net: DCB: Validate DCB_ATTR_DCB_BUFFER argument
[linux/fpc-iii.git] / drivers / iommu / arm-smmu.c
blob7c503a6bc5854fbf04cfdd68591fd5c2edb23b9d
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * IOMMU API for ARM architected SMMU implementations.
5 * Copyright (C) 2013 ARM Limited
7 * Author: Will Deacon <will.deacon@arm.com>
9 * This driver currently supports:
10 * - SMMUv1 and v2 implementations
11 * - Stream-matching and stream-indexing
12 * - v7/v8 long-descriptor format
13 * - Non-secure access to the SMMU
14 * - Context fault reporting
15 * - Extended Stream ID (16 bit)
18 #define pr_fmt(fmt) "arm-smmu: " fmt
20 #include <linux/acpi.h>
21 #include <linux/acpi_iort.h>
22 #include <linux/bitfield.h>
23 #include <linux/delay.h>
24 #include <linux/dma-iommu.h>
25 #include <linux/dma-mapping.h>
26 #include <linux/err.h>
27 #include <linux/interrupt.h>
28 #include <linux/io.h>
29 #include <linux/iopoll.h>
30 #include <linux/init.h>
31 #include <linux/moduleparam.h>
32 #include <linux/of.h>
33 #include <linux/of_address.h>
34 #include <linux/of_device.h>
35 #include <linux/of_iommu.h>
36 #include <linux/pci.h>
37 #include <linux/platform_device.h>
38 #include <linux/pm_runtime.h>
39 #include <linux/slab.h>
41 #include <linux/amba/bus.h>
42 #include <linux/fsl/mc.h>
44 #include "arm-smmu.h"
47 * Apparently, some Qualcomm arm64 platforms which appear to expose their SMMU
48 * global register space are still, in fact, using a hypervisor to mediate it
49 * by trapping and emulating register accesses. Sadly, some deployed versions
50 * of said trapping code have bugs wherein they go horribly wrong for stores
51 * using r31 (i.e. XZR/WZR) as the source register.
53 #define QCOM_DUMMY_VAL -1
55 #define TLB_LOOP_TIMEOUT 1000000 /* 1s! */
56 #define TLB_SPIN_COUNT 10
58 #define MSI_IOVA_BASE 0x8000000
59 #define MSI_IOVA_LENGTH 0x100000
61 static int force_stage;
63 * not really modular, but the easiest way to keep compat with existing
64 * bootargs behaviour is to continue using module_param() here.
66 module_param(force_stage, int, S_IRUGO);
67 MODULE_PARM_DESC(force_stage,
68 "Force SMMU mappings to be installed at a particular stage of translation. A value of '1' or '2' forces the corresponding stage. All other values are ignored (i.e. no stage is forced). Note that selecting a specific stage will disable support for nested translation.");
69 static bool disable_bypass =
70 IS_ENABLED(CONFIG_ARM_SMMU_DISABLE_BYPASS_BY_DEFAULT);
71 module_param(disable_bypass, bool, S_IRUGO);
72 MODULE_PARM_DESC(disable_bypass,
73 "Disable bypass streams such that incoming transactions from devices that are not attached to an iommu domain will report an abort back to the device and will not be allowed to pass through the SMMU.");
75 struct arm_smmu_s2cr {
76 struct iommu_group *group;
77 int count;
78 enum arm_smmu_s2cr_type type;
79 enum arm_smmu_s2cr_privcfg privcfg;
80 u8 cbndx;
83 #define s2cr_init_val (struct arm_smmu_s2cr){ \
84 .type = disable_bypass ? S2CR_TYPE_FAULT : S2CR_TYPE_BYPASS, \
87 struct arm_smmu_smr {
88 u16 mask;
89 u16 id;
90 bool valid;
93 struct arm_smmu_cb {
94 u64 ttbr[2];
95 u32 tcr[2];
96 u32 mair[2];
97 struct arm_smmu_cfg *cfg;
100 struct arm_smmu_master_cfg {
101 struct arm_smmu_device *smmu;
102 s16 smendx[];
104 #define INVALID_SMENDX -1
105 #define __fwspec_cfg(fw) ((struct arm_smmu_master_cfg *)fw->iommu_priv)
106 #define fwspec_smmu(fw) (__fwspec_cfg(fw)->smmu)
107 #define fwspec_smendx(fw, i) \
108 (i >= fw->num_ids ? INVALID_SMENDX : __fwspec_cfg(fw)->smendx[i])
109 #define for_each_cfg_sme(fw, i, idx) \
110 for (i = 0; idx = fwspec_smendx(fw, i), i < fw->num_ids; ++i)
112 static bool using_legacy_binding, using_generic_binding;
114 static inline int arm_smmu_rpm_get(struct arm_smmu_device *smmu)
116 if (pm_runtime_enabled(smmu->dev))
117 return pm_runtime_get_sync(smmu->dev);
119 return 0;
122 static inline void arm_smmu_rpm_put(struct arm_smmu_device *smmu)
124 if (pm_runtime_enabled(smmu->dev))
125 pm_runtime_put(smmu->dev);
128 static struct arm_smmu_domain *to_smmu_domain(struct iommu_domain *dom)
130 return container_of(dom, struct arm_smmu_domain, domain);
133 static struct device_node *dev_get_dev_node(struct device *dev)
135 if (dev_is_pci(dev)) {
136 struct pci_bus *bus = to_pci_dev(dev)->bus;
138 while (!pci_is_root_bus(bus))
139 bus = bus->parent;
140 return of_node_get(bus->bridge->parent->of_node);
143 return of_node_get(dev->of_node);
146 static int __arm_smmu_get_pci_sid(struct pci_dev *pdev, u16 alias, void *data)
148 *((__be32 *)data) = cpu_to_be32(alias);
149 return 0; /* Continue walking */
152 static int __find_legacy_master_phandle(struct device *dev, void *data)
154 struct of_phandle_iterator *it = *(void **)data;
155 struct device_node *np = it->node;
156 int err;
158 of_for_each_phandle(it, err, dev->of_node, "mmu-masters",
159 "#stream-id-cells", -1)
160 if (it->node == np) {
161 *(void **)data = dev;
162 return 1;
164 it->node = np;
165 return err == -ENOENT ? 0 : err;
168 static struct platform_driver arm_smmu_driver;
169 static struct iommu_ops arm_smmu_ops;
171 static int arm_smmu_register_legacy_master(struct device *dev,
172 struct arm_smmu_device **smmu)
174 struct device *smmu_dev;
175 struct device_node *np;
176 struct of_phandle_iterator it;
177 void *data = &it;
178 u32 *sids;
179 __be32 pci_sid;
180 int err;
182 np = dev_get_dev_node(dev);
183 if (!np || !of_find_property(np, "#stream-id-cells", NULL)) {
184 of_node_put(np);
185 return -ENODEV;
188 it.node = np;
189 err = driver_for_each_device(&arm_smmu_driver.driver, NULL, &data,
190 __find_legacy_master_phandle);
191 smmu_dev = data;
192 of_node_put(np);
193 if (err == 0)
194 return -ENODEV;
195 if (err < 0)
196 return err;
198 if (dev_is_pci(dev)) {
199 /* "mmu-masters" assumes Stream ID == Requester ID */
200 pci_for_each_dma_alias(to_pci_dev(dev), __arm_smmu_get_pci_sid,
201 &pci_sid);
202 it.cur = &pci_sid;
203 it.cur_count = 1;
206 err = iommu_fwspec_init(dev, &smmu_dev->of_node->fwnode,
207 &arm_smmu_ops);
208 if (err)
209 return err;
211 sids = kcalloc(it.cur_count, sizeof(*sids), GFP_KERNEL);
212 if (!sids)
213 return -ENOMEM;
215 *smmu = dev_get_drvdata(smmu_dev);
216 of_phandle_iterator_args(&it, sids, it.cur_count);
217 err = iommu_fwspec_add_ids(dev, sids, it.cur_count);
218 kfree(sids);
219 return err;
222 static int __arm_smmu_alloc_bitmap(unsigned long *map, int start, int end)
224 int idx;
226 do {
227 idx = find_next_zero_bit(map, end, start);
228 if (idx == end)
229 return -ENOSPC;
230 } while (test_and_set_bit(idx, map));
232 return idx;
235 static void __arm_smmu_free_bitmap(unsigned long *map, int idx)
237 clear_bit(idx, map);
240 /* Wait for any pending TLB invalidations to complete */
241 static void __arm_smmu_tlb_sync(struct arm_smmu_device *smmu, int page,
242 int sync, int status)
244 unsigned int spin_cnt, delay;
245 u32 reg;
247 arm_smmu_writel(smmu, page, sync, QCOM_DUMMY_VAL);
248 for (delay = 1; delay < TLB_LOOP_TIMEOUT; delay *= 2) {
249 for (spin_cnt = TLB_SPIN_COUNT; spin_cnt > 0; spin_cnt--) {
250 reg = arm_smmu_readl(smmu, page, status);
251 if (!(reg & sTLBGSTATUS_GSACTIVE))
252 return;
253 cpu_relax();
255 udelay(delay);
257 dev_err_ratelimited(smmu->dev,
258 "TLB sync timed out -- SMMU may be deadlocked\n");
261 static void arm_smmu_tlb_sync_global(struct arm_smmu_device *smmu)
263 unsigned long flags;
265 spin_lock_irqsave(&smmu->global_sync_lock, flags);
266 __arm_smmu_tlb_sync(smmu, ARM_SMMU_GR0, ARM_SMMU_GR0_sTLBGSYNC,
267 ARM_SMMU_GR0_sTLBGSTATUS);
268 spin_unlock_irqrestore(&smmu->global_sync_lock, flags);
271 static void arm_smmu_tlb_sync_context(void *cookie)
273 struct arm_smmu_domain *smmu_domain = cookie;
274 struct arm_smmu_device *smmu = smmu_domain->smmu;
275 unsigned long flags;
277 spin_lock_irqsave(&smmu_domain->cb_lock, flags);
278 __arm_smmu_tlb_sync(smmu, ARM_SMMU_CB(smmu, smmu_domain->cfg.cbndx),
279 ARM_SMMU_CB_TLBSYNC, ARM_SMMU_CB_TLBSTATUS);
280 spin_unlock_irqrestore(&smmu_domain->cb_lock, flags);
283 static void arm_smmu_tlb_sync_vmid(void *cookie)
285 struct arm_smmu_domain *smmu_domain = cookie;
287 arm_smmu_tlb_sync_global(smmu_domain->smmu);
290 static void arm_smmu_tlb_inv_context_s1(void *cookie)
292 struct arm_smmu_domain *smmu_domain = cookie;
294 * The TLBI write may be relaxed, so ensure that PTEs cleared by the
295 * current CPU are visible beforehand.
297 wmb();
298 arm_smmu_cb_write(smmu_domain->smmu, smmu_domain->cfg.cbndx,
299 ARM_SMMU_CB_S1_TLBIASID, smmu_domain->cfg.asid);
300 arm_smmu_tlb_sync_context(cookie);
303 static void arm_smmu_tlb_inv_context_s2(void *cookie)
305 struct arm_smmu_domain *smmu_domain = cookie;
306 struct arm_smmu_device *smmu = smmu_domain->smmu;
308 /* See above */
309 wmb();
310 arm_smmu_gr0_write(smmu, ARM_SMMU_GR0_TLBIVMID, smmu_domain->cfg.vmid);
311 arm_smmu_tlb_sync_global(smmu);
314 static void arm_smmu_tlb_inv_range_s1(unsigned long iova, size_t size,
315 size_t granule, bool leaf, void *cookie)
317 struct arm_smmu_domain *smmu_domain = cookie;
318 struct arm_smmu_device *smmu = smmu_domain->smmu;
319 struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
320 int reg, idx = cfg->cbndx;
322 if (smmu->features & ARM_SMMU_FEAT_COHERENT_WALK)
323 wmb();
325 reg = leaf ? ARM_SMMU_CB_S1_TLBIVAL : ARM_SMMU_CB_S1_TLBIVA;
327 if (cfg->fmt != ARM_SMMU_CTX_FMT_AARCH64) {
328 iova = (iova >> 12) << 12;
329 iova |= cfg->asid;
330 do {
331 arm_smmu_cb_write(smmu, idx, reg, iova);
332 iova += granule;
333 } while (size -= granule);
334 } else {
335 iova >>= 12;
336 iova |= (u64)cfg->asid << 48;
337 do {
338 arm_smmu_cb_writeq(smmu, idx, reg, iova);
339 iova += granule >> 12;
340 } while (size -= granule);
344 static void arm_smmu_tlb_inv_range_s2(unsigned long iova, size_t size,
345 size_t granule, bool leaf, void *cookie)
347 struct arm_smmu_domain *smmu_domain = cookie;
348 struct arm_smmu_device *smmu = smmu_domain->smmu;
349 int reg, idx = smmu_domain->cfg.cbndx;
351 if (smmu->features & ARM_SMMU_FEAT_COHERENT_WALK)
352 wmb();
354 reg = leaf ? ARM_SMMU_CB_S2_TLBIIPAS2L : ARM_SMMU_CB_S2_TLBIIPAS2;
355 iova >>= 12;
356 do {
357 if (smmu_domain->cfg.fmt == ARM_SMMU_CTX_FMT_AARCH64)
358 arm_smmu_cb_writeq(smmu, idx, reg, iova);
359 else
360 arm_smmu_cb_write(smmu, idx, reg, iova);
361 iova += granule >> 12;
362 } while (size -= granule);
366 * On MMU-401 at least, the cost of firing off multiple TLBIVMIDs appears
367 * almost negligible, but the benefit of getting the first one in as far ahead
368 * of the sync as possible is significant, hence we don't just make this a
369 * no-op and set .tlb_sync to arm_smmu_tlb_inv_context_s2() as you might think.
371 static void arm_smmu_tlb_inv_vmid_nosync(unsigned long iova, size_t size,
372 size_t granule, bool leaf, void *cookie)
374 struct arm_smmu_domain *smmu_domain = cookie;
375 struct arm_smmu_device *smmu = smmu_domain->smmu;
377 if (smmu->features & ARM_SMMU_FEAT_COHERENT_WALK)
378 wmb();
380 arm_smmu_gr0_write(smmu, ARM_SMMU_GR0_TLBIVMID, smmu_domain->cfg.vmid);
383 static void arm_smmu_tlb_inv_walk(unsigned long iova, size_t size,
384 size_t granule, void *cookie)
386 struct arm_smmu_domain *smmu_domain = cookie;
387 const struct arm_smmu_flush_ops *ops = smmu_domain->flush_ops;
389 ops->tlb_inv_range(iova, size, granule, false, cookie);
390 ops->tlb_sync(cookie);
393 static void arm_smmu_tlb_inv_leaf(unsigned long iova, size_t size,
394 size_t granule, void *cookie)
396 struct arm_smmu_domain *smmu_domain = cookie;
397 const struct arm_smmu_flush_ops *ops = smmu_domain->flush_ops;
399 ops->tlb_inv_range(iova, size, granule, true, cookie);
400 ops->tlb_sync(cookie);
403 static void arm_smmu_tlb_add_page(struct iommu_iotlb_gather *gather,
404 unsigned long iova, size_t granule,
405 void *cookie)
407 struct arm_smmu_domain *smmu_domain = cookie;
408 const struct arm_smmu_flush_ops *ops = smmu_domain->flush_ops;
410 ops->tlb_inv_range(iova, granule, granule, true, cookie);
413 static const struct arm_smmu_flush_ops arm_smmu_s1_tlb_ops = {
414 .tlb = {
415 .tlb_flush_all = arm_smmu_tlb_inv_context_s1,
416 .tlb_flush_walk = arm_smmu_tlb_inv_walk,
417 .tlb_flush_leaf = arm_smmu_tlb_inv_leaf,
418 .tlb_add_page = arm_smmu_tlb_add_page,
420 .tlb_inv_range = arm_smmu_tlb_inv_range_s1,
421 .tlb_sync = arm_smmu_tlb_sync_context,
424 static const struct arm_smmu_flush_ops arm_smmu_s2_tlb_ops_v2 = {
425 .tlb = {
426 .tlb_flush_all = arm_smmu_tlb_inv_context_s2,
427 .tlb_flush_walk = arm_smmu_tlb_inv_walk,
428 .tlb_flush_leaf = arm_smmu_tlb_inv_leaf,
429 .tlb_add_page = arm_smmu_tlb_add_page,
431 .tlb_inv_range = arm_smmu_tlb_inv_range_s2,
432 .tlb_sync = arm_smmu_tlb_sync_context,
435 static const struct arm_smmu_flush_ops arm_smmu_s2_tlb_ops_v1 = {
436 .tlb = {
437 .tlb_flush_all = arm_smmu_tlb_inv_context_s2,
438 .tlb_flush_walk = arm_smmu_tlb_inv_walk,
439 .tlb_flush_leaf = arm_smmu_tlb_inv_leaf,
440 .tlb_add_page = arm_smmu_tlb_add_page,
442 .tlb_inv_range = arm_smmu_tlb_inv_vmid_nosync,
443 .tlb_sync = arm_smmu_tlb_sync_vmid,
446 static irqreturn_t arm_smmu_context_fault(int irq, void *dev)
448 u32 fsr, fsynr, cbfrsynra;
449 unsigned long iova;
450 struct iommu_domain *domain = dev;
451 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
452 struct arm_smmu_device *smmu = smmu_domain->smmu;
453 int idx = smmu_domain->cfg.cbndx;
455 fsr = arm_smmu_cb_read(smmu, idx, ARM_SMMU_CB_FSR);
456 if (!(fsr & FSR_FAULT))
457 return IRQ_NONE;
459 fsynr = arm_smmu_cb_read(smmu, idx, ARM_SMMU_CB_FSYNR0);
460 iova = arm_smmu_cb_readq(smmu, idx, ARM_SMMU_CB_FAR);
461 cbfrsynra = arm_smmu_gr1_read(smmu, ARM_SMMU_GR1_CBFRSYNRA(idx));
463 dev_err_ratelimited(smmu->dev,
464 "Unhandled context fault: fsr=0x%x, iova=0x%08lx, fsynr=0x%x, cbfrsynra=0x%x, cb=%d\n",
465 fsr, iova, fsynr, cbfrsynra, idx);
467 arm_smmu_cb_write(smmu, idx, ARM_SMMU_CB_FSR, fsr);
468 return IRQ_HANDLED;
471 static irqreturn_t arm_smmu_global_fault(int irq, void *dev)
473 u32 gfsr, gfsynr0, gfsynr1, gfsynr2;
474 struct arm_smmu_device *smmu = dev;
476 gfsr = arm_smmu_gr0_read(smmu, ARM_SMMU_GR0_sGFSR);
477 gfsynr0 = arm_smmu_gr0_read(smmu, ARM_SMMU_GR0_sGFSYNR0);
478 gfsynr1 = arm_smmu_gr0_read(smmu, ARM_SMMU_GR0_sGFSYNR1);
479 gfsynr2 = arm_smmu_gr0_read(smmu, ARM_SMMU_GR0_sGFSYNR2);
481 if (!gfsr)
482 return IRQ_NONE;
484 dev_err_ratelimited(smmu->dev,
485 "Unexpected global fault, this could be serious\n");
486 dev_err_ratelimited(smmu->dev,
487 "\tGFSR 0x%08x, GFSYNR0 0x%08x, GFSYNR1 0x%08x, GFSYNR2 0x%08x\n",
488 gfsr, gfsynr0, gfsynr1, gfsynr2);
490 arm_smmu_gr0_write(smmu, ARM_SMMU_GR0_sGFSR, gfsr);
491 return IRQ_HANDLED;
494 static void arm_smmu_init_context_bank(struct arm_smmu_domain *smmu_domain,
495 struct io_pgtable_cfg *pgtbl_cfg)
497 struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
498 struct arm_smmu_cb *cb = &smmu_domain->smmu->cbs[cfg->cbndx];
499 bool stage1 = cfg->cbar != CBAR_TYPE_S2_TRANS;
501 cb->cfg = cfg;
503 /* TCR */
504 if (stage1) {
505 if (cfg->fmt == ARM_SMMU_CTX_FMT_AARCH32_S) {
506 cb->tcr[0] = pgtbl_cfg->arm_v7s_cfg.tcr;
507 } else {
508 cb->tcr[0] = pgtbl_cfg->arm_lpae_s1_cfg.tcr;
509 cb->tcr[1] = pgtbl_cfg->arm_lpae_s1_cfg.tcr >> 32;
510 cb->tcr[1] |= FIELD_PREP(TCR2_SEP, TCR2_SEP_UPSTREAM);
511 if (cfg->fmt == ARM_SMMU_CTX_FMT_AARCH64)
512 cb->tcr[1] |= TCR2_AS;
514 } else {
515 cb->tcr[0] = pgtbl_cfg->arm_lpae_s2_cfg.vtcr;
518 /* TTBRs */
519 if (stage1) {
520 if (cfg->fmt == ARM_SMMU_CTX_FMT_AARCH32_S) {
521 cb->ttbr[0] = pgtbl_cfg->arm_v7s_cfg.ttbr[0];
522 cb->ttbr[1] = pgtbl_cfg->arm_v7s_cfg.ttbr[1];
523 } else {
524 cb->ttbr[0] = pgtbl_cfg->arm_lpae_s1_cfg.ttbr[0];
525 cb->ttbr[0] |= FIELD_PREP(TTBRn_ASID, cfg->asid);
526 cb->ttbr[1] = pgtbl_cfg->arm_lpae_s1_cfg.ttbr[1];
527 cb->ttbr[1] |= FIELD_PREP(TTBRn_ASID, cfg->asid);
529 } else {
530 cb->ttbr[0] = pgtbl_cfg->arm_lpae_s2_cfg.vttbr;
533 /* MAIRs (stage-1 only) */
534 if (stage1) {
535 if (cfg->fmt == ARM_SMMU_CTX_FMT_AARCH32_S) {
536 cb->mair[0] = pgtbl_cfg->arm_v7s_cfg.prrr;
537 cb->mair[1] = pgtbl_cfg->arm_v7s_cfg.nmrr;
538 } else {
539 cb->mair[0] = pgtbl_cfg->arm_lpae_s1_cfg.mair[0];
540 cb->mair[1] = pgtbl_cfg->arm_lpae_s1_cfg.mair[1];
545 static void arm_smmu_write_context_bank(struct arm_smmu_device *smmu, int idx)
547 u32 reg;
548 bool stage1;
549 struct arm_smmu_cb *cb = &smmu->cbs[idx];
550 struct arm_smmu_cfg *cfg = cb->cfg;
552 /* Unassigned context banks only need disabling */
553 if (!cfg) {
554 arm_smmu_cb_write(smmu, idx, ARM_SMMU_CB_SCTLR, 0);
555 return;
558 stage1 = cfg->cbar != CBAR_TYPE_S2_TRANS;
560 /* CBA2R */
561 if (smmu->version > ARM_SMMU_V1) {
562 if (cfg->fmt == ARM_SMMU_CTX_FMT_AARCH64)
563 reg = CBA2R_VA64;
564 else
565 reg = 0;
566 /* 16-bit VMIDs live in CBA2R */
567 if (smmu->features & ARM_SMMU_FEAT_VMID16)
568 reg |= FIELD_PREP(CBA2R_VMID16, cfg->vmid);
570 arm_smmu_gr1_write(smmu, ARM_SMMU_GR1_CBA2R(idx), reg);
573 /* CBAR */
574 reg = FIELD_PREP(CBAR_TYPE, cfg->cbar);
575 if (smmu->version < ARM_SMMU_V2)
576 reg |= FIELD_PREP(CBAR_IRPTNDX, cfg->irptndx);
579 * Use the weakest shareability/memory types, so they are
580 * overridden by the ttbcr/pte.
582 if (stage1) {
583 reg |= FIELD_PREP(CBAR_S1_BPSHCFG, CBAR_S1_BPSHCFG_NSH) |
584 FIELD_PREP(CBAR_S1_MEMATTR, CBAR_S1_MEMATTR_WB);
585 } else if (!(smmu->features & ARM_SMMU_FEAT_VMID16)) {
586 /* 8-bit VMIDs live in CBAR */
587 reg |= FIELD_PREP(CBAR_VMID, cfg->vmid);
589 arm_smmu_gr1_write(smmu, ARM_SMMU_GR1_CBAR(idx), reg);
592 * TCR
593 * We must write this before the TTBRs, since it determines the
594 * access behaviour of some fields (in particular, ASID[15:8]).
596 if (stage1 && smmu->version > ARM_SMMU_V1)
597 arm_smmu_cb_write(smmu, idx, ARM_SMMU_CB_TCR2, cb->tcr[1]);
598 arm_smmu_cb_write(smmu, idx, ARM_SMMU_CB_TCR, cb->tcr[0]);
600 /* TTBRs */
601 if (cfg->fmt == ARM_SMMU_CTX_FMT_AARCH32_S) {
602 arm_smmu_cb_write(smmu, idx, ARM_SMMU_CB_CONTEXTIDR, cfg->asid);
603 arm_smmu_cb_write(smmu, idx, ARM_SMMU_CB_TTBR0, cb->ttbr[0]);
604 arm_smmu_cb_write(smmu, idx, ARM_SMMU_CB_TTBR1, cb->ttbr[1]);
605 } else {
606 arm_smmu_cb_writeq(smmu, idx, ARM_SMMU_CB_TTBR0, cb->ttbr[0]);
607 if (stage1)
608 arm_smmu_cb_writeq(smmu, idx, ARM_SMMU_CB_TTBR1,
609 cb->ttbr[1]);
612 /* MAIRs (stage-1 only) */
613 if (stage1) {
614 arm_smmu_cb_write(smmu, idx, ARM_SMMU_CB_S1_MAIR0, cb->mair[0]);
615 arm_smmu_cb_write(smmu, idx, ARM_SMMU_CB_S1_MAIR1, cb->mair[1]);
618 /* SCTLR */
619 reg = SCTLR_CFIE | SCTLR_CFRE | SCTLR_AFE | SCTLR_TRE | SCTLR_M;
620 if (stage1)
621 reg |= SCTLR_S1_ASIDPNE;
622 if (IS_ENABLED(CONFIG_CPU_BIG_ENDIAN))
623 reg |= SCTLR_E;
625 arm_smmu_cb_write(smmu, idx, ARM_SMMU_CB_SCTLR, reg);
628 static int arm_smmu_init_domain_context(struct iommu_domain *domain,
629 struct arm_smmu_device *smmu)
631 int irq, start, ret = 0;
632 unsigned long ias, oas;
633 struct io_pgtable_ops *pgtbl_ops;
634 struct io_pgtable_cfg pgtbl_cfg;
635 enum io_pgtable_fmt fmt;
636 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
637 struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
639 mutex_lock(&smmu_domain->init_mutex);
640 if (smmu_domain->smmu)
641 goto out_unlock;
643 if (domain->type == IOMMU_DOMAIN_IDENTITY) {
644 smmu_domain->stage = ARM_SMMU_DOMAIN_BYPASS;
645 smmu_domain->smmu = smmu;
646 goto out_unlock;
650 * Mapping the requested stage onto what we support is surprisingly
651 * complicated, mainly because the spec allows S1+S2 SMMUs without
652 * support for nested translation. That means we end up with the
653 * following table:
655 * Requested Supported Actual
656 * S1 N S1
657 * S1 S1+S2 S1
658 * S1 S2 S2
659 * S1 S1 S1
660 * N N N
661 * N S1+S2 S2
662 * N S2 S2
663 * N S1 S1
665 * Note that you can't actually request stage-2 mappings.
667 if (!(smmu->features & ARM_SMMU_FEAT_TRANS_S1))
668 smmu_domain->stage = ARM_SMMU_DOMAIN_S2;
669 if (!(smmu->features & ARM_SMMU_FEAT_TRANS_S2))
670 smmu_domain->stage = ARM_SMMU_DOMAIN_S1;
673 * Choosing a suitable context format is even more fiddly. Until we
674 * grow some way for the caller to express a preference, and/or move
675 * the decision into the io-pgtable code where it arguably belongs,
676 * just aim for the closest thing to the rest of the system, and hope
677 * that the hardware isn't esoteric enough that we can't assume AArch64
678 * support to be a superset of AArch32 support...
680 if (smmu->features & ARM_SMMU_FEAT_FMT_AARCH32_L)
681 cfg->fmt = ARM_SMMU_CTX_FMT_AARCH32_L;
682 if (IS_ENABLED(CONFIG_IOMMU_IO_PGTABLE_ARMV7S) &&
683 !IS_ENABLED(CONFIG_64BIT) && !IS_ENABLED(CONFIG_ARM_LPAE) &&
684 (smmu->features & ARM_SMMU_FEAT_FMT_AARCH32_S) &&
685 (smmu_domain->stage == ARM_SMMU_DOMAIN_S1))
686 cfg->fmt = ARM_SMMU_CTX_FMT_AARCH32_S;
687 if ((IS_ENABLED(CONFIG_64BIT) || cfg->fmt == ARM_SMMU_CTX_FMT_NONE) &&
688 (smmu->features & (ARM_SMMU_FEAT_FMT_AARCH64_64K |
689 ARM_SMMU_FEAT_FMT_AARCH64_16K |
690 ARM_SMMU_FEAT_FMT_AARCH64_4K)))
691 cfg->fmt = ARM_SMMU_CTX_FMT_AARCH64;
693 if (cfg->fmt == ARM_SMMU_CTX_FMT_NONE) {
694 ret = -EINVAL;
695 goto out_unlock;
698 switch (smmu_domain->stage) {
699 case ARM_SMMU_DOMAIN_S1:
700 cfg->cbar = CBAR_TYPE_S1_TRANS_S2_BYPASS;
701 start = smmu->num_s2_context_banks;
702 ias = smmu->va_size;
703 oas = smmu->ipa_size;
704 if (cfg->fmt == ARM_SMMU_CTX_FMT_AARCH64) {
705 fmt = ARM_64_LPAE_S1;
706 } else if (cfg->fmt == ARM_SMMU_CTX_FMT_AARCH32_L) {
707 fmt = ARM_32_LPAE_S1;
708 ias = min(ias, 32UL);
709 oas = min(oas, 40UL);
710 } else {
711 fmt = ARM_V7S;
712 ias = min(ias, 32UL);
713 oas = min(oas, 32UL);
715 smmu_domain->flush_ops = &arm_smmu_s1_tlb_ops;
716 break;
717 case ARM_SMMU_DOMAIN_NESTED:
719 * We will likely want to change this if/when KVM gets
720 * involved.
722 case ARM_SMMU_DOMAIN_S2:
723 cfg->cbar = CBAR_TYPE_S2_TRANS;
724 start = 0;
725 ias = smmu->ipa_size;
726 oas = smmu->pa_size;
727 if (cfg->fmt == ARM_SMMU_CTX_FMT_AARCH64) {
728 fmt = ARM_64_LPAE_S2;
729 } else {
730 fmt = ARM_32_LPAE_S2;
731 ias = min(ias, 40UL);
732 oas = min(oas, 40UL);
734 if (smmu->version == ARM_SMMU_V2)
735 smmu_domain->flush_ops = &arm_smmu_s2_tlb_ops_v2;
736 else
737 smmu_domain->flush_ops = &arm_smmu_s2_tlb_ops_v1;
738 break;
739 default:
740 ret = -EINVAL;
741 goto out_unlock;
743 ret = __arm_smmu_alloc_bitmap(smmu->context_map, start,
744 smmu->num_context_banks);
745 if (ret < 0)
746 goto out_unlock;
748 cfg->cbndx = ret;
749 if (smmu->version < ARM_SMMU_V2) {
750 cfg->irptndx = atomic_inc_return(&smmu->irptndx);
751 cfg->irptndx %= smmu->num_context_irqs;
752 } else {
753 cfg->irptndx = cfg->cbndx;
756 if (smmu_domain->stage == ARM_SMMU_DOMAIN_S2)
757 cfg->vmid = cfg->cbndx + 1;
758 else
759 cfg->asid = cfg->cbndx;
761 smmu_domain->smmu = smmu;
762 if (smmu->impl && smmu->impl->init_context) {
763 ret = smmu->impl->init_context(smmu_domain);
764 if (ret)
765 goto out_unlock;
768 pgtbl_cfg = (struct io_pgtable_cfg) {
769 .pgsize_bitmap = smmu->pgsize_bitmap,
770 .ias = ias,
771 .oas = oas,
772 .coherent_walk = smmu->features & ARM_SMMU_FEAT_COHERENT_WALK,
773 .tlb = &smmu_domain->flush_ops->tlb,
774 .iommu_dev = smmu->dev,
777 if (smmu_domain->non_strict)
778 pgtbl_cfg.quirks |= IO_PGTABLE_QUIRK_NON_STRICT;
780 pgtbl_ops = alloc_io_pgtable_ops(fmt, &pgtbl_cfg, smmu_domain);
781 if (!pgtbl_ops) {
782 ret = -ENOMEM;
783 goto out_clear_smmu;
786 /* Update the domain's page sizes to reflect the page table format */
787 domain->pgsize_bitmap = pgtbl_cfg.pgsize_bitmap;
788 domain->geometry.aperture_end = (1UL << ias) - 1;
789 domain->geometry.force_aperture = true;
791 /* Initialise the context bank with our page table cfg */
792 arm_smmu_init_context_bank(smmu_domain, &pgtbl_cfg);
793 arm_smmu_write_context_bank(smmu, cfg->cbndx);
796 * Request context fault interrupt. Do this last to avoid the
797 * handler seeing a half-initialised domain state.
799 irq = smmu->irqs[smmu->num_global_irqs + cfg->irptndx];
800 ret = devm_request_irq(smmu->dev, irq, arm_smmu_context_fault,
801 IRQF_SHARED, "arm-smmu-context-fault", domain);
802 if (ret < 0) {
803 dev_err(smmu->dev, "failed to request context IRQ %d (%u)\n",
804 cfg->irptndx, irq);
805 cfg->irptndx = INVALID_IRPTNDX;
808 mutex_unlock(&smmu_domain->init_mutex);
810 /* Publish page table ops for map/unmap */
811 smmu_domain->pgtbl_ops = pgtbl_ops;
812 return 0;
814 out_clear_smmu:
815 __arm_smmu_free_bitmap(smmu->context_map, cfg->cbndx);
816 smmu_domain->smmu = NULL;
817 out_unlock:
818 mutex_unlock(&smmu_domain->init_mutex);
819 return ret;
822 static void arm_smmu_destroy_domain_context(struct iommu_domain *domain)
824 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
825 struct arm_smmu_device *smmu = smmu_domain->smmu;
826 struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
827 int ret, irq;
829 if (!smmu || domain->type == IOMMU_DOMAIN_IDENTITY)
830 return;
832 ret = arm_smmu_rpm_get(smmu);
833 if (ret < 0)
834 return;
837 * Disable the context bank and free the page tables before freeing
838 * it.
840 smmu->cbs[cfg->cbndx].cfg = NULL;
841 arm_smmu_write_context_bank(smmu, cfg->cbndx);
843 if (cfg->irptndx != INVALID_IRPTNDX) {
844 irq = smmu->irqs[smmu->num_global_irqs + cfg->irptndx];
845 devm_free_irq(smmu->dev, irq, domain);
848 free_io_pgtable_ops(smmu_domain->pgtbl_ops);
849 __arm_smmu_free_bitmap(smmu->context_map, cfg->cbndx);
851 arm_smmu_rpm_put(smmu);
854 static struct iommu_domain *arm_smmu_domain_alloc(unsigned type)
856 struct arm_smmu_domain *smmu_domain;
858 if (type != IOMMU_DOMAIN_UNMANAGED &&
859 type != IOMMU_DOMAIN_DMA &&
860 type != IOMMU_DOMAIN_IDENTITY)
861 return NULL;
863 * Allocate the domain and initialise some of its data structures.
864 * We can't really do anything meaningful until we've added a
865 * master.
867 smmu_domain = kzalloc(sizeof(*smmu_domain), GFP_KERNEL);
868 if (!smmu_domain)
869 return NULL;
871 if (type == IOMMU_DOMAIN_DMA && (using_legacy_binding ||
872 iommu_get_dma_cookie(&smmu_domain->domain))) {
873 kfree(smmu_domain);
874 return NULL;
877 mutex_init(&smmu_domain->init_mutex);
878 spin_lock_init(&smmu_domain->cb_lock);
880 return &smmu_domain->domain;
883 static void arm_smmu_domain_free(struct iommu_domain *domain)
885 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
888 * Free the domain resources. We assume that all devices have
889 * already been detached.
891 iommu_put_dma_cookie(domain);
892 arm_smmu_destroy_domain_context(domain);
893 kfree(smmu_domain);
896 static void arm_smmu_write_smr(struct arm_smmu_device *smmu, int idx)
898 struct arm_smmu_smr *smr = smmu->smrs + idx;
899 u32 reg = FIELD_PREP(SMR_ID, smr->id) | FIELD_PREP(SMR_MASK, smr->mask);
901 if (!(smmu->features & ARM_SMMU_FEAT_EXIDS) && smr->valid)
902 reg |= SMR_VALID;
903 arm_smmu_gr0_write(smmu, ARM_SMMU_GR0_SMR(idx), reg);
906 static void arm_smmu_write_s2cr(struct arm_smmu_device *smmu, int idx)
908 struct arm_smmu_s2cr *s2cr = smmu->s2crs + idx;
909 u32 reg = FIELD_PREP(S2CR_TYPE, s2cr->type) |
910 FIELD_PREP(S2CR_CBNDX, s2cr->cbndx) |
911 FIELD_PREP(S2CR_PRIVCFG, s2cr->privcfg);
913 if (smmu->features & ARM_SMMU_FEAT_EXIDS && smmu->smrs &&
914 smmu->smrs[idx].valid)
915 reg |= S2CR_EXIDVALID;
916 arm_smmu_gr0_write(smmu, ARM_SMMU_GR0_S2CR(idx), reg);
919 static void arm_smmu_write_sme(struct arm_smmu_device *smmu, int idx)
921 arm_smmu_write_s2cr(smmu, idx);
922 if (smmu->smrs)
923 arm_smmu_write_smr(smmu, idx);
927 * The width of SMR's mask field depends on sCR0_EXIDENABLE, so this function
928 * should be called after sCR0 is written.
930 static void arm_smmu_test_smr_masks(struct arm_smmu_device *smmu)
932 u32 smr;
934 if (!smmu->smrs)
935 return;
938 * SMR.ID bits may not be preserved if the corresponding MASK
939 * bits are set, so check each one separately. We can reject
940 * masters later if they try to claim IDs outside these masks.
942 smr = FIELD_PREP(SMR_ID, smmu->streamid_mask);
943 arm_smmu_gr0_write(smmu, ARM_SMMU_GR0_SMR(0), smr);
944 smr = arm_smmu_gr0_read(smmu, ARM_SMMU_GR0_SMR(0));
945 smmu->streamid_mask = FIELD_GET(SMR_ID, smr);
947 smr = FIELD_PREP(SMR_MASK, smmu->streamid_mask);
948 arm_smmu_gr0_write(smmu, ARM_SMMU_GR0_SMR(0), smr);
949 smr = arm_smmu_gr0_read(smmu, ARM_SMMU_GR0_SMR(0));
950 smmu->smr_mask_mask = FIELD_GET(SMR_MASK, smr);
953 static int arm_smmu_find_sme(struct arm_smmu_device *smmu, u16 id, u16 mask)
955 struct arm_smmu_smr *smrs = smmu->smrs;
956 int i, free_idx = -ENOSPC;
958 /* Stream indexing is blissfully easy */
959 if (!smrs)
960 return id;
962 /* Validating SMRs is... less so */
963 for (i = 0; i < smmu->num_mapping_groups; ++i) {
964 if (!smrs[i].valid) {
966 * Note the first free entry we come across, which
967 * we'll claim in the end if nothing else matches.
969 if (free_idx < 0)
970 free_idx = i;
971 continue;
974 * If the new entry is _entirely_ matched by an existing entry,
975 * then reuse that, with the guarantee that there also cannot
976 * be any subsequent conflicting entries. In normal use we'd
977 * expect simply identical entries for this case, but there's
978 * no harm in accommodating the generalisation.
980 if ((mask & smrs[i].mask) == mask &&
981 !((id ^ smrs[i].id) & ~smrs[i].mask))
982 return i;
984 * If the new entry has any other overlap with an existing one,
985 * though, then there always exists at least one stream ID
986 * which would cause a conflict, and we can't allow that risk.
988 if (!((id ^ smrs[i].id) & ~(smrs[i].mask | mask)))
989 return -EINVAL;
992 return free_idx;
995 static bool arm_smmu_free_sme(struct arm_smmu_device *smmu, int idx)
997 if (--smmu->s2crs[idx].count)
998 return false;
1000 smmu->s2crs[idx] = s2cr_init_val;
1001 if (smmu->smrs)
1002 smmu->smrs[idx].valid = false;
1004 return true;
1007 static int arm_smmu_master_alloc_smes(struct device *dev)
1009 struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
1010 struct arm_smmu_master_cfg *cfg = fwspec->iommu_priv;
1011 struct arm_smmu_device *smmu = cfg->smmu;
1012 struct arm_smmu_smr *smrs = smmu->smrs;
1013 struct iommu_group *group;
1014 int i, idx, ret;
1016 mutex_lock(&smmu->stream_map_mutex);
1017 /* Figure out a viable stream map entry allocation */
1018 for_each_cfg_sme(fwspec, i, idx) {
1019 u16 sid = FIELD_GET(SMR_ID, fwspec->ids[i]);
1020 u16 mask = FIELD_GET(SMR_MASK, fwspec->ids[i]);
1022 if (idx != INVALID_SMENDX) {
1023 ret = -EEXIST;
1024 goto out_err;
1027 ret = arm_smmu_find_sme(smmu, sid, mask);
1028 if (ret < 0)
1029 goto out_err;
1031 idx = ret;
1032 if (smrs && smmu->s2crs[idx].count == 0) {
1033 smrs[idx].id = sid;
1034 smrs[idx].mask = mask;
1035 smrs[idx].valid = true;
1037 smmu->s2crs[idx].count++;
1038 cfg->smendx[i] = (s16)idx;
1041 group = iommu_group_get_for_dev(dev);
1042 if (!group)
1043 group = ERR_PTR(-ENOMEM);
1044 if (IS_ERR(group)) {
1045 ret = PTR_ERR(group);
1046 goto out_err;
1048 iommu_group_put(group);
1050 /* It worked! Now, poke the actual hardware */
1051 for_each_cfg_sme(fwspec, i, idx) {
1052 arm_smmu_write_sme(smmu, idx);
1053 smmu->s2crs[idx].group = group;
1056 mutex_unlock(&smmu->stream_map_mutex);
1057 return 0;
1059 out_err:
1060 while (i--) {
1061 arm_smmu_free_sme(smmu, cfg->smendx[i]);
1062 cfg->smendx[i] = INVALID_SMENDX;
1064 mutex_unlock(&smmu->stream_map_mutex);
1065 return ret;
1068 static void arm_smmu_master_free_smes(struct iommu_fwspec *fwspec)
1070 struct arm_smmu_device *smmu = fwspec_smmu(fwspec);
1071 struct arm_smmu_master_cfg *cfg = fwspec->iommu_priv;
1072 int i, idx;
1074 mutex_lock(&smmu->stream_map_mutex);
1075 for_each_cfg_sme(fwspec, i, idx) {
1076 if (arm_smmu_free_sme(smmu, idx))
1077 arm_smmu_write_sme(smmu, idx);
1078 cfg->smendx[i] = INVALID_SMENDX;
1080 mutex_unlock(&smmu->stream_map_mutex);
1083 static int arm_smmu_domain_add_master(struct arm_smmu_domain *smmu_domain,
1084 struct iommu_fwspec *fwspec)
1086 struct arm_smmu_device *smmu = smmu_domain->smmu;
1087 struct arm_smmu_s2cr *s2cr = smmu->s2crs;
1088 u8 cbndx = smmu_domain->cfg.cbndx;
1089 enum arm_smmu_s2cr_type type;
1090 int i, idx;
1092 if (smmu_domain->stage == ARM_SMMU_DOMAIN_BYPASS)
1093 type = S2CR_TYPE_BYPASS;
1094 else
1095 type = S2CR_TYPE_TRANS;
1097 for_each_cfg_sme(fwspec, i, idx) {
1098 if (type == s2cr[idx].type && cbndx == s2cr[idx].cbndx)
1099 continue;
1101 s2cr[idx].type = type;
1102 s2cr[idx].privcfg = S2CR_PRIVCFG_DEFAULT;
1103 s2cr[idx].cbndx = cbndx;
1104 arm_smmu_write_s2cr(smmu, idx);
1106 return 0;
1109 static int arm_smmu_attach_dev(struct iommu_domain *domain, struct device *dev)
1111 int ret;
1112 struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
1113 struct arm_smmu_device *smmu;
1114 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1116 if (!fwspec || fwspec->ops != &arm_smmu_ops) {
1117 dev_err(dev, "cannot attach to SMMU, is it on the same bus?\n");
1118 return -ENXIO;
1122 * FIXME: The arch/arm DMA API code tries to attach devices to its own
1123 * domains between of_xlate() and add_device() - we have no way to cope
1124 * with that, so until ARM gets converted to rely on groups and default
1125 * domains, just say no (but more politely than by dereferencing NULL).
1126 * This should be at least a WARN_ON once that's sorted.
1128 if (!fwspec->iommu_priv)
1129 return -ENODEV;
1131 smmu = fwspec_smmu(fwspec);
1133 ret = arm_smmu_rpm_get(smmu);
1134 if (ret < 0)
1135 return ret;
1137 /* Ensure that the domain is finalised */
1138 ret = arm_smmu_init_domain_context(domain, smmu);
1139 if (ret < 0)
1140 goto rpm_put;
1143 * Sanity check the domain. We don't support domains across
1144 * different SMMUs.
1146 if (smmu_domain->smmu != smmu) {
1147 dev_err(dev,
1148 "cannot attach to SMMU %s whilst already attached to domain on SMMU %s\n",
1149 dev_name(smmu_domain->smmu->dev), dev_name(smmu->dev));
1150 ret = -EINVAL;
1151 goto rpm_put;
1154 /* Looks ok, so add the device to the domain */
1155 ret = arm_smmu_domain_add_master(smmu_domain, fwspec);
1157 rpm_put:
1158 arm_smmu_rpm_put(smmu);
1159 return ret;
1162 static int arm_smmu_map(struct iommu_domain *domain, unsigned long iova,
1163 phys_addr_t paddr, size_t size, int prot)
1165 struct io_pgtable_ops *ops = to_smmu_domain(domain)->pgtbl_ops;
1166 struct arm_smmu_device *smmu = to_smmu_domain(domain)->smmu;
1167 int ret;
1169 if (!ops)
1170 return -ENODEV;
1172 arm_smmu_rpm_get(smmu);
1173 ret = ops->map(ops, iova, paddr, size, prot);
1174 arm_smmu_rpm_put(smmu);
1176 return ret;
1179 static size_t arm_smmu_unmap(struct iommu_domain *domain, unsigned long iova,
1180 size_t size, struct iommu_iotlb_gather *gather)
1182 struct io_pgtable_ops *ops = to_smmu_domain(domain)->pgtbl_ops;
1183 struct arm_smmu_device *smmu = to_smmu_domain(domain)->smmu;
1184 size_t ret;
1186 if (!ops)
1187 return 0;
1189 arm_smmu_rpm_get(smmu);
1190 ret = ops->unmap(ops, iova, size, gather);
1191 arm_smmu_rpm_put(smmu);
1193 return ret;
1196 static void arm_smmu_flush_iotlb_all(struct iommu_domain *domain)
1198 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1199 struct arm_smmu_device *smmu = smmu_domain->smmu;
1201 if (smmu_domain->flush_ops) {
1202 arm_smmu_rpm_get(smmu);
1203 smmu_domain->flush_ops->tlb.tlb_flush_all(smmu_domain);
1204 arm_smmu_rpm_put(smmu);
1208 static void arm_smmu_iotlb_sync(struct iommu_domain *domain,
1209 struct iommu_iotlb_gather *gather)
1211 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1212 struct arm_smmu_device *smmu = smmu_domain->smmu;
1214 if (smmu_domain->flush_ops) {
1215 arm_smmu_rpm_get(smmu);
1216 smmu_domain->flush_ops->tlb_sync(smmu_domain);
1217 arm_smmu_rpm_put(smmu);
1221 static phys_addr_t arm_smmu_iova_to_phys_hard(struct iommu_domain *domain,
1222 dma_addr_t iova)
1224 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1225 struct arm_smmu_device *smmu = smmu_domain->smmu;
1226 struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
1227 struct io_pgtable_ops *ops= smmu_domain->pgtbl_ops;
1228 struct device *dev = smmu->dev;
1229 void __iomem *reg;
1230 u32 tmp;
1231 u64 phys;
1232 unsigned long va, flags;
1233 int ret, idx = cfg->cbndx;
1235 ret = arm_smmu_rpm_get(smmu);
1236 if (ret < 0)
1237 return 0;
1239 spin_lock_irqsave(&smmu_domain->cb_lock, flags);
1240 va = iova & ~0xfffUL;
1241 if (cfg->fmt == ARM_SMMU_CTX_FMT_AARCH64)
1242 arm_smmu_cb_writeq(smmu, idx, ARM_SMMU_CB_ATS1PR, va);
1243 else
1244 arm_smmu_cb_write(smmu, idx, ARM_SMMU_CB_ATS1PR, va);
1246 reg = arm_smmu_page(smmu, ARM_SMMU_CB(smmu, idx)) + ARM_SMMU_CB_ATSR;
1247 if (readl_poll_timeout_atomic(reg, tmp, !(tmp & ATSR_ACTIVE), 5, 50)) {
1248 spin_unlock_irqrestore(&smmu_domain->cb_lock, flags);
1249 dev_err(dev,
1250 "iova to phys timed out on %pad. Falling back to software table walk.\n",
1251 &iova);
1252 return ops->iova_to_phys(ops, iova);
1255 phys = arm_smmu_cb_readq(smmu, idx, ARM_SMMU_CB_PAR);
1256 spin_unlock_irqrestore(&smmu_domain->cb_lock, flags);
1257 if (phys & CB_PAR_F) {
1258 dev_err(dev, "translation fault!\n");
1259 dev_err(dev, "PAR = 0x%llx\n", phys);
1260 return 0;
1263 arm_smmu_rpm_put(smmu);
1265 return (phys & GENMASK_ULL(39, 12)) | (iova & 0xfff);
1268 static phys_addr_t arm_smmu_iova_to_phys(struct iommu_domain *domain,
1269 dma_addr_t iova)
1271 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1272 struct io_pgtable_ops *ops = smmu_domain->pgtbl_ops;
1274 if (domain->type == IOMMU_DOMAIN_IDENTITY)
1275 return iova;
1277 if (!ops)
1278 return 0;
1280 if (smmu_domain->smmu->features & ARM_SMMU_FEAT_TRANS_OPS &&
1281 smmu_domain->stage == ARM_SMMU_DOMAIN_S1)
1282 return arm_smmu_iova_to_phys_hard(domain, iova);
1284 return ops->iova_to_phys(ops, iova);
1287 static bool arm_smmu_capable(enum iommu_cap cap)
1289 switch (cap) {
1290 case IOMMU_CAP_CACHE_COHERENCY:
1292 * Return true here as the SMMU can always send out coherent
1293 * requests.
1295 return true;
1296 case IOMMU_CAP_NOEXEC:
1297 return true;
1298 default:
1299 return false;
1303 static
1304 struct arm_smmu_device *arm_smmu_get_by_fwnode(struct fwnode_handle *fwnode)
1306 struct device *dev = driver_find_device_by_fwnode(&arm_smmu_driver.driver,
1307 fwnode);
1308 put_device(dev);
1309 return dev ? dev_get_drvdata(dev) : NULL;
1312 static int arm_smmu_add_device(struct device *dev)
1314 struct arm_smmu_device *smmu;
1315 struct arm_smmu_master_cfg *cfg;
1316 struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
1317 int i, ret;
1319 if (using_legacy_binding) {
1320 ret = arm_smmu_register_legacy_master(dev, &smmu);
1323 * If dev->iommu_fwspec is initally NULL, arm_smmu_register_legacy_master()
1324 * will allocate/initialise a new one. Thus we need to update fwspec for
1325 * later use.
1327 fwspec = dev_iommu_fwspec_get(dev);
1328 if (ret)
1329 goto out_free;
1330 } else if (fwspec && fwspec->ops == &arm_smmu_ops) {
1331 smmu = arm_smmu_get_by_fwnode(fwspec->iommu_fwnode);
1332 } else {
1333 return -ENODEV;
1336 ret = -EINVAL;
1337 for (i = 0; i < fwspec->num_ids; i++) {
1338 u16 sid = FIELD_GET(SMR_ID, fwspec->ids[i]);
1339 u16 mask = FIELD_GET(SMR_MASK, fwspec->ids[i]);
1341 if (sid & ~smmu->streamid_mask) {
1342 dev_err(dev, "stream ID 0x%x out of range for SMMU (0x%x)\n",
1343 sid, smmu->streamid_mask);
1344 goto out_free;
1346 if (mask & ~smmu->smr_mask_mask) {
1347 dev_err(dev, "SMR mask 0x%x out of range for SMMU (0x%x)\n",
1348 mask, smmu->smr_mask_mask);
1349 goto out_free;
1353 ret = -ENOMEM;
1354 cfg = kzalloc(offsetof(struct arm_smmu_master_cfg, smendx[i]),
1355 GFP_KERNEL);
1356 if (!cfg)
1357 goto out_free;
1359 cfg->smmu = smmu;
1360 fwspec->iommu_priv = cfg;
1361 while (i--)
1362 cfg->smendx[i] = INVALID_SMENDX;
1364 ret = arm_smmu_rpm_get(smmu);
1365 if (ret < 0)
1366 goto out_cfg_free;
1368 ret = arm_smmu_master_alloc_smes(dev);
1369 arm_smmu_rpm_put(smmu);
1371 if (ret)
1372 goto out_cfg_free;
1374 iommu_device_link(&smmu->iommu, dev);
1376 device_link_add(dev, smmu->dev,
1377 DL_FLAG_PM_RUNTIME | DL_FLAG_AUTOREMOVE_SUPPLIER);
1379 return 0;
1381 out_cfg_free:
1382 kfree(cfg);
1383 out_free:
1384 iommu_fwspec_free(dev);
1385 return ret;
1388 static void arm_smmu_remove_device(struct device *dev)
1390 struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
1391 struct arm_smmu_master_cfg *cfg;
1392 struct arm_smmu_device *smmu;
1393 int ret;
1395 if (!fwspec || fwspec->ops != &arm_smmu_ops)
1396 return;
1398 cfg = fwspec->iommu_priv;
1399 smmu = cfg->smmu;
1401 ret = arm_smmu_rpm_get(smmu);
1402 if (ret < 0)
1403 return;
1405 iommu_device_unlink(&smmu->iommu, dev);
1406 arm_smmu_master_free_smes(fwspec);
1408 arm_smmu_rpm_put(smmu);
1410 iommu_group_remove_device(dev);
1411 kfree(fwspec->iommu_priv);
1412 iommu_fwspec_free(dev);
1415 static struct iommu_group *arm_smmu_device_group(struct device *dev)
1417 struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
1418 struct arm_smmu_device *smmu = fwspec_smmu(fwspec);
1419 struct iommu_group *group = NULL;
1420 int i, idx;
1422 for_each_cfg_sme(fwspec, i, idx) {
1423 if (group && smmu->s2crs[idx].group &&
1424 group != smmu->s2crs[idx].group)
1425 return ERR_PTR(-EINVAL);
1427 group = smmu->s2crs[idx].group;
1430 if (group)
1431 return iommu_group_ref_get(group);
1433 if (dev_is_pci(dev))
1434 group = pci_device_group(dev);
1435 else if (dev_is_fsl_mc(dev))
1436 group = fsl_mc_device_group(dev);
1437 else
1438 group = generic_device_group(dev);
1440 return group;
1443 static int arm_smmu_domain_get_attr(struct iommu_domain *domain,
1444 enum iommu_attr attr, void *data)
1446 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1448 switch(domain->type) {
1449 case IOMMU_DOMAIN_UNMANAGED:
1450 switch (attr) {
1451 case DOMAIN_ATTR_NESTING:
1452 *(int *)data = (smmu_domain->stage == ARM_SMMU_DOMAIN_NESTED);
1453 return 0;
1454 default:
1455 return -ENODEV;
1457 break;
1458 case IOMMU_DOMAIN_DMA:
1459 switch (attr) {
1460 case DOMAIN_ATTR_DMA_USE_FLUSH_QUEUE:
1461 *(int *)data = smmu_domain->non_strict;
1462 return 0;
1463 default:
1464 return -ENODEV;
1466 break;
1467 default:
1468 return -EINVAL;
1472 static int arm_smmu_domain_set_attr(struct iommu_domain *domain,
1473 enum iommu_attr attr, void *data)
1475 int ret = 0;
1476 struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
1478 mutex_lock(&smmu_domain->init_mutex);
1480 switch(domain->type) {
1481 case IOMMU_DOMAIN_UNMANAGED:
1482 switch (attr) {
1483 case DOMAIN_ATTR_NESTING:
1484 if (smmu_domain->smmu) {
1485 ret = -EPERM;
1486 goto out_unlock;
1489 if (*(int *)data)
1490 smmu_domain->stage = ARM_SMMU_DOMAIN_NESTED;
1491 else
1492 smmu_domain->stage = ARM_SMMU_DOMAIN_S1;
1493 break;
1494 default:
1495 ret = -ENODEV;
1497 break;
1498 case IOMMU_DOMAIN_DMA:
1499 switch (attr) {
1500 case DOMAIN_ATTR_DMA_USE_FLUSH_QUEUE:
1501 smmu_domain->non_strict = *(int *)data;
1502 break;
1503 default:
1504 ret = -ENODEV;
1506 break;
1507 default:
1508 ret = -EINVAL;
1510 out_unlock:
1511 mutex_unlock(&smmu_domain->init_mutex);
1512 return ret;
1515 static int arm_smmu_of_xlate(struct device *dev, struct of_phandle_args *args)
1517 u32 mask, fwid = 0;
1519 if (args->args_count > 0)
1520 fwid |= FIELD_PREP(SMR_ID, args->args[0]);
1522 if (args->args_count > 1)
1523 fwid |= FIELD_PREP(SMR_MASK, args->args[1]);
1524 else if (!of_property_read_u32(args->np, "stream-match-mask", &mask))
1525 fwid |= FIELD_PREP(SMR_MASK, mask);
1527 return iommu_fwspec_add_ids(dev, &fwid, 1);
1530 static void arm_smmu_get_resv_regions(struct device *dev,
1531 struct list_head *head)
1533 struct iommu_resv_region *region;
1534 int prot = IOMMU_WRITE | IOMMU_NOEXEC | IOMMU_MMIO;
1536 region = iommu_alloc_resv_region(MSI_IOVA_BASE, MSI_IOVA_LENGTH,
1537 prot, IOMMU_RESV_SW_MSI);
1538 if (!region)
1539 return;
1541 list_add_tail(&region->list, head);
1543 iommu_dma_get_resv_regions(dev, head);
1546 static void arm_smmu_put_resv_regions(struct device *dev,
1547 struct list_head *head)
1549 struct iommu_resv_region *entry, *next;
1551 list_for_each_entry_safe(entry, next, head, list)
1552 kfree(entry);
1555 static struct iommu_ops arm_smmu_ops = {
1556 .capable = arm_smmu_capable,
1557 .domain_alloc = arm_smmu_domain_alloc,
1558 .domain_free = arm_smmu_domain_free,
1559 .attach_dev = arm_smmu_attach_dev,
1560 .map = arm_smmu_map,
1561 .unmap = arm_smmu_unmap,
1562 .flush_iotlb_all = arm_smmu_flush_iotlb_all,
1563 .iotlb_sync = arm_smmu_iotlb_sync,
1564 .iova_to_phys = arm_smmu_iova_to_phys,
1565 .add_device = arm_smmu_add_device,
1566 .remove_device = arm_smmu_remove_device,
1567 .device_group = arm_smmu_device_group,
1568 .domain_get_attr = arm_smmu_domain_get_attr,
1569 .domain_set_attr = arm_smmu_domain_set_attr,
1570 .of_xlate = arm_smmu_of_xlate,
1571 .get_resv_regions = arm_smmu_get_resv_regions,
1572 .put_resv_regions = arm_smmu_put_resv_regions,
1573 .pgsize_bitmap = -1UL, /* Restricted during device attach */
1576 static void arm_smmu_device_reset(struct arm_smmu_device *smmu)
1578 int i;
1579 u32 reg;
1581 /* clear global FSR */
1582 reg = arm_smmu_gr0_read(smmu, ARM_SMMU_GR0_sGFSR);
1583 arm_smmu_gr0_write(smmu, ARM_SMMU_GR0_sGFSR, reg);
1586 * Reset stream mapping groups: Initial values mark all SMRn as
1587 * invalid and all S2CRn as bypass unless overridden.
1589 for (i = 0; i < smmu->num_mapping_groups; ++i)
1590 arm_smmu_write_sme(smmu, i);
1592 /* Make sure all context banks are disabled and clear CB_FSR */
1593 for (i = 0; i < smmu->num_context_banks; ++i) {
1594 arm_smmu_write_context_bank(smmu, i);
1595 arm_smmu_cb_write(smmu, i, ARM_SMMU_CB_FSR, FSR_FAULT);
1598 /* Invalidate the TLB, just in case */
1599 arm_smmu_gr0_write(smmu, ARM_SMMU_GR0_TLBIALLH, QCOM_DUMMY_VAL);
1600 arm_smmu_gr0_write(smmu, ARM_SMMU_GR0_TLBIALLNSNH, QCOM_DUMMY_VAL);
1602 reg = arm_smmu_gr0_read(smmu, ARM_SMMU_GR0_sCR0);
1604 /* Enable fault reporting */
1605 reg |= (sCR0_GFRE | sCR0_GFIE | sCR0_GCFGFRE | sCR0_GCFGFIE);
1607 /* Disable TLB broadcasting. */
1608 reg |= (sCR0_VMIDPNE | sCR0_PTM);
1610 /* Enable client access, handling unmatched streams as appropriate */
1611 reg &= ~sCR0_CLIENTPD;
1612 if (disable_bypass)
1613 reg |= sCR0_USFCFG;
1614 else
1615 reg &= ~sCR0_USFCFG;
1617 /* Disable forced broadcasting */
1618 reg &= ~sCR0_FB;
1620 /* Don't upgrade barriers */
1621 reg &= ~(sCR0_BSU);
1623 if (smmu->features & ARM_SMMU_FEAT_VMID16)
1624 reg |= sCR0_VMID16EN;
1626 if (smmu->features & ARM_SMMU_FEAT_EXIDS)
1627 reg |= sCR0_EXIDENABLE;
1629 if (smmu->impl && smmu->impl->reset)
1630 smmu->impl->reset(smmu);
1632 /* Push the button */
1633 arm_smmu_tlb_sync_global(smmu);
1634 arm_smmu_gr0_write(smmu, ARM_SMMU_GR0_sCR0, reg);
1637 static int arm_smmu_id_size_to_bits(int size)
1639 switch (size) {
1640 case 0:
1641 return 32;
1642 case 1:
1643 return 36;
1644 case 2:
1645 return 40;
1646 case 3:
1647 return 42;
1648 case 4:
1649 return 44;
1650 case 5:
1651 default:
1652 return 48;
1656 static int arm_smmu_device_cfg_probe(struct arm_smmu_device *smmu)
1658 unsigned int size;
1659 u32 id;
1660 bool cttw_reg, cttw_fw = smmu->features & ARM_SMMU_FEAT_COHERENT_WALK;
1661 int i;
1663 dev_notice(smmu->dev, "probing hardware configuration...\n");
1664 dev_notice(smmu->dev, "SMMUv%d with:\n",
1665 smmu->version == ARM_SMMU_V2 ? 2 : 1);
1667 /* ID0 */
1668 id = arm_smmu_gr0_read(smmu, ARM_SMMU_GR0_ID0);
1670 /* Restrict available stages based on module parameter */
1671 if (force_stage == 1)
1672 id &= ~(ID0_S2TS | ID0_NTS);
1673 else if (force_stage == 2)
1674 id &= ~(ID0_S1TS | ID0_NTS);
1676 if (id & ID0_S1TS) {
1677 smmu->features |= ARM_SMMU_FEAT_TRANS_S1;
1678 dev_notice(smmu->dev, "\tstage 1 translation\n");
1681 if (id & ID0_S2TS) {
1682 smmu->features |= ARM_SMMU_FEAT_TRANS_S2;
1683 dev_notice(smmu->dev, "\tstage 2 translation\n");
1686 if (id & ID0_NTS) {
1687 smmu->features |= ARM_SMMU_FEAT_TRANS_NESTED;
1688 dev_notice(smmu->dev, "\tnested translation\n");
1691 if (!(smmu->features &
1692 (ARM_SMMU_FEAT_TRANS_S1 | ARM_SMMU_FEAT_TRANS_S2))) {
1693 dev_err(smmu->dev, "\tno translation support!\n");
1694 return -ENODEV;
1697 if ((id & ID0_S1TS) &&
1698 ((smmu->version < ARM_SMMU_V2) || !(id & ID0_ATOSNS))) {
1699 smmu->features |= ARM_SMMU_FEAT_TRANS_OPS;
1700 dev_notice(smmu->dev, "\taddress translation ops\n");
1704 * In order for DMA API calls to work properly, we must defer to what
1705 * the FW says about coherency, regardless of what the hardware claims.
1706 * Fortunately, this also opens up a workaround for systems where the
1707 * ID register value has ended up configured incorrectly.
1709 cttw_reg = !!(id & ID0_CTTW);
1710 if (cttw_fw || cttw_reg)
1711 dev_notice(smmu->dev, "\t%scoherent table walk\n",
1712 cttw_fw ? "" : "non-");
1713 if (cttw_fw != cttw_reg)
1714 dev_notice(smmu->dev,
1715 "\t(IDR0.CTTW overridden by FW configuration)\n");
1717 /* Max. number of entries we have for stream matching/indexing */
1718 if (smmu->version == ARM_SMMU_V2 && id & ID0_EXIDS) {
1719 smmu->features |= ARM_SMMU_FEAT_EXIDS;
1720 size = 1 << 16;
1721 } else {
1722 size = 1 << FIELD_GET(ID0_NUMSIDB, id);
1724 smmu->streamid_mask = size - 1;
1725 if (id & ID0_SMS) {
1726 smmu->features |= ARM_SMMU_FEAT_STREAM_MATCH;
1727 size = FIELD_GET(ID0_NUMSMRG, id);
1728 if (size == 0) {
1729 dev_err(smmu->dev,
1730 "stream-matching supported, but no SMRs present!\n");
1731 return -ENODEV;
1734 /* Zero-initialised to mark as invalid */
1735 smmu->smrs = devm_kcalloc(smmu->dev, size, sizeof(*smmu->smrs),
1736 GFP_KERNEL);
1737 if (!smmu->smrs)
1738 return -ENOMEM;
1740 dev_notice(smmu->dev,
1741 "\tstream matching with %u register groups", size);
1743 /* s2cr->type == 0 means translation, so initialise explicitly */
1744 smmu->s2crs = devm_kmalloc_array(smmu->dev, size, sizeof(*smmu->s2crs),
1745 GFP_KERNEL);
1746 if (!smmu->s2crs)
1747 return -ENOMEM;
1748 for (i = 0; i < size; i++)
1749 smmu->s2crs[i] = s2cr_init_val;
1751 smmu->num_mapping_groups = size;
1752 mutex_init(&smmu->stream_map_mutex);
1753 spin_lock_init(&smmu->global_sync_lock);
1755 if (smmu->version < ARM_SMMU_V2 || !(id & ID0_PTFS_NO_AARCH32)) {
1756 smmu->features |= ARM_SMMU_FEAT_FMT_AARCH32_L;
1757 if (!(id & ID0_PTFS_NO_AARCH32S))
1758 smmu->features |= ARM_SMMU_FEAT_FMT_AARCH32_S;
1761 /* ID1 */
1762 id = arm_smmu_gr0_read(smmu, ARM_SMMU_GR0_ID1);
1763 smmu->pgshift = (id & ID1_PAGESIZE) ? 16 : 12;
1765 /* Check for size mismatch of SMMU address space from mapped region */
1766 size = 1 << (FIELD_GET(ID1_NUMPAGENDXB, id) + 1);
1767 if (smmu->numpage != 2 * size << smmu->pgshift)
1768 dev_warn(smmu->dev,
1769 "SMMU address space size (0x%x) differs from mapped region size (0x%x)!\n",
1770 2 * size << smmu->pgshift, smmu->numpage);
1771 /* Now properly encode NUMPAGE to subsequently derive SMMU_CB_BASE */
1772 smmu->numpage = size;
1774 smmu->num_s2_context_banks = FIELD_GET(ID1_NUMS2CB, id);
1775 smmu->num_context_banks = FIELD_GET(ID1_NUMCB, id);
1776 if (smmu->num_s2_context_banks > smmu->num_context_banks) {
1777 dev_err(smmu->dev, "impossible number of S2 context banks!\n");
1778 return -ENODEV;
1780 dev_notice(smmu->dev, "\t%u context banks (%u stage-2 only)\n",
1781 smmu->num_context_banks, smmu->num_s2_context_banks);
1782 smmu->cbs = devm_kcalloc(smmu->dev, smmu->num_context_banks,
1783 sizeof(*smmu->cbs), GFP_KERNEL);
1784 if (!smmu->cbs)
1785 return -ENOMEM;
1787 /* ID2 */
1788 id = arm_smmu_gr0_read(smmu, ARM_SMMU_GR0_ID2);
1789 size = arm_smmu_id_size_to_bits(FIELD_GET(ID2_IAS, id));
1790 smmu->ipa_size = size;
1792 /* The output mask is also applied for bypass */
1793 size = arm_smmu_id_size_to_bits(FIELD_GET(ID2_OAS, id));
1794 smmu->pa_size = size;
1796 if (id & ID2_VMID16)
1797 smmu->features |= ARM_SMMU_FEAT_VMID16;
1800 * What the page table walker can address actually depends on which
1801 * descriptor format is in use, but since a) we don't know that yet,
1802 * and b) it can vary per context bank, this will have to do...
1804 if (dma_set_mask_and_coherent(smmu->dev, DMA_BIT_MASK(size)))
1805 dev_warn(smmu->dev,
1806 "failed to set DMA mask for table walker\n");
1808 if (smmu->version < ARM_SMMU_V2) {
1809 smmu->va_size = smmu->ipa_size;
1810 if (smmu->version == ARM_SMMU_V1_64K)
1811 smmu->features |= ARM_SMMU_FEAT_FMT_AARCH64_64K;
1812 } else {
1813 size = FIELD_GET(ID2_UBS, id);
1814 smmu->va_size = arm_smmu_id_size_to_bits(size);
1815 if (id & ID2_PTFS_4K)
1816 smmu->features |= ARM_SMMU_FEAT_FMT_AARCH64_4K;
1817 if (id & ID2_PTFS_16K)
1818 smmu->features |= ARM_SMMU_FEAT_FMT_AARCH64_16K;
1819 if (id & ID2_PTFS_64K)
1820 smmu->features |= ARM_SMMU_FEAT_FMT_AARCH64_64K;
1823 /* Now we've corralled the various formats, what'll it do? */
1824 if (smmu->features & ARM_SMMU_FEAT_FMT_AARCH32_S)
1825 smmu->pgsize_bitmap |= SZ_4K | SZ_64K | SZ_1M | SZ_16M;
1826 if (smmu->features &
1827 (ARM_SMMU_FEAT_FMT_AARCH32_L | ARM_SMMU_FEAT_FMT_AARCH64_4K))
1828 smmu->pgsize_bitmap |= SZ_4K | SZ_2M | SZ_1G;
1829 if (smmu->features & ARM_SMMU_FEAT_FMT_AARCH64_16K)
1830 smmu->pgsize_bitmap |= SZ_16K | SZ_32M;
1831 if (smmu->features & ARM_SMMU_FEAT_FMT_AARCH64_64K)
1832 smmu->pgsize_bitmap |= SZ_64K | SZ_512M;
1834 if (arm_smmu_ops.pgsize_bitmap == -1UL)
1835 arm_smmu_ops.pgsize_bitmap = smmu->pgsize_bitmap;
1836 else
1837 arm_smmu_ops.pgsize_bitmap |= smmu->pgsize_bitmap;
1838 dev_notice(smmu->dev, "\tSupported page sizes: 0x%08lx\n",
1839 smmu->pgsize_bitmap);
1842 if (smmu->features & ARM_SMMU_FEAT_TRANS_S1)
1843 dev_notice(smmu->dev, "\tStage-1: %lu-bit VA -> %lu-bit IPA\n",
1844 smmu->va_size, smmu->ipa_size);
1846 if (smmu->features & ARM_SMMU_FEAT_TRANS_S2)
1847 dev_notice(smmu->dev, "\tStage-2: %lu-bit IPA -> %lu-bit PA\n",
1848 smmu->ipa_size, smmu->pa_size);
1850 if (smmu->impl && smmu->impl->cfg_probe)
1851 return smmu->impl->cfg_probe(smmu);
1853 return 0;
1856 struct arm_smmu_match_data {
1857 enum arm_smmu_arch_version version;
1858 enum arm_smmu_implementation model;
1861 #define ARM_SMMU_MATCH_DATA(name, ver, imp) \
1862 static const struct arm_smmu_match_data name = { .version = ver, .model = imp }
1864 ARM_SMMU_MATCH_DATA(smmu_generic_v1, ARM_SMMU_V1, GENERIC_SMMU);
1865 ARM_SMMU_MATCH_DATA(smmu_generic_v2, ARM_SMMU_V2, GENERIC_SMMU);
1866 ARM_SMMU_MATCH_DATA(arm_mmu401, ARM_SMMU_V1_64K, GENERIC_SMMU);
1867 ARM_SMMU_MATCH_DATA(arm_mmu500, ARM_SMMU_V2, ARM_MMU500);
1868 ARM_SMMU_MATCH_DATA(cavium_smmuv2, ARM_SMMU_V2, CAVIUM_SMMUV2);
1869 ARM_SMMU_MATCH_DATA(qcom_smmuv2, ARM_SMMU_V2, QCOM_SMMUV2);
1871 static const struct of_device_id arm_smmu_of_match[] = {
1872 { .compatible = "arm,smmu-v1", .data = &smmu_generic_v1 },
1873 { .compatible = "arm,smmu-v2", .data = &smmu_generic_v2 },
1874 { .compatible = "arm,mmu-400", .data = &smmu_generic_v1 },
1875 { .compatible = "arm,mmu-401", .data = &arm_mmu401 },
1876 { .compatible = "arm,mmu-500", .data = &arm_mmu500 },
1877 { .compatible = "cavium,smmu-v2", .data = &cavium_smmuv2 },
1878 { .compatible = "qcom,smmu-v2", .data = &qcom_smmuv2 },
1879 { },
1882 #ifdef CONFIG_ACPI
1883 static int acpi_smmu_get_data(u32 model, struct arm_smmu_device *smmu)
1885 int ret = 0;
1887 switch (model) {
1888 case ACPI_IORT_SMMU_V1:
1889 case ACPI_IORT_SMMU_CORELINK_MMU400:
1890 smmu->version = ARM_SMMU_V1;
1891 smmu->model = GENERIC_SMMU;
1892 break;
1893 case ACPI_IORT_SMMU_CORELINK_MMU401:
1894 smmu->version = ARM_SMMU_V1_64K;
1895 smmu->model = GENERIC_SMMU;
1896 break;
1897 case ACPI_IORT_SMMU_V2:
1898 smmu->version = ARM_SMMU_V2;
1899 smmu->model = GENERIC_SMMU;
1900 break;
1901 case ACPI_IORT_SMMU_CORELINK_MMU500:
1902 smmu->version = ARM_SMMU_V2;
1903 smmu->model = ARM_MMU500;
1904 break;
1905 case ACPI_IORT_SMMU_CAVIUM_THUNDERX:
1906 smmu->version = ARM_SMMU_V2;
1907 smmu->model = CAVIUM_SMMUV2;
1908 break;
1909 default:
1910 ret = -ENODEV;
1913 return ret;
1916 static int arm_smmu_device_acpi_probe(struct platform_device *pdev,
1917 struct arm_smmu_device *smmu)
1919 struct device *dev = smmu->dev;
1920 struct acpi_iort_node *node =
1921 *(struct acpi_iort_node **)dev_get_platdata(dev);
1922 struct acpi_iort_smmu *iort_smmu;
1923 int ret;
1925 /* Retrieve SMMU1/2 specific data */
1926 iort_smmu = (struct acpi_iort_smmu *)node->node_data;
1928 ret = acpi_smmu_get_data(iort_smmu->model, smmu);
1929 if (ret < 0)
1930 return ret;
1932 /* Ignore the configuration access interrupt */
1933 smmu->num_global_irqs = 1;
1935 if (iort_smmu->flags & ACPI_IORT_SMMU_COHERENT_WALK)
1936 smmu->features |= ARM_SMMU_FEAT_COHERENT_WALK;
1938 return 0;
1940 #else
1941 static inline int arm_smmu_device_acpi_probe(struct platform_device *pdev,
1942 struct arm_smmu_device *smmu)
1944 return -ENODEV;
1946 #endif
1948 static int arm_smmu_device_dt_probe(struct platform_device *pdev,
1949 struct arm_smmu_device *smmu)
1951 const struct arm_smmu_match_data *data;
1952 struct device *dev = &pdev->dev;
1953 bool legacy_binding;
1955 if (of_property_read_u32(dev->of_node, "#global-interrupts",
1956 &smmu->num_global_irqs)) {
1957 dev_err(dev, "missing #global-interrupts property\n");
1958 return -ENODEV;
1961 data = of_device_get_match_data(dev);
1962 smmu->version = data->version;
1963 smmu->model = data->model;
1965 legacy_binding = of_find_property(dev->of_node, "mmu-masters", NULL);
1966 if (legacy_binding && !using_generic_binding) {
1967 if (!using_legacy_binding)
1968 pr_notice("deprecated \"mmu-masters\" DT property in use; DMA API support unavailable\n");
1969 using_legacy_binding = true;
1970 } else if (!legacy_binding && !using_legacy_binding) {
1971 using_generic_binding = true;
1972 } else {
1973 dev_err(dev, "not probing due to mismatched DT properties\n");
1974 return -ENODEV;
1977 if (of_dma_is_coherent(dev->of_node))
1978 smmu->features |= ARM_SMMU_FEAT_COHERENT_WALK;
1980 return 0;
1983 static void arm_smmu_bus_init(void)
1985 /* Oh, for a proper bus abstraction */
1986 if (!iommu_present(&platform_bus_type))
1987 bus_set_iommu(&platform_bus_type, &arm_smmu_ops);
1988 #ifdef CONFIG_ARM_AMBA
1989 if (!iommu_present(&amba_bustype))
1990 bus_set_iommu(&amba_bustype, &arm_smmu_ops);
1991 #endif
1992 #ifdef CONFIG_PCI
1993 if (!iommu_present(&pci_bus_type)) {
1994 pci_request_acs();
1995 bus_set_iommu(&pci_bus_type, &arm_smmu_ops);
1997 #endif
1998 #ifdef CONFIG_FSL_MC_BUS
1999 if (!iommu_present(&fsl_mc_bus_type))
2000 bus_set_iommu(&fsl_mc_bus_type, &arm_smmu_ops);
2001 #endif
2004 static int arm_smmu_device_probe(struct platform_device *pdev)
2006 struct resource *res;
2007 resource_size_t ioaddr;
2008 struct arm_smmu_device *smmu;
2009 struct device *dev = &pdev->dev;
2010 int num_irqs, i, err;
2012 smmu = devm_kzalloc(dev, sizeof(*smmu), GFP_KERNEL);
2013 if (!smmu) {
2014 dev_err(dev, "failed to allocate arm_smmu_device\n");
2015 return -ENOMEM;
2017 smmu->dev = dev;
2019 if (dev->of_node)
2020 err = arm_smmu_device_dt_probe(pdev, smmu);
2021 else
2022 err = arm_smmu_device_acpi_probe(pdev, smmu);
2024 if (err)
2025 return err;
2027 smmu = arm_smmu_impl_init(smmu);
2028 if (IS_ERR(smmu))
2029 return PTR_ERR(smmu);
2031 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2032 ioaddr = res->start;
2033 smmu->base = devm_ioremap_resource(dev, res);
2034 if (IS_ERR(smmu->base))
2035 return PTR_ERR(smmu->base);
2037 * The resource size should effectively match the value of SMMU_TOP;
2038 * stash that temporarily until we know PAGESIZE to validate it with.
2040 smmu->numpage = resource_size(res);
2042 num_irqs = 0;
2043 while ((res = platform_get_resource(pdev, IORESOURCE_IRQ, num_irqs))) {
2044 num_irqs++;
2045 if (num_irqs > smmu->num_global_irqs)
2046 smmu->num_context_irqs++;
2049 if (!smmu->num_context_irqs) {
2050 dev_err(dev, "found %d interrupts but expected at least %d\n",
2051 num_irqs, smmu->num_global_irqs + 1);
2052 return -ENODEV;
2055 smmu->irqs = devm_kcalloc(dev, num_irqs, sizeof(*smmu->irqs),
2056 GFP_KERNEL);
2057 if (!smmu->irqs) {
2058 dev_err(dev, "failed to allocate %d irqs\n", num_irqs);
2059 return -ENOMEM;
2062 for (i = 0; i < num_irqs; ++i) {
2063 int irq = platform_get_irq(pdev, i);
2065 if (irq < 0) {
2066 dev_err(dev, "failed to get irq index %d\n", i);
2067 return -ENODEV;
2069 smmu->irqs[i] = irq;
2072 err = devm_clk_bulk_get_all(dev, &smmu->clks);
2073 if (err < 0) {
2074 dev_err(dev, "failed to get clocks %d\n", err);
2075 return err;
2077 smmu->num_clks = err;
2079 err = clk_bulk_prepare_enable(smmu->num_clks, smmu->clks);
2080 if (err)
2081 return err;
2083 err = arm_smmu_device_cfg_probe(smmu);
2084 if (err)
2085 return err;
2087 if (smmu->version == ARM_SMMU_V2) {
2088 if (smmu->num_context_banks > smmu->num_context_irqs) {
2089 dev_err(dev,
2090 "found only %d context irq(s) but %d required\n",
2091 smmu->num_context_irqs, smmu->num_context_banks);
2092 return -ENODEV;
2095 /* Ignore superfluous interrupts */
2096 smmu->num_context_irqs = smmu->num_context_banks;
2099 for (i = 0; i < smmu->num_global_irqs; ++i) {
2100 err = devm_request_irq(smmu->dev, smmu->irqs[i],
2101 arm_smmu_global_fault,
2102 IRQF_SHARED,
2103 "arm-smmu global fault",
2104 smmu);
2105 if (err) {
2106 dev_err(dev, "failed to request global IRQ %d (%u)\n",
2107 i, smmu->irqs[i]);
2108 return err;
2112 err = iommu_device_sysfs_add(&smmu->iommu, smmu->dev, NULL,
2113 "smmu.%pa", &ioaddr);
2114 if (err) {
2115 dev_err(dev, "Failed to register iommu in sysfs\n");
2116 return err;
2119 iommu_device_set_ops(&smmu->iommu, &arm_smmu_ops);
2120 iommu_device_set_fwnode(&smmu->iommu, dev->fwnode);
2122 err = iommu_device_register(&smmu->iommu);
2123 if (err) {
2124 dev_err(dev, "Failed to register iommu\n");
2125 return err;
2128 platform_set_drvdata(pdev, smmu);
2129 arm_smmu_device_reset(smmu);
2130 arm_smmu_test_smr_masks(smmu);
2133 * We want to avoid touching dev->power.lock in fastpaths unless
2134 * it's really going to do something useful - pm_runtime_enabled()
2135 * can serve as an ideal proxy for that decision. So, conditionally
2136 * enable pm_runtime.
2138 if (dev->pm_domain) {
2139 pm_runtime_set_active(dev);
2140 pm_runtime_enable(dev);
2144 * For ACPI and generic DT bindings, an SMMU will be probed before
2145 * any device which might need it, so we want the bus ops in place
2146 * ready to handle default domain setup as soon as any SMMU exists.
2148 if (!using_legacy_binding)
2149 arm_smmu_bus_init();
2151 return 0;
2155 * With the legacy DT binding in play, though, we have no guarantees about
2156 * probe order, but then we're also not doing default domains, so we can
2157 * delay setting bus ops until we're sure every possible SMMU is ready,
2158 * and that way ensure that no add_device() calls get missed.
2160 static int arm_smmu_legacy_bus_init(void)
2162 if (using_legacy_binding)
2163 arm_smmu_bus_init();
2164 return 0;
2166 device_initcall_sync(arm_smmu_legacy_bus_init);
2168 static void arm_smmu_device_shutdown(struct platform_device *pdev)
2170 struct arm_smmu_device *smmu = platform_get_drvdata(pdev);
2172 if (!smmu)
2173 return;
2175 if (!bitmap_empty(smmu->context_map, ARM_SMMU_MAX_CBS))
2176 dev_err(&pdev->dev, "removing device with active domains!\n");
2178 arm_smmu_rpm_get(smmu);
2179 /* Turn the thing off */
2180 arm_smmu_gr0_write(smmu, ARM_SMMU_GR0_sCR0, sCR0_CLIENTPD);
2181 arm_smmu_rpm_put(smmu);
2183 if (pm_runtime_enabled(smmu->dev))
2184 pm_runtime_force_suspend(smmu->dev);
2185 else
2186 clk_bulk_disable(smmu->num_clks, smmu->clks);
2188 clk_bulk_unprepare(smmu->num_clks, smmu->clks);
2191 static int __maybe_unused arm_smmu_runtime_resume(struct device *dev)
2193 struct arm_smmu_device *smmu = dev_get_drvdata(dev);
2194 int ret;
2196 ret = clk_bulk_enable(smmu->num_clks, smmu->clks);
2197 if (ret)
2198 return ret;
2200 arm_smmu_device_reset(smmu);
2202 return 0;
2205 static int __maybe_unused arm_smmu_runtime_suspend(struct device *dev)
2207 struct arm_smmu_device *smmu = dev_get_drvdata(dev);
2209 clk_bulk_disable(smmu->num_clks, smmu->clks);
2211 return 0;
2214 static int __maybe_unused arm_smmu_pm_resume(struct device *dev)
2216 if (pm_runtime_suspended(dev))
2217 return 0;
2219 return arm_smmu_runtime_resume(dev);
2222 static int __maybe_unused arm_smmu_pm_suspend(struct device *dev)
2224 if (pm_runtime_suspended(dev))
2225 return 0;
2227 return arm_smmu_runtime_suspend(dev);
2230 static const struct dev_pm_ops arm_smmu_pm_ops = {
2231 SET_SYSTEM_SLEEP_PM_OPS(arm_smmu_pm_suspend, arm_smmu_pm_resume)
2232 SET_RUNTIME_PM_OPS(arm_smmu_runtime_suspend,
2233 arm_smmu_runtime_resume, NULL)
2236 static struct platform_driver arm_smmu_driver = {
2237 .driver = {
2238 .name = "arm-smmu",
2239 .of_match_table = of_match_ptr(arm_smmu_of_match),
2240 .pm = &arm_smmu_pm_ops,
2241 .suppress_bind_attrs = true,
2243 .probe = arm_smmu_device_probe,
2244 .shutdown = arm_smmu_device_shutdown,
2246 builtin_platform_driver(arm_smmu_driver);