_field
*field
, unsigned offset
, __s32 value
)
1658 size
= field
->report_size
;
1660 hid_dump_input(field
->report
->device
, field
->usage
+ offset
, value
);
1662 if (offset
>= field
->report_count
) {
1663 hid_err(field
->report
->device
, "offset (%d) exceeds report_count (%d)\n",
1664 offset
, field
->report_count
);
1667 if (field
->logical_minimum
< 0) {
1668 if (value
!= snto32(s32ton(value
, size
), size
)) {
1669 hid_err(field
->report
->device
, "value %d is out of range\n", value
);
1673 field
->value
[offset
] = value
;
1676 EXPORT_SYMBOL_GPL(hid_set_field
);
1678 static struct hid_report
*hid_get_report(struct hid_report_enum
*report_enum
,
1681 struct hid_report
*report
;
1682 unsigned int n
= 0; /* Normally report number is 0 */
1684 /* Device uses numbered reports, data[0] is report number */
1685 if (report_enum
->numbered
)
1688 report
= report_enum
->report_id_hash
[n
];
1690 dbg_hid("undefined report_id %u received\n", n
);
1696 * Implement a generic .request() callback, using .raw_request()
1697 * DO NOT USE in hid drivers directly, but through hid_hw_request instead.
1699 int __hid_request(struct hid_device
*hid
, struct hid_report
*report
,
1706 buf
= hid_alloc_report_buf(report
, GFP_KERNEL
);
1710 len
= hid_report_len(report
);
1712 if (reqtype
== HID_REQ_SET_REPORT
)
1713 hid_output_report(report
, buf
);
1715 ret
= hid
->ll_driver
->raw_request(hid
, report
->id
, buf
, len
,
1716 report
->type
, reqtype
);
1718 dbg_hid("unable to complete request: %d\n", ret
);
1722 if (reqtype
== HID_REQ_GET_REPORT
)
1723 hid_input_report(hid
, report
->type
, buf
, ret
, 0);
1731 EXPORT_SYMBOL_GPL(__hid_request
);
1733 int hid_report_raw_event(struct hid_device
*hid
, int type
, u8
*data
, u32 size
,
1736 struct hid_report_enum
*report_enum
= hid
->report_enum
+ type
;
1737 struct hid_report
*report
;
1738 struct hid_driver
*hdrv
;
1740 u32 rsize
, csize
= size
;
1744 report
= hid_get_report(report_enum
, data
);
1748 if (report_enum
->numbered
) {
1753 rsize
= hid_compute_report_size(report
);
1755 if (report_enum
->numbered
&& rsize
>= HID_MAX_BUFFER_SIZE
)
1756 rsize
= HID_MAX_BUFFER_SIZE
- 1;
1757 else if (rsize
> HID_MAX_BUFFER_SIZE
)
1758 rsize
= HID_MAX_BUFFER_SIZE
;
1760 if (csize
< rsize
) {
1761 dbg_hid("report %d is too short, (%d < %d)\n", report
->id
,
1763 memset(cdata
+ csize
, 0, rsize
- csize
);
1766 if ((hid
->claimed
& HID_CLAIMED_HIDDEV
) && hid
->hiddev_report_event
)
1767 hid
->hiddev_report_event(hid
, report
);
1768 if (hid
->claimed
& HID_CLAIMED_HIDRAW
) {
1769 ret
= hidraw_report_event(hid
, data
, size
);
1774 if (hid
->claimed
!= HID_CLAIMED_HIDRAW
&& report
->maxfield
) {
1775 for (a
= 0; a
< report
->maxfield
; a
++)
1776 hid_input_field(hid
, report
->field
[a
], cdata
, interrupt
);
1778 if (hdrv
&& hdrv
->report
)
1779 hdrv
->report(hid
, report
);
1782 if (hid
->claimed
& HID_CLAIMED_INPUT
)
1783 hidinput_report_event(hid
, report
);
1787 EXPORT_SYMBOL_GPL(hid_report_raw_event
);
1790 * hid_input_report - report data from lower layer (usb, bt...)
1793 * @type: HID report type (HID_*_REPORT)
1794 * @data: report contents
1795 * @size: size of data parameter
1796 * @interrupt: distinguish between interrupt and control transfers
1798 * This is data entry for lower layers.
1800 int hid_input_report(struct hid_device
*hid
, int type
, u8
*data
, u32 size
, int interrupt
)
1802 struct hid_report_enum
*report_enum
;
1803 struct hid_driver
*hdrv
;
1804 struct hid_report
*report
;
1810 if (down_trylock(&hid
->driver_input_lock
))
1817 report_enum
= hid
->report_enum
+ type
;
1821 dbg_hid("empty report\n");
1826 /* Avoid unnecessary overhead if debugfs is disabled */
1827 if (!list_empty(&hid
->debug_list
))
1828 hid_dump_report(hid
, type
, data
, size
);
1830 report
= hid_get_report(report_enum
, data
);
1837 if (hdrv
&& hdrv
->raw_event
&& hid_match_report(hid
, report
)) {
1838 ret
= hdrv
->raw_event(hid
, report
, data
, size
);
1843 ret
= hid_report_raw_event(hid
, type
, data
, size
, interrupt
);
1846 up(&hid
->driver_input_lock
);
1849 EXPORT_SYMBOL_GPL(hid_input_report
);
1851 bool hid_match_one_id(const struct hid_device
*hdev
,
1852 const struct hid_device_id
*id
)
1854 return (id
->bus
== HID_BUS_ANY
|| id
->bus
== hdev
->bus
) &&
1855 (id
->group
== HID_GROUP_ANY
|| id
->group
== hdev
->group
) &&
1856 (id
->vendor
== HID_ANY_ID
|| id
->vendor
== hdev
->vendor
) &&
1857 (id
->product
== HID_ANY_ID
|| id
->product
== hdev
->product
);
1860 const struct hid_device_id
*hid_match_id(const struct hid_device
*hdev
,
1861 const struct hid_device_id
*id
)
1863 for (; id
->bus
; id
++)
1864 if (hid_match_one_id(hdev
, id
))
1870 static const struct hid_device_id hid_hiddev_list
[] = {
1871 { HID_USB_DEVICE(USB_VENDOR_ID_MGE
, USB_DEVICE_ID_MGE_UPS
) },
1872 { HID_USB_DEVICE(USB_VENDOR_ID_MGE
, USB_DEVICE_ID_MGE_UPS1
) },
1876 static bool hid_hiddev(struct hid_device
*hdev
)
1878 return !!hid_match_id(hdev
, hid_hiddev_list
);
1883 read_report_descriptor(struct file
*filp
, struct kobject
*kobj
,
1884 struct bin_attribute
*attr
,
1885 char *buf
, loff_t off
, size_t count
)
1887 struct device
*dev
= kobj_to_dev(kobj
);
1888 struct hid_device
*hdev
= to_hid_device(dev
);
1890 if (off
>= hdev
->rsize
)
1893 if (off
+ count
> hdev
->rsize
)
1894 count
= hdev
->rsize
- off
;
1896 memcpy(buf
, hdev
->rdesc
+ off
, count
);
1902 show_country(struct device
*dev
, struct device_attribute
*attr
,
1905 struct hid_device
*hdev
= to_hid_device(dev
);
1907 return sprintf(buf
, "%02x\n", hdev
->country
& 0xff);
1910 static struct bin_attribute dev_bin_attr_report_desc
= {
1911 .attr
= { .name
= "report_descriptor", .mode
= 0444 },
1912 .read
= read_report_descriptor
,
1913 .size
= HID_MAX_DESCRIPTOR_SIZE
,
1916 static const struct device_attribute dev_attr_country
= {
1917 .attr
= { .name
= "country", .mode
= 0444 },
1918 .show
= show_country
,
1921 int hid_connect(struct hid_device
*hdev
, unsigned int connect_mask
)
1923 static const char *types
[] = { "Device", "Pointer", "Mouse", "Device",
1924 "Joystick", "Gamepad", "Keyboard", "Keypad",
1925 "Multi-Axis Controller"
1927 const char *type
, *bus
;
1933 if (hdev
->quirks
& HID_QUIRK_HIDDEV_FORCE
)
1934 connect_mask
|= (HID_CONNECT_HIDDEV_FORCE
| HID_CONNECT_HIDDEV
);
1935 if (hdev
->quirks
& HID_QUIRK_HIDINPUT_FORCE
)
1936 connect_mask
|= HID_CONNECT_HIDINPUT_FORCE
;
1937 if (hdev
->bus
!= BUS_USB
)
1938 connect_mask
&= ~HID_CONNECT_HIDDEV
;
1939 if (hid_hiddev(hdev
))
1940 connect_mask
|= HID_CONNECT_HIDDEV_FORCE
;
1942 if ((connect_mask
& HID_CONNECT_HIDINPUT
) && !hidinput_connect(hdev
,
1943 connect_mask
& HID_CONNECT_HIDINPUT_FORCE
))
1944 hdev
->claimed
|= HID_CLAIMED_INPUT
;
1946 if ((connect_mask
& HID_CONNECT_HIDDEV
) && hdev
->hiddev_connect
&&
1947 !hdev
->hiddev_connect(hdev
,
1948 connect_mask
& HID_CONNECT_HIDDEV_FORCE
))
1949 hdev
->claimed
|= HID_CLAIMED_HIDDEV
;
1950 if ((connect_mask
& HID_CONNECT_HIDRAW
) && !hidraw_connect(hdev
))
1951 hdev
->claimed
|= HID_CLAIMED_HIDRAW
;
1953 if (connect_mask
& HID_CONNECT_DRIVER
)
1954 hdev
->claimed
|= HID_CLAIMED_DRIVER
;
1956 /* Drivers with the ->raw_event callback set are not required to connect
1957 * to any other listener. */
1958 if (!hdev
->claimed
&& !hdev
->driver
->raw_event
) {
1959 hid_err(hdev
, "device has no listeners, quitting\n");
1963 if ((hdev
->claimed
& HID_CLAIMED_INPUT
) &&
1964 (connect_mask
& HID_CONNECT_FF
) && hdev
->ff_init
)
1965 hdev
->ff_init(hdev
);
1968 if (hdev
->claimed
& HID_CLAIMED_INPUT
)
1969 len
+= sprintf(buf
+ len
, "input");
1970 if (hdev
->claimed
& HID_CLAIMED_HIDDEV
)
1971 len
+= sprintf(buf
+ len
, "%shiddev%d", len
? "," : "",
1972 ((struct hiddev
*)hdev
->hiddev
)->minor
);
1973 if (hdev
->claimed
& HID_CLAIMED_HIDRAW
)
1974 len
+= sprintf(buf
+ len
, "%shidraw%d", len
? "," : "",
1975 ((struct hidraw
*)hdev
->hidraw
)->minor
);
1978 for (i
= 0; i
< hdev
->maxcollection
; i
++) {
1979 struct hid_collection
*col
= &hdev
->collection
[i
];
1980 if (col
->type
== HID_COLLECTION_APPLICATION
&&
1981 (col
->usage
& HID_USAGE_PAGE
) == HID_UP_GENDESK
&&
1982 (col
->usage
& 0xffff) < ARRAY_SIZE(types
)) {
1983 type
= types
[col
->usage
& 0xffff];
1988 switch (hdev
->bus
) {
2002 ret
= device_create_file(&hdev
->dev
, &dev_attr_country
);
2005 "can't create sysfs country code attribute err: %d\n", ret
);
2007 hid_info(hdev
, "%s: %s HID v%x.%02x %s [%s] on %s\n",
2008 buf
, bus
, hdev
->version
>> 8, hdev
->version
& 0xff,
2009 type
, hdev
->name
, hdev
->phys
);
2013 EXPORT_SYMBOL_GPL(hid_connect
);
2015 void hid_disconnect(struct hid_device
*hdev
)
2017 device_remove_file(&hdev
->dev
, &dev_attr_country
);
2018 if (hdev
->claimed
& HID_CLAIMED_INPUT
)
2019 hidinput_disconnect(hdev
);
2020 if (hdev
->claimed
& HID_CLAIMED_HIDDEV
)
2021 hdev
->hiddev_disconnect(hdev
);
2022 if (hdev
->claimed
& HID_CLAIMED_HIDRAW
)
2023 hidraw_disconnect(hdev
);
2026 EXPORT_SYMBOL_GPL(hid_disconnect
);
2029 * hid_hw_start - start underlying HW
2031 * @connect_mask: which outputs to connect, see HID_CONNECT_*
2033 * Call this in probe function *after* hid_parse. This will setup HW
2034 * buffers and start the device (if not defeirred to device open).
2035 * hid_hw_stop must be called if this was successful.
2037 int hid_hw_start(struct hid_device
*hdev
, unsigned int connect_mask
)
2041 error
= hdev
->ll_driver
->start(hdev
);
2046 error
= hid_connect(hdev
, connect_mask
);
2048 hdev
->ll_driver
->stop(hdev
);
2055 EXPORT_SYMBOL_GPL(hid_hw_start
);
2058 * hid_hw_stop - stop underlying HW
2061 * This is usually called from remove function or from probe when something
2062 * failed and hid_hw_start was called already.
2064 void hid_hw_stop(struct hid_device
*hdev
)
2066 hid_disconnect(hdev
);
2067 hdev
->ll_driver
->stop(hdev
);
2069 EXPORT_SYMBOL_GPL(hid_hw_stop
);
2072 * hid_hw_open - signal underlying HW to start delivering events
2075 * Tell underlying HW to start delivering events from the device.
2076 * This function should be called sometime after successful call
2077 * to hid_hw_start().
2079 int hid_hw_open(struct hid_device
*hdev
)
2083 ret
= mutex_lock_killable(&hdev
->ll_open_lock
);
2087 if (!hdev
->ll_open_count
++) {
2088 ret
= hdev
->ll_driver
->open(hdev
);
2090 hdev
->ll_open_count
--;
2093 mutex_unlock(&hdev
->ll_open_lock
);
2096 EXPORT_SYMBOL_GPL(hid_hw_open
);
2099 * hid_hw_close - signal underlaying HW to stop delivering events
2103 * This function indicates that we are not interested in the events
2104 * from this device anymore. Delivery of events may or may not stop,
2105 * depending on the number of users still outstanding.
2107 void hid_hw_close(struct hid_device
*hdev
)
2109 mutex_lock(&hdev
->ll_open_lock
);
2110 if (!--hdev
->ll_open_count
)
2111 hdev
->ll_driver
->close(hdev
);
2112 mutex_unlock(&hdev
->ll_open_lock
);
2114 EXPORT_SYMBOL_GPL(hid_hw_close
);
2117 struct list_head list
;
2118 struct hid_device_id id
;
2122 * store_new_id - add a new HID device ID to this driver and re-probe devices
2123 * @driver: target device driver
2124 * @buf: buffer for scanning device ID data
2125 * @count: input size
2127 * Adds a new dynamic hid device ID to this driver,
2128 * and causes the driver to probe for all devices again.
2130 static ssize_t
new_id_store(struct device_driver
*drv
, const char *buf
,
2133 struct hid_driver
*hdrv
= to_hid_driver(drv
);
2134 struct hid_dynid
*dynid
;
2135 __u32 bus
, vendor
, product
;
2136 unsigned long driver_data
= 0;
2139 ret
= sscanf(buf
, "%x %x %x %lx",
2140 &bus
, &vendor
, &product
, &driver_data
);
2144 dynid
= kzalloc(sizeof(*dynid
), GFP_KERNEL
);
2148 dynid
->id
.bus
= bus
;
2149 dynid
->id
.group
= HID_GROUP_ANY
;
2150 dynid
->id
.vendor
= vendor
;
2151 dynid
->id
.product
= product
;
2152 dynid
->id
.driver_data
= driver_data
;
2154 spin_lock(&hdrv
->dyn_lock
);
2155 list_add_tail(&dynid
->list
, &hdrv
->dyn_list
);
2156 spin_unlock(&hdrv
->dyn_lock
);
2158 ret
= driver_attach(&hdrv
->driver
);
2160 return ret
? : count
;
2162 static DRIVER_ATTR_WO(new_id
);
2164 static struct attribute
*hid_drv_attrs
[] = {
2165 &driver_attr_new_id
.attr
,
2168 ATTRIBUTE_GROUPS(hid_drv
);
2170 static void hid_free_dynids(struct hid_driver
*hdrv
)
2172 struct hid_dynid
*dynid
, *n
;
2174 spin_lock(&hdrv
->dyn_lock
);
2175 list_for_each_entry_safe(dynid
, n
, &hdrv
->dyn_list
, list
) {
2176 list_del(&dynid
->list
);
2179 spin_unlock(&hdrv
->dyn_lock
);
2182 const struct hid_device_id
*hid_match_device(struct hid_device
*hdev
,
2183 struct hid_driver
*hdrv
)
2185 struct hid_dynid
*dynid
;
2187 spin_lock(&hdrv
->dyn_lock
);
2188 list_for_each_entry(dynid
, &hdrv
->dyn_list
, list
) {
2189 if (hid_match_one_id(hdev
, &dynid
->id
)) {
2190 spin_unlock(&hdrv
->dyn_lock
);
2194 spin_unlock(&hdrv
->dyn_lock
);
2196 return hid_match_id(hdev
, hdrv
->id_table
);
2198 EXPORT_SYMBOL_GPL(hid_match_device
);
2200 static int hid_bus_match(struct device
*dev
, struct device_driver
*drv
)
2202 struct hid_driver
*hdrv
= to_hid_driver(drv
);
2203 struct hid_device
*hdev
= to_hid_device(dev
);
2205 return hid_match_device(hdev
, hdrv
) != NULL
;
2209 * hid_compare_device_paths - check if both devices share the same path
2210 * @hdev_a: hid device
2211 * @hdev_b: hid device
2212 * @separator: char to use as separator
2214 * Check if two devices share the same path up to the last occurrence of
2215 * the separator char. Both paths must exist (i.e., zero-length paths
2218 bool hid_compare_device_paths(struct hid_device
*hdev_a
,
2219 struct hid_device
*hdev_b
, char separator
)
2221 int n1
= strrchr(hdev_a
->phys
, separator
) - hdev_a
->phys
;
2222 int n2
= strrchr(hdev_b
->phys
, separator
) - hdev_b
->phys
;
2224 if (n1
!= n2
|| n1
<= 0 || n2
<= 0)
2227 return !strncmp(hdev_a
->phys
, hdev_b
->phys
, n1
);
2229 EXPORT_SYMBOL_GPL(hid_compare_device_paths
);
2231 static int hid_device_probe(struct device
*dev
)
2233 struct hid_driver
*hdrv
= to_hid_driver(dev
->driver
);
2234 struct hid_device
*hdev
= to_hid_device(dev
);
2235 const struct hid_device_id
*id
;
2238 if (down_interruptible(&hdev
->driver_input_lock
)) {
2242 hdev
->io_started
= false;
2244 clear_bit(ffs(HID_STAT_REPROBED
), &hdev
->status
);
2246 if (!hdev
->driver
) {
2247 id
= hid_match_device(hdev
, hdrv
);
2254 if (!hdrv
->match(hdev
, hid_ignore_special_drivers
)) {
2260 * hid-generic implements .match(), so if
2261 * hid_ignore_special_drivers is set, we can safely
2264 if (hid_ignore_special_drivers
) {
2270 /* reset the quirks that has been previously set */
2271 hdev
->quirks
= hid_lookup_quirk(hdev
);
2272 hdev
->driver
= hdrv
;
2274 ret
= hdrv
->probe(hdev
, id
);
2275 } else { /* default probe */
2276 ret
= hid_open_report(hdev
);
2278 ret
= hid_hw_start(hdev
, HID_CONNECT_DEFAULT
);
2281 hid_close_report(hdev
);
2282 hdev
->driver
= NULL
;
2286 if (!hdev
->io_started
)
2287 up(&hdev
->driver_input_lock
);
2292 static int hid_device_remove(struct device
*dev
)
2294 struct hid_device
*hdev
= to_hid_device(dev
);
2295 struct hid_driver
*hdrv
;
2298 if (down_interruptible(&hdev
->driver_input_lock
)) {
2302 hdev
->io_started
= false;
2304 hdrv
= hdev
->driver
;
2308 else /* default remove */
2310 hid_close_report(hdev
);
2311 hdev
->driver
= NULL
;
2314 if (!hdev
->io_started
)
2315 up(&hdev
->driver_input_lock
);
2320 static ssize_t
modalias_show(struct device
*dev
, struct device_attribute
*a
,
2323 struct hid_device
*hdev
= container_of(dev
, struct hid_device
, dev
);
2325 return scnprintf(buf
, PAGE_SIZE
, "hid:b%04Xg%04Xv%08Xp%08X\n",
2326 hdev
->bus
, hdev
->group
, hdev
->vendor
, hdev
->product
);
2328 static DEVICE_ATTR_RO(modalias
);
2330 static struct attribute
*hid_dev_attrs
[] = {
2331 &dev_attr_modalias
.attr
,
2334 static struct bin_attribute
*hid_dev_bin_attrs
[] = {
2335 &dev_bin_attr_report_desc
,
2338 static const struct attribute_group hid_dev_group
= {
2339 .attrs
= hid_dev_attrs
,
2340 .bin_attrs
= hid_dev_bin_attrs
,
2342 __ATTRIBUTE_GROUPS(hid_dev
);
2344 static int hid_uevent(struct device
*dev
, struct kobj_uevent_env
*env
)
2346 struct hid_device
*hdev
= to_hid_device(dev
);
2348 if (add_uevent_var(env
, "HID_ID=%04X:%08X:%08X",
2349 hdev
->bus
, hdev
->vendor
, hdev
->product
))
2352 if (add_uevent_var(env
, "HID_NAME=%s", hdev
->name
))
2355 if (add_uevent_var(env
, "HID_PHYS=%s", hdev
->phys
))
2358 if (add_uevent_var(env
, "HID_UNIQ=%s", hdev
->uniq
))
2361 if (add_uevent_var(env
, "MODALIAS=hid:b%04Xg%04Xv%08Xp%08X",
2362 hdev
->bus
, hdev
->group
, hdev
->vendor
, hdev
->product
))
2368 struct bus_type hid_bus_type
= {
2370 .dev_groups
= hid_dev_groups
,
2371 .drv_groups
= hid_drv_groups
,
2372 .match
= hid_bus_match
,
2373 .probe
= hid_device_probe
,
2374 .remove
= hid_device_remove
,
2375 .uevent
= hid_uevent
,
2377 EXPORT_SYMBOL(hid_bus_type
);
2379 int hid_add_device(struct hid_device
*hdev
)
2381 static atomic_t id
= ATOMIC_INIT(0);
2384 if (WARN_ON(hdev
->status
& HID_STAT_ADDED
))
2387 hdev
->quirks
= hid_lookup_quirk(hdev
);
2389 /* we need to kill them here, otherwise they will stay allocated to
2390 * wait for coming driver */
2391 if (hid_ignore(hdev
))
2395 * Check for the mandatory transport channel.
2397 if (!hdev
->ll_driver
->raw_request
) {
2398 hid_err(hdev
, "transport driver missing .raw_request()\n");
2403 * Read the device report descriptor once and use as template
2404 * for the driver-specific modifications.
2406 ret
= hdev
->ll_driver
->parse(hdev
);
2409 if (!hdev
->dev_rdesc
)
2413 * Scan generic devices for group information
2415 if (hid_ignore_special_drivers
) {
2416 hdev
->group
= HID_GROUP_GENERIC
;
2417 } else if (!hdev
->group
&&
2418 !(hdev
->quirks
& HID_QUIRK_HAVE_SPECIAL_DRIVER
)) {
2419 ret
= hid_scan_report(hdev
);
2421 hid_warn(hdev
, "bad device descriptor (%d)\n", ret
);
2424 /* XXX hack, any other cleaner solution after the driver core
2425 * is converted to allow more than 20 bytes as the device name? */
2426 dev_set_name(&hdev
->dev
, "%04X:%04X:%04X.%04X", hdev
->bus
,
2427 hdev
->vendor
, hdev
->product
, atomic_inc_return(&id
));
2429 hid_debug_register(hdev
, dev_name(&hdev
->dev
));
2430 ret
= device_add(&hdev
->dev
);
2432 hdev
->status
|= HID_STAT_ADDED
;
2434 hid_debug_unregister(hdev
);
2438 EXPORT_SYMBOL_GPL(hid_add_device
);
2441 * hid_allocate_device - allocate new hid device descriptor
2443 * Allocate and initialize hid device, so that hid_destroy_device might be
2446 * New hid_device pointer is returned on success, otherwise ERR_PTR encoded
2449 struct hid_device
*hid_allocate_device(void)
2451 struct hid_device
*hdev
;
2454 hdev
= kzalloc(sizeof(*hdev
), GFP_KERNEL
);
2456 return ERR_PTR(ret
);
2458 device_initialize(&hdev
->dev
);
2459 hdev
->dev
.release
= hid_device_release
;
2460 hdev
->dev
.bus
= &hid_bus_type
;
2461 device_enable_async_suspend(&hdev
->dev
);
2463 hid_close_report(hdev
);
2465 init_waitqueue_head(&hdev
->debug_wait
);
2466 INIT_LIST_HEAD(&hdev
->debug_list
);
2467 spin_lock_init(&hdev
->debug_list_lock
);
2468 sema_init(&hdev
->driver_input_lock
, 1);
2469 mutex_init(&hdev
->ll_open_lock
);
2473 EXPORT_SYMBOL_GPL(hid_allocate_device
);
2475 static void hid_remove_device(struct hid_device
*hdev
)
2477 if (hdev
->status
& HID_STAT_ADDED
) {
2478 device_del(&hdev
->dev
);
2479 hid_debug_unregister(hdev
);
2480 hdev
->status
&= ~HID_STAT_ADDED
;
2482 kfree(hdev
->dev_rdesc
);
2483 hdev
->dev_rdesc
= NULL
;
2484 hdev
->dev_rsize
= 0;
2488 * hid_destroy_device - free previously allocated device
2492 * If you allocate hid_device through hid_allocate_device, you should ever
2493 * free by this function.
2495 void hid_destroy_device(struct hid_device
*hdev
)
2497 hid_remove_device(hdev
);
2498 put_device(&hdev
->dev
);
2500 EXPORT_SYMBOL_GPL(hid_destroy_device
);
2503 static int __hid_bus_reprobe_drivers(struct device
*dev
, void *data
)
2505 struct hid_driver
*hdrv
= data
;
2506 struct hid_device
*hdev
= to_hid_device(dev
);
2508 if (hdev
->driver
== hdrv
&&
2509 !hdrv
->match(hdev
, hid_ignore_special_drivers
) &&
2510 !test_and_set_bit(ffs(HID_STAT_REPROBED
), &hdev
->status
))
2511 return device_reprobe(dev
);
2516 static int __hid_bus_driver_added(struct device_driver
*drv
, void *data
)
2518 struct hid_driver
*hdrv
= to_hid_driver(drv
);
2521 bus_for_each_dev(&hid_bus_type
, NULL
, hdrv
,
2522 __hid_bus_reprobe_drivers
);
2528 static int __bus_removed_driver(struct device_driver
*drv
, void *data
)
2530 return bus_rescan_devices(&hid_bus_type
);
2533 int __hid_register_driver(struct hid_driver
*hdrv
, struct module
*owner
,
2534 const char *mod_name
)
2538 hdrv
->driver
.name
= hdrv
->name
;
2539 hdrv
->driver
.bus
= &hid_bus_type
;
2540 hdrv
->driver
.owner
= owner
;
2541 hdrv
->driver
.mod_name
= mod_name
;
2543 INIT_LIST_HEAD(&hdrv
->dyn_list
);
2544 spin_lock_init(&hdrv
->dyn_lock
);
2546 ret
= driver_register(&hdrv
->driver
);
2549 bus_for_each_drv(&hid_bus_type
, NULL
, NULL
,
2550 __hid_bus_driver_added
);
2554 EXPORT_SYMBOL_GPL(__hid_register_driver
);
2556 void hid_unregister_driver(struct hid_driver
*hdrv
)
2558 driver_unregister(&hdrv
->driver
);
2559 hid_free_dynids(hdrv
);
2561 bus_for_each_drv(&hid_bus_type
, NULL
, hdrv
, __bus_removed_driver
);
2563 EXPORT_SYMBOL_GPL(hid_unregister_driver
);
2565 int hid_check_keys_pressed(struct hid_device
*hid
)
2567 struct hid_input
*hidinput
;
2570 if (!(hid
->claimed
& HID_CLAIMED_INPUT
))
2573 list_for_each_entry(hidinput
, &hid
->inputs
, list
) {
2574 for (i
= 0; i
< BITS_TO_LONGS(KEY_MAX
); i
++)
2575 if (hidinput
->input
->key
[i
])
2582 EXPORT_SYMBOL_GPL(hid_check_keys_pressed
);
2584 static int __init
hid_init(void)
2589 pr_warn("hid_debug is now used solely for parser and driver debugging.\n"
2590 "debugfs is now used for inspecting the device (report descriptor, reports)\n");
2592 ret
= bus_register(&hid_bus_type
);
2594 pr_err("can't register hid bus\n");
2598 ret
= hidraw_init();
2606 bus_unregister(&hid_bus_type
);
2611 static void __exit
hid_exit(void)
2615 bus_unregister(&hid_bus_type
);
2616 hid_quirks_exit(HID_BUS_ANY
);
2619 module_init(hid_init
);
2620 module_exit(hid_exit
);
2622 MODULE_AUTHOR("Andreas Gal");
2623 MODULE_AUTHOR("Vojtech Pavlik");
2624 MODULE_AUTHOR("Jiri Kosina");
2625 MODULE_LICENSE("GPL");